xref: /freebsd/sys/dev/dc/if_dc.c (revision daf1cffce2e07931f27c6c6998652e90df6ba87e)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ee.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD$
33  */
34 
35 /*
36  * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
37  * series chips and several workalikes including the following:
38  *
39  * Macronix 98713/98715/98725 PMAC (www.macronix.com)
40  * Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
41  * Lite-On 82c168/82c169 PNIC (www.litecom.com)
42  * ASIX Electronics AX88140A (www.asix.com.tw)
43  * ASIX Electronics AX88141 (www.asix.com.tw)
44  * ADMtek AL981 (www.admtek.com.tw)
45  * ADMtek AN985 (www.admtek.com.tw)
46  * Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
47  *
48  * Datasheets for the 21143 are available at developer.intel.com.
49  * Datasheets for the clone parts can be found at their respective sites.
50  * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
51  * The PNIC II is essentially a Macronix 98715A chip; the only difference
52  * worth noting is that its multicast hash table is only 128 bits wide
53  * instead of 512.
54  *
55  * Written by Bill Paul <wpaul@ee.columbia.edu>
56  * Electrical Engineering Department
57  * Columbia University, New York City
58  */
59 
60 /*
61  * The Intel 21143 is the successor to the DEC 21140. It is basically
62  * the same as the 21140 but with a few new features. The 21143 supports
63  * three kinds of media attachments:
64  *
65  * o MII port, for 10Mbps and 100Mbps support and NWAY
66  *   autonegotiation provided by an external PHY.
67  * o SYM port, for symbol mode 100Mbps support.
68  * o 10baseT port.
69  * o AUI/BNC port.
70  *
71  * The 100Mbps SYM port and 10baseT port can be used together in
72  * combination with the internal NWAY support to create a 10/100
73  * autosensing configuration.
74  *
75  * Knowing which media is available on a given card is tough: you're
76  * supposed to go slogging through the EEPROM looking for media
77  * description structures. Unfortunately, some card vendors that use
78  * the 21143 don't obey the DEC SROM spec correctly, which means that
79  * what you find in the EEPROM may not agree with reality. Fortunately,
80  * the 21143 provides us a way to get around this issue: lurking in
81  * PCI configuration space is the Configuration Wake-Up Command Register.
82  * This register is loaded with a value from the EEPROM when wake on LAN
83  * mode is enabled; this value tells us quite clearly what kind of media
84  * is attached to the NIC. The main purpose of this register is to tell
85  * the NIC what media to scan when in wake on LAN mode, however by
86  * forcibly enabling wake on LAN mode, we can use to learn what kind of
87  * media a given NIC has available and adapt ourselves accordingly.
88  *
89  * Of course, if the media description blocks in the EEPROM are bogus.
90  * what are the odds that the CWUC aren't bogus as well, right? Well,
91  * the CWUC value is more likely to be correct since wake on LAN mode
92  * won't work correctly without it, and wake on LAN is a big selling
93  * point these days. It's also harder to screw up a single byte than
94  * a whole media descriptor block.
95  *
96  * Note that not all tulip workalikes are handled in this driver: we only
97  * deal with those which are relatively well behaved. The Winbond is
98  * handled separately due to its different register offsets and the
99  * special handling needed for its various bugs. The PNIC is handled
100  * here, but I'm not thrilled about it.
101  *
102  * All of the workalike chips use some form of MII transceiver support
103  * with the exception of the Macronix chips, which also have a SYM port.
104  * The ASIX AX88140A is also documented to have a SYM port, but all
105  * the cards I've seen use an MII transceiver, probably because the
106  * AX88140A doesn't support internal NWAY.
107  */
108 
109 #include <sys/param.h>
110 #include <sys/systm.h>
111 #include <sys/sockio.h>
112 #include <sys/mbuf.h>
113 #include <sys/malloc.h>
114 #include <sys/kernel.h>
115 #include <sys/socket.h>
116 
117 #include <net/if.h>
118 #include <net/if_arp.h>
119 #include <net/ethernet.h>
120 #include <net/if_dl.h>
121 #include <net/if_media.h>
122 
123 #include <net/bpf.h>
124 
125 #include <vm/vm.h>              /* for vtophys */
126 #include <vm/pmap.h>            /* for vtophys */
127 #include <machine/clock.h>      /* for DELAY */
128 #include <machine/bus_pio.h>
129 #include <machine/bus_memio.h>
130 #include <machine/bus.h>
131 #include <machine/resource.h>
132 #include <sys/bus.h>
133 #include <sys/rman.h>
134 
135 #include <dev/mii/mii.h>
136 #include <dev/mii/miivar.h>
137 
138 #include <pci/pcireg.h>
139 #include <pci/pcivar.h>
140 
141 #define DC_USEIOSPACE
142 
143 #include <pci/if_dcreg.h>
144 
145 /* "controller miibus0" required.  See GENERIC if you get errors here. */
146 #include "miibus_if.h"
147 
148 #ifndef lint
149 static const char rcsid[] =
150   "$FreeBSD$";
151 #endif
152 
153 /*
154  * Various supported device vendors/types and their names.
155  */
156 static struct dc_type dc_devs[] = {
157 	{ DC_VENDORID_DEC, DC_DEVICEID_21143,
158 		"Intel 21143 10/100BaseTX" },
159 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100,
160 		"Davicom DM9100 10/100BaseTX" },
161 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
162 		"Davicom DM9102 10/100BaseTX" },
163 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
164 		"Davicom DM9102A 10/100BaseTX" },
165 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AL981,
166 		"ADMtek AL981 10/100BaseTX" },
167 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AN985,
168 		"ADMtek AN985 10/100BaseTX" },
169 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
170 		"ASIX AX88140A 10/100BaseTX" },
171 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
172 		"ASIX AX88141 10/100BaseTX" },
173 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
174 		"Macronix 98713 10/100BaseTX" },
175 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
176 		"Macronix 98713A 10/100BaseTX" },
177 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
178 		"Compex RL100-TX 10/100BaseTX" },
179 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
180 		"Compex RL100-TX 10/100BaseTX" },
181 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
182 		"Macronix 98715/98715A 10/100BaseTX" },
183 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
184 		"Macronix 98725 10/100BaseTX" },
185 	{ DC_VENDORID_LO, DC_DEVICEID_82C115,
186 		"LC82C115 PNIC II 10/100BaseTX" },
187 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
188 		"82c168 PNIC 10/100BaseTX" },
189 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
190 		"82c169 PNIC 10/100BaseTX" },
191 	{ 0, 0, NULL }
192 };
193 
194 static int dc_probe		__P((device_t));
195 static int dc_attach		__P((device_t));
196 static int dc_detach		__P((device_t));
197 static void dc_acpi		__P((device_t));
198 static struct dc_type *dc_devtype	__P((device_t));
199 static int dc_newbuf		__P((struct dc_softc *, int, struct mbuf *));
200 static int dc_encap		__P((struct dc_softc *, struct mbuf *,
201 					u_int32_t *));
202 static int dc_coal		__P((struct dc_softc *, struct mbuf **));
203 static void dc_pnic_rx_bug_war	__P((struct dc_softc *, int));
204 static int dc_rx_resync		__P((struct dc_softc *));
205 static void dc_rxeof		__P((struct dc_softc *));
206 static void dc_txeof		__P((struct dc_softc *));
207 static void dc_tick		__P((void *));
208 static void dc_intr		__P((void *));
209 static void dc_start		__P((struct ifnet *));
210 static int dc_ioctl		__P((struct ifnet *, u_long, caddr_t));
211 static void dc_init		__P((void *));
212 static void dc_stop		__P((struct dc_softc *));
213 static void dc_watchdog		__P((struct ifnet *));
214 static void dc_shutdown		__P((device_t));
215 static int dc_ifmedia_upd	__P((struct ifnet *));
216 static void dc_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
217 
218 static void dc_delay		__P((struct dc_softc *));
219 static void dc_eeprom_idle	__P((struct dc_softc *));
220 static void dc_eeprom_putbyte	__P((struct dc_softc *, int));
221 static void dc_eeprom_getword	__P((struct dc_softc *, int, u_int16_t *));
222 static void dc_eeprom_getword_pnic
223 				__P((struct dc_softc *, int, u_int16_t *));
224 static void dc_read_eeprom	__P((struct dc_softc *, caddr_t, int,
225 							int, int));
226 
227 static void dc_mii_writebit	__P((struct dc_softc *, int));
228 static int dc_mii_readbit	__P((struct dc_softc *));
229 static void dc_mii_sync		__P((struct dc_softc *));
230 static void dc_mii_send		__P((struct dc_softc *, u_int32_t, int));
231 static int dc_mii_readreg	__P((struct dc_softc *, struct dc_mii_frame *));
232 static int dc_mii_writereg	__P((struct dc_softc *, struct dc_mii_frame *));
233 static int dc_miibus_readreg	__P((device_t, int, int));
234 static int dc_miibus_writereg	__P((device_t, int, int, int));
235 static void dc_miibus_statchg	__P((device_t));
236 static void dc_miibus_mediainit	__P((device_t));
237 
238 static void dc_setcfg		__P((struct dc_softc *, int));
239 static u_int32_t dc_crc_le	__P((struct dc_softc *, caddr_t));
240 static u_int32_t dc_crc_be	__P((caddr_t));
241 static void dc_setfilt_21143	__P((struct dc_softc *));
242 static void dc_setfilt_asix	__P((struct dc_softc *));
243 static void dc_setfilt_admtek	__P((struct dc_softc *));
244 
245 static void dc_setfilt		__P((struct dc_softc *));
246 
247 static void dc_reset		__P((struct dc_softc *));
248 static int dc_list_rx_init	__P((struct dc_softc *));
249 static int dc_list_tx_init	__P((struct dc_softc *));
250 
251 #ifdef DC_USEIOSPACE
252 #define DC_RES			SYS_RES_IOPORT
253 #define DC_RID			DC_PCI_CFBIO
254 #else
255 #define DC_RES			SYS_RES_MEMORY
256 #define DC_RID			DC_PCI_CFBMA
257 #endif
258 
259 static device_method_t dc_methods[] = {
260 	/* Device interface */
261 	DEVMETHOD(device_probe,		dc_probe),
262 	DEVMETHOD(device_attach,	dc_attach),
263 	DEVMETHOD(device_detach,	dc_detach),
264 	DEVMETHOD(device_shutdown,	dc_shutdown),
265 
266 	/* bus interface */
267 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
268 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
269 
270 	/* MII interface */
271 	DEVMETHOD(miibus_readreg,	dc_miibus_readreg),
272 	DEVMETHOD(miibus_writereg,	dc_miibus_writereg),
273 	DEVMETHOD(miibus_statchg,	dc_miibus_statchg),
274 	DEVMETHOD(miibus_mediainit,	dc_miibus_mediainit),
275 
276 	{ 0, 0 }
277 };
278 
279 static driver_t dc_driver = {
280 	"dc",
281 	dc_methods,
282 	sizeof(struct dc_softc)
283 };
284 
285 static devclass_t dc_devclass;
286 
287 DRIVER_MODULE(if_dc, pci, dc_driver, dc_devclass, 0, 0);
288 DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, 0, 0);
289 
290 #define DC_SETBIT(sc, reg, x)				\
291 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
292 
293 #define DC_CLRBIT(sc, reg, x)				\
294 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
295 
296 #define SIO_SET(x)	DC_SETBIT(sc, DC_SIO, (x))
297 #define SIO_CLR(x)	DC_CLRBIT(sc, DC_SIO, (x))
298 
299 static void dc_delay(sc)
300 	struct dc_softc		*sc;
301 {
302 	int			idx;
303 
304 	for (idx = (300 / 33) + 1; idx > 0; idx--)
305 		CSR_READ_4(sc, DC_BUSCTL);
306 }
307 
308 static void dc_eeprom_idle(sc)
309 	struct dc_softc		*sc;
310 {
311 	register int		i;
312 
313 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
314 	dc_delay(sc);
315 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
316 	dc_delay(sc);
317 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
318 	dc_delay(sc);
319 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
320 	dc_delay(sc);
321 
322 	for (i = 0; i < 25; i++) {
323 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
324 		dc_delay(sc);
325 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
326 		dc_delay(sc);
327 	}
328 
329 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
330 	dc_delay(sc);
331 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
332 	dc_delay(sc);
333 	CSR_WRITE_4(sc, DC_SIO, 0x00000000);
334 
335 	return;
336 }
337 
338 /*
339  * Send a read command and address to the EEPROM, check for ACK.
