xref: /freebsd/sys/dev/dc/if_dc.c (revision e168b357aa7fe7ae2bb9b56373a3aada3ebf56d7)
1 /*-
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ee.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /*
37  * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
38  * series chips and several workalikes including the following:
39  *
40  * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com)
41  * Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
42  * Lite-On 82c168/82c169 PNIC (www.litecom.com)
43  * ASIX Electronics AX88140A (www.asix.com.tw)
44  * ASIX Electronics AX88141 (www.asix.com.tw)
45  * ADMtek AL981 (www.admtek.com.tw)
46  * ADMtek AN985 (www.admtek.com.tw)
47  * Netgear FA511 (www.netgear.com) Appears to be rebadged ADMTek AN985
48  * Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
49  * Accton EN1217 (www.accton.com)
50  * Xircom X3201 (www.xircom.com)
51  * Abocom FE2500
52  * Conexant LANfinity (www.conexant.com)
53  * 3Com OfficeConnect 10/100B 3CSOHO100B (www.3com.com)
54  *
55  * Datasheets for the 21143 are available at developer.intel.com.
56  * Datasheets for the clone parts can be found at their respective sites.
57  * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
58  * The PNIC II is essentially a Macronix 98715A chip; the only difference
59  * worth noting is that its multicast hash table is only 128 bits wide
60  * instead of 512.
61  *
62  * Written by Bill Paul <wpaul@ee.columbia.edu>
63  * Electrical Engineering Department
64  * Columbia University, New York City
65  */
66 /*
67  * The Intel 21143 is the successor to the DEC 21140. It is basically
68  * the same as the 21140 but with a few new features. The 21143 supports
69  * three kinds of media attachments:
70  *
71  * o MII port, for 10Mbps and 100Mbps support and NWAY
72  *   autonegotiation provided by an external PHY.
73  * o SYM port, for symbol mode 100Mbps support.
74  * o 10baseT port.
75  * o AUI/BNC port.
76  *
77  * The 100Mbps SYM port and 10baseT port can be used together in
78  * combination with the internal NWAY support to create a 10/100
79  * autosensing configuration.
80  *
81  * Note that not all tulip workalikes are handled in this driver: we only
82  * deal with those which are relatively well behaved. The Winbond is
83  * handled separately due to its different register offsets and the
84  * special handling needed for its various bugs. The PNIC is handled
85  * here, but I'm not thrilled about it.
86  *
87  * All of the workalike chips use some form of MII transceiver support
88  * with the exception of the Macronix chips, which also have a SYM port.
89  * The ASIX AX88140A is also documented to have a SYM port, but all
90  * the cards I've seen use an MII transceiver, probably because the
91  * AX88140A doesn't support internal NWAY.
92  */
93 
94 #include <sys/param.h>
95 #include <sys/endian.h>
96 #include <sys/systm.h>
97 #include <sys/sockio.h>
98 #include <sys/mbuf.h>
99 #include <sys/malloc.h>
100 #include <sys/kernel.h>
101 #include <sys/module.h>
102 #include <sys/socket.h>
103 #include <sys/sysctl.h>
104 
105 #include <net/if.h>
106 #include <net/if_arp.h>
107 #include <net/ethernet.h>
108 #include <net/if_dl.h>
109 #include <net/if_media.h>
110 #include <net/if_types.h>
111 #include <net/if_vlan_var.h>
112 
113 #include <net/bpf.h>
114 
115 #include <machine/bus.h>
116 #include <machine/resource.h>
117 #include <sys/bus.h>
118 #include <sys/rman.h>
119 
120 #include <dev/mii/mii.h>
121 #include <dev/mii/miivar.h>
122 
123 #include <dev/pci/pcireg.h>
124 #include <dev/pci/pcivar.h>
125 
126 #define DC_USEIOSPACE
127 #ifdef __alpha__
128 #define SRM_MEDIA
129 #endif
130 
131 #include <pci/if_dcreg.h>
132 
133 #ifdef __sparc64__
134 #include <dev/ofw/openfirm.h>
135 #include <machine/ofw_machdep.h>
136 #endif
137 
138 MODULE_DEPEND(dc, pci, 1, 1, 1);
139 MODULE_DEPEND(dc, ether, 1, 1, 1);
140 MODULE_DEPEND(dc, miibus, 1, 1, 1);
141 
142 /* "controller miibus0" required.  See GENERIC if you get errors here. */
143 #include "miibus_if.h"
144 
145 /*
146  * Various supported device vendors/types and their names.
147  */
148 static struct dc_type dc_devs[] = {
149 	{ DC_VENDORID_DEC, DC_DEVICEID_21143,
150 		"Intel 21143 10/100BaseTX" },
151 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009,
152 		"Davicom DM9009 10/100BaseTX" },
153 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100,
154 		"Davicom DM9100 10/100BaseTX" },
155 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
156 		"Davicom DM9102 10/100BaseTX" },
157 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
158 		"Davicom DM9102A 10/100BaseTX" },
159 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AL981,
160 		"ADMtek AL981 10/100BaseTX" },
161 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AN985,
162 		"ADMtek AN985 10/100BaseTX" },
163 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511,
164 		"ADMtek ADM9511 10/100BaseTX" },
165 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513,
166 		"ADMtek ADM9513 10/100BaseTX" },
167 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_FA511,
168 		"Netgear FA511 10/100BaseTX" },
169 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
170 		"ASIX AX88140A 10/100BaseTX" },
171 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
172 		"ASIX AX88141 10/100BaseTX" },
173 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
174 		"Macronix 98713 10/100BaseTX" },
175 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
176 		"Macronix 98713A 10/100BaseTX" },
177 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
178 		"Compex RL100-TX 10/100BaseTX" },
179 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
180 		"Compex RL100-TX 10/100BaseTX" },
181 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
182 		"Macronix 98715/98715A 10/100BaseTX" },
183 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
184 		"Macronix 98715AEC-C 10/100BaseTX" },
185 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
186 		"Macronix 98725 10/100BaseTX" },
187 	{ DC_VENDORID_MX, DC_DEVICEID_98727,
188 		"Macronix 98727/98732 10/100BaseTX" },
189 	{ DC_VENDORID_LO, DC_DEVICEID_82C115,
190 		"LC82C115 PNIC II 10/100BaseTX" },
191 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
192 		"82c168 PNIC 10/100BaseTX" },
193 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
194 		"82c169 PNIC 10/100BaseTX" },
195 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN1217,
196 		"Accton EN1217 10/100BaseTX" },
197 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN2242,
198 		"Accton EN2242 MiniPCI 10/100BaseTX" },
199 	{ DC_VENDORID_XIRCOM, DC_DEVICEID_X3201,
200 	  	"Xircom X3201 10/100BaseTX" },
201 	{ DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500,
202 		"Abocom FE2500 10/100BaseTX" },
203 	{ DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500MX,
204 		"Abocom FE2500MX 10/100BaseTX" },
205 	{ DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112,
206 		"Conexant LANfinity MiniPCI 10/100BaseTX" },
207 	{ DC_VENDORID_HAWKING, DC_DEVICEID_HAWKING_PN672TX,
208 		"Hawking CB102 CardBus 10/100" },
209 	{ DC_VENDORID_PLANEX, DC_DEVICEID_FNW3602T,
210 		"PlaneX FNW-3602-T CardBus 10/100" },
211 	{ DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB,
212 		"3Com OfficeConnect 10/100B" },
213 	{ DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN120,
214 		"Microsoft MN-120 CardBus 10/100" },
215 	{ DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130,
216 		"Microsoft MN-130 10/100" },
217 	{ DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130_FAKE,
218 		"Microsoft MN-130 10/100" },
219 	{ 0, 0, NULL }
220 };
221 
222 static int dc_probe(device_t);
223 static int dc_attach(device_t);
224 static int dc_detach(device_t);
225 static int dc_suspend(device_t);
226 static int dc_resume(device_t);
227 static struct dc_type *dc_devtype(device_t);
228 static int dc_newbuf(struct dc_softc *, int, int);
229 static int dc_encap(struct dc_softc *, struct mbuf **);
230 static void dc_pnic_rx_bug_war(struct dc_softc *, int);
231 static int dc_rx_resync(struct dc_softc *);
232 static void dc_rxeof(struct dc_softc *);
233 static void dc_txeof(struct dc_softc *);
234 static void dc_tick(void *);
235 static void dc_tx_underrun(struct dc_softc *);
236 static void dc_intr(void *);
237 static void dc_start(struct ifnet *);
238 static int dc_ioctl(struct ifnet *, u_long, caddr_t);
239 static void dc_init(void *);
240 static void dc_stop(struct dc_softc *);
241 static void dc_watchdog(struct ifnet *);
242 static void dc_shutdown(device_t);
243 static int dc_ifmedia_upd(struct ifnet *);
244 static void dc_ifmedia_sts(struct ifnet *, struct ifmediareq *);
245 
246 static void dc_delay(struct dc_softc *);
247 static void dc_eeprom_idle(struct dc_softc *);
248 static void dc_eeprom_putbyte(struct dc_softc *, int);
249 static void dc_eeprom_getword(struct dc_softc *, int, u_int16_t *);
250 static void dc_eeprom_getword_pnic(struct dc_softc *, int, u_int16_t *);
251 static void dc_eeprom_getword_xircom(struct dc_softc *, int, u_int16_t *);
252 static void dc_eeprom_width(struct dc_softc *);
253 static void dc_read_eeprom(struct dc_softc *, caddr_t, int, int, int);
254 
255 static void dc_mii_writebit(struct dc_softc *, int);
256 static int dc_mii_readbit(struct dc_softc *);
257 static void dc_mii_sync(struct dc_softc *);
258 static void dc_mii_send(struct dc_softc *, u_int32_t, int);
259 static int dc_mii_readreg(struct dc_softc *, struct dc_mii_frame *);
260 static int dc_mii_writereg(struct dc_softc *, struct dc_mii_frame *);
261 static int dc_miibus_readreg(device_t, int, int);
262 static int dc_miibus_writereg(device_t, int, int, int);
263 static void dc_miibus_statchg(device_t);
264 static void dc_miibus_mediainit(device_t);
265 
266 static void dc_setcfg(struct dc_softc *, int);
267 static uint32_t dc_mchash_le(struct dc_softc *, const uint8_t *);
268 static uint32_t dc_mchash_be(const uint8_t *);
269 static void dc_setfilt_21143(struct dc_softc *);
270 static void dc_setfilt_asix(struct dc_softc *);
271 static void dc_setfilt_admtek(struct dc_softc *);
272 static void dc_setfilt_xircom(struct dc_softc *);
273 
274 static void dc_setfilt(struct dc_softc *);
275 
276 static void dc_reset(struct dc_softc *);
277 static int dc_list_rx_init(struct dc_softc *);
278 static int dc_list_tx_init(struct dc_softc *);
279 
280 static void dc_read_srom(struct dc_softc *, int);
281 static void dc_parse_21143_srom(struct dc_softc *);
282 static void dc_decode_leaf_sia(struct dc_softc *, struct dc_eblock_sia *);
283 static void dc_decode_leaf_mii(struct dc_softc *, struct dc_eblock_mii *);
284 static void dc_decode_leaf_sym(struct dc_softc *, struct dc_eblock_sym *);
285 static void dc_apply_fixup(struct dc_softc *, int);
286 
287 static void dc_dma_map_txbuf(void *, bus_dma_segment_t *, int, bus_size_t, int);
288 static void dc_dma_map_rxbuf(void *, bus_dma_segment_t *, int, bus_size_t, int);
289 
290 #ifdef DC_USEIOSPACE
291 #define DC_RES			SYS_RES_IOPORT
292 #define DC_RID			DC_PCI_CFBIO
293 #else
294 #define DC_RES			SYS_RES_MEMORY
295 #define DC_RID			DC_PCI_CFBMA
296 #endif
297 
298 static device_method_t dc_methods[] = {
299 	/* Device interface */
300 	DEVMETHOD(device_probe,		dc_probe),
301 	DEVMETHOD(device_attach,	dc_attach),
302 	DEVMETHOD(device_detach,	dc_detach),
303 	DEVMETHOD(device_suspend,	dc_suspend),
304 	DEVMETHOD(device_resume,	dc_resume),
305 	DEVMETHOD(device_shutdown,	dc_shutdown),
306 
307 	/* bus interface */
308 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
309 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
310 
311 	/* MII interface */
312 	DEVMETHOD(miibus_readreg,	dc_miibus_readreg),
313 	DEVMETHOD(miibus_writereg,	dc_miibus_writereg),
314 	DEVMETHOD(miibus_statchg,	dc_miibus_statchg),
315 	DEVMETHOD(miibus_mediainit,	dc_miibus_mediainit),
316 
317 	{ 0, 0 }
318 };
319 
320 static driver_t dc_driver = {
321 	"dc",
322 	dc_methods,
323 	sizeof(struct dc_softc)
324 };
325 
326 static devclass_t dc_devclass;
327 #ifdef __i386__
328 static int dc_quick = 1;
329 SYSCTL_INT(_hw, OID_AUTO, dc_quick, CTLFLAG_RW, &dc_quick, 0,
330     "do not m_devget() in dc driver");
331 #endif
332 
333 DRIVER_MODULE(dc, cardbus, dc_driver, dc_devclass, 0, 0);
334 DRIVER_MODULE(dc, pci, dc_driver, dc_devclass, 0, 0);
335 DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, 0, 0);
336 
337 #define DC_SETBIT(sc, reg, x)				\
338 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
339 
340 #define DC_CLRBIT(sc, reg, x)				\
341 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
342 
343 #define SIO_SET(x)	DC_SETBIT(sc, DC_SIO, (x))
344 #define SIO_CLR(x)	DC_CLRBIT(sc, DC_SIO, (x))
345 
346 #define IS_MPSAFE 	0
347 
348 static void
349 dc_delay(struct dc_softc *sc)
350 {
351 	int idx;
352 
353 	for (idx = (300 / 33) + 1; idx > 0; idx--)
354 		CSR_READ_4(sc, DC_BUSCTL);
355 }
356 
357 static void
358 dc_eeprom_width(struct dc_softc *sc)
359 {
360 	int i;
361 
362 	/* Force EEPROM to idle state. */
363 	dc_eeprom_idle(sc);
364 
365 	/* Enter EEPROM access mode. */
366 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
367 	dc_delay(sc);
368 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
369 	dc_delay(sc);
370 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
371 	dc_delay(sc);
372 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
373 	dc_delay(sc);
374 
375 	for (i = 3; i--;) {
376 		if (6 & (1 << i))
377 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
378 		else
379 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
380 		dc_delay(sc);
381 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
382 		dc_delay(sc);
383 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
384 		dc_delay(sc);
385 	}
386 
387 	for (i = 1; i <= 12; i++) {
388 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
389 		dc_delay(sc);
390 		if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) {
391 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
392 			dc_delay(sc);
393 			break;
394 		}
395 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
396 		dc_delay(sc);
397 	}
398 
399 	/* Turn off EEPROM access mode. */
400 	dc_eeprom_idle(sc);
401 
402 	if (i < 4 || i > 12)
403 		sc->dc_romwidth = 6;
404 	else
405 		sc->dc_romwidth = i;
406 
407 	/* Enter EEPROM access mode. */
408 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
409 	dc_delay(sc);
410 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
411 	dc_delay(sc);
412 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
413 	dc_delay(sc);
414 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
415 	dc_delay(sc);
416 
417 	/* Turn off EEPROM access mode. */
418 	dc_eeprom_idle(sc);
419 }
420 
421 static void
422 dc_eeprom_idle(struct dc_softc *sc)
423 {
424 	int i;
425 
426 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
427 	dc_delay(sc);
428 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
429 	dc_delay(sc);
430 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
431 	dc_delay(sc);
432 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
433 	dc_delay(sc);
434 
435 	for (i = 0; i < 25; i++) {
436 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
437 		dc_delay(sc);
438 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
439 		dc_delay(sc);
440 	}
441 
442 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
443 	dc_delay(sc);
444 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
445 	dc_delay(sc);
446 	CSR_WRITE_4(sc, DC_SIO, 0x00000000);
447 }
448 
449 /*
450  * Send a read command and address to the EEPROM, check for ACK.
451  */
452 static void
453 dc_eeprom_putbyte(struct dc_softc *sc, int addr)
454 {
455 	int d, i;
456 
457 	d = DC_EECMD_READ >> 6;
458 	for (i = 3; i--; ) {
459 		if (d & (1 << i))
460 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
461 		else
462 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
463 		dc_delay(sc);
464 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
465 		dc_delay(sc);
466 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
467 		dc_delay(sc);
468 	}
469 
470 	/*
471 	 * Feed in each bit and strobe the clock.
472 	 */
473 	for (i = sc->dc_romwidth; i--;) {
474 		if (addr & (1 << i)) {
475 			SIO_SET(DC_SIO_EE_DATAIN);
476 		} else {
477 			SIO_CLR(DC_SIO_EE_DATAIN);
478 		}
479 		dc_delay(sc);
480 		SIO_SET(DC_SIO_EE_CLK);
481 		dc_delay(sc);
482 		SIO_CLR(DC_SIO_EE_CLK);
483 		dc_delay(sc);
484 	}
485 }
486 
487 /*
488  * Read a word of data stored in the EEPROM at address 'addr.'
