xref: /freebsd/sys/dev/dc/if_dc.c (revision d2387d42b8da231a5b95cbc313825fb2aadf26f6)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ee.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /*
37  * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
38  * series chips and several workalikes including the following:
39  *
40  * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com)
41  * Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
42  * Lite-On 82c168/82c169 PNIC (www.litecom.com)
43  * ASIX Electronics AX88140A (www.asix.com.tw)
44  * ASIX Electronics AX88141 (www.asix.com.tw)
45  * ADMtek AL981 (www.admtek.com.tw)
46  * ADMtek AN985 (www.admtek.com.tw)
47  * Netgear FA511 (www.netgear.com) Appears to be rebadged ADMTek AN985
48  * Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
49  * Accton EN1217 (www.accton.com)
50  * Xircom X3201 (www.xircom.com)
51  * Abocom FE2500
52  * Conexant LANfinity (www.conexant.com)
53  * 3Com OfficeConnect 10/100B 3CSOHO100B (www.3com.com)
54  *
55  * Datasheets for the 21143 are available at developer.intel.com.
56  * Datasheets for the clone parts can be found at their respective sites.
57  * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
58  * The PNIC II is essentially a Macronix 98715A chip; the only difference
59  * worth noting is that its multicast hash table is only 128 bits wide
60  * instead of 512.
61  *
62  * Written by Bill Paul <wpaul@ee.columbia.edu>
63  * Electrical Engineering Department
64  * Columbia University, New York City
65  */
66 /*
67  * The Intel 21143 is the successor to the DEC 21140. It is basically
68  * the same as the 21140 but with a few new features. The 21143 supports
69  * three kinds of media attachments:
70  *
71  * o MII port, for 10Mbps and 100Mbps support and NWAY
72  *   autonegotiation provided by an external PHY.
73  * o SYM port, for symbol mode 100Mbps support.
74  * o 10baseT port.
75  * o AUI/BNC port.
76  *
77  * The 100Mbps SYM port and 10baseT port can be used together in
78  * combination with the internal NWAY support to create a 10/100
79  * autosensing configuration.
80  *
81  * Note that not all tulip workalikes are handled in this driver: we only
82  * deal with those which are relatively well behaved. The Winbond is
83  * handled separately due to its different register offsets and the
84  * special handling needed for its various bugs. The PNIC is handled
85  * here, but I'm not thrilled about it.
86  *
87  * All of the workalike chips use some form of MII transceiver support
88  * with the exception of the Macronix chips, which also have a SYM port.
89  * The ASIX AX88140A is also documented to have a SYM port, but all
90  * the cards I've seen use an MII transceiver, probably because the
91  * AX88140A doesn't support internal NWAY.
92  */
93 
94 #include <sys/param.h>
95 #include <sys/endian.h>
96 #include <sys/systm.h>
97 #include <sys/sockio.h>
98 #include <sys/mbuf.h>
99 #include <sys/malloc.h>
100 #include <sys/kernel.h>
101 #include <sys/socket.h>
102 #include <sys/sysctl.h>
103 
104 #include <net/if.h>
105 #include <net/if_arp.h>
106 #include <net/ethernet.h>
107 #include <net/if_dl.h>
108 #include <net/if_media.h>
109 #include <net/if_types.h>
110 #include <net/if_vlan_var.h>
111 
112 #include <net/bpf.h>
113 
114 #include <machine/bus_pio.h>
115 #include <machine/bus_memio.h>
116 #include <machine/bus.h>
117 #include <machine/resource.h>
118 #include <sys/bus.h>
119 #include <sys/rman.h>
120 
121 #include <dev/mii/mii.h>
122 #include <dev/mii/miivar.h>
123 
124 #include <dev/pci/pcireg.h>
125 #include <dev/pci/pcivar.h>
126 
127 #define DC_USEIOSPACE
128 #ifdef __alpha__
129 #define SRM_MEDIA
130 #endif
131 
132 #include <pci/if_dcreg.h>
133 
134 #ifdef __sparc64__
135 #include <dev/ofw/openfirm.h>
136 #include <machine/ofw_machdep.h>
137 #endif
138 
139 MODULE_DEPEND(dc, pci, 1, 1, 1);
140 MODULE_DEPEND(dc, ether, 1, 1, 1);
141 MODULE_DEPEND(dc, miibus, 1, 1, 1);
142 
143 /* "controller miibus0" required.  See GENERIC if you get errors here. */
144 #include "miibus_if.h"
145 
146 /*
147  * Various supported device vendors/types and their names.
148  */
149 static struct dc_type dc_devs[] = {
150 	{ DC_VENDORID_DEC, DC_DEVICEID_21143,
151 		"Intel 21143 10/100BaseTX" },
152 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009,
153 		"Davicom DM9009 10/100BaseTX" },
154 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100,
155 		"Davicom DM9100 10/100BaseTX" },
156 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
157 		"Davicom DM9102 10/100BaseTX" },
158 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
159 		"Davicom DM9102A 10/100BaseTX" },
160 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AL981,
161 		"ADMtek AL981 10/100BaseTX" },
162 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AN985,
163 		"ADMtek AN985 10/100BaseTX" },
164 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511,
165 		"ADMtek ADM9511 10/100BaseTX" },
166 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513,
167 		"ADMtek ADM9513 10/100BaseTX" },
168  	{ DC_VENDORID_ADMTEK, DC_DEVICEID_FA511,
169  		"Netgear FA511 10/100BaseTX" },
170 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
171 		"ASIX AX88140A 10/100BaseTX" },
172 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
173 		"ASIX AX88141 10/100BaseTX" },
174 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
175 		"Macronix 98713 10/100BaseTX" },
176 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
177 		"Macronix 98713A 10/100BaseTX" },
178 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
179 		"Compex RL100-TX 10/100BaseTX" },
180 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
181 		"Compex RL100-TX 10/100BaseTX" },
182 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
183 		"Macronix 98715/98715A 10/100BaseTX" },
184 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
185 		"Macronix 98715AEC-C 10/100BaseTX" },
186 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
187 		"Macronix 98725 10/100BaseTX" },
188 	{ DC_VENDORID_MX, DC_DEVICEID_98727,
189 		"Macronix 98727/98732 10/100BaseTX" },
190 	{ DC_VENDORID_LO, DC_DEVICEID_82C115,
191 		"LC82C115 PNIC II 10/100BaseTX" },
192 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
193 		"82c168 PNIC 10/100BaseTX" },
194 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
195 		"82c169 PNIC 10/100BaseTX" },
196 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN1217,
197 		"Accton EN1217 10/100BaseTX" },
198 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN2242,
199 		"Accton EN2242 MiniPCI 10/100BaseTX" },
200 	{ DC_VENDORID_XIRCOM, DC_DEVICEID_X3201,
201 	  	"Xircom X3201 10/100BaseTX" },
202 	{ DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500,
203 		"Abocom FE2500 10/100BaseTX" },
204 	{ DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500MX,
205 		"Abocom FE2500MX 10/100BaseTX" },
206 	{ DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112,
207 		"Conexant LANfinity MiniPCI 10/100BaseTX" },
208 	{ DC_VENDORID_HAWKING, DC_DEVICEID_HAWKING_PN672TX,
209 		"Hawking CB102 CardBus 10/100" },
210 	{ DC_VENDORID_PLANEX, DC_DEVICEID_FNW3602T,
211 		"PlaneX FNW-3602-T CardBus 10/100" },
212 	{ DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB,
213 		"3Com OfficeConnect 10/100B" },
214 	{ DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN120,
215 		"Microsoft MN-120 CardBus 10/100" },
216 	{ DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130,
217 		"Microsoft MN-130 10/100" },
218 	{ DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130_FAKE,
219 		"Microsoft MN-130 10/100" },
220 	{ 0, 0, NULL }
221 };
222 
223 static int dc_probe		(device_t);
224 static int dc_attach		(device_t);
225 static int dc_detach		(device_t);
226 static int dc_suspend		(device_t);
227 static int dc_resume		(device_t);
228 #ifndef BURN_BRIDGES
229 static void dc_acpi		(device_t);
230 #endif
231 static struct dc_type *dc_devtype	(device_t);
232 static int dc_newbuf		(struct dc_softc *, int, int);
233 static int dc_encap		(struct dc_softc *, struct mbuf **);
234 static void dc_pnic_rx_bug_war	(struct dc_softc *, int);
235 static int dc_rx_resync		(struct dc_softc *);
236 static void dc_rxeof		(struct dc_softc *);
237 static void dc_txeof		(struct dc_softc *);
238 static void dc_tick		(void *);
239 static void dc_tx_underrun	(struct dc_softc *);
240 static void dc_intr		(void *);
241 static void dc_start		(struct ifnet *);
242 static int dc_ioctl		(struct ifnet *, u_long, caddr_t);
243 static void dc_init		(void *);
244 static void dc_stop		(struct dc_softc *);
245 static void dc_watchdog		(struct ifnet *);
246 static void dc_shutdown		(device_t);
247 static int dc_ifmedia_upd	(struct ifnet *);
248 static void dc_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
249 
250 static void dc_delay		(struct dc_softc *);
251 static void dc_eeprom_idle	(struct dc_softc *);
252 static void dc_eeprom_putbyte	(struct dc_softc *, int);
253 static void dc_eeprom_getword	(struct dc_softc *, int, u_int16_t *);
254 static void dc_eeprom_getword_pnic
255 				(struct dc_softc *, int, u_int16_t *);
256 static void dc_eeprom_getword_xircom
257 				(struct dc_softc *, int, u_int16_t *);
258 static void dc_eeprom_width	(struct dc_softc *);
259 static void dc_read_eeprom	(struct dc_softc *, caddr_t, int, int, int);
260 
261 static void dc_mii_writebit	(struct dc_softc *, int);
262 static int dc_mii_readbit	(struct dc_softc *);
263 static void dc_mii_sync		(struct dc_softc *);
264 static void dc_mii_send		(struct dc_softc *, u_int32_t, int);
265 static int dc_mii_readreg	(struct dc_softc *, struct dc_mii_frame *);
266 static int dc_mii_writereg	(struct dc_softc *, struct dc_mii_frame *);
267 static int dc_miibus_readreg	(device_t, int, int);
268 static int dc_miibus_writereg	(device_t, int, int, int);
269 static void dc_miibus_statchg	(device_t);
270 static void dc_miibus_mediainit	(device_t);
271 
272 static void dc_setcfg		(struct dc_softc *, int);
273 static uint32_t dc_mchash_le	(struct dc_softc *, const uint8_t *);
274 static uint32_t dc_mchash_be	(const uint8_t *);
275 static void dc_setfilt_21143	(struct dc_softc *);
276 static void dc_setfilt_asix	(struct dc_softc *);
277 static void dc_setfilt_admtek	(struct dc_softc *);
278 static void dc_setfilt_xircom	(struct dc_softc *);
279 
280 static void dc_setfilt		(struct dc_softc *);
281 
282 static void dc_reset		(struct dc_softc *);
283 static int dc_list_rx_init	(struct dc_softc *);
284 static int dc_list_tx_init	(struct dc_softc *);
285 
286 static void dc_read_srom	(struct dc_softc *, int);
287 static void dc_parse_21143_srom	(struct dc_softc *);
288 static void dc_decode_leaf_sia	(struct dc_softc *, struct dc_eblock_sia *);
289 static void dc_decode_leaf_mii	(struct dc_softc *, struct dc_eblock_mii *);
290 static void dc_decode_leaf_sym	(struct dc_softc *, struct dc_eblock_sym *);
291 static void dc_apply_fixup	(struct dc_softc *, int);
292 
293 static void dc_dma_map_txbuf	(void *, bus_dma_segment_t *, int, bus_size_t,
294 				    int);
295 static void dc_dma_map_rxbuf	(void *, bus_dma_segment_t *, int, bus_size_t,
296 				    int);
297 
298 #ifdef DC_USEIOSPACE
299 #define DC_RES			SYS_RES_IOPORT
300 #define DC_RID			DC_PCI_CFBIO
301 #else
302 #define DC_RES			SYS_RES_MEMORY
303 #define DC_RID			DC_PCI_CFBMA
304 #endif
305 
306 static device_method_t dc_methods[] = {
307 	/* Device interface */
308 	DEVMETHOD(device_probe,		dc_probe),
309 	DEVMETHOD(device_attach,	dc_attach),
310 	DEVMETHOD(device_detach,	dc_detach),
311 	DEVMETHOD(device_suspend,	dc_suspend),
312 	DEVMETHOD(device_resume,	dc_resume),
313 	DEVMETHOD(device_shutdown,	dc_shutdown),
314 
315 	/* bus interface */
316 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
317 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
318 
319 	/* MII interface */
320 	DEVMETHOD(miibus_readreg,	dc_miibus_readreg),
321 	DEVMETHOD(miibus_writereg,	dc_miibus_writereg),
322 	DEVMETHOD(miibus_statchg,	dc_miibus_statchg),
323 	DEVMETHOD(miibus_mediainit,	dc_miibus_mediainit),
324 
325 	{ 0, 0 }
326 };
327 
328 static driver_t dc_driver = {
329 	"dc",
330 	dc_methods,
331 	sizeof(struct dc_softc)
332 };
333 
334 static devclass_t dc_devclass;
335 #ifdef __i386__
336 static int dc_quick = 1;
337 SYSCTL_INT(_hw, OID_AUTO, dc_quick, CTLFLAG_RW, &dc_quick, 0,
338     "do not m_devget() in dc driver");
339 #endif
340 
341 DRIVER_MODULE(dc, cardbus, dc_driver, dc_devclass, 0, 0);
342 DRIVER_MODULE(dc, pci, dc_driver, dc_devclass, 0, 0);
343 DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, 0, 0);
344 
345 #define DC_SETBIT(sc, reg, x)				\
346 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
347 
348 #define DC_CLRBIT(sc, reg, x)				\
349 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
350 
351 #define SIO_SET(x)	DC_SETBIT(sc, DC_SIO, (x))
352 #define SIO_CLR(x)	DC_CLRBIT(sc, DC_SIO, (x))
353 
354 #define IS_MPSAFE 	0
355 
356 static void
357 dc_delay(struct dc_softc *sc)
358 {
359 	int idx;
360 
361 	for (idx = (300 / 33) + 1; idx > 0; idx--)
362 		CSR_READ_4(sc, DC_BUSCTL);
363 }
364 
365 static void
366 dc_eeprom_width(struct dc_softc *sc)
367 {
368 	int i;
369 
370 	/* Force EEPROM to idle state. */
371 	dc_eeprom_idle(sc);
372 
373 	/* Enter EEPROM access mode. */
374 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
375 	dc_delay(sc);
376 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
377 	dc_delay(sc);
378 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
379 	dc_delay(sc);
380 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
381 	dc_delay(sc);
382 
383 	for (i = 3; i--;) {
384 		if (6 & (1 << i))
385 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
386 		else
387 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
388 		dc_delay(sc);
389 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
390 		dc_delay(sc);
391 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
392 		dc_delay(sc);
393 	}
394 
395 	for (i = 1; i <= 12; i++) {
396 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
397 		dc_delay(sc);
398 		if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) {
399 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
400 			dc_delay(sc);
401 			break;
402 		}
403 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
404 		dc_delay(sc);
405 	}
406 
407 	/* Turn off EEPROM access mode. */
408 	dc_eeprom_idle(sc);
409 
410 	if (i < 4 || i > 12)
411 		sc->dc_romwidth = 6;
412 	else
413 		sc->dc_romwidth = i;
414 
415 	/* Enter EEPROM access mode. */
416 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
417 	dc_delay(sc);
418 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
419 	dc_delay(sc);
420 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
421 	dc_delay(sc);
422 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
423 	dc_delay(sc);
424 
425 	/* Turn off EEPROM access mode. */
426 	dc_eeprom_idle(sc);
427 }
428 
429 static void
430 dc_eeprom_idle(struct dc_softc *sc)
431 {
432 	int i;
433 
434 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
435 	dc_delay(sc);
436 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
437 	dc_delay(sc);
438 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
439 	dc_delay(sc);
440 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
441 	dc_delay(sc);
442 
443 	for (i = 0; i < 25; i++) {
444 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
445 		dc_delay(sc);
446 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
447 		dc_delay(sc);
448 	}
449 
450 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
451 	dc_delay(sc);
452 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
453 	dc_delay(sc);
454 	CSR_WRITE_4(sc, DC_SIO, 0x00000000);
455 }
456 
457 /*
458  * Send a read command and address to the EEPROM, check for ACK.
459  */
460 static void
461 dc_eeprom_putbyte(struct dc_softc *sc, int addr)
462 {
463 	int d, i;
464 
465 	d = DC_EECMD_READ >> 6;
466 	for (i = 3; i--; ) {
467 		if (d & (1 << i))
468 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
469 		else
470 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
471 		dc_delay(sc);
472 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
473 		dc_delay(sc);
474 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
475 		dc_delay(sc);
476 	}
477 
478 	/*
479 	 * Feed in each bit and strobe the clock.
480 	 */
481 	for (i = sc->dc_romwidth; i--;) {
482 		if (addr & (1 << i)) {
483 			SIO_SET(DC_SIO_EE_DATAIN);
484 		} else {
485 			SIO_CLR(DC_SIO_EE_DATAIN);
486 		}
487 		dc_delay(sc);
488 		SIO_SET(DC_SIO_EE_CLK);
489 		dc_delay(sc);
490 		SIO_CLR(DC_SIO_EE_CLK);
491 		dc_delay(sc);
492 	}
493 }
494 
495 /*
496  * Read a word of data stored in the EEPROM at address 'addr.'