340  */
341 static void dc_eeprom_putbyte(sc, addr)
342 	struct dc_softc		*sc;
343 	int			addr;
344 {
345 	register int		d, i;
346 
347 	/*
348 	 * The AN985 has a 93C66 EEPROM on it instead of
349 	 * a 93C46. It uses a different bit sequence for
350 	 * specifying the "read" opcode.
351 	 */
352 	if (DC_IS_CENTAUR(sc))
353 		d = addr | (DC_EECMD_READ << 2);
354 	else
355 		d = addr | DC_EECMD_READ;
356 
357 	/*
358 	 * Feed in each bit and strobe the clock.
359 	 */
360 	for (i = 0x400; i; i >>= 1) {
361 		if (d & i) {
362 			SIO_SET(DC_SIO_EE_DATAIN);
363 		} else {
364 			SIO_CLR(DC_SIO_EE_DATAIN);
365 		}
366 		dc_delay(sc);
367 		SIO_SET(DC_SIO_EE_CLK);
368 		dc_delay(sc);
369 		SIO_CLR(DC_SIO_EE_CLK);
370 		dc_delay(sc);
371 	}
372 
373 	return;
374 }
375 
376 /*
377  * Read a word of data stored in the EEPROM at address 'addr.'
378  * The PNIC 82c168/82c169 has its own non-standard way to read
379  * the EEPROM.
380  */
381 static void dc_eeprom_getword_pnic(sc, addr, dest)
382 	struct dc_softc		*sc;
383 	int			addr;
384 	u_int16_t		*dest;
385 {
386 	register int		i;
387 	u_int32_t		r;
388 
389 	CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ|addr);
390 
391 	for (i = 0; i < DC_TIMEOUT; i++) {
392 		DELAY(1);
393 		r = CSR_READ_4(sc, DC_SIO);
394 		if (!(r & DC_PN_SIOCTL_BUSY)) {
395 			*dest = (u_int16_t)(r & 0xFFFF);
396 			return;
397 		}
398 	}
399 
400 	return;
401 }
402 
403 /*
404  * Read a word of data stored in the EEPROM at address 'addr.'
405  */
406 static void dc_eeprom_getword(sc, addr, dest)
407 	struct dc_softc		*sc;
408 	int			addr;
409 	u_int16_t		*dest;
410 {
411 	register int		i;
412 	u_int16_t		word = 0;
413 
414 	/* Force EEPROM to idle state. */
415 	dc_eeprom_idle(sc);
416 
417 	/* Enter EEPROM access mode. */
418 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
419 	dc_delay(sc);
420 	DC_SETBIT(sc, DC_SIO,  DC_SIO_ROMCTL_READ);
421 	dc_delay(sc);
422 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
423 	dc_delay(sc);
424 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
425 	dc_delay(sc);
426 
427 	/*
428 	 * Send address of word we want to read.
429 	 */
430 	dc_eeprom_putbyte(sc, addr);
431 
432 	/*
433 	 * Start reading bits from EEPROM.
434 	 */
435 	for (i = 0x8000; i; i >>= 1) {
436 		SIO_SET(DC_SIO_EE_CLK);
437 		dc_delay(sc);
438 		if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
439 			word |= i;
440 		dc_delay(sc);
441 		SIO_CLR(DC_SIO_EE_CLK);
442 		dc_delay(sc);
443 	}
444 
445 	/* Turn off EEPROM access mode. */
446 	dc_eeprom_idle(sc);
447 
448 	*dest = word;
449 
450 	return;
451 }
452 
453 /*
454  * Read a sequence of words from the EEPROM.
455  */
456 static void dc_read_eeprom(sc, dest, off, cnt, swap)
457 	struct dc_softc		*sc;
458 	caddr_t			dest;
459 	int			off;
460 	int			cnt;
461 	int			swap;
462 {
463 	int			i;
464 	u_int16_t		word = 0, *ptr;
465 
466 	for (i = 0; i < cnt; i++) {
467 		if (DC_IS_PNIC(sc))
468 			dc_eeprom_getword_pnic(sc, off + i, &word);
469 		else
470 			dc_eeprom_getword(sc, off + i, &word);
471 		ptr = (u_int16_t *)(dest + (i * 2));
472 		if (swap)
473 			*ptr = ntohs(word);
474 		else
475 			*ptr = word;
476 	}
477 
478 	return;
479 }
480 
481 /*
482  * The following two routines are taken from the Macronix 98713
483  * Application Notes pp.19-21.
484  */
485 /*
486  * Write a bit to the MII bus.
487  */
488 static void dc_mii_writebit(sc, bit)
489 	struct dc_softc		*sc;
490 	int			bit;
491 {
492 	if (bit)
493 		CSR_WRITE_4(sc, DC_SIO,
494 		    DC_SIO_ROMCTL_WRITE|DC_SIO_MII_DATAOUT);
495 	else
496 		CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
497 
498 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
499 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
500 
501 	return;
502 }
503 
504 /*
505  * Read a bit from the MII bus.
506  */
507 static int dc_mii_readbit(sc)
508 	struct dc_softc		*sc;
509 {
510 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_READ|DC_SIO_MII_DIR);
511 	CSR_READ_4(sc, DC_SIO);
512 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
513 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
514 	if (CSR_READ_4(sc, DC_SIO) & DC_SIO_MII_DATAIN)
515 		return(1);
516 
517 	return(0);
518 }
519 
520 /*
521  * Sync the PHYs by setting data bit and strobing the clock 32 times.
522  */
523 static void dc_mii_sync(sc)
524 	struct dc_softc		*sc;
525 {
526 	register int		i;
527 
528 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
529 
530 	for (i = 0; i < 32; i++)
531 		dc_mii_writebit(sc, 1);
532 
533 	return;
534 }
535 
536 /*
537  * Clock a series of bits through the MII.
538  */
539 static void dc_mii_send(sc, bits, cnt)
540 	struct dc_softc		*sc;
541 	u_int32_t		bits;
542 	int			cnt;
543 {
544 	int			i;
545 
546 	for (i = (0x1 << (cnt - 1)); i; i >>= 1)
547 		dc_mii_writebit(sc, bits & i);
548 }
549 
550 /*
551  * Read an PHY register through the MII.
552  */
553 static int dc_mii_readreg(sc, frame)
554 	struct dc_softc		*sc;
555 	struct dc_mii_frame	*frame;
556 
557 {
558 	int			i, ack, s;
559 
560 	s = splimp();
561 
562 	/*
563 	 * Set up frame for RX.
564 	 */
565 	frame->mii_stdelim = DC_MII_STARTDELIM;
566 	frame->mii_opcode = DC_MII_READOP;
567 	frame->mii_turnaround = 0;
568 	frame->mii_data = 0;
569 
570 	/*
571 	 * Sync the PHYs.
572 	 */
573 	dc_mii_sync(sc);
574 
575 	/*
576 	 * Send command/address info.
577 	 */
578 	dc_mii_send(sc, frame->mii_stdelim, 2);
579 	dc_mii_send(sc, frame->mii_opcode, 2);
580 	dc_mii_send(sc, frame->mii_phyaddr, 5);
581 	dc_mii_send(sc, frame->mii_regaddr, 5);
582 
583 #ifdef notdef
584 	/* Idle bit */
585 	dc_mii_writebit(sc, 1);
586 	dc_mii_writebit(sc, 0);
587 #endif
588 
589 	/* Check for ack */
590 	ack = dc_mii_readbit(sc);
591 
592 	/*
593 	 * Now try reading data bits. If the ack failed, we still
594 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
595 	 */
596 	if (ack) {
597 		for(i = 0; i < 16; i++) {
598 			dc_mii_readbit(sc);
599 		}
600 		goto fail;
601 	}
602 
603 	for (i = 0x8000; i; i >>= 1) {
604 		if (!ack) {
605 			if (dc_mii_readbit(sc))
606 				frame->mii_data |= i;
607 		}
608 	}
609 
610 fail:
611 
612 	dc_mii_writebit(sc, 0);
613 	dc_mii_writebit(sc, 0);
614 
615 	splx(s);
616 
617 	if (ack)
618 		return(1);
619 	return(0);
620 }
621 
622 /*
623  * Write to a PHY register through the MII.
624  */
625 static int dc_mii_writereg(sc, frame)
626 	struct dc_softc		*sc;
627 	struct dc_mii_frame	*frame;
628 
629 {
630 	int			s;
631 
632 	s = splimp();
633 	/*
634 	 * Set up frame for TX.
635 	 */
636 
637 	frame->mii_stdelim = DC_MII_STARTDELIM;
638 	frame->mii_opcode = DC_MII_WRITEOP;
639 	frame->mii_turnaround = DC_MII_TURNAROUND;
640 
641 	/*
642 	 * Sync the PHYs.
643 	 */
644 	dc_mii_sync(sc);
645 
646 	dc_mii_send(sc, frame->mii_stdelim, 2);
647 	dc_mii_send(sc, frame->mii_opcode, 2);
648 	dc_mii_send(sc, frame->mii_phyaddr, 5);
649 	dc_mii_send(sc, frame->mii_regaddr, 5);
650 	dc_mii_send(sc, frame->mii_turnaround, 2);
651 	dc_mii_send(sc, frame->mii_data, 16);
652 
653 	/* Idle bit. */
654 	dc_mii_writebit(sc, 0);
655 	dc_mii_writebit(sc, 0);
656 
657 	splx(s);
658 
659 	return(0);
660 }
661 
662 static int dc_miibus_readreg(dev, phy, reg)
663 	device_t		dev;
664 	int			phy, reg;
665 {
666 	struct dc_mii_frame	frame;
667 	struct dc_softc		*sc;
668 	int			i, rval, phy_reg;
669 
670 	sc = device_get_softc(dev);
671 	bzero((char *)&frame, sizeof(frame));
672 
673 	/*
674 	 * Note: both the AL981 and AN985 have internal PHYs,
675 	 * however the AL981 provides direct access to the PHY
676 	 * registers while the AN985 uses a serial MII interface.
677 	 * The AN985's MII interface is also buggy in that you
678 	 * can read from any MII address (0 to 31), but only address 1
679 	 * behaves normally. To deal with both cases, we pretend
680 	 * that the PHY is at MII address 1.
681 	 */
682 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
683 		return(0);
684 
685 	if (sc->dc_pmode == DC_PMODE_SYM) {
686 		if (phy == (MII_NPHY - 1)) {
687 			switch(reg) {
688 			case MII_BMSR:
689 			/*
690 			 * Fake something to make the probe
691 			 * code think there's a PHY here.