489  * The PNIC 82c168/82c169 has its own non-standard way to read
490  * the EEPROM.
491  */
492 static void
493 dc_eeprom_getword_pnic(struct dc_softc *sc, int addr, u_int16_t *dest)
494 {
495 	int i;
496 	u_int32_t r;
497 
498 	CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ | addr);
499 
500 	for (i = 0; i < DC_TIMEOUT; i++) {
501 		DELAY(1);
502 		r = CSR_READ_4(sc, DC_SIO);
503 		if (!(r & DC_PN_SIOCTL_BUSY)) {
504 			*dest = (u_int16_t)(r & 0xFFFF);
505 			return;
506 		}
507 	}
508 }
509 
510 /*
511  * Read a word of data stored in the EEPROM at address 'addr.'
512  * The Xircom X3201 has its own non-standard way to read
513  * the EEPROM, too.
514  */
515 static void
516 dc_eeprom_getword_xircom(struct dc_softc *sc, int addr, u_int16_t *dest)
517 {
518 
519 	SIO_SET(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
520 
521 	addr *= 2;
522 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
523 	*dest = (u_int16_t)CSR_READ_4(sc, DC_SIO) & 0xff;
524 	addr += 1;
525 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
526 	*dest |= ((u_int16_t)CSR_READ_4(sc, DC_SIO) & 0xff) << 8;
527 
528 	SIO_CLR(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
529 }
530 
531 /*
532  * Read a word of data stored in the EEPROM at address 'addr.'
533  */
534 static void
535 dc_eeprom_getword(struct dc_softc *sc, int addr, u_int16_t *dest)
536 {
537 	int i;
538 	u_int16_t word = 0;
539 
540 	/* Force EEPROM to idle state. */
541 	dc_eeprom_idle(sc);
542 
543 	/* Enter EEPROM access mode. */
544 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
545 	dc_delay(sc);
546 	DC_SETBIT(sc, DC_SIO,  DC_SIO_ROMCTL_READ);
547 	dc_delay(sc);
548 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
549 	dc_delay(sc);
550 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
551 	dc_delay(sc);
552 
553 	/*
554 	 * Send address of word we want to read.
555 	 */
556 	dc_eeprom_putbyte(sc, addr);
557 
558 	/*
559 	 * Start reading bits from EEPROM.
560 	 */
561 	for (i = 0x8000; i; i >>= 1) {
562 		SIO_SET(DC_SIO_EE_CLK);
563 		dc_delay(sc);
564 		if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
565 			word |= i;
566 		dc_delay(sc);
567 		SIO_CLR(DC_SIO_EE_CLK);
568 		dc_delay(sc);
569 	}
570 
571 	/* Turn off EEPROM access mode. */
572 	dc_eeprom_idle(sc);
573 
574 	*dest = word;
575 }
576 
577 /*
578  * Read a sequence of words from the EEPROM.
579  */
580 static void
581 dc_read_eeprom(struct dc_softc *sc, caddr_t dest, int off, int cnt, int be)
582 {
583 	int i;
584 	u_int16_t word = 0, *ptr;
585 
586 	for (i = 0; i < cnt; i++) {
587 		if (DC_IS_PNIC(sc))
588 			dc_eeprom_getword_pnic(sc, off + i, &word);
589 		else if (DC_IS_XIRCOM(sc))
590 			dc_eeprom_getword_xircom(sc, off + i, &word);
591 		else
592 			dc_eeprom_getword(sc, off + i, &word);
593 		ptr = (u_int16_t *)(dest + (i * 2));
594 		if (be)
595 			*ptr = be16toh(word);
596 		else
597 			*ptr = le16toh(word);
598 	}
599 }
600 
601 /*
602  * The following two routines are taken from the Macronix 98713
603  * Application Notes pp.19-21.
604  */
605 /*
606  * Write a bit to the MII bus.
607  */
608 static void
609 dc_mii_writebit(struct dc_softc *sc, int bit)
610 {
611 
612 	if (bit)
613 		CSR_WRITE_4(sc, DC_SIO,
614 		    DC_SIO_ROMCTL_WRITE | DC_SIO_MII_DATAOUT);
615 	else
616 		CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
617 
618 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
619 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
620 }
621 
622 /*
623  * Read a bit from the MII bus.
624  */
625 static int
626 dc_mii_readbit(struct dc_softc *sc)
627 {
628 
629 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_READ | DC_SIO_MII_DIR);
630 	CSR_READ_4(sc, DC_SIO);
631 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
632 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
633 	if (CSR_READ_4(sc, DC_SIO) & DC_SIO_MII_DATAIN)
634 		return (1);
635 
636 	return (0);
637 }
638 
639 /*
640  * Sync the PHYs by setting data bit and strobing the clock 32 times.
641  */
642 static void
643 dc_mii_sync(struct dc_softc *sc)
644 {
645 	int i;
646 
647 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
648 
649 	for (i = 0; i < 32; i++)
650 		dc_mii_writebit(sc, 1);
651 }
652 
653 /*
654  * Clock a series of bits through the MII.
655  */
656 static void
657 dc_mii_send(struct dc_softc *sc, u_int32_t bits, int cnt)
658 {
659 	int i;
660 
661 	for (i = (0x1 << (cnt - 1)); i; i >>= 1)
662 		dc_mii_writebit(sc, bits & i);
663 }
664 
665 /*
666  * Read an PHY register through the MII.
667  */
668 static int
669 dc_mii_readreg(struct dc_softc *sc, struct dc_mii_frame *frame)
670 {
671 	int i, ack;
672 
673 	DC_LOCK(sc);
674 
675 	/*
676 	 * Set up frame for RX.
677 	 */
678 	frame->mii_stdelim = DC_MII_STARTDELIM;
679 	frame->mii_opcode = DC_MII_READOP;
680 	frame->mii_turnaround = 0;
681 	frame->mii_data = 0;
682 
683 	/*
684 	 * Sync the PHYs.
685 	 */
686 	dc_mii_sync(sc);
687 
688 	/*
689 	 * Send command/address info.
690 	 */
691 	dc_mii_send(sc, frame->mii_stdelim, 2);
692 	dc_mii_send(sc, frame->mii_opcode, 2);
693 	dc_mii_send(sc, frame->mii_phyaddr, 5);
694 	dc_mii_send(sc, frame->mii_regaddr, 5);
695 
696 #ifdef notdef
697 	/* Idle bit */
698 	dc_mii_writebit(sc, 1);
699 	dc_mii_writebit(sc, 0);
700 #endif
701 
702 	/* Check for ack. */
703 	ack = dc_mii_readbit(sc);
704 
705 	/*
706 	 * Now try reading data bits. If the ack failed, we still
707 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
708 	 */
709 	if (ack) {
710 		for (i = 0; i < 16; i++)
711 			dc_mii_readbit(sc);
712 		goto fail;
713 	}
714 
715 	for (i = 0x8000; i; i >>= 1) {
716 		if (!ack) {
717 			if (dc_mii_readbit(sc))
718 				frame->mii_data |= i;
719 		}
720 	}
721 
722 fail:
723 
724 	dc_mii_writebit(sc, 0);
725 	dc_mii_writebit(sc, 0);
726 
727 	DC_UNLOCK(sc);
728 
729 	if (ack)
730 		return (1);
731 	return (0);
732 }
733 
734 /*
735  * Write to a PHY register through the MII.
736  */
737 static int
738 dc_mii_writereg(struct dc_softc *sc, struct dc_mii_frame *frame)
739 {
740 
741 	DC_LOCK(sc);
742 	/*
743 	 * Set up frame for TX.
744 	 */
745 
746 	frame->mii_stdelim = DC_MII_STARTDELIM;
747 	frame->mii_opcode = DC_MII_WRITEOP;
748 	frame->mii_turnaround = DC_MII_TURNAROUND;
749 
750 	/*
751 	 * Sync the PHYs.
752 	 */
753 	dc_mii_sync(sc);
754 
755 	dc_mii_send(sc, frame->mii_stdelim, 2);
756 	dc_mii_send(sc, frame->mii_opcode, 2);
757 	dc_mii_send(sc, frame->mii_phyaddr, 5);
758 	dc_mii_send(sc, frame->mii_regaddr, 5);
759 	dc_mii_send(sc, frame->mii_turnaround, 2);
760 	dc_mii_send(sc, frame->mii_data, 16);
761 
762 	/* Idle bit. */
763 	dc_mii_writebit(sc, 0);
764 	dc_mii_writebit(sc, 0);
765 
766 	DC_UNLOCK(sc);
767 
768 	return (0);
769 }
770 
771 static int
772 dc_miibus_readreg(device_t dev, int phy, int reg)
773 {
774 	struct dc_mii_frame frame;
775 	struct dc_softc	 *sc;
776 	int i, rval, phy_reg = 0;
777 
778 	sc = device_get_softc(dev);
779 	bzero(&frame, sizeof(frame));
780 
781 	/*
782 	 * Note: both the AL981 and AN985 have internal PHYs,
783 	 * however the AL981 provides direct access to the PHY
784 	 * registers while the AN985 uses a serial MII interface.
785 	 * The AN985's MII interface is also buggy in that you
786 	 * can read from any MII address (0 to 31), but only address 1
787 	 * behaves normally. To deal with both cases, we pretend
788 	 * that the PHY is at MII address 1.
789 	 */
790 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
791 		return (0);
792 
793 	/*
794 	 * Note: the ukphy probes of the RS7112 report a PHY at
795 	 * MII address 0 (possibly HomePNA?) and 1 (ethernet)
796 	 * so we only respond to correct one.
797 	 */
798 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
799 		return (0);
800 
801 	if (sc->dc_pmode != DC_PMODE_MII) {
802 		if (phy == (MII_NPHY - 1)) {
803 			switch (reg) {
804 			case MII_BMSR:
805 			/*
806 			 * Fake something to make the probe
807 			 * code think there's a PHY here.
808 			 */
809 				return (BMSR_MEDIAMASK);
810 				break;
811 			case MII_PHYIDR1:
812 				if (DC_IS_PNIC(sc))
813 					return (DC_VENDORID_LO);
814 				return (DC_VENDORID_DEC);
815 				break;
816 			case MII_PHYIDR2:
817 				if (DC_IS_PNIC(sc))
818 					return (DC_DEVICEID_82C168);
819 				return (DC_DEVICEID_21143);
820 				break;
821 			default:
822 				return (0);
823 				break;
824 			}
825 		} else
826 			return (0);
827 	}
828 
829 	if (DC_IS_PNIC(sc)) {
830 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
831 		    (phy << 23) | (reg << 18));
832 		for (i = 0; i < DC_TIMEOUT; i++) {
833 			DELAY(1);
834 			rval = CSR_READ_4(sc, DC_PN_MII);
835 			if (!(rval & DC_PN_MII_BUSY)) {
836 				rval &= 0xFFFF;
837 				return (rval == 0xFFFF ? 0 : rval);
838 			}
839 		}
840 		return (0);
841 	}
842 
843 	if (DC_IS_COMET(sc)) {
844 		switch (reg) {
845 		case MII_BMCR:
846 			phy_reg = DC_AL_BMCR;
847 			break;
848 		case MII_BMSR:
849 			phy_reg = DC_AL_BMSR;
850 			break;
851 		case MII_PHYIDR1:
852 			phy_reg = DC_AL_VENID;
853 			break;
854 		case MII_PHYIDR2:
855 			phy_reg = DC_AL_DEVID;
856 			break;
857 		case MII_ANAR:
858 			phy_reg = DC_AL_ANAR;
859 			break;
860 		case MII_ANLPAR:
861 			phy_reg = DC_AL_LPAR;
862 			break;
863 		case MII_ANER:
864 			phy_reg = DC_AL_ANER;
865 			break;
866 		default:
867 			device_printf(dev, "phy_read: bad phy register %x\n",
868 			    reg);
869 			return (0);
870 			break;
871 		}
872 
873 		rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
874 
875 		if (rval == 0xFFFF)
876 			return (0);
877 		return (rval);
878 	}
879 
880 	frame.mii_phyaddr = phy;
881 	frame.mii_regaddr = reg;
882 	if (sc->dc_type == DC_TYPE_98713) {
883 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
884 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
885 	}
886 	dc_mii_readreg(sc, &frame);
887 	if (sc->dc_type == DC_TYPE_98713)
888 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
889 
890 	return (frame.mii_data);
891 }
892 
893 static int
894 dc_miibus_writereg(device_t dev, int phy, int reg, int data)
895 {
896 	struct dc_softc *sc;
897 	struct dc_mii_frame frame;
898 	int i, phy_reg = 0;
899 
900 	sc = device_get_softc(dev);
901 	bzero(&frame, sizeof(frame));
902 
903 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
904 		return (0);
905 
906 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
907 		return (0);
908 
909 	if (DC_IS_PNIC(sc)) {
910 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
911 		    (phy << 23) | (reg << 10) | data);
912 		for (i = 0; i < DC_TIMEOUT; i++) {
913 			if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
914 				break;
915 		}
916 		return (0);
917 	}
918 
919 	if (DC_IS_COMET(sc)) {
920 		switch (reg) {
921 		case MII_BMCR:
922 			phy_reg = DC_AL_BMCR;
923 			break;
924 		case MII_BMSR:
925 			phy_reg = DC_AL_BMSR;
926 			break;
927 		case MII_PHYIDR1:
928 			phy_reg = DC_AL_VENID;
929 			break;
930 		case MII_PHYIDR2:
931 			phy_reg = DC_AL_DEVID;
932 			break;
933 		case MII_ANAR:
934 			phy_reg = DC_AL_ANAR;
935 			break;
936 		case MII_ANLPAR:
937 			phy_reg = DC_AL_LPAR;
938 			break;
939 		case MII_ANER:
940 			phy_reg = DC_AL_ANER;
941 			break;
942 		default:
943 			device_printf(dev, "phy_write: bad phy register %x\n",
944 			    reg);
945 			return (0);
946 			break;
947 		}
948 
949 		CSR_WRITE_4(sc, phy_reg, data);
950 		return (0);
951 	}
952 
953 	frame.mii_phyaddr = phy;
954 	frame.mii_regaddr = reg;
955 	frame.mii_data = data;
956 
957 	if (sc->dc_type == DC_TYPE_98713) {
958 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
959 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
960 	}
961 	dc_mii_writereg(sc, &frame);
962 	if (sc->dc_type == DC_TYPE_98713)
963 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
964 
965 	return (0);
966 }
967 
968 static void
969 dc_miibus_statchg(device_t dev)
970 {
971 	struct dc_softc *sc;
972 	struct mii_data *mii;
973 	struct ifmedia *ifm;
974 
975 	sc = device_get_softc(dev);
976 	if (DC_IS_ADMTEK(sc))
977 		return;
978 
979 	mii = device_get_softc(sc->dc_miibus);
980 	ifm = &mii->mii_media;
981 	if (DC_IS_DAVICOM(sc) &&
982 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
983 		dc_setcfg(sc, ifm->ifm_media);
984 		sc->dc_if_media = ifm->ifm_media;
985 	} else {
986 		dc_setcfg(sc, mii->mii_media_active);
987 		sc->dc_if_media = mii->mii_media_active;
988 	}
989 }
990 
991 /*
992  * Special support for DM9102A cards with HomePNA PHYs. Note:
993  * with the Davicom DM9102A/DM9801 eval board that I have, it seems
994  * to be impossible to talk to the management interface of the DM9801
995  * PHY (its MDIO pin is not connected to anything). Consequently,
996  * the driver has to just 'know' about the additional mode and deal
997  * with it itself. *sigh*
998  */
999 static void
1000 dc_miibus_mediainit(device_t dev)
1001 {
1002 	struct dc_softc *sc;
1003 	struct mii_data *mii;
1004 	struct ifmedia *ifm;
1005 	int rev;
1006 
1007 	rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF;
1008 
1009 	sc = device_get_softc(dev);
1010 	mii = device_get_softc(sc->dc_miibus);
1011 	ifm = &mii->mii_media;
1012 
1013 	if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A)
1014 		ifmedia_add(ifm, IFM_ETHER | IFM_HPNA_1, 0, NULL);
1015 }
1016 
1017 #define DC_BITS_512	9
1018 #define DC_BITS_128	7
1019 #define DC_BITS_64	6
1020 
1021 static uint32_t
1022 dc_mchash_le(struct dc_softc *sc, const uint8_t *addr)
1023 {
1024 	uint32_t crc;
1025 
1026 	/* Compute CRC for the address value. */
1027 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
1028 
1029 	/*
1030 	 * The hash table on the PNIC II and the MX98715AEC-C/D/E
1031 	 * chips is only 128 bits wide.
