xref: /freebsd/sys/dev/dc/if_dc.c (revision dce6e6518b85561495cff38a3074a69d29d58a55)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ee.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
35  * series chips and several workalikes including the following:
36  *
37  * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com)
38  * Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
39  * Lite-On 82c168/82c169 PNIC (www.litecom.com)
40  * ASIX Electronics AX88140A (www.asix.com.tw)
41  * ASIX Electronics AX88141 (www.asix.com.tw)
42  * ADMtek AL981 (www.admtek.com.tw)
43  * ADMtek AN985 (www.admtek.com.tw)
44  * Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
45  * Accton EN1217 (www.accton.com)
46  * Xircom X3201 (www.xircom.com)
47  * Abocom FE2500
48  * Conexant LANfinity (www.conexant.com)
49  * 3Com OfficeConnect 10/100B 3CSOHO100B (www.3com.com)
50  *
51  * Datasheets for the 21143 are available at developer.intel.com.
52  * Datasheets for the clone parts can be found at their respective sites.
53  * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
54  * The PNIC II is essentially a Macronix 98715A chip; the only difference
55  * worth noting is that its multicast hash table is only 128 bits wide
56  * instead of 512.
57  *
58  * Written by Bill Paul <wpaul@ee.columbia.edu>
59  * Electrical Engineering Department
60  * Columbia University, New York City
61  */
62 
63 /*
64  * The Intel 21143 is the successor to the DEC 21140. It is basically
65  * the same as the 21140 but with a few new features. The 21143 supports
66  * three kinds of media attachments:
67  *
68  * o MII port, for 10Mbps and 100Mbps support and NWAY
69  *   autonegotiation provided by an external PHY.
70  * o SYM port, for symbol mode 100Mbps support.
71  * o 10baseT port.
72  * o AUI/BNC port.
73  *
74  * The 100Mbps SYM port and 10baseT port can be used together in
75  * combination with the internal NWAY support to create a 10/100
76  * autosensing configuration.
77  *
78  * Note that not all tulip workalikes are handled in this driver: we only
79  * deal with those which are relatively well behaved. The Winbond is
80  * handled separately due to its different register offsets and the
81  * special handling needed for its various bugs. The PNIC is handled
82  * here, but I'm not thrilled about it.
83  *
84  * All of the workalike chips use some form of MII transceiver support
85  * with the exception of the Macronix chips, which also have a SYM port.
86  * The ASIX AX88140A is also documented to have a SYM port, but all
87  * the cards I've seen use an MII transceiver, probably because the
88  * AX88140A doesn't support internal NWAY.
89  */
90 
91 #include <sys/cdefs.h>
92 __FBSDID("$FreeBSD$");
93 
94 #include <sys/param.h>
95 #include <sys/systm.h>
96 #include <sys/sockio.h>
97 #include <sys/mbuf.h>
98 #include <sys/malloc.h>
99 #include <sys/kernel.h>
100 #include <sys/socket.h>
101 #include <sys/sysctl.h>
102 
103 #include <net/if.h>
104 #include <net/if_arp.h>
105 #include <net/ethernet.h>
106 #include <net/if_dl.h>
107 #include <net/if_media.h>
108 #include <net/if_types.h>
109 #include <net/if_vlan_var.h>
110 
111 #include <net/bpf.h>
112 
113 #include <machine/bus_pio.h>
114 #include <machine/bus_memio.h>
115 #include <machine/bus.h>
116 #include <machine/resource.h>
117 #include <sys/bus.h>
118 #include <sys/rman.h>
119 
120 #include <dev/mii/mii.h>
121 #include <dev/mii/miivar.h>
122 
123 #include <pci/pcireg.h>
124 #include <pci/pcivar.h>
125 
126 #define DC_USEIOSPACE
127 #ifdef __alpha__
128 #define SRM_MEDIA
129 #endif
130 
131 #include <pci/if_dcreg.h>
132 
133 MODULE_DEPEND(dc, pci, 1, 1, 1);
134 MODULE_DEPEND(dc, ether, 1, 1, 1);
135 MODULE_DEPEND(dc, miibus, 1, 1, 1);
136 
137 /* "controller miibus0" required.  See GENERIC if you get errors here. */
138 #include "miibus_if.h"
139 
140 /*
141  * Various supported device vendors/types and their names.
142  */
143 static struct dc_type dc_devs[] = {
144 	{ DC_VENDORID_DEC, DC_DEVICEID_21143,
145 		"Intel 21143 10/100BaseTX" },
146 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009,
147 		"Davicom DM9009 10/100BaseTX" },
148 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100,
149 		"Davicom DM9100 10/100BaseTX" },
150 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
151 		"Davicom DM9102 10/100BaseTX" },
152 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
153 		"Davicom DM9102A 10/100BaseTX" },
154 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AL981,
155 		"ADMtek AL981 10/100BaseTX" },
156 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AN985,
157 		"ADMtek AN985 10/100BaseTX" },
158 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511,
159 		"ADMtek ADM9511 10/100BaseTX" },
160 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513,
161 		"ADMtek ADM9513 10/100BaseTX" },
162 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
163 		"ASIX AX88140A 10/100BaseTX" },
164 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
165 		"ASIX AX88141 10/100BaseTX" },
166 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
167 		"Macronix 98713 10/100BaseTX" },
168 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
169 		"Macronix 98713A 10/100BaseTX" },
170 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
171 		"Compex RL100-TX 10/100BaseTX" },
172 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
173 		"Compex RL100-TX 10/100BaseTX" },
174 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
175 		"Macronix 98715/98715A 10/100BaseTX" },
176 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
177 		"Macronix 98715AEC-C 10/100BaseTX" },
178 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
179 		"Macronix 98725 10/100BaseTX" },
180 	{ DC_VENDORID_MX, DC_DEVICEID_98727,
181 		"Macronix 98727/98732 10/100BaseTX" },
182 	{ DC_VENDORID_LO, DC_DEVICEID_82C115,
183 		"LC82C115 PNIC II 10/100BaseTX" },
184 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
185 		"82c168 PNIC 10/100BaseTX" },
186 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
187 		"82c169 PNIC 10/100BaseTX" },
188 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN1217,
189 		"Accton EN1217 10/100BaseTX" },
190 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN2242,
191 		"Accton EN2242 MiniPCI 10/100BaseTX" },
192 	{ DC_VENDORID_XIRCOM, DC_DEVICEID_X3201,
193 	  	"Xircom X3201 10/100BaseTX" },
194 	{ DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500,
195 		"Abocom FE2500 10/100BaseTX" },
196 	{ DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112,
197 		"Conexant LANfinity MiniPCI 10/100BaseTX" },
198 	{ DC_VENDORID_HAWKING, DC_DEVICEID_HAWKING_PN672TX,
199 		"Hawking CB102 CardBus 10/100" },
200 	{ DC_VENDORID_PLANEX, DC_DEVICEID_FNW3602T,
201 		"PlaneX FNW-3602-T CardBus 10/100" },
202 	{ DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB,
203 		"3Com OfficeConnect 10/100B" },
204 	{ 0, 0, NULL }
205 };
206 
207 static int dc_probe		(device_t);
208 static int dc_attach		(device_t);
209 static int dc_detach		(device_t);
210 static int dc_suspend		(device_t);
211 static int dc_resume		(device_t);
212 #ifndef BURN_BRIDGES
213 static void dc_acpi		(device_t);
214 #endif
215 static struct dc_type *dc_devtype	(device_t);
216 static int dc_newbuf		(struct dc_softc *, int, int);
217 static int dc_encap		(struct dc_softc *, struct mbuf *);
218 static void dc_pnic_rx_bug_war	(struct dc_softc *, int);
219 static int dc_rx_resync		(struct dc_softc *);
220 static void dc_rxeof		(struct dc_softc *);
221 static void dc_txeof		(struct dc_softc *);
222 static void dc_tick		(void *);
223 static void dc_tx_underrun	(struct dc_softc *);
224 static void dc_intr		(void *);
225 static void dc_start		(struct ifnet *);
226 static int dc_ioctl		(struct ifnet *, u_long, caddr_t);
227 static void dc_init		(void *);
228 static void dc_stop		(struct dc_softc *);
229 static void dc_watchdog		(struct ifnet *);
230 static void dc_shutdown		(device_t);
231 static int dc_ifmedia_upd	(struct ifnet *);
232 static void dc_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
233 
234 static void dc_delay		(struct dc_softc *);
235 static void dc_eeprom_idle	(struct dc_softc *);
236 static void dc_eeprom_putbyte	(struct dc_softc *, int);
237 static void dc_eeprom_getword	(struct dc_softc *, int, u_int16_t *);
238 static void dc_eeprom_getword_pnic
239 				(struct dc_softc *, int, u_int16_t *);
240 static void dc_eeprom_getword_xircom
241 				(struct dc_softc *, int, u_int16_t *);
242 static void dc_eeprom_width	(struct dc_softc *);
243 static void dc_read_eeprom	(struct dc_softc *, caddr_t, int, int, int);
244 
245 static void dc_mii_writebit	(struct dc_softc *, int);
246 static int dc_mii_readbit	(struct dc_softc *);
247 static void dc_mii_sync		(struct dc_softc *);
248 static void dc_mii_send		(struct dc_softc *, u_int32_t, int);
249 static int dc_mii_readreg	(struct dc_softc *, struct dc_mii_frame *);
250 static int dc_mii_writereg	(struct dc_softc *, struct dc_mii_frame *);
251 static int dc_miibus_readreg	(device_t, int, int);
252 static int dc_miibus_writereg	(device_t, int, int, int);
253 static void dc_miibus_statchg	(device_t);
254 static void dc_miibus_mediainit	(device_t);
255 
256 static void dc_setcfg		(struct dc_softc *, int);
257 static u_int32_t dc_crc_le	(struct dc_softc *, caddr_t);
258 static u_int32_t dc_crc_be	(caddr_t);
259 static void dc_setfilt_21143	(struct dc_softc *);
260 static void dc_setfilt_asix	(struct dc_softc *);
261 static void dc_setfilt_admtek	(struct dc_softc *);
262 static void dc_setfilt_xircom	(struct dc_softc *);
263 
264 static void dc_setfilt		(struct dc_softc *);
265 
266 static void dc_reset		(struct dc_softc *);
267 static int dc_list_rx_init	(struct dc_softc *);
268 static int dc_list_tx_init	(struct dc_softc *);
269 
270 static void dc_read_srom	(struct dc_softc *, int);
271 static void dc_parse_21143_srom	(struct dc_softc *);
272 static void dc_decode_leaf_sia	(struct dc_softc *, struct dc_eblock_sia *);
273 static void dc_decode_leaf_mii	(struct dc_softc *, struct dc_eblock_mii *);
274 static void dc_decode_leaf_sym	(struct dc_softc *, struct dc_eblock_sym *);
275 static void dc_apply_fixup	(struct dc_softc *, int);
276 
277 static void dc_dma_map_txbuf	(void *, bus_dma_segment_t *, int, bus_size_t,
278 				    int);
279 static void dc_dma_map_rxbuf	(void *, bus_dma_segment_t *, int, bus_size_t,
280 				    int);
281 
282 #ifdef DC_USEIOSPACE
283 #define DC_RES			SYS_RES_IOPORT
284 #define DC_RID			DC_PCI_CFBIO
285 #else
286 #define DC_RES			SYS_RES_MEMORY
287 #define DC_RID			DC_PCI_CFBMA
288 #endif
289 
290 static device_method_t dc_methods[] = {
291 	/* Device interface */
292 	DEVMETHOD(device_probe,		dc_probe),
293 	DEVMETHOD(device_attach,	dc_attach),
294 	DEVMETHOD(device_detach,	dc_detach),
295 	DEVMETHOD(device_suspend,	dc_suspend),
296 	DEVMETHOD(device_resume,	dc_resume),
297 	DEVMETHOD(device_shutdown,	dc_shutdown),
298 
299 	/* bus interface */
300 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
301 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
302 
303 	/* MII interface */
304 	DEVMETHOD(miibus_readreg,	dc_miibus_readreg),
305 	DEVMETHOD(miibus_writereg,	dc_miibus_writereg),
306 	DEVMETHOD(miibus_statchg,	dc_miibus_statchg),
307 	DEVMETHOD(miibus_mediainit,	dc_miibus_mediainit),
308 
309 	{ 0, 0 }
310 };
311 
312 static driver_t dc_driver = {
313 	"dc",
314 	dc_methods,
315 	sizeof(struct dc_softc)
316 };
317 
318 static devclass_t dc_devclass;
319 #ifdef __i386__
320 static int dc_quick = 1;
321 SYSCTL_INT(_hw, OID_AUTO, dc_quick, CTLFLAG_RW, &dc_quick, 0,
322     "do not mdevget in dc driver");
323 #endif
324 
325 DRIVER_MODULE(dc, cardbus, dc_driver, dc_devclass, 0, 0);
326 DRIVER_MODULE(dc, pci, dc_driver, dc_devclass, 0, 0);
327 DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, 0, 0);
328 
329 #define DC_SETBIT(sc, reg, x)				\
330 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
331 
332 #define DC_CLRBIT(sc, reg, x)				\
333 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
334 
335 #define SIO_SET(x)	DC_SETBIT(sc, DC_SIO, (x))
336 #define SIO_CLR(x)	DC_CLRBIT(sc, DC_SIO, (x))
337 
338 #define IS_MPSAFE 	0
339 
340 static void
341 dc_delay(struct dc_softc *sc)
342 {
343 	int idx;
344 
345 	for (idx = (300 / 33) + 1; idx > 0; idx--)
346 		CSR_READ_4(sc, DC_BUSCTL);
347 }
348 
349 static void
350 dc_eeprom_width(struct dc_softc *sc)
351 {
352 	int i;
353 
354 	/* Force EEPROM to idle state. */
355 	dc_eeprom_idle(sc);
356 
357 	/* Enter EEPROM access mode. */
358 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
359 	dc_delay(sc);
360 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
361 	dc_delay(sc);
362 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
363 	dc_delay(sc);
364 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
365 	dc_delay(sc);
366 
367 	for (i = 3; i--;) {
368 		if (6 & (1 << i))
369 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
370 		else
371 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
372 		dc_delay(sc);
373 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
374 		dc_delay(sc);
375 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
376 		dc_delay(sc);
377 	}
378 
379 	for (i = 1; i <= 12; i++) {
380 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
381 		dc_delay(sc);
382 		if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) {
383 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
384 			dc_delay(sc);
385 			break;
386 		}
387 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
388 		dc_delay(sc);
389 	}
390 
391 	/* Turn off EEPROM access mode. */
392 	dc_eeprom_idle(sc);
393 
394 	if (i < 4 || i > 12)
395 		sc->dc_romwidth = 6;
396 	else
397 		sc->dc_romwidth = i;
398 
399 	/* Enter EEPROM access mode. */
400 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
401 	dc_delay(sc);
402 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
403 	dc_delay(sc);
404 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
405 	dc_delay(sc);
406 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
407 	dc_delay(sc);
408 
409 	/* Turn off EEPROM access mode. */
410 	dc_eeprom_idle(sc);
411 }
412 
413 static void
414 dc_eeprom_idle(struct dc_softc *sc)
415 {
416 	int i;
417 
418 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
419 	dc_delay(sc);
420 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
421 	dc_delay(sc);
422 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
423 	dc_delay(sc);
424 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
425 	dc_delay(sc);
426 
427 	for (i = 0; i < 25; i++) {
428 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
429 		dc_delay(sc);
430 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
431 		dc_delay(sc);
432 	}
433 
434 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
435 	dc_delay(sc);
436 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
437 	dc_delay(sc);
438 	CSR_WRITE_4(sc, DC_SIO, 0x00000000);
439 }
440 
441 /*
442  * Send a read command and address to the EEPROM, check for ACK.
443  */
444 static void
445 dc_eeprom_putbyte(struct dc_softc *sc, int addr)
446 {
447 	int d, i;
448 
449 	d = DC_EECMD_READ >> 6;
450 	for (i = 3; i--; ) {
451 		if (d & (1 << i))
452 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
453 		else
454 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
455 		dc_delay(sc);
456 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
457 		dc_delay(sc);
458 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
459 		dc_delay(sc);
460 	}
461 
462 	/*
463 	 * Feed in each bit and strobe the clock.
464 	 */
465 	for (i = sc->dc_romwidth; i--;) {
466 		if (addr & (1 << i)) {
467 			SIO_SET(DC_SIO_EE_DATAIN);
468 		} else {
469 			SIO_CLR(DC_SIO_EE_DATAIN);
470 		}
471 		dc_delay(sc);
472 		SIO_SET(DC_SIO_EE_CLK);
473 		dc_delay(sc);
474 		SIO_CLR(DC_SIO_EE_CLK);
475 		dc_delay(sc);
476 	}
477 }
478 
479 /*
480  * Read a word of data stored in the EEPROM at address 'addr.'
481  * The PNIC 82c168/82c169 has its own non-standard way to read
482  * the EEPROM.