692 			 */
693 				return(BMSR_MEDIAMASK);
694 				break;
695 			case MII_PHYIDR1:
696 				if (DC_IS_PNIC(sc))
697 					return(DC_VENDORID_LO);
698 				return(DC_VENDORID_DEC);
699 				break;
700 			case MII_PHYIDR2:
701 				if (DC_IS_PNIC(sc))
702 					return(DC_DEVICEID_82C168);
703 				return(DC_DEVICEID_21143);
704 				break;
705 			default:
706 				return(0);
707 				break;
708 			}
709 		} else
710 			return(0);
711 	}
712 
713 	if (DC_IS_PNIC(sc)) {
714 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
715 		    (phy << 23) | (reg << 18));
716 		for (i = 0; i < DC_TIMEOUT; i++) {
717 			DELAY(1);
718 			rval = CSR_READ_4(sc, DC_PN_MII);
719 			if (!(rval & DC_PN_MII_BUSY)) {
720 				rval &= 0xFFFF;
721 				return(rval == 0xFFFF ? 0 : rval);
722 			}
723 		}
724 		return(0);
725 	}
726 
727 	if (DC_IS_COMET(sc)) {
728 		switch(reg) {
729 		case MII_BMCR:
730 			phy_reg = DC_AL_BMCR;
731 			break;
732 		case MII_BMSR:
733 			phy_reg = DC_AL_BMSR;
734 			break;
735 		case MII_PHYIDR1:
736 			phy_reg = DC_AL_VENID;
737 			break;
738 		case MII_PHYIDR2:
739 			phy_reg = DC_AL_DEVID;
740 			break;
741 		case MII_ANAR:
742 			phy_reg = DC_AL_ANAR;
743 			break;
744 		case MII_ANLPAR:
745 			phy_reg = DC_AL_LPAR;
746 			break;
747 		case MII_ANER:
748 			phy_reg = DC_AL_ANER;
749 			break;
750 		default:
751 			printf("dc%d: phy_read: bad phy register %x\n",
752 			    sc->dc_unit, reg);
753 			return(0);
754 			break;
755 		}
756 
757 		rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
758 
759 		if (rval == 0xFFFF)
760 			return(0);
761 		return(rval);
762 	}
763 
764 	frame.mii_phyaddr = phy;
765 	frame.mii_regaddr = reg;
766 	phy_reg = CSR_READ_4(sc, DC_NETCFG);
767 	CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
768 	dc_mii_readreg(sc, &frame);
769 	CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
770 
771 	return(frame.mii_data);
772 }
773 
774 static int dc_miibus_writereg(dev, phy, reg, data)
775 	device_t		dev;
776 	int			phy, reg, data;
777 {
778 	struct dc_softc		*sc;
779 	struct dc_mii_frame	frame;
780 	int			i, phy_reg;
781 
782 	sc = device_get_softc(dev);
783 	bzero((char *)&frame, sizeof(frame));
784 
785 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
786 		return(0);
787 
788 	if (DC_IS_PNIC(sc)) {
789 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
790 		    (phy << 23) | (reg << 10) | data);
791 		for (i = 0; i < DC_TIMEOUT; i++) {
792 			if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
793 				break;
794 		}
795 		return(0);
796 	}
797 
798 	if (DC_IS_COMET(sc)) {
799 		switch(reg) {
800 		case MII_BMCR:
801 			phy_reg = DC_AL_BMCR;
802 			break;
803 		case MII_BMSR:
804 			phy_reg = DC_AL_BMSR;
805 			break;
806 		case MII_PHYIDR1:
807 			phy_reg = DC_AL_VENID;
808 			break;
809 		case MII_PHYIDR2:
810 			phy_reg = DC_AL_DEVID;
811 			break;
812 		case MII_ANAR:
813 			phy_reg = DC_AL_ANAR;
814 			break;
815 		case MII_ANLPAR:
816 			phy_reg = DC_AL_LPAR;
817 			break;
818 		case MII_ANER:
819 			phy_reg = DC_AL_ANER;
820 			break;
821 		default:
822 			printf("dc%d: phy_write: bad phy register %x\n",
823 			    sc->dc_unit, reg);
824 			return(0);
825 			break;
826 		}
827 
828 		CSR_WRITE_4(sc, phy_reg, data);
829 		return(0);
830 	}
831 
832 	frame.mii_phyaddr = phy;
833 	frame.mii_regaddr = reg;
834 	frame.mii_data = data;
835 
836 	phy_reg = CSR_READ_4(sc, DC_NETCFG);
837 	CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
838 	dc_mii_writereg(sc, &frame);
839 	CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
840 
841 	return(0);
842 }
843 
844 static void dc_miibus_statchg(dev)
845 	device_t		dev;
846 {
847 	struct dc_softc		*sc;
848 	struct mii_data		*mii;
849 	struct ifmedia		*ifm;
850 
851 	sc = device_get_softc(dev);
852 	if (DC_IS_ADMTEK(sc))
853 		return;
854 	mii = device_get_softc(sc->dc_miibus);
855 	ifm = &mii->mii_media;
856 	if (DC_IS_DAVICOM(sc) &&
857 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_homePNA) {
858 		dc_setcfg(sc, ifm->ifm_media);
859 		sc->dc_if_media = ifm->ifm_media;
860 	} else {
861 		dc_setcfg(sc, mii->mii_media_active);
862 		sc->dc_if_media = mii->mii_media_active;
863 	}
864 
865 	return;
866 }
867 
868 /*
869  * Special support for DM9102A cards with HomePNA PHYs. Note:
870  * with the Davicom DM9102A/DM9801 eval board that I have, it seems
871  * to be impossible to talk to the management interface of the DM9801
872  * PHY (its MDIO pin is not connected to anything). Consequently,
873  * the driver has to just 'know' about the additional mode and deal
874  * with it itself. *sigh*
875  */
876 static void dc_miibus_mediainit(dev)
877 	device_t		dev;
878 {
879 	struct dc_softc		*sc;
880 	struct mii_data		*mii;
881 	struct ifmedia		*ifm;
882 	int			rev;
883 
884 	rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF;
885 
886 	sc = device_get_softc(dev);
887 	mii = device_get_softc(sc->dc_miibus);
888 	ifm = &mii->mii_media;
889 
890 	if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A)
891 		ifmedia_add(ifm, IFM_ETHER|IFM_homePNA, 0, NULL);
892 
893 	return;
894 }
895 
896 #define DC_POLY		0xEDB88320
897 #define DC_BITS		9
898 #define DC_BITS_PNIC_II	7
899 
900 static u_int32_t dc_crc_le(sc, addr)
901 	struct dc_softc		*sc;
902 	caddr_t			addr;
903 {
904 	u_int32_t		idx, bit, data, crc;
905 
906 	/* Compute CRC for the address value. */
907 	crc = 0xFFFFFFFF; /* initial value */
908 
909 	for (idx = 0; idx < 6; idx++) {
910 		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1)
911 			crc = (crc >> 1) ^ (((crc ^ data) & 1) ? DC_POLY : 0);
912 	}
913 
914 	/* The hash table on the PNIC II is only 128 bits wide. */
915 	if (DC_IS_PNICII(sc))
916 		return (crc & ((1 << DC_BITS_PNIC_II) - 1));
917 
918 	return (crc & ((1 << DC_BITS) - 1));
919 }
920 
921 /*
922  * Calculate CRC of a multicast group address, return the lower 6 bits.
923  */
924 static u_int32_t dc_crc_be(addr)
925 	caddr_t			addr;
926 {
927 	u_int32_t		crc, carry;
928 	int			i, j;
929 	u_int8_t		c;
930 
931 	/* Compute CRC for the address value. */
932 	crc = 0xFFFFFFFF; /* initial value */
933 
934 	for (i = 0; i < 6; i++) {
935 		c = *(addr + i);
936 		for (j = 0; j < 8; j++) {
937 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
938 			crc <<= 1;
939 			c >>= 1;
940 			if (carry)
941 				crc = (crc ^ 0x04c11db6) | carry;
942 		}
943 	}
944 
945 	/* return the filter bit position */
946 	return((crc >> 26) & 0x0000003F);
947 }
948 
949 /*
950  * 21143-style RX filter setup routine. Filter programming is done by
951  * downloading a special setup frame into the TX engine. 21143, Macronix,
952  * PNIC, PNIC II and Davicom chips are programmed this way.
953  *
954  * We always program the chip using 'hash perfect' mode, i.e. one perfect
955  * address (our node address) and a 512-bit hash filter for multicast
956  * frames. We also sneak the broadcast address into the hash filter since
957  * we need that too.
958  */
959 void dc_setfilt_21143(sc)
960 	struct dc_softc		*sc;
961 {
962 	struct dc_desc		*sframe;
963 	u_int32_t		h, *sp;
964 	struct ifmultiaddr	*ifma;
965 	struct ifnet		*ifp;
966 	int			i;
967 
968 	ifp = &sc->arpcom.ac_if;
969 
970 	i = sc->dc_cdata.dc_tx_prod;
971 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
972 	sc->dc_cdata.dc_tx_cnt++;
973 	sframe = &sc->dc_ldata->dc_tx_list[i];
974 	sp = (u_int32_t *)&sc->dc_cdata.dc_sbuf;
975 	bzero((char *)sp, DC_SFRAME_LEN);
976 
977 	sframe->dc_data = vtophys(&sc->dc_cdata.dc_sbuf);
978 	sframe->dc_ctl = DC_SFRAME_LEN | DC_TXCTL_SETUP | DC_TXCTL_TLINK |
979 	    DC_FILTER_HASHPERF | DC_TXCTL_FINT;
980 
981 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)&sc->dc_cdata.dc_sbuf;
982 
983 	/* If we want promiscuous mode, set the allframes bit. */
984 	if (ifp->if_flags & IFF_PROMISC)
985 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
986 	else
987 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
988 
989 	if (ifp->if_flags & IFF_ALLMULTI)
990 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
991 	else
992 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
993 
994 	for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
995 	    ifma = ifma->ifma_link.le_next) {
996 		if (ifma->ifma_addr->sa_family != AF_LINK)
997 			continue;
998 		h = dc_crc_le(sc,
999 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1000 		sp[h >> 4] |= 1 << (h & 0xF);
1001 	}
1002 
1003 	if (ifp->if_flags & IFF_BROADCAST) {
1004 		h = dc_crc_le(sc, (caddr_t)&etherbroadcastaddr);
1005 		sp[h >> 4] |= 1 << (h & 0xF);
1006 	}
1007 
1008 	/* Set our MAC address */
1009 	sp[39] = ((u_int16_t *)sc->arpcom.ac_enaddr)[0];
1010 	sp[40] = ((u_int16_t *)sc->arpcom.ac_enaddr)[1];
1011 	sp[41] = ((u_int16_t *)sc->arpcom.ac_enaddr)[2];
1012 
1013 	sframe->dc_status = DC_TXSTAT_OWN;
1014 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1015 
1016 	/*
1017 	 * The PNIC takes an exceedingly long time to process its
1018 	 * setup frame; wait 10ms after posting the setup frame
1019 	 * before proceeding, just so it has time to swallow its
1020 	 * medicine.
1021 	 */
1022 	DELAY(10000);
1023 
1024 	ifp->if_timer = 5;
1025 
1026 	return;
1027 }
1028 
1029 void dc_setfilt_admtek(sc)
1030 	struct dc_softc		*sc;
1031 {
1032 	struct ifnet		*ifp;
1033 	int			h = 0;
1034 	u_int32_t		hashes[2] = { 0, 0 };
1035 	struct ifmultiaddr	*ifma;
1036 
1037 	ifp = &sc->arpcom.ac_if;
1038 
1039 	/* Init our MAC address */
1040 	CSR_WRITE_4(sc, DC_AL_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1041 	CSR_WRITE_4(sc, DC_AL_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1042 
1043 	/* If we want promiscuous mode, set the allframes bit. */
1044 	if (ifp->if_flags & IFF_PROMISC)
1045 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1046 	else
1047 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1048 
1049 	if (ifp->if_flags & IFF_ALLMULTI)
1050 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1051 	else
1052 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1053 
1054 	/* first, zot all the existing hash bits */
1055 	CSR_WRITE_4(sc, DC_AL_MAR0, 0);
1056 	CSR_WRITE_4(sc, DC_AL_MAR1, 0);
1057 
1058 	/*
1059 	 * If we're already in promisc or allmulti mode, we
1060 	 * don't have to bother programming the multicast filter.
1061 	 */
1062 	if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI))
1063 		return;
1064 
1065 	/* now program new ones */
1066 	for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
1067 	    ifma = ifma->ifma_link.le_next) {
1068 		if (ifma->ifma_addr->sa_family != AF_LINK)
1069 			continue;
1070 		h = dc_crc_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1071 		if (h < 32)
1072 			hashes[0] |= (1 << h);
1073 		else
1074 			hashes[1] |= (1 << (h - 32));
1075 	}
1076 
1077 	CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]);
1078 	CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]);
1079 
1080 	return;
1081 }
1082 
1083 void dc_setfilt_asix(sc)
1084 	struct dc_softc		*sc;
1085 {
1086 	struct ifnet		*ifp;
1087 	int			h = 0;
1088 	u_int32_t		hashes[2] = { 0, 0 };
1089 	struct ifmultiaddr	*ifma;
1090 
1091 	ifp = &sc->arpcom.ac_if;
1092 
1093         /* Init our MAC address */
1094         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
1095         CSR_WRITE_4(sc, DC_AX_FILTDATA,
1096 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1097         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
1098         CSR_WRITE_4(sc, DC_AX_FILTDATA,
1099 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1100 
1101 	/* If we want promiscuous mode, set the allframes bit. */
1102 	if (ifp->if_flags & IFF_PROMISC)
1103 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1104 	else
1105 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1106 
1107 	if (ifp->if_flags & IFF_ALLMULTI)
1108 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1109 	else
1110 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1111 
1112 	/*
1113 	 * The ASIX chip has a special bit to enable reception
1114 	 * of broadcast frames.
1115 	 */
1116 	if (ifp->if_flags & IFF_BROADCAST)
1117 		DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1118 	else
1119 		DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1120 
1121 	/* first, zot all the existing hash bits */
1122 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1123 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1124 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1125 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1126 
1127 	/*
1128 	 * If we're already in promisc or allmulti mode, we
1129 	 * don't have to bother programming the multicast filter.