1032 	 */
1033 	if (sc->dc_flags & DC_128BIT_HASH)
1034 		return (crc & ((1 << DC_BITS_128) - 1));
1035 
1036 	/* The hash table on the MX98715BEC is only 64 bits wide. */
1037 	if (sc->dc_flags & DC_64BIT_HASH)
1038 		return (crc & ((1 << DC_BITS_64) - 1));
1039 
1040 	/* Xircom's hash filtering table is different (read: weird) */
1041 	/* Xircom uses the LEAST significant bits */
1042 	if (DC_IS_XIRCOM(sc)) {
1043 		if ((crc & 0x180) == 0x180)
1044 			return ((crc & 0x0F) + (crc & 0x70) * 3 + (14 << 4));
1045 		else
1046 			return ((crc & 0x1F) + ((crc >> 1) & 0xF0) * 3 +
1047 			    (12 << 4));
1048 	}
1049 
1050 	return (crc & ((1 << DC_BITS_512) - 1));
1051 }
1052 
1053 /*
1054  * Calculate CRC of a multicast group address, return the lower 6 bits.
1055  */
1056 static uint32_t
1057 dc_mchash_be(const uint8_t *addr)
1058 {
1059 	uint32_t crc;
1060 
1061 	/* Compute CRC for the address value. */
1062 	crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
1063 
1064 	/* Return the filter bit position. */
1065 	return ((crc >> 26) & 0x0000003F);
1066 }
1067 
1068 /*
1069  * 21143-style RX filter setup routine. Filter programming is done by
1070  * downloading a special setup frame into the TX engine. 21143, Macronix,
1071  * PNIC, PNIC II and Davicom chips are programmed this way.
1072  *
1073  * We always program the chip using 'hash perfect' mode, i.e. one perfect
1074  * address (our node address) and a 512-bit hash filter for multicast
1075  * frames. We also sneak the broadcast address into the hash filter since
1076  * we need that too.
1077  */
1078 static void
1079 dc_setfilt_21143(struct dc_softc *sc)
1080 {
1081 	struct dc_desc *sframe;
1082 	u_int32_t h, *sp;
1083 	struct ifmultiaddr *ifma;
1084 	struct ifnet *ifp;
1085 	int i;
1086 
1087 	ifp = sc->dc_ifp;
1088 
1089 	i = sc->dc_cdata.dc_tx_prod;
1090 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1091 	sc->dc_cdata.dc_tx_cnt++;
1092 	sframe = &sc->dc_ldata->dc_tx_list[i];
1093 	sp = sc->dc_cdata.dc_sbuf;
1094 	bzero(sp, DC_SFRAME_LEN);
1095 
1096 	sframe->dc_data = htole32(sc->dc_saddr);
1097 	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
1098 	    DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
1099 
1100 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
1101 
1102 	/* If we want promiscuous mode, set the allframes bit. */
1103 	if (ifp->if_flags & IFF_PROMISC)
1104 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1105 	else
1106 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1107 
1108 	if (ifp->if_flags & IFF_ALLMULTI)
1109 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1110 	else
1111 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1112 
1113 	IF_ADDR_LOCK(ifp);
1114 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1115 		if (ifma->ifma_addr->sa_family != AF_LINK)
1116 			continue;
1117 		h = dc_mchash_le(sc,
1118 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1119 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1120 	}
1121 	IF_ADDR_UNLOCK(ifp);
1122 
1123 	if (ifp->if_flags & IFF_BROADCAST) {
1124 		h = dc_mchash_le(sc, ifp->if_broadcastaddr);
1125 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1126 	}
1127 
1128 	/* Set our MAC address */
1129 	sp[39] = DC_SP_MAC(((u_int16_t *)IFP2ENADDR(sc->dc_ifp))[0]);
1130 	sp[40] = DC_SP_MAC(((u_int16_t *)IFP2ENADDR(sc->dc_ifp))[1]);
1131 	sp[41] = DC_SP_MAC(((u_int16_t *)IFP2ENADDR(sc->dc_ifp))[2]);
1132 
1133 	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1134 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1135 
1136 	/*
1137 	 * The PNIC takes an exceedingly long time to process its
1138 	 * setup frame; wait 10ms after posting the setup frame
1139 	 * before proceeding, just so it has time to swallow its
1140 	 * medicine.
1141 	 */
1142 	DELAY(10000);
1143 
1144 	ifp->if_timer = 5;
1145 }
1146 
1147 static void
1148 dc_setfilt_admtek(struct dc_softc *sc)
1149 {
1150 	struct ifnet *ifp;
1151 	struct ifmultiaddr *ifma;
1152 	int h = 0;
1153 	u_int32_t hashes[2] = { 0, 0 };
1154 
1155 	ifp = sc->dc_ifp;
1156 
1157 	/* Init our MAC address. */
1158 	CSR_WRITE_4(sc, DC_AL_PAR0, *(u_int32_t *)(&IFP2ENADDR(sc->dc_ifp)[0]));
1159 	CSR_WRITE_4(sc, DC_AL_PAR1, *(u_int32_t *)(&IFP2ENADDR(sc->dc_ifp)[4]));
1160 
1161 	/* If we want promiscuous mode, set the allframes bit. */
1162 	if (ifp->if_flags & IFF_PROMISC)
1163 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1164 	else
1165 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1166 
1167 	if (ifp->if_flags & IFF_ALLMULTI)
1168 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1169 	else
1170 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1171 
1172 	/* First, zot all the existing hash bits. */
1173 	CSR_WRITE_4(sc, DC_AL_MAR0, 0);
1174 	CSR_WRITE_4(sc, DC_AL_MAR1, 0);
1175 
1176 	/*
1177 	 * If we're already in promisc or allmulti mode, we
1178 	 * don't have to bother programming the multicast filter.
1179 	 */
1180 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
1181 		return;
1182 
1183 	/* Now program new ones. */
1184 	IF_ADDR_LOCK(ifp);
1185 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1186 		if (ifma->ifma_addr->sa_family != AF_LINK)
1187 			continue;
1188 		if (DC_IS_CENTAUR(sc))
1189 			h = dc_mchash_le(sc,
1190 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1191 		else
1192 			h = dc_mchash_be(
1193 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1194 		if (h < 32)
1195 			hashes[0] |= (1 << h);
1196 		else
1197 			hashes[1] |= (1 << (h - 32));
1198 	}
1199 	IF_ADDR_UNLOCK(ifp);
1200 
1201 	CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]);
1202 	CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]);
1203 }
1204 
1205 static void
1206 dc_setfilt_asix(struct dc_softc *sc)
1207 {
1208 	struct ifnet *ifp;
1209 	struct ifmultiaddr *ifma;
1210 	int h = 0;
1211 	u_int32_t hashes[2] = { 0, 0 };
1212 
1213 	ifp = sc->dc_ifp;
1214 
1215 	/* Init our MAC address */
1216 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
1217 	CSR_WRITE_4(sc, DC_AX_FILTDATA,
1218 	    *(u_int32_t *)(&IFP2ENADDR(sc->dc_ifp)[0]));
1219 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
1220 	CSR_WRITE_4(sc, DC_AX_FILTDATA,
1221 	    *(u_int32_t *)(&IFP2ENADDR(sc->dc_ifp)[4]));
1222 
1223 	/* If we want promiscuous mode, set the allframes bit. */
1224 	if (ifp->if_flags & IFF_PROMISC)
1225 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1226 	else
1227 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1228 
1229 	if (ifp->if_flags & IFF_ALLMULTI)
1230 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1231 	else
1232 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1233 
1234 	/*
1235 	 * The ASIX chip has a special bit to enable reception
1236 	 * of broadcast frames.
1237 	 */
1238 	if (ifp->if_flags & IFF_BROADCAST)
1239 		DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1240 	else
1241 		DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1242 
1243 	/* first, zot all the existing hash bits */
1244 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1245 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1246 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1247 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1248 
1249 	/*
1250 	 * If we're already in promisc or allmulti mode, we
1251 	 * don't have to bother programming the multicast filter.
1252 	 */
1253 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
1254 		return;
1255 
1256 	/* now program new ones */
1257 	IF_ADDR_LOCK(ifp);
1258 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1259 		if (ifma->ifma_addr->sa_family != AF_LINK)
1260 			continue;
1261 		h = dc_mchash_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1262 		if (h < 32)
1263 			hashes[0] |= (1 << h);
1264 		else
1265 			hashes[1] |= (1 << (h - 32));
1266 	}
1267 	IF_ADDR_UNLOCK(ifp);
1268 
1269 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1270 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
1271 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1272 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
1273 }
1274 
1275 static void
1276 dc_setfilt_xircom(struct dc_softc *sc)
1277 {
1278 	struct ifnet *ifp;
1279 	struct ifmultiaddr *ifma;
1280 	struct dc_desc *sframe;
1281 	u_int32_t h, *sp;
1282 	int i;
1283 
1284 	ifp = sc->dc_ifp;
1285 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1286 
1287 	i = sc->dc_cdata.dc_tx_prod;
1288 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1289 	sc->dc_cdata.dc_tx_cnt++;
1290 	sframe = &sc->dc_ldata->dc_tx_list[i];
1291 	sp = sc->dc_cdata.dc_sbuf;
1292 	bzero(sp, DC_SFRAME_LEN);
1293 
1294 	sframe->dc_data = htole32(sc->dc_saddr);
1295 	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
1296 	    DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
1297 
1298 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
1299 
1300 	/* If we want promiscuous mode, set the allframes bit. */
1301 	if (ifp->if_flags & IFF_PROMISC)
1302 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1303 	else
1304 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1305 
1306 	if (ifp->if_flags & IFF_ALLMULTI)
1307 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1308 	else
1309 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1310 
1311 	IF_ADDR_LOCK(ifp);
1312 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1313 		if (ifma->ifma_addr->sa_family != AF_LINK)
1314 			continue;
1315 		h = dc_mchash_le(sc,
1316 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1317 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1318 	}
1319 	IF_ADDR_UNLOCK(ifp);
1320 
1321 	if (ifp->if_flags & IFF_BROADCAST) {
1322 		h = dc_mchash_le(sc, ifp->if_broadcastaddr);
1323 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1324 	}
1325 
1326 	/* Set our MAC address */
1327 	sp[0] = DC_SP_MAC(((u_int16_t *)IFP2ENADDR(sc->dc_ifp))[0]);
1328 	sp[1] = DC_SP_MAC(((u_int16_t *)IFP2ENADDR(sc->dc_ifp))[1]);
1329 	sp[2] = DC_SP_MAC(((u_int16_t *)IFP2ENADDR(sc->dc_ifp))[2]);
1330 
1331 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
1332 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
1333 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1334 	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1335 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1336 
1337 	/*
1338 	 * Wait some time...
1339 	 */
1340 	DELAY(1000);
1341 
1342 	ifp->if_timer = 5;
1343 }
1344 
1345 static void
1346 dc_setfilt(struct dc_softc *sc)
1347 {
1348 
1349 	if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
1350 	    DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc))
1351 		dc_setfilt_21143(sc);
1352 
1353 	if (DC_IS_ASIX(sc))
1354 		dc_setfilt_asix(sc);
1355 
1356 	if (DC_IS_ADMTEK(sc))
1357 		dc_setfilt_admtek(sc);
1358 
1359 	if (DC_IS_XIRCOM(sc))
1360 		dc_setfilt_xircom(sc);
1361 }
1362 
1363 /*
1364  * In order to fiddle with the 'full-duplex' and '100Mbps' bits in
1365  * the netconfig register, we first have to put the transmit and/or
1366  * receive logic in the idle state.
1367  */
1368 static void
1369 dc_setcfg(struct dc_softc *sc, int media)
1370 {
1371 	int i, restart = 0, watchdogreg;
1372 	u_int32_t isr;
1373 
1374 	if (IFM_SUBTYPE(media) == IFM_NONE)
1375 		return;
1376 
1377 	if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON)) {
1378 		restart = 1;
1379 		DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1380 
1381 		for (i = 0; i < DC_TIMEOUT; i++) {
1382 			isr = CSR_READ_4(sc, DC_ISR);
1383 			if (isr & DC_ISR_TX_IDLE &&
1384 			    ((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
1385 			    (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT))
1386 				break;
1387 			DELAY(10);
1388 		}
1389 
1390 		if (i == DC_TIMEOUT)
1391 			if_printf(sc->dc_ifp,
1392 			    "failed to force tx and rx to idle state\n");
1393 	}
1394 
1395 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
1396 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1397 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1398 		if (sc->dc_pmode == DC_PMODE_MII) {
1399 			if (DC_IS_INTEL(sc)) {
1400 			/* There's a write enable bit here that reads as 1. */
1401 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1402 				watchdogreg &= ~DC_WDOG_CTLWREN;
1403 				watchdogreg |= DC_WDOG_JABBERDIS;
1404 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1405 			} else {
1406 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1407 			}
1408 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1409 			    DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
1410 			if (sc->dc_type == DC_TYPE_98713)
1411 				DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1412 				    DC_NETCFG_SCRAMBLER));
1413 			if (!DC_IS_DAVICOM(sc))
1414 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1415 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1416 			if (DC_IS_INTEL(sc))
1417 				dc_apply_fixup(sc, IFM_AUTO);
1418 		} else {
1419 			if (DC_IS_PNIC(sc)) {
1420 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
1421 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1422 				DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1423 			}
1424 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1425 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1426 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1427 			if (DC_IS_INTEL(sc))
1428 				dc_apply_fixup(sc,
1429 				    (media & IFM_GMASK) == IFM_FDX ?
1430 				    IFM_100_TX | IFM_FDX : IFM_100_TX);
1431 		}
1432 	}
1433 
1434 	if (IFM_SUBTYPE(media) == IFM_10_T) {
1435 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1436 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1437 		if (sc->dc_pmode == DC_PMODE_MII) {
1438 			/* There's a write enable bit here that reads as 1. */
1439 			if (DC_IS_INTEL(sc)) {
1440 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1441 				watchdogreg &= ~DC_WDOG_CTLWREN;
1442 				watchdogreg |= DC_WDOG_JABBERDIS;
1443 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1444 			} else {
1445 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1446 			}
1447 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1448 			    DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
1449 			if (sc->dc_type == DC_TYPE_98713)
1450 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1451 			if (!DC_IS_DAVICOM(sc))
1452 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1453 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1454 			if (DC_IS_INTEL(sc))
1455 				dc_apply_fixup(sc, IFM_AUTO);
1456 		} else {
1457 			if (DC_IS_PNIC(sc)) {
1458 				DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
1459 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1460 				DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1461 			}
1462 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1463 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1464 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1465 			if (DC_IS_INTEL(sc)) {
1466 				DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET);
1467 				DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1468 				if ((media & IFM_GMASK) == IFM_FDX)
1469 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D);
1470 				else
1471 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F);
1472 				DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1473 				DC_CLRBIT(sc, DC_10BTCTRL,
1474 				    DC_TCTL_AUTONEGENBL);
1475 				dc_apply_fixup(sc,
1476 				    (media & IFM_GMASK) == IFM_FDX ?
1477 				    IFM_10_T | IFM_FDX : IFM_10_T);
1478 				DELAY(20000);
1479 			}
1480 		}
1481 	}
1482 
1483 	/*
1484 	 * If this is a Davicom DM9102A card with a DM9801 HomePNA
1485 	 * PHY and we want HomePNA mode, set the portsel bit to turn
1486 	 * on the external MII port.
1487 	 */
1488 	if (DC_IS_DAVICOM(sc)) {
1489 		if (IFM_SUBTYPE(media) == IFM_HPNA_1) {
1490 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1491 			sc->dc_link = 1;
1492 		} else {
1493 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1494 		}
1495 	}
1496 
1497 	if ((media & IFM_GMASK) == IFM_FDX) {
1498 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1499 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1500 			DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1501 	} else {
1502 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1503 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1504 			DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1505 	}
1506 
1507 	if (restart)
1508 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON | DC_NETCFG_RX_ON);
1509 }
1510 
1511 static void
1512 dc_reset(struct dc_softc *sc)
1513 {
1514 	int i;
1515 
1516 	DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1517 
1518 	for (i = 0; i < DC_TIMEOUT; i++) {
1519 		DELAY(10);
1520 		if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
1521 			break;
1522 	}
1523 
1524 	if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_CONEXANT(sc) ||
1525 	    DC_IS_XIRCOM(sc) || DC_IS_INTEL(sc)) {
1526 		DELAY(10000);
1527 		DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1528 		i = 0;
1529 	}
1530 
1531 	if (i == DC_TIMEOUT)
1532 		if_printf(sc->dc_ifp, "reset never completed!\n");
1533 
1534 	/* Wait a little while for the chip to get its brains in order. */
1535 	DELAY(1000);
1536 
1537 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
1538 	CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
1539 	CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
1540 
1541 	/*
1542 	 * Bring the SIA out of reset. In some cases, it looks
1543 	 * like failing to unreset the SIA soon enough gets it
1544 	 * into a state where it will never come out of reset
1545 	 * until we reset the whole chip again.