483  */
484 static void
485 dc_eeprom_getword_pnic(struct dc_softc *sc, int addr, u_int16_t *dest)
486 {
487 	int i;
488 	u_int32_t r;
489 
490 	CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ | addr);
491 
492 	for (i = 0; i < DC_TIMEOUT; i++) {
493 		DELAY(1);
494 		r = CSR_READ_4(sc, DC_SIO);
495 		if (!(r & DC_PN_SIOCTL_BUSY)) {
496 			*dest = (u_int16_t)(r & 0xFFFF);
497 			return;
498 		}
499 	}
500 }
501 
502 /*
503  * Read a word of data stored in the EEPROM at address 'addr.'
504  * The Xircom X3201 has its own non-standard way to read
505  * the EEPROM, too.
506  */
507 static void
508 dc_eeprom_getword_xircom(struct dc_softc *sc, int addr, u_int16_t *dest)
509 {
510 
511 	SIO_SET(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
512 
513 	addr *= 2;
514 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
515 	*dest = (u_int16_t)CSR_READ_4(sc, DC_SIO) & 0xff;
516 	addr += 1;
517 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
518 	*dest |= ((u_int16_t)CSR_READ_4(sc, DC_SIO) & 0xff) << 8;
519 
520 	SIO_CLR(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
521 }
522 
523 /*
524  * Read a word of data stored in the EEPROM at address 'addr.'
525  */
526 static void
527 dc_eeprom_getword(struct dc_softc *sc, int addr, u_int16_t *dest)
528 {
529 	int i;
530 	u_int16_t word = 0;
531 
532 	/* Force EEPROM to idle state. */
533 	dc_eeprom_idle(sc);
534 
535 	/* Enter EEPROM access mode. */
536 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
537 	dc_delay(sc);
538 	DC_SETBIT(sc, DC_SIO,  DC_SIO_ROMCTL_READ);
539 	dc_delay(sc);
540 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
541 	dc_delay(sc);
542 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
543 	dc_delay(sc);
544 
545 	/*
546 	 * Send address of word we want to read.
547 	 */
548 	dc_eeprom_putbyte(sc, addr);
549 
550 	/*
551 	 * Start reading bits from EEPROM.
552 	 */
553 	for (i = 0x8000; i; i >>= 1) {
554 		SIO_SET(DC_SIO_EE_CLK);
555 		dc_delay(sc);
556 		if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
557 			word |= i;
558 		dc_delay(sc);
559 		SIO_CLR(DC_SIO_EE_CLK);
560 		dc_delay(sc);
561 	}
562 
563 	/* Turn off EEPROM access mode. */
564 	dc_eeprom_idle(sc);
565 
566 	*dest = word;
567 }
568 
569 /*
570  * Read a sequence of words from the EEPROM.
571  */
572 static void
573 dc_read_eeprom(struct dc_softc *sc, caddr_t dest, int off, int cnt, int swap)
574 {
575 	int i;
576 	u_int16_t word = 0, *ptr;
577 
578 	for (i = 0; i < cnt; i++) {
579 		if (DC_IS_PNIC(sc))
580 			dc_eeprom_getword_pnic(sc, off + i, &word);
581 		else if (DC_IS_XIRCOM(sc))
582 			dc_eeprom_getword_xircom(sc, off + i, &word);
583 		else
584 			dc_eeprom_getword(sc, off + i, &word);
585 		ptr = (u_int16_t *)(dest + (i * 2));
586 		if (swap)
587 			*ptr = ntohs(word);
588 		else
589 			*ptr = word;
590 	}
591 }
592 
593 /*
594  * The following two routines are taken from the Macronix 98713
595  * Application Notes pp.19-21.
596  */
597 /*
598  * Write a bit to the MII bus.
599  */
600 static void
601 dc_mii_writebit(struct dc_softc *sc, int bit)
602 {
603 
604 	if (bit)
605 		CSR_WRITE_4(sc, DC_SIO,
606 		    DC_SIO_ROMCTL_WRITE | DC_SIO_MII_DATAOUT);
607 	else
608 		CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
609 
610 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
611 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
612 }
613 
614 /*
615  * Read a bit from the MII bus.
616  */
617 static int
618 dc_mii_readbit(struct dc_softc *sc)
619 {
620 
621 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_READ | DC_SIO_MII_DIR);
622 	CSR_READ_4(sc, DC_SIO);
623 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
624 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
625 	if (CSR_READ_4(sc, DC_SIO) & DC_SIO_MII_DATAIN)
626 		return (1);
627 
628 	return (0);
629 }
630 
631 /*
632  * Sync the PHYs by setting data bit and strobing the clock 32 times.
633  */
634 static void
635 dc_mii_sync(struct dc_softc *sc)
636 {
637 	int i;
638 
639 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
640 
641 	for (i = 0; i < 32; i++)
642 		dc_mii_writebit(sc, 1);
643 }
644 
645 /*
646  * Clock a series of bits through the MII.
647  */
648 static void
649 dc_mii_send(struct dc_softc *sc, u_int32_t bits, int cnt)
650 {
651 	int i;
652 
653 	for (i = (0x1 << (cnt - 1)); i; i >>= 1)
654 		dc_mii_writebit(sc, bits & i);
655 }
656 
657 /*
658  * Read an PHY register through the MII.
659  */
660 static int
661 dc_mii_readreg(struct dc_softc *sc, struct dc_mii_frame *frame)
662 {
663 	int i, ack;
664 
665 	DC_LOCK(sc);
666 
667 	/*
668 	 * Set up frame for RX.
669 	 */
670 	frame->mii_stdelim = DC_MII_STARTDELIM;
671 	frame->mii_opcode = DC_MII_READOP;
672 	frame->mii_turnaround = 0;
673 	frame->mii_data = 0;
674 
675 	/*
676 	 * Sync the PHYs.
677 	 */
678 	dc_mii_sync(sc);
679 
680 	/*
681 	 * Send command/address info.
682 	 */
683 	dc_mii_send(sc, frame->mii_stdelim, 2);
684 	dc_mii_send(sc, frame->mii_opcode, 2);
685 	dc_mii_send(sc, frame->mii_phyaddr, 5);
686 	dc_mii_send(sc, frame->mii_regaddr, 5);
687 
688 #ifdef notdef
689 	/* Idle bit */
690 	dc_mii_writebit(sc, 1);
691 	dc_mii_writebit(sc, 0);
692 #endif
693 
694 	/* Check for ack. */
695 	ack = dc_mii_readbit(sc);
696 
697 	/*
698 	 * Now try reading data bits. If the ack failed, we still
699 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
700 	 */
701 	if (ack) {
702 		for (i = 0; i < 16; i++)
703 			dc_mii_readbit(sc);
704 		goto fail;
705 	}
706 
707 	for (i = 0x8000; i; i >>= 1) {
708 		if (!ack) {
709 			if (dc_mii_readbit(sc))
710 				frame->mii_data |= i;
711 		}
712 	}
713 
714 fail:
715 
716 	dc_mii_writebit(sc, 0);
717 	dc_mii_writebit(sc, 0);
718 
719 	DC_UNLOCK(sc);
720 
721 	if (ack)
722 		return (1);
723 	return (0);
724 }
725 
726 /*
727  * Write to a PHY register through the MII.
728  */
729 static int
730 dc_mii_writereg(struct dc_softc *sc, struct dc_mii_frame *frame)
731 {
732 
733 	DC_LOCK(sc);
734 	/*
735 	 * Set up frame for TX.
736 	 */
737 
738 	frame->mii_stdelim = DC_MII_STARTDELIM;
739 	frame->mii_opcode = DC_MII_WRITEOP;
740 	frame->mii_turnaround = DC_MII_TURNAROUND;
741 
742 	/*
743 	 * Sync the PHYs.
744 	 */
745 	dc_mii_sync(sc);
746 
747 	dc_mii_send(sc, frame->mii_stdelim, 2);
748 	dc_mii_send(sc, frame->mii_opcode, 2);
749 	dc_mii_send(sc, frame->mii_phyaddr, 5);
750 	dc_mii_send(sc, frame->mii_regaddr, 5);
751 	dc_mii_send(sc, frame->mii_turnaround, 2);
752 	dc_mii_send(sc, frame->mii_data, 16);
753 
754 	/* Idle bit. */
755 	dc_mii_writebit(sc, 0);
756 	dc_mii_writebit(sc, 0);
757 
758 	DC_UNLOCK(sc);
759 
760 	return (0);
761 }
762 
763 static int
764 dc_miibus_readreg(device_t dev, int phy, int reg)
765 {
766 	struct dc_mii_frame frame;
767 	struct dc_softc	 *sc;
768 	int i, rval, phy_reg = 0;
769 
770 	sc = device_get_softc(dev);
771 	bzero(&frame, sizeof(frame));
772 
773 	/*
774 	 * Note: both the AL981 and AN985 have internal PHYs,
775 	 * however the AL981 provides direct access to the PHY
776 	 * registers while the AN985 uses a serial MII interface.
777 	 * The AN985's MII interface is also buggy in that you
778 	 * can read from any MII address (0 to 31), but only address 1
779 	 * behaves normally. To deal with both cases, we pretend
780 	 * that the PHY is at MII address 1.
781 	 */
782 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
783 		return (0);
784 
785 	/*
786 	 * Note: the ukphy probes of the RS7112 report a PHY at
787 	 * MII address 0 (possibly HomePNA?) and 1 (ethernet)
788 	 * so we only respond to correct one.
789 	 */
790 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
791 		return (0);
792 
793 	if (sc->dc_pmode != DC_PMODE_MII) {
794 		if (phy == (MII_NPHY - 1)) {
795 			switch (reg) {
796 			case MII_BMSR:
797 			/*
798 			 * Fake something to make the probe
799 			 * code think there's a PHY here.
800 			 */
801 				return (BMSR_MEDIAMASK);
802 				break;
803 			case MII_PHYIDR1:
804 				if (DC_IS_PNIC(sc))
805 					return (DC_VENDORID_LO);
806 				return (DC_VENDORID_DEC);
807 				break;
808 			case MII_PHYIDR2:
809 				if (DC_IS_PNIC(sc))
810 					return (DC_DEVICEID_82C168);
811 				return (DC_DEVICEID_21143);
812 				break;
813 			default:
814 				return (0);
815 				break;
816 			}
817 		} else
818 			return (0);
819 	}
820 
821 	if (DC_IS_PNIC(sc)) {
822 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
823 		    (phy << 23) | (reg << 18));
824 		for (i = 0; i < DC_TIMEOUT; i++) {
825 			DELAY(1);
826 			rval = CSR_READ_4(sc, DC_PN_MII);
827 			if (!(rval & DC_PN_MII_BUSY)) {
828 				rval &= 0xFFFF;
829 				return (rval == 0xFFFF ? 0 : rval);
830 			}
831 		}
832 		return (0);
833 	}
834 
835 	if (DC_IS_COMET(sc)) {
836 		switch (reg) {
837 		case MII_BMCR:
838 			phy_reg = DC_AL_BMCR;
839 			break;
840 		case MII_BMSR:
841 			phy_reg = DC_AL_BMSR;
842 			break;
843 		case MII_PHYIDR1:
844 			phy_reg = DC_AL_VENID;
845 			break;
846 		case MII_PHYIDR2:
847 			phy_reg = DC_AL_DEVID;
848 			break;
849 		case MII_ANAR:
850 			phy_reg = DC_AL_ANAR;
851 			break;
852 		case MII_ANLPAR:
853 			phy_reg = DC_AL_LPAR;
854 			break;
855 		case MII_ANER:
856 			phy_reg = DC_AL_ANER;
857 			break;
858 		default:
859 			printf("dc%d: phy_read: bad phy register %x\n",
860 			    sc->dc_unit, reg);
861 			return (0);
862 			break;
863 		}
864 
865 		rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
866 
867 		if (rval == 0xFFFF)
868 			return (0);
869 		return (rval);
870 	}
871 
872 	frame.mii_phyaddr = phy;
873 	frame.mii_regaddr = reg;
874 	if (sc->dc_type == DC_TYPE_98713) {
875 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
876 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
877 	}
878 	dc_mii_readreg(sc, &frame);
879 	if (sc->dc_type == DC_TYPE_98713)
880 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
881 
882 	return (frame.mii_data);
883 }
884 
885 static int
886 dc_miibus_writereg(device_t dev, int phy, int reg, int data)
887 {
888 	struct dc_softc *sc;
889 	struct dc_mii_frame frame;
890 	int i, phy_reg = 0;
891 
892 	sc = device_get_softc(dev);
893 	bzero(&frame, sizeof(frame));
894 
895 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
896 		return (0);
897 
898 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
899 		return (0);
900 
901 	if (DC_IS_PNIC(sc)) {
902 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
903 		    (phy << 23) | (reg << 10) | data);
904 		for (i = 0; i < DC_TIMEOUT; i++) {
905 			if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
906 				break;
907 		}
908 		return (0);
909 	}
910 
911 	if (DC_IS_COMET(sc)) {
912 		switch (reg) {
913 		case MII_BMCR:
914 			phy_reg = DC_AL_BMCR;
915 			break;
916 		case MII_BMSR:
917 			phy_reg = DC_AL_BMSR;
918 			break;
919 		case MII_PHYIDR1:
920 			phy_reg = DC_AL_VENID;
921 			break;
922 		case MII_PHYIDR2:
923 			phy_reg = DC_AL_DEVID;
924 			break;
925 		case MII_ANAR:
926 			phy_reg = DC_AL_ANAR;
927 			break;
928 		case MII_ANLPAR:
929 			phy_reg = DC_AL_LPAR;
930 			break;
931 		case MII_ANER:
932 			phy_reg = DC_AL_ANER;
933 			break;
934 		default:
935 			printf("dc%d: phy_write: bad phy register %x\n",
936 			    sc->dc_unit, reg);
937 			return (0);
938 			break;
939 		}
940 
941 		CSR_WRITE_4(sc, phy_reg, data);
942 		return (0);
943 	}
944 
945 	frame.mii_phyaddr = phy;
946 	frame.mii_regaddr = reg;
947 	frame.mii_data = data;
948 
949 	if (sc->dc_type == DC_TYPE_98713) {
950 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
951 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
952 	}
953 	dc_mii_writereg(sc, &frame);
954 	if (sc->dc_type == DC_TYPE_98713)
955 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
956 
957 	return (0);
958 }
959 
960 static void
961 dc_miibus_statchg(device_t dev)
962 {
963 	struct dc_softc *sc;
964 	struct mii_data *mii;
965 	struct ifmedia *ifm;
966 
967 	sc = device_get_softc(dev);
968 	if (DC_IS_ADMTEK(sc))
969 		return;
970 
971 	mii = device_get_softc(sc->dc_miibus);
972 	ifm = &mii->mii_media;
973 	if (DC_IS_DAVICOM(sc) &&
974 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
975 		dc_setcfg(sc, ifm->ifm_media);
976 		sc->dc_if_media = ifm->ifm_media;
977 	} else {
978 		dc_setcfg(sc, mii->mii_media_active);
979 		sc->dc_if_media = mii->mii_media_active;
980 	}
981 }
982 
983 /*
984  * Special support for DM9102A cards with HomePNA PHYs. Note:
985  * with the Davicom DM9102A/DM9801 eval board that I have, it seems
986  * to be impossible to talk to the management interface of the DM9801
987  * PHY (its MDIO pin is not connected to anything). Consequently,
988  * the driver has to just 'know' about the additional mode and deal
989  * with it itself. *sigh*
990  */
991 static void
992 dc_miibus_mediainit(device_t dev)
993 {
994 	struct dc_softc *sc;
995 	struct mii_data *mii;
996 	struct ifmedia *ifm;
997 	int rev;
998 
999 	rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF;
1000 
1001 	sc = device_get_softc(dev);
1002 	mii = device_get_softc(sc->dc_miibus);
1003 	ifm = &mii->mii_media;
1004 
1005 	if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A)
1006 		ifmedia_add(ifm, IFM_ETHER | IFM_HPNA_1, 0, NULL);
1007 }
1008 
1009 #define DC_POLY		0xEDB88320
1010 #define DC_BITS_512	9
1011 #define DC_BITS_128	7
1012 #define DC_BITS_64	6
1013 
1014 static u_int32_t
1015 dc_crc_le(struct dc_softc *sc, caddr_t addr)
1016 {
1017 	u_int32_t idx, bit, data, crc;
1018 
1019 	/* Compute CRC for the address value. */
1020 	crc = 0xFFFFFFFF; /* initial value */
1021 
1022 	for (idx = 0; idx < 6; idx++) {
1023 		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1)
1024 			crc = (crc >> 1) ^ (((crc ^ data) & 1) ? DC_POLY : 0);
1025 	}
1026 
1027 	/*
1028 	 * The hash table on the PNIC II and the MX98715AEC-C/D/E
1029 	 * chips is only 128 bits wide.