497  * The PNIC 82c168/82c169 has its own non-standard way to read
498  * the EEPROM.
499  */
500 static void
501 dc_eeprom_getword_pnic(struct dc_softc *sc, int addr, u_int16_t *dest)
502 {
503 	int i;
504 	u_int32_t r;
505 
506 	CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ | addr);
507 
508 	for (i = 0; i < DC_TIMEOUT; i++) {
509 		DELAY(1);
510 		r = CSR_READ_4(sc, DC_SIO);
511 		if (!(r & DC_PN_SIOCTL_BUSY)) {
512 			*dest = (u_int16_t)(r & 0xFFFF);
513 			return;
514 		}
515 	}
516 }
517 
518 /*
519  * Read a word of data stored in the EEPROM at address 'addr.'
520  * The Xircom X3201 has its own non-standard way to read
521  * the EEPROM, too.
522  */
523 static void
524 dc_eeprom_getword_xircom(struct dc_softc *sc, int addr, u_int16_t *dest)
525 {
526 
527 	SIO_SET(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
528 
529 	addr *= 2;
530 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
531 	*dest = (u_int16_t)CSR_READ_4(sc, DC_SIO) & 0xff;
532 	addr += 1;
533 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
534 	*dest |= ((u_int16_t)CSR_READ_4(sc, DC_SIO) & 0xff) << 8;
535 
536 	SIO_CLR(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
537 }
538 
539 /*
540  * Read a word of data stored in the EEPROM at address 'addr.'
541  */
542 static void
543 dc_eeprom_getword(struct dc_softc *sc, int addr, u_int16_t *dest)
544 {
545 	int i;
546 	u_int16_t word = 0;
547 
548 	/* Force EEPROM to idle state. */
549 	dc_eeprom_idle(sc);
550 
551 	/* Enter EEPROM access mode. */
552 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
553 	dc_delay(sc);
554 	DC_SETBIT(sc, DC_SIO,  DC_SIO_ROMCTL_READ);
555 	dc_delay(sc);
556 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
557 	dc_delay(sc);
558 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
559 	dc_delay(sc);
560 
561 	/*
562 	 * Send address of word we want to read.
563 	 */
564 	dc_eeprom_putbyte(sc, addr);
565 
566 	/*
567 	 * Start reading bits from EEPROM.
568 	 */
569 	for (i = 0x8000; i; i >>= 1) {
570 		SIO_SET(DC_SIO_EE_CLK);
571 		dc_delay(sc);
572 		if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
573 			word |= i;
574 		dc_delay(sc);
575 		SIO_CLR(DC_SIO_EE_CLK);
576 		dc_delay(sc);
577 	}
578 
579 	/* Turn off EEPROM access mode. */
580 	dc_eeprom_idle(sc);
581 
582 	*dest = word;
583 }
584 
585 /*
586  * Read a sequence of words from the EEPROM.
587  */
588 static void
589 dc_read_eeprom(struct dc_softc *sc, caddr_t dest, int off, int cnt, int swap)
590 {
591 	int i;
592 	u_int16_t word = 0, *ptr;
593 
594 	for (i = 0; i < cnt; i++) {
595 		if (DC_IS_PNIC(sc))
596 			dc_eeprom_getword_pnic(sc, off + i, &word);
597 		else if (DC_IS_XIRCOM(sc))
598 			dc_eeprom_getword_xircom(sc, off + i, &word);
599 		else
600 			dc_eeprom_getword(sc, off + i, &word);
601 		ptr = (u_int16_t *)(dest + (i * 2));
602 		if (swap)
603 			*ptr = ntohs(word);
604 		else
605 			*ptr = word;
606 	}
607 }
608 
609 /*
610  * The following two routines are taken from the Macronix 98713
611  * Application Notes pp.19-21.
612  */
613 /*
614  * Write a bit to the MII bus.
615  */
616 static void
617 dc_mii_writebit(struct dc_softc *sc, int bit)
618 {
619 
620 	if (bit)
621 		CSR_WRITE_4(sc, DC_SIO,
622 		    DC_SIO_ROMCTL_WRITE | DC_SIO_MII_DATAOUT);
623 	else
624 		CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
625 
626 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
627 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
628 }
629 
630 /*
631  * Read a bit from the MII bus.
632  */
633 static int
634 dc_mii_readbit(struct dc_softc *sc)
635 {
636 
637 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_READ | DC_SIO_MII_DIR);
638 	CSR_READ_4(sc, DC_SIO);
639 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
640 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
641 	if (CSR_READ_4(sc, DC_SIO) & DC_SIO_MII_DATAIN)
642 		return (1);
643 
644 	return (0);
645 }
646 
647 /*
648  * Sync the PHYs by setting data bit and strobing the clock 32 times.
649  */
650 static void
651 dc_mii_sync(struct dc_softc *sc)
652 {
653 	int i;
654 
655 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
656 
657 	for (i = 0; i < 32; i++)
658 		dc_mii_writebit(sc, 1);
659 }
660 
661 /*
662  * Clock a series of bits through the MII.
663  */
664 static void
665 dc_mii_send(struct dc_softc *sc, u_int32_t bits, int cnt)
666 {
667 	int i;
668 
669 	for (i = (0x1 << (cnt - 1)); i; i >>= 1)
670 		dc_mii_writebit(sc, bits & i);
671 }
672 
673 /*
674  * Read an PHY register through the MII.
675  */
676 static int
677 dc_mii_readreg(struct dc_softc *sc, struct dc_mii_frame *frame)
678 {
679 	int i, ack;
680 
681 	DC_LOCK(sc);
682 
683 	/*
684 	 * Set up frame for RX.
685 	 */
686 	frame->mii_stdelim = DC_MII_STARTDELIM;
687 	frame->mii_opcode = DC_MII_READOP;
688 	frame->mii_turnaround = 0;
689 	frame->mii_data = 0;
690 
691 	/*
692 	 * Sync the PHYs.
693 	 */
694 	dc_mii_sync(sc);
695 
696 	/*
697 	 * Send command/address info.
698 	 */
699 	dc_mii_send(sc, frame->mii_stdelim, 2);
700 	dc_mii_send(sc, frame->mii_opcode, 2);
701 	dc_mii_send(sc, frame->mii_phyaddr, 5);
702 	dc_mii_send(sc, frame->mii_regaddr, 5);
703 
704 #ifdef notdef
705 	/* Idle bit */
706 	dc_mii_writebit(sc, 1);
707 	dc_mii_writebit(sc, 0);
708 #endif
709 
710 	/* Check for ack. */
711 	ack = dc_mii_readbit(sc);
712 
713 	/*
714 	 * Now try reading data bits. If the ack failed, we still
715 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
716 	 */
717 	if (ack) {
718 		for (i = 0; i < 16; i++)
719 			dc_mii_readbit(sc);
720 		goto fail;
721 	}
722 
723 	for (i = 0x8000; i; i >>= 1) {
724 		if (!ack) {
725 			if (dc_mii_readbit(sc))
726 				frame->mii_data |= i;
727 		}
728 	}
729 
730 fail:
731 
732 	dc_mii_writebit(sc, 0);
733 	dc_mii_writebit(sc, 0);
734 
735 	DC_UNLOCK(sc);
736 
737 	if (ack)
738 		return (1);
739 	return (0);
740 }
741 
742 /*
743  * Write to a PHY register through the MII.
744  */
745 static int
746 dc_mii_writereg(struct dc_softc *sc, struct dc_mii_frame *frame)
747 {
748 
749 	DC_LOCK(sc);
750 	/*
751 	 * Set up frame for TX.
752 	 */
753 
754 	frame->mii_stdelim = DC_MII_STARTDELIM;
755 	frame->mii_opcode = DC_MII_WRITEOP;
756 	frame->mii_turnaround = DC_MII_TURNAROUND;
757 
758 	/*
759 	 * Sync the PHYs.
760 	 */
761 	dc_mii_sync(sc);
762 
763 	dc_mii_send(sc, frame->mii_stdelim, 2);
764 	dc_mii_send(sc, frame->mii_opcode, 2);
765 	dc_mii_send(sc, frame->mii_phyaddr, 5);
766 	dc_mii_send(sc, frame->mii_regaddr, 5);
767 	dc_mii_send(sc, frame->mii_turnaround, 2);
768 	dc_mii_send(sc, frame->mii_data, 16);
769 
770 	/* Idle bit. */
771 	dc_mii_writebit(sc, 0);
772 	dc_mii_writebit(sc, 0);
773 
774 	DC_UNLOCK(sc);
775 
776 	return (0);
777 }
778 
779 static int
780 dc_miibus_readreg(device_t dev, int phy, int reg)
781 {
782 	struct dc_mii_frame frame;
783 	struct dc_softc	 *sc;
784 	int i, rval, phy_reg = 0;
785 
786 	sc = device_get_softc(dev);
787 	bzero(&frame, sizeof(frame));
788 
789 	/*
790 	 * Note: both the AL981 and AN985 have internal PHYs,
791 	 * however the AL981 provides direct access to the PHY
792 	 * registers while the AN985 uses a serial MII interface.
793 	 * The AN985's MII interface is also buggy in that you
794 	 * can read from any MII address (0 to 31), but only address 1
795 	 * behaves normally. To deal with both cases, we pretend
796 	 * that the PHY is at MII address 1.
797 	 */
798 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
799 		return (0);
800 
801 	/*
802 	 * Note: the ukphy probes of the RS7112 report a PHY at
803 	 * MII address 0 (possibly HomePNA?) and 1 (ethernet)
804 	 * so we only respond to correct one.
805 	 */
806 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
807 		return (0);
808 
809 	if (sc->dc_pmode != DC_PMODE_MII) {
810 		if (phy == (MII_NPHY - 1)) {
811 			switch (reg) {
812 			case MII_BMSR:
813 			/*
814 			 * Fake something to make the probe
815 			 * code think there's a PHY here.
816 			 */
817 				return (BMSR_MEDIAMASK);
818 				break;
819 			case MII_PHYIDR1:
820 				if (DC_IS_PNIC(sc))
821 					return (DC_VENDORID_LO);
822 				return (DC_VENDORID_DEC);
823 				break;
824 			case MII_PHYIDR2:
825 				if (DC_IS_PNIC(sc))
826 					return (DC_DEVICEID_82C168);
827 				return (DC_DEVICEID_21143);
828 				break;
829 			default:
830 				return (0);
831 				break;
832 			}
833 		} else
834 			return (0);
835 	}
836 
837 	if (DC_IS_PNIC(sc)) {
838 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
839 		    (phy << 23) | (reg << 18));
840 		for (i = 0; i < DC_TIMEOUT; i++) {
841 			DELAY(1);
842 			rval = CSR_READ_4(sc, DC_PN_MII);
843 			if (!(rval & DC_PN_MII_BUSY)) {
844 				rval &= 0xFFFF;
845 				return (rval == 0xFFFF ? 0 : rval);
846 			}
847 		}
848 		return (0);
849 	}
850 
851 	if (DC_IS_COMET(sc)) {
852 		switch (reg) {
853 		case MII_BMCR:
854 			phy_reg = DC_AL_BMCR;
855 			break;
856 		case MII_BMSR:
857 			phy_reg = DC_AL_BMSR;
858 			break;
859 		case MII_PHYIDR1:
860 			phy_reg = DC_AL_VENID;
861 			break;
862 		case MII_PHYIDR2:
863 			phy_reg = DC_AL_DEVID;
864 			break;
865 		case MII_ANAR:
866 			phy_reg = DC_AL_ANAR;
867 			break;
868 		case MII_ANLPAR:
869 			phy_reg = DC_AL_LPAR;
870 			break;
871 		case MII_ANER:
872 			phy_reg = DC_AL_ANER;
873 			break;
874 		default:
875 			printf("dc%d: phy_read: bad phy register %x\n",
876 			    sc->dc_unit, reg);
877 			return (0);
878 			break;
879 		}
880 
881 		rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
882 
883 		if (rval == 0xFFFF)
884 			return (0);
885 		return (rval);
886 	}
887 
888 	frame.mii_phyaddr = phy;
889 	frame.mii_regaddr = reg;
890 	if (sc->dc_type == DC_TYPE_98713) {
891 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
892 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
893 	}
894 	dc_mii_readreg(sc, &frame);
895 	if (sc->dc_type == DC_TYPE_98713)
896 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
897 
898 	return (frame.mii_data);
899 }
900 
901 static int
902 dc_miibus_writereg(device_t dev, int phy, int reg, int data)
903 {
904 	struct dc_softc *sc;
905 	struct dc_mii_frame frame;
906 	int i, phy_reg = 0;
907 
908 	sc = device_get_softc(dev);
909 	bzero(&frame, sizeof(frame));
910 
911 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
912 		return (0);
913 
914 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
915 		return (0);
916 
917 	if (DC_IS_PNIC(sc)) {
918 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
919 		    (phy << 23) | (reg << 10) | data);
920 		for (i = 0; i < DC_TIMEOUT; i++) {
921 			if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
922 				break;
923 		}
924 		return (0);
925 	}
926 
927 	if (DC_IS_COMET(sc)) {
928 		switch (reg) {
929 		case MII_BMCR:
930 			phy_reg = DC_AL_BMCR;
931 			break;
932 		case MII_BMSR:
933 			phy_reg = DC_AL_BMSR;
934 			break;
935 		case MII_PHYIDR1:
936 			phy_reg = DC_AL_VENID;
937 			break;
938 		case MII_PHYIDR2:
939 			phy_reg = DC_AL_DEVID;
940 			break;
941 		case MII_ANAR:
942 			phy_reg = DC_AL_ANAR;
943 			break;
944 		case MII_ANLPAR:
945 			phy_reg = DC_AL_LPAR;
946 			break;
947 		case MII_ANER:
948 			phy_reg = DC_AL_ANER;
949 			break;
950 		default:
951 			printf("dc%d: phy_write: bad phy register %x\n",
952 			    sc->dc_unit, reg);
953 			return (0);
954 			break;
955 		}
956 
957 		CSR_WRITE_4(sc, phy_reg, data);
958 		return (0);
959 	}
960 
961 	frame.mii_phyaddr = phy;
962 	frame.mii_regaddr = reg;
963 	frame.mii_data = data;
964 
965 	if (sc->dc_type == DC_TYPE_98713) {
966 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
967 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
968 	}
969 	dc_mii_writereg(sc, &frame);
970 	if (sc->dc_type == DC_TYPE_98713)
971 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
972 
973 	return (0);
974 }
975 
976 static void
977 dc_miibus_statchg(device_t dev)
978 {
979 	struct dc_softc *sc;
980 	struct mii_data *mii;
981 	struct ifmedia *ifm;
982 
983 	sc = device_get_softc(dev);
984 	if (DC_IS_ADMTEK(sc))
985 		return;
986 
987 	mii = device_get_softc(sc->dc_miibus);
988 	ifm = &mii->mii_media;
989 	if (DC_IS_DAVICOM(sc) &&
990 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
991 		dc_setcfg(sc, ifm->ifm_media);
992 		sc->dc_if_media = ifm->ifm_media;
993 	} else {
994 		dc_setcfg(sc, mii->mii_media_active);
995 		sc->dc_if_media = mii->mii_media_active;
996 	}
997 }
998 
999 /*
1000  * Special support for DM9102A cards with HomePNA PHYs. Note:
1001  * with the Davicom DM9102A/DM9801 eval board that I have, it seems
1002  * to be impossible to talk to the management interface of the DM9801
1003  * PHY (its MDIO pin is not connected to anything). Consequently,
1004  * the driver has to just 'know' about the additional mode and deal
1005  * with it itself. *sigh*
1006  */
1007 static void
1008 dc_miibus_mediainit(device_t dev)
1009 {
1010 	struct dc_softc *sc;
1011 	struct mii_data *mii;
1012 	struct ifmedia *ifm;
1013 	int rev;
1014 
1015 	rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF;
1016 
1017 	sc = device_get_softc(dev);
1018 	mii = device_get_softc(sc->dc_miibus);
1019 	ifm = &mii->mii_media;
1020 
1021 	if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A)
1022 		ifmedia_add(ifm, IFM_ETHER | IFM_HPNA_1, 0, NULL);
1023 }
1024 
1025 #define DC_POLY		0xEDB88320
1026 #define DC_BITS_512	9
1027 #define DC_BITS_128	7
1028 #define DC_BITS_64	6
1029 
1030 static uint32_t
1031 dc_mchash_le(struct dc_softc *sc, const uint8_t *addr)
1032 {
1033 	uint32_t crc;
1034 	int idx, bit;
1035 	uint8_t data;
1036 
1037 	/* Compute CRC for the address value. */
1038 	crc = 0xFFFFFFFF; /* initial value */
1039 
1040 	for (idx = 0; idx < 6; idx++) {
1041 		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1)
1042 			crc = (crc >> 1) ^ (((crc ^ data) & 1) ? DC_POLY : 0);
1043 	}
1044 
1045 	/*
1046 	 * The hash table on the PNIC II and the MX98715AEC-C/D/E
1047 	 * chips is only 128 bits wide.