1130 	 */
1131 	if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI))
1132 		return;
1133 
1134 	/* now program new ones */
1135 	for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
1136 	    ifma = ifma->ifma_link.le_next) {
1137 		if (ifma->ifma_addr->sa_family != AF_LINK)
1138 			continue;
1139 		h = dc_crc_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1140 		if (h < 32)
1141 			hashes[0] |= (1 << h);
1142 		else
1143 			hashes[1] |= (1 << (h - 32));
1144 	}
1145 
1146 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1147 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
1148 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1149 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
1150 
1151 	return;
1152 }
1153 
1154 static void dc_setfilt(sc)
1155 	struct dc_softc		*sc;
1156 {
1157 	if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
1158 	    DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc))
1159 		dc_setfilt_21143(sc);
1160 
1161 	if (DC_IS_ASIX(sc))
1162 		dc_setfilt_asix(sc);
1163 
1164 	if (DC_IS_ADMTEK(sc))
1165 		dc_setfilt_admtek(sc);
1166 
1167 	return;
1168 }
1169 
1170 /*
1171  * In order to fiddle with the
1172  * 'full-duplex' and '100Mbps' bits in the netconfig register, we
1173  * first have to put the transmit and/or receive logic in the idle state.
1174  */
1175 static void dc_setcfg(sc, media)
1176 	struct dc_softc		*sc;
1177 	int			media;
1178 {
1179 	int			i, restart = 0;
1180 	u_int32_t		isr;
1181 
1182 	if (IFM_SUBTYPE(media) == IFM_NONE)
1183 		return;
1184 
1185 	if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON)) {
1186 		restart = 1;
1187 		DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON));
1188 
1189 		for (i = 0; i < DC_TIMEOUT; i++) {
1190 			DELAY(10);
1191 			isr = CSR_READ_4(sc, DC_ISR);
1192 			if (isr & DC_ISR_TX_IDLE ||
1193 			    (isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED)
1194 				break;
1195 		}
1196 
1197 		if (i == DC_TIMEOUT)
1198 			printf("dc%d: failed to force tx and "
1199 				"rx to idle state\n", sc->dc_unit);
1200 
1201 	}
1202 
1203 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
1204 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1205 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1206 		if (sc->dc_pmode == DC_PMODE_MII) {
1207 			DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1208 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1209 			    DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER));
1210 			if (sc->dc_type == DC_TYPE_98713)
1211 				DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1212 				    DC_NETCFG_SCRAMBLER));
1213 			if (!DC_IS_DAVICOM(sc))
1214 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1215 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1216 		} else {
1217 			if (DC_IS_PNIC(sc)) {
1218 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
1219 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1220 				DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1221 			}
1222 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL|
1223 			    DC_NETCFG_PCS|DC_NETCFG_SCRAMBLER);
1224 		}
1225 	}
1226 
1227 	if (IFM_SUBTYPE(media) == IFM_10_T) {
1228 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1229 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1230 		if (sc->dc_pmode == DC_PMODE_MII) {
1231 			DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1232 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1233 			    DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER));
1234 			if (sc->dc_type == DC_TYPE_98713)
1235 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1236 			if (!DC_IS_DAVICOM(sc))
1237 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1238 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1239 		} else {
1240 			if (DC_IS_PNIC(sc)) {
1241 				DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
1242 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1243 				DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1244 			}
1245 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1246 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1247 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1248 		}
1249 	}
1250 
1251 	/*
1252 	 * If this is a Davicom DM9102A card with a DM9801 HomePNA
1253 	 * PHY and we want HomePNA mode, set the portsel bit to turn
1254 	 * on the external MII port.
1255 	 */
1256 	if (DC_IS_DAVICOM(sc)) {
1257 		if (IFM_SUBTYPE(media) == IFM_homePNA) {
1258 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1259 			sc->dc_link = 1;
1260 		} else {
1261 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1262 		}
1263 	}
1264 
1265 	if ((media & IFM_GMASK) == IFM_FDX) {
1266 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1267 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1268 			DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1269 	} else {
1270 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1271 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1272 			DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1273 	}
1274 
1275 	if (restart)
1276 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON|DC_NETCFG_RX_ON);
1277 
1278 	return;
1279 }
1280 
1281 static void dc_reset(sc)
1282 	struct dc_softc		*sc;
1283 {
1284 	register int		i;
1285 
1286 	DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1287 
1288 	for (i = 0; i < DC_TIMEOUT; i++) {
1289 		DELAY(10);
1290 		if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
1291 			break;
1292 	}
1293 
1294 	if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc)) {
1295 		DELAY(10000);
1296 		DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1297 		i = 0;
1298 	}
1299 
1300 	if (i == DC_TIMEOUT)
1301 		printf("dc%d: reset never completed!\n", sc->dc_unit);
1302 
1303 	/* Wait a little while for the chip to get its brains in order. */
1304 	DELAY(1000);
1305 
1306 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
1307 	CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
1308 	CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
1309 
1310 	/*
1311 	 * Bring the SIA out of reset. In some cases, it looks
1312 	 * like failing to unreset the SIA soon enough gets it
1313 	 * into a state where it will never come out of reset
1314 	 * until we reset the whole chip again.
1315 	 */
1316 	if (DC_IS_INTEL(sc))
1317 		DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1318 
1319         return;
1320 }
1321 
1322 static struct dc_type *dc_devtype(dev)
1323 	device_t		dev;
1324 {
1325 	struct dc_type		*t;
1326 	u_int32_t		rev;
1327 
1328 	t = dc_devs;
1329 
1330 	while(t->dc_name != NULL) {
1331 		if ((pci_get_vendor(dev) == t->dc_vid) &&
1332 		    (pci_get_device(dev) == t->dc_did)) {
1333 			/* Check the PCI revision */
1334 			rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF;
1335 			if (t->dc_did == DC_DEVICEID_98713 &&
1336 			    rev >= DC_REVISION_98713A)
1337 				t++;
1338 			if (t->dc_did == DC_DEVICEID_98713_CP &&
1339 			    rev >= DC_REVISION_98713A)
1340 				t++;
1341 			if (t->dc_did == DC_DEVICEID_987x5 &&
1342 			    rev >= DC_REVISION_98725)
1343 				t++;
1344 			if (t->dc_did == DC_DEVICEID_AX88140A &&
1345 			    rev >= DC_REVISION_88141)
1346 				t++;
1347 			if (t->dc_did == DC_DEVICEID_82C168 &&
1348 			    rev >= DC_REVISION_82C169)
1349 				t++;
1350 			if (t->dc_did == DC_DEVICEID_DM9102 &&
1351 			    rev >= DC_REVISION_DM9102A)
1352 				t++;
1353 			return(t);
1354 		}
1355 		t++;
1356 	}
1357 
1358 	return(NULL);
1359 }
1360 
1361 /*
1362  * Probe for a 21143 or clone chip. Check the PCI vendor and device
1363  * IDs against our list and return a device name if we find a match.
1364  * We do a little bit of extra work to identify the exact type of
1365  * chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
1366  * but different revision IDs. The same is true for 98715/98715A
1367  * chips and the 98725, as well as the ASIX and ADMtek chips. In some
1368  * cases, the exact chip revision affects driver behavior.
1369  */
1370 static int dc_probe(dev)
1371 	device_t		dev;
1372 {
1373 	struct dc_type		*t;
1374 
1375 	t = dc_devtype(dev);
1376 
1377 	if (t != NULL) {
1378 		device_set_desc(dev, t->dc_name);
1379 		return(0);
1380 	}
1381 
1382 	return(ENXIO);
1383 }
1384 
1385 static void dc_acpi(dev)
1386 	device_t		dev;
1387 {
1388 	u_int32_t		r, cptr;
1389 	int			unit;
1390 
1391 	unit = device_get_unit(dev);
1392 
1393 	/* Find the location of the capabilities block */
1394 	cptr = pci_read_config(dev, DC_PCI_CCAP, 4) & 0xFF;
1395 
1396 	r = pci_read_config(dev, cptr, 4) & 0xFF;
1397 	if (r == 0x01) {
1398 
1399 		r = pci_read_config(dev, cptr + 4, 4);
1400 		if (r & DC_PSTATE_D3) {
1401 			u_int32_t		iobase, membase, irq;
1402 
1403 			/* Save important PCI config data. */
1404 			iobase = pci_read_config(dev, DC_PCI_CFBIO, 4);
1405 			membase = pci_read_config(dev, DC_PCI_CFBMA, 4);
1406 			irq = pci_read_config(dev, DC_PCI_CFIT, 4);
1407 
1408 			/* Reset the power state. */
1409 			printf("dc%d: chip is in D%d power mode "
1410 			    "-- setting to D0\n", unit, r & DC_PSTATE_D3);
1411 			r &= 0xFFFFFFFC;
1412 			pci_write_config(dev, cptr + 4, r, 4);
1413 
1414 			/* Restore PCI config data. */
1415 			pci_write_config(dev, DC_PCI_CFBIO, iobase, 4);
1416 			pci_write_config(dev, DC_PCI_CFBMA, membase, 4);
1417 			pci_write_config(dev, DC_PCI_CFIT, irq, 4);
1418 		}
1419 	}
1420 	return;
1421 }
1422 
1423 /*
1424  * Attach the interface. Allocate softc structures, do ifmedia
1425  * setup and ethernet/BPF attach.
1426  */
1427 static int dc_attach(dev)
1428 	device_t		dev;
1429 {
1430 	int			s;
1431 	u_char			eaddr[ETHER_ADDR_LEN];
1432 	u_int32_t		command;
1433 	struct dc_softc		*sc;
1434 	struct ifnet		*ifp;
1435 	u_int32_t		revision;
1436 	int			unit, error = 0, rid, mac_offset;
1437 
1438 	s = splimp();
1439 
1440 	sc = device_get_softc(dev);
1441 	unit = device_get_unit(dev);
1442 	bzero(sc, sizeof(struct dc_softc));
1443 
1444 	/*
1445 	 * Handle power management nonsense.
1446 	 */
1447 	dc_acpi(dev);
1448 
1449 	/*
1450 	 * Map control/status registers.
1451 	 */
1452 	command = pci_read_config(dev, PCI_COMMAND_STATUS_REG, 4);
1453 	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
1454 	pci_write_config(dev, PCI_COMMAND_STATUS_REG, command, 4);
1455 	command = pci_read_config(dev, PCI_COMMAND_STATUS_REG, 4);
1456 
1457 #ifdef DC_USEIOSPACE
1458 	if (!(command & PCIM_CMD_PORTEN)) {
1459 		printf("dc%d: failed to enable I/O ports!\n", unit);
1460 		error = ENXIO;
1461 		goto fail;
1462 	}
1463 #else
1464 	if (!(command & PCIM_CMD_MEMEN)) {
1465 		printf("dc%d: failed to enable memory mapping!\n", unit);
1466 		error = ENXIO;
1467 		goto fail;
1468 	}
1469 #endif
1470 
1471 	rid = DC_RID;
1472 	sc->dc_res = bus_alloc_resource(dev, DC_RES, &rid,
1473 	    0, ~0, 1, RF_ACTIVE);
1474 
1475 	if (sc->dc_res == NULL) {
1476 		printf("dc%d: couldn't map ports/memory\n", unit);
1477 		error = ENXIO;
1478 		goto fail;
1479 	}
1480 
1481 	sc->dc_btag = rman_get_bustag(sc->dc_res);
1482 	sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
1483 
1484 	/* Allocate interrupt */
1485 	rid = 0;
1486 	sc->dc_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1487 	    RF_SHAREABLE | RF_ACTIVE);
1488 
1489 	if (sc->dc_irq == NULL) {
1490 		printf("dc%d: couldn't map interrupt\n", unit);
1491 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
1492 		error = ENXIO;
1493 		goto fail;
1494 	}
1495 
1496 	error = bus_setup_intr(dev, sc->dc_irq, INTR_TYPE_NET,
1497 	    dc_intr, sc, &sc->dc_intrhand);
1498 
1499 	if (error) {
1500 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
1501 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
1502 		printf("dc%d: couldn't set up irq\n", unit);
1503 		goto fail;
1504 	}
1505 
1506 	/* Need this info to decide on a chip type. */
1507 	sc->dc_info = dc_devtype(dev);
1508 	revision = pci_read_config(dev, DC_PCI_CFRV, 4) & 0x000000FF;
1509 
1510 	switch(sc->dc_info->dc_did) {
1511 	case DC_DEVICEID_21143:
1512 		sc->dc_type = DC_TYPE_21143;
1513 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1514 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1515 		break;
1516 	case DC_DEVICEID_DM9100:
1517 	case DC_DEVICEID_DM9102:
1518 		sc->dc_type = DC_TYPE_DM9102;
1519 		sc->dc_flags |= DC_TX_COALESCE|DC_TX_USE_TX_INTR;
1520 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1521 		sc->dc_pmode = DC_PMODE_MII;
1522 		break;
1523 	case DC_DEVICEID_AL981:
1524 		sc->dc_type = DC_TYPE_AL981;
1525 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1526 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1527 		sc->dc_pmode = DC_PMODE_MII;
1528 		break;
1529 	case DC_DEVICEID_AN985:
1530 		sc->dc_type = DC_TYPE_AN985;
1531 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1532 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1533 		sc->dc_pmode = DC_PMODE_MII;
1534 		break;
1535 	case DC_DEVICEID_98713:
1536 	case DC_DEVICEID_98713_CP:
1537 		if (revision < DC_REVISION_98713A) {
1538 			sc->dc_type = DC_TYPE_98713;
1539 			sc->dc_flags |= DC_REDUCED_MII_POLL;
1540 		}
1541 		if (revision >= DC_REVISION_98713A)
1542 			sc->dc_type = DC_TYPE_98713A;
1543 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1544 		break;
1545 	case DC_DEVICEID_987x5:
1546 		sc->dc_type = DC_TYPE_987x5;
1547 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1548 		break;
1549 	case DC_DEVICEID_82C115:
1550 		sc->dc_type = DC_TYPE_PNICII;
1551 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1552 		break;
1553 	case DC_DEVICEID_82C168:
1554 		sc->dc_type = DC_TYPE_PNIC;
1555 		sc->dc_flags |= DC_TX_STORENFWD|DC_TX_INTR_ALWAYS;
1556 		sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
1557 		sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_NOWAIT);
1558 		if (revision < DC_REVISION_82C169)
1559 			sc->dc_pmode = DC_PMODE_SYM;
1560 		break;
1561 	case DC_DEVICEID_AX88140A:
1562 		sc->dc_type = DC_TYPE_ASIX;
1563 		sc->dc_flags |= DC_TX_USE_TX_INTR|DC_TX_INTR_FIRSTFRAG;
1564 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1565 		sc->dc_pmode = DC_PMODE_MII;
1566 		break;
1567 	default:
1568 		printf("dc%d: unknown device: %x\n", sc->dc_unit,
1569 		    sc->dc_info->dc_did);
1570 		break;
1571 	}
1572 
1573 	/* Save the cache line size. */
1574 	if (DC_IS_DAVICOM(sc))
1575 		sc->dc_cachesize = 0;
1576 	else
1577 		sc->dc_cachesize = pci_read_config(dev,
1578 		    DC_PCI_CFLT, 4) & 0xFF;
1579 
1580 	/* Reset the adapter. */
1581 	dc_reset(sc);
1582 
1583 	/* Take 21143 out of snooze mode */
1584 	if (DC_IS_INTEL(sc)) {
1585 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
1586 		command &= ~(DC_CFDD_SNOOZE_MODE|DC_CFDD_SLEEP_MODE);
1587 		pci_write_config(dev, DC_PCI_CFDD, command, 4);
1588 	}
1589 
1590 	/*
1591 	 * Try to learn something about the supported media.