1030 	 */
1031 	if (sc->dc_flags & DC_128BIT_HASH)
1032 		return (crc & ((1 << DC_BITS_128) - 1));
1033 
1034 	/* The hash table on the MX98715BEC is only 64 bits wide. */
1035 	if (sc->dc_flags & DC_64BIT_HASH)
1036 		return (crc & ((1 << DC_BITS_64) - 1));
1037 
1038 	/* Xircom's hash filtering table is different (read: weird) */
1039 	/* Xircom uses the LEAST significant bits */
1040 	if (DC_IS_XIRCOM(sc)) {
1041 		if ((crc & 0x180) == 0x180)
1042 			return ((crc & 0x0F) + (crc & 0x70) * 3 + (14 << 4));
1043 		else
1044 			return ((crc & 0x1F) + ((crc >> 1) & 0xF0) * 3 +
1045 			    (12 << 4));
1046 	}
1047 
1048 	return (crc & ((1 << DC_BITS_512) - 1));
1049 }
1050 
1051 /*
1052  * Calculate CRC of a multicast group address, return the lower 6 bits.
1053  */
1054 static u_int32_t
1055 dc_crc_be(caddr_t addr)
1056 {
1057 	u_int32_t crc, carry;
1058 	int i, j;
1059 	u_int8_t c;
1060 
1061 	/* Compute CRC for the address value. */
1062 	crc = 0xFFFFFFFF; /* initial value */
1063 
1064 	for (i = 0; i < 6; i++) {
1065 		c = *(addr + i);
1066 		for (j = 0; j < 8; j++) {
1067 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
1068 			crc <<= 1;
1069 			c >>= 1;
1070 			if (carry)
1071 				crc = (crc ^ 0x04c11db6) | carry;
1072 		}
1073 	}
1074 
1075 	/* Return the filter bit position. */
1076 	return ((crc >> 26) & 0x0000003F);
1077 }
1078 
1079 /*
1080  * 21143-style RX filter setup routine. Filter programming is done by
1081  * downloading a special setup frame into the TX engine. 21143, Macronix,
1082  * PNIC, PNIC II and Davicom chips are programmed this way.
1083  *
1084  * We always program the chip using 'hash perfect' mode, i.e. one perfect
1085  * address (our node address) and a 512-bit hash filter for multicast
1086  * frames. We also sneak the broadcast address into the hash filter since
1087  * we need that too.
1088  */
1089 static void
1090 dc_setfilt_21143(struct dc_softc *sc)
1091 {
1092 	struct dc_desc *sframe;
1093 	u_int32_t h, *sp;
1094 	struct ifmultiaddr *ifma;
1095 	struct ifnet *ifp;
1096 	int i;
1097 
1098 	ifp = &sc->arpcom.ac_if;
1099 
1100 	i = sc->dc_cdata.dc_tx_prod;
1101 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1102 	sc->dc_cdata.dc_tx_cnt++;
1103 	sframe = &sc->dc_ldata->dc_tx_list[i];
1104 	sp = sc->dc_cdata.dc_sbuf;
1105 	bzero(sp, DC_SFRAME_LEN);
1106 
1107 	sframe->dc_data = sc->dc_saddr;
1108 	sframe->dc_ctl = DC_SFRAME_LEN | DC_TXCTL_SETUP | DC_TXCTL_TLINK |
1109 	    DC_FILTER_HASHPERF | DC_TXCTL_FINT;
1110 
1111 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
1112 
1113 	/* If we want promiscuous mode, set the allframes bit. */
1114 	if (ifp->if_flags & IFF_PROMISC)
1115 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1116 	else
1117 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1118 
1119 	if (ifp->if_flags & IFF_ALLMULTI)
1120 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1121 	else
1122 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1123 
1124 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1125 		if (ifma->ifma_addr->sa_family != AF_LINK)
1126 			continue;
1127 		h = dc_crc_le(sc,
1128 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1129 		sp[h >> 4] |= 1 << (h & 0xF);
1130 	}
1131 
1132 	if (ifp->if_flags & IFF_BROADCAST) {
1133 		h = dc_crc_le(sc, (caddr_t)ifp->if_broadcastaddr);
1134 		sp[h >> 4] |= 1 << (h & 0xF);
1135 	}
1136 
1137 	/* Set our MAC address */
1138 	sp[39] = ((u_int16_t *)sc->arpcom.ac_enaddr)[0];
1139 	sp[40] = ((u_int16_t *)sc->arpcom.ac_enaddr)[1];
1140 	sp[41] = ((u_int16_t *)sc->arpcom.ac_enaddr)[2];
1141 
1142 	sframe->dc_status = DC_TXSTAT_OWN;
1143 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1144 
1145 	/*
1146 	 * The PNIC takes an exceedingly long time to process its
1147 	 * setup frame; wait 10ms after posting the setup frame
1148 	 * before proceeding, just so it has time to swallow its
1149 	 * medicine.
1150 	 */
1151 	DELAY(10000);
1152 
1153 	ifp->if_timer = 5;
1154 }
1155 
1156 static void
1157 dc_setfilt_admtek(struct dc_softc *sc)
1158 {
1159 	struct ifnet *ifp;
1160 	struct ifmultiaddr *ifma;
1161 	int h = 0;
1162 	u_int32_t hashes[2] = { 0, 0 };
1163 
1164 	ifp = &sc->arpcom.ac_if;
1165 
1166 	/* Init our MAC address. */
1167 	CSR_WRITE_4(sc, DC_AL_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1168 	CSR_WRITE_4(sc, DC_AL_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1169 
1170 	/* If we want promiscuous mode, set the allframes bit. */
1171 	if (ifp->if_flags & IFF_PROMISC)
1172 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1173 	else
1174 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1175 
1176 	if (ifp->if_flags & IFF_ALLMULTI)
1177 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1178 	else
1179 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1180 
1181 	/* First, zot all the existing hash bits. */
1182 	CSR_WRITE_4(sc, DC_AL_MAR0, 0);
1183 	CSR_WRITE_4(sc, DC_AL_MAR1, 0);
1184 
1185 	/*
1186 	 * If we're already in promisc or allmulti mode, we
1187 	 * don't have to bother programming the multicast filter.
1188 	 */
1189 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
1190 		return;
1191 
1192 	/* Now program new ones. */
1193 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1194 		if (ifma->ifma_addr->sa_family != AF_LINK)
1195 			continue;
1196 		if (DC_IS_CENTAUR(sc))
1197 			h = dc_crc_le(sc, LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1198 		else
1199 			h = dc_crc_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1200 		if (h < 32)
1201 			hashes[0] |= (1 << h);
1202 		else
1203 			hashes[1] |= (1 << (h - 32));
1204 	}
1205 
1206 	CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]);
1207 	CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]);
1208 }
1209 
1210 static void
1211 dc_setfilt_asix(struct dc_softc *sc)
1212 {
1213 	struct ifnet *ifp;
1214 	struct ifmultiaddr *ifma;
1215 	int h = 0;
1216 	u_int32_t hashes[2] = { 0, 0 };
1217 
1218 	ifp = &sc->arpcom.ac_if;
1219 
1220 	/* Init our MAC address */
1221 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
1222 	CSR_WRITE_4(sc, DC_AX_FILTDATA,
1223 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1224 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
1225 	CSR_WRITE_4(sc, DC_AX_FILTDATA,
1226 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1227 
1228 	/* If we want promiscuous mode, set the allframes bit. */
1229 	if (ifp->if_flags & IFF_PROMISC)
1230 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1231 	else
1232 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1233 
1234 	if (ifp->if_flags & IFF_ALLMULTI)
1235 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1236 	else
1237 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1238 
1239 	/*
1240 	 * The ASIX chip has a special bit to enable reception
1241 	 * of broadcast frames.
1242 	 */
1243 	if (ifp->if_flags & IFF_BROADCAST)
1244 		DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1245 	else
1246 		DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1247 
1248 	/* first, zot all the existing hash bits */
1249 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1250 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1251 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1252 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1253 
1254 	/*
1255 	 * If we're already in promisc or allmulti mode, we
1256 	 * don't have to bother programming the multicast filter.
1257 	 */
1258 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
1259 		return;
1260 
1261 	/* now program new ones */
1262 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1263 		if (ifma->ifma_addr->sa_family != AF_LINK)
1264 			continue;
1265 		h = dc_crc_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1266 		if (h < 32)
1267 			hashes[0] |= (1 << h);
1268 		else
1269 			hashes[1] |= (1 << (h - 32));
1270 	}
1271 
1272 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1273 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
1274 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1275 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
1276 }
1277 
1278 static void
1279 dc_setfilt_xircom(struct dc_softc *sc)
1280 {
1281 	struct ifnet *ifp;
1282 	struct ifmultiaddr *ifma;
1283 	struct dc_desc *sframe;
1284 	u_int32_t h, *sp;
1285 	int i;
1286 
1287 	ifp = &sc->arpcom.ac_if;
1288 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1289 
1290 	i = sc->dc_cdata.dc_tx_prod;
1291 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1292 	sc->dc_cdata.dc_tx_cnt++;
1293 	sframe = &sc->dc_ldata->dc_tx_list[i];
1294 	sp = sc->dc_cdata.dc_sbuf;
1295 	bzero(sp, DC_SFRAME_LEN);
1296 
1297 	sframe->dc_data = sc->dc_saddr;
1298 	sframe->dc_ctl = DC_SFRAME_LEN | DC_TXCTL_SETUP | DC_TXCTL_TLINK |
1299 	    DC_FILTER_HASHPERF | DC_TXCTL_FINT;
1300 
1301 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
1302 
1303 	/* If we want promiscuous mode, set the allframes bit. */
1304 	if (ifp->if_flags & IFF_PROMISC)
1305 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1306 	else
1307 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1308 
1309 	if (ifp->if_flags & IFF_ALLMULTI)
1310 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1311 	else
1312 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1313 
1314 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1315 		if (ifma->ifma_addr->sa_family != AF_LINK)
1316 			continue;
1317 		h = dc_crc_le(sc,
1318 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1319 		sp[h >> 4] |= 1 << (h & 0xF);
1320 	}
1321 
1322 	if (ifp->if_flags & IFF_BROADCAST) {
1323 		h = dc_crc_le(sc, (caddr_t)ifp->if_broadcastaddr);
1324 		sp[h >> 4] |= 1 << (h & 0xF);
1325 	}
1326 
1327 	/* Set our MAC address */
1328 	sp[0] = ((u_int16_t *)sc->arpcom.ac_enaddr)[0];
1329 	sp[1] = ((u_int16_t *)sc->arpcom.ac_enaddr)[1];
1330 	sp[2] = ((u_int16_t *)sc->arpcom.ac_enaddr)[2];
1331 
1332 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
1333 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
1334 	ifp->if_flags |= IFF_RUNNING;
1335 	sframe->dc_status = DC_TXSTAT_OWN;
1336 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1337 
1338 	/*
1339 	 * Wait some time...
1340 	 */
1341 	DELAY(1000);
1342 
1343 	ifp->if_timer = 5;
1344 }
1345 
1346 static void
1347 dc_setfilt(struct dc_softc *sc)
1348 {
1349 
1350 	if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
1351 	    DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc))
1352 		dc_setfilt_21143(sc);
1353 
1354 	if (DC_IS_ASIX(sc))
1355 		dc_setfilt_asix(sc);
1356 
1357 	if (DC_IS_ADMTEK(sc))
1358 		dc_setfilt_admtek(sc);
1359 
1360 	if (DC_IS_XIRCOM(sc))
1361 		dc_setfilt_xircom(sc);
1362 }
1363 
1364 /*
1365  * In order to fiddle with the 'full-duplex' and '100Mbps' bits in
1366  * the netconfig register, we first have to put the transmit and/or
1367  * receive logic in the idle state.
1368  */
1369 static void
1370 dc_setcfg(struct dc_softc *sc, int media)
1371 {
1372 	int i, restart = 0, watchdogreg;
1373 	u_int32_t isr;
1374 
1375 	if (IFM_SUBTYPE(media) == IFM_NONE)
1376 		return;
1377 
1378 	if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON)) {
1379 		restart = 1;
1380 		DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1381 
1382 		for (i = 0; i < DC_TIMEOUT; i++) {
1383 			isr = CSR_READ_4(sc, DC_ISR);
1384 			if (isr & DC_ISR_TX_IDLE &&
1385 			    ((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
1386 			    (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT))
1387 				break;
1388 			DELAY(10);
1389 		}
1390 
1391 		if (i == DC_TIMEOUT)
1392 			printf("dc%d: failed to force tx and "
1393 				"rx to idle state\n", sc->dc_unit);
1394 	}
1395 
1396 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
1397 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1398 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1399 		if (sc->dc_pmode == DC_PMODE_MII) {
1400 			if (DC_IS_INTEL(sc)) {
1401 			/* There's a write enable bit here that reads as 1. */
1402 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1403 				watchdogreg &= ~DC_WDOG_CTLWREN;
1404 				watchdogreg |= DC_WDOG_JABBERDIS;
1405 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1406 			} else {
1407 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1408 			}
1409 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1410 			    DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
1411 			if (sc->dc_type == DC_TYPE_98713)
1412 				DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1413 				    DC_NETCFG_SCRAMBLER));
1414 			if (!DC_IS_DAVICOM(sc))
1415 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1416 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1417 			if (DC_IS_INTEL(sc))
1418 				dc_apply_fixup(sc, IFM_AUTO);
1419 		} else {
1420 			if (DC_IS_PNIC(sc)) {
1421 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
1422 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1423 				DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1424 			}
1425 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1426 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1427 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1428 			if (DC_IS_INTEL(sc))
1429 				dc_apply_fixup(sc,
1430 				    (media & IFM_GMASK) == IFM_FDX ?
1431 				    IFM_100_TX | IFM_FDX : IFM_100_TX);
1432 		}
1433 	}
1434 
1435 	if (IFM_SUBTYPE(media) == IFM_10_T) {
1436 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1437 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1438 		if (sc->dc_pmode == DC_PMODE_MII) {
1439 			/* There's a write enable bit here that reads as 1. */
1440 			if (DC_IS_INTEL(sc)) {
1441 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1442 				watchdogreg &= ~DC_WDOG_CTLWREN;
1443 				watchdogreg |= DC_WDOG_JABBERDIS;
1444 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1445 			} else {
1446 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1447 			}
1448 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1449 			    DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
1450 			if (sc->dc_type == DC_TYPE_98713)
1451 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1452 			if (!DC_IS_DAVICOM(sc))
1453 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1454 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1455 			if (DC_IS_INTEL(sc))
1456 				dc_apply_fixup(sc, IFM_AUTO);
1457 		} else {
1458 			if (DC_IS_PNIC(sc)) {
1459 				DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
1460 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1461 				DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1462 			}
1463 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1464 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1465 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1466 			if (DC_IS_INTEL(sc)) {
1467 				DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET);
1468 				DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1469 				if ((media & IFM_GMASK) == IFM_FDX)
1470 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D);
1471 				else
1472 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F);
1473 				DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1474 				DC_CLRBIT(sc, DC_10BTCTRL,
1475 				    DC_TCTL_AUTONEGENBL);
1476 				dc_apply_fixup(sc,
1477 				    (media & IFM_GMASK) == IFM_FDX ?
1478 				    IFM_10_T | IFM_FDX : IFM_10_T);
1479 				DELAY(20000);
1480 			}
1481 		}
1482 	}
1483 
1484 	/*
1485 	 * If this is a Davicom DM9102A card with a DM9801 HomePNA
1486 	 * PHY and we want HomePNA mode, set the portsel bit to turn
1487 	 * on the external MII port.
1488 	 */
1489 	if (DC_IS_DAVICOM(sc)) {
1490 		if (IFM_SUBTYPE(media) == IFM_HPNA_1) {
1491 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1492 			sc->dc_link = 1;
1493 		} else {
1494 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1495 		}
1496 	}
1497 
1498 	if ((media & IFM_GMASK) == IFM_FDX) {
1499 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1500 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1501 			DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1502 	} else {
1503 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1504 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1505 			DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1506 	}
1507 
1508 	if (restart)
1509 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON | DC_NETCFG_RX_ON);
1510 }
1511 
1512 static void
1513 dc_reset(struct dc_softc *sc)
1514 {
1515 	int i;
1516 
1517 	DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1518 
1519 	for (i = 0; i < DC_TIMEOUT; i++) {
1520 		DELAY(10);
1521 		if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
1522 			break;
1523 	}
1524 
1525 	if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_CONEXANT(sc) ||
1526 	    DC_IS_XIRCOM(sc) || DC_IS_INTEL(sc)) {
1527 		DELAY(10000);
1528 		DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1529 		i = 0;
1530 	}
1531 
1532 	if (i == DC_TIMEOUT)
1533 		printf("dc%d: reset never completed!\n", sc->dc_unit);
1534 
1535 	/* Wait a little while for the chip to get its brains in order. */
1536 	DELAY(1000);
1537 
1538 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
1539 	CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
1540 	CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
1541 
1542 	/*
1543 	 * Bring the SIA out of reset. In some cases, it looks
1544 	 * like failing to unreset the SIA soon enough gets it
1545 	 * into a state where it will never come out of reset
1546 	 * until we reset the whole chip again.