1048 	 */
1049 	if (sc->dc_flags & DC_128BIT_HASH)
1050 		return (crc & ((1 << DC_BITS_128) - 1));
1051 
1052 	/* The hash table on the MX98715BEC is only 64 bits wide. */
1053 	if (sc->dc_flags & DC_64BIT_HASH)
1054 		return (crc & ((1 << DC_BITS_64) - 1));
1055 
1056 	/* Xircom's hash filtering table is different (read: weird) */
1057 	/* Xircom uses the LEAST significant bits */
1058 	if (DC_IS_XIRCOM(sc)) {
1059 		if ((crc & 0x180) == 0x180)
1060 			return ((crc & 0x0F) + (crc & 0x70) * 3 + (14 << 4));
1061 		else
1062 			return ((crc & 0x1F) + ((crc >> 1) & 0xF0) * 3 +
1063 			    (12 << 4));
1064 	}
1065 
1066 	return (crc & ((1 << DC_BITS_512) - 1));
1067 }
1068 
1069 /*
1070  * Calculate CRC of a multicast group address, return the lower 6 bits.
1071  */
1072 static uint32_t
1073 dc_mchash_be(const uint8_t *addr)
1074 {
1075 	uint32_t crc, carry;
1076 	int idx, bit;
1077 	uint8_t data;
1078 
1079 	/* Compute CRC for the address value. */
1080 	crc = 0xFFFFFFFF; /* initial value */
1081 
1082 	for (idx = 0; idx < 6; idx++) {
1083 		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1) {
1084 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01);
1085 			data >>= 1;
1086 			crc <<= 1;
1087 			if (carry)
1088 				crc = (crc ^ 0x04c11db6) | carry;
1089 		}
1090 	}
1091 
1092 	/* Return the filter bit position. */
1093 	return ((crc >> 26) & 0x0000003F);
1094 }
1095 
1096 /*
1097  * 21143-style RX filter setup routine. Filter programming is done by
1098  * downloading a special setup frame into the TX engine. 21143, Macronix,
1099  * PNIC, PNIC II and Davicom chips are programmed this way.
1100  *
1101  * We always program the chip using 'hash perfect' mode, i.e. one perfect
1102  * address (our node address) and a 512-bit hash filter for multicast
1103  * frames. We also sneak the broadcast address into the hash filter since
1104  * we need that too.
1105  */
1106 static void
1107 dc_setfilt_21143(struct dc_softc *sc)
1108 {
1109 	struct dc_desc *sframe;
1110 	u_int32_t h, *sp;
1111 	struct ifmultiaddr *ifma;
1112 	struct ifnet *ifp;
1113 	int i;
1114 
1115 	ifp = &sc->arpcom.ac_if;
1116 
1117 	i = sc->dc_cdata.dc_tx_prod;
1118 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1119 	sc->dc_cdata.dc_tx_cnt++;
1120 	sframe = &sc->dc_ldata->dc_tx_list[i];
1121 	sp = sc->dc_cdata.dc_sbuf;
1122 	bzero(sp, DC_SFRAME_LEN);
1123 
1124 	sframe->dc_data = htole32(sc->dc_saddr);
1125 	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
1126 	    DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
1127 
1128 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
1129 
1130 	/* If we want promiscuous mode, set the allframes bit. */
1131 	if (ifp->if_flags & IFF_PROMISC)
1132 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1133 	else
1134 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1135 
1136 	if (ifp->if_flags & IFF_ALLMULTI)
1137 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1138 	else
1139 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1140 
1141 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1142 		if (ifma->ifma_addr->sa_family != AF_LINK)
1143 			continue;
1144 		h = dc_mchash_le(sc,
1145 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1146 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1147 	}
1148 
1149 	if (ifp->if_flags & IFF_BROADCAST) {
1150 		h = dc_mchash_le(sc, ifp->if_broadcastaddr);
1151 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1152 	}
1153 
1154 	/* Set our MAC address */
1155 	sp[39] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
1156 	sp[40] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
1157 	sp[41] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
1158 
1159 	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1160 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1161 
1162 	/*
1163 	 * The PNIC takes an exceedingly long time to process its
1164 	 * setup frame; wait 10ms after posting the setup frame
1165 	 * before proceeding, just so it has time to swallow its
1166 	 * medicine.
1167 	 */
1168 	DELAY(10000);
1169 
1170 	ifp->if_timer = 5;
1171 }
1172 
1173 static void
1174 dc_setfilt_admtek(struct dc_softc *sc)
1175 {
1176 	struct ifnet *ifp;
1177 	struct ifmultiaddr *ifma;
1178 	int h = 0;
1179 	u_int32_t hashes[2] = { 0, 0 };
1180 
1181 	ifp = &sc->arpcom.ac_if;
1182 
1183 	/* Init our MAC address. */
1184 	CSR_WRITE_4(sc, DC_AL_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1185 	CSR_WRITE_4(sc, DC_AL_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1186 
1187 	/* If we want promiscuous mode, set the allframes bit. */
1188 	if (ifp->if_flags & IFF_PROMISC)
1189 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1190 	else
1191 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1192 
1193 	if (ifp->if_flags & IFF_ALLMULTI)
1194 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1195 	else
1196 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1197 
1198 	/* First, zot all the existing hash bits. */
1199 	CSR_WRITE_4(sc, DC_AL_MAR0, 0);
1200 	CSR_WRITE_4(sc, DC_AL_MAR1, 0);
1201 
1202 	/*
1203 	 * If we're already in promisc or allmulti mode, we
1204 	 * don't have to bother programming the multicast filter.
1205 	 */
1206 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
1207 		return;
1208 
1209 	/* Now program new ones. */
1210 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1211 		if (ifma->ifma_addr->sa_family != AF_LINK)
1212 			continue;
1213 		if (DC_IS_CENTAUR(sc))
1214 			h = dc_mchash_le(sc,
1215 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1216 		else
1217 			h = dc_mchash_be(
1218 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1219 		if (h < 32)
1220 			hashes[0] |= (1 << h);
1221 		else
1222 			hashes[1] |= (1 << (h - 32));
1223 	}
1224 
1225 	CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]);
1226 	CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]);
1227 }
1228 
1229 static void
1230 dc_setfilt_asix(struct dc_softc *sc)
1231 {
1232 	struct ifnet *ifp;
1233 	struct ifmultiaddr *ifma;
1234 	int h = 0;
1235 	u_int32_t hashes[2] = { 0, 0 };
1236 
1237 	ifp = &sc->arpcom.ac_if;
1238 
1239 	/* Init our MAC address */
1240 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
1241 	CSR_WRITE_4(sc, DC_AX_FILTDATA,
1242 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1243 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
1244 	CSR_WRITE_4(sc, DC_AX_FILTDATA,
1245 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1246 
1247 	/* If we want promiscuous mode, set the allframes bit. */
1248 	if (ifp->if_flags & IFF_PROMISC)
1249 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1250 	else
1251 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1252 
1253 	if (ifp->if_flags & IFF_ALLMULTI)
1254 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1255 	else
1256 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1257 
1258 	/*
1259 	 * The ASIX chip has a special bit to enable reception
1260 	 * of broadcast frames.
1261 	 */
1262 	if (ifp->if_flags & IFF_BROADCAST)
1263 		DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1264 	else
1265 		DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1266 
1267 	/* first, zot all the existing hash bits */
1268 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1269 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1270 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1271 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1272 
1273 	/*
1274 	 * If we're already in promisc or allmulti mode, we
1275 	 * don't have to bother programming the multicast filter.
1276 	 */
1277 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
1278 		return;
1279 
1280 	/* now program new ones */
1281 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1282 		if (ifma->ifma_addr->sa_family != AF_LINK)
1283 			continue;
1284 		h = dc_mchash_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1285 		if (h < 32)
1286 			hashes[0] |= (1 << h);
1287 		else
1288 			hashes[1] |= (1 << (h - 32));
1289 	}
1290 
1291 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1292 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
1293 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1294 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
1295 }
1296 
1297 static void
1298 dc_setfilt_xircom(struct dc_softc *sc)
1299 {
1300 	struct ifnet *ifp;
1301 	struct ifmultiaddr *ifma;
1302 	struct dc_desc *sframe;
1303 	u_int32_t h, *sp;
1304 	int i;
1305 
1306 	ifp = &sc->arpcom.ac_if;
1307 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1308 
1309 	i = sc->dc_cdata.dc_tx_prod;
1310 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1311 	sc->dc_cdata.dc_tx_cnt++;
1312 	sframe = &sc->dc_ldata->dc_tx_list[i];
1313 	sp = sc->dc_cdata.dc_sbuf;
1314 	bzero(sp, DC_SFRAME_LEN);
1315 
1316 	sframe->dc_data = htole32(sc->dc_saddr);
1317 	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
1318 	    DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
1319 
1320 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
1321 
1322 	/* If we want promiscuous mode, set the allframes bit. */
1323 	if (ifp->if_flags & IFF_PROMISC)
1324 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1325 	else
1326 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1327 
1328 	if (ifp->if_flags & IFF_ALLMULTI)
1329 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1330 	else
1331 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1332 
1333 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1334 		if (ifma->ifma_addr->sa_family != AF_LINK)
1335 			continue;
1336 		h = dc_mchash_le(sc,
1337 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1338 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1339 	}
1340 
1341 	if (ifp->if_flags & IFF_BROADCAST) {
1342 		h = dc_mchash_le(sc, ifp->if_broadcastaddr);
1343 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1344 	}
1345 
1346 	/* Set our MAC address */
1347 	sp[0] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
1348 	sp[1] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
1349 	sp[2] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
1350 
1351 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
1352 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
1353 	ifp->if_flags |= IFF_RUNNING;
1354 	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1355 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1356 
1357 	/*
1358 	 * Wait some time...
1359 	 */
1360 	DELAY(1000);
1361 
1362 	ifp->if_timer = 5;
1363 }
1364 
1365 static void
1366 dc_setfilt(struct dc_softc *sc)
1367 {
1368 
1369 	if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
1370 	    DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc))
1371 		dc_setfilt_21143(sc);
1372 
1373 	if (DC_IS_ASIX(sc))
1374 		dc_setfilt_asix(sc);
1375 
1376 	if (DC_IS_ADMTEK(sc))
1377 		dc_setfilt_admtek(sc);
1378 
1379 	if (DC_IS_XIRCOM(sc))
1380 		dc_setfilt_xircom(sc);
1381 }
1382 
1383 /*
1384  * In order to fiddle with the 'full-duplex' and '100Mbps' bits in
1385  * the netconfig register, we first have to put the transmit and/or
1386  * receive logic in the idle state.
1387  */
1388 static void
1389 dc_setcfg(struct dc_softc *sc, int media)
1390 {
1391 	int i, restart = 0, watchdogreg;
1392 	u_int32_t isr;
1393 
1394 	if (IFM_SUBTYPE(media) == IFM_NONE)
1395 		return;
1396 
1397 	if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON)) {
1398 		restart = 1;
1399 		DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1400 
1401 		for (i = 0; i < DC_TIMEOUT; i++) {
1402 			isr = CSR_READ_4(sc, DC_ISR);
1403 			if (isr & DC_ISR_TX_IDLE &&
1404 			    ((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
1405 			    (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT))
1406 				break;
1407 			DELAY(10);
1408 		}
1409 
1410 		if (i == DC_TIMEOUT)
1411 			printf("dc%d: failed to force tx and "
1412 				"rx to idle state\n", sc->dc_unit);
1413 	}
1414 
1415 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
1416 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1417 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1418 		if (sc->dc_pmode == DC_PMODE_MII) {
1419 			if (DC_IS_INTEL(sc)) {
1420 			/* There's a write enable bit here that reads as 1. */
1421 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1422 				watchdogreg &= ~DC_WDOG_CTLWREN;
1423 				watchdogreg |= DC_WDOG_JABBERDIS;
1424 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1425 			} else {
1426 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1427 			}
1428 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1429 			    DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
1430 			if (sc->dc_type == DC_TYPE_98713)
1431 				DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1432 				    DC_NETCFG_SCRAMBLER));
1433 			if (!DC_IS_DAVICOM(sc))
1434 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1435 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1436 			if (DC_IS_INTEL(sc))
1437 				dc_apply_fixup(sc, IFM_AUTO);
1438 		} else {
1439 			if (DC_IS_PNIC(sc)) {
1440 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
1441 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1442 				DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1443 			}
1444 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1445 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1446 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1447 			if (DC_IS_INTEL(sc))
1448 				dc_apply_fixup(sc,
1449 				    (media & IFM_GMASK) == IFM_FDX ?
1450 				    IFM_100_TX | IFM_FDX : IFM_100_TX);
1451 		}
1452 	}
1453 
1454 	if (IFM_SUBTYPE(media) == IFM_10_T) {
1455 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1456 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1457 		if (sc->dc_pmode == DC_PMODE_MII) {
1458 			/* There's a write enable bit here that reads as 1. */
1459 			if (DC_IS_INTEL(sc)) {
1460 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1461 				watchdogreg &= ~DC_WDOG_CTLWREN;
1462 				watchdogreg |= DC_WDOG_JABBERDIS;
1463 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1464 			} else {
1465 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1466 			}
1467 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1468 			    DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
1469 			if (sc->dc_type == DC_TYPE_98713)
1470 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1471 			if (!DC_IS_DAVICOM(sc))
1472 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1473 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1474 			if (DC_IS_INTEL(sc))
1475 				dc_apply_fixup(sc, IFM_AUTO);
1476 		} else {
1477 			if (DC_IS_PNIC(sc)) {
1478 				DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
1479 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1480 				DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1481 			}
1482 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1483 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1484 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1485 			if (DC_IS_INTEL(sc)) {
1486 				DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET);
1487 				DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1488 				if ((media & IFM_GMASK) == IFM_FDX)
1489 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D);
1490 				else
1491 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F);
1492 				DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1493 				DC_CLRBIT(sc, DC_10BTCTRL,
1494 				    DC_TCTL_AUTONEGENBL);
1495 				dc_apply_fixup(sc,
1496 				    (media & IFM_GMASK) == IFM_FDX ?
1497 				    IFM_10_T | IFM_FDX : IFM_10_T);
1498 				DELAY(20000);
1499 			}
1500 		}
1501 	}
1502 
1503 	/*
1504 	 * If this is a Davicom DM9102A card with a DM9801 HomePNA
1505 	 * PHY and we want HomePNA mode, set the portsel bit to turn
1506 	 * on the external MII port.
1507 	 */
1508 	if (DC_IS_DAVICOM(sc)) {
1509 		if (IFM_SUBTYPE(media) == IFM_HPNA_1) {
1510 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1511 			sc->dc_link = 1;
1512 		} else {
1513 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1514 		}
1515 	}
1516 
1517 	if ((media & IFM_GMASK) == IFM_FDX) {
1518 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1519 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1520 			DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1521 	} else {
1522 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1523 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1524 			DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1525 	}
1526 
1527 	if (restart)
1528 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON | DC_NETCFG_RX_ON);
1529 }
1530 
1531 static void
1532 dc_reset(struct dc_softc *sc)
1533 {
1534 	int i;
1535 
1536 	DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1537 
1538 	for (i = 0; i < DC_TIMEOUT; i++) {
1539 		DELAY(10);
1540 		if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
1541 			break;
1542 	}
1543 
1544 	if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_CONEXANT(sc) ||
1545 	    DC_IS_XIRCOM(sc) || DC_IS_INTEL(sc)) {
1546 		DELAY(10000);
1547 		DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1548 		i = 0;
1549 	}
1550 
1551 	if (i == DC_TIMEOUT)
1552 		printf("dc%d: reset never completed!\n", sc->dc_unit);
1553 
1554 	/* Wait a little while for the chip to get its brains in order. */
1555 	DELAY(1000);
1556 
1557 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
1558 	CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
1559 	CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
1560 
1561 	/*
1562 	 * Bring the SIA out of reset. In some cases, it looks
1563 	 * like failing to unreset the SIA soon enough gets it
1564 	 * into a state where it will never come out of reset
1565 	 * until we reset the whole chip again.
1566 	 */
1567 	if (DC_IS_INTEL(sc)) {
1568 		DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1569 		CSR_WRITE_4(sc, DC_10BTCTRL, 0);
1570 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
1571 	}
1572 }
1573 
1574 static struct dc_type *
1575 dc_devtype(device_t dev)
1576 {
1577 	struct dc_type *t;
1578 	u_int32_t rev;
1579 
1580 	t = dc_devs;
1581 
1582 	while (t->dc_name != NULL) {
1583 		if ((pci_get_vendor(dev) == t->dc_vid) &&
1584 		    (pci_get_device(dev) == t->dc_did)) {
1585 			/* Check the PCI revision */
1586 			rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF;
1587 			if (t->dc_did == DC_DEVICEID_98713 &&
1588 			    rev >= DC_REVISION_98713A)
1589 				t++;
1590 			if (t->dc_did == DC_DEVICEID_98713_CP &&
1591 			    rev >= DC_REVISION_98713A)
1592 				t++;
1593 			if (t->dc_did == DC_DEVICEID_987x5 &&
1594 			    rev >= DC_REVISION_98715AEC_C)
1595 				t++;
1596 			if (t->dc_did == DC_DEVICEID_987x5 &&
1597 			    rev >= DC_REVISION_98725)
1598 				t++;
1599 			if (t->dc_did == DC_DEVICEID_AX88140A &&
1600 			    rev >= DC_REVISION_88141)
1601 				t++;
1602 			if (t->dc_did == DC_DEVICEID_82C168 &&
1603 			    rev >= DC_REVISION_82C169)
1604 				t++;
1605 			if (t->dc_did == DC_DEVICEID_DM9102 &&
1606 			    rev >= DC_REVISION_DM9102A)
1607 				t++;
1608 			/*
1609 			 * The Microsoft MN-130 has a device ID of 0x0002,
1610 			 * which happens to be the same as the PNIC 82c168.