1546 	 */
1547 	if (DC_IS_INTEL(sc)) {
1548 		DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1549 		CSR_WRITE_4(sc, DC_10BTCTRL, 0);
1550 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
1551 	}
1552 }
1553 
1554 static struct dc_type *
1555 dc_devtype(device_t dev)
1556 {
1557 	struct dc_type *t;
1558 	u_int32_t rev;
1559 
1560 	t = dc_devs;
1561 
1562 	while (t->dc_name != NULL) {
1563 		if ((pci_get_vendor(dev) == t->dc_vid) &&
1564 		    (pci_get_device(dev) == t->dc_did)) {
1565 			/* Check the PCI revision */
1566 			rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF;
1567 			if (t->dc_did == DC_DEVICEID_98713 &&
1568 			    rev >= DC_REVISION_98713A)
1569 				t++;
1570 			if (t->dc_did == DC_DEVICEID_98713_CP &&
1571 			    rev >= DC_REVISION_98713A)
1572 				t++;
1573 			if (t->dc_did == DC_DEVICEID_987x5 &&
1574 			    rev >= DC_REVISION_98715AEC_C)
1575 				t++;
1576 			if (t->dc_did == DC_DEVICEID_987x5 &&
1577 			    rev >= DC_REVISION_98725)
1578 				t++;
1579 			if (t->dc_did == DC_DEVICEID_AX88140A &&
1580 			    rev >= DC_REVISION_88141)
1581 				t++;
1582 			if (t->dc_did == DC_DEVICEID_82C168 &&
1583 			    rev >= DC_REVISION_82C169)
1584 				t++;
1585 			if (t->dc_did == DC_DEVICEID_DM9102 &&
1586 			    rev >= DC_REVISION_DM9102A)
1587 				t++;
1588 			/*
1589 			 * The Microsoft MN-130 has a device ID of 0x0002,
1590 			 * which happens to be the same as the PNIC 82c168.
1591 			 * To keep dc_attach() from getting confused, we
1592 			 * pretend its ID is something different.
1593 			 * XXX: ideally, dc_attach() should be checking
1594 			 * vendorid+deviceid together to avoid such
1595 			 * collisions.
1596 			 */
1597 			if (t->dc_vid == DC_VENDORID_MICROSOFT &&
1598 			    t->dc_did == DC_DEVICEID_MSMN130)
1599 				t++;
1600 			return (t);
1601 		}
1602 		t++;
1603 	}
1604 
1605 	return (NULL);
1606 }
1607 
1608 /*
1609  * Probe for a 21143 or clone chip. Check the PCI vendor and device
1610  * IDs against our list and return a device name if we find a match.
1611  * We do a little bit of extra work to identify the exact type of
1612  * chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
1613  * but different revision IDs. The same is true for 98715/98715A
1614  * chips and the 98725, as well as the ASIX and ADMtek chips. In some
1615  * cases, the exact chip revision affects driver behavior.
1616  */
1617 static int
1618 dc_probe(device_t dev)
1619 {
1620 	struct dc_type *t;
1621 
1622 	t = dc_devtype(dev);
1623 
1624 	if (t != NULL) {
1625 		device_set_desc(dev, t->dc_name);
1626 		return (BUS_PROBE_DEFAULT);
1627 	}
1628 
1629 	return (ENXIO);
1630 }
1631 
1632 static void
1633 dc_apply_fixup(struct dc_softc *sc, int media)
1634 {
1635 	struct dc_mediainfo *m;
1636 	u_int8_t *p;
1637 	int i;
1638 	u_int32_t reg;
1639 
1640 	m = sc->dc_mi;
1641 
1642 	while (m != NULL) {
1643 		if (m->dc_media == media)
1644 			break;
1645 		m = m->dc_next;
1646 	}
1647 
1648 	if (m == NULL)
1649 		return;
1650 
1651 	for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) {
1652 		reg = (p[0] | (p[1] << 8)) << 16;
1653 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1654 	}
1655 
1656 	for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) {
1657 		reg = (p[0] | (p[1] << 8)) << 16;
1658 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1659 	}
1660 }
1661 
1662 static void
1663 dc_decode_leaf_sia(struct dc_softc *sc, struct dc_eblock_sia *l)
1664 {
1665 	struct dc_mediainfo *m;
1666 
1667 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1668 	switch (l->dc_sia_code & ~DC_SIA_CODE_EXT) {
1669 	case DC_SIA_CODE_10BT:
1670 		m->dc_media = IFM_10_T;
1671 		break;
1672 	case DC_SIA_CODE_10BT_FDX:
1673 		m->dc_media = IFM_10_T | IFM_FDX;
1674 		break;
1675 	case DC_SIA_CODE_10B2:
1676 		m->dc_media = IFM_10_2;
1677 		break;
1678 	case DC_SIA_CODE_10B5:
1679 		m->dc_media = IFM_10_5;
1680 		break;
1681 	default:
1682 		break;
1683 	}
1684 
1685 	/*
1686 	 * We need to ignore CSR13, CSR14, CSR15 for SIA mode.
1687 	 * Things apparently already work for cards that do
1688 	 * supply Media Specific Data.
1689 	 */
1690 	if (l->dc_sia_code & DC_SIA_CODE_EXT) {
1691 		m->dc_gp_len = 2;
1692 		m->dc_gp_ptr =
1693 		(u_int8_t *)&l->dc_un.dc_sia_ext.dc_sia_gpio_ctl;
1694 	} else {
1695 		m->dc_gp_len = 2;
1696 		m->dc_gp_ptr =
1697 		(u_int8_t *)&l->dc_un.dc_sia_noext.dc_sia_gpio_ctl;
1698 	}
1699 
1700 	m->dc_next = sc->dc_mi;
1701 	sc->dc_mi = m;
1702 
1703 	sc->dc_pmode = DC_PMODE_SIA;
1704 }
1705 
1706 static void
1707 dc_decode_leaf_sym(struct dc_softc *sc, struct dc_eblock_sym *l)
1708 {
1709 	struct dc_mediainfo *m;
1710 
1711 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1712 	if (l->dc_sym_code == DC_SYM_CODE_100BT)
1713 		m->dc_media = IFM_100_TX;
1714 
1715 	if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX)
1716 		m->dc_media = IFM_100_TX | IFM_FDX;
1717 
1718 	m->dc_gp_len = 2;
1719 	m->dc_gp_ptr = (u_int8_t *)&l->dc_sym_gpio_ctl;
1720 
1721 	m->dc_next = sc->dc_mi;
1722 	sc->dc_mi = m;
1723 
1724 	sc->dc_pmode = DC_PMODE_SYM;
1725 }
1726 
1727 static void
1728 dc_decode_leaf_mii(struct dc_softc *sc, struct dc_eblock_mii *l)
1729 {
1730 	struct dc_mediainfo *m;
1731 	u_int8_t *p;
1732 
1733 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1734 	/* We abuse IFM_AUTO to represent MII. */
1735 	m->dc_media = IFM_AUTO;
1736 	m->dc_gp_len = l->dc_gpr_len;
1737 
1738 	p = (u_int8_t *)l;
1739 	p += sizeof(struct dc_eblock_mii);
1740 	m->dc_gp_ptr = p;
1741 	p += 2 * l->dc_gpr_len;
1742 	m->dc_reset_len = *p;
1743 	p++;
1744 	m->dc_reset_ptr = p;
1745 
1746 	m->dc_next = sc->dc_mi;
1747 	sc->dc_mi = m;
1748 }
1749 
1750 static void
1751 dc_read_srom(struct dc_softc *sc, int bits)
1752 {
1753 	int size;
1754 
1755 	size = 2 << bits;
1756 	sc->dc_srom = malloc(size, M_DEVBUF, M_NOWAIT);
1757 	dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (size / 2), 0);
1758 }
1759 
1760 static void
1761 dc_parse_21143_srom(struct dc_softc *sc)
1762 {
1763 	struct dc_leaf_hdr *lhdr;
1764 	struct dc_eblock_hdr *hdr;
1765 	int have_mii, i, loff;
1766 	char *ptr;
1767 
1768 	have_mii = 0;
1769 	loff = sc->dc_srom[27];
1770 	lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]);
1771 
1772 	ptr = (char *)lhdr;
1773 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1774 	/*
1775 	 * Look if we got a MII media block.
1776 	 */
1777 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1778 		hdr = (struct dc_eblock_hdr *)ptr;
1779 		if (hdr->dc_type == DC_EBLOCK_MII)
1780 		    have_mii++;
1781 
1782 		ptr += (hdr->dc_len & 0x7F);
1783 		ptr++;
1784 	}
1785 
1786 	/*
1787 	 * Do the same thing again. Only use SIA and SYM media
1788 	 * blocks if no MII media block is available.
1789 	 */
1790 	ptr = (char *)lhdr;
1791 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1792 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1793 		hdr = (struct dc_eblock_hdr *)ptr;
1794 		switch (hdr->dc_type) {
1795 		case DC_EBLOCK_MII:
1796 			dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr);
1797 			break;
1798 		case DC_EBLOCK_SIA:
1799 			if (! have_mii)
1800 				dc_decode_leaf_sia(sc,
1801 				    (struct dc_eblock_sia *)hdr);
1802 			break;
1803 		case DC_EBLOCK_SYM:
1804 			if (! have_mii)
1805 				dc_decode_leaf_sym(sc,
1806 				    (struct dc_eblock_sym *)hdr);
1807 			break;
1808 		default:
1809 			/* Don't care. Yet. */
1810 			break;
1811 		}
1812 		ptr += (hdr->dc_len & 0x7F);
1813 		ptr++;
1814 	}
1815 }
1816 
1817 static void
1818 dc_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1819 {
1820 	u_int32_t *paddr;
1821 
1822 	KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
1823 	paddr = arg;
1824 	*paddr = segs->ds_addr;
1825 }
1826 
1827 /*
1828  * Attach the interface. Allocate softc structures, do ifmedia
1829  * setup and ethernet/BPF attach.
1830  */
1831 static int
1832 dc_attach(device_t dev)
1833 {
1834 	int tmp = 0;
1835 	u_char eaddr[ETHER_ADDR_LEN];
1836 	u_int32_t command;
1837 	struct dc_softc *sc;
1838 	struct ifnet *ifp;
1839 	u_int32_t revision;
1840 	int error = 0, rid, mac_offset;
1841 	int i;
1842 	u_int8_t *mac;
1843 
1844 	sc = device_get_softc(dev);
1845 
1846 	mtx_init(&sc->dc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1847 	    MTX_DEF | MTX_RECURSE);
1848 
1849 	/*
1850 	 * Map control/status registers.
1851 	 */
1852 	pci_enable_busmaster(dev);
1853 
1854 	rid = DC_RID;
1855 	sc->dc_res = bus_alloc_resource_any(dev, DC_RES, &rid, RF_ACTIVE);
1856 
1857 	if (sc->dc_res == NULL) {
1858 		device_printf(dev, "couldn't map ports/memory\n");
1859 		error = ENXIO;
1860 		goto fail;
1861 	}
1862 
1863 	sc->dc_btag = rman_get_bustag(sc->dc_res);
1864 	sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
1865 
1866 	/* Allocate interrupt. */
1867 	rid = 0;
1868 	sc->dc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1869 	    RF_SHAREABLE | RF_ACTIVE);
1870 
1871 	if (sc->dc_irq == NULL) {
1872 		device_printf(dev, "couldn't map interrupt\n");
1873 		error = ENXIO;
1874 		goto fail;
1875 	}
1876 
1877 	/* Need this info to decide on a chip type. */
1878 	sc->dc_info = dc_devtype(dev);
1879 	revision = pci_read_config(dev, DC_PCI_CFRV, 4) & 0x000000FF;
1880 
1881 	/* Get the eeprom width, but PNIC and XIRCOM have diff eeprom */
1882 	if (sc->dc_info->dc_did != DC_DEVICEID_82C168 &&
1883 	   sc->dc_info->dc_did != DC_DEVICEID_X3201)
1884 		dc_eeprom_width(sc);
1885 
1886 	switch (sc->dc_info->dc_did) {
1887 	case DC_DEVICEID_21143:
1888 		sc->dc_type = DC_TYPE_21143;
1889 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1890 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1891 		/* Save EEPROM contents so we can parse them later. */
1892 		dc_read_srom(sc, sc->dc_romwidth);
1893 		break;
1894 	case DC_DEVICEID_DM9009:
1895 	case DC_DEVICEID_DM9100:
1896 	case DC_DEVICEID_DM9102:
1897 		sc->dc_type = DC_TYPE_DM9102;
1898 		sc->dc_flags |= DC_TX_COALESCE | DC_TX_INTR_ALWAYS;
1899 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_TX_STORENFWD;
1900 		sc->dc_flags |= DC_TX_ALIGN;
1901 		sc->dc_pmode = DC_PMODE_MII;
1902 		/* Increase the latency timer value. */
1903 		command = pci_read_config(dev, DC_PCI_CFLT, 4);
1904 		command &= 0xFFFF00FF;
1905 		command |= 0x00008000;
1906 		pci_write_config(dev, DC_PCI_CFLT, command, 4);
1907 		break;
1908 	case DC_DEVICEID_AL981:
1909 		sc->dc_type = DC_TYPE_AL981;
1910 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1911 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1912 		sc->dc_pmode = DC_PMODE_MII;
1913 		dc_read_srom(sc, sc->dc_romwidth);
1914 		break;
1915 	case DC_DEVICEID_AN985:
1916 	case DC_DEVICEID_ADM9511:
1917 	case DC_DEVICEID_ADM9513:
1918 	case DC_DEVICEID_FA511:
1919 	case DC_DEVICEID_FE2500:
1920 	case DC_DEVICEID_EN2242:
1921 	case DC_DEVICEID_HAWKING_PN672TX:
1922 	case DC_DEVICEID_3CSOHOB:
1923 	case DC_DEVICEID_MSMN120:
1924 	case DC_DEVICEID_MSMN130_FAKE: /* XXX avoid collision with PNIC*/
1925 		sc->dc_type = DC_TYPE_AN985;
1926 		sc->dc_flags |= DC_64BIT_HASH;
1927 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1928 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1929 		sc->dc_pmode = DC_PMODE_MII;
1930 		/* Don't read SROM for - auto-loaded on reset */
1931 		break;
1932 	case DC_DEVICEID_98713:
1933 	case DC_DEVICEID_98713_CP:
1934 		if (revision < DC_REVISION_98713A) {
1935 			sc->dc_type = DC_TYPE_98713;
1936 		}
1937 		if (revision >= DC_REVISION_98713A) {
1938 			sc->dc_type = DC_TYPE_98713A;
1939 			sc->dc_flags |= DC_21143_NWAY;
1940 		}
1941 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1942 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1943 		break;
1944 	case DC_DEVICEID_987x5:
1945 	case DC_DEVICEID_EN1217:
1946 		/*
1947 		 * Macronix MX98715AEC-C/D/E parts have only a
1948 		 * 128-bit hash table. We need to deal with these
1949 		 * in the same manner as the PNIC II so that we
1950 		 * get the right number of bits out of the
1951 		 * CRC routine.
1952 		 */
1953 		if (revision >= DC_REVISION_98715AEC_C &&
1954 		    revision < DC_REVISION_98725)
1955 			sc->dc_flags |= DC_128BIT_HASH;
1956 		sc->dc_type = DC_TYPE_987x5;
1957 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1958 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
1959 		break;
1960 	case DC_DEVICEID_98727:
1961 		sc->dc_type = DC_TYPE_987x5;
1962 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1963 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
1964 		break;
1965 	case DC_DEVICEID_82C115:
1966 		sc->dc_type = DC_TYPE_PNICII;
1967 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR | DC_128BIT_HASH;
1968 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
1969 		break;
1970 	case DC_DEVICEID_82C168:
1971 		sc->dc_type = DC_TYPE_PNIC;
1972 		sc->dc_flags |= DC_TX_STORENFWD | DC_TX_INTR_ALWAYS;
1973 		sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
1974 		sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_NOWAIT);
1975 		if (revision < DC_REVISION_82C169)
1976 			sc->dc_pmode = DC_PMODE_SYM;
1977 		break;
1978 	case DC_DEVICEID_AX88140A:
1979 		sc->dc_type = DC_TYPE_ASIX;
1980 		sc->dc_flags |= DC_TX_USE_TX_INTR | DC_TX_INTR_FIRSTFRAG;
1981 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1982 		sc->dc_pmode = DC_PMODE_MII;
1983 		break;
1984 	case DC_DEVICEID_X3201:
1985 		sc->dc_type = DC_TYPE_XIRCOM;
1986 		sc->dc_flags |= DC_TX_INTR_ALWAYS | DC_TX_COALESCE |
1987 				DC_TX_ALIGN;
1988 		/*
1989 		 * We don't actually need to coalesce, but we're doing
1990 		 * it to obtain a double word aligned buffer.
1991 		 * The DC_TX_COALESCE flag is required.