1547 	 */
1548 	if (DC_IS_INTEL(sc)) {
1549 		DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1550 		CSR_WRITE_4(sc, DC_10BTCTRL, 0);
1551 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
1552 	}
1553 }
1554 
1555 static struct dc_type *
1556 dc_devtype(device_t dev)
1557 {
1558 	struct dc_type *t;
1559 	u_int32_t rev;
1560 
1561 	t = dc_devs;
1562 
1563 	while (t->dc_name != NULL) {
1564 		if ((pci_get_vendor(dev) == t->dc_vid) &&
1565 		    (pci_get_device(dev) == t->dc_did)) {
1566 			/* Check the PCI revision */
1567 			rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF;
1568 			if (t->dc_did == DC_DEVICEID_98713 &&
1569 			    rev >= DC_REVISION_98713A)
1570 				t++;
1571 			if (t->dc_did == DC_DEVICEID_98713_CP &&
1572 			    rev >= DC_REVISION_98713A)
1573 				t++;
1574 			if (t->dc_did == DC_DEVICEID_987x5 &&
1575 			    rev >= DC_REVISION_98715AEC_C)
1576 				t++;
1577 			if (t->dc_did == DC_DEVICEID_987x5 &&
1578 			    rev >= DC_REVISION_98725)
1579 				t++;
1580 			if (t->dc_did == DC_DEVICEID_AX88140A &&
1581 			    rev >= DC_REVISION_88141)
1582 				t++;
1583 			if (t->dc_did == DC_DEVICEID_82C168 &&
1584 			    rev >= DC_REVISION_82C169)
1585 				t++;
1586 			if (t->dc_did == DC_DEVICEID_DM9102 &&
1587 			    rev >= DC_REVISION_DM9102A)
1588 				t++;
1589 			return (t);
1590 		}
1591 		t++;
1592 	}
1593 
1594 	return (NULL);
1595 }
1596 
1597 /*
1598  * Probe for a 21143 or clone chip. Check the PCI vendor and device
1599  * IDs against our list and return a device name if we find a match.
1600  * We do a little bit of extra work to identify the exact type of
1601  * chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
1602  * but different revision IDs. The same is true for 98715/98715A
1603  * chips and the 98725, as well as the ASIX and ADMtek chips. In some
1604  * cases, the exact chip revision affects driver behavior.
1605  */
1606 static int
1607 dc_probe(device_t dev)
1608 {
1609 	struct dc_type *t;
1610 
1611 	t = dc_devtype(dev);
1612 
1613 	if (t != NULL) {
1614 		device_set_desc(dev, t->dc_name);
1615 		return (0);
1616 	}
1617 
1618 	return (ENXIO);
1619 }
1620 
1621 #ifndef BURN_BRIDGES
1622 static void
1623 dc_acpi(device_t dev)
1624 {
1625 	int unit;
1626 	u_int32_t iobase, membase, irq;
1627 
1628 	unit = device_get_unit(dev);
1629 
1630 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1631 		/* Save important PCI config data. */
1632 		iobase = pci_read_config(dev, DC_PCI_CFBIO, 4);
1633 		membase = pci_read_config(dev, DC_PCI_CFBMA, 4);
1634 		irq = pci_read_config(dev, DC_PCI_CFIT, 4);
1635 
1636 		/* Reset the power state. */
1637 		printf("dc%d: chip is in D%d power mode "
1638 		    "-- setting to D0\n", unit,
1639 		    pci_get_powerstate(dev));
1640 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1641 
1642 		/* Restore PCI config data. */
1643 		pci_write_config(dev, DC_PCI_CFBIO, iobase, 4);
1644 		pci_write_config(dev, DC_PCI_CFBMA, membase, 4);
1645 		pci_write_config(dev, DC_PCI_CFIT, irq, 4);
1646 	}
1647 }
1648 #endif
1649 
1650 static void
1651 dc_apply_fixup(struct dc_softc *sc, int media)
1652 {
1653 	struct dc_mediainfo *m;
1654 	u_int8_t *p;
1655 	int i;
1656 	u_int32_t reg;
1657 
1658 	m = sc->dc_mi;
1659 
1660 	while (m != NULL) {
1661 		if (m->dc_media == media)
1662 			break;
1663 		m = m->dc_next;
1664 	}
1665 
1666 	if (m == NULL)
1667 		return;
1668 
1669 	for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) {
1670 		reg = (p[0] | (p[1] << 8)) << 16;
1671 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1672 	}
1673 
1674 	for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) {
1675 		reg = (p[0] | (p[1] << 8)) << 16;
1676 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1677 	}
1678 }
1679 
1680 static void
1681 dc_decode_leaf_sia(struct dc_softc *sc, struct dc_eblock_sia *l)
1682 {
1683 	struct dc_mediainfo *m;
1684 
1685 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1686 	if (l->dc_sia_code == DC_SIA_CODE_10BT)
1687 		m->dc_media = IFM_10_T;
1688 
1689 	if (l->dc_sia_code == DC_SIA_CODE_10BT_FDX)
1690 		m->dc_media = IFM_10_T | IFM_FDX;
1691 
1692 	if (l->dc_sia_code == DC_SIA_CODE_10B2)
1693 		m->dc_media = IFM_10_2;
1694 
1695 	if (l->dc_sia_code == DC_SIA_CODE_10B5)
1696 		m->dc_media = IFM_10_5;
1697 
1698 	m->dc_gp_len = 2;
1699 	m->dc_gp_ptr = (u_int8_t *)&l->dc_sia_gpio_ctl;
1700 
1701 	m->dc_next = sc->dc_mi;
1702 	sc->dc_mi = m;
1703 
1704 	sc->dc_pmode = DC_PMODE_SIA;
1705 }
1706 
1707 static void
1708 dc_decode_leaf_sym(struct dc_softc *sc, struct dc_eblock_sym *l)
1709 {
1710 	struct dc_mediainfo *m;
1711 
1712 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1713 	if (l->dc_sym_code == DC_SYM_CODE_100BT)
1714 		m->dc_media = IFM_100_TX;
1715 
1716 	if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX)
1717 		m->dc_media = IFM_100_TX | IFM_FDX;
1718 
1719 	m->dc_gp_len = 2;
1720 	m->dc_gp_ptr = (u_int8_t *)&l->dc_sym_gpio_ctl;
1721 
1722 	m->dc_next = sc->dc_mi;
1723 	sc->dc_mi = m;
1724 
1725 	sc->dc_pmode = DC_PMODE_SYM;
1726 }
1727 
1728 static void
1729 dc_decode_leaf_mii(struct dc_softc *sc, struct dc_eblock_mii *l)
1730 {
1731 	struct dc_mediainfo *m;
1732 	u_int8_t *p;
1733 
1734 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1735 	/* We abuse IFM_AUTO to represent MII. */
1736 	m->dc_media = IFM_AUTO;
1737 	m->dc_gp_len = l->dc_gpr_len;
1738 
1739 	p = (u_int8_t *)l;
1740 	p += sizeof(struct dc_eblock_mii);
1741 	m->dc_gp_ptr = p;
1742 	p += 2 * l->dc_gpr_len;
1743 	m->dc_reset_len = *p;
1744 	p++;
1745 	m->dc_reset_ptr = p;
1746 
1747 	m->dc_next = sc->dc_mi;
1748 	sc->dc_mi = m;
1749 }
1750 
1751 static void
1752 dc_read_srom(struct dc_softc *sc, int bits)
1753 {
1754 	int size;
1755 
1756 	size = 2 << bits;
1757 	sc->dc_srom = malloc(size, M_DEVBUF, M_NOWAIT);
1758 	dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (size / 2), 0);
1759 }
1760 
1761 static void
1762 dc_parse_21143_srom(struct dc_softc *sc)
1763 {
1764 	struct dc_leaf_hdr *lhdr;
1765 	struct dc_eblock_hdr *hdr;
1766 	int have_mii, i, loff;
1767 	char *ptr;
1768 
1769 	have_mii = 0;
1770 	loff = sc->dc_srom[27];
1771 	lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]);
1772 
1773 	ptr = (char *)lhdr;
1774 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1775 	/*
1776 	 * Look if we got a MII media block.
1777 	 */
1778 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1779 		hdr = (struct dc_eblock_hdr *)ptr;
1780 		if (hdr->dc_type == DC_EBLOCK_MII)
1781 		    have_mii++;
1782 
1783 		ptr += (hdr->dc_len & 0x7F);
1784 		ptr++;
1785 	}
1786 
1787 	/*
1788 	 * Do the same thing again. Only use SIA and SYM media
1789 	 * blocks if no MII media block is available.
1790 	 */
1791 	ptr = (char *)lhdr;
1792 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1793 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1794 		hdr = (struct dc_eblock_hdr *)ptr;
1795 		switch (hdr->dc_type) {
1796 		case DC_EBLOCK_MII:
1797 			dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr);
1798 			break;
1799 		case DC_EBLOCK_SIA:
1800 			if (! have_mii)
1801 				dc_decode_leaf_sia(sc,
1802 				    (struct dc_eblock_sia *)hdr);
1803 			break;
1804 		case DC_EBLOCK_SYM:
1805 			if (! have_mii)
1806 				dc_decode_leaf_sym(sc,
1807 				    (struct dc_eblock_sym *)hdr);
1808 			break;
1809 		default:
1810 			/* Don't care. Yet. */
1811 			break;
1812 		}
1813 		ptr += (hdr->dc_len & 0x7F);
1814 		ptr++;
1815 	}
1816 }
1817 
1818 static void
1819 dc_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1820 {
1821 	u_int32_t *paddr;
1822 
1823 	KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
1824 	paddr = arg;
1825 	*paddr = segs->ds_addr;
1826 }
1827 
1828 /*
1829  * Attach the interface. Allocate softc structures, do ifmedia
1830  * setup and ethernet/BPF attach.
1831  */
1832 static int
1833 dc_attach(device_t dev)
1834 {
1835 	int tmp = 0;
1836 	u_char eaddr[ETHER_ADDR_LEN];
1837 	u_int32_t command;
1838 	struct dc_softc *sc;
1839 	struct ifnet *ifp;
1840 	u_int32_t revision;
1841 	int unit, error = 0, rid, mac_offset;
1842 	int i;
1843 	u_int8_t *mac;
1844 
1845 	sc = device_get_softc(dev);
1846 	unit = device_get_unit(dev);
1847 
1848 	mtx_init(&sc->dc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1849 	    MTX_DEF | MTX_RECURSE);
1850 #ifndef BURN_BRIDGES
1851 	/*
1852 	 * Handle power management nonsense.
1853 	 */
1854 	dc_acpi(dev);
1855 #endif
1856 	/*
1857 	 * Map control/status registers.
1858 	 */
1859 	pci_enable_busmaster(dev);
1860 
1861 	rid = DC_RID;
1862 	sc->dc_res = bus_alloc_resource(dev, DC_RES, &rid,
1863 	    0, ~0, 1, RF_ACTIVE);
1864 
1865 	if (sc->dc_res == NULL) {
1866 		printf("dc%d: couldn't map ports/memory\n", unit);
1867 		error = ENXIO;
1868 		goto fail;
1869 	}
1870 
1871 	sc->dc_btag = rman_get_bustag(sc->dc_res);
1872 	sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
1873 
1874 	/* Allocate interrupt. */
1875 	rid = 0;
1876 	sc->dc_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1877 	    RF_SHAREABLE | RF_ACTIVE);
1878 
1879 	if (sc->dc_irq == NULL) {
1880 		printf("dc%d: couldn't map interrupt\n", unit);
1881 		error = ENXIO;
1882 		goto fail;
1883 	}
1884 
1885 	/* Need this info to decide on a chip type. */
1886 	sc->dc_info = dc_devtype(dev);
1887 	revision = pci_read_config(dev, DC_PCI_CFRV, 4) & 0x000000FF;
1888 
1889 	/* Get the eeprom width, but PNIC and XIRCOM have diff eeprom */
1890 	if (sc->dc_info->dc_did != DC_DEVICEID_82C168 &&
1891 	   sc->dc_info->dc_did != DC_DEVICEID_X3201)
1892 		dc_eeprom_width(sc);
1893 
1894 	switch (sc->dc_info->dc_did) {
1895 	case DC_DEVICEID_21143:
1896 		sc->dc_type = DC_TYPE_21143;
1897 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1898 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1899 		/* Save EEPROM contents so we can parse them later. */
1900 		dc_read_srom(sc, sc->dc_romwidth);
1901 		break;
1902 	case DC_DEVICEID_DM9009:
1903 	case DC_DEVICEID_DM9100:
1904 	case DC_DEVICEID_DM9102:
1905 		sc->dc_type = DC_TYPE_DM9102;
1906 		sc->dc_flags |= DC_TX_COALESCE | DC_TX_INTR_ALWAYS;
1907 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_TX_STORENFWD;
1908 		sc->dc_pmode = DC_PMODE_MII;
1909 		/* Increase the latency timer value. */
1910 		command = pci_read_config(dev, DC_PCI_CFLT, 4);
1911 		command &= 0xFFFF00FF;
1912 		command |= 0x00008000;
1913 		pci_write_config(dev, DC_PCI_CFLT, command, 4);
1914 		break;
1915 	case DC_DEVICEID_AL981:
1916 		sc->dc_type = DC_TYPE_AL981;
1917 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1918 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1919 		sc->dc_pmode = DC_PMODE_MII;
1920 		dc_read_srom(sc, sc->dc_romwidth);
1921 		break;
1922 	case DC_DEVICEID_AN985:
1923 	case DC_DEVICEID_ADM9511:
1924 	case DC_DEVICEID_ADM9513:
1925 	case DC_DEVICEID_FE2500:
1926 	case DC_DEVICEID_EN2242:
1927 	case DC_DEVICEID_HAWKING_PN672TX:
1928 	case DC_DEVICEID_3CSOHOB:
1929 		sc->dc_type = DC_TYPE_AN985;
1930 		sc->dc_flags |= DC_64BIT_HASH;
1931 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1932 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1933 		sc->dc_pmode = DC_PMODE_MII;
1934 		dc_read_srom(sc, sc->dc_romwidth);
1935 		break;
1936 	case DC_DEVICEID_98713:
1937 	case DC_DEVICEID_98713_CP:
1938 		if (revision < DC_REVISION_98713A) {
1939 			sc->dc_type = DC_TYPE_98713;
1940 		}
1941 		if (revision >= DC_REVISION_98713A) {
1942 			sc->dc_type = DC_TYPE_98713A;
1943 			sc->dc_flags |= DC_21143_NWAY;
1944 		}
1945 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1946 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1947 		break;
1948 	case DC_DEVICEID_987x5:
1949 	case DC_DEVICEID_EN1217:
1950 		/*
1951 		 * Macronix MX98715AEC-C/D/E parts have only a
1952 		 * 128-bit hash table. We need to deal with these
1953 		 * in the same manner as the PNIC II so that we
1954 		 * get the right number of bits out of the
1955 		 * CRC routine.
1956 		 */
1957 		if (revision >= DC_REVISION_98715AEC_C &&
1958 		    revision < DC_REVISION_98725)
1959 			sc->dc_flags |= DC_128BIT_HASH;
1960 		sc->dc_type = DC_TYPE_987x5;
1961 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1962 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
1963 		break;
1964 	case DC_DEVICEID_98727:
1965 		sc->dc_type = DC_TYPE_987x5;
1966 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1967 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
1968 		break;
1969 	case DC_DEVICEID_82C115:
1970 		sc->dc_type = DC_TYPE_PNICII;
1971 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR | DC_128BIT_HASH;
1972 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
1973 		break;
1974 	case DC_DEVICEID_82C168:
1975 		sc->dc_type = DC_TYPE_PNIC;
1976 		sc->dc_flags |= DC_TX_STORENFWD | DC_TX_INTR_ALWAYS;
1977 		sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
1978 		sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_NOWAIT);
1979 		if (revision < DC_REVISION_82C169)
1980 			sc->dc_pmode = DC_PMODE_SYM;
1981 		break;
1982 	case DC_DEVICEID_AX88140A:
1983 		sc->dc_type = DC_TYPE_ASIX;
1984 		sc->dc_flags |= DC_TX_USE_TX_INTR | DC_TX_INTR_FIRSTFRAG;
1985 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1986 		sc->dc_pmode = DC_PMODE_MII;
1987 		break;
1988 	case DC_DEVICEID_X3201:
1989 		sc->dc_type = DC_TYPE_XIRCOM;
1990 		sc->dc_flags |= DC_TX_INTR_ALWAYS | DC_TX_COALESCE |
1991 				DC_TX_ALIGN;
1992 		/*
1993 		 * We don't actually need to coalesce, but we're doing
1994 		 * it to obtain a double word aligned buffer.
1995 		 * The DC_TX_COALESCE flag is required.