1611 			 * To keep dc_attach() from getting confused, we
1612 			 * pretend its ID is something different.
1613 			 * XXX: ideally, dc_attach() should be checking
1614 			 * vendorid+deviceid together to avoid such
1615 			 * collisions.
1616 			 */
1617 			if (t->dc_vid == DC_VENDORID_MICROSOFT &&
1618 			    t->dc_did == DC_DEVICEID_MSMN130)
1619 				t++;
1620 			return (t);
1621 		}
1622 		t++;
1623 	}
1624 
1625 	return (NULL);
1626 }
1627 
1628 /*
1629  * Probe for a 21143 or clone chip. Check the PCI vendor and device
1630  * IDs against our list and return a device name if we find a match.
1631  * We do a little bit of extra work to identify the exact type of
1632  * chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
1633  * but different revision IDs. The same is true for 98715/98715A
1634  * chips and the 98725, as well as the ASIX and ADMtek chips. In some
1635  * cases, the exact chip revision affects driver behavior.
1636  */
1637 static int
1638 dc_probe(device_t dev)
1639 {
1640 	struct dc_type *t;
1641 
1642 	t = dc_devtype(dev);
1643 
1644 	if (t != NULL) {
1645 		device_set_desc(dev, t->dc_name);
1646 		return (0);
1647 	}
1648 
1649 	return (ENXIO);
1650 }
1651 
1652 #ifndef BURN_BRIDGES
1653 static void
1654 dc_acpi(device_t dev)
1655 {
1656 	int unit;
1657 	u_int32_t iobase, membase, irq;
1658 
1659 	unit = device_get_unit(dev);
1660 
1661 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1662 		/* Save important PCI config data. */
1663 		iobase = pci_read_config(dev, DC_PCI_CFBIO, 4);
1664 		membase = pci_read_config(dev, DC_PCI_CFBMA, 4);
1665 		irq = pci_read_config(dev, DC_PCI_CFIT, 4);
1666 
1667 		/* Reset the power state. */
1668 		printf("dc%d: chip is in D%d power mode "
1669 		    "-- setting to D0\n", unit,
1670 		    pci_get_powerstate(dev));
1671 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1672 
1673 		/* Restore PCI config data. */
1674 		pci_write_config(dev, DC_PCI_CFBIO, iobase, 4);
1675 		pci_write_config(dev, DC_PCI_CFBMA, membase, 4);
1676 		pci_write_config(dev, DC_PCI_CFIT, irq, 4);
1677 	}
1678 }
1679 #endif
1680 
1681 static void
1682 dc_apply_fixup(struct dc_softc *sc, int media)
1683 {
1684 	struct dc_mediainfo *m;
1685 	u_int8_t *p;
1686 	int i;
1687 	u_int32_t reg;
1688 
1689 	m = sc->dc_mi;
1690 
1691 	while (m != NULL) {
1692 		if (m->dc_media == media)
1693 			break;
1694 		m = m->dc_next;
1695 	}
1696 
1697 	if (m == NULL)
1698 		return;
1699 
1700 	for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) {
1701 		reg = (p[0] | (p[1] << 8)) << 16;
1702 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1703 	}
1704 
1705 	for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) {
1706 		reg = (p[0] | (p[1] << 8)) << 16;
1707 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1708 	}
1709 }
1710 
1711 static void
1712 dc_decode_leaf_sia(struct dc_softc *sc, struct dc_eblock_sia *l)
1713 {
1714 	struct dc_mediainfo *m;
1715 
1716 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1717 	switch (l->dc_sia_code & ~DC_SIA_CODE_EXT) {
1718 	case DC_SIA_CODE_10BT:
1719 		m->dc_media = IFM_10_T;
1720 		break;
1721 	case DC_SIA_CODE_10BT_FDX:
1722 		m->dc_media = IFM_10_T | IFM_FDX;
1723 		break;
1724 	case DC_SIA_CODE_10B2:
1725 		m->dc_media = IFM_10_2;
1726 		break;
1727 	case DC_SIA_CODE_10B5:
1728 		m->dc_media = IFM_10_5;
1729 		break;
1730 	default:
1731 		break;
1732 	}
1733 
1734 	/*
1735 	 * We need to ignore CSR13, CSR14, CSR15 for SIA mode.
1736 	 * Things apparently already work for cards that do
1737 	 * supply Media Specific Data.
1738 	 */
1739 	if (l->dc_sia_code & DC_SIA_CODE_EXT) {
1740 		m->dc_gp_len = 2;
1741 		m->dc_gp_ptr =
1742 		(u_int8_t *)&l->dc_un.dc_sia_ext.dc_sia_gpio_ctl;
1743 	} else {
1744 		m->dc_gp_len = 2;
1745 		m->dc_gp_ptr =
1746 		(u_int8_t *)&l->dc_un.dc_sia_noext.dc_sia_gpio_ctl;
1747 	}
1748 
1749 	m->dc_next = sc->dc_mi;
1750 	sc->dc_mi = m;
1751 
1752 	sc->dc_pmode = DC_PMODE_SIA;
1753 }
1754 
1755 static void
1756 dc_decode_leaf_sym(struct dc_softc *sc, struct dc_eblock_sym *l)
1757 {
1758 	struct dc_mediainfo *m;
1759 
1760 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1761 	if (l->dc_sym_code == DC_SYM_CODE_100BT)
1762 		m->dc_media = IFM_100_TX;
1763 
1764 	if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX)
1765 		m->dc_media = IFM_100_TX | IFM_FDX;
1766 
1767 	m->dc_gp_len = 2;
1768 	m->dc_gp_ptr = (u_int8_t *)&l->dc_sym_gpio_ctl;
1769 
1770 	m->dc_next = sc->dc_mi;
1771 	sc->dc_mi = m;
1772 
1773 	sc->dc_pmode = DC_PMODE_SYM;
1774 }
1775 
1776 static void
1777 dc_decode_leaf_mii(struct dc_softc *sc, struct dc_eblock_mii *l)
1778 {
1779 	struct dc_mediainfo *m;
1780 	u_int8_t *p;
1781 
1782 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1783 	/* We abuse IFM_AUTO to represent MII. */
1784 	m->dc_media = IFM_AUTO;
1785 	m->dc_gp_len = l->dc_gpr_len;
1786 
1787 	p = (u_int8_t *)l;
1788 	p += sizeof(struct dc_eblock_mii);
1789 	m->dc_gp_ptr = p;
1790 	p += 2 * l->dc_gpr_len;
1791 	m->dc_reset_len = *p;
1792 	p++;
1793 	m->dc_reset_ptr = p;
1794 
1795 	m->dc_next = sc->dc_mi;
1796 	sc->dc_mi = m;
1797 }
1798 
1799 static void
1800 dc_read_srom(struct dc_softc *sc, int bits)
1801 {
1802 	int size;
1803 
1804 	size = 2 << bits;
1805 	sc->dc_srom = malloc(size, M_DEVBUF, M_NOWAIT);
1806 	dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (size / 2), 0);
1807 }
1808 
1809 static void
1810 dc_parse_21143_srom(struct dc_softc *sc)
1811 {
1812 	struct dc_leaf_hdr *lhdr;
1813 	struct dc_eblock_hdr *hdr;
1814 	int have_mii, i, loff;
1815 	char *ptr;
1816 
1817 	have_mii = 0;
1818 	loff = sc->dc_srom[27];
1819 	lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]);
1820 
1821 	ptr = (char *)lhdr;
1822 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1823 	/*
1824 	 * Look if we got a MII media block.
1825 	 */
1826 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1827 		hdr = (struct dc_eblock_hdr *)ptr;
1828 		if (hdr->dc_type == DC_EBLOCK_MII)
1829 		    have_mii++;
1830 
1831 		ptr += (hdr->dc_len & 0x7F);
1832 		ptr++;
1833 	}
1834 
1835 	/*
1836 	 * Do the same thing again. Only use SIA and SYM media
1837 	 * blocks if no MII media block is available.
1838 	 */
1839 	ptr = (char *)lhdr;
1840 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1841 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1842 		hdr = (struct dc_eblock_hdr *)ptr;
1843 		switch (hdr->dc_type) {
1844 		case DC_EBLOCK_MII:
1845 			dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr);
1846 			break;
1847 		case DC_EBLOCK_SIA:
1848 			if (! have_mii)
1849 				dc_decode_leaf_sia(sc,
1850 				    (struct dc_eblock_sia *)hdr);
1851 			break;
1852 		case DC_EBLOCK_SYM:
1853 			if (! have_mii)
1854 				dc_decode_leaf_sym(sc,
1855 				    (struct dc_eblock_sym *)hdr);
1856 			break;
1857 		default:
1858 			/* Don't care. Yet. */
1859 			break;
1860 		}
1861 		ptr += (hdr->dc_len & 0x7F);
1862 		ptr++;
1863 	}
1864 }
1865 
1866 static void
1867 dc_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1868 {
1869 	u_int32_t *paddr;
1870 
1871 	KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
1872 	paddr = arg;
1873 	*paddr = segs->ds_addr;
1874 }
1875 
1876 /*
1877  * Attach the interface. Allocate softc structures, do ifmedia
1878  * setup and ethernet/BPF attach.
1879  */
1880 static int
1881 dc_attach(device_t dev)
1882 {
1883 	int tmp = 0;
1884 	u_char eaddr[ETHER_ADDR_LEN];
1885 	u_int32_t command;
1886 	struct dc_softc *sc;
1887 	struct ifnet *ifp;
1888 	u_int32_t revision;
1889 	int unit, error = 0, rid, mac_offset;
1890 	int i;
1891 	u_int8_t *mac;
1892 
1893 	sc = device_get_softc(dev);
1894 	unit = device_get_unit(dev);
1895 
1896 	mtx_init(&sc->dc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1897 	    MTX_DEF | MTX_RECURSE);
1898 #ifndef BURN_BRIDGES
1899 	/*
1900 	 * Handle power management nonsense.
1901 	 */
1902 	dc_acpi(dev);
1903 #endif
1904 	/*
1905 	 * Map control/status registers.
1906 	 */
1907 	pci_enable_busmaster(dev);
1908 
1909 	rid = DC_RID;
1910 	sc->dc_res = bus_alloc_resource_any(dev, DC_RES, &rid, RF_ACTIVE);
1911 
1912 	if (sc->dc_res == NULL) {
1913 		printf("dc%d: couldn't map ports/memory\n", unit);
1914 		error = ENXIO;
1915 		goto fail;
1916 	}
1917 
1918 	sc->dc_btag = rman_get_bustag(sc->dc_res);
1919 	sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
1920 
1921 	/* Allocate interrupt. */
1922 	rid = 0;
1923 	sc->dc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1924 	    RF_SHAREABLE | RF_ACTIVE);
1925 
1926 	if (sc->dc_irq == NULL) {
1927 		printf("dc%d: couldn't map interrupt\n", unit);
1928 		error = ENXIO;
1929 		goto fail;
1930 	}
1931 
1932 	/* Need this info to decide on a chip type. */
1933 	sc->dc_info = dc_devtype(dev);
1934 	revision = pci_read_config(dev, DC_PCI_CFRV, 4) & 0x000000FF;
1935 
1936 	/* Get the eeprom width, but PNIC and XIRCOM have diff eeprom */
1937 	if (sc->dc_info->dc_did != DC_DEVICEID_82C168 &&
1938 	   sc->dc_info->dc_did != DC_DEVICEID_X3201)
1939 		dc_eeprom_width(sc);
1940 
1941 	switch (sc->dc_info->dc_did) {
1942 	case DC_DEVICEID_21143:
1943 		sc->dc_type = DC_TYPE_21143;
1944 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1945 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1946 		/* Save EEPROM contents so we can parse them later. */
1947 		dc_read_srom(sc, sc->dc_romwidth);
1948 		break;
1949 	case DC_DEVICEID_DM9009:
1950 	case DC_DEVICEID_DM9100:
1951 	case DC_DEVICEID_DM9102:
1952 		sc->dc_type = DC_TYPE_DM9102;
1953 		sc->dc_flags |= DC_TX_COALESCE | DC_TX_INTR_ALWAYS;
1954 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_TX_STORENFWD;
1955 		sc->dc_flags |= DC_TX_ALIGN;
1956 		sc->dc_pmode = DC_PMODE_MII;
1957 		/* Increase the latency timer value. */
1958 		command = pci_read_config(dev, DC_PCI_CFLT, 4);
1959 		command &= 0xFFFF00FF;
1960 		command |= 0x00008000;
1961 		pci_write_config(dev, DC_PCI_CFLT, command, 4);
1962 		break;
1963 	case DC_DEVICEID_AL981:
1964 		sc->dc_type = DC_TYPE_AL981;
1965 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1966 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1967 		sc->dc_pmode = DC_PMODE_MII;
1968 		dc_read_srom(sc, sc->dc_romwidth);
1969 		break;
1970 	case DC_DEVICEID_AN985:
1971 	case DC_DEVICEID_ADM9511:
1972 	case DC_DEVICEID_ADM9513:
1973 	case DC_DEVICEID_FA511:
1974 	case DC_DEVICEID_FE2500:
1975 	case DC_DEVICEID_EN2242:
1976 	case DC_DEVICEID_HAWKING_PN672TX:
1977 	case DC_DEVICEID_3CSOHOB:
1978 	case DC_DEVICEID_MSMN120:
1979 	case DC_DEVICEID_MSMN130_FAKE: /* XXX avoid collision with PNIC*/
1980 		sc->dc_type = DC_TYPE_AN985;
1981 		sc->dc_flags |= DC_64BIT_HASH;
1982 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1983 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1984 		sc->dc_pmode = DC_PMODE_MII;
1985 		/* Don't read SROM for - auto-loaded on reset */
1986 		break;
1987 	case DC_DEVICEID_98713:
1988 	case DC_DEVICEID_98713_CP:
1989 		if (revision < DC_REVISION_98713A) {
1990 			sc->dc_type = DC_TYPE_98713;
1991 		}
1992 		if (revision >= DC_REVISION_98713A) {
1993 			sc->dc_type = DC_TYPE_98713A;
1994 			sc->dc_flags |= DC_21143_NWAY;
1995 		}
1996 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1997 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1998 		break;
1999 	case DC_DEVICEID_987x5:
2000 	case DC_DEVICEID_EN1217:
2001 		/*
2002 		 * Macronix MX98715AEC-C/D/E parts have only a
2003 		 * 128-bit hash table. We need to deal with these
2004 		 * in the same manner as the PNIC II so that we
2005 		 * get the right number of bits out of the
2006 		 * CRC routine.
2007 		 */
2008 		if (revision >= DC_REVISION_98715AEC_C &&
2009 		    revision < DC_REVISION_98725)
2010 			sc->dc_flags |= DC_128BIT_HASH;
2011 		sc->dc_type = DC_TYPE_987x5;
2012 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
2013 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
2014 		break;
2015 	case DC_DEVICEID_98727:
2016 		sc->dc_type = DC_TYPE_987x5;
2017 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
2018 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
2019 		break;
2020 	case DC_DEVICEID_82C115:
2021 		sc->dc_type = DC_TYPE_PNICII;
2022 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR | DC_128BIT_HASH;
2023 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
2024 		break;
2025 	case DC_DEVICEID_82C168:
2026 		sc->dc_type = DC_TYPE_PNIC;
2027 		sc->dc_flags |= DC_TX_STORENFWD | DC_TX_INTR_ALWAYS;
2028 		sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
2029 		sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_NOWAIT);
2030 		if (revision < DC_REVISION_82C169)
2031 			sc->dc_pmode = DC_PMODE_SYM;
2032 		break;
2033 	case DC_DEVICEID_AX88140A:
2034 		sc->dc_type = DC_TYPE_ASIX;
2035 		sc->dc_flags |= DC_TX_USE_TX_INTR | DC_TX_INTR_FIRSTFRAG;
2036 		sc->dc_flags |= DC_REDUCED_MII_POLL;
2037 		sc->dc_pmode = DC_PMODE_MII;
2038 		break;
2039 	case DC_DEVICEID_X3201:
2040 		sc->dc_type = DC_TYPE_XIRCOM;
2041 		sc->dc_flags |= DC_TX_INTR_ALWAYS | DC_TX_COALESCE |
2042 				DC_TX_ALIGN;
2043 		/*
2044 		 * We don't actually need to coalesce, but we're doing
2045 		 * it to obtain a double word aligned buffer.
2046 		 * The DC_TX_COALESCE flag is required.