1992 		 */
1993 		sc->dc_pmode = DC_PMODE_MII;
1994 		break;
1995 	case DC_DEVICEID_RS7112:
1996 		sc->dc_type = DC_TYPE_CONEXANT;
1997 		sc->dc_flags |= DC_TX_INTR_ALWAYS;
1998 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1999 		sc->dc_pmode = DC_PMODE_MII;
2000 		dc_read_srom(sc, sc->dc_romwidth);
2001 		break;
2002 	default:
2003 		device_printf(dev, "unknown device: %x\n", sc->dc_info->dc_did);
2004 		break;
2005 	}
2006 
2007 	/* Save the cache line size. */
2008 	if (DC_IS_DAVICOM(sc))
2009 		sc->dc_cachesize = 0;
2010 	else
2011 		sc->dc_cachesize = pci_read_config(dev,
2012 		    DC_PCI_CFLT, 4) & 0xFF;
2013 
2014 	/* Reset the adapter. */
2015 	dc_reset(sc);
2016 
2017 	/* Take 21143 out of snooze mode */
2018 	if (DC_IS_INTEL(sc) || DC_IS_XIRCOM(sc)) {
2019 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
2020 		command &= ~(DC_CFDD_SNOOZE_MODE | DC_CFDD_SLEEP_MODE);
2021 		pci_write_config(dev, DC_PCI_CFDD, command, 4);
2022 	}
2023 
2024 	/*
2025 	 * Try to learn something about the supported media.
2026 	 * We know that ASIX and ADMtek and Davicom devices
2027 	 * will *always* be using MII media, so that's a no-brainer.
2028 	 * The tricky ones are the Macronix/PNIC II and the
2029 	 * Intel 21143.
2030 	 */
2031 	if (DC_IS_INTEL(sc))
2032 		dc_parse_21143_srom(sc);
2033 	else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
2034 		if (sc->dc_type == DC_TYPE_98713)
2035 			sc->dc_pmode = DC_PMODE_MII;
2036 		else
2037 			sc->dc_pmode = DC_PMODE_SYM;
2038 	} else if (!sc->dc_pmode)
2039 		sc->dc_pmode = DC_PMODE_MII;
2040 
2041 	/*
2042 	 * Get station address from the EEPROM.
2043 	 */
2044 	switch(sc->dc_type) {
2045 	case DC_TYPE_98713:
2046 	case DC_TYPE_98713A:
2047 	case DC_TYPE_987x5:
2048 	case DC_TYPE_PNICII:
2049 		dc_read_eeprom(sc, (caddr_t)&mac_offset,
2050 		    (DC_EE_NODEADDR_OFFSET / 2), 1, 0);
2051 		dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
2052 		break;
2053 	case DC_TYPE_PNIC:
2054 		dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
2055 		break;
2056 	case DC_TYPE_DM9102:
2057 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2058 #ifdef __sparc64__
2059 		/*
2060 		 * If this is an onboard dc(4) the station address read from
2061 		 * the EEPROM is all zero and we have to get it from the fcode.
2062 		 */
2063 		for (i = 0; i < ETHER_ADDR_LEN; i++)
2064 			if (eaddr[i] != 0x00)
2065 				break;
2066 		if (i >= ETHER_ADDR_LEN)
2067 			OF_getetheraddr(dev, eaddr);
2068 #endif
2069 		break;
2070 	case DC_TYPE_21143:
2071 	case DC_TYPE_ASIX:
2072 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2073 		break;
2074 	case DC_TYPE_AL981:
2075 	case DC_TYPE_AN985:
2076 		*(u_int32_t *)(&eaddr[0]) = CSR_READ_4(sc, DC_AL_PAR0);
2077 		*(u_int16_t *)(&eaddr[4]) = CSR_READ_4(sc, DC_AL_PAR1);
2078 		break;
2079 	case DC_TYPE_CONEXANT:
2080 		bcopy(sc->dc_srom + DC_CONEXANT_EE_NODEADDR, &eaddr,
2081 		    ETHER_ADDR_LEN);
2082 		break;
2083 	case DC_TYPE_XIRCOM:
2084 		/* The MAC comes from the CIS. */
2085 		mac = pci_get_ether(dev);
2086 		if (!mac) {
2087 			device_printf(dev, "No station address in CIS!\n");
2088 			error = ENXIO;
2089 			goto fail;
2090 		}
2091 		bcopy(mac, eaddr, ETHER_ADDR_LEN);
2092 		break;
2093 	default:
2094 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2095 		break;
2096 	}
2097 
2098 	/* Allocate a busdma tag and DMA safe memory for TX/RX descriptors. */
2099 	error = bus_dma_tag_create(NULL, PAGE_SIZE, 0, BUS_SPACE_MAXADDR_32BIT,
2100 	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct dc_list_data), 1,
2101 	    sizeof(struct dc_list_data), 0, NULL, NULL, &sc->dc_ltag);
2102 	if (error) {
2103 		device_printf(dev, "failed to allocate busdma tag\n");
2104 		error = ENXIO;
2105 		goto fail;
2106 	}
2107 	error = bus_dmamem_alloc(sc->dc_ltag, (void **)&sc->dc_ldata,
2108 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->dc_lmap);
2109 	if (error) {
2110 		device_printf(dev, "failed to allocate DMA safe memory\n");
2111 		error = ENXIO;
2112 		goto fail;
2113 	}
2114 	error = bus_dmamap_load(sc->dc_ltag, sc->dc_lmap, sc->dc_ldata,
2115 	    sizeof(struct dc_list_data), dc_dma_map_addr, &sc->dc_laddr,
2116 	    BUS_DMA_NOWAIT);
2117 	if (error) {
2118 		device_printf(dev, "cannot get address of the descriptors\n");
2119 		error = ENXIO;
2120 		goto fail;
2121 	}
2122 
2123 	/*
2124 	 * Allocate a busdma tag and DMA safe memory for the multicast
2125 	 * setup frame.
2126 	 */
2127 	error = bus_dma_tag_create(NULL, PAGE_SIZE, 0, BUS_SPACE_MAXADDR_32BIT,
2128 	    BUS_SPACE_MAXADDR, NULL, NULL, DC_SFRAME_LEN + DC_MIN_FRAMELEN, 1,
2129 	    DC_SFRAME_LEN + DC_MIN_FRAMELEN, 0, NULL, NULL, &sc->dc_stag);
2130 	if (error) {
2131 		device_printf(dev, "failed to allocate busdma tag\n");
2132 		error = ENXIO;
2133 		goto fail;
2134 	}
2135 	error = bus_dmamem_alloc(sc->dc_stag, (void **)&sc->dc_cdata.dc_sbuf,
2136 	    BUS_DMA_NOWAIT, &sc->dc_smap);
2137 	if (error) {
2138 		device_printf(dev, "failed to allocate DMA safe memory\n");
2139 		error = ENXIO;
2140 		goto fail;
2141 	}
2142 	error = bus_dmamap_load(sc->dc_stag, sc->dc_smap, sc->dc_cdata.dc_sbuf,
2143 	    DC_SFRAME_LEN, dc_dma_map_addr, &sc->dc_saddr, BUS_DMA_NOWAIT);
2144 	if (error) {
2145 		device_printf(dev, "cannot get address of the descriptors\n");
2146 		error = ENXIO;
2147 		goto fail;
2148 	}
2149 
2150 	/* Allocate a busdma tag for mbufs. */
2151 	error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
2152 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, DC_TX_LIST_CNT, MCLBYTES,
2153 	    0, NULL, NULL, &sc->dc_mtag);
2154 	if (error) {
2155 		device_printf(dev, "failed to allocate busdma tag\n");
2156 		error = ENXIO;
2157 		goto fail;
2158 	}
2159 
2160 	/* Create the TX/RX busdma maps. */
2161 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2162 		error = bus_dmamap_create(sc->dc_mtag, 0,
2163 		    &sc->dc_cdata.dc_tx_map[i]);
2164 		if (error) {
2165 			device_printf(dev, "failed to init TX ring\n");
2166 			error = ENXIO;
2167 			goto fail;
2168 		}
2169 	}
2170 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2171 		error = bus_dmamap_create(sc->dc_mtag, 0,
2172 		    &sc->dc_cdata.dc_rx_map[i]);
2173 		if (error) {
2174 			device_printf(dev, "failed to init RX ring\n");
2175 			error = ENXIO;
2176 			goto fail;
2177 		}
2178 	}
2179 	error = bus_dmamap_create(sc->dc_mtag, 0, &sc->dc_sparemap);
2180 	if (error) {
2181 		device_printf(dev, "failed to init RX ring\n");
2182 		error = ENXIO;
2183 		goto fail;
2184 	}
2185 
2186 	ifp = sc->dc_ifp = if_alloc(IFT_ETHER);
2187 	if (ifp == NULL) {
2188 		device_printf(dev, "can not if_alloc()\n");
2189 		error = ENOSPC;
2190 		goto fail;
2191 	}
2192 	ifp->if_softc = sc;
2193 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2194 	/* XXX: bleah, MTU gets overwritten in ether_ifattach() */
2195 	ifp->if_mtu = ETHERMTU;
2196 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2197 	if (!IS_MPSAFE)
2198 		ifp->if_flags |= IFF_NEEDSGIANT;
2199 	ifp->if_ioctl = dc_ioctl;
2200 	ifp->if_start = dc_start;
2201 	ifp->if_watchdog = dc_watchdog;
2202 	ifp->if_init = dc_init;
2203 	ifp->if_baudrate = 10000000;
2204 	IFQ_SET_MAXLEN(&ifp->if_snd, DC_TX_LIST_CNT - 1);
2205 	ifp->if_snd.ifq_drv_maxlen = DC_TX_LIST_CNT - 1;
2206 	IFQ_SET_READY(&ifp->if_snd);
2207 
2208 	/*
2209 	 * Do MII setup. If this is a 21143, check for a PHY on the
2210 	 * MII bus after applying any necessary fixups to twiddle the
2211 	 * GPIO bits. If we don't end up finding a PHY, restore the
2212 	 * old selection (SIA only or SIA/SYM) and attach the dcphy
2213 	 * driver instead.
2214 	 */
2215 	if (DC_IS_INTEL(sc)) {
2216 		dc_apply_fixup(sc, IFM_AUTO);
2217 		tmp = sc->dc_pmode;
2218 		sc->dc_pmode = DC_PMODE_MII;
2219 	}
2220 
2221 	/*
2222 	 * Setup General Purpose port mode and data so the tulip can talk
2223 	 * to the MII.  This needs to be done before mii_phy_probe so that
2224 	 * we can actually see them.
2225 	 */
2226 	if (DC_IS_XIRCOM(sc)) {
2227 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
2228 		    DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2229 		DELAY(10);
2230 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
2231 		    DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2232 		DELAY(10);
2233 	}
2234 
2235 	error = mii_phy_probe(dev, &sc->dc_miibus,
2236 	    dc_ifmedia_upd, dc_ifmedia_sts);
2237 
2238 	if (error && DC_IS_INTEL(sc)) {
2239 		sc->dc_pmode = tmp;
2240 		if (sc->dc_pmode != DC_PMODE_SIA)
2241 			sc->dc_pmode = DC_PMODE_SYM;
2242 		sc->dc_flags |= DC_21143_NWAY;
2243 		mii_phy_probe(dev, &sc->dc_miibus,
2244 		    dc_ifmedia_upd, dc_ifmedia_sts);
2245 		/*
2246 		 * For non-MII cards, we need to have the 21143
2247 		 * drive the LEDs. Except there are some systems
2248 		 * like the NEC VersaPro NoteBook PC which have no
2249 		 * LEDs, and twiddling these bits has adverse effects
2250 		 * on them. (I.e. you suddenly can't get a link.)
2251 		 */
2252 		if (pci_read_config(dev, DC_PCI_CSID, 4) != 0x80281033)
2253 			sc->dc_flags |= DC_TULIP_LEDS;
2254 		error = 0;
2255 	}
2256 
2257 	if (error) {
2258 		device_printf(dev, "MII without any PHY!\n");
2259 		goto fail;
2260 	}
2261 
2262 	if (DC_IS_ADMTEK(sc)) {
2263 		/*
2264 		 * Set automatic TX underrun recovery for the ADMtek chips
2265 		 */
2266 		DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR);
2267 	}
2268 
2269 	/*
2270 	 * Tell the upper layer(s) we support long frames.
2271 	 */
2272 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2273 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
2274 #ifdef DEVICE_POLLING
2275 	ifp->if_capabilities |= IFCAP_POLLING;
2276 #endif
2277 	ifp->if_capenable = ifp->if_capabilities;
2278 
2279 	callout_init(&sc->dc_stat_ch, IS_MPSAFE ? CALLOUT_MPSAFE : 0);
2280 
2281 #ifdef SRM_MEDIA
2282 	sc->dc_srm_media = 0;
2283 
2284 	/* Remember the SRM console media setting */
2285 	if (DC_IS_INTEL(sc)) {
2286 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
2287 		command &= ~(DC_CFDD_SNOOZE_MODE | DC_CFDD_SLEEP_MODE);
2288 		switch ((command >> 8) & 0xff) {
2289 		case 3:
2290 			sc->dc_srm_media = IFM_10_T;
2291 			break;
2292 		case 4:
2293 			sc->dc_srm_media = IFM_10_T | IFM_FDX;
2294 			break;
2295 		case 5:
2296 			sc->dc_srm_media = IFM_100_TX;
2297 			break;
2298 		case 6:
2299 			sc->dc_srm_media = IFM_100_TX | IFM_FDX;
2300 			break;
2301 		}
2302 		if (sc->dc_srm_media)
2303 			sc->dc_srm_media |= IFM_ACTIVE | IFM_ETHER;
2304 	}
2305 #endif
2306 
2307 	/*
2308 	 * Call MI attach routine.
2309 	 */
2310 	ether_ifattach(ifp, eaddr);
2311 
2312 	/* Hook interrupt last to avoid having to lock softc */
2313 	error = bus_setup_intr(dev, sc->dc_irq, INTR_TYPE_NET |
2314 	    (IS_MPSAFE ? INTR_MPSAFE : 0),
2315 	    dc_intr, sc, &sc->dc_intrhand);
2316 
2317 	if (error) {
2318 		device_printf(dev, "couldn't set up irq\n");
2319 		ether_ifdetach(ifp);
2320 		if_free(ifp);
2321 		goto fail;
2322 	}
2323 
2324 fail:
2325 	if (error)
2326 		dc_detach(dev);
2327 	return (error);
2328 }
2329 
2330 /*
2331  * Shutdown hardware and free up resources. This can be called any
2332  * time after the mutex has been initialized. It is called in both
2333  * the error case in attach and the normal detach case so it needs
2334  * to be careful about only freeing resources that have actually been
2335  * allocated.
2336  */
2337 static int
2338 dc_detach(device_t dev)
2339 {
2340 	struct dc_softc *sc;
2341 	struct ifnet *ifp;
2342 	struct dc_mediainfo *m;
2343 	int i;
2344 
2345 	sc = device_get_softc(dev);
2346 	KASSERT(mtx_initialized(&sc->dc_mtx), ("dc mutex not initialized"));
2347 	DC_LOCK(sc);
2348 
2349 	ifp = sc->dc_ifp;
2350 
2351 	/* These should only be active if attach succeeded */
2352 	if (device_is_attached(dev)) {
2353 		dc_stop(sc);
2354 		ether_ifdetach(ifp);
2355 		if_free(ifp);
2356 	}
2357 	if (sc->dc_miibus)
2358 		device_delete_child(dev, sc->dc_miibus);
2359 	bus_generic_detach(dev);
2360 
2361 	if (sc->dc_intrhand)
2362 		bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2363 	if (sc->dc_irq)
2364 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2365 	if (sc->dc_res)
2366 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2367 
2368 	if (sc->dc_cdata.dc_sbuf != NULL)
2369 		bus_dmamem_free(sc->dc_stag, sc->dc_cdata.dc_sbuf, sc->dc_smap);
2370 	if (sc->dc_ldata != NULL)
2371 		bus_dmamem_free(sc->dc_ltag, sc->dc_ldata, sc->dc_lmap);
2372 	for (i = 0; i < DC_TX_LIST_CNT; i++)
2373 		bus_dmamap_destroy(sc->dc_mtag, sc->dc_cdata.dc_tx_map[i]);
2374 	for (i = 0; i < DC_RX_LIST_CNT; i++)
2375 		bus_dmamap_destroy(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i]);
2376 	bus_dmamap_destroy(sc->dc_mtag, sc->dc_sparemap);
2377 	if (sc->dc_stag)
2378 		bus_dma_tag_destroy(sc->dc_stag);
2379 	if (sc->dc_mtag)
2380 		bus_dma_tag_destroy(sc->dc_mtag);
2381 	if (sc->dc_ltag)
2382 		bus_dma_tag_destroy(sc->dc_ltag);
2383 
2384 	free(sc->dc_pnic_rx_buf, M_DEVBUF);
2385 
2386 	while (sc->dc_mi != NULL) {
2387 		m = sc->dc_mi->dc_next;
2388 		free(sc->dc_mi, M_DEVBUF);
2389 		sc->dc_mi = m;
2390 	}
2391 	free(sc->dc_srom, M_DEVBUF);
2392 
2393 	DC_UNLOCK(sc);
2394 	mtx_destroy(&sc->dc_mtx);
2395 
2396 	return (0);
2397 }
2398 
2399 /*
2400  * Initialize the transmit descriptors.