1996 		 */
1997 		sc->dc_pmode = DC_PMODE_MII;
1998 		break;
1999 	case DC_DEVICEID_RS7112:
2000 		sc->dc_type = DC_TYPE_CONEXANT;
2001 		sc->dc_flags |= DC_TX_INTR_ALWAYS;
2002 		sc->dc_flags |= DC_REDUCED_MII_POLL;
2003 		sc->dc_pmode = DC_PMODE_MII;
2004 		dc_read_srom(sc, sc->dc_romwidth);
2005 		break;
2006 	default:
2007 		printf("dc%d: unknown device: %x\n", sc->dc_unit,
2008 		    sc->dc_info->dc_did);
2009 		break;
2010 	}
2011 
2012 	/* Save the cache line size. */
2013 	if (DC_IS_DAVICOM(sc))
2014 		sc->dc_cachesize = 0;
2015 	else
2016 		sc->dc_cachesize = pci_read_config(dev,
2017 		    DC_PCI_CFLT, 4) & 0xFF;
2018 
2019 	/* Reset the adapter. */
2020 	dc_reset(sc);
2021 
2022 	/* Take 21143 out of snooze mode */
2023 	if (DC_IS_INTEL(sc) || DC_IS_XIRCOM(sc)) {
2024 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
2025 		command &= ~(DC_CFDD_SNOOZE_MODE | DC_CFDD_SLEEP_MODE);
2026 		pci_write_config(dev, DC_PCI_CFDD, command, 4);
2027 	}
2028 
2029 	/*
2030 	 * Try to learn something about the supported media.
2031 	 * We know that ASIX and ADMtek and Davicom devices
2032 	 * will *always* be using MII media, so that's a no-brainer.
2033 	 * The tricky ones are the Macronix/PNIC II and the
2034 	 * Intel 21143.
2035 	 */
2036 	if (DC_IS_INTEL(sc))
2037 		dc_parse_21143_srom(sc);
2038 	else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
2039 		if (sc->dc_type == DC_TYPE_98713)
2040 			sc->dc_pmode = DC_PMODE_MII;
2041 		else
2042 			sc->dc_pmode = DC_PMODE_SYM;
2043 	} else if (!sc->dc_pmode)
2044 		sc->dc_pmode = DC_PMODE_MII;
2045 
2046 	/*
2047 	 * Get station address from the EEPROM.
2048 	 */
2049 	switch(sc->dc_type) {
2050 	case DC_TYPE_98713:
2051 	case DC_TYPE_98713A:
2052 	case DC_TYPE_987x5:
2053 	case DC_TYPE_PNICII:
2054 		dc_read_eeprom(sc, (caddr_t)&mac_offset,
2055 		    (DC_EE_NODEADDR_OFFSET / 2), 1, 0);
2056 		dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
2057 		break;
2058 	case DC_TYPE_PNIC:
2059 		dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
2060 		break;
2061 	case DC_TYPE_DM9102:
2062 	case DC_TYPE_21143:
2063 	case DC_TYPE_ASIX:
2064 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2065 		break;
2066 	case DC_TYPE_AL981:
2067 	case DC_TYPE_AN985:
2068 		bcopy(sc->dc_srom + DC_AL_EE_NODEADDR, &eaddr,
2069 		    ETHER_ADDR_LEN);
2070 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_AL_EE_NODEADDR, 3, 0);
2071 		break;
2072 	case DC_TYPE_CONEXANT:
2073 		bcopy(sc->dc_srom + DC_CONEXANT_EE_NODEADDR, &eaddr,
2074 		    ETHER_ADDR_LEN);
2075 		break;
2076 	case DC_TYPE_XIRCOM:
2077 		/* The MAC comes from the CIS. */
2078 		mac = pci_get_ether(dev);
2079 		if (!mac) {
2080 			device_printf(dev, "No station address in CIS!\n");
2081 			error = ENXIO;
2082 			goto fail;
2083 		}
2084 		bcopy(mac, eaddr, ETHER_ADDR_LEN);
2085 		break;
2086 	default:
2087 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2088 		break;
2089 	}
2090 
2091 	/*
2092 	 * A 21143 or clone chip was detected. Inform the world.
2093 	 */
2094 	printf("dc%d: Ethernet address: %6D\n", unit, eaddr, ":");
2095 
2096 	sc->dc_unit = unit;
2097 	bcopy(eaddr, &sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
2098 
2099 	/* Allocate a busdma tag and DMA safe memory for TX/RX descriptors. */
2100 	error = bus_dma_tag_create(NULL, PAGE_SIZE, 0, BUS_SPACE_MAXADDR_32BIT,
2101 	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct dc_list_data), 1,
2102 	    sizeof(struct dc_list_data), 0, NULL, NULL, &sc->dc_ltag);
2103 	if (error) {
2104 		printf("dc%d: failed to allocate busdma tag\n", unit);
2105 		error = ENXIO;
2106 		goto fail;
2107 	}
2108 	error = bus_dmamem_alloc(sc->dc_ltag, (void **)&sc->dc_ldata,
2109 	    BUS_DMA_NOWAIT, &sc->dc_lmap);
2110 	if (error) {
2111 		printf("dc%d: failed to allocate DMA safe memory\n", unit);
2112 		error = ENXIO;
2113 		goto fail;
2114 	}
2115 	error = bus_dmamap_load(sc->dc_ltag, sc->dc_lmap, sc->dc_ldata,
2116 	    sizeof(struct dc_list_data), dc_dma_map_addr, &sc->dc_laddr,
2117 	    BUS_DMA_NOWAIT);
2118 	if (error) {
2119 		printf("dc%d: cannot get address of the descriptors\n", unit);
2120 		error = ENXIO;
2121 		goto fail;
2122 	}
2123 	bzero(sc->dc_ldata, sizeof(struct dc_list_data));
2124 
2125 	/*
2126 	 * Allocate a busdma tag and DMA safe memory for the multicast
2127 	 * setup frame.
2128 	 */
2129 	error = bus_dma_tag_create(NULL, PAGE_SIZE, 0, BUS_SPACE_MAXADDR_32BIT,
2130 	    BUS_SPACE_MAXADDR, NULL, NULL, DC_SFRAME_LEN + DC_MIN_FRAMELEN, 1,
2131 	    DC_SFRAME_LEN + DC_MIN_FRAMELEN, 0, NULL, NULL, &sc->dc_stag);
2132 	if (error) {
2133 		printf("dc%d: failed to allocate busdma tag\n", unit);
2134 		error = ENXIO;
2135 		goto fail;
2136 	}
2137 	error = bus_dmamem_alloc(sc->dc_stag, (void **)&sc->dc_cdata.dc_sbuf,
2138 	    BUS_DMA_NOWAIT, &sc->dc_smap);
2139 	if (error) {
2140 		printf("dc%d: failed to allocate DMA safe memory\n", unit);
2141 		error = ENXIO;
2142 		goto fail;
2143 	}
2144 	error = bus_dmamap_load(sc->dc_stag, sc->dc_smap, sc->dc_cdata.dc_sbuf,
2145 	    DC_SFRAME_LEN, dc_dma_map_addr, &sc->dc_saddr, BUS_DMA_NOWAIT);
2146 	if (error) {
2147 		printf("dc%d: cannot get address of the descriptors\n", unit);
2148 		error = ENXIO;
2149 		goto fail;
2150 	}
2151 
2152 	/* Allocate a busdma tag for mbufs. */
2153 	error = bus_dma_tag_create(NULL, PAGE_SIZE, 0, BUS_SPACE_MAXADDR_32BIT,
2154 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * DC_TX_LIST_CNT,
2155 	    DC_TX_LIST_CNT, MCLBYTES, 0, NULL, NULL, &sc->dc_mtag);
2156 	if (error) {
2157 		printf("dc%d: failed to allocate busdma tag\n", unit);
2158 		error = ENXIO;
2159 		goto fail;
2160 	}
2161 
2162 	/* Create the TX/RX busdma maps. */
2163 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2164 		error = bus_dmamap_create(sc->dc_mtag, 0,
2165 		    &sc->dc_cdata.dc_tx_map[i]);
2166 		if (error) {
2167 			printf("dc%d: failed to init TX ring\n", unit);
2168 			error = ENXIO;
2169 			goto fail;
2170 		}
2171 	}
2172 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2173 		error = bus_dmamap_create(sc->dc_mtag, 0,
2174 		    &sc->dc_cdata.dc_rx_map[i]);
2175 		if (error) {
2176 			printf("dc%d: failed to init RX ring\n", unit);
2177 			error = ENXIO;
2178 			goto fail;
2179 		}
2180 	}
2181 	error = bus_dmamap_create(sc->dc_mtag, 0, &sc->dc_sparemap);
2182 	if (error) {
2183 		printf("dc%d: failed to init RX ring\n", unit);
2184 		error = ENXIO;
2185 		goto fail;
2186 	}
2187 
2188 	ifp = &sc->arpcom.ac_if;
2189 	ifp->if_softc = sc;
2190 	ifp->if_unit = unit;
2191 	ifp->if_name = "dc";
2192 	/* XXX: bleah, MTU gets overwritten in ether_ifattach() */
2193 	ifp->if_mtu = ETHERMTU;
2194 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2195 	ifp->if_ioctl = dc_ioctl;
2196 	ifp->if_start = dc_start;
2197 	ifp->if_watchdog = dc_watchdog;
2198 	ifp->if_init = dc_init;
2199 	ifp->if_baudrate = 10000000;
2200 	ifp->if_snd.ifq_maxlen = DC_TX_LIST_CNT - 1;
2201 
2202 	/*
2203 	 * Do MII setup. If this is a 21143, check for a PHY on the
2204 	 * MII bus after applying any necessary fixups to twiddle the
2205 	 * GPIO bits. If we don't end up finding a PHY, restore the
2206 	 * old selection (SIA only or SIA/SYM) and attach the dcphy
2207 	 * driver instead.
2208 	 */
2209 	if (DC_IS_INTEL(sc)) {
2210 		dc_apply_fixup(sc, IFM_AUTO);
2211 		tmp = sc->dc_pmode;
2212 		sc->dc_pmode = DC_PMODE_MII;
2213 	}
2214 
2215 	error = mii_phy_probe(dev, &sc->dc_miibus,
2216 	    dc_ifmedia_upd, dc_ifmedia_sts);
2217 
2218 	if (error && DC_IS_INTEL(sc)) {
2219 		sc->dc_pmode = tmp;
2220 		if (sc->dc_pmode != DC_PMODE_SIA)
2221 			sc->dc_pmode = DC_PMODE_SYM;
2222 		sc->dc_flags |= DC_21143_NWAY;
2223 		mii_phy_probe(dev, &sc->dc_miibus,
2224 		    dc_ifmedia_upd, dc_ifmedia_sts);
2225 		/*
2226 		 * For non-MII cards, we need to have the 21143
2227 		 * drive the LEDs. Except there are some systems
2228 		 * like the NEC VersaPro NoteBook PC which have no
2229 		 * LEDs, and twiddling these bits has adverse effects
2230 		 * on them. (I.e. you suddenly can't get a link.)
2231 		 */
2232 		if (pci_read_config(dev, DC_PCI_CSID, 4) != 0x80281033)
2233 			sc->dc_flags |= DC_TULIP_LEDS;
2234 		error = 0;
2235 	}
2236 
2237 	if (error) {
2238 		printf("dc%d: MII without any PHY!\n", sc->dc_unit);
2239 		goto fail;
2240 	}
2241 
2242 	if (DC_IS_XIRCOM(sc)) {
2243 		/*
2244 		 * setup General Purpose Port mode and data so the tulip
2245 		 * can talk to the MII.
2246 		 */
2247 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
2248 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2249 		DELAY(10);
2250 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
2251 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2252 		DELAY(10);
2253 	}
2254 
2255 	if (DC_IS_ADMTEK(sc)) {
2256 		/*
2257 		 * Set automatic TX underrun recovery for the ADMtek chips
2258 		 */
2259 		DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR);
2260 	}
2261 
2262 	/*
2263 	 * Tell the upper layer(s) we support long frames.
2264 	 */
2265 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2266 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
2267 
2268 	callout_init(&sc->dc_stat_ch, IS_MPSAFE);
2269 
2270 #ifdef SRM_MEDIA
2271 	sc->dc_srm_media = 0;
2272 
2273 	/* Remember the SRM console media setting */
2274 	if (DC_IS_INTEL(sc)) {
2275 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
2276 		command &= ~(DC_CFDD_SNOOZE_MODE | DC_CFDD_SLEEP_MODE);
2277 		switch ((command >> 8) & 0xff) {
2278 		case 3:
2279 			sc->dc_srm_media = IFM_10_T;
2280 			break;
2281 		case 4:
2282 			sc->dc_srm_media = IFM_10_T | IFM_FDX;
2283 			break;
2284 		case 5:
2285 			sc->dc_srm_media = IFM_100_TX;
2286 			break;
2287 		case 6:
2288 			sc->dc_srm_media = IFM_100_TX | IFM_FDX;
2289 			break;
2290 		}
2291 		if (sc->dc_srm_media)
2292 			sc->dc_srm_media |= IFM_ACTIVE | IFM_ETHER;
2293 	}
2294 #endif
2295 
2296 	/*
2297 	 * Call MI attach routine.
2298 	 */
2299 	ether_ifattach(ifp, eaddr);
2300 
2301 	/* Hook interrupt last to avoid having to lock softc */
2302 	error = bus_setup_intr(dev, sc->dc_irq, INTR_TYPE_NET |
2303 	    (IS_MPSAFE ? INTR_MPSAFE : 0),
2304 	    dc_intr, sc, &sc->dc_intrhand);
2305 
2306 	if (error) {
2307 		printf("dc%d: couldn't set up irq\n", unit);
2308 		ether_ifdetach(ifp);
2309 		goto fail;
2310 	}
2311 
2312 fail:
2313 	if (error)
2314 		dc_detach(dev);
2315 	return (error);
2316 }
2317 
2318 /*
2319  * Shutdown hardware and free up resources. This can be called any
2320  * time after the mutex has been initialized. It is called in both
2321  * the error case in attach and the normal detach case so it needs
2322  * to be careful about only freeing resources that have actually been
2323  * allocated.
2324  */
2325 static int
2326 dc_detach(device_t dev)
2327 {
2328 	struct dc_softc *sc;
2329 	struct ifnet *ifp;
2330 	struct dc_mediainfo *m;
2331 	int i;
2332 
2333 	sc = device_get_softc(dev);
2334 	KASSERT(mtx_initialized(&sc->dc_mtx), ("dc mutex not initialized"));
2335 	DC_LOCK(sc);
2336 
2337 	ifp = &sc->arpcom.ac_if;
2338 
2339 	/* These should only be active if attach succeeded */
2340 	if (device_is_attached(dev)) {
2341 		dc_stop(sc);
2342 		ether_ifdetach(ifp);
2343 	}
2344 	if (sc->dc_miibus)
2345 		device_delete_child(dev, sc->dc_miibus);
2346 	bus_generic_detach(dev);
2347 
2348 	if (sc->dc_intrhand)
2349 		bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2350 	if (sc->dc_irq)
2351 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2352 	if (sc->dc_res)
2353 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2354 
2355 	if (sc->dc_cdata.dc_sbuf != NULL)
2356 		bus_dmamem_free(sc->dc_stag, sc->dc_cdata.dc_sbuf, sc->dc_smap);
2357 	if (sc->dc_ldata != NULL)
2358 		bus_dmamem_free(sc->dc_ltag, sc->dc_ldata, sc->dc_lmap);
2359 	for (i = 0; i < DC_TX_LIST_CNT; i++)
2360 		bus_dmamap_destroy(sc->dc_mtag, sc->dc_cdata.dc_tx_map[i]);
2361 	for (i = 0; i < DC_RX_LIST_CNT; i++)
2362 		bus_dmamap_destroy(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i]);
2363 	bus_dmamap_destroy(sc->dc_mtag, sc->dc_sparemap);
2364 	if (sc->dc_stag)
2365 		bus_dma_tag_destroy(sc->dc_stag);
2366 	if (sc->dc_mtag)
2367 		bus_dma_tag_destroy(sc->dc_mtag);
2368 	if (sc->dc_ltag)
2369 		bus_dma_tag_destroy(sc->dc_ltag);
2370 
2371 	free(sc->dc_pnic_rx_buf, M_DEVBUF);
2372 
2373 	while (sc->dc_mi != NULL) {
2374 		m = sc->dc_mi->dc_next;
2375 		free(sc->dc_mi, M_DEVBUF);
2376 		sc->dc_mi = m;
2377 	}
2378 	free(sc->dc_srom, M_DEVBUF);
2379 
2380 	DC_UNLOCK(sc);
2381 	mtx_destroy(&sc->dc_mtx);
2382 
2383 	return (0);
2384 }
2385 
2386 /*
2387  * Initialize the transmit descriptors.