2047 		 */
2048 		sc->dc_pmode = DC_PMODE_MII;
2049 		break;
2050 	case DC_DEVICEID_RS7112:
2051 		sc->dc_type = DC_TYPE_CONEXANT;
2052 		sc->dc_flags |= DC_TX_INTR_ALWAYS;
2053 		sc->dc_flags |= DC_REDUCED_MII_POLL;
2054 		sc->dc_pmode = DC_PMODE_MII;
2055 		dc_read_srom(sc, sc->dc_romwidth);
2056 		break;
2057 	default:
2058 		printf("dc%d: unknown device: %x\n", sc->dc_unit,
2059 		    sc->dc_info->dc_did);
2060 		break;
2061 	}
2062 
2063 	/* Save the cache line size. */
2064 	if (DC_IS_DAVICOM(sc))
2065 		sc->dc_cachesize = 0;
2066 	else
2067 		sc->dc_cachesize = pci_read_config(dev,
2068 		    DC_PCI_CFLT, 4) & 0xFF;
2069 
2070 	/* Reset the adapter. */
2071 	dc_reset(sc);
2072 
2073 	/* Take 21143 out of snooze mode */
2074 	if (DC_IS_INTEL(sc) || DC_IS_XIRCOM(sc)) {
2075 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
2076 		command &= ~(DC_CFDD_SNOOZE_MODE | DC_CFDD_SLEEP_MODE);
2077 		pci_write_config(dev, DC_PCI_CFDD, command, 4);
2078 	}
2079 
2080 	/*
2081 	 * Try to learn something about the supported media.
2082 	 * We know that ASIX and ADMtek and Davicom devices
2083 	 * will *always* be using MII media, so that's a no-brainer.
2084 	 * The tricky ones are the Macronix/PNIC II and the
2085 	 * Intel 21143.
2086 	 */
2087 	if (DC_IS_INTEL(sc))
2088 		dc_parse_21143_srom(sc);
2089 	else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
2090 		if (sc->dc_type == DC_TYPE_98713)
2091 			sc->dc_pmode = DC_PMODE_MII;
2092 		else
2093 			sc->dc_pmode = DC_PMODE_SYM;
2094 	} else if (!sc->dc_pmode)
2095 		sc->dc_pmode = DC_PMODE_MII;
2096 
2097 	/*
2098 	 * Get station address from the EEPROM.
2099 	 */
2100 	switch(sc->dc_type) {
2101 	case DC_TYPE_98713:
2102 	case DC_TYPE_98713A:
2103 	case DC_TYPE_987x5:
2104 	case DC_TYPE_PNICII:
2105 		dc_read_eeprom(sc, (caddr_t)&mac_offset,
2106 		    (DC_EE_NODEADDR_OFFSET / 2), 1, 0);
2107 		dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
2108 		break;
2109 	case DC_TYPE_PNIC:
2110 		dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
2111 		break;
2112 	case DC_TYPE_DM9102:
2113 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2114 #ifdef __sparc64__
2115 		/*
2116 		 * If this is an onboard dc(4) the station address read from
2117 		 * the EEPROM is all zero and we have to get it from the fcode.
2118 		 */
2119 		for (i = 0; i < ETHER_ADDR_LEN; i++)
2120 			if (eaddr[i] != 0x00)
2121 				break;
2122 		if (i >= ETHER_ADDR_LEN && OF_getetheraddr2(dev, eaddr) == -1)
2123 			OF_getetheraddr(dev, eaddr);
2124 #endif
2125 		break;
2126 	case DC_TYPE_21143:
2127 	case DC_TYPE_ASIX:
2128 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2129 		break;
2130 	case DC_TYPE_AL981:
2131 	case DC_TYPE_AN985:
2132 		*(u_int32_t *)(&eaddr[0]) = CSR_READ_4(sc, DC_AL_PAR0);
2133 		*(u_int16_t *)(&eaddr[4]) = CSR_READ_4(sc, DC_AL_PAR1);
2134 		break;
2135 	case DC_TYPE_CONEXANT:
2136 		bcopy(sc->dc_srom + DC_CONEXANT_EE_NODEADDR, &eaddr,
2137 		    ETHER_ADDR_LEN);
2138 		break;
2139 	case DC_TYPE_XIRCOM:
2140 		/* The MAC comes from the CIS. */
2141 		mac = pci_get_ether(dev);
2142 		if (!mac) {
2143 			device_printf(dev, "No station address in CIS!\n");
2144 			error = ENXIO;
2145 			goto fail;
2146 		}
2147 		bcopy(mac, eaddr, ETHER_ADDR_LEN);
2148 		break;
2149 	default:
2150 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2151 		break;
2152 	}
2153 
2154 	sc->dc_unit = unit;
2155 	bcopy(eaddr, &sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
2156 
2157 	/* Allocate a busdma tag and DMA safe memory for TX/RX descriptors. */
2158 	error = bus_dma_tag_create(NULL, PAGE_SIZE, 0, BUS_SPACE_MAXADDR_32BIT,
2159 	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct dc_list_data), 1,
2160 	    sizeof(struct dc_list_data), 0, NULL, NULL, &sc->dc_ltag);
2161 	if (error) {
2162 		printf("dc%d: failed to allocate busdma tag\n", unit);
2163 		error = ENXIO;
2164 		goto fail;
2165 	}
2166 	error = bus_dmamem_alloc(sc->dc_ltag, (void **)&sc->dc_ldata,
2167 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->dc_lmap);
2168 	if (error) {
2169 		printf("dc%d: failed to allocate DMA safe memory\n", unit);
2170 		error = ENXIO;
2171 		goto fail;
2172 	}
2173 	error = bus_dmamap_load(sc->dc_ltag, sc->dc_lmap, sc->dc_ldata,
2174 	    sizeof(struct dc_list_data), dc_dma_map_addr, &sc->dc_laddr,
2175 	    BUS_DMA_NOWAIT);
2176 	if (error) {
2177 		printf("dc%d: cannot get address of the descriptors\n", unit);
2178 		error = ENXIO;
2179 		goto fail;
2180 	}
2181 
2182 	/*
2183 	 * Allocate a busdma tag and DMA safe memory for the multicast
2184 	 * setup frame.
2185 	 */
2186 	error = bus_dma_tag_create(NULL, PAGE_SIZE, 0, BUS_SPACE_MAXADDR_32BIT,
2187 	    BUS_SPACE_MAXADDR, NULL, NULL, DC_SFRAME_LEN + DC_MIN_FRAMELEN, 1,
2188 	    DC_SFRAME_LEN + DC_MIN_FRAMELEN, 0, NULL, NULL, &sc->dc_stag);
2189 	if (error) {
2190 		printf("dc%d: failed to allocate busdma tag\n", unit);
2191 		error = ENXIO;
2192 		goto fail;
2193 	}
2194 	error = bus_dmamem_alloc(sc->dc_stag, (void **)&sc->dc_cdata.dc_sbuf,
2195 	    BUS_DMA_NOWAIT, &sc->dc_smap);
2196 	if (error) {
2197 		printf("dc%d: failed to allocate DMA safe memory\n", unit);
2198 		error = ENXIO;
2199 		goto fail;
2200 	}
2201 	error = bus_dmamap_load(sc->dc_stag, sc->dc_smap, sc->dc_cdata.dc_sbuf,
2202 	    DC_SFRAME_LEN, dc_dma_map_addr, &sc->dc_saddr, BUS_DMA_NOWAIT);
2203 	if (error) {
2204 		printf("dc%d: cannot get address of the descriptors\n", unit);
2205 		error = ENXIO;
2206 		goto fail;
2207 	}
2208 
2209 	/* Allocate a busdma tag for mbufs. */
2210 	error = bus_dma_tag_create(NULL, PAGE_SIZE, 0, BUS_SPACE_MAXADDR_32BIT,
2211 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * DC_TX_LIST_CNT,
2212 	    DC_TX_LIST_CNT, MCLBYTES, 0, NULL, NULL, &sc->dc_mtag);
2213 	if (error) {
2214 		printf("dc%d: failed to allocate busdma tag\n", unit);
2215 		error = ENXIO;
2216 		goto fail;
2217 	}
2218 
2219 	/* Create the TX/RX busdma maps. */
2220 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2221 		error = bus_dmamap_create(sc->dc_mtag, 0,
2222 		    &sc->dc_cdata.dc_tx_map[i]);
2223 		if (error) {
2224 			printf("dc%d: failed to init TX ring\n", unit);
2225 			error = ENXIO;
2226 			goto fail;
2227 		}
2228 	}
2229 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2230 		error = bus_dmamap_create(sc->dc_mtag, 0,
2231 		    &sc->dc_cdata.dc_rx_map[i]);
2232 		if (error) {
2233 			printf("dc%d: failed to init RX ring\n", unit);
2234 			error = ENXIO;
2235 			goto fail;
2236 		}
2237 	}
2238 	error = bus_dmamap_create(sc->dc_mtag, 0, &sc->dc_sparemap);
2239 	if (error) {
2240 		printf("dc%d: failed to init RX ring\n", unit);
2241 		error = ENXIO;
2242 		goto fail;
2243 	}
2244 
2245 	ifp = &sc->arpcom.ac_if;
2246 	ifp->if_softc = sc;
2247 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2248 	/* XXX: bleah, MTU gets overwritten in ether_ifattach() */
2249 	ifp->if_mtu = ETHERMTU;
2250 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2251 	ifp->if_ioctl = dc_ioctl;
2252 	ifp->if_start = dc_start;
2253 	ifp->if_watchdog = dc_watchdog;
2254 	ifp->if_init = dc_init;
2255 	ifp->if_baudrate = 10000000;
2256 	ifp->if_snd.ifq_maxlen = DC_TX_LIST_CNT - 1;
2257 
2258 	/*
2259 	 * Do MII setup. If this is a 21143, check for a PHY on the
2260 	 * MII bus after applying any necessary fixups to twiddle the
2261 	 * GPIO bits. If we don't end up finding a PHY, restore the
2262 	 * old selection (SIA only or SIA/SYM) and attach the dcphy
2263 	 * driver instead.
2264 	 */
2265 	if (DC_IS_INTEL(sc)) {
2266 		dc_apply_fixup(sc, IFM_AUTO);
2267 		tmp = sc->dc_pmode;
2268 		sc->dc_pmode = DC_PMODE_MII;
2269 	}
2270 
2271 	error = mii_phy_probe(dev, &sc->dc_miibus,
2272 	    dc_ifmedia_upd, dc_ifmedia_sts);
2273 
2274 	if (error && DC_IS_INTEL(sc)) {
2275 		sc->dc_pmode = tmp;
2276 		if (sc->dc_pmode != DC_PMODE_SIA)
2277 			sc->dc_pmode = DC_PMODE_SYM;
2278 		sc->dc_flags |= DC_21143_NWAY;
2279 		mii_phy_probe(dev, &sc->dc_miibus,
2280 		    dc_ifmedia_upd, dc_ifmedia_sts);
2281 		/*
2282 		 * For non-MII cards, we need to have the 21143
2283 		 * drive the LEDs. Except there are some systems
2284 		 * like the NEC VersaPro NoteBook PC which have no
2285 		 * LEDs, and twiddling these bits has adverse effects
2286 		 * on them. (I.e. you suddenly can't get a link.)
2287 		 */
2288 		if (pci_read_config(dev, DC_PCI_CSID, 4) != 0x80281033)
2289 			sc->dc_flags |= DC_TULIP_LEDS;
2290 		error = 0;
2291 	}
2292 
2293 	if (error) {
2294 		printf("dc%d: MII without any PHY!\n", sc->dc_unit);
2295 		goto fail;
2296 	}
2297 
2298 	if (DC_IS_XIRCOM(sc)) {
2299 		/*
2300 		 * setup General Purpose Port mode and data so the tulip
2301 		 * can talk to the MII.
2302 		 */
2303 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
2304 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2305 		DELAY(10);
2306 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
2307 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2308 		DELAY(10);
2309 	}
2310 
2311 	if (DC_IS_ADMTEK(sc)) {
2312 		/*
2313 		 * Set automatic TX underrun recovery for the ADMtek chips
2314 		 */
2315 		DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR);
2316 	}
2317 
2318 	/*
2319 	 * Tell the upper layer(s) we support long frames.
2320 	 */
2321 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2322 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
2323 
2324 	callout_init(&sc->dc_stat_ch, IS_MPSAFE ? CALLOUT_MPSAFE : 0);
2325 
2326 #ifdef SRM_MEDIA
2327 	sc->dc_srm_media = 0;
2328 
2329 	/* Remember the SRM console media setting */
2330 	if (DC_IS_INTEL(sc)) {
2331 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
2332 		command &= ~(DC_CFDD_SNOOZE_MODE | DC_CFDD_SLEEP_MODE);
2333 		switch ((command >> 8) & 0xff) {
2334 		case 3:
2335 			sc->dc_srm_media = IFM_10_T;
2336 			break;
2337 		case 4:
2338 			sc->dc_srm_media = IFM_10_T | IFM_FDX;
2339 			break;
2340 		case 5:
2341 			sc->dc_srm_media = IFM_100_TX;
2342 			break;
2343 		case 6:
2344 			sc->dc_srm_media = IFM_100_TX | IFM_FDX;
2345 			break;
2346 		}
2347 		if (sc->dc_srm_media)
2348 			sc->dc_srm_media |= IFM_ACTIVE | IFM_ETHER;
2349 	}
2350 #endif
2351 
2352 	/*
2353 	 * Call MI attach routine.
2354 	 */
2355 	ether_ifattach(ifp, eaddr);
2356 
2357 	/* Hook interrupt last to avoid having to lock softc */
2358 	error = bus_setup_intr(dev, sc->dc_irq, INTR_TYPE_NET |
2359 	    (IS_MPSAFE ? INTR_MPSAFE : 0),
2360 	    dc_intr, sc, &sc->dc_intrhand);
2361 
2362 	if (error) {
2363 		printf("dc%d: couldn't set up irq\n", unit);
2364 		ether_ifdetach(ifp);
2365 		goto fail;
2366 	}
2367 
2368 fail:
2369 	if (error)
2370 		dc_detach(dev);
2371 	return (error);
2372 }
2373 
2374 /*
2375  * Shutdown hardware and free up resources. This can be called any
2376  * time after the mutex has been initialized. It is called in both
2377  * the error case in attach and the normal detach case so it needs
2378  * to be careful about only freeing resources that have actually been
2379  * allocated.
2380  */
2381 static int
2382 dc_detach(device_t dev)
2383 {
2384 	struct dc_softc *sc;
2385 	struct ifnet *ifp;
2386 	struct dc_mediainfo *m;
2387 	int i;
2388 
2389 	sc = device_get_softc(dev);
2390 	KASSERT(mtx_initialized(&sc->dc_mtx), ("dc mutex not initialized"));
2391 	DC_LOCK(sc);
2392 
2393 	ifp = &sc->arpcom.ac_if;
2394 
2395 	/* These should only be active if attach succeeded */
2396 	if (device_is_attached(dev)) {
2397 		dc_stop(sc);
2398 		ether_ifdetach(ifp);
2399 	}
2400 	if (sc->dc_miibus)
2401 		device_delete_child(dev, sc->dc_miibus);
2402 	bus_generic_detach(dev);
2403 
2404 	if (sc->dc_intrhand)
2405 		bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2406 	if (sc->dc_irq)
2407 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2408 	if (sc->dc_res)
2409 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2410 
2411 	if (sc->dc_cdata.dc_sbuf != NULL)
2412 		bus_dmamem_free(sc->dc_stag, sc->dc_cdata.dc_sbuf, sc->dc_smap);
2413 	if (sc->dc_ldata != NULL)
2414 		bus_dmamem_free(sc->dc_ltag, sc->dc_ldata, sc->dc_lmap);
2415 	for (i = 0; i < DC_TX_LIST_CNT; i++)
2416 		bus_dmamap_destroy(sc->dc_mtag, sc->dc_cdata.dc_tx_map[i]);
2417 	for (i = 0; i < DC_RX_LIST_CNT; i++)
2418 		bus_dmamap_destroy(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i]);
2419 	bus_dmamap_destroy(sc->dc_mtag, sc->dc_sparemap);
2420 	if (sc->dc_stag)
2421 		bus_dma_tag_destroy(sc->dc_stag);
2422 	if (sc->dc_mtag)
2423 		bus_dma_tag_destroy(sc->dc_mtag);
2424 	if (sc->dc_ltag)
2425 		bus_dma_tag_destroy(sc->dc_ltag);
2426 
2427 	free(sc->dc_pnic_rx_buf, M_DEVBUF);
2428 
2429 	while (sc->dc_mi != NULL) {
2430 		m = sc->dc_mi->dc_next;
2431 		free(sc->dc_mi, M_DEVBUF);
2432 		sc->dc_mi = m;
2433 	}
2434 	free(sc->dc_srom, M_DEVBUF);
2435 
2436 	DC_UNLOCK(sc);
2437 	mtx_destroy(&sc->dc_mtx);
2438 
2439 	return (0);
2440 }
2441 
2442 /*
2443  * Initialize the transmit descriptors.