1592 	 * We know that ASIX and ADMtek and Davicom devices
1593 	 * will *always* be using MII media, so that's a no-brainer.
1594 	 * The tricky ones are the Macronix/PNIC II and the
1595 	 * Intel 21143.
1596 	 */
1597 	if (DC_IS_INTEL(sc)) {
1598 		u_int32_t		media, cwuc;
1599 		cwuc = pci_read_config(dev, DC_PCI_CWUC, 4);
1600 		cwuc |= DC_CWUC_FORCE_WUL;
1601 		pci_write_config(dev, DC_PCI_CWUC, cwuc, 4);
1602 		DELAY(10000);
1603 		media = pci_read_config(dev, DC_PCI_CWUC, 4);
1604 		cwuc &= ~DC_CWUC_FORCE_WUL;
1605 		pci_write_config(dev, DC_PCI_CWUC, cwuc, 4);
1606 		DELAY(10000);
1607 		if (media & DC_CWUC_MII_ABILITY)
1608 			sc->dc_pmode = DC_PMODE_MII;
1609 		if (media & DC_CWUC_SYM_ABILITY)
1610 			sc->dc_pmode = DC_PMODE_SYM;
1611 		/*
1612 		 * If none of the bits are set, then this NIC
1613 		 * isn't meant to support 'wake up LAN' mode.
1614 		 * This is usually only the case on multiport
1615 		 * cards, and these cards almost always have
1616 		 * MII transceivers.
1617 		 */
1618 		if (media == 0)
1619 			sc->dc_pmode = DC_PMODE_MII;
1620 	} else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
1621 		if (sc->dc_type == DC_TYPE_98713)
1622 			sc->dc_pmode = DC_PMODE_MII;
1623 		else
1624 			sc->dc_pmode = DC_PMODE_SYM;
1625 	} else if (!sc->dc_pmode)
1626 		sc->dc_pmode = DC_PMODE_MII;
1627 
1628 	/*
1629 	 * Get station address from the EEPROM.
1630 	 */
1631 	switch(sc->dc_type) {
1632 	case DC_TYPE_98713:
1633 	case DC_TYPE_98713A:
1634 	case DC_TYPE_987x5:
1635 	case DC_TYPE_PNICII:
1636 		dc_read_eeprom(sc, (caddr_t)&mac_offset,
1637 		    (DC_EE_NODEADDR_OFFSET / 2), 1, 0);
1638 		dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
1639 		break;
1640 	case DC_TYPE_PNIC:
1641 		dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
1642 		break;
1643 	case DC_TYPE_DM9102:
1644 	case DC_TYPE_21143:
1645 	case DC_TYPE_ASIX:
1646 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
1647 		break;
1648 	case DC_TYPE_AL981:
1649 	case DC_TYPE_AN985:
1650 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_AL_EE_NODEADDR, 3, 0);
1651 		break;
1652 	default:
1653 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
1654 		break;
1655 	}
1656 
1657 	/*
1658 	 * A 21143 or clone chip was detected. Inform the world.
1659 	 */
1660 	printf("dc%d: Ethernet address: %6D\n", unit, eaddr, ":");
1661 
1662 	sc->dc_unit = unit;
1663 	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
1664 
1665 	sc->dc_ldata = contigmalloc(sizeof(struct dc_list_data), M_DEVBUF,
1666 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1667 
1668 	if (sc->dc_ldata == NULL) {
1669 		printf("dc%d: no memory for list buffers!\n", unit);
1670 		bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
1671 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
1672 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
1673 		error = ENXIO;
1674 		goto fail;
1675 	}
1676 
1677 	bzero(sc->dc_ldata, sizeof(struct dc_list_data));
1678 
1679 	ifp = &sc->arpcom.ac_if;
1680 	ifp->if_softc = sc;
1681 	ifp->if_unit = unit;
1682 	ifp->if_name = "dc";
1683 	ifp->if_mtu = ETHERMTU;
1684 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1685 	ifp->if_ioctl = dc_ioctl;
1686 	ifp->if_output = ether_output;
1687 	ifp->if_start = dc_start;
1688 	ifp->if_watchdog = dc_watchdog;
1689 	ifp->if_init = dc_init;
1690 	ifp->if_baudrate = 10000000;
1691 	ifp->if_snd.ifq_maxlen = DC_TX_LIST_CNT - 1;
1692 
1693 	/*
1694 	 * Do MII setup.
1695 	 */
1696 	error = mii_phy_probe(dev, &sc->dc_miibus,
1697 	    dc_ifmedia_upd, dc_ifmedia_sts);
1698 
1699 	if (error && DC_IS_INTEL(sc)) {
1700 		sc->dc_pmode = DC_PMODE_SYM;
1701 		mii_phy_probe(dev, &sc->dc_miibus,
1702 		    dc_ifmedia_upd, dc_ifmedia_sts);
1703 		error = 0;
1704 	}
1705 
1706 	if (error) {
1707 		printf("dc%d: MII without any PHY!\n", sc->dc_unit);
1708 		bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
1709 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
1710 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
1711 		error = ENXIO;
1712 		goto fail;
1713 	}
1714 
1715 	/*
1716 	 * Call MI attach routines.
1717 	 */
1718 	if_attach(ifp);
1719 	ether_ifattach(ifp);
1720 	callout_handle_init(&sc->dc_stat_ch);
1721 
1722 	bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header));
1723 
1724 fail:
1725 	splx(s);
1726 
1727 	return(error);
1728 }
1729 
1730 static int dc_detach(dev)
1731 	device_t		dev;
1732 {
1733 	struct dc_softc		*sc;
1734 	struct ifnet		*ifp;
1735 	int			s;
1736 
1737 	s = splimp();
1738 
1739 	sc = device_get_softc(dev);
1740 	ifp = &sc->arpcom.ac_if;
1741 
1742 	dc_stop(sc);
1743 	if_detach(ifp);
1744 
1745 	bus_generic_detach(dev);
1746 	device_delete_child(dev, sc->dc_miibus);
1747 
1748 	bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
1749 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
1750 	bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
1751 
1752 	contigfree(sc->dc_ldata, sizeof(struct dc_list_data), M_DEVBUF);
1753 	if (sc->dc_pnic_rx_buf != NULL)
1754 		free(sc->dc_pnic_rx_buf, M_DEVBUF);
1755 
1756 	splx(s);
1757 
1758 	return(0);
1759 }
1760 
1761 /*
1762  * Initialize the transmit descriptors.
1763  */
1764 static int dc_list_tx_init(sc)
1765 	struct dc_softc		*sc;
1766 {
1767 	struct dc_chain_data	*cd;
1768 	struct dc_list_data	*ld;
1769 	int			i;
1770 
1771 	cd = &sc->dc_cdata;
1772 	ld = sc->dc_ldata;
1773 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
1774 		if (i == (DC_TX_LIST_CNT - 1)) {
1775 			ld->dc_tx_list[i].dc_next =
1776 			    vtophys(&ld->dc_tx_list[0]);
1777 		} else {
1778 			ld->dc_tx_list[i].dc_next =
1779 			    vtophys(&ld->dc_tx_list[i + 1]);
1780 		}
1781 		cd->dc_tx_chain[i] = NULL;
1782 		ld->dc_tx_list[i].dc_data = 0;
1783 		ld->dc_tx_list[i].dc_ctl = 0;
1784 	}
1785 
1786 	cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
1787 
1788 	return(0);
1789 }
1790 
1791 
1792 /*
1793  * Initialize the RX descriptors and allocate mbufs for them. Note that
1794  * we arrange the descriptors in a closed ring, so that the last descriptor
1795  * points back to the first.
1796  */
1797 static int dc_list_rx_init(sc)
1798 	struct dc_softc		*sc;
1799 {
1800 	struct dc_chain_data	*cd;
1801 	struct dc_list_data	*ld;
1802 	int			i;
1803 
1804 	cd = &sc->dc_cdata;
1805 	ld = sc->dc_ldata;
1806 
1807 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
1808 		if (dc_newbuf(sc, i, NULL) == ENOBUFS)
1809 			return(ENOBUFS);
1810 		if (i == (DC_RX_LIST_CNT - 1)) {
1811 			ld->dc_rx_list[i].dc_next =
1812 			    vtophys(&ld->dc_rx_list[0]);
1813 		} else {
1814 			ld->dc_rx_list[i].dc_next =
1815 			    vtophys(&ld->dc_rx_list[i + 1]);
1816 		}
1817 	}
1818 
1819 	cd->dc_rx_prod = 0;
1820 
1821 	return(0);
1822 }
1823 
1824 /*
1825  * Initialize an RX descriptor and attach an MBUF cluster.
1826  */
1827 static int dc_newbuf(sc, i, m)
1828 	struct dc_softc		*sc;
1829 	int			i;
1830 	struct mbuf		*m;
1831 {
1832 	struct mbuf		*m_new = NULL;
1833 	struct dc_desc		*c;
1834 
1835 	c = &sc->dc_ldata->dc_rx_list[i];
1836 
1837 	if (m == NULL) {
1838 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1839 		if (m_new == NULL) {
1840 			printf("dc%d: no memory for rx list "
1841 			    "-- packet dropped!\n", sc->dc_unit);
1842 			return(ENOBUFS);
1843 		}
1844 
1845 		MCLGET(m_new, M_DONTWAIT);
1846 		if (!(m_new->m_flags & M_EXT)) {
1847 			printf("dc%d: no memory for rx list "
1848 			    "-- packet dropped!\n", sc->dc_unit);
1849 			m_freem(m_new);
1850 			return(ENOBUFS);
1851 		}
1852 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1853 	} else {
1854 		m_new = m;
1855 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1856 		m_new->m_data = m_new->m_ext.ext_buf;
1857 	}
1858 
1859 	m_adj(m_new, sizeof(u_int64_t));
1860 
1861 	/*
1862 	 * If this is a PNIC chip, zero the buffer. This is part
1863 	 * of the workaround for the receive bug in the 82c168 and
1864 	 * 82c169 chips.