2388  */
2389 static int
2390 dc_list_tx_init(struct dc_softc *sc)
2391 {
2392 	struct dc_chain_data *cd;
2393 	struct dc_list_data *ld;
2394 	int i, nexti;
2395 
2396 	cd = &sc->dc_cdata;
2397 	ld = sc->dc_ldata;
2398 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2399 		if (i == DC_TX_LIST_CNT - 1)
2400 			nexti = 0;
2401 		else
2402 			nexti = i + 1;
2403 		ld->dc_tx_list[i].dc_next = DC_TXDESC(sc, nexti);
2404 		cd->dc_tx_chain[i] = NULL;
2405 		ld->dc_tx_list[i].dc_data = 0;
2406 		ld->dc_tx_list[i].dc_ctl = 0;
2407 	}
2408 
2409 	cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
2410 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
2411 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2412 	return (0);
2413 }
2414 
2415 
2416 /*
2417  * Initialize the RX descriptors and allocate mbufs for them. Note that
2418  * we arrange the descriptors in a closed ring, so that the last descriptor
2419  * points back to the first.
2420  */
2421 static int
2422 dc_list_rx_init(struct dc_softc *sc)
2423 {
2424 	struct dc_chain_data *cd;
2425 	struct dc_list_data *ld;
2426 	int i, nexti;
2427 
2428 	cd = &sc->dc_cdata;
2429 	ld = sc->dc_ldata;
2430 
2431 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2432 		if (dc_newbuf(sc, i, 1) != 0)
2433 			return (ENOBUFS);
2434 		if (i == DC_RX_LIST_CNT - 1)
2435 			nexti = 0;
2436 		else
2437 			nexti = i + 1;
2438 		ld->dc_rx_list[i].dc_next = DC_RXDESC(sc, nexti);
2439 	}
2440 
2441 	cd->dc_rx_prod = 0;
2442 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
2443 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2444 	return (0);
2445 }
2446 
2447 static void
2448 dc_dma_map_rxbuf(arg, segs, nseg, mapsize, error)
2449 	void *arg;
2450 	bus_dma_segment_t *segs;
2451 	int nseg;
2452 	bus_size_t mapsize;
2453 	int error;
2454 {
2455 	struct dc_softc *sc;
2456 	struct dc_desc *c;
2457 
2458 	sc = arg;
2459 	c = &sc->dc_ldata->dc_rx_list[sc->dc_cdata.dc_rx_cur];
2460 	if (error) {
2461 		sc->dc_cdata.dc_rx_err = error;
2462 		return;
2463 	}
2464 
2465 	KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
2466 	sc->dc_cdata.dc_rx_err = 0;
2467 	c->dc_data = segs->ds_addr;
2468 }
2469 
2470 /*
2471  * Initialize an RX descriptor and attach an MBUF cluster.
2472  */
2473 static int
2474 dc_newbuf(struct dc_softc *sc, int i, int alloc)
2475 {
2476 	struct mbuf *m_new;
2477 	bus_dmamap_t tmp;
2478 	int error;
2479 
2480 	if (alloc) {
2481 		m_new = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2482 		if (m_new == NULL)
2483 			return (ENOBUFS);
2484 	} else {
2485 		m_new = sc->dc_cdata.dc_rx_chain[i];
2486 		m_new->m_data = m_new->m_ext.ext_buf;
2487 	}
2488 	m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2489 	m_adj(m_new, sizeof(u_int64_t));
2490 
2491 	/*
2492 	 * If this is a PNIC chip, zero the buffer. This is part
2493 	 * of the workaround for the receive bug in the 82c168 and
2494 	 * 82c169 chips.
2495 	 */
2496 	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
2497 		bzero(mtod(m_new, char *), m_new->m_len);
2498 
2499 	/* No need to remap the mbuf if we're reusing it. */
2500 	if (alloc) {
2501 		sc->dc_cdata.dc_rx_cur = i;
2502 		error = bus_dmamap_load_mbuf(sc->dc_mtag, sc->dc_sparemap,
2503 		    m_new, dc_dma_map_rxbuf, sc, 0);
2504 		if (error) {
2505 			m_freem(m_new);
2506 			return (error);
2507 		}
2508 		if (sc->dc_cdata.dc_rx_err != 0) {
2509 			m_freem(m_new);
2510 			return (sc->dc_cdata.dc_rx_err);
2511 		}
2512 		bus_dmamap_unload(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i]);
2513 		tmp = sc->dc_cdata.dc_rx_map[i];
2514 		sc->dc_cdata.dc_rx_map[i] = sc->dc_sparemap;
2515 		sc->dc_sparemap = tmp;
2516 		sc->dc_cdata.dc_rx_chain[i] = m_new;
2517 	}
2518 
2519 	sc->dc_ldata->dc_rx_list[i].dc_ctl = DC_RXCTL_RLINK | DC_RXLEN;
2520 	sc->dc_ldata->dc_rx_list[i].dc_status = DC_RXSTAT_OWN;
2521 	bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i],
2522 	    BUS_DMASYNC_PREREAD);
2523 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
2524 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2525 	return (0);
2526 }
2527 
2528 /*
2529  * Grrrrr.
2530  * The PNIC chip has a terrible bug in it that manifests itself during
2531  * periods of heavy activity. The exact mode of failure if difficult to
2532  * pinpoint: sometimes it only happens in promiscuous mode, sometimes it
2533  * will happen on slow machines. The bug is that sometimes instead of
2534  * uploading one complete frame during reception, it uploads what looks
2535  * like the entire contents of its FIFO memory. The frame we want is at
2536  * the end of the whole mess, but we never know exactly how much data has
2537  * been uploaded, so salvaging the frame is hard.
2538  *
2539  * There is only one way to do it reliably, and it's disgusting.
2540  * Here's what we know:
2541  *
2542  * - We know there will always be somewhere between one and three extra
2543  *   descriptors uploaded.
2544  *
2545  * - We know the desired received frame will always be at the end of the
2546  *   total data upload.
2547  *
2548  * - We know the size of the desired received frame because it will be
2549  *   provided in the length field of the status word in the last descriptor.
2550  *
2551  * Here's what we do:
2552  *
2553  * - When we allocate buffers for the receive ring, we bzero() them.
2554  *   This means that we know that the buffer contents should be all
2555  *   zeros, except for data uploaded by the chip.
2556  *
2557  * - We also force the PNIC chip to upload frames that include the
2558  *   ethernet CRC at the end.
2559  *
2560  * - We gather all of the bogus frame data into a single buffer.
2561  *
2562  * - We then position a pointer at the end of this buffer and scan
2563  *   backwards until we encounter the first non-zero byte of data.
2564  *   This is the end of the received frame. We know we will encounter
2565  *   some data at the end of the frame because the CRC will always be
2566  *   there, so even if the sender transmits a packet of all zeros,
2567  *   we won't be fooled.
2568  *
2569  * - We know the size of the actual received frame, so we subtract
2570  *   that value from the current pointer location. This brings us
2571  *   to the start of the actual received packet.
2572  *
2573  * - We copy this into an mbuf and pass it on, along with the actual
2574  *   frame length.
2575  *
2576  * The performance hit is tremendous, but it beats dropping frames all
2577  * the time.
2578  */
2579 
2580 #define DC_WHOLEFRAME	(DC_RXSTAT_FIRSTFRAG | DC_RXSTAT_LASTFRAG)
2581 static void
2582 dc_pnic_rx_bug_war(struct dc_softc *sc, int idx)
2583 {
2584 	struct dc_desc *cur_rx;
2585 	struct dc_desc *c = NULL;
2586 	struct mbuf *m = NULL;
2587 	unsigned char *ptr;
2588 	int i, total_len;
2589 	u_int32_t rxstat = 0;
2590 
2591 	i = sc->dc_pnic_rx_bug_save;
2592 	cur_rx = &sc->dc_ldata->dc_rx_list[idx];
2593 	ptr = sc->dc_pnic_rx_buf;
2594 	bzero(ptr, DC_RXLEN * 5);
2595 
2596 	/* Copy all the bytes from the bogus buffers. */
2597 	while (1) {
2598 		c = &sc->dc_ldata->dc_rx_list[i];
2599 		rxstat = c->dc_status;
2600 		m = sc->dc_cdata.dc_rx_chain[i];
2601 		bcopy(mtod(m, char *), ptr, DC_RXLEN);
2602 		ptr += DC_RXLEN;
2603 		/* If this is the last buffer, break out. */
2604 		if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
2605 			break;
2606 		dc_newbuf(sc, i, 0);
2607 		DC_INC(i, DC_RX_LIST_CNT);
2608 	}
2609 
2610 	/* Find the length of the actual receive frame. */
2611 	total_len = DC_RXBYTES(rxstat);
2612 
2613 	/* Scan backwards until we hit a non-zero byte. */
2614 	while (*ptr == 0x00)
2615 		ptr--;
2616 
2617 	/* Round off. */
2618 	if ((uintptr_t)(ptr) & 0x3)
2619 		ptr -= 1;
2620 
2621 	/* Now find the start of the frame. */
2622 	ptr -= total_len;
2623 	if (ptr < sc->dc_pnic_rx_buf)
2624 		ptr = sc->dc_pnic_rx_buf;
2625 
2626 	/*
2627 	 * Now copy the salvaged frame to the last mbuf and fake up
2628 	 * the status word to make it look like a successful
2629 	 * frame reception.
2630 	 */
2631 	dc_newbuf(sc, i, 0);
2632 	bcopy(ptr, mtod(m, char *), total_len);
2633 	cur_rx->dc_status = rxstat | DC_RXSTAT_FIRSTFRAG;
2634 }
2635 
2636 /*
2637  * This routine searches the RX ring for dirty descriptors in the
2638  * event that the rxeof routine falls out of sync with the chip's
2639  * current descriptor pointer. This may happen sometimes as a result
2640  * of a "no RX buffer available" condition that happens when the chip
2641  * consumes all of the RX buffers before the driver has a chance to
2642  * process the RX ring. This routine may need to be called more than
2643  * once to bring the driver back in sync with the chip, however we
2644  * should still be getting RX DONE interrupts to drive the search
2645  * for new packets in the RX ring, so we should catch up eventually.
2646  */
2647 static int
2648 dc_rx_resync(struct dc_softc *sc)
2649 {
2650 	struct dc_desc *cur_rx;
2651 	int i, pos;
2652 
2653 	pos = sc->dc_cdata.dc_rx_prod;
2654 
2655 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2656 		cur_rx = &sc->dc_ldata->dc_rx_list[pos];
2657 		if (!(cur_rx->dc_status & DC_RXSTAT_OWN))
2658 			break;
2659 		DC_INC(pos, DC_RX_LIST_CNT);
2660 	}
2661 
2662 	/* If the ring really is empty, then just return. */
2663 	if (i == DC_RX_LIST_CNT)
2664 		return (0);
2665 
2666 	/* We've fallen behing the chip: catch it. */
2667 	sc->dc_cdata.dc_rx_prod = pos;
2668 
2669 	return (EAGAIN);
2670 }
2671 
2672 /*
2673  * A frame has been uploaded: pass the resulting mbuf chain up to
2674  * the higher level protocols.
2675  */
2676 static void
2677 dc_rxeof(struct dc_softc *sc)
2678 {
2679 	struct mbuf *m;
2680 	struct ifnet *ifp;
2681 	struct dc_desc *cur_rx;
2682 	int i, total_len = 0;
2683 	u_int32_t rxstat;
2684 
2685 	ifp = &sc->arpcom.ac_if;
2686 	i = sc->dc_cdata.dc_rx_prod;
2687 
2688 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap, BUS_DMASYNC_POSTREAD);
2689 	while (!(sc->dc_ldata->dc_rx_list[i].dc_status & DC_RXSTAT_OWN)) {
2690 #ifdef DEVICE_POLLING
2691 		if (ifp->if_flags & IFF_POLLING) {
2692 			if (sc->rxcycles <= 0)
2693 				break;
2694 			sc->rxcycles--;
2695 		}
2696 #endif
2697 		cur_rx = &sc->dc_ldata->dc_rx_list[i];
2698 		rxstat = cur_rx->dc_status;
2699 		m = sc->dc_cdata.dc_rx_chain[i];
2700 		bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i],
2701 		    BUS_DMASYNC_POSTREAD);
2702 		total_len = DC_RXBYTES(rxstat);
2703 
2704 		if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2705 			if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
2706 				if (rxstat & DC_RXSTAT_FIRSTFRAG)
2707 					sc->dc_pnic_rx_bug_save = i;
2708 				if ((rxstat & DC_RXSTAT_LASTFRAG) == 0) {
2709 					DC_INC(i, DC_RX_LIST_CNT);
2710 					continue;
2711 				}
2712 				dc_pnic_rx_bug_war(sc, i);
2713 				rxstat = cur_rx->dc_status;
2714 				total_len = DC_RXBYTES(rxstat);
2715 			}
2716 		}
2717 
2718 		/*
2719 		 * If an error occurs, update stats, clear the
2720 		 * status word and leave the mbuf cluster in place:
2721 		 * it should simply get re-used next time this descriptor
2722 		 * comes up in the ring.  However, don't report long
2723 		 * frames as errors since they could be vlans.
2724 		 */
2725 		if ((rxstat & DC_RXSTAT_RXERR)) {
2726 			if (!(rxstat & DC_RXSTAT_GIANT) ||
2727 			    (rxstat & (DC_RXSTAT_CRCERR | DC_RXSTAT_DRIBBLE |
2728 				       DC_RXSTAT_MIIERE | DC_RXSTAT_COLLSEEN |
2729 				       DC_RXSTAT_RUNT   | DC_RXSTAT_DE))) {
2730 				ifp->if_ierrors++;
2731 				if (rxstat & DC_RXSTAT_COLLSEEN)
2732 					ifp->if_collisions++;
2733 				dc_newbuf(sc, i, 0);
2734 				if (rxstat & DC_RXSTAT_CRCERR) {
2735 					DC_INC(i, DC_RX_LIST_CNT);
2736 					continue;
2737 				} else {
2738 					dc_init(sc);
2739 					return;
2740 				}
2741 			}
2742 		}
2743 
2744 		/* No errors; receive the packet. */
2745 		total_len -= ETHER_CRC_LEN;
2746 #ifdef __i386__
2747 		/*
2748 		 * On the x86 we do not have alignment problems, so try to
2749 		 * allocate a new buffer for the receive ring, and pass up
2750 		 * the one where the packet is already, saving the expensive
2751 		 * copy done in m_devget().
2752 		 * If we are on an architecture with alignment problems, or
2753 		 * if the allocation fails, then use m_devget and leave the
2754 		 * existing buffer in the receive ring.
2755 		 */
2756 		if (dc_quick && dc_newbuf(sc, i, 1) == 0) {
2757 			m->m_pkthdr.rcvif = ifp;
2758 			m->m_pkthdr.len = m->m_len = total_len;
2759 			DC_INC(i, DC_RX_LIST_CNT);
2760 		} else
2761 #endif
2762 		{
2763 			struct mbuf *m0;
2764 
2765 			m0 = m_devget(mtod(m, char *), total_len,
2766 				ETHER_ALIGN, ifp, NULL);
2767 			dc_newbuf(sc, i, 0);
2768 			DC_INC(i, DC_RX_LIST_CNT);
2769 			if (m0 == NULL) {
2770 				ifp->if_ierrors++;
2771 				continue;
2772 			}
2773 			m = m0;
2774 		}
2775 
2776 		ifp->if_ipackets++;
2777 		(*ifp->if_input)(ifp, m);
2778 	}
2779 
2780 	sc->dc_cdata.dc_rx_prod = i;
2781 }
2782 
2783 /*
2784  * A frame was downloaded to the chip. It's safe for us to clean up
2785  * the list buffers.
2786  */
2787 
2788 static void
2789 dc_txeof(struct dc_softc *sc)
2790 {
2791 	struct dc_desc *cur_tx = NULL;
2792 	struct ifnet *ifp;
2793 	int idx;
2794 	u_int32_t txstat;
2795 
2796 	ifp = &sc->arpcom.ac_if;
2797 
2798 	/*
2799 	 * Go through our tx list and free mbufs for those
2800 	 * frames that have been transmitted.
2801 	 */
2802 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap, BUS_DMASYNC_POSTREAD);
2803 	idx = sc->dc_cdata.dc_tx_cons;
2804 	while (idx != sc->dc_cdata.dc_tx_prod) {
2805 
2806 		cur_tx = &sc->dc_ldata->dc_tx_list[idx];
2807 		txstat = cur_tx->dc_status;
2808 
2809 		if (txstat & DC_TXSTAT_OWN)
2810 			break;
2811 
2812 		if (!(cur_tx->dc_ctl & DC_TXCTL_FIRSTFRAG) ||
2813 		    cur_tx->dc_ctl & DC_TXCTL_SETUP) {
2814 			if (cur_tx->dc_ctl & DC_TXCTL_SETUP) {
2815 				/*
2816 				 * Yes, the PNIC is so brain damaged
2817 				 * that it will sometimes generate a TX
2818 				 * underrun error while DMAing the RX
2819 				 * filter setup frame. If we detect this,
2820 				 * we have to send the setup frame again,
2821 				 * or else the filter won't be programmed
2822 				 * correctly.