2444  */
2445 static int
2446 dc_list_tx_init(struct dc_softc *sc)
2447 {
2448 	struct dc_chain_data *cd;
2449 	struct dc_list_data *ld;
2450 	int i, nexti;
2451 
2452 	cd = &sc->dc_cdata;
2453 	ld = sc->dc_ldata;
2454 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2455 		if (i == DC_TX_LIST_CNT - 1)
2456 			nexti = 0;
2457 		else
2458 			nexti = i + 1;
2459 		ld->dc_tx_list[i].dc_next = htole32(DC_TXDESC(sc, nexti));
2460 		cd->dc_tx_chain[i] = NULL;
2461 		ld->dc_tx_list[i].dc_data = 0;
2462 		ld->dc_tx_list[i].dc_ctl = 0;
2463 	}
2464 
2465 	cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
2466 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
2467 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2468 	return (0);
2469 }
2470 
2471 
2472 /*
2473  * Initialize the RX descriptors and allocate mbufs for them. Note that
2474  * we arrange the descriptors in a closed ring, so that the last descriptor
2475  * points back to the first.
2476  */
2477 static int
2478 dc_list_rx_init(struct dc_softc *sc)
2479 {
2480 	struct dc_chain_data *cd;
2481 	struct dc_list_data *ld;
2482 	int i, nexti;
2483 
2484 	cd = &sc->dc_cdata;
2485 	ld = sc->dc_ldata;
2486 
2487 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2488 		if (dc_newbuf(sc, i, 1) != 0)
2489 			return (ENOBUFS);
2490 		if (i == DC_RX_LIST_CNT - 1)
2491 			nexti = 0;
2492 		else
2493 			nexti = i + 1;
2494 		ld->dc_rx_list[i].dc_next = htole32(DC_RXDESC(sc, nexti));
2495 	}
2496 
2497 	cd->dc_rx_prod = 0;
2498 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
2499 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2500 	return (0);
2501 }
2502 
2503 static void
2504 dc_dma_map_rxbuf(arg, segs, nseg, mapsize, error)
2505 	void *arg;
2506 	bus_dma_segment_t *segs;
2507 	int nseg;
2508 	bus_size_t mapsize;
2509 	int error;
2510 {
2511 	struct dc_softc *sc;
2512 	struct dc_desc *c;
2513 
2514 	sc = arg;
2515 	c = &sc->dc_ldata->dc_rx_list[sc->dc_cdata.dc_rx_cur];
2516 	if (error) {
2517 		sc->dc_cdata.dc_rx_err = error;
2518 		return;
2519 	}
2520 
2521 	KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
2522 	sc->dc_cdata.dc_rx_err = 0;
2523 	c->dc_data = htole32(segs->ds_addr);
2524 }
2525 
2526 /*
2527  * Initialize an RX descriptor and attach an MBUF cluster.
2528  */
2529 static int
2530 dc_newbuf(struct dc_softc *sc, int i, int alloc)
2531 {
2532 	struct mbuf *m_new;
2533 	bus_dmamap_t tmp;
2534 	int error;
2535 
2536 	if (alloc) {
2537 		m_new = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2538 		if (m_new == NULL)
2539 			return (ENOBUFS);
2540 	} else {
2541 		m_new = sc->dc_cdata.dc_rx_chain[i];
2542 		m_new->m_data = m_new->m_ext.ext_buf;
2543 	}
2544 	m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2545 	m_adj(m_new, sizeof(u_int64_t));
2546 
2547 	/*
2548 	 * If this is a PNIC chip, zero the buffer. This is part
2549 	 * of the workaround for the receive bug in the 82c168 and
2550 	 * 82c169 chips.
2551 	 */
2552 	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
2553 		bzero(mtod(m_new, char *), m_new->m_len);
2554 
2555 	/* No need to remap the mbuf if we're reusing it. */
2556 	if (alloc) {
2557 		sc->dc_cdata.dc_rx_cur = i;
2558 		error = bus_dmamap_load_mbuf(sc->dc_mtag, sc->dc_sparemap,
2559 		    m_new, dc_dma_map_rxbuf, sc, 0);
2560 		if (error) {
2561 			m_freem(m_new);
2562 			return (error);
2563 		}
2564 		if (sc->dc_cdata.dc_rx_err != 0) {
2565 			m_freem(m_new);
2566 			return (sc->dc_cdata.dc_rx_err);
2567 		}
2568 		bus_dmamap_unload(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i]);
2569 		tmp = sc->dc_cdata.dc_rx_map[i];
2570 		sc->dc_cdata.dc_rx_map[i] = sc->dc_sparemap;
2571 		sc->dc_sparemap = tmp;
2572 		sc->dc_cdata.dc_rx_chain[i] = m_new;
2573 	}
2574 
2575 	sc->dc_ldata->dc_rx_list[i].dc_ctl = htole32(DC_RXCTL_RLINK | DC_RXLEN);
2576 	sc->dc_ldata->dc_rx_list[i].dc_status = htole32(DC_RXSTAT_OWN);
2577 	bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i],
2578 	    BUS_DMASYNC_PREREAD);
2579 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
2580 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2581 	return (0);
2582 }
2583 
2584 /*
2585  * Grrrrr.
2586  * The PNIC chip has a terrible bug in it that manifests itself during
2587  * periods of heavy activity. The exact mode of failure if difficult to
2588  * pinpoint: sometimes it only happens in promiscuous mode, sometimes it
2589  * will happen on slow machines. The bug is that sometimes instead of
2590  * uploading one complete frame during reception, it uploads what looks
2591  * like the entire contents of its FIFO memory. The frame we want is at
2592  * the end of the whole mess, but we never know exactly how much data has
2593  * been uploaded, so salvaging the frame is hard.
2594  *
2595  * There is only one way to do it reliably, and it's disgusting.
2596  * Here's what we know:
2597  *
2598  * - We know there will always be somewhere between one and three extra
2599  *   descriptors uploaded.
2600  *
2601  * - We know the desired received frame will always be at the end of the
2602  *   total data upload.
2603  *
2604  * - We know the size of the desired received frame because it will be
2605  *   provided in the length field of the status word in the last descriptor.
2606  *
2607  * Here's what we do:
2608  *
2609  * - When we allocate buffers for the receive ring, we bzero() them.
2610  *   This means that we know that the buffer contents should be all
2611  *   zeros, except for data uploaded by the chip.
2612  *
2613  * - We also force the PNIC chip to upload frames that include the
2614  *   ethernet CRC at the end.
2615  *
2616  * - We gather all of the bogus frame data into a single buffer.
2617  *
2618  * - We then position a pointer at the end of this buffer and scan
2619  *   backwards until we encounter the first non-zero byte of data.
2620  *   This is the end of the received frame. We know we will encounter
2621  *   some data at the end of the frame because the CRC will always be
2622  *   there, so even if the sender transmits a packet of all zeros,
2623  *   we won't be fooled.
2624  *
2625  * - We know the size of the actual received frame, so we subtract
2626  *   that value from the current pointer location. This brings us
2627  *   to the start of the actual received packet.
2628  *
2629  * - We copy this into an mbuf and pass it on, along with the actual
2630  *   frame length.
2631  *
2632  * The performance hit is tremendous, but it beats dropping frames all
2633  * the time.
2634  */
2635 
2636 #define DC_WHOLEFRAME	(DC_RXSTAT_FIRSTFRAG | DC_RXSTAT_LASTFRAG)
2637 static void
2638 dc_pnic_rx_bug_war(struct dc_softc *sc, int idx)
2639 {
2640 	struct dc_desc *cur_rx;
2641 	struct dc_desc *c = NULL;
2642 	struct mbuf *m = NULL;
2643 	unsigned char *ptr;
2644 	int i, total_len;
2645 	u_int32_t rxstat = 0;
2646 
2647 	i = sc->dc_pnic_rx_bug_save;
2648 	cur_rx = &sc->dc_ldata->dc_rx_list[idx];
2649 	ptr = sc->dc_pnic_rx_buf;
2650 	bzero(ptr, DC_RXLEN * 5);
2651 
2652 	/* Copy all the bytes from the bogus buffers. */
2653 	while (1) {
2654 		c = &sc->dc_ldata->dc_rx_list[i];
2655 		rxstat = le32toh(c->dc_status);
2656 		m = sc->dc_cdata.dc_rx_chain[i];
2657 		bcopy(mtod(m, char *), ptr, DC_RXLEN);
2658 		ptr += DC_RXLEN;
2659 		/* If this is the last buffer, break out. */
2660 		if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
2661 			break;
2662 		dc_newbuf(sc, i, 0);
2663 		DC_INC(i, DC_RX_LIST_CNT);
2664 	}
2665 
2666 	/* Find the length of the actual receive frame. */
2667 	total_len = DC_RXBYTES(rxstat);
2668 
2669 	/* Scan backwards until we hit a non-zero byte. */
2670 	while (*ptr == 0x00)
2671 		ptr--;
2672 
2673 	/* Round off. */
2674 	if ((uintptr_t)(ptr) & 0x3)
2675 		ptr -= 1;
2676 
2677 	/* Now find the start of the frame. */
2678 	ptr -= total_len;
2679 	if (ptr < sc->dc_pnic_rx_buf)
2680 		ptr = sc->dc_pnic_rx_buf;
2681 
2682 	/*
2683 	 * Now copy the salvaged frame to the last mbuf and fake up
2684 	 * the status word to make it look like a successful
2685 	 * frame reception.
2686 	 */
2687 	dc_newbuf(sc, i, 0);
2688 	bcopy(ptr, mtod(m, char *), total_len);
2689 	cur_rx->dc_status = htole32(rxstat | DC_RXSTAT_FIRSTFRAG);
2690 }
2691 
2692 /*
2693  * This routine searches the RX ring for dirty descriptors in the
2694  * event that the rxeof routine falls out of sync with the chip's
2695  * current descriptor pointer. This may happen sometimes as a result
2696  * of a "no RX buffer available" condition that happens when the chip
2697  * consumes all of the RX buffers before the driver has a chance to
2698  * process the RX ring. This routine may need to be called more than
2699  * once to bring the driver back in sync with the chip, however we
2700  * should still be getting RX DONE interrupts to drive the search
2701  * for new packets in the RX ring, so we should catch up eventually.
2702  */
2703 static int
2704 dc_rx_resync(struct dc_softc *sc)
2705 {
2706 	struct dc_desc *cur_rx;
2707 	int i, pos;
2708 
2709 	pos = sc->dc_cdata.dc_rx_prod;
2710 
2711 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2712 		cur_rx = &sc->dc_ldata->dc_rx_list[pos];
2713 		if (!(le32toh(cur_rx->dc_status) & DC_RXSTAT_OWN))
2714 			break;
2715 		DC_INC(pos, DC_RX_LIST_CNT);
2716 	}
2717 
2718 	/* If the ring really is empty, then just return. */
2719 	if (i == DC_RX_LIST_CNT)
2720 		return (0);
2721 
2722 	/* We've fallen behing the chip: catch it. */
2723 	sc->dc_cdata.dc_rx_prod = pos;
2724 
2725 	return (EAGAIN);
2726 }
2727 
2728 /*
2729  * A frame has been uploaded: pass the resulting mbuf chain up to
2730  * the higher level protocols.
2731  */
2732 static void
2733 dc_rxeof(struct dc_softc *sc)
2734 {
2735 	struct mbuf *m;
2736 	struct ifnet *ifp;
2737 	struct dc_desc *cur_rx;
2738 	int i, total_len = 0;
2739 	u_int32_t rxstat;
2740 
2741 	DC_LOCK_ASSERT(sc);
2742 
2743 	ifp = &sc->arpcom.ac_if;
2744 	i = sc->dc_cdata.dc_rx_prod;
2745 
2746 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap, BUS_DMASYNC_POSTREAD);
2747 	while (!(le32toh(sc->dc_ldata->dc_rx_list[i].dc_status) &
2748 	    DC_RXSTAT_OWN)) {
2749 #ifdef DEVICE_POLLING
2750 		if (ifp->if_flags & IFF_POLLING) {
2751 			if (sc->rxcycles <= 0)
2752 				break;
2753 			sc->rxcycles--;
2754 		}
2755 #endif
2756 		cur_rx = &sc->dc_ldata->dc_rx_list[i];
2757 		rxstat = le32toh(cur_rx->dc_status);
2758 		m = sc->dc_cdata.dc_rx_chain[i];
2759 		bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i],
2760 		    BUS_DMASYNC_POSTREAD);
2761 		total_len = DC_RXBYTES(rxstat);
2762 
2763 		if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2764 			if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
2765 				if (rxstat & DC_RXSTAT_FIRSTFRAG)
2766 					sc->dc_pnic_rx_bug_save = i;
2767 				if ((rxstat & DC_RXSTAT_LASTFRAG) == 0) {
2768 					DC_INC(i, DC_RX_LIST_CNT);
2769 					continue;
2770 				}
2771 				dc_pnic_rx_bug_war(sc, i);
2772 				rxstat = le32toh(cur_rx->dc_status);
2773 				total_len = DC_RXBYTES(rxstat);
2774 			}
2775 		}
2776 
2777 		/*
2778 		 * If an error occurs, update stats, clear the
2779 		 * status word and leave the mbuf cluster in place:
2780 		 * it should simply get re-used next time this descriptor
2781 		 * comes up in the ring.  However, don't report long
2782 		 * frames as errors since they could be vlans.
2783 		 */
2784 		if ((rxstat & DC_RXSTAT_RXERR)) {
2785 			if (!(rxstat & DC_RXSTAT_GIANT) ||
2786 			    (rxstat & (DC_RXSTAT_CRCERR | DC_RXSTAT_DRIBBLE |
2787 				       DC_RXSTAT_MIIERE | DC_RXSTAT_COLLSEEN |
2788 				       DC_RXSTAT_RUNT   | DC_RXSTAT_DE))) {
2789 				ifp->if_ierrors++;
2790 				if (rxstat & DC_RXSTAT_COLLSEEN)
2791 					ifp->if_collisions++;
2792 				dc_newbuf(sc, i, 0);
2793 				if (rxstat & DC_RXSTAT_CRCERR) {
2794 					DC_INC(i, DC_RX_LIST_CNT);
2795 					continue;
2796 				} else {
2797 					dc_init(sc);
2798 					return;
2799 				}
2800 			}
2801 		}
2802 
2803 		/* No errors; receive the packet. */
2804 		total_len -= ETHER_CRC_LEN;
2805 #ifdef __i386__
2806 		/*
2807 		 * On the x86 we do not have alignment problems, so try to
2808 		 * allocate a new buffer for the receive ring, and pass up
2809 		 * the one where the packet is already, saving the expensive
2810 		 * copy done in m_devget().
2811 		 * If we are on an architecture with alignment problems, or
2812 		 * if the allocation fails, then use m_devget and leave the
2813 		 * existing buffer in the receive ring.
2814 		 */
2815 		if (dc_quick && dc_newbuf(sc, i, 1) == 0) {
2816 			m->m_pkthdr.rcvif = ifp;
2817 			m->m_pkthdr.len = m->m_len = total_len;
2818 			DC_INC(i, DC_RX_LIST_CNT);
2819 		} else
2820 #endif
2821 		{
2822 			struct mbuf *m0;
2823 
2824 			m0 = m_devget(mtod(m, char *), total_len,
2825 				ETHER_ALIGN, ifp, NULL);
2826 			dc_newbuf(sc, i, 0);
2827 			DC_INC(i, DC_RX_LIST_CNT);
2828 			if (m0 == NULL) {
2829 				ifp->if_ierrors++;
2830 				continue;
2831 			}
2832 			m = m0;
2833 		}
2834 
2835 		ifp->if_ipackets++;
2836 		DC_UNLOCK(sc);
2837 		(*ifp->if_input)(ifp, m);
2838 		DC_LOCK(sc);
2839 	}
2840 
2841 	sc->dc_cdata.dc_rx_prod = i;
2842 }
2843 
2844 /*
2845  * A frame was downloaded to the chip. It's safe for us to clean up
2846  * the list buffers.
2847  */
2848 
2849 static void
2850 dc_txeof(struct dc_softc *sc)
2851 {
2852 	struct dc_desc *cur_tx = NULL;
2853 	struct ifnet *ifp;
2854 	int idx;
2855 	u_int32_t ctl, txstat;
2856 
2857 	ifp = &sc->arpcom.ac_if;
2858 
2859 	/*
2860 	 * Go through our tx list and free mbufs for those
2861 	 * frames that have been transmitted.
2862 	 */
2863 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap, BUS_DMASYNC_POSTREAD);
2864 	idx = sc->dc_cdata.dc_tx_cons;
2865 	while (idx != sc->dc_cdata.dc_tx_prod) {
2866 
2867 		cur_tx = &sc->dc_ldata->dc_tx_list[idx];
2868 		txstat = le32toh(cur_tx->dc_status);
2869 		ctl = le32toh(cur_tx->dc_ctl);
2870 
2871 		if (txstat & DC_TXSTAT_OWN)
2872 			break;
2873 
2874 		if (!(ctl & DC_TXCTL_LASTFRAG) || ctl & DC_TXCTL_SETUP) {
2875 			if (ctl & DC_TXCTL_SETUP) {
2876 				/*
2877 				 * Yes, the PNIC is so brain damaged
2878 				 * that it will sometimes generate a TX
2879 				 * underrun error while DMAing the RX
2880 				 * filter setup frame. If we detect this,
2881 				 * we have to send the setup frame again,
2882 				 * or else the filter won't be programmed
2883 				 * correctly.