2401  */
2402 static int
2403 dc_list_tx_init(struct dc_softc *sc)
2404 {
2405 	struct dc_chain_data *cd;
2406 	struct dc_list_data *ld;
2407 	int i, nexti;
2408 
2409 	cd = &sc->dc_cdata;
2410 	ld = sc->dc_ldata;
2411 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2412 		if (i == DC_TX_LIST_CNT - 1)
2413 			nexti = 0;
2414 		else
2415 			nexti = i + 1;
2416 		ld->dc_tx_list[i].dc_next = htole32(DC_TXDESC(sc, nexti));
2417 		cd->dc_tx_chain[i] = NULL;
2418 		ld->dc_tx_list[i].dc_data = 0;
2419 		ld->dc_tx_list[i].dc_ctl = 0;
2420 	}
2421 
2422 	cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
2423 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
2424 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2425 	return (0);
2426 }
2427 
2428 
2429 /*
2430  * Initialize the RX descriptors and allocate mbufs for them. Note that
2431  * we arrange the descriptors in a closed ring, so that the last descriptor
2432  * points back to the first.
2433  */
2434 static int
2435 dc_list_rx_init(struct dc_softc *sc)
2436 {
2437 	struct dc_chain_data *cd;
2438 	struct dc_list_data *ld;
2439 	int i, nexti;
2440 
2441 	cd = &sc->dc_cdata;
2442 	ld = sc->dc_ldata;
2443 
2444 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2445 		if (dc_newbuf(sc, i, 1) != 0)
2446 			return (ENOBUFS);
2447 		if (i == DC_RX_LIST_CNT - 1)
2448 			nexti = 0;
2449 		else
2450 			nexti = i + 1;
2451 		ld->dc_rx_list[i].dc_next = htole32(DC_RXDESC(sc, nexti));
2452 	}
2453 
2454 	cd->dc_rx_prod = 0;
2455 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
2456 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2457 	return (0);
2458 }
2459 
2460 static void
2461 dc_dma_map_rxbuf(arg, segs, nseg, mapsize, error)
2462 	void *arg;
2463 	bus_dma_segment_t *segs;
2464 	int nseg;
2465 	bus_size_t mapsize;
2466 	int error;
2467 {
2468 	struct dc_softc *sc;
2469 	struct dc_desc *c;
2470 
2471 	sc = arg;
2472 	c = &sc->dc_ldata->dc_rx_list[sc->dc_cdata.dc_rx_cur];
2473 	if (error) {
2474 		sc->dc_cdata.dc_rx_err = error;
2475 		return;
2476 	}
2477 
2478 	KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
2479 	sc->dc_cdata.dc_rx_err = 0;
2480 	c->dc_data = htole32(segs->ds_addr);
2481 }
2482 
2483 /*
2484  * Initialize an RX descriptor and attach an MBUF cluster.
2485  */
2486 static int
2487 dc_newbuf(struct dc_softc *sc, int i, int alloc)
2488 {
2489 	struct mbuf *m_new;
2490 	bus_dmamap_t tmp;
2491 	int error;
2492 
2493 	if (alloc) {
2494 		m_new = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2495 		if (m_new == NULL)
2496 			return (ENOBUFS);
2497 	} else {
2498 		m_new = sc->dc_cdata.dc_rx_chain[i];
2499 		m_new->m_data = m_new->m_ext.ext_buf;
2500 	}
2501 	m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2502 	m_adj(m_new, sizeof(u_int64_t));
2503 
2504 	/*
2505 	 * If this is a PNIC chip, zero the buffer. This is part
2506 	 * of the workaround for the receive bug in the 82c168 and
2507 	 * 82c169 chips.
2508 	 */
2509 	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
2510 		bzero(mtod(m_new, char *), m_new->m_len);
2511 
2512 	/* No need to remap the mbuf if we're reusing it. */
2513 	if (alloc) {
2514 		sc->dc_cdata.dc_rx_cur = i;
2515 		error = bus_dmamap_load_mbuf(sc->dc_mtag, sc->dc_sparemap,
2516 		    m_new, dc_dma_map_rxbuf, sc, 0);
2517 		if (error) {
2518 			m_freem(m_new);
2519 			return (error);
2520 		}
2521 		if (sc->dc_cdata.dc_rx_err != 0) {
2522 			m_freem(m_new);
2523 			return (sc->dc_cdata.dc_rx_err);
2524 		}
2525 		bus_dmamap_unload(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i]);
2526 		tmp = sc->dc_cdata.dc_rx_map[i];
2527 		sc->dc_cdata.dc_rx_map[i] = sc->dc_sparemap;
2528 		sc->dc_sparemap = tmp;
2529 		sc->dc_cdata.dc_rx_chain[i] = m_new;
2530 	}
2531 
2532 	sc->dc_ldata->dc_rx_list[i].dc_ctl = htole32(DC_RXCTL_RLINK | DC_RXLEN);
2533 	sc->dc_ldata->dc_rx_list[i].dc_status = htole32(DC_RXSTAT_OWN);
2534 	bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i],
2535 	    BUS_DMASYNC_PREREAD);
2536 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
2537 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2538 	return (0);
2539 }
2540 
2541 /*
2542  * Grrrrr.
2543  * The PNIC chip has a terrible bug in it that manifests itself during
2544  * periods of heavy activity. The exact mode of failure if difficult to
2545  * pinpoint: sometimes it only happens in promiscuous mode, sometimes it
2546  * will happen on slow machines. The bug is that sometimes instead of
2547  * uploading one complete frame during reception, it uploads what looks
2548  * like the entire contents of its FIFO memory. The frame we want is at
2549  * the end of the whole mess, but we never know exactly how much data has
2550  * been uploaded, so salvaging the frame is hard.
2551  *
2552  * There is only one way to do it reliably, and it's disgusting.
2553  * Here's what we know:
2554  *
2555  * - We know there will always be somewhere between one and three extra
2556  *   descriptors uploaded.
2557  *
2558  * - We know the desired received frame will always be at the end of the
2559  *   total data upload.
2560  *
2561  * - We know the size of the desired received frame because it will be
2562  *   provided in the length field of the status word in the last descriptor.
2563  *
2564  * Here's what we do:
2565  *
2566  * - When we allocate buffers for the receive ring, we bzero() them.
2567  *   This means that we know that the buffer contents should be all
2568  *   zeros, except for data uploaded by the chip.
2569  *
2570  * - We also force the PNIC chip to upload frames that include the
2571  *   ethernet CRC at the end.
2572  *
2573  * - We gather all of the bogus frame data into a single buffer.
2574  *
2575  * - We then position a pointer at the end of this buffer and scan
2576  *   backwards until we encounter the first non-zero byte of data.
2577  *   This is the end of the received frame. We know we will encounter
2578  *   some data at the end of the frame because the CRC will always be
2579  *   there, so even if the sender transmits a packet of all zeros,
2580  *   we won't be fooled.
2581  *
2582  * - We know the size of the actual received frame, so we subtract
2583  *   that value from the current pointer location. This brings us
2584  *   to the start of the actual received packet.
2585  *
2586  * - We copy this into an mbuf and pass it on, along with the actual
2587  *   frame length.
2588  *
2589  * The performance hit is tremendous, but it beats dropping frames all
2590  * the time.
2591  */
2592 
2593 #define DC_WHOLEFRAME	(DC_RXSTAT_FIRSTFRAG | DC_RXSTAT_LASTFRAG)
2594 static void
2595 dc_pnic_rx_bug_war(struct dc_softc *sc, int idx)
2596 {
2597 	struct dc_desc *cur_rx;
2598 	struct dc_desc *c = NULL;
2599 	struct mbuf *m = NULL;
2600 	unsigned char *ptr;
2601 	int i, total_len;
2602 	u_int32_t rxstat = 0;
2603 
2604 	i = sc->dc_pnic_rx_bug_save;
2605 	cur_rx = &sc->dc_ldata->dc_rx_list[idx];
2606 	ptr = sc->dc_pnic_rx_buf;
2607 	bzero(ptr, DC_RXLEN * 5);
2608 
2609 	/* Copy all the bytes from the bogus buffers. */
2610 	while (1) {
2611 		c = &sc->dc_ldata->dc_rx_list[i];
2612 		rxstat = le32toh(c->dc_status);
2613 		m = sc->dc_cdata.dc_rx_chain[i];
2614 		bcopy(mtod(m, char *), ptr, DC_RXLEN);
2615 		ptr += DC_RXLEN;
2616 		/* If this is the last buffer, break out. */
2617 		if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
2618 			break;
2619 		dc_newbuf(sc, i, 0);
2620 		DC_INC(i, DC_RX_LIST_CNT);
2621 	}
2622 
2623 	/* Find the length of the actual receive frame. */
2624 	total_len = DC_RXBYTES(rxstat);
2625 
2626 	/* Scan backwards until we hit a non-zero byte. */
2627 	while (*ptr == 0x00)
2628 		ptr--;
2629 
2630 	/* Round off. */
2631 	if ((uintptr_t)(ptr) & 0x3)
2632 		ptr -= 1;
2633 
2634 	/* Now find the start of the frame. */
2635 	ptr -= total_len;
2636 	if (ptr < sc->dc_pnic_rx_buf)
2637 		ptr = sc->dc_pnic_rx_buf;
2638 
2639 	/*
2640 	 * Now copy the salvaged frame to the last mbuf and fake up
2641 	 * the status word to make it look like a successful
2642 	 * frame reception.
2643 	 */
2644 	dc_newbuf(sc, i, 0);
2645 	bcopy(ptr, mtod(m, char *), total_len);
2646 	cur_rx->dc_status = htole32(rxstat | DC_RXSTAT_FIRSTFRAG);
2647 }
2648 
2649 /*
2650  * This routine searches the RX ring for dirty descriptors in the
2651  * event that the rxeof routine falls out of sync with the chip's
2652  * current descriptor pointer. This may happen sometimes as a result
2653  * of a "no RX buffer available" condition that happens when the chip
2654  * consumes all of the RX buffers before the driver has a chance to
2655  * process the RX ring. This routine may need to be called more than
2656  * once to bring the driver back in sync with the chip, however we
2657  * should still be getting RX DONE interrupts to drive the search
2658  * for new packets in the RX ring, so we should catch up eventually.
2659  */
2660 static int
2661 dc_rx_resync(struct dc_softc *sc)
2662 {
2663 	struct dc_desc *cur_rx;
2664 	int i, pos;
2665 
2666 	pos = sc->dc_cdata.dc_rx_prod;
2667 
2668 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2669 		cur_rx = &sc->dc_ldata->dc_rx_list[pos];
2670 		if (!(le32toh(cur_rx->dc_status) & DC_RXSTAT_OWN))
2671 			break;
2672 		DC_INC(pos, DC_RX_LIST_CNT);
2673 	}
2674 
2675 	/* If the ring really is empty, then just return. */
2676 	if (i == DC_RX_LIST_CNT)
2677 		return (0);
2678 
2679 	/* We've fallen behing the chip: catch it. */
2680 	sc->dc_cdata.dc_rx_prod = pos;
2681 
2682 	return (EAGAIN);
2683 }
2684 
2685 /*
2686  * A frame has been uploaded: pass the resulting mbuf chain up to
2687  * the higher level protocols.
2688  */
2689 static void
2690 dc_rxeof(struct dc_softc *sc)
2691 {
2692 	struct mbuf *m;
2693 	struct ifnet *ifp;
2694 	struct dc_desc *cur_rx;
2695 	int i, total_len = 0;
2696 	u_int32_t rxstat;
2697 
2698 	DC_LOCK_ASSERT(sc);
2699 
2700 	ifp = sc->dc_ifp;
2701 	i = sc->dc_cdata.dc_rx_prod;
2702 
2703 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap, BUS_DMASYNC_POSTREAD);
2704 	while (!(le32toh(sc->dc_ldata->dc_rx_list[i].dc_status) &
2705 	    DC_RXSTAT_OWN)) {
2706 #ifdef DEVICE_POLLING
2707 		if (ifp->if_flags & IFF_POLLING) {
2708 			if (sc->rxcycles <= 0)
2709 				break;
2710 			sc->rxcycles--;
2711 		}
2712 #endif
2713 		cur_rx = &sc->dc_ldata->dc_rx_list[i];
2714 		rxstat = le32toh(cur_rx->dc_status);
2715 		m = sc->dc_cdata.dc_rx_chain[i];
2716 		bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i],
2717 		    BUS_DMASYNC_POSTREAD);
2718 		total_len = DC_RXBYTES(rxstat);
2719 
2720 		if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2721 			if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
2722 				if (rxstat & DC_RXSTAT_FIRSTFRAG)
2723 					sc->dc_pnic_rx_bug_save = i;
2724 				if ((rxstat & DC_RXSTAT_LASTFRAG) == 0) {
2725 					DC_INC(i, DC_RX_LIST_CNT);
2726 					continue;
2727 				}
2728 				dc_pnic_rx_bug_war(sc, i);
2729 				rxstat = le32toh(cur_rx->dc_status);
2730 				total_len = DC_RXBYTES(rxstat);
2731 			}
2732 		}
2733 
2734 		/*
2735 		 * If an error occurs, update stats, clear the
2736 		 * status word and leave the mbuf cluster in place:
2737 		 * it should simply get re-used next time this descriptor
2738 		 * comes up in the ring.  However, don't report long
2739 		 * frames as errors since they could be vlans.
2740 		 */
2741 		if ((rxstat & DC_RXSTAT_RXERR)) {
2742 			if (!(rxstat & DC_RXSTAT_GIANT) ||
2743 			    (rxstat & (DC_RXSTAT_CRCERR | DC_RXSTAT_DRIBBLE |
2744 				       DC_RXSTAT_MIIERE | DC_RXSTAT_COLLSEEN |
2745 				       DC_RXSTAT_RUNT   | DC_RXSTAT_DE))) {
2746 				ifp->if_ierrors++;
2747 				if (rxstat & DC_RXSTAT_COLLSEEN)
2748 					ifp->if_collisions++;
2749 				dc_newbuf(sc, i, 0);
2750 				if (rxstat & DC_RXSTAT_CRCERR) {
2751 					DC_INC(i, DC_RX_LIST_CNT);
2752 					continue;
2753 				} else {
2754 					dc_init(sc);
2755 					return;
2756 				}
2757 			}
2758 		}
2759 
2760 		/* No errors; receive the packet. */
2761 		total_len -= ETHER_CRC_LEN;
2762 #ifdef __i386__
2763 		/*
2764 		 * On the x86 we do not have alignment problems, so try to
2765 		 * allocate a new buffer for the receive ring, and pass up
2766 		 * the one where the packet is already, saving the expensive
2767 		 * copy done in m_devget().
2768 		 * If we are on an architecture with alignment problems, or
2769 		 * if the allocation fails, then use m_devget and leave the
2770 		 * existing buffer in the receive ring.
2771 		 */
2772 		if (dc_quick && dc_newbuf(sc, i, 1) == 0) {
2773 			m->m_pkthdr.rcvif = ifp;
2774 			m->m_pkthdr.len = m->m_len = total_len;
2775 			DC_INC(i, DC_RX_LIST_CNT);
2776 		} else
2777 #endif
2778 		{
2779 			struct mbuf *m0;
2780 
2781 			m0 = m_devget(mtod(m, char *), total_len,
2782 				ETHER_ALIGN, ifp, NULL);
2783 			dc_newbuf(sc, i, 0);
2784 			DC_INC(i, DC_RX_LIST_CNT);
2785 			if (m0 == NULL) {
2786 				ifp->if_ierrors++;
2787 				continue;
2788 			}
2789 			m = m0;
2790 		}
2791 
2792 		ifp->if_ipackets++;
2793 		DC_UNLOCK(sc);
2794 		(*ifp->if_input)(ifp, m);
2795 		DC_LOCK(sc);
2796 	}
2797 
2798 	sc->dc_cdata.dc_rx_prod = i;
2799 }
2800 
2801 /*
2802  * A frame was downloaded to the chip. It's safe for us to clean up
2803  * the list buffers.
2804  */
2805 
2806 static void
2807 dc_txeof(struct dc_softc *sc)
2808 {
2809 	struct dc_desc *cur_tx = NULL;
2810 	struct ifnet *ifp;
2811 	int idx;
2812 	u_int32_t ctl, txstat;
2813 
2814 	ifp = sc->dc_ifp;
2815 
2816 	/*
2817 	 * Go through our tx list and free mbufs for those
2818 	 * frames that have been transmitted.
2819 	 */
2820 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap, BUS_DMASYNC_POSTREAD);
2821 	idx = sc->dc_cdata.dc_tx_cons;
2822 	while (idx != sc->dc_cdata.dc_tx_prod) {
2823 
2824 		cur_tx = &sc->dc_ldata->dc_tx_list[idx];
2825 		txstat = le32toh(cur_tx->dc_status);
2826 		ctl = le32toh(cur_tx->dc_ctl);
2827 
2828 		if (txstat & DC_TXSTAT_OWN)
2829 			break;
2830 
2831 		if (!(ctl & DC_TXCTL_LASTFRAG) || ctl & DC_TXCTL_SETUP) {
2832 			if (ctl & DC_TXCTL_SETUP) {
2833 				/*
2834 				 * Yes, the PNIC is so brain damaged
2835 				 * that it will sometimes generate a TX
2836 				 * underrun error while DMAing the RX
2837 				 * filter setup frame. If we detect this,
2838 				 * we have to send the setup frame again,
2839 				 * or else the filter won't be programmed
2840 				 * correctly.