2823 				 */
2824 				if (DC_IS_PNIC(sc)) {
2825 					if (txstat & DC_TXSTAT_ERRSUM)
2826 						dc_setfilt(sc);
2827 				}
2828 				sc->dc_cdata.dc_tx_chain[idx] = NULL;
2829 			}
2830 			sc->dc_cdata.dc_tx_cnt--;
2831 			DC_INC(idx, DC_TX_LIST_CNT);
2832 			continue;
2833 		}
2834 
2835 		if (DC_IS_XIRCOM(sc) || DC_IS_CONEXANT(sc)) {
2836 			/*
2837 			 * XXX: Why does my Xircom taunt me so?
2838 			 * For some reason it likes setting the CARRLOST flag
2839 			 * even when the carrier is there. wtf?!?
2840 			 * Who knows, but Conexant chips have the
2841 			 * same problem. Maybe they took lessons
2842 			 * from Xircom.
2843 			 */
2844 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2845 			    sc->dc_pmode == DC_PMODE_MII &&
2846 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
2847 			    DC_TXSTAT_NOCARRIER)))
2848 				txstat &= ~DC_TXSTAT_ERRSUM;
2849 		} else {
2850 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2851 			    sc->dc_pmode == DC_PMODE_MII &&
2852 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
2853 			    DC_TXSTAT_NOCARRIER | DC_TXSTAT_CARRLOST)))
2854 				txstat &= ~DC_TXSTAT_ERRSUM;
2855 		}
2856 
2857 		if (txstat & DC_TXSTAT_ERRSUM) {
2858 			ifp->if_oerrors++;
2859 			if (txstat & DC_TXSTAT_EXCESSCOLL)
2860 				ifp->if_collisions++;
2861 			if (txstat & DC_TXSTAT_LATECOLL)
2862 				ifp->if_collisions++;
2863 			if (!(txstat & DC_TXSTAT_UNDERRUN)) {
2864 				dc_init(sc);
2865 				return;
2866 			}
2867 		}
2868 
2869 		ifp->if_collisions += (txstat & DC_TXSTAT_COLLCNT) >> 3;
2870 
2871 		ifp->if_opackets++;
2872 		if (sc->dc_cdata.dc_tx_chain[idx] != NULL) {
2873 			bus_dmamap_sync(sc->dc_mtag,
2874 			    sc->dc_cdata.dc_tx_map[idx],
2875 			    BUS_DMASYNC_POSTWRITE);
2876 			bus_dmamap_unload(sc->dc_mtag,
2877 			    sc->dc_cdata.dc_tx_map[idx]);
2878 			m_freem(sc->dc_cdata.dc_tx_chain[idx]);
2879 			sc->dc_cdata.dc_tx_chain[idx] = NULL;
2880 		}
2881 
2882 		sc->dc_cdata.dc_tx_cnt--;
2883 		DC_INC(idx, DC_TX_LIST_CNT);
2884 	}
2885 
2886 	if (idx != sc->dc_cdata.dc_tx_cons) {
2887 	    	/* Some buffers have been freed. */
2888 		sc->dc_cdata.dc_tx_cons = idx;
2889 		ifp->if_flags &= ~IFF_OACTIVE;
2890 	}
2891 	ifp->if_timer = (sc->dc_cdata.dc_tx_cnt == 0) ? 0 : 5;
2892 }
2893 
2894 static void
2895 dc_tick(void *xsc)
2896 {
2897 	struct dc_softc *sc;
2898 	struct mii_data *mii;
2899 	struct ifnet *ifp;
2900 	u_int32_t r;
2901 
2902 	sc = xsc;
2903 	DC_LOCK(sc);
2904 	ifp = &sc->arpcom.ac_if;
2905 	mii = device_get_softc(sc->dc_miibus);
2906 
2907 	if (sc->dc_flags & DC_REDUCED_MII_POLL) {
2908 		if (sc->dc_flags & DC_21143_NWAY) {
2909 			r = CSR_READ_4(sc, DC_10BTSTAT);
2910 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2911 			    IFM_100_TX && (r & DC_TSTAT_LS100)) {
2912 				sc->dc_link = 0;
2913 				mii_mediachg(mii);
2914 			}
2915 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2916 			    IFM_10_T && (r & DC_TSTAT_LS10)) {
2917 				sc->dc_link = 0;
2918 				mii_mediachg(mii);
2919 			}
2920 			if (sc->dc_link == 0)
2921 				mii_tick(mii);
2922 		} else {
2923 			r = CSR_READ_4(sc, DC_ISR);
2924 			if ((r & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT &&
2925 			    sc->dc_cdata.dc_tx_cnt == 0) {
2926 				mii_tick(mii);
2927 				if (!(mii->mii_media_status & IFM_ACTIVE))
2928 					sc->dc_link = 0;
2929 			}
2930 		}
2931 	} else
2932 		mii_tick(mii);
2933 
2934 	/*
2935 	 * When the init routine completes, we expect to be able to send
2936 	 * packets right away, and in fact the network code will send a
2937 	 * gratuitous ARP the moment the init routine marks the interface
2938 	 * as running. However, even though the MAC may have been initialized,
2939 	 * there may be a delay of a few seconds before the PHY completes
2940 	 * autonegotiation and the link is brought up. Any transmissions
2941 	 * made during that delay will be lost. Dealing with this is tricky:
2942 	 * we can't just pause in the init routine while waiting for the
2943 	 * PHY to come ready since that would bring the whole system to
2944 	 * a screeching halt for several seconds.
2945 	 *
2946 	 * What we do here is prevent the TX start routine from sending
2947 	 * any packets until a link has been established. After the
2948 	 * interface has been initialized, the tick routine will poll
2949 	 * the state of the PHY until the IFM_ACTIVE flag is set. Until
2950 	 * that time, packets will stay in the send queue, and once the
2951 	 * link comes up, they will be flushed out to the wire.
2952 	 */
2953 	if (!sc->dc_link && mii->mii_media_status & IFM_ACTIVE &&
2954 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2955 		sc->dc_link++;
2956 		if (ifp->if_snd.ifq_head != NULL)
2957 			dc_start(ifp);
2958 	}
2959 
2960 	if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link)
2961 		callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
2962 	else
2963 		callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
2964 
2965 	DC_UNLOCK(sc);
2966 }
2967 
2968 /*
2969  * A transmit underrun has occurred.  Back off the transmit threshold,
2970  * or switch to store and forward mode if we have to.
2971  */
2972 static void
2973 dc_tx_underrun(struct dc_softc *sc)
2974 {
2975 	u_int32_t isr;
2976 	int i;
2977 
2978 	if (DC_IS_DAVICOM(sc))
2979 		dc_init(sc);
2980 
2981 	if (DC_IS_INTEL(sc)) {
2982 		/*
2983 		 * The real 21143 requires that the transmitter be idle
2984 		 * in order to change the transmit threshold or store
2985 		 * and forward state.
2986 		 */
2987 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2988 
2989 		for (i = 0; i < DC_TIMEOUT; i++) {
2990 			isr = CSR_READ_4(sc, DC_ISR);
2991 			if (isr & DC_ISR_TX_IDLE)
2992 				break;
2993 			DELAY(10);
2994 		}
2995 		if (i == DC_TIMEOUT) {
2996 			printf("dc%d: failed to force tx to idle state\n",
2997 			    sc->dc_unit);
2998 			dc_init(sc);
2999 		}
3000 	}
3001 
3002 	printf("dc%d: TX underrun -- ", sc->dc_unit);
3003 	sc->dc_txthresh += DC_TXTHRESH_INC;
3004 	if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3005 		printf("using store and forward mode\n");
3006 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3007 	} else {
3008 		printf("increasing TX threshold\n");
3009 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3010 		DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3011 	}
3012 
3013 	if (DC_IS_INTEL(sc))
3014 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3015 }
3016 
3017 #ifdef DEVICE_POLLING
3018 static poll_handler_t dc_poll;
3019 
3020 static void
3021 dc_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
3022 {
3023 	struct dc_softc *sc = ifp->if_softc;
3024 
3025 	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
3026 		/* Re-enable interrupts. */
3027 		CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3028 		return;
3029 	}
3030 	sc->rxcycles = count;
3031 	dc_rxeof(sc);
3032 	dc_txeof(sc);
3033 	if (ifp->if_snd.ifq_head != NULL && !(ifp->if_flags & IFF_OACTIVE))
3034 		dc_start(ifp);
3035 
3036 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
3037 		u_int32_t	status;
3038 
3039 		status = CSR_READ_4(sc, DC_ISR);
3040 		status &= (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF |
3041 			DC_ISR_TX_NOBUF | DC_ISR_TX_IDLE | DC_ISR_TX_UNDERRUN |
3042 			DC_ISR_BUS_ERR);
3043 		if (!status)
3044 			return;
3045 		/* ack what we have */
3046 		CSR_WRITE_4(sc, DC_ISR, status);
3047 
3048 		if (status & (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF)) {
3049 			u_int32_t r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
3050 			ifp->if_ierrors += (r & 0xffff) + ((r >> 17) & 0x7ff);
3051 
3052 			if (dc_rx_resync(sc))
3053 				dc_rxeof(sc);
3054 		}
3055 		/* restart transmit unit if necessary */
3056 		if (status & DC_ISR_TX_IDLE && sc->dc_cdata.dc_tx_cnt)
3057 			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3058 
3059 		if (status & DC_ISR_TX_UNDERRUN)
3060 			dc_tx_underrun(sc);
3061 
3062 		if (status & DC_ISR_BUS_ERR) {
3063 			printf("dc_poll: dc%d bus error\n", sc->dc_unit);
3064 			dc_reset(sc);
3065 			dc_init(sc);
3066 		}
3067 	}
3068 }
3069 #endif /* DEVICE_POLLING */
3070 
3071 static void
3072 dc_intr(void *arg)
3073 {
3074 	struct dc_softc *sc;
3075 	struct ifnet *ifp;
3076 	u_int32_t status;
3077 
3078 	sc = arg;
3079 
3080 	if (sc->suspended)
3081 		return;
3082 
3083 	if ((CSR_READ_4(sc, DC_ISR) & DC_INTRS) == 0)
3084 		return;
3085 
3086 	DC_LOCK(sc);
3087 	ifp = &sc->arpcom.ac_if;
3088 #ifdef DEVICE_POLLING
3089 	if (ifp->if_flags & IFF_POLLING)
3090 		goto done;
3091 	if (ether_poll_register(dc_poll, ifp)) { /* ok, disable interrupts */
3092 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3093 		goto done;
3094 	}
3095 #endif
3096 
3097 	/* Suppress unwanted interrupts */
3098 	if (!(ifp->if_flags & IFF_UP)) {
3099 		if (CSR_READ_4(sc, DC_ISR) & DC_INTRS)
3100 			dc_stop(sc);
3101 		DC_UNLOCK(sc);
3102 		return;
3103 	}
3104 
3105 	/* Disable interrupts. */
3106 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3107 
3108 	while (((status = CSR_READ_4(sc, DC_ISR)) & DC_INTRS)
3109 	      && status != 0xFFFFFFFF) {
3110 
3111 		CSR_WRITE_4(sc, DC_ISR, status);
3112 
3113 		if (status & DC_ISR_RX_OK) {
3114 			int		curpkts;
3115 			curpkts = ifp->if_ipackets;
3116 			dc_rxeof(sc);
3117 			if (curpkts == ifp->if_ipackets) {
3118 				while (dc_rx_resync(sc))
3119 					dc_rxeof(sc);
3120 			}
3121 		}
3122 
3123 		if (status & (DC_ISR_TX_OK | DC_ISR_TX_NOBUF))
3124 			dc_txeof(sc);
3125 
3126 		if (status & DC_ISR_TX_IDLE) {
3127 			dc_txeof(sc);
3128 			if (sc->dc_cdata.dc_tx_cnt) {
3129 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3130 				CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3131 			}
3132 		}
3133 
3134 		if (status & DC_ISR_TX_UNDERRUN)
3135 			dc_tx_underrun(sc);
3136 
3137 		if ((status & DC_ISR_RX_WATDOGTIMEO)
3138 		    || (status & DC_ISR_RX_NOBUF)) {
3139 			int		curpkts;
3140 			curpkts = ifp->if_ipackets;
3141 			dc_rxeof(sc);
3142 			if (curpkts == ifp->if_ipackets) {
3143 				while (dc_rx_resync(sc))
3144 					dc_rxeof(sc);
3145 			}
3146 		}
3147 
3148 		if (status & DC_ISR_BUS_ERR) {
3149 			dc_reset(sc);
3150 			dc_init(sc);
3151 		}
3152 	}
3153 
3154 	/* Re-enable interrupts. */
3155 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3156 
3157 	if (ifp->if_snd.ifq_head != NULL)
3158 		dc_start(ifp);
3159 
3160 #ifdef DEVICE_POLLING
3161 done:
3162 #endif
3163 
3164 	DC_UNLOCK(sc);
3165 }
3166 
3167 static void
3168 dc_dma_map_txbuf(arg, segs, nseg, mapsize, error)
3169 	void *arg;
3170 	bus_dma_segment_t *segs;
3171 	int nseg;
3172 	bus_size_t mapsize;
3173 	int error;
3174 {
3175 	struct dc_softc *sc;
3176 	struct dc_desc *f;
3177 	int cur, first, frag, i;
3178 
3179 	sc = arg;
3180 	if (error) {
3181 		sc->dc_cdata.dc_tx_err = error;
3182 		return;
3183 	}
3184 
3185 	first = cur = frag = sc->dc_cdata.dc_tx_prod;
3186 	for (i = 0; i < nseg; i++) {
3187 		if ((sc->dc_flags & DC_TX_ADMTEK_WAR) &&
3188 		    (frag == (DC_TX_LIST_CNT - 1)) &&
3189 		    (first != sc->dc_cdata.dc_tx_first)) {
3190 			bus_dmamap_unload(sc->dc_mtag,
3191 			    sc->dc_cdata.dc_tx_map[first]);
3192 			sc->dc_cdata.dc_tx_err = ENOBUFS;
3193 			return;
3194 		}
3195 
3196 		f = &sc->dc_ldata->dc_tx_list[frag];
3197 		f->dc_ctl = DC_TXCTL_TLINK | segs[i].ds_len;
3198 		if (i == 0) {
3199 			f->dc_status = 0;
3200 			f->dc_ctl |= DC_TXCTL_FIRSTFRAG;
3201 		} else
3202 			f->dc_status = DC_TXSTAT_OWN;
3203 		f->dc_data = segs[i].ds_addr;
3204 		cur = frag;
3205 		DC_INC(frag, DC_TX_LIST_CNT);
3206 	}
3207 
3208 	sc->dc_cdata.dc_tx_err = 0;
3209 	sc->dc_cdata.dc_tx_prod = frag;
3210 	sc->dc_cdata.dc_tx_cnt += nseg;
3211 	sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_LASTFRAG;
3212 	if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
3213 		sc->dc_ldata->dc_tx_list[first].dc_ctl |= DC_TXCTL_FINT;
3214 	if (sc->dc_flags & DC_TX_INTR_ALWAYS)
3215 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT;
3216 	if (sc->dc_flags & DC_TX_USE_TX_INTR && sc->dc_cdata.dc_tx_cnt > 64)
3217 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT;
3218 	sc->dc_ldata->dc_tx_list[first].dc_status = DC_TXSTAT_OWN;
3219 }
3220 
3221 /*
3222  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
3223  * pointers to the fragment pointers.
3224  */
3225 static int
3226 dc_encap(struct dc_softc *sc, struct mbuf *m_head)
3227 {
3228 	struct mbuf *m;
3229 	int error, idx, chainlen = 0;
3230 
3231 	/*
3232 	 * If there's no way we can send any packets, return now.
3233 	 */
3234 	if (DC_TX_LIST_CNT - sc->dc_cdata.dc_tx_cnt < 6)
3235 		return (ENOBUFS);
3236 
3237 	/*
3238 	 * Count the number of frags in this chain to see if
3239 	 * we need to m_defrag.  Since the descriptor list is shared
3240 	 * by all packets, we'll m_defrag long chains so that they
3241 	 * do not use up the entire list, even if they would fit.
3242 	 */
3243 	for (m = m_head; m != NULL; m = m->m_next)
3244 		chainlen++;
3245 
3246 	if ((chainlen > DC_TX_LIST_CNT / 4) ||
3247 	    ((DC_TX_LIST_CNT - (chainlen + sc->dc_cdata.dc_tx_cnt)) < 6)) {
3248 		m = m_defrag(m_head, M_DONTWAIT);
3249 		if (m == NULL)
3250 			return (ENOBUFS);
3251 		m_head = m;
3252 	}
3253 
3254 	/*
3255 	 * Start packing the mbufs in this chain into
3256 	 * the fragment pointers. Stop when we run out
3257 	 * of fragments or hit the end of the mbuf chain.
3258 	 */
3259 	idx = sc->dc_cdata.dc_tx_prod;
3260 	error = bus_dmamap_load_mbuf(sc->dc_mtag, sc->dc_cdata.dc_tx_map[idx],
3261 	    m_head, dc_dma_map_txbuf, sc, 0);
3262 	if (error)
3263 		return (error);
3264 	if (sc->dc_cdata.dc_tx_err != 0)
3265 		return (sc->dc_cdata.dc_tx_err);
3266 	sc->dc_cdata.dc_tx_chain[idx] = m_head;
3267 	bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_tx_map[idx],
3268 	    BUS_DMASYNC_PREWRITE);
3269 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
3270 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
3271 	return (0);
3272 }
3273 
3274 /*
3275  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3276  * to the mbuf data regions directly in the transmit lists. We also save a
3277  * copy of the pointers since the transmit list fragment pointers are
3278  * physical addresses.