2884 				 */
2885 				if (DC_IS_PNIC(sc)) {
2886 					if (txstat & DC_TXSTAT_ERRSUM)
2887 						dc_setfilt(sc);
2888 				}
2889 				sc->dc_cdata.dc_tx_chain[idx] = NULL;
2890 			}
2891 			sc->dc_cdata.dc_tx_cnt--;
2892 			DC_INC(idx, DC_TX_LIST_CNT);
2893 			continue;
2894 		}
2895 
2896 		if (DC_IS_XIRCOM(sc) || DC_IS_CONEXANT(sc)) {
2897 			/*
2898 			 * XXX: Why does my Xircom taunt me so?
2899 			 * For some reason it likes setting the CARRLOST flag
2900 			 * even when the carrier is there. wtf?!?
2901 			 * Who knows, but Conexant chips have the
2902 			 * same problem. Maybe they took lessons
2903 			 * from Xircom.
2904 			 */
2905 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2906 			    sc->dc_pmode == DC_PMODE_MII &&
2907 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
2908 			    DC_TXSTAT_NOCARRIER)))
2909 				txstat &= ~DC_TXSTAT_ERRSUM;
2910 		} else {
2911 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2912 			    sc->dc_pmode == DC_PMODE_MII &&
2913 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
2914 			    DC_TXSTAT_NOCARRIER | DC_TXSTAT_CARRLOST)))
2915 				txstat &= ~DC_TXSTAT_ERRSUM;
2916 		}
2917 
2918 		if (txstat & DC_TXSTAT_ERRSUM) {
2919 			ifp->if_oerrors++;
2920 			if (txstat & DC_TXSTAT_EXCESSCOLL)
2921 				ifp->if_collisions++;
2922 			if (txstat & DC_TXSTAT_LATECOLL)
2923 				ifp->if_collisions++;
2924 			if (!(txstat & DC_TXSTAT_UNDERRUN)) {
2925 				dc_init(sc);
2926 				return;
2927 			}
2928 		}
2929 
2930 		ifp->if_collisions += (txstat & DC_TXSTAT_COLLCNT) >> 3;
2931 
2932 		ifp->if_opackets++;
2933 		if (sc->dc_cdata.dc_tx_chain[idx] != NULL) {
2934 			bus_dmamap_sync(sc->dc_mtag,
2935 			    sc->dc_cdata.dc_tx_map[idx],
2936 			    BUS_DMASYNC_POSTWRITE);
2937 			bus_dmamap_unload(sc->dc_mtag,
2938 			    sc->dc_cdata.dc_tx_map[idx]);
2939 			m_freem(sc->dc_cdata.dc_tx_chain[idx]);
2940 			sc->dc_cdata.dc_tx_chain[idx] = NULL;
2941 		}
2942 
2943 		sc->dc_cdata.dc_tx_cnt--;
2944 		DC_INC(idx, DC_TX_LIST_CNT);
2945 	}
2946 
2947 	if (idx != sc->dc_cdata.dc_tx_cons) {
2948 	    	/* Some buffers have been freed. */
2949 		sc->dc_cdata.dc_tx_cons = idx;
2950 		ifp->if_flags &= ~IFF_OACTIVE;
2951 	}
2952 	ifp->if_timer = (sc->dc_cdata.dc_tx_cnt == 0) ? 0 : 5;
2953 }
2954 
2955 static void
2956 dc_tick(void *xsc)
2957 {
2958 	struct dc_softc *sc;
2959 	struct mii_data *mii;
2960 	struct ifnet *ifp;
2961 	u_int32_t r;
2962 
2963 	sc = xsc;
2964 	DC_LOCK(sc);
2965 	ifp = &sc->arpcom.ac_if;
2966 	mii = device_get_softc(sc->dc_miibus);
2967 
2968 	if (sc->dc_flags & DC_REDUCED_MII_POLL) {
2969 		if (sc->dc_flags & DC_21143_NWAY) {
2970 			r = CSR_READ_4(sc, DC_10BTSTAT);
2971 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2972 			    IFM_100_TX && (r & DC_TSTAT_LS100)) {
2973 				sc->dc_link = 0;
2974 				mii_mediachg(mii);
2975 			}
2976 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2977 			    IFM_10_T && (r & DC_TSTAT_LS10)) {
2978 				sc->dc_link = 0;
2979 				mii_mediachg(mii);
2980 			}
2981 			if (sc->dc_link == 0)
2982 				mii_tick(mii);
2983 		} else {
2984 			r = CSR_READ_4(sc, DC_ISR);
2985 			if ((r & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT &&
2986 			    sc->dc_cdata.dc_tx_cnt == 0) {
2987 				mii_tick(mii);
2988 				if (!(mii->mii_media_status & IFM_ACTIVE))
2989 					sc->dc_link = 0;
2990 			}
2991 		}
2992 	} else
2993 		mii_tick(mii);
2994 
2995 	/*
2996 	 * When the init routine completes, we expect to be able to send
2997 	 * packets right away, and in fact the network code will send a
2998 	 * gratuitous ARP the moment the init routine marks the interface
2999 	 * as running. However, even though the MAC may have been initialized,
3000 	 * there may be a delay of a few seconds before the PHY completes
3001 	 * autonegotiation and the link is brought up. Any transmissions
3002 	 * made during that delay will be lost. Dealing with this is tricky:
3003 	 * we can't just pause in the init routine while waiting for the
3004 	 * PHY to come ready since that would bring the whole system to
3005 	 * a screeching halt for several seconds.
3006 	 *
3007 	 * What we do here is prevent the TX start routine from sending
3008 	 * any packets until a link has been established. After the
3009 	 * interface has been initialized, the tick routine will poll
3010 	 * the state of the PHY until the IFM_ACTIVE flag is set. Until
3011 	 * that time, packets will stay in the send queue, and once the
3012 	 * link comes up, they will be flushed out to the wire.
3013 	 */
3014 	if (!sc->dc_link && mii->mii_media_status & IFM_ACTIVE &&
3015 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
3016 		sc->dc_link++;
3017 		if (ifp->if_snd.ifq_head != NULL)
3018 			dc_start(ifp);
3019 	}
3020 
3021 	if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link)
3022 		callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
3023 	else
3024 		callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
3025 
3026 	DC_UNLOCK(sc);
3027 }
3028 
3029 /*
3030  * A transmit underrun has occurred.  Back off the transmit threshold,
3031  * or switch to store and forward mode if we have to.
3032  */
3033 static void
3034 dc_tx_underrun(struct dc_softc *sc)
3035 {
3036 	u_int32_t isr;
3037 	int i;
3038 
3039 	if (DC_IS_DAVICOM(sc))
3040 		dc_init(sc);
3041 
3042 	if (DC_IS_INTEL(sc)) {
3043 		/*
3044 		 * The real 21143 requires that the transmitter be idle
3045 		 * in order to change the transmit threshold or store
3046 		 * and forward state.
3047 		 */
3048 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3049 
3050 		for (i = 0; i < DC_TIMEOUT; i++) {
3051 			isr = CSR_READ_4(sc, DC_ISR);
3052 			if (isr & DC_ISR_TX_IDLE)
3053 				break;
3054 			DELAY(10);
3055 		}
3056 		if (i == DC_TIMEOUT) {
3057 			printf("dc%d: failed to force tx to idle state\n",
3058 			    sc->dc_unit);
3059 			dc_init(sc);
3060 		}
3061 	}
3062 
3063 	printf("dc%d: TX underrun -- ", sc->dc_unit);
3064 	sc->dc_txthresh += DC_TXTHRESH_INC;
3065 	if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3066 		printf("using store and forward mode\n");
3067 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3068 	} else {
3069 		printf("increasing TX threshold\n");
3070 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3071 		DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3072 	}
3073 
3074 	if (DC_IS_INTEL(sc))
3075 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3076 }
3077 
3078 #ifdef DEVICE_POLLING
3079 static poll_handler_t dc_poll;
3080 
3081 static void
3082 dc_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
3083 {
3084 	struct dc_softc *sc = ifp->if_softc;
3085 
3086 	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
3087 		/* Re-enable interrupts. */
3088 		CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3089 		return;
3090 	}
3091 	DC_LOCK(sc);
3092 	sc->rxcycles = count;
3093 	dc_rxeof(sc);
3094 	dc_txeof(sc);
3095 	if (ifp->if_snd.ifq_head != NULL && !(ifp->if_flags & IFF_OACTIVE))
3096 		dc_start(ifp);
3097 
3098 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
3099 		u_int32_t	status;
3100 
3101 		status = CSR_READ_4(sc, DC_ISR);
3102 		status &= (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF |
3103 			DC_ISR_TX_NOBUF | DC_ISR_TX_IDLE | DC_ISR_TX_UNDERRUN |
3104 			DC_ISR_BUS_ERR);
3105 		if (!status) {
3106 			DC_UNLOCK(sc);
3107 			return;
3108 		}
3109 		/* ack what we have */
3110 		CSR_WRITE_4(sc, DC_ISR, status);
3111 
3112 		if (status & (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF)) {
3113 			u_int32_t r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
3114 			ifp->if_ierrors += (r & 0xffff) + ((r >> 17) & 0x7ff);
3115 
3116 			if (dc_rx_resync(sc))
3117 				dc_rxeof(sc);
3118 		}
3119 		/* restart transmit unit if necessary */
3120 		if (status & DC_ISR_TX_IDLE && sc->dc_cdata.dc_tx_cnt)
3121 			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3122 
3123 		if (status & DC_ISR_TX_UNDERRUN)
3124 			dc_tx_underrun(sc);
3125 
3126 		if (status & DC_ISR_BUS_ERR) {
3127 			printf("dc_poll: dc%d bus error\n", sc->dc_unit);
3128 			dc_reset(sc);
3129 			dc_init(sc);
3130 		}
3131 	}
3132 	DC_UNLOCK(sc);
3133 }
3134 #endif /* DEVICE_POLLING */
3135 
3136 static void
3137 dc_intr(void *arg)
3138 {
3139 	struct dc_softc *sc;
3140 	struct ifnet *ifp;
3141 	u_int32_t status;
3142 
3143 	sc = arg;
3144 
3145 	if (sc->suspended)
3146 		return;
3147 
3148 	if ((CSR_READ_4(sc, DC_ISR) & DC_INTRS) == 0)
3149 		return;
3150 
3151 	DC_LOCK(sc);
3152 	ifp = &sc->arpcom.ac_if;
3153 #ifdef DEVICE_POLLING
3154 	if (ifp->if_flags & IFF_POLLING)
3155 		goto done;
3156 	if (ether_poll_register(dc_poll, ifp)) { /* ok, disable interrupts */
3157 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3158 		goto done;
3159 	}
3160 #endif
3161 
3162 	/* Suppress unwanted interrupts */
3163 	if (!(ifp->if_flags & IFF_UP)) {
3164 		if (CSR_READ_4(sc, DC_ISR) & DC_INTRS)
3165 			dc_stop(sc);
3166 		DC_UNLOCK(sc);
3167 		return;
3168 	}
3169 
3170 	/* Disable interrupts. */
3171 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3172 
3173 	while (((status = CSR_READ_4(sc, DC_ISR)) & DC_INTRS)
3174 	      && status != 0xFFFFFFFF) {
3175 
3176 		CSR_WRITE_4(sc, DC_ISR, status);
3177 
3178 		if (status & DC_ISR_RX_OK) {
3179 			int		curpkts;
3180 			curpkts = ifp->if_ipackets;
3181 			dc_rxeof(sc);
3182 			if (curpkts == ifp->if_ipackets) {
3183 				while (dc_rx_resync(sc))
3184 					dc_rxeof(sc);
3185 			}
3186 		}
3187 
3188 		if (status & (DC_ISR_TX_OK | DC_ISR_TX_NOBUF))
3189 			dc_txeof(sc);
3190 
3191 		if (status & DC_ISR_TX_IDLE) {
3192 			dc_txeof(sc);
3193 			if (sc->dc_cdata.dc_tx_cnt) {
3194 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3195 				CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3196 			}
3197 		}
3198 
3199 		if (status & DC_ISR_TX_UNDERRUN)
3200 			dc_tx_underrun(sc);
3201 
3202 		if ((status & DC_ISR_RX_WATDOGTIMEO)
3203 		    || (status & DC_ISR_RX_NOBUF)) {
3204 			int		curpkts;
3205 			curpkts = ifp->if_ipackets;
3206 			dc_rxeof(sc);
3207 			if (curpkts == ifp->if_ipackets) {
3208 				while (dc_rx_resync(sc))
3209 					dc_rxeof(sc);
3210 			}
3211 		}
3212 
3213 		if (status & DC_ISR_BUS_ERR) {
3214 			dc_reset(sc);
3215 			dc_init(sc);
3216 		}
3217 	}
3218 
3219 	/* Re-enable interrupts. */
3220 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3221 
3222 	if (ifp->if_snd.ifq_head != NULL)
3223 		dc_start(ifp);
3224 
3225 #ifdef DEVICE_POLLING
3226 done:
3227 #endif
3228 
3229 	DC_UNLOCK(sc);
3230 }
3231 
3232 static void
3233 dc_dma_map_txbuf(arg, segs, nseg, mapsize, error)
3234 	void *arg;
3235 	bus_dma_segment_t *segs;
3236 	int nseg;
3237 	bus_size_t mapsize;
3238 	int error;
3239 {
3240 	struct dc_softc *sc;
3241 	struct dc_desc *f;
3242 	int cur, first, frag, i;
3243 
3244 	sc = arg;
3245 	if (error) {
3246 		sc->dc_cdata.dc_tx_err = error;
3247 		return;
3248 	}
3249 
3250 	first = cur = frag = sc->dc_cdata.dc_tx_prod;
3251 	for (i = 0; i < nseg; i++) {
3252 		if ((sc->dc_flags & DC_TX_ADMTEK_WAR) &&
3253 		    (frag == (DC_TX_LIST_CNT - 1)) &&
3254 		    (first != sc->dc_cdata.dc_tx_first)) {
3255 			bus_dmamap_unload(sc->dc_mtag,
3256 			    sc->dc_cdata.dc_tx_map[first]);
3257 			sc->dc_cdata.dc_tx_err = ENOBUFS;
3258 			return;
3259 		}
3260 
3261 		f = &sc->dc_ldata->dc_tx_list[frag];
3262 		f->dc_ctl = htole32(DC_TXCTL_TLINK | segs[i].ds_len);
3263 		if (i == 0) {
3264 			f->dc_status = 0;
3265 			f->dc_ctl |= htole32(DC_TXCTL_FIRSTFRAG);
3266 		} else
3267 			f->dc_status = htole32(DC_TXSTAT_OWN);
3268 		f->dc_data = htole32(segs[i].ds_addr);
3269 		cur = frag;
3270 		DC_INC(frag, DC_TX_LIST_CNT);
3271 	}
3272 
3273 	sc->dc_cdata.dc_tx_err = 0;
3274 	sc->dc_cdata.dc_tx_prod = frag;
3275 	sc->dc_cdata.dc_tx_cnt += nseg;
3276 	sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_LASTFRAG);
3277 	sc->dc_cdata.dc_tx_chain[cur] = sc->dc_cdata.dc_tx_mapping;
3278 	if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
3279 		sc->dc_ldata->dc_tx_list[first].dc_ctl |=
3280 		    htole32(DC_TXCTL_FINT);
3281 	if (sc->dc_flags & DC_TX_INTR_ALWAYS)
3282 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
3283 	if (sc->dc_flags & DC_TX_USE_TX_INTR && sc->dc_cdata.dc_tx_cnt > 64)
3284 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
3285 	sc->dc_ldata->dc_tx_list[first].dc_status = htole32(DC_TXSTAT_OWN);
3286 }
3287 
3288 /*
3289  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
3290  * pointers to the fragment pointers.
3291  */
3292 static int
3293 dc_encap(struct dc_softc *sc, struct mbuf **m_head)
3294 {
3295 	struct mbuf *m;
3296 	int error, idx, chainlen = 0;
3297 
3298 	/*
3299 	 * If there's no way we can send any packets, return now.
3300 	 */
3301 	if (DC_TX_LIST_CNT - sc->dc_cdata.dc_tx_cnt < 6)
3302 		return (ENOBUFS);
3303 
3304 	/*
3305 	 * Count the number of frags in this chain to see if
3306 	 * we need to m_defrag.  Since the descriptor list is shared
3307 	 * by all packets, we'll m_defrag long chains so that they
3308 	 * do not use up the entire list, even if they would fit.
3309 	 */
3310 	for (m = *m_head; m != NULL; m = m->m_next)
3311 		chainlen++;
3312 
3313 	if ((chainlen > DC_TX_LIST_CNT / 4) ||
3314 	    ((DC_TX_LIST_CNT - (chainlen + sc->dc_cdata.dc_tx_cnt)) < 6)) {
3315 		m = m_defrag(*m_head, M_DONTWAIT);
3316 		if (m == NULL)
3317 			return (ENOBUFS);
3318 		*m_head = m;
3319 	}
3320 
3321 	/*
3322 	 * Start packing the mbufs in this chain into
3323 	 * the fragment pointers. Stop when we run out
3324 	 * of fragments or hit the end of the mbuf chain.