1865 	 */
1866 	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
1867 		bzero((char *)mtod(m_new, char *), m_new->m_len);
1868 
1869 	sc->dc_cdata.dc_rx_chain[i] = m_new;
1870 	c->dc_data = vtophys(mtod(m_new, caddr_t));
1871 	c->dc_ctl = DC_RXCTL_RLINK | DC_RXLEN;
1872 	c->dc_status = DC_RXSTAT_OWN;
1873 
1874 	return(0);
1875 }
1876 
1877 /*
1878  * Grrrrr.
1879  * The PNIC chip has a terrible bug in it that manifests itself during
1880  * periods of heavy activity. The exact mode of failure if difficult to
1881  * pinpoint: sometimes it only happens in promiscuous mode, sometimes it
1882  * will happen on slow machines. The bug is that sometimes instead of
1883  * uploading one complete frame during reception, it uploads what looks
1884  * like the entire contents of its FIFO memory. The frame we want is at
1885  * the end of the whole mess, but we never know exactly how much data has
1886  * been uploaded, so salvaging the frame is hard.
1887  *
1888  * There is only one way to do it reliably, and it's disgusting.
1889  * Here's what we know:
1890  *
1891  * - We know there will always be somewhere between one and three extra
1892  *   descriptors uploaded.
1893  *
1894  * - We know the desired received frame will always be at the end of the
1895  *   total data upload.
1896  *
1897  * - We know the size of the desired received frame because it will be
1898  *   provided in the length field of the status word in the last descriptor.
1899  *
1900  * Here's what we do:
1901  *
1902  * - When we allocate buffers for the receive ring, we bzero() them.
1903  *   This means that we know that the buffer contents should be all
1904  *   zeros, except for data uploaded by the chip.
1905  *
1906  * - We also force the PNIC chip to upload frames that include the
1907  *   ethernet CRC at the end.
1908  *
1909  * - We gather all of the bogus frame data into a single buffer.
1910  *
1911  * - We then position a pointer at the end of this buffer and scan
1912  *   backwards until we encounter the first non-zero byte of data.
1913  *   This is the end of the received frame. We know we will encounter
1914  *   some data at the end of the frame because the CRC will always be
1915  *   there, so even if the sender transmits a packet of all zeros,
1916  *   we won't be fooled.
1917  *
1918  * - We know the size of the actual received frame, so we subtract
1919  *   that value from the current pointer location. This brings us
1920  *   to the start of the actual received packet.
1921  *
1922  * - We copy this into an mbuf and pass it on, along with the actual
1923  *   frame length.
1924  *
1925  * The performance hit is tremendous, but it beats dropping frames all
1926  * the time.
1927  */
1928 
1929 #define DC_WHOLEFRAME	(DC_RXSTAT_FIRSTFRAG|DC_RXSTAT_LASTFRAG)
1930 static void dc_pnic_rx_bug_war(sc, idx)
1931 	struct dc_softc		*sc;
1932 	int			idx;
1933 {
1934 	struct dc_desc		*cur_rx;
1935 	struct dc_desc		*c = NULL;
1936 	struct mbuf		*m = NULL;
1937 	unsigned char		*ptr;
1938 	int			i, total_len;
1939 	u_int32_t		rxstat = 0;
1940 
1941 	i = sc->dc_pnic_rx_bug_save;
1942 	cur_rx = &sc->dc_ldata->dc_rx_list[idx];
1943 	ptr = sc->dc_pnic_rx_buf;
1944 	bzero(ptr, sizeof(DC_RXLEN * 5));
1945 
1946 	/* Copy all the bytes from the bogus buffers. */
1947 	while (1) {
1948 		c = &sc->dc_ldata->dc_rx_list[i];
1949 		rxstat = c->dc_status;
1950 		m = sc->dc_cdata.dc_rx_chain[i];
1951 		bcopy(mtod(m, char *), ptr, DC_RXLEN);
1952 		ptr += DC_RXLEN;
1953 		/* If this is the last buffer, break out. */
1954 		if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
1955 			break;
1956 		dc_newbuf(sc, i, m);
1957 		DC_INC(i, DC_RX_LIST_CNT);
1958 	}
1959 
1960 	/* Find the length of the actual receive frame. */
1961 	total_len = DC_RXBYTES(rxstat);
1962 
1963 	/* Scan backwards until we hit a non-zero byte. */
1964 	while(*ptr == 0x00)
1965 		ptr--;
1966 
1967 	/* Round off. */
1968 	if ((uintptr_t)(ptr) & 0x3)
1969 		ptr -= 1;
1970 
1971 	/* Now find the start of the frame. */
1972 	ptr -= total_len;
1973 	if (ptr < sc->dc_pnic_rx_buf)
1974 		ptr = sc->dc_pnic_rx_buf;
1975 
1976 	/*
1977 	 * Now copy the salvaged frame to the last mbuf and fake up
1978 	 * the status word to make it look like a successful
1979  	 * frame reception.
1980 	 */
1981 	dc_newbuf(sc, i, m);
1982 	bcopy(ptr, mtod(m, char *), total_len);
1983 	cur_rx->dc_status = rxstat | DC_RXSTAT_FIRSTFRAG;
1984 
1985 	return;
1986 }
1987 
1988 /*
1989  * This routine searches the RX ring for dirty descriptors in the
1990  * event that the rxeof routine falls out of sync with the chip's
1991  * current descriptor pointer. This may happen sometimes as a result
1992  * of a "no RX buffer available" condition that happens when the chip
1993  * consumes all of the RX buffers before the driver has a chance to
1994  * process the RX ring. This routine may need to be called more than
1995  * once to bring the driver back in sync with the chip, however we
1996  * should still be getting RX DONE interrupts to drive the search
1997  * for new packets in the RX ring, so we should catch up eventually.
1998  */
1999 static int dc_rx_resync(sc)
2000 	struct dc_softc		*sc;
2001 {
2002 	int			i, pos;
2003 	struct dc_desc		*cur_rx;
2004 
2005 	pos = sc->dc_cdata.dc_rx_prod;
2006 
2007 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2008 		cur_rx = &sc->dc_ldata->dc_rx_list[pos];
2009 		if (!(cur_rx->dc_status & DC_RXSTAT_OWN))
2010 			break;
2011 		DC_INC(pos, DC_RX_LIST_CNT);
2012 	}
2013 
2014 	/* If the ring really is empty, then just return. */
2015 	if (i == DC_RX_LIST_CNT)
2016 		return(0);
2017 
2018 	/* We've fallen behing the chip: catch it. */
2019 	sc->dc_cdata.dc_rx_prod = pos;
2020 
2021 	return(EAGAIN);
2022 }
2023 
2024 /*
2025  * A frame has been uploaded: pass the resulting mbuf chain up to
2026  * the higher level protocols.
2027  */
2028 static void dc_rxeof(sc)
2029 	struct dc_softc		*sc;
2030 {
2031         struct ether_header	*eh;
2032         struct mbuf		*m;
2033         struct ifnet		*ifp;
2034 	struct dc_desc		*cur_rx;
2035 	int			i, total_len = 0;
2036 	u_int32_t		rxstat;
2037 
2038 	ifp = &sc->arpcom.ac_if;
2039 	i = sc->dc_cdata.dc_rx_prod;
2040 
2041 	while(!(sc->dc_ldata->dc_rx_list[i].dc_status & DC_RXSTAT_OWN)) {
2042 		struct mbuf		*m0 = NULL;
2043 
2044 		cur_rx = &sc->dc_ldata->dc_rx_list[i];
2045 		rxstat = cur_rx->dc_status;
2046 		m = sc->dc_cdata.dc_rx_chain[i];
2047 		total_len = DC_RXBYTES(rxstat);
2048 
2049 		if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2050 			if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
2051 				if (rxstat & DC_RXSTAT_FIRSTFRAG)
2052 					sc->dc_pnic_rx_bug_save = i;
2053 				if ((rxstat & DC_RXSTAT_LASTFRAG) == 0) {
2054 					DC_INC(i, DC_RX_LIST_CNT);
2055 					continue;
2056 				}
2057 				dc_pnic_rx_bug_war(sc, i);
2058 				rxstat = cur_rx->dc_status;
2059 				total_len = DC_RXBYTES(rxstat);
2060 			}
2061 		}
2062 
2063 		sc->dc_cdata.dc_rx_chain[i] = NULL;
2064 
2065 		/*
2066 		 * If an error occurs, update stats, clear the
2067 		 * status word and leave the mbuf cluster in place:
2068 		 * it should simply get re-used next time this descriptor
2069 	 	 * comes up in the ring.
2070 		 */
2071 		if (rxstat & DC_RXSTAT_RXERR) {
2072 			ifp->if_ierrors++;
2073 			if (rxstat & DC_RXSTAT_COLLSEEN)
2074 				ifp->if_collisions++;
2075 			dc_newbuf(sc, i, m);
2076 			if (rxstat & DC_RXSTAT_CRCERR) {
2077 				DC_INC(i, DC_RX_LIST_CNT);
2078 				continue;
2079 			} else {
2080 				dc_init(sc);
2081 				return;
2082 			}
2083 		}
2084 
2085 		/* No errors; receive the packet. */
2086 		total_len -= ETHER_CRC_LEN;
2087 
2088 		m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2089 		    total_len + ETHER_ALIGN, 0, ifp, NULL);
2090 		dc_newbuf(sc, i, m);
2091 		DC_INC(i, DC_RX_LIST_CNT);
2092 		if (m0 == NULL) {
2093 			ifp->if_ierrors++;
2094 			continue;
2095 		}
2096 		m_adj(m0, ETHER_ALIGN);
2097 		m = m0;
2098 
2099 		ifp->if_ipackets++;
2100 		eh = mtod(m, struct ether_header *);
2101 
2102 		/*
2103 		 * Handle BPF listeners. Let the BPF user see the packet, but
2104 		 * don't pass it up to the ether_input() layer unless it's
2105 		 * a broadcast packet, multicast packet, matches our ethernet
2106 		 * address or the interface is in promiscuous mode.
2107 		 */
2108 		if (ifp->if_bpf) {
2109 			bpf_mtap(ifp, m);
2110 			if (ifp->if_flags & IFF_PROMISC &&
2111 				(bcmp(eh->ether_dhost, sc->arpcom.ac_enaddr,
2112 				    ETHER_ADDR_LEN) &&
2113 				    (eh->ether_dhost[0] & 1) == 0)) {
2114 				m_freem(m);
2115 				continue;
2116 			}
2117 		}
2118 
2119 		/* Remove header from mbuf and pass it on. */
2120 		m_adj(m, sizeof(struct ether_header));
2121 		ether_input(ifp, eh, m);
2122 	}
2123 
2124 	sc->dc_cdata.dc_rx_prod = i;
2125 
2126 	return;
2127 }
2128 
2129 /*
2130  * A frame was downloaded to the chip. It's safe for us to clean up
2131  * the list buffers.
2132  */
2133 
2134 static void dc_txeof(sc)
2135 	struct dc_softc		*sc;
2136 {
2137 	struct dc_desc		*cur_tx = NULL;
2138 	struct ifnet		*ifp;
2139 	int			idx;
2140 
2141 	ifp = &sc->arpcom.ac_if;
2142 
2143 	/* Clear the timeout timer. */
2144 	ifp->if_timer = 0;
2145 
2146 	/*
2147 	 * Go through our tx list and free mbufs for those
2148 	 * frames that have been transmitted.
2149 	 */
2150 	idx = sc->dc_cdata.dc_tx_cons;
2151 	while(idx != sc->dc_cdata.dc_tx_prod) {
2152 		u_int32_t		txstat;
2153 
2154 		cur_tx = &sc->dc_ldata->dc_tx_list[idx];
2155 		txstat = cur_tx->dc_status;
2156 
2157 		if (txstat & DC_TXSTAT_OWN)
2158 			break;
2159 
2160 		if (!(cur_tx->dc_ctl & DC_TXCTL_LASTFRAG) ||
2161 		    cur_tx->dc_ctl & DC_TXCTL_SETUP) {
2162 			sc->dc_cdata.dc_tx_cnt--;
2163 			if (cur_tx->dc_ctl & DC_TXCTL_SETUP) {
2164 				/*
2165 				 * Yes, the PNIC is so brain damaged
2166 				 * that it will sometimes generate a TX
2167 				 * underrun error while DMAing the RX
2168 				 * filter setup frame. If we detect this,
2169 				 * we have to send the setup frame again,
2170 				 * or else the filter won't be programmed
2171 				 * correctly.