3279  */
3280 
3281 static void
3282 dc_start(struct ifnet *ifp)
3283 {
3284 	struct dc_softc *sc;
3285 	struct mbuf *m_head = NULL, *m;
3286 	int idx;
3287 
3288 	sc = ifp->if_softc;
3289 
3290 	DC_LOCK(sc);
3291 
3292 	if (!sc->dc_link && ifp->if_snd.ifq_len < 10) {
3293 		DC_UNLOCK(sc);
3294 		return;
3295 	}
3296 
3297 	if (ifp->if_flags & IFF_OACTIVE) {
3298 		DC_UNLOCK(sc);
3299 		return;
3300 	}
3301 
3302 	idx = sc->dc_cdata.dc_tx_first = sc->dc_cdata.dc_tx_prod;
3303 
3304 	while (sc->dc_cdata.dc_tx_chain[idx] == NULL) {
3305 		IF_DEQUEUE(&ifp->if_snd, m_head);
3306 		if (m_head == NULL)
3307 			break;
3308 
3309 		if (sc->dc_flags & DC_TX_COALESCE &&
3310 		    (m_head->m_next != NULL ||
3311 		     sc->dc_flags & DC_TX_ALIGN)) {
3312 			m = m_defrag(m_head, M_DONTWAIT);
3313 			if (m == NULL) {
3314 				IF_PREPEND(&ifp->if_snd, m_head);
3315 				ifp->if_flags |= IFF_OACTIVE;
3316 				break;
3317 			} else {
3318 				m_head = m;
3319 			}
3320 		}
3321 
3322 		if (dc_encap(sc, m_head)) {
3323 			IF_PREPEND(&ifp->if_snd, m_head);
3324 			ifp->if_flags |= IFF_OACTIVE;
3325 			break;
3326 		}
3327 		idx = sc->dc_cdata.dc_tx_prod;
3328 
3329 		/*
3330 		 * If there's a BPF listener, bounce a copy of this frame
3331 		 * to him.
3332 		 */
3333 		BPF_MTAP(ifp, m_head);
3334 
3335 		if (sc->dc_flags & DC_TX_ONE) {
3336 			ifp->if_flags |= IFF_OACTIVE;
3337 			break;
3338 		}
3339 	}
3340 
3341 	/* Transmit */
3342 	if (!(sc->dc_flags & DC_TX_POLL))
3343 		CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3344 
3345 	/*
3346 	 * Set a timeout in case the chip goes out to lunch.
3347 	 */
3348 	ifp->if_timer = 5;
3349 
3350 	DC_UNLOCK(sc);
3351 }
3352 
3353 static void
3354 dc_init(void *xsc)
3355 {
3356 	struct dc_softc *sc = xsc;
3357 	struct ifnet *ifp = &sc->arpcom.ac_if;
3358 	struct mii_data *mii;
3359 
3360 	DC_LOCK(sc);
3361 
3362 	mii = device_get_softc(sc->dc_miibus);
3363 
3364 	/*
3365 	 * Cancel pending I/O and free all RX/TX buffers.
3366 	 */
3367 	dc_stop(sc);
3368 	dc_reset(sc);
3369 
3370 	/*
3371 	 * Set cache alignment and burst length.
3372 	 */
3373 	if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc))
3374 		CSR_WRITE_4(sc, DC_BUSCTL, 0);
3375 	else
3376 		CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME | DC_BUSCTL_MRLE);
3377 	/*
3378 	 * Evenly share the bus between receive and transmit process.
3379 	 */
3380 	if (DC_IS_INTEL(sc))
3381 		DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION);
3382 	if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
3383 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
3384 	} else {
3385 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
3386 	}
3387 	if (sc->dc_flags & DC_TX_POLL)
3388 		DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
3389 	switch(sc->dc_cachesize) {
3390 	case 32:
3391 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
3392 		break;
3393 	case 16:
3394 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
3395 		break;
3396 	case 8:
3397 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
3398 		break;
3399 	case 0:
3400 	default:
3401 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
3402 		break;
3403 	}
3404 
3405 	if (sc->dc_flags & DC_TX_STORENFWD)
3406 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3407 	else {
3408 		if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3409 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3410 		} else {
3411 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3412 			DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3413 		}
3414 	}
3415 
3416 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
3417 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
3418 
3419 	if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
3420 		/*
3421 		 * The app notes for the 98713 and 98715A say that
3422 		 * in order to have the chips operate properly, a magic
3423 		 * number must be written to CSR16. Macronix does not
3424 		 * document the meaning of these bits so there's no way
3425 		 * to know exactly what they do. The 98713 has a magic
3426 		 * number all its own; the rest all use a different one.
3427 		 */
3428 		DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
3429 		if (sc->dc_type == DC_TYPE_98713)
3430 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
3431 		else
3432 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
3433 	}
3434 
3435 	if (DC_IS_XIRCOM(sc)) {
3436 		/*
3437 		 * setup General Purpose Port mode and data so the tulip
3438 		 * can talk to the MII.
3439 		 */
3440 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
3441 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3442 		DELAY(10);
3443 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
3444 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3445 		DELAY(10);
3446 	}
3447 
3448 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3449 	DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN);
3450 
3451 	/* Init circular RX list. */
3452 	if (dc_list_rx_init(sc) == ENOBUFS) {
3453 		printf("dc%d: initialization failed: no "
3454 		    "memory for rx buffers\n", sc->dc_unit);
3455 		dc_stop(sc);
3456 		DC_UNLOCK(sc);
3457 		return;
3458 	}
3459 
3460 	/*
3461 	 * Init TX descriptors.
3462 	 */
3463 	dc_list_tx_init(sc);
3464 
3465 	/*
3466 	 * Load the address of the RX list.
3467 	 */
3468 	CSR_WRITE_4(sc, DC_RXADDR, DC_RXDESC(sc, 0));
3469 	CSR_WRITE_4(sc, DC_TXADDR, DC_TXDESC(sc, 0));
3470 
3471 	/*
3472 	 * Enable interrupts.
3473 	 */
3474 #ifdef DEVICE_POLLING
3475 	/*
3476 	 * ... but only if we are not polling, and make sure they are off in
3477 	 * the case of polling. Some cards (e.g. fxp) turn interrupts on
3478 	 * after a reset.
3479 	 */
3480 	if (ifp->if_flags & IFF_POLLING)
3481 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3482 	else
3483 #endif
3484 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3485 	CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
3486 
3487 	/* Enable transmitter. */
3488 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3489 
3490 	/*
3491 	 * If this is an Intel 21143 and we're not using the
3492 	 * MII port, program the LED control pins so we get
3493 	 * link and activity indications.
3494 	 */
3495 	if (sc->dc_flags & DC_TULIP_LEDS) {
3496 		CSR_WRITE_4(sc, DC_WATCHDOG,
3497 		    DC_WDOG_CTLWREN | DC_WDOG_LINK | DC_WDOG_ACTIVITY);
3498 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
3499 	}
3500 
3501 	/*
3502 	 * Load the RX/multicast filter. We do this sort of late
3503 	 * because the filter programming scheme on the 21143 and
3504 	 * some clones requires DMAing a setup frame via the TX
3505 	 * engine, and we need the transmitter enabled for that.
3506 	 */
3507 	dc_setfilt(sc);
3508 
3509 	/* Enable receiver. */
3510 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
3511 	CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
3512 
3513 	mii_mediachg(mii);
3514 	dc_setcfg(sc, sc->dc_if_media);
3515 
3516 	ifp->if_flags |= IFF_RUNNING;
3517 	ifp->if_flags &= ~IFF_OACTIVE;
3518 
3519 	/* Don't start the ticker if this is a homePNA link. */
3520 	if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_HPNA_1)
3521 		sc->dc_link = 1;
3522 	else {
3523 		if (sc->dc_flags & DC_21143_NWAY)
3524 			callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
3525 		else
3526 			callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
3527 	}
3528 
3529 #ifdef SRM_MEDIA
3530 	if(sc->dc_srm_media) {
3531 		struct ifreq ifr;
3532 
3533 		ifr.ifr_media = sc->dc_srm_media;
3534 		ifmedia_ioctl(ifp, &ifr, &mii->mii_media, SIOCSIFMEDIA);
3535 		sc->dc_srm_media = 0;
3536 	}
3537 #endif
3538 	DC_UNLOCK(sc);
3539 }
3540 
3541 /*
3542  * Set media options.
3543  */
3544 static int
3545 dc_ifmedia_upd(struct ifnet *ifp)
3546 {
3547 	struct dc_softc *sc;
3548 	struct mii_data *mii;
3549 	struct ifmedia *ifm;
3550 
3551 	sc = ifp->if_softc;
3552 	mii = device_get_softc(sc->dc_miibus);
3553 	mii_mediachg(mii);
3554 	ifm = &mii->mii_media;
3555 
3556 	if (DC_IS_DAVICOM(sc) &&
3557 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1)
3558 		dc_setcfg(sc, ifm->ifm_media);
3559 	else
3560 		sc->dc_link = 0;
3561 
3562 	return (0);
3563 }
3564 
3565 /*
3566  * Report current media status.
3567  */
3568 static void
3569 dc_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3570 {
3571 	struct dc_softc *sc;
3572 	struct mii_data *mii;
3573 	struct ifmedia *ifm;
3574 
3575 	sc = ifp->if_softc;
3576 	mii = device_get_softc(sc->dc_miibus);
3577 	mii_pollstat(mii);
3578 	ifm = &mii->mii_media;
3579 	if (DC_IS_DAVICOM(sc)) {
3580 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
3581 			ifmr->ifm_active = ifm->ifm_media;
3582 			ifmr->ifm_status = 0;
3583 			return;
3584 		}
3585 	}
3586 	ifmr->ifm_active = mii->mii_media_active;
3587 	ifmr->ifm_status = mii->mii_media_status;
3588 }
3589 
3590 static int
3591 dc_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
3592 {
3593 	struct dc_softc *sc = ifp->if_softc;
3594 	struct ifreq *ifr = (struct ifreq *)data;
3595 	struct mii_data *mii;
3596 	int error = 0;
3597 
3598 	DC_LOCK(sc);
3599 
3600 	switch (command) {
3601 	case SIOCSIFFLAGS:
3602 		if (ifp->if_flags & IFF_UP) {
3603 			int need_setfilt = (ifp->if_flags ^ sc->dc_if_flags) &
3604 				(IFF_PROMISC | IFF_ALLMULTI);
3605 
3606 			if (ifp->if_flags & IFF_RUNNING) {
3607 				if (need_setfilt)
3608 					dc_setfilt(sc);
3609 			} else {
3610 				sc->dc_txthresh = 0;
3611 				dc_init(sc);
3612 			}
3613 		} else {
3614 			if (ifp->if_flags & IFF_RUNNING)
3615 				dc_stop(sc);
3616 		}
3617 		sc->dc_if_flags = ifp->if_flags;
3618 		error = 0;
3619 		break;
3620 	case SIOCADDMULTI:
3621 	case SIOCDELMULTI:
3622 		dc_setfilt(sc);
3623 		error = 0;
3624 		break;
3625 	case SIOCGIFMEDIA:
3626 	case SIOCSIFMEDIA:
3627 		mii = device_get_softc(sc->dc_miibus);
3628 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
3629 #ifdef SRM_MEDIA
3630 		if (sc->dc_srm_media)
3631 			sc->dc_srm_media = 0;
3632 #endif
3633 		break;
3634 	default:
3635 		error = ether_ioctl(ifp, command, data);
3636 		break;
3637 	}
3638 
3639 	DC_UNLOCK(sc);
3640 
3641 	return (error);
3642 }
3643 
3644 static void
3645 dc_watchdog(struct ifnet *ifp)
3646 {
3647 	struct dc_softc *sc;
3648 
3649 	sc = ifp->if_softc;
3650 
3651 	DC_LOCK(sc);
3652 
3653 	ifp->if_oerrors++;
3654 	printf("dc%d: watchdog timeout\n", sc->dc_unit);
3655 
3656 	dc_stop(sc);
3657 	dc_reset(sc);
3658 	dc_init(sc);
3659 
3660 	if (ifp->if_snd.ifq_head != NULL)
3661 		dc_start(ifp);
3662 
3663 	DC_UNLOCK(sc);
3664 }
3665 
3666 /*
3667  * Stop the adapter and free any mbufs allocated to the
3668  * RX and TX lists.
3669  */
3670 static void
3671 dc_stop(struct dc_softc *sc)
3672 {
3673 	struct ifnet *ifp;
3674 	struct dc_list_data *ld;
3675 	struct dc_chain_data *cd;
3676 	int i;
3677 
3678 	DC_LOCK(sc);
3679 
3680 	ifp = &sc->arpcom.ac_if;
3681 	ifp->if_timer = 0;
3682 	ld = sc->dc_ldata;
3683 	cd = &sc->dc_cdata;
3684 
3685 	callout_stop(&sc->dc_stat_ch);
3686 
3687 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3688 #ifdef DEVICE_POLLING
3689 	ether_poll_deregister(ifp);
3690 #endif
3691 
3692 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ON | DC_NETCFG_TX_ON));
3693 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3694 	CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
3695 	CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
3696 	sc->dc_link = 0;
3697 
3698 	/*
3699 	 * Free data in the RX lists.
3700 	 */
3701 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
3702 		if (cd->dc_rx_chain[i] != NULL) {
3703 			m_freem(cd->dc_rx_chain[i]);
3704 			cd->dc_rx_chain[i] = NULL;
3705 		}
3706 	}
3707 	bzero(&ld->dc_rx_list, sizeof(ld->dc_rx_list));
3708 
3709 	/*
3710 	 * Free the TX list buffers.
3711 	 */
3712 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
3713 		if (cd->dc_tx_chain[i] != NULL) {
3714 			if ((ld->dc_tx_list[i].dc_ctl & DC_TXCTL_SETUP) ||
3715 			    !(ld->dc_tx_list[i].dc_ctl & DC_TXCTL_FIRSTFRAG)) {
3716 				cd->dc_tx_chain[i] = NULL;
3717 				continue;
3718 			}
3719 			bus_dmamap_unload(sc->dc_mtag, cd->dc_tx_map[i]);
3720 			m_freem(cd->dc_tx_chain[i]);
3721 			cd->dc_tx_chain[i] = NULL;
3722 		}
3723 	}
3724 	bzero(&ld->dc_tx_list, sizeof(ld->dc_tx_list));
3725 
3726 	DC_UNLOCK(sc);
3727 }
3728 
3729 /*
3730  * Device suspend routine.  Stop the interface and save some PCI
3731  * settings in case the BIOS doesn't restore them properly on
3732  * resume.
3733  */
3734 static int
3735 dc_suspend(device_t dev)
3736 {
3737 	struct dc_softc *sc;
3738 	int i, s;
3739 
3740 	s = splimp();
3741 
3742 	sc = device_get_softc(dev);
3743 
3744 	dc_stop(sc);
3745 
3746 	for (i = 0; i < 5; i++)
3747 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
3748 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
3749 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
3750 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
3751 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
3752 
3753 	sc->suspended = 1;
3754 
3755 	splx(s);
3756 	return (0);
3757 }
3758 
3759 /*
3760  * Device resume routine.  Restore some PCI settings in case the BIOS
3761  * doesn't, re-enable busmastering, and restart the interface if
3762  * appropriate.
3763  */
3764 static int
3765 dc_resume(device_t dev)
3766 {
3767 	struct dc_softc *sc;
3768 	struct ifnet *ifp;
3769 	int i, s;
3770 
3771 	s = splimp();
3772 
3773 	sc = device_get_softc(dev);
3774 	ifp = &sc->arpcom.ac_if;
3775 #ifndef BURN_BRIDGES
3776 	dc_acpi(dev);
3777 #endif
3778 	/* better way to do this? */
3779 	for (i = 0; i < 5; i++)
3780 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
3781 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
3782 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
3783 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
3784 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
3785 
3786 	/* reenable busmastering */
3787 	pci_enable_busmaster(dev);
3788 	pci_enable_io(dev, DC_RES);
3789 
3790 	/* reinitialize interface if necessary */
3791 	if (ifp->if_flags & IFF_UP)
3792 		dc_init(sc);
3793 
3794 	sc->suspended = 0;
3795 
3796 	splx(s);
3797 	return (0);
3798 }
3799 
3800 /*
3801  * Stop all chip I/O so that the kernel's probe routines don't
3802  * get confused by errant DMAs when rebooting.
3803  */
3804 static void
3805 dc_shutdown(device_t dev)
3806 {
3807 	struct dc_softc *sc;
3808 
3809 	sc = device_get_softc(dev);
3810 
3811 	dc_stop(sc);
3812 }
3813