2841 				 */
2842 				if (DC_IS_PNIC(sc)) {
2843 					if (txstat & DC_TXSTAT_ERRSUM)
2844 						dc_setfilt(sc);
2845 				}
2846 				sc->dc_cdata.dc_tx_chain[idx] = NULL;
2847 			}
2848 			sc->dc_cdata.dc_tx_cnt--;
2849 			DC_INC(idx, DC_TX_LIST_CNT);
2850 			continue;
2851 		}
2852 
2853 		if (DC_IS_XIRCOM(sc) || DC_IS_CONEXANT(sc)) {
2854 			/*
2855 			 * XXX: Why does my Xircom taunt me so?
2856 			 * For some reason it likes setting the CARRLOST flag
2857 			 * even when the carrier is there. wtf?!?
2858 			 * Who knows, but Conexant chips have the
2859 			 * same problem. Maybe they took lessons
2860 			 * from Xircom.
2861 			 */
2862 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2863 			    sc->dc_pmode == DC_PMODE_MII &&
2864 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
2865 			    DC_TXSTAT_NOCARRIER)))
2866 				txstat &= ~DC_TXSTAT_ERRSUM;
2867 		} else {
2868 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2869 			    sc->dc_pmode == DC_PMODE_MII &&
2870 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
2871 			    DC_TXSTAT_NOCARRIER | DC_TXSTAT_CARRLOST)))
2872 				txstat &= ~DC_TXSTAT_ERRSUM;
2873 		}
2874 
2875 		if (txstat & DC_TXSTAT_ERRSUM) {
2876 			ifp->if_oerrors++;
2877 			if (txstat & DC_TXSTAT_EXCESSCOLL)
2878 				ifp->if_collisions++;
2879 			if (txstat & DC_TXSTAT_LATECOLL)
2880 				ifp->if_collisions++;
2881 			if (!(txstat & DC_TXSTAT_UNDERRUN)) {
2882 				dc_init(sc);
2883 				return;
2884 			}
2885 		}
2886 
2887 		ifp->if_collisions += (txstat & DC_TXSTAT_COLLCNT) >> 3;
2888 
2889 		ifp->if_opackets++;
2890 		if (sc->dc_cdata.dc_tx_chain[idx] != NULL) {
2891 			bus_dmamap_sync(sc->dc_mtag,
2892 			    sc->dc_cdata.dc_tx_map[idx],
2893 			    BUS_DMASYNC_POSTWRITE);
2894 			bus_dmamap_unload(sc->dc_mtag,
2895 			    sc->dc_cdata.dc_tx_map[idx]);
2896 			m_freem(sc->dc_cdata.dc_tx_chain[idx]);
2897 			sc->dc_cdata.dc_tx_chain[idx] = NULL;
2898 		}
2899 
2900 		sc->dc_cdata.dc_tx_cnt--;
2901 		DC_INC(idx, DC_TX_LIST_CNT);
2902 	}
2903 
2904 	if (idx != sc->dc_cdata.dc_tx_cons) {
2905 	    	/* Some buffers have been freed. */
2906 		sc->dc_cdata.dc_tx_cons = idx;
2907 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2908 	}
2909 	ifp->if_timer = (sc->dc_cdata.dc_tx_cnt == 0) ? 0 : 5;
2910 }
2911 
2912 static void
2913 dc_tick(void *xsc)
2914 {
2915 	struct dc_softc *sc;
2916 	struct mii_data *mii;
2917 	struct ifnet *ifp;
2918 	u_int32_t r;
2919 
2920 	sc = xsc;
2921 	DC_LOCK(sc);
2922 	ifp = sc->dc_ifp;
2923 	mii = device_get_softc(sc->dc_miibus);
2924 
2925 	if (sc->dc_flags & DC_REDUCED_MII_POLL) {
2926 		if (sc->dc_flags & DC_21143_NWAY) {
2927 			r = CSR_READ_4(sc, DC_10BTSTAT);
2928 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2929 			    IFM_100_TX && (r & DC_TSTAT_LS100)) {
2930 				sc->dc_link = 0;
2931 				mii_mediachg(mii);
2932 			}
2933 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2934 			    IFM_10_T && (r & DC_TSTAT_LS10)) {
2935 				sc->dc_link = 0;
2936 				mii_mediachg(mii);
2937 			}
2938 			if (sc->dc_link == 0)
2939 				mii_tick(mii);
2940 		} else {
2941 			r = CSR_READ_4(sc, DC_ISR);
2942 			if ((r & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT &&
2943 			    sc->dc_cdata.dc_tx_cnt == 0) {
2944 				mii_tick(mii);
2945 				if (!(mii->mii_media_status & IFM_ACTIVE))
2946 					sc->dc_link = 0;
2947 			}
2948 		}
2949 	} else
2950 		mii_tick(mii);
2951 
2952 	/*
2953 	 * When the init routine completes, we expect to be able to send
2954 	 * packets right away, and in fact the network code will send a
2955 	 * gratuitous ARP the moment the init routine marks the interface
2956 	 * as running. However, even though the MAC may have been initialized,
2957 	 * there may be a delay of a few seconds before the PHY completes
2958 	 * autonegotiation and the link is brought up. Any transmissions
2959 	 * made during that delay will be lost. Dealing with this is tricky:
2960 	 * we can't just pause in the init routine while waiting for the
2961 	 * PHY to come ready since that would bring the whole system to
2962 	 * a screeching halt for several seconds.
2963 	 *
2964 	 * What we do here is prevent the TX start routine from sending
2965 	 * any packets until a link has been established. After the
2966 	 * interface has been initialized, the tick routine will poll
2967 	 * the state of the PHY until the IFM_ACTIVE flag is set. Until
2968 	 * that time, packets will stay in the send queue, and once the
2969 	 * link comes up, they will be flushed out to the wire.
2970 	 */
2971 	if (!sc->dc_link && mii->mii_media_status & IFM_ACTIVE &&
2972 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2973 		sc->dc_link++;
2974 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2975 			dc_start(ifp);
2976 	}
2977 
2978 	if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link)
2979 		callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
2980 	else
2981 		callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
2982 
2983 	DC_UNLOCK(sc);
2984 }
2985 
2986 /*
2987  * A transmit underrun has occurred.  Back off the transmit threshold,
2988  * or switch to store and forward mode if we have to.
2989  */
2990 static void
2991 dc_tx_underrun(struct dc_softc *sc)
2992 {
2993 	u_int32_t isr;
2994 	int i;
2995 
2996 	if (DC_IS_DAVICOM(sc))
2997 		dc_init(sc);
2998 
2999 	if (DC_IS_INTEL(sc)) {
3000 		/*
3001 		 * The real 21143 requires that the transmitter be idle
3002 		 * in order to change the transmit threshold or store
3003 		 * and forward state.
3004 		 */
3005 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3006 
3007 		for (i = 0; i < DC_TIMEOUT; i++) {
3008 			isr = CSR_READ_4(sc, DC_ISR);
3009 			if (isr & DC_ISR_TX_IDLE)
3010 				break;
3011 			DELAY(10);
3012 		}
3013 		if (i == DC_TIMEOUT) {
3014 			if_printf(sc->dc_ifp,
3015 			    "failed to force tx to idle state\n");
3016 			dc_init(sc);
3017 		}
3018 	}
3019 
3020 	if_printf(sc->dc_ifp, "TX underrun -- ");
3021 	sc->dc_txthresh += DC_TXTHRESH_INC;
3022 	if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3023 		printf("using store and forward mode\n");
3024 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3025 	} else {
3026 		printf("increasing TX threshold\n");
3027 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3028 		DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3029 	}
3030 
3031 	if (DC_IS_INTEL(sc))
3032 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3033 }
3034 
3035 #ifdef DEVICE_POLLING
3036 static poll_handler_t dc_poll;
3037 
3038 static void
3039 dc_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
3040 {
3041 	struct dc_softc *sc = ifp->if_softc;
3042 
3043 	if (!(ifp->if_capenable & IFCAP_POLLING)) {
3044 		ether_poll_deregister(ifp);
3045 		cmd = POLL_DEREGISTER;
3046 	}
3047 	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
3048 		/* Re-enable interrupts. */
3049 		CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3050 		return;
3051 	}
3052 	DC_LOCK(sc);
3053 	sc->rxcycles = count;
3054 	dc_rxeof(sc);
3055 	dc_txeof(sc);
3056 	if (!IFQ_IS_EMPTY(&ifp->if_snd) &&
3057 	    !(ifp->if_drv_flags & IFF_DRV_OACTIVE))
3058 		dc_start(ifp);
3059 
3060 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
3061 		u_int32_t	status;
3062 
3063 		status = CSR_READ_4(sc, DC_ISR);
3064 		status &= (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF |
3065 			DC_ISR_TX_NOBUF | DC_ISR_TX_IDLE | DC_ISR_TX_UNDERRUN |
3066 			DC_ISR_BUS_ERR);
3067 		if (!status) {
3068 			DC_UNLOCK(sc);
3069 			return;
3070 		}
3071 		/* ack what we have */
3072 		CSR_WRITE_4(sc, DC_ISR, status);
3073 
3074 		if (status & (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF)) {
3075 			u_int32_t r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
3076 			ifp->if_ierrors += (r & 0xffff) + ((r >> 17) & 0x7ff);
3077 
3078 			if (dc_rx_resync(sc))
3079 				dc_rxeof(sc);
3080 		}
3081 		/* restart transmit unit if necessary */
3082 		if (status & DC_ISR_TX_IDLE && sc->dc_cdata.dc_tx_cnt)
3083 			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3084 
3085 		if (status & DC_ISR_TX_UNDERRUN)
3086 			dc_tx_underrun(sc);
3087 
3088 		if (status & DC_ISR_BUS_ERR) {
3089 			if_printf(ifp, "dc_poll: bus error\n");
3090 			dc_reset(sc);
3091 			dc_init(sc);
3092 		}
3093 	}
3094 	DC_UNLOCK(sc);
3095 }
3096 #endif /* DEVICE_POLLING */
3097 
3098 static void
3099 dc_intr(void *arg)
3100 {
3101 	struct dc_softc *sc;
3102 	struct ifnet *ifp;
3103 	u_int32_t status;
3104 
3105 	sc = arg;
3106 
3107 	if (sc->suspended)
3108 		return;
3109 
3110 	if ((CSR_READ_4(sc, DC_ISR) & DC_INTRS) == 0)
3111 		return;
3112 
3113 	DC_LOCK(sc);
3114 	ifp = sc->dc_ifp;
3115 #ifdef DEVICE_POLLING
3116 	if (ifp->if_flags & IFF_POLLING)
3117 		goto done;
3118 	if ((ifp->if_capenable & IFCAP_POLLING) &&
3119 	    ether_poll_register(dc_poll, ifp)) { /* ok, disable interrupts */
3120 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3121 		goto done;
3122 	}
3123 #endif
3124 
3125 	/* Suppress unwanted interrupts */
3126 	if (!(ifp->if_flags & IFF_UP)) {
3127 		if (CSR_READ_4(sc, DC_ISR) & DC_INTRS)
3128 			dc_stop(sc);
3129 		DC_UNLOCK(sc);
3130 		return;
3131 	}
3132 
3133 	/* Disable interrupts. */
3134 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3135 
3136 	while (((status = CSR_READ_4(sc, DC_ISR)) & DC_INTRS)
3137 	      && status != 0xFFFFFFFF) {
3138 
3139 		CSR_WRITE_4(sc, DC_ISR, status);
3140 
3141 		if (status & DC_ISR_RX_OK) {
3142 			int		curpkts;
3143 			curpkts = ifp->if_ipackets;
3144 			dc_rxeof(sc);
3145 			if (curpkts == ifp->if_ipackets) {
3146 				while (dc_rx_resync(sc))
3147 					dc_rxeof(sc);
3148 			}
3149 		}
3150 
3151 		if (status & (DC_ISR_TX_OK | DC_ISR_TX_NOBUF))
3152 			dc_txeof(sc);
3153 
3154 		if (status & DC_ISR_TX_IDLE) {
3155 			dc_txeof(sc);
3156 			if (sc->dc_cdata.dc_tx_cnt) {
3157 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3158 				CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3159 			}
3160 		}
3161 
3162 		if (status & DC_ISR_TX_UNDERRUN)
3163 			dc_tx_underrun(sc);
3164 
3165 		if ((status & DC_ISR_RX_WATDOGTIMEO)
3166 		    || (status & DC_ISR_RX_NOBUF)) {
3167 			int		curpkts;
3168 			curpkts = ifp->if_ipackets;
3169 			dc_rxeof(sc);
3170 			if (curpkts == ifp->if_ipackets) {
3171 				while (dc_rx_resync(sc))
3172 					dc_rxeof(sc);
3173 			}
3174 		}
3175 
3176 		if (status & DC_ISR_BUS_ERR) {
3177 			dc_reset(sc);
3178 			dc_init(sc);
3179 		}
3180 	}
3181 
3182 	/* Re-enable interrupts. */
3183 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3184 
3185 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3186 		dc_start(ifp);
3187 
3188 #ifdef DEVICE_POLLING
3189 done:
3190 #endif
3191 
3192 	DC_UNLOCK(sc);
3193 }
3194 
3195 static void
3196 dc_dma_map_txbuf(arg, segs, nseg, mapsize, error)
3197 	void *arg;
3198 	bus_dma_segment_t *segs;
3199 	int nseg;
3200 	bus_size_t mapsize;
3201 	int error;
3202 {
3203 	struct dc_softc *sc;
3204 	struct dc_desc *f;
3205 	int cur, first, frag, i;
3206 
3207 	sc = arg;
3208 	if (error) {
3209 		sc->dc_cdata.dc_tx_err = error;
3210 		return;
3211 	}
3212 
3213 	first = cur = frag = sc->dc_cdata.dc_tx_prod;
3214 	for (i = 0; i < nseg; i++) {
3215 		if ((sc->dc_flags & DC_TX_ADMTEK_WAR) &&
3216 		    (frag == (DC_TX_LIST_CNT - 1)) &&
3217 		    (first != sc->dc_cdata.dc_tx_first)) {
3218 			bus_dmamap_unload(sc->dc_mtag,
3219 			    sc->dc_cdata.dc_tx_map[first]);
3220 			sc->dc_cdata.dc_tx_err = ENOBUFS;
3221 			return;
3222 		}
3223 
3224 		f = &sc->dc_ldata->dc_tx_list[frag];
3225 		f->dc_ctl = htole32(DC_TXCTL_TLINK | segs[i].ds_len);
3226 		if (i == 0) {
3227 			f->dc_status = 0;
3228 			f->dc_ctl |= htole32(DC_TXCTL_FIRSTFRAG);
3229 		} else
3230 			f->dc_status = htole32(DC_TXSTAT_OWN);
3231 		f->dc_data = htole32(segs[i].ds_addr);
3232 		cur = frag;
3233 		DC_INC(frag, DC_TX_LIST_CNT);
3234 	}
3235 
3236 	sc->dc_cdata.dc_tx_err = 0;
3237 	sc->dc_cdata.dc_tx_prod = frag;
3238 	sc->dc_cdata.dc_tx_cnt += nseg;
3239 	sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_LASTFRAG);
3240 	sc->dc_cdata.dc_tx_chain[cur] = sc->dc_cdata.dc_tx_mapping;
3241 	if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
3242 		sc->dc_ldata->dc_tx_list[first].dc_ctl |=
3243 		    htole32(DC_TXCTL_FINT);
3244 	if (sc->dc_flags & DC_TX_INTR_ALWAYS)
3245 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
3246 	if (sc->dc_flags & DC_TX_USE_TX_INTR && sc->dc_cdata.dc_tx_cnt > 64)
3247 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
3248 	sc->dc_ldata->dc_tx_list[first].dc_status = htole32(DC_TXSTAT_OWN);
3249 }
3250 
3251 /*
3252  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
3253  * pointers to the fragment pointers.
3254  */
3255 static int
3256 dc_encap(struct dc_softc *sc, struct mbuf **m_head)
3257 {
3258 	struct mbuf *m;
3259 	int error, idx, chainlen = 0;
3260 
3261 	/*
3262 	 * If there's no way we can send any packets, return now.
3263 	 */
3264 	if (DC_TX_LIST_CNT - sc->dc_cdata.dc_tx_cnt < 6)
3265 		return (ENOBUFS);
3266 
3267 	/*
3268 	 * Count the number of frags in this chain to see if
3269 	 * we need to m_defrag.  Since the descriptor list is shared
3270 	 * by all packets, we'll m_defrag long chains so that they
3271 	 * do not use up the entire list, even if they would fit.