2172 				 */
2173 				if (DC_IS_PNIC(sc)) {
2174 					if (txstat & DC_TXSTAT_ERRSUM)
2175 						dc_setfilt(sc);
2176 				}
2177 				sc->dc_cdata.dc_tx_chain[idx] = NULL;
2178 			}
2179 			DC_INC(idx, DC_TX_LIST_CNT);
2180 			continue;
2181 		}
2182 
2183 		if (/*sc->dc_type == DC_TYPE_21143 &&*/
2184 		    sc->dc_pmode == DC_PMODE_MII &&
2185 		    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM|
2186 		    DC_TXSTAT_NOCARRIER|DC_TXSTAT_CARRLOST)))
2187 			txstat &= ~DC_TXSTAT_ERRSUM;
2188 
2189 		if (txstat & DC_TXSTAT_ERRSUM) {
2190 			ifp->if_oerrors++;
2191 			if (txstat & DC_TXSTAT_EXCESSCOLL)
2192 				ifp->if_collisions++;
2193 			if (txstat & DC_TXSTAT_LATECOLL)
2194 				ifp->if_collisions++;
2195 			if (!(txstat & DC_TXSTAT_UNDERRUN)) {
2196 				dc_init(sc);
2197 				return;
2198 			}
2199 		}
2200 
2201 		ifp->if_collisions += (txstat & DC_TXSTAT_COLLCNT) >> 3;
2202 
2203 		ifp->if_opackets++;
2204 		if (sc->dc_cdata.dc_tx_chain[idx] != NULL) {
2205 			m_freem(sc->dc_cdata.dc_tx_chain[idx]);
2206 			sc->dc_cdata.dc_tx_chain[idx] = NULL;
2207 		}
2208 
2209 		sc->dc_cdata.dc_tx_cnt--;
2210 		DC_INC(idx, DC_TX_LIST_CNT);
2211 	}
2212 
2213 	sc->dc_cdata.dc_tx_cons = idx;
2214 	if (cur_tx != NULL)
2215 		ifp->if_flags &= ~IFF_OACTIVE;
2216 
2217 	return;
2218 }
2219 
2220 static void dc_tick(xsc)
2221 	void			*xsc;
2222 {
2223 	struct dc_softc		*sc;
2224 	struct mii_data		*mii;
2225 	struct ifnet		*ifp;
2226 	int			s;
2227 	u_int32_t		r;
2228 
2229 	s = splimp();
2230 
2231 	sc = xsc;
2232 	ifp = &sc->arpcom.ac_if;
2233 	mii = device_get_softc(sc->dc_miibus);
2234 
2235 	if (sc->dc_flags & DC_REDUCED_MII_POLL) {
2236 		r = CSR_READ_4(sc, DC_ISR);
2237 		if (DC_IS_INTEL(sc)) {
2238 			if (r & DC_ISR_LINKFAIL)
2239 				sc->dc_link = 0;
2240 			if (sc->dc_link == 0)
2241 				mii_tick(mii);
2242 		} else {
2243 			if ((r & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT &&
2244 			    sc->dc_cdata.dc_tx_prod == 0)
2245 				mii_tick(mii);
2246 		}
2247 	} else
2248 		mii_tick(mii);
2249 
2250 	/*
2251 	 * When the init routine completes, we expect to be able to send
2252 	 * packets right away, and in fact the network code will send a
2253 	 * gratuitous ARP the moment the init routine marks the interface
2254 	 * as running. However, even though the MAC may have been initialized,
2255 	 * there may be a delay of a few seconds before the PHY completes
2256 	 * autonegotiation and the link is brought up. Any transmissions
2257 	 * made during that delay will be lost. Dealing with this is tricky:
2258 	 * we can't just pause in the init routine while waiting for the
2259 	 * PHY to come ready since that would bring the whole system to
2260 	 * a screeching halt for several seconds.
2261 	 *
2262 	 * What we do here is prevent the TX start routine from sending
2263 	 * any packets until a link has been established. After the
2264 	 * interface has been initialized, the tick routine will poll
2265 	 * the state of the PHY until the IFM_ACTIVE flag is set. Until
2266 	 * that time, packets will stay in the send queue, and once the
2267 	 * link comes up, they will be flushed out to the wire.
2268 	 */
2269 	if (!sc->dc_link) {
2270 		mii_pollstat(mii);
2271 		if (mii->mii_media_status & IFM_ACTIVE &&
2272 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2273 			sc->dc_link++;
2274 			if (ifp->if_snd.ifq_head != NULL)
2275 				dc_start(ifp);
2276 		}
2277 	}
2278 
2279 	sc->dc_stat_ch = timeout(dc_tick, sc, hz);
2280 
2281 	splx(s);
2282 
2283 	return;
2284 }
2285 
2286 static void dc_intr(arg)
2287 	void			*arg;
2288 {
2289 	struct dc_softc		*sc;
2290 	struct ifnet		*ifp;
2291 	u_int32_t		status;
2292 
2293 	sc = arg;
2294 	ifp = &sc->arpcom.ac_if;
2295 
2296 	/* Supress unwanted interrupts */
2297 	if (!(ifp->if_flags & IFF_UP)) {
2298 		if (CSR_READ_4(sc, DC_ISR) & DC_INTRS)
2299 			dc_stop(sc);
2300 		return;
2301 	}
2302 
2303 	/* Disable interrupts. */
2304 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
2305 
2306 	while((status = CSR_READ_4(sc, DC_ISR)) & DC_INTRS) {
2307 
2308 		CSR_WRITE_4(sc, DC_ISR, status);
2309 
2310 		if (status & DC_ISR_RX_OK) {
2311 			int		curpkts;
2312 			curpkts = ifp->if_ipackets;
2313 			dc_rxeof(sc);
2314 			if (curpkts == ifp->if_ipackets) {
2315 				while(dc_rx_resync(sc))
2316 					dc_rxeof(sc);
2317 			}
2318 		}
2319 
2320 		if (status & (DC_ISR_TX_OK|DC_ISR_TX_NOBUF))
2321 			dc_txeof(sc);
2322 
2323 		if (status & DC_ISR_TX_IDLE) {
2324 			dc_txeof(sc);
2325 			if (sc->dc_cdata.dc_tx_cnt) {
2326 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2327 				CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
2328 			}
2329 		}
2330 
2331 		if (status & DC_ISR_TX_UNDERRUN) {
2332 			u_int32_t		cfg;
2333 
2334 			printf("dc%d: TX underrun -- ", sc->dc_unit);
2335 			if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc))
2336 				dc_init(sc);
2337 			cfg = CSR_READ_4(sc, DC_NETCFG);
2338 			cfg &= ~DC_NETCFG_TX_THRESH;
2339 			if (sc->dc_txthresh == DC_TXTHRESH_160BYTES) {
2340 				printf("using store and forward mode\n");
2341 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
2342 			} else if (sc->dc_flags & DC_TX_STORENFWD) {
2343 				printf("resetting\n");
2344 			} else {
2345 				sc->dc_txthresh += 0x4000;
2346 				printf("increasing TX threshold\n");
2347 				CSR_WRITE_4(sc, DC_NETCFG, cfg);
2348 				DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
2349 				DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
2350 			}
2351 		}
2352 
2353 		if ((status & DC_ISR_RX_WATDOGTIMEO)
2354 		    || (status & DC_ISR_RX_NOBUF)) {
2355 			int		curpkts;
2356 			curpkts = ifp->if_ipackets;
2357 			dc_rxeof(sc);
2358 			if (curpkts == ifp->if_ipackets) {
2359 				while(dc_rx_resync(sc))
2360 					dc_rxeof(sc);
2361 			}
2362 		}
2363 
2364 		if (status & DC_ISR_BUS_ERR) {
2365 			dc_reset(sc);
2366 			dc_init(sc);
2367 		}
2368 	}
2369 
2370 	/* Re-enable interrupts. */
2371 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
2372 
2373 	if (ifp->if_snd.ifq_head != NULL)
2374 		dc_start(ifp);
2375 
2376 	return;
2377 }
2378 
2379 /*
2380  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
2381  * pointers to the fragment pointers.
2382  */
2383 static int dc_encap(sc, m_head, txidx)
2384 	struct dc_softc		*sc;
2385 	struct mbuf		*m_head;
2386 	u_int32_t		*txidx;
2387 {
2388 	struct dc_desc		*f = NULL;
2389 	struct mbuf		*m;
2390 	int			frag, cur, cnt = 0;
2391 
2392 	/*
2393  	 * Start packing the mbufs in this chain into
2394 	 * the fragment pointers. Stop when we run out
2395  	 * of fragments or hit the end of the mbuf chain.
2396 	 */
2397 	m = m_head;
2398 	cur = frag = *txidx;
2399 
2400 	for (m = m_head; m != NULL; m = m->m_next) {
2401 		if (m->m_len != 0) {
2402 			if (sc->dc_flags & DC_TX_ADMTEK_WAR) {
2403 				if (*txidx != sc->dc_cdata.dc_tx_prod &&
2404 				    frag == (DC_TX_LIST_CNT - 1))
2405 					return(ENOBUFS);
2406 			}
2407 			if ((DC_TX_LIST_CNT -
2408 			    (sc->dc_cdata.dc_tx_cnt + cnt)) < 5)
2409 				return(ENOBUFS);
2410 
2411 			f = &sc->dc_ldata->dc_tx_list[frag];
2412 			f->dc_ctl = DC_TXCTL_TLINK | m->m_len;
2413 			if (cnt == 0) {
2414 				f->dc_status = 0;
2415 				f->dc_ctl |= DC_TXCTL_FIRSTFRAG;
2416 			} else
2417 				f->dc_status = DC_TXSTAT_OWN;
2418 			f->dc_data = vtophys(mtod(m, vm_offset_t));
2419 			cur = frag;
2420 			DC_INC(frag, DC_TX_LIST_CNT);
2421 			cnt++;
2422 		}
2423 	}
2424 
2425 	if (m != NULL)
2426 		return(ENOBUFS);
2427 
2428 	sc->dc_cdata.dc_tx_cnt += cnt;
2429 	sc->dc_cdata.dc_tx_chain[cur] = m_head;
2430 	sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_LASTFRAG;
2431 	if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
2432 		sc->dc_ldata->dc_tx_list[*txidx].dc_ctl |= DC_TXCTL_FINT;
2433 	if (sc->dc_flags & DC_TX_INTR_ALWAYS)
2434 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT;
2435 	if (sc->dc_flags & DC_TX_USE_TX_INTR && sc->dc_cdata.dc_tx_cnt > 64)
2436 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT;
2437 	sc->dc_ldata->dc_tx_list[*txidx].dc_status = DC_TXSTAT_OWN;
2438 	*txidx = frag;
2439 
2440 	return(0);
2441 }
2442 
2443 /*
2444  * Coalesce an mbuf chain into a single mbuf cluster buffer.
2445  * Needed for some really badly behaved chips that just can't
2446  * do scatter/gather correctly.
2447  */
2448 static int dc_coal(sc, m_head)
2449 	struct dc_softc		*sc;
2450 	struct mbuf		**m_head;
2451 {
2452         struct mbuf		*m_new, *m;
2453 
2454 	m = *m_head;
2455 	MGETHDR(m_new, M_DONTWAIT, MT_DATA);
2456 	if (m_new == NULL) {
2457 		printf("dc%d: no memory for tx list", sc->dc_unit);
2458 		return(ENOBUFS);
2459 	}
2460 	if (m->m_pkthdr.len > MHLEN) {
2461 		MCLGET(m_new, M_DONTWAIT);
2462 		if (!(m_new->m_flags & M_EXT)) {
2463 			m_freem(m_new);
2464 			printf("dc%d: no memory for tx list", sc->dc_unit);
2465 			return(ENOBUFS);
2466 		}
2467 	}
2468 	m_copydata(m, 0, m->m_pkthdr.len, mtod(m_new, caddr_t));
2469 	m_new->m_pkthdr.len = m_new->m_len = m->m_pkthdr.len;
2470 	m_freem(m);
2471 	*m_head = m_new;
2472 
2473 	return(0);
2474 }
2475 
2476 /*
2477  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2478  * to the mbuf data regions directly in the transmit lists. We also save a
2479  * copy of the pointers since the transmit list fragment pointers are
2480  * physical addresses.
