xref: /freebsd/sys/dev/dc/if_dc.c (revision d1ba25f456132eabc6f1244e4bbbf3d19e8f3a31)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ee.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD$
33  */
34 
35 /*
36  * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
37  * series chips and several workalikes including the following:
38  *
39  * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com)
40  * Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
41  * Lite-On 82c168/82c169 PNIC (www.litecom.com)
42  * ASIX Electronics AX88140A (www.asix.com.tw)
43  * ASIX Electronics AX88141 (www.asix.com.tw)
44  * ADMtek AL981 (www.admtek.com.tw)
45  * ADMtek AN985 (www.admtek.com.tw)
46  * Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
47  * Accton EN1217 (www.accton.com)
48  * Xircom X3201 (www.xircom.com)
49  *
50  * Datasheets for the 21143 are available at developer.intel.com.
51  * Datasheets for the clone parts can be found at their respective sites.
52  * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
53  * The PNIC II is essentially a Macronix 98715A chip; the only difference
54  * worth noting is that its multicast hash table is only 128 bits wide
55  * instead of 512.
56  *
57  * Written by Bill Paul <wpaul@ee.columbia.edu>
58  * Electrical Engineering Department
59  * Columbia University, New York City
60  */
61 
62 /*
63  * The Intel 21143 is the successor to the DEC 21140. It is basically
64  * the same as the 21140 but with a few new features. The 21143 supports
65  * three kinds of media attachments:
66  *
67  * o MII port, for 10Mbps and 100Mbps support and NWAY
68  *   autonegotiation provided by an external PHY.
69  * o SYM port, for symbol mode 100Mbps support.
70  * o 10baseT port.
71  * o AUI/BNC port.
72  *
73  * The 100Mbps SYM port and 10baseT port can be used together in
74  * combination with the internal NWAY support to create a 10/100
75  * autosensing configuration.
76  *
77  * Note that not all tulip workalikes are handled in this driver: we only
78  * deal with those which are relatively well behaved. The Winbond is
79  * handled separately due to its different register offsets and the
80  * special handling needed for its various bugs. The PNIC is handled
81  * here, but I'm not thrilled about it.
82  *
83  * All of the workalike chips use some form of MII transceiver support
84  * with the exception of the Macronix chips, which also have a SYM port.
85  * The ASIX AX88140A is also documented to have a SYM port, but all
86  * the cards I've seen use an MII transceiver, probably because the
87  * AX88140A doesn't support internal NWAY.
88  */
89 
90 #include <sys/param.h>
91 #include <sys/systm.h>
92 #include <sys/sockio.h>
93 #include <sys/mbuf.h>
94 #include <sys/malloc.h>
95 #include <sys/kernel.h>
96 #include <sys/socket.h>
97 
98 #include <net/if.h>
99 #include <net/if_arp.h>
100 #include <net/ethernet.h>
101 #include <net/if_dl.h>
102 #include <net/if_media.h>
103 
104 #include <net/bpf.h>
105 
106 #include <vm/vm.h>              /* for vtophys */
107 #include <vm/pmap.h>            /* for vtophys */
108 #include <machine/bus_pio.h>
109 #include <machine/bus_memio.h>
110 #include <machine/bus.h>
111 #include <machine/resource.h>
112 #include <sys/bus.h>
113 #include <sys/rman.h>
114 
115 #include <dev/mii/mii.h>
116 #include <dev/mii/miivar.h>
117 
118 #include <pci/pcireg.h>
119 #include <pci/pcivar.h>
120 
121 #define DC_USEIOSPACE
122 #ifdef __alpha__
123 #define SRM_MEDIA
124 #endif
125 
126 #include <pci/if_dcreg.h>
127 
128 MODULE_DEPEND(dc, miibus, 1, 1, 1);
129 
130 /* "controller miibus0" required.  See GENERIC if you get errors here. */
131 #include "miibus_if.h"
132 
133 #ifndef lint
134 static const char rcsid[] =
135   "$FreeBSD$";
136 #endif
137 
138 /*
139  * Various supported device vendors/types and their names.