3272 	 */
3273 	for (m = *m_head; m != NULL; m = m->m_next)
3274 		chainlen++;
3275 
3276 	if ((chainlen > DC_TX_LIST_CNT / 4) ||
3277 	    ((DC_TX_LIST_CNT - (chainlen + sc->dc_cdata.dc_tx_cnt)) < 6)) {
3278 		m = m_defrag(*m_head, M_DONTWAIT);
3279 		if (m == NULL)
3280 			return (ENOBUFS);
3281 		*m_head = m;
3282 	}
3283 
3284 	/*
3285 	 * Start packing the mbufs in this chain into
3286 	 * the fragment pointers. Stop when we run out
3287 	 * of fragments or hit the end of the mbuf chain.
3288 	 */
3289 	idx = sc->dc_cdata.dc_tx_prod;
3290 	sc->dc_cdata.dc_tx_mapping = *m_head;
3291 	error = bus_dmamap_load_mbuf(sc->dc_mtag, sc->dc_cdata.dc_tx_map[idx],
3292 	    *m_head, dc_dma_map_txbuf, sc, 0);
3293 	if (error)
3294 		return (error);
3295 	if (sc->dc_cdata.dc_tx_err != 0)
3296 		return (sc->dc_cdata.dc_tx_err);
3297 	bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_tx_map[idx],
3298 	    BUS_DMASYNC_PREWRITE);
3299 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
3300 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
3301 	return (0);
3302 }
3303 
3304 /*
3305  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3306  * to the mbuf data regions directly in the transmit lists. We also save a
3307  * copy of the pointers since the transmit list fragment pointers are
3308  * physical addresses.
3309  */
3310 
3311 static void
3312 dc_start(struct ifnet *ifp)
3313 {
3314 	struct dc_softc *sc;
3315 	struct mbuf *m_head = NULL, *m;
3316 	unsigned int queued = 0;
3317 	int idx;
3318 
3319 	sc = ifp->if_softc;
3320 
3321 	DC_LOCK(sc);
3322 
3323 	if (!sc->dc_link && ifp->if_snd.ifq_len < 10) {
3324 		DC_UNLOCK(sc);
3325 		return;
3326 	}
3327 
3328 	if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
3329 		DC_UNLOCK(sc);
3330 		return;
3331 	}
3332 
3333 	idx = sc->dc_cdata.dc_tx_first = sc->dc_cdata.dc_tx_prod;
3334 
3335 	while (sc->dc_cdata.dc_tx_chain[idx] == NULL) {
3336 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
3337 		if (m_head == NULL)
3338 			break;
3339 
3340 		if (sc->dc_flags & DC_TX_COALESCE &&
3341 		    (m_head->m_next != NULL ||
3342 		     sc->dc_flags & DC_TX_ALIGN)) {
3343 			m = m_defrag(m_head, M_DONTWAIT);
3344 			if (m == NULL) {
3345 				IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
3346 				ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3347 				break;
3348 			} else {
3349 				m_head = m;
3350 			}
3351 		}
3352 
3353 		if (dc_encap(sc, &m_head)) {
3354 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
3355 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3356 			break;
3357 		}
3358 		idx = sc->dc_cdata.dc_tx_prod;
3359 
3360 		queued++;
3361 		/*
3362 		 * If there's a BPF listener, bounce a copy of this frame
3363 		 * to him.
3364 		 */
3365 		BPF_MTAP(ifp, m_head);
3366 
3367 		if (sc->dc_flags & DC_TX_ONE) {
3368 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3369 			break;
3370 		}
3371 	}
3372 
3373 	if (queued > 0) {
3374 		/* Transmit */
3375 		if (!(sc->dc_flags & DC_TX_POLL))
3376 			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3377 
3378 		/*
3379 		 * Set a timeout in case the chip goes out to lunch.
3380 		 */
3381 		ifp->if_timer = 5;
3382 	}
3383 
3384 	DC_UNLOCK(sc);
3385 }
3386 
3387 static void
3388 dc_init(void *xsc)
3389 {
3390 	struct dc_softc *sc = xsc;
3391 	struct ifnet *ifp = sc->dc_ifp;
3392 	struct mii_data *mii;
3393 
3394 	DC_LOCK(sc);
3395 
3396 	mii = device_get_softc(sc->dc_miibus);
3397 
3398 	/*
3399 	 * Cancel pending I/O and free all RX/TX buffers.
3400 	 */
3401 	dc_stop(sc);
3402 	dc_reset(sc);
3403 
3404 	/*
3405 	 * Set cache alignment and burst length.
3406 	 */
3407 	if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc))
3408 		CSR_WRITE_4(sc, DC_BUSCTL, 0);
3409 	else
3410 		CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME | DC_BUSCTL_MRLE);
3411 	/*
3412 	 * Evenly share the bus between receive and transmit process.
3413 	 */
3414 	if (DC_IS_INTEL(sc))
3415 		DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION);
3416 	if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
3417 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
3418 	} else {
3419 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
3420 	}
3421 	if (sc->dc_flags & DC_TX_POLL)
3422 		DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
3423 	switch(sc->dc_cachesize) {
3424 	case 32:
3425 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
3426 		break;
3427 	case 16:
3428 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
3429 		break;
3430 	case 8:
3431 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
3432 		break;
3433 	case 0:
3434 	default:
3435 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
3436 		break;
3437 	}
3438 
3439 	if (sc->dc_flags & DC_TX_STORENFWD)
3440 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3441 	else {
3442 		if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3443 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3444 		} else {
3445 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3446 			DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3447 		}
3448 	}
3449 
3450 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
3451 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
3452 
3453 	if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
3454 		/*
3455 		 * The app notes for the 98713 and 98715A say that
3456 		 * in order to have the chips operate properly, a magic
3457 		 * number must be written to CSR16. Macronix does not
3458 		 * document the meaning of these bits so there's no way
3459 		 * to know exactly what they do. The 98713 has a magic
3460 		 * number all its own; the rest all use a different one.
3461 		 */
3462 		DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
3463 		if (sc->dc_type == DC_TYPE_98713)
3464 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
3465 		else
3466 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
3467 	}
3468 
3469 	if (DC_IS_XIRCOM(sc)) {
3470 		/*
3471 		 * setup General Purpose Port mode and data so the tulip
3472 		 * can talk to the MII.
3473 		 */
3474 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
3475 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3476 		DELAY(10);
3477 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
3478 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3479 		DELAY(10);
3480 	}
3481 
3482 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3483 	DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN);
3484 
3485 	/* Init circular RX list. */
3486 	if (dc_list_rx_init(sc) == ENOBUFS) {
3487 		if_printf(ifp,
3488 		    "initialization failed: no memory for rx buffers\n");
3489 		dc_stop(sc);
3490 		DC_UNLOCK(sc);
3491 		return;
3492 	}
3493 
3494 	/*
3495 	 * Init TX descriptors.
3496 	 */
3497 	dc_list_tx_init(sc);
3498 
3499 	/*
3500 	 * Load the address of the RX list.
3501 	 */
3502 	CSR_WRITE_4(sc, DC_RXADDR, DC_RXDESC(sc, 0));
3503 	CSR_WRITE_4(sc, DC_TXADDR, DC_TXDESC(sc, 0));
3504 
3505 	/*
3506 	 * Enable interrupts.
3507 	 */
3508 #ifdef DEVICE_POLLING
3509 	/*
3510 	 * ... but only if we are not polling, and make sure they are off in
3511 	 * the case of polling. Some cards (e.g. fxp) turn interrupts on
3512 	 * after a reset.
3513 	 */
3514 	if (ifp->if_flags & IFF_POLLING)
3515 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3516 	else
3517 #endif
3518 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3519 	CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
3520 
3521 	/* Enable transmitter. */
3522 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3523 
3524 	/*
3525 	 * If this is an Intel 21143 and we're not using the
3526 	 * MII port, program the LED control pins so we get
3527 	 * link and activity indications.
3528 	 */
3529 	if (sc->dc_flags & DC_TULIP_LEDS) {
3530 		CSR_WRITE_4(sc, DC_WATCHDOG,
3531 		    DC_WDOG_CTLWREN | DC_WDOG_LINK | DC_WDOG_ACTIVITY);
3532 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
3533 	}
3534 
3535 	/*
3536 	 * Load the RX/multicast filter. We do this sort of late
3537 	 * because the filter programming scheme on the 21143 and
3538 	 * some clones requires DMAing a setup frame via the TX
3539 	 * engine, and we need the transmitter enabled for that.
3540 	 */
3541 	dc_setfilt(sc);
3542 
3543 	/* Enable receiver. */
3544 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
3545 	CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
3546 
3547 	mii_mediachg(mii);
3548 	dc_setcfg(sc, sc->dc_if_media);
3549 
3550 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3551 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3552 
3553 	/* Don't start the ticker if this is a homePNA link. */
3554 	if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_HPNA_1)
3555 		sc->dc_link = 1;
3556 	else {
3557 		if (sc->dc_flags & DC_21143_NWAY)
3558 			callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
3559 		else
3560 			callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
3561 	}
3562 
3563 #ifdef SRM_MEDIA
3564 	if(sc->dc_srm_media) {
3565 		struct ifreq ifr;
3566 
3567 		ifr.ifr_media = sc->dc_srm_media;
3568 		ifmedia_ioctl(ifp, &ifr, &mii->mii_media, SIOCSIFMEDIA);
3569 		sc->dc_srm_media = 0;
3570 	}
3571 #endif
3572 	DC_UNLOCK(sc);
3573 }
3574 
3575 /*
3576  * Set media options.
3577  */
3578 static int
3579 dc_ifmedia_upd(struct ifnet *ifp)
3580 {
3581 	struct dc_softc *sc;
3582 	struct mii_data *mii;
3583 	struct ifmedia *ifm;
3584 
3585 	sc = ifp->if_softc;
3586 	mii = device_get_softc(sc->dc_miibus);
3587 	mii_mediachg(mii);
3588 	ifm = &mii->mii_media;
3589 
3590 	if (DC_IS_DAVICOM(sc) &&
3591 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1)
3592 		dc_setcfg(sc, ifm->ifm_media);
3593 	else
3594 		sc->dc_link = 0;
3595 
3596 	return (0);
3597 }
3598 
3599 /*
3600  * Report current media status.
3601  */
3602 static void
3603 dc_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3604 {
3605 	struct dc_softc *sc;
3606 	struct mii_data *mii;
3607 	struct ifmedia *ifm;
3608 
3609 	sc = ifp->if_softc;
3610 	mii = device_get_softc(sc->dc_miibus);
3611 	mii_pollstat(mii);
3612 	ifm = &mii->mii_media;
3613 	if (DC_IS_DAVICOM(sc)) {
3614 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
3615 			ifmr->ifm_active = ifm->ifm_media;
3616 			ifmr->ifm_status = 0;
3617 			return;
3618 		}
3619 	}
3620 	ifmr->ifm_active = mii->mii_media_active;
3621 	ifmr->ifm_status = mii->mii_media_status;
3622 }
3623 
3624 static int
3625 dc_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
3626 {
3627 	struct dc_softc *sc = ifp->if_softc;
3628 	struct ifreq *ifr = (struct ifreq *)data;
3629 	struct mii_data *mii;
3630 	int error = 0;
3631 
3632 	DC_LOCK(sc);
3633 
3634 	switch (command) {
3635 	case SIOCSIFFLAGS:
3636 		if (ifp->if_flags & IFF_UP) {
3637 			int need_setfilt = (ifp->if_flags ^ sc->dc_if_flags) &
3638 				(IFF_PROMISC | IFF_ALLMULTI);
3639 
3640 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3641 				if (need_setfilt)
3642 					dc_setfilt(sc);
3643 			} else {
3644 				sc->dc_txthresh = 0;
3645 				dc_init(sc);
3646 			}
3647 		} else {
3648 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3649 				dc_stop(sc);
3650 		}
3651 		sc->dc_if_flags = ifp->if_flags;
3652 		error = 0;
3653 		break;
3654 	case SIOCADDMULTI:
3655 	case SIOCDELMULTI:
3656 		dc_setfilt(sc);
3657 		error = 0;
3658 		break;
3659 	case SIOCGIFMEDIA:
3660 	case SIOCSIFMEDIA:
3661 		mii = device_get_softc(sc->dc_miibus);
3662 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
3663 #ifdef SRM_MEDIA
3664 		if (sc->dc_srm_media)
3665 			sc->dc_srm_media = 0;
3666 #endif
3667 		break;
3668 	case SIOCSIFCAP:
3669 		ifp->if_capenable &= ~IFCAP_POLLING;
3670 		ifp->if_capenable |= ifr->ifr_reqcap & IFCAP_POLLING;
3671 		break;
3672 	default:
3673 		error = ether_ioctl(ifp, command, data);
3674 		break;
3675 	}
3676 
3677 	DC_UNLOCK(sc);
3678 
3679 	return (error);
3680 }
3681 
3682 static void
3683 dc_watchdog(struct ifnet *ifp)
3684 {
3685 	struct dc_softc *sc;
3686 
3687 	sc = ifp->if_softc;
3688 
3689 	DC_LOCK(sc);
3690 
3691 	ifp->if_oerrors++;
3692 	if_printf(ifp, "watchdog timeout\n");
3693 
3694 	dc_stop(sc);
3695 	dc_reset(sc);
3696 	dc_init(sc);
3697 
3698 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3699 		dc_start(ifp);
3700 
3701 	DC_UNLOCK(sc);
3702 }
3703 
3704 /*
3705  * Stop the adapter and free any mbufs allocated to the
3706  * RX and TX lists.
3707  */
3708 static void
3709 dc_stop(struct dc_softc *sc)
3710 {
3711 	struct ifnet *ifp;
3712 	struct dc_list_data *ld;
3713 	struct dc_chain_data *cd;
3714 	int i;
3715 	u_int32_t ctl;
3716 
3717 	DC_LOCK(sc);
3718 
3719 	ifp = sc->dc_ifp;
3720 	ifp->if_timer = 0;
3721 	ld = sc->dc_ldata;
3722 	cd = &sc->dc_cdata;
3723 
3724 	callout_stop(&sc->dc_stat_ch);
3725 
3726 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3727 #ifdef DEVICE_POLLING
3728 	ether_poll_deregister(ifp);
3729 #endif
3730 
3731 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ON | DC_NETCFG_TX_ON));
3732 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3733 	CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
3734 	CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
3735 	sc->dc_link = 0;
3736 
3737 	/*
3738 	 * Free data in the RX lists.
3739 	 */
3740 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
3741 		if (cd->dc_rx_chain[i] != NULL) {
3742 			m_freem(cd->dc_rx_chain[i]);
3743 			cd->dc_rx_chain[i] = NULL;
3744 		}
3745 	}
3746 	bzero(&ld->dc_rx_list, sizeof(ld->dc_rx_list));
3747 
3748 	/*
3749 	 * Free the TX list buffers.
3750 	 */
3751 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
3752 		if (cd->dc_tx_chain[i] != NULL) {
3753 			ctl = le32toh(ld->dc_tx_list[i].dc_ctl);
3754 			if ((ctl & DC_TXCTL_SETUP) ||
3755 			    !(ctl & DC_TXCTL_LASTFRAG)) {
3756 				cd->dc_tx_chain[i] = NULL;
3757 				continue;
3758 			}
3759 			bus_dmamap_unload(sc->dc_mtag, cd->dc_tx_map[i]);
3760 			m_freem(cd->dc_tx_chain[i]);
3761 			cd->dc_tx_chain[i] = NULL;
3762 		}
3763 	}
3764 	bzero(&ld->dc_tx_list, sizeof(ld->dc_tx_list));
3765 
3766 	DC_UNLOCK(sc);
3767 }
3768 
3769 /*
3770  * Device suspend routine.  Stop the interface and save some PCI
3771  * settings in case the BIOS doesn't restore them properly on
3772  * resume.
3773  */
3774 static int
3775 dc_suspend(device_t dev)
3776 {
3777 	struct dc_softc *sc;
3778 	int s;
3779 
3780 	s = splimp();
3781 
3782 	sc = device_get_softc(dev);
3783 	dc_stop(sc);
3784 	sc->suspended = 1;
3785 
3786 	splx(s);
3787 	return (0);
3788 }
3789 
3790 /*
3791  * Device resume routine.  Restore some PCI settings in case the BIOS
3792  * doesn't, re-enable busmastering, and restart the interface if
3793  * appropriate.
3794  */
3795 static int
3796 dc_resume(device_t dev)
3797 {
3798 	struct dc_softc *sc;
3799 	struct ifnet *ifp;
3800 	int s;
3801 
3802 	s = splimp();
3803 
3804 	sc = device_get_softc(dev);
3805 	ifp = sc->dc_ifp;
3806 
3807 	/* reinitialize interface if necessary */
3808 	if (ifp->if_flags & IFF_UP)
3809 		dc_init(sc);
3810 
3811 	sc->suspended = 0;
3812 
3813 	splx(s);
3814 	return (0);
3815 }
3816 
3817 /*
3818  * Stop all chip I/O so that the kernel's probe routines don't
3819  * get confused by errant DMAs when rebooting.
3820  */
3821 static void
3822 dc_shutdown(device_t dev)
3823 {
3824 	struct dc_softc *sc;
3825 
3826 	sc = device_get_softc(dev);
3827 
3828 	dc_stop(sc);
3829 }
3830