2481  */
2482 
2483 static void dc_start(ifp)
2484 	struct ifnet		*ifp;
2485 {
2486 	struct dc_softc		*sc;
2487 	struct mbuf		*m_head = NULL;
2488 	int			idx;
2489 
2490 	sc = ifp->if_softc;
2491 
2492 	if (!sc->dc_link)
2493 		return;
2494 
2495 	if (ifp->if_flags & IFF_OACTIVE)
2496 		return;
2497 
2498 	idx = sc->dc_cdata.dc_tx_prod;
2499 
2500 	while(sc->dc_cdata.dc_tx_chain[idx] == NULL) {
2501 		IF_DEQUEUE(&ifp->if_snd, m_head);
2502 		if (m_head == NULL)
2503 			break;
2504 
2505 		if (sc->dc_flags & DC_TX_COALESCE) {
2506 			if (dc_coal(sc, &m_head)) {
2507 				IF_PREPEND(&ifp->if_snd, m_head);
2508 				ifp->if_flags |= IFF_OACTIVE;
2509 				break;
2510 			}
2511 		}
2512 
2513 		if (dc_encap(sc, m_head, &idx)) {
2514 			IF_PREPEND(&ifp->if_snd, m_head);
2515 			ifp->if_flags |= IFF_OACTIVE;
2516 			break;
2517 		}
2518 
2519 		/*
2520 		 * If there's a BPF listener, bounce a copy of this frame
2521 		 * to him.
2522 		 */
2523 		if (ifp->if_bpf)
2524 			bpf_mtap(ifp, m_head);
2525 	}
2526 
2527 	/* Transmit */
2528 	sc->dc_cdata.dc_tx_prod = idx;
2529 	if (!(sc->dc_flags & DC_TX_POLL))
2530 		CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
2531 
2532 	/*
2533 	 * Set a timeout in case the chip goes out to lunch.
2534 	 */
2535 	ifp->if_timer = 5;
2536 
2537 	return;
2538 }
2539 
2540 static void dc_init(xsc)
2541 	void			*xsc;
2542 {
2543 	struct dc_softc		*sc = xsc;
2544 	struct ifnet		*ifp = &sc->arpcom.ac_if;
2545 	struct mii_data		*mii;
2546 	int			s;
2547 
2548 	s = splimp();
2549 
2550 	mii = device_get_softc(sc->dc_miibus);
2551 
2552 	/*
2553 	 * Cancel pending I/O and free all RX/TX buffers.
2554 	 */
2555 	dc_stop(sc);
2556 	dc_reset(sc);
2557 
2558 	/*
2559 	 * Set cache alignment and burst length.
2560 	 */
2561 	if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc))
2562 		CSR_WRITE_4(sc, DC_BUSCTL, 0);
2563 	else
2564 		CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME|DC_BUSCTL_MRLE);
2565 	if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
2566 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
2567 	} else {
2568 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
2569 	}
2570 	if (sc->dc_flags & DC_TX_POLL)
2571 		DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
2572 	switch(sc->dc_cachesize) {
2573 	case 32:
2574 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
2575 		break;
2576 	case 16:
2577 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
2578 		break;
2579 	case 8:
2580 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
2581 		break;
2582 	case 0:
2583 	default:
2584 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
2585 		break;
2586 	}
2587 
2588 	if (sc->dc_flags & DC_TX_STORENFWD)
2589 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
2590 	else {
2591 		if (sc->dc_txthresh == DC_TXTHRESH_160BYTES) {
2592 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
2593 		} else {
2594 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
2595 			DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
2596 		}
2597 	}
2598 
2599 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
2600 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
2601 
2602 	if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
2603 		/*
2604 		 * The app notes for the 98713 and 98715A say that
2605 		 * in order to have the chips operate properly, a magic
2606 		 * number must be written to CSR16. Macronix does not
2607 		 * document the meaning of these bits so there's no way
2608 		 * to know exactly what they do. The 98713 has a magic
2609 		 * number all its own; the rest all use a different one.
2610 		 */
2611 		DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
2612 		if (sc->dc_type == DC_TYPE_98713)
2613 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
2614 		else
2615 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
2616 	}
2617 
2618 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
2619 	DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_72BYTES);
2620 
2621 	/* Init circular RX list. */
2622 	if (dc_list_rx_init(sc) == ENOBUFS) {
2623 		printf("dc%d: initialization failed: no "
2624 		    "memory for rx buffers\n", sc->dc_unit);
2625 		dc_stop(sc);
2626 		(void)splx(s);
2627 		return;
2628 	}
2629 
2630 	/*
2631 	 * Init tx descriptors.
2632 	 */
2633 	dc_list_tx_init(sc);
2634 
2635 	/*
2636 	 * Load the address of the RX list.
2637 	 */
2638 	CSR_WRITE_4(sc, DC_RXADDR, vtophys(&sc->dc_ldata->dc_rx_list[0]));
2639 	CSR_WRITE_4(sc, DC_TXADDR, vtophys(&sc->dc_ldata->dc_tx_list[0]));
2640 
2641 	/*
2642 	 * Enable interrupts.
2643 	 */
2644 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
2645 	CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
2646 
2647 	/* Enable transmitter. */
2648 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2649 
2650 	/*
2651 	 * Load the RX/multicast filter. We do this sort of late
2652 	 * because the filter programming scheme on the 21143 and
2653 	 * some clones requires DMAing a setup frame via the TX
2654 	 * engine, and we need the transmitter enabled for that.
2655 	 */
2656 	dc_setfilt(sc);
2657 
2658 	/* Enable receiver. */
2659 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
2660 	CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
2661 
2662 	mii_mediachg(mii);
2663 	dc_setcfg(sc, sc->dc_if_media);
2664 
2665 	ifp->if_flags |= IFF_RUNNING;
2666 	ifp->if_flags &= ~IFF_OACTIVE;
2667 
2668 	(void)splx(s);
2669 
2670 	sc->dc_stat_ch = timeout(dc_tick, sc, hz);
2671 
2672 	return;
2673 }
2674 
2675 /*
2676  * Set media options.
2677  */
2678 static int dc_ifmedia_upd(ifp)
2679 	struct ifnet		*ifp;
2680 {
2681 	struct dc_softc		*sc;
2682 	struct mii_data		*mii;
2683 	struct ifmedia		*ifm;
2684 
2685 	sc = ifp->if_softc;
2686 	mii = device_get_softc(sc->dc_miibus);
2687 	mii_mediachg(mii);
2688 	ifm = &mii->mii_media;
2689 
2690 	if (DC_IS_DAVICOM(sc) &&
2691 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_homePNA)
2692 		dc_setcfg(sc, ifm->ifm_media);
2693 	else
2694 		sc->dc_link = 0;
2695 
2696 	return(0);
2697 }
2698 
2699 /*
2700  * Report current media status.
2701  */
2702 static void dc_ifmedia_sts(ifp, ifmr)
2703 	struct ifnet		*ifp;
2704 	struct ifmediareq	*ifmr;
2705 {
2706 	struct dc_softc		*sc;
2707 	struct mii_data		*mii;
2708 	struct ifmedia		*ifm;
2709 
2710 	sc = ifp->if_softc;
2711 	mii = device_get_softc(sc->dc_miibus);
2712 	mii_pollstat(mii);
2713 	ifm = &mii->mii_media;
2714 	if (DC_IS_DAVICOM(sc)) {
2715 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_homePNA) {
2716 			ifmr->ifm_active = ifm->ifm_media;
2717 			ifmr->ifm_status = 0;
2718 			return;
2719 		}
2720 	}
2721 	ifmr->ifm_active = mii->mii_media_active;
2722 	ifmr->ifm_status = mii->mii_media_status;
2723 
2724 	return;
2725 }
2726 
2727 static int dc_ioctl(ifp, command, data)
2728 	struct ifnet		*ifp;
2729 	u_long			command;
2730 	caddr_t			data;
2731 {
2732 	struct dc_softc		*sc = ifp->if_softc;
2733 	struct ifreq		*ifr = (struct ifreq *) data;
2734 	struct mii_data		*mii;
2735 	int			s, error = 0;
2736 
2737 	s = splimp();
2738 
2739 	switch(command) {
2740 	case SIOCSIFADDR:
2741 	case SIOCGIFADDR:
2742 	case SIOCSIFMTU:
2743 		error = ether_ioctl(ifp, command, data);
2744 		break;
2745 	case SIOCSIFFLAGS:
2746 		if (ifp->if_flags & IFF_UP) {
2747 			if (ifp->if_flags & IFF_RUNNING &&
2748 			    ifp->if_flags & IFF_PROMISC &&
2749 			    !(sc->dc_if_flags & IFF_PROMISC)) {
2750 				dc_setfilt(sc);
2751 			} else if (ifp->if_flags & IFF_RUNNING &&
2752 			    !(ifp->if_flags & IFF_PROMISC) &&
2753 			    sc->dc_if_flags & IFF_PROMISC) {
2754 				dc_setfilt(sc);
2755 			} else if (!(ifp->if_flags & IFF_RUNNING)) {
2756 				sc->dc_txthresh = 0;
2757 				dc_init(sc);
2758 			}
2759 		} else {
2760 			if (ifp->if_flags & IFF_RUNNING)
2761 				dc_stop(sc);
2762 		}
2763 		sc->dc_if_flags = ifp->if_flags;
2764 		error = 0;
2765 		break;
2766 	case SIOCADDMULTI:
2767 	case SIOCDELMULTI:
2768 		dc_setfilt(sc);
2769 		error = 0;
2770 		break;
2771 	case SIOCGIFMEDIA:
2772 	case SIOCSIFMEDIA:
2773 		mii = device_get_softc(sc->dc_miibus);
2774 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2775 		break;
2776 	default:
2777 		error = EINVAL;
2778 		break;
2779 	}
2780 
2781 	(void)splx(s);
2782 
2783 	return(error);
2784 }
2785 
2786 static void dc_watchdog(ifp)
2787 	struct ifnet		*ifp;
2788 {
2789 	struct dc_softc		*sc;
2790 
2791 	sc = ifp->if_softc;
2792 
2793 	ifp->if_oerrors++;
2794 	printf("dc%d: watchdog timeout\n", sc->dc_unit);
2795 
2796 	dc_stop(sc);
2797 	dc_reset(sc);
2798 	dc_init(sc);
2799 
2800 	if (ifp->if_snd.ifq_head != NULL)
2801 		dc_start(ifp);
2802 
2803 	return;
2804 }
2805 
2806 /*
2807  * Stop the adapter and free any mbufs allocated to the
2808  * RX and TX lists.
2809  */
2810 static void dc_stop(sc)
2811 	struct dc_softc		*sc;
2812 {
2813 	register int		i;
2814 	struct ifnet		*ifp;
2815 
2816 	ifp = &sc->arpcom.ac_if;
2817 	ifp->if_timer = 0;
2818 
2819 	untimeout(dc_tick, sc, sc->dc_stat_ch);
2820 
2821 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ON|DC_NETCFG_TX_ON));
2822 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
2823 	CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
2824 	CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
2825 	sc->dc_link = 0;
2826 
2827 	/*
2828 	 * Free data in the RX lists.
2829 	 */
2830 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2831 		if (sc->dc_cdata.dc_rx_chain[i] != NULL) {
2832 			m_freem(sc->dc_cdata.dc_rx_chain[i]);
2833 			sc->dc_cdata.dc_rx_chain[i] = NULL;
2834 		}
2835 	}
2836 	bzero((char *)&sc->dc_ldata->dc_rx_list,
2837 		sizeof(sc->dc_ldata->dc_rx_list));
2838 
2839 	/*
2840 	 * Free the TX list buffers.
2841 	 */
2842 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2843 		if (sc->dc_cdata.dc_tx_chain[i] != NULL) {
2844 			if (sc->dc_ldata->dc_tx_list[i].dc_ctl &
2845 			    DC_TXCTL_SETUP) {
2846 				sc->dc_cdata.dc_tx_chain[i] = NULL;
2847 				continue;
2848 			}
2849 			m_freem(sc->dc_cdata.dc_tx_chain[i]);
2850 			sc->dc_cdata.dc_tx_chain[i] = NULL;
2851 		}
2852 	}
2853 
2854 	bzero((char *)&sc->dc_ldata->dc_tx_list,
2855 		sizeof(sc->dc_ldata->dc_tx_list));
2856 
2857 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2858 
2859 	return;
2860 }
2861 
2862 /*
2863  * Stop all chip I/O so that the kernel's probe routines don't
2864  * get confused by errant DMAs when rebooting.
2865  */
2866 static void dc_shutdown(dev)
2867 	device_t		dev;
2868 {
2869 	struct dc_softc		*sc;
2870 
2871 	sc = device_get_softc(dev);
2872 
2873 	dc_stop(sc);
2874 
2875 	return;
2876 }
2877