140  */
141 static struct dc_type dc_devs[] = {
142 	{ DC_VENDORID_DEC, DC_DEVICEID_21143,
143 		"Intel 21143 10/100BaseTX" },
144 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100,
145 		"Davicom DM9100 10/100BaseTX" },
146 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
147 		"Davicom DM9102 10/100BaseTX" },
148 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
149 		"Davicom DM9102A 10/100BaseTX" },
150 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AL981,
151 		"ADMtek AL981 10/100BaseTX" },
152 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AN985,
153 		"ADMtek AN985 10/100BaseTX" },
154 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
155 		"ASIX AX88140A 10/100BaseTX" },
156 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
157 		"ASIX AX88141 10/100BaseTX" },
158 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
159 		"Macronix 98713 10/100BaseTX" },
160 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
161 		"Macronix 98713A 10/100BaseTX" },
162 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
163 		"Compex RL100-TX 10/100BaseTX" },
164 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
165 		"Compex RL100-TX 10/100BaseTX" },
166 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
167 		"Macronix 98715/98715A 10/100BaseTX" },
168 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
169 		"Macronix 98715AEC-C 10/100BaseTX" },
170 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
171 		"Macronix 98725 10/100BaseTX" },
172 	{ DC_VENDORID_MX, DC_DEVICEID_98727,
173 		"Macronix 98727/98732 10/100BaseTX" },
174 	{ DC_VENDORID_LO, DC_DEVICEID_82C115,
175 		"LC82C115 PNIC II 10/100BaseTX" },
176 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
177 		"82c168 PNIC 10/100BaseTX" },
178 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
179 		"82c169 PNIC 10/100BaseTX" },
180 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN1217,
181 		"Accton EN1217 10/100BaseTX" },
182     	{ DC_VENDORID_XIRCOM, DC_DEVICEID_X3201,
183 	  	"Xircom X3201 10/100BaseTX" },
184 	{ 0, 0, NULL }
185 };
186 
187 static int dc_probe		__P((device_t));
188 static int dc_attach		__P((device_t));
189 static int dc_detach		__P((device_t));
190 static void dc_acpi		__P((device_t));
191 static struct dc_type *dc_devtype	__P((device_t));
192 static int dc_newbuf		__P((struct dc_softc *, int, struct mbuf *));
193 static int dc_encap		__P((struct dc_softc *, struct mbuf *,
194 					u_int32_t *));
195 static int dc_coal		__P((struct dc_softc *, struct mbuf **));
196 static void dc_pnic_rx_bug_war	__P((struct dc_softc *, int));
197 static int dc_rx_resync		__P((struct dc_softc *));
198 static void dc_rxeof		__P((struct dc_softc *));
199 static void dc_txeof		__P((struct dc_softc *));
200 static void dc_tick		__P((void *));
201 static void dc_intr		__P((void *));
202 static void dc_start		__P((struct ifnet *));
203 static int dc_ioctl		__P((struct ifnet *, u_long, caddr_t));
204 static void dc_init		__P((void *));
205 static void dc_stop		__P((struct dc_softc *));
206 static void dc_watchdog		__P((struct ifnet *));
207 static void dc_shutdown		__P((device_t));
208 static int dc_ifmedia_upd	__P((struct ifnet *));
209 static void dc_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
210 
211 static void dc_delay		__P((struct dc_softc *));
212 static void dc_eeprom_idle	__P((struct dc_softc *));
213 static void dc_eeprom_putbyte	__P((struct dc_softc *, int));
214 static void dc_eeprom_getword	__P((struct dc_softc *, int, u_int16_t *));
215 static void dc_eeprom_getword_pnic
216 				__P((struct dc_softc *, int, u_int16_t *));
217 static void dc_eeprom_getword_xircom
218 				__P((struct dc_softc *, int, u_int16_t *));
219 static void dc_read_eeprom	__P((struct dc_softc *, caddr_t, int,
220 							int, int));
221 
222 static void dc_mii_writebit	__P((struct dc_softc *, int));
223 static int dc_mii_readbit	__P((struct dc_softc *));
224 static void dc_mii_sync		__P((struct dc_softc *));
225 static void dc_mii_send		__P((struct dc_softc *, u_int32_t, int));
226 static int dc_mii_readreg	__P((struct dc_softc *, struct dc_mii_frame *));
227 static int dc_mii_writereg	__P((struct dc_softc *, struct dc_mii_frame *));
228 static int dc_miibus_readreg	__P((device_t, int, int));
229 static int dc_miibus_writereg	__P((device_t, int, int, int));
230 static void dc_miibus_statchg	__P((device_t));
231 static void dc_miibus_mediainit	__P((device_t));
232 
233 static void dc_setcfg		__P((struct dc_softc *, int));
234 static u_int32_t dc_crc_le	__P((struct dc_softc *, caddr_t));
235 static u_int32_t dc_crc_be	__P((caddr_t));
236 static void dc_setfilt_21143	__P((struct dc_softc *));
237 static void dc_setfilt_asix	__P((struct dc_softc *));
238 static void dc_setfilt_admtek	__P((struct dc_softc *));
239 static void dc_setfilt_xircom	__P((struct dc_softc *));
240 
241 static void dc_setfilt		__P((struct dc_softc *));
242 
243 static void dc_reset		__P((struct dc_softc *));
244 static int dc_list_rx_init	__P((struct dc_softc *));
245 static int dc_list_tx_init	__P((struct dc_softc *));
246 
247 static void dc_parse_21143_srom	__P((struct dc_softc *));
248 static void dc_decode_leaf_sia	__P((struct dc_softc *,
249 				    struct dc_eblock_sia *));
250 static void dc_decode_leaf_mii	__P((struct dc_softc *,
251 				    struct dc_eblock_mii *));
252 static void dc_decode_leaf_sym	__P((struct dc_softc *,
253 				    struct dc_eblock_sym *));
254 static void dc_apply_fixup	__P((struct dc_softc *, int));
255 
256 #ifdef DC_USEIOSPACE
257 #define DC_RES			SYS_RES_IOPORT
258 #define DC_RID			DC_PCI_CFBIO
259 #else
260 #define DC_RES			SYS_RES_MEMORY
261 #define DC_RID			DC_PCI_CFBMA
262 #endif
263 
264 static device_method_t dc_methods[] = {
265 	/* Device interface */
266 	DEVMETHOD(device_probe,		dc_probe),
267 	DEVMETHOD(device_attach,	dc_attach),
268 	DEVMETHOD(device_detach,	dc_detach),
269 	DEVMETHOD(device_shutdown,	dc_shutdown),
270 
271 	/* bus interface */
272 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
273 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
274 
275 	/* MII interface */
276 	DEVMETHOD(miibus_readreg,	dc_miibus_readreg),
277 	DEVMETHOD(miibus_writereg,	dc_miibus_writereg),
278 	DEVMETHOD(miibus_statchg,	dc_miibus_statchg),
279 	DEVMETHOD(miibus_mediainit,	dc_miibus_mediainit),