3325 	 */
3326 	idx = sc->dc_cdata.dc_tx_prod;
3327 	sc->dc_cdata.dc_tx_mapping = *m_head;
3328 	error = bus_dmamap_load_mbuf(sc->dc_mtag, sc->dc_cdata.dc_tx_map[idx],
3329 	    *m_head, dc_dma_map_txbuf, sc, 0);
3330 	if (error)
3331 		return (error);
3332 	if (sc->dc_cdata.dc_tx_err != 0)
3333 		return (sc->dc_cdata.dc_tx_err);
3334 	bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_tx_map[idx],
3335 	    BUS_DMASYNC_PREWRITE);
3336 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
3337 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
3338 	return (0);
3339 }
3340 
3341 /*
3342  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3343  * to the mbuf data regions directly in the transmit lists. We also save a
3344  * copy of the pointers since the transmit list fragment pointers are
3345  * physical addresses.
3346  */
3347 
3348 static void
3349 dc_start(struct ifnet *ifp)
3350 {
3351 	struct dc_softc *sc;
3352 	struct mbuf *m_head = NULL, *m;
3353 	int idx;
3354 
3355 	sc = ifp->if_softc;
3356 
3357 	DC_LOCK(sc);
3358 
3359 	if (!sc->dc_link && ifp->if_snd.ifq_len < 10) {
3360 		DC_UNLOCK(sc);
3361 		return;
3362 	}
3363 
3364 	if (ifp->if_flags & IFF_OACTIVE) {
3365 		DC_UNLOCK(sc);
3366 		return;
3367 	}
3368 
3369 	idx = sc->dc_cdata.dc_tx_first = sc->dc_cdata.dc_tx_prod;
3370 
3371 	while (sc->dc_cdata.dc_tx_chain[idx] == NULL) {
3372 		IF_DEQUEUE(&ifp->if_snd, m_head);
3373 		if (m_head == NULL)
3374 			break;
3375 
3376 		if (sc->dc_flags & DC_TX_COALESCE &&
3377 		    (m_head->m_next != NULL ||
3378 		     sc->dc_flags & DC_TX_ALIGN)) {
3379 			m = m_defrag(m_head, M_DONTWAIT);
3380 			if (m == NULL) {
3381 				IF_PREPEND(&ifp->if_snd, m_head);
3382 				ifp->if_flags |= IFF_OACTIVE;
3383 				break;
3384 			} else {
3385 				m_head = m;
3386 			}
3387 		}
3388 
3389 		if (dc_encap(sc, &m_head)) {
3390 			IF_PREPEND(&ifp->if_snd, m_head);
3391 			ifp->if_flags |= IFF_OACTIVE;
3392 			break;
3393 		}
3394 		idx = sc->dc_cdata.dc_tx_prod;
3395 
3396 		/*
3397 		 * If there's a BPF listener, bounce a copy of this frame
3398 		 * to him.
3399 		 */
3400 		BPF_MTAP(ifp, m_head);
3401 
3402 		if (sc->dc_flags & DC_TX_ONE) {
3403 			ifp->if_flags |= IFF_OACTIVE;
3404 			break;
3405 		}
3406 	}
3407 
3408 	/* Transmit */
3409 	if (!(sc->dc_flags & DC_TX_POLL))
3410 		CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3411 
3412 	/*
3413 	 * Set a timeout in case the chip goes out to lunch.
3414 	 */
3415 	ifp->if_timer = 5;
3416 
3417 	DC_UNLOCK(sc);
3418 }
3419 
3420 static void
3421 dc_init(void *xsc)
3422 {
3423 	struct dc_softc *sc = xsc;
3424 	struct ifnet *ifp = &sc->arpcom.ac_if;
3425 	struct mii_data *mii;
3426 
3427 	DC_LOCK(sc);
3428 
3429 	mii = device_get_softc(sc->dc_miibus);
3430 
3431 	/*
3432 	 * Cancel pending I/O and free all RX/TX buffers.
3433 	 */
3434 	dc_stop(sc);
3435 	dc_reset(sc);
3436 
3437 	/*
3438 	 * Set cache alignment and burst length.
3439 	 */
3440 	if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc))
3441 		CSR_WRITE_4(sc, DC_BUSCTL, 0);
3442 	else
3443 		CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME | DC_BUSCTL_MRLE);
3444 	/*
3445 	 * Evenly share the bus between receive and transmit process.
3446 	 */
3447 	if (DC_IS_INTEL(sc))
3448 		DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION);
3449 	if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
3450 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
3451 	} else {
3452 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
3453 	}
3454 	if (sc->dc_flags & DC_TX_POLL)
3455 		DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
3456 	switch(sc->dc_cachesize) {
3457 	case 32:
3458 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
3459 		break;
3460 	case 16:
3461 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
3462 		break;
3463 	case 8:
3464 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
3465 		break;
3466 	case 0:
3467 	default:
3468 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
3469 		break;
3470 	}
3471 
3472 	if (sc->dc_flags & DC_TX_STORENFWD)
3473 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3474 	else {
3475 		if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3476 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3477 		} else {
3478 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3479 			DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3480 		}
3481 	}
3482 
3483 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
3484 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
3485 
3486 	if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
3487 		/*
3488 		 * The app notes for the 98713 and 98715A say that
3489 		 * in order to have the chips operate properly, a magic
3490 		 * number must be written to CSR16. Macronix does not
3491 		 * document the meaning of these bits so there's no way
3492 		 * to know exactly what they do. The 98713 has a magic
3493 		 * number all its own; the rest all use a different one.
3494 		 */
3495 		DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
3496 		if (sc->dc_type == DC_TYPE_98713)
3497 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
3498 		else
3499 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
3500 	}
3501 
3502 	if (DC_IS_XIRCOM(sc)) {
3503 		/*
3504 		 * setup General Purpose Port mode and data so the tulip
3505 		 * can talk to the MII.
3506 		 */
3507 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
3508 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3509 		DELAY(10);
3510 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
3511 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3512 		DELAY(10);
3513 	}
3514 
3515 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3516 	DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN);
3517 
3518 	/* Init circular RX list. */
3519 	if (dc_list_rx_init(sc) == ENOBUFS) {
3520 		printf("dc%d: initialization failed: no "
3521 		    "memory for rx buffers\n", sc->dc_unit);
3522 		dc_stop(sc);
3523 		DC_UNLOCK(sc);
3524 		return;
3525 	}
3526 
3527 	/*
3528 	 * Init TX descriptors.
3529 	 */
3530 	dc_list_tx_init(sc);
3531 
3532 	/*
3533 	 * Load the address of the RX list.
3534 	 */
3535 	CSR_WRITE_4(sc, DC_RXADDR, DC_RXDESC(sc, 0));
3536 	CSR_WRITE_4(sc, DC_TXADDR, DC_TXDESC(sc, 0));
3537 
3538 	/*
3539 	 * Enable interrupts.
3540 	 */
3541 #ifdef DEVICE_POLLING
3542 	/*
3543 	 * ... but only if we are not polling, and make sure they are off in
3544 	 * the case of polling. Some cards (e.g. fxp) turn interrupts on
3545 	 * after a reset.
3546 	 */
3547 	if (ifp->if_flags & IFF_POLLING)
3548 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3549 	else
3550 #endif
3551 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3552 	CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
3553 
3554 	/* Enable transmitter. */
3555 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3556 
3557 	/*
3558 	 * If this is an Intel 21143 and we're not using the
3559 	 * MII port, program the LED control pins so we get
3560 	 * link and activity indications.
3561 	 */
3562 	if (sc->dc_flags & DC_TULIP_LEDS) {
3563 		CSR_WRITE_4(sc, DC_WATCHDOG,
3564 		    DC_WDOG_CTLWREN | DC_WDOG_LINK | DC_WDOG_ACTIVITY);
3565 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
3566 	}
3567 
3568 	/*
3569 	 * Load the RX/multicast filter. We do this sort of late
3570 	 * because the filter programming scheme on the 21143 and
3571 	 * some clones requires DMAing a setup frame via the TX
3572 	 * engine, and we need the transmitter enabled for that.
3573 	 */
3574 	dc_setfilt(sc);
3575 
3576 	/* Enable receiver. */
3577 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
3578 	CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
3579 
3580 	mii_mediachg(mii);
3581 	dc_setcfg(sc, sc->dc_if_media);
3582 
3583 	ifp->if_flags |= IFF_RUNNING;
3584 	ifp->if_flags &= ~IFF_OACTIVE;
3585 
3586 	/* Don't start the ticker if this is a homePNA link. */
3587 	if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_HPNA_1)
3588 		sc->dc_link = 1;
3589 	else {
3590 		if (sc->dc_flags & DC_21143_NWAY)
3591 			callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
3592 		else
3593 			callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
3594 	}
3595 
3596 #ifdef SRM_MEDIA
3597 	if(sc->dc_srm_media) {
3598 		struct ifreq ifr;
3599 
3600 		ifr.ifr_media = sc->dc_srm_media;
3601 		ifmedia_ioctl(ifp, &ifr, &mii->mii_media, SIOCSIFMEDIA);
3602 		sc->dc_srm_media = 0;
3603 	}
3604 #endif
3605 	DC_UNLOCK(sc);
3606 }
3607 
3608 /*
3609  * Set media options.
3610  */
3611 static int
3612 dc_ifmedia_upd(struct ifnet *ifp)
3613 {
3614 	struct dc_softc *sc;
3615 	struct mii_data *mii;
3616 	struct ifmedia *ifm;
3617 
3618 	sc = ifp->if_softc;
3619 	mii = device_get_softc(sc->dc_miibus);
3620 	mii_mediachg(mii);
3621 	ifm = &mii->mii_media;
3622 
3623 	if (DC_IS_DAVICOM(sc) &&
3624 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1)
3625 		dc_setcfg(sc, ifm->ifm_media);
3626 	else
3627 		sc->dc_link = 0;
3628 
3629 	return (0);
3630 }
3631 
3632 /*
3633  * Report current media status.
3634  */
3635 static void
3636 dc_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3637 {
3638 	struct dc_softc *sc;
3639 	struct mii_data *mii;
3640 	struct ifmedia *ifm;
3641 
3642 	sc = ifp->if_softc;
3643 	mii = device_get_softc(sc->dc_miibus);
3644 	mii_pollstat(mii);
3645 	ifm = &mii->mii_media;
3646 	if (DC_IS_DAVICOM(sc)) {
3647 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
3648 			ifmr->ifm_active = ifm->ifm_media;
3649 			ifmr->ifm_status = 0;
3650 			return;
3651 		}
3652 	}
3653 	ifmr->ifm_active = mii->mii_media_active;
3654 	ifmr->ifm_status = mii->mii_media_status;
3655 }
3656 
3657 static int
3658 dc_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
3659 {
3660 	struct dc_softc *sc = ifp->if_softc;
3661 	struct ifreq *ifr = (struct ifreq *)data;
3662 	struct mii_data *mii;
3663 	int error = 0;
3664 
3665 	DC_LOCK(sc);
3666 
3667 	switch (command) {
3668 	case SIOCSIFFLAGS:
3669 		if (ifp->if_flags & IFF_UP) {
3670 			int need_setfilt = (ifp->if_flags ^ sc->dc_if_flags) &
3671 				(IFF_PROMISC | IFF_ALLMULTI);
3672 
3673 			if (ifp->if_flags & IFF_RUNNING) {
3674 				if (need_setfilt)
3675 					dc_setfilt(sc);
3676 			} else {
3677 				sc->dc_txthresh = 0;
3678 				dc_init(sc);
3679 			}
3680 		} else {
3681 			if (ifp->if_flags & IFF_RUNNING)
3682 				dc_stop(sc);
3683 		}
3684 		sc->dc_if_flags = ifp->if_flags;
3685 		error = 0;
3686 		break;
3687 	case SIOCADDMULTI:
3688 	case SIOCDELMULTI:
3689 		dc_setfilt(sc);
3690 		error = 0;
3691 		break;
3692 	case SIOCGIFMEDIA:
3693 	case SIOCSIFMEDIA:
3694 		mii = device_get_softc(sc->dc_miibus);
3695 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
3696 #ifdef SRM_MEDIA
3697 		if (sc->dc_srm_media)
3698 			sc->dc_srm_media = 0;
3699 #endif
3700 		break;
3701 	default:
3702 		error = ether_ioctl(ifp, command, data);
3703 		break;
3704 	}
3705 
3706 	DC_UNLOCK(sc);
3707 
3708 	return (error);
3709 }
3710 
3711 static void
3712 dc_watchdog(struct ifnet *ifp)
3713 {
3714 	struct dc_softc *sc;
3715 
3716 	sc = ifp->if_softc;
3717 
3718 	DC_LOCK(sc);
3719 
3720 	ifp->if_oerrors++;
3721 	printf("dc%d: watchdog timeout\n", sc->dc_unit);
3722 
3723 	dc_stop(sc);
3724 	dc_reset(sc);
3725 	dc_init(sc);
3726 
3727 	if (ifp->if_snd.ifq_head != NULL)
3728 		dc_start(ifp);
3729 
3730 	DC_UNLOCK(sc);
3731 }
3732 
3733 /*
3734  * Stop the adapter and free any mbufs allocated to the
3735  * RX and TX lists.
3736  */
3737 static void
3738 dc_stop(struct dc_softc *sc)
3739 {
3740 	struct ifnet *ifp;
3741 	struct dc_list_data *ld;
3742 	struct dc_chain_data *cd;
3743 	int i;
3744 	u_int32_t ctl;
3745 
3746 	DC_LOCK(sc);
3747 
3748 	ifp = &sc->arpcom.ac_if;
3749 	ifp->if_timer = 0;
3750 	ld = sc->dc_ldata;
3751 	cd = &sc->dc_cdata;
3752 
3753 	callout_stop(&sc->dc_stat_ch);
3754 
3755 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3756 #ifdef DEVICE_POLLING
3757 	ether_poll_deregister(ifp);
3758 #endif
3759 
3760 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ON | DC_NETCFG_TX_ON));
3761 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3762 	CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
3763 	CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
3764 	sc->dc_link = 0;
3765 
3766 	/*
3767 	 * Free data in the RX lists.
3768 	 */
3769 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
3770 		if (cd->dc_rx_chain[i] != NULL) {
3771 			m_freem(cd->dc_rx_chain[i]);
3772 			cd->dc_rx_chain[i] = NULL;
3773 		}
3774 	}
3775 	bzero(&ld->dc_rx_list, sizeof(ld->dc_rx_list));
3776 
3777 	/*
3778 	 * Free the TX list buffers.
3779 	 */
3780 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
3781 		if (cd->dc_tx_chain[i] != NULL) {
3782 			ctl = le32toh(ld->dc_tx_list[i].dc_ctl);
3783 			if ((ctl & DC_TXCTL_SETUP) ||
3784 			    !(ctl & DC_TXCTL_LASTFRAG)) {
3785 				cd->dc_tx_chain[i] = NULL;
3786 				continue;
3787 			}
3788 			bus_dmamap_unload(sc->dc_mtag, cd->dc_tx_map[i]);
3789 			m_freem(cd->dc_tx_chain[i]);
3790 			cd->dc_tx_chain[i] = NULL;
3791 		}
3792 	}
3793 	bzero(&ld->dc_tx_list, sizeof(ld->dc_tx_list));
3794 
3795 	DC_UNLOCK(sc);
3796 }
3797 
3798 /*
3799  * Device suspend routine.  Stop the interface and save some PCI
3800  * settings in case the BIOS doesn't restore them properly on
3801  * resume.
3802  */
3803 static int
3804 dc_suspend(device_t dev)
3805 {
3806 	struct dc_softc *sc;
3807 	int i, s;
3808 
3809 	s = splimp();
3810 
3811 	sc = device_get_softc(dev);
3812 
3813 	dc_stop(sc);
3814 
3815 	for (i = 0; i < 5; i++)
3816 		sc->saved_maps[i] = pci_read_config(dev, PCIR_BAR(i), 4);
3817 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
3818 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
3819 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
3820 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
3821 
3822 	sc->suspended = 1;
3823 
3824 	splx(s);
3825 	return (0);
3826 }
3827 
3828 /*
3829  * Device resume routine.  Restore some PCI settings in case the BIOS
3830  * doesn't, re-enable busmastering, and restart the interface if
3831  * appropriate.
3832  */
3833 static int
3834 dc_resume(device_t dev)
3835 {
3836 	struct dc_softc *sc;
3837 	struct ifnet *ifp;
3838 	int i, s;
3839 
3840 	s = splimp();
3841 
3842 	sc = device_get_softc(dev);
3843 	ifp = &sc->arpcom.ac_if;
3844 #ifndef BURN_BRIDGES
3845 	dc_acpi(dev);
3846 #endif
3847 	/* better way to do this? */
3848 	for (i = 0; i < 5; i++)
3849 		pci_write_config(dev, PCIR_BAR(i), sc->saved_maps[i], 4);
3850 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
3851 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
3852 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
3853 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
3854 
3855 	/* reenable busmastering */
3856 	pci_enable_busmaster(dev);
3857 	pci_enable_io(dev, DC_RES);
3858 
3859 	/* reinitialize interface if necessary */
3860 	if (ifp->if_flags & IFF_UP)
3861 		dc_init(sc);
3862 
3863 	sc->suspended = 0;
3864 
3865 	splx(s);
3866 	return (0);
3867 }
3868 
3869 /*
3870  * Stop all chip I/O so that the kernel's probe routines don't
3871  * get confused by errant DMAs when rebooting.
3872  */
3873 static void
3874 dc_shutdown(device_t dev)
3875 {
3876 	struct dc_softc *sc;
3877 
3878 	sc = device_get_softc(dev);
3879 
3880 	dc_stop(sc);
3881 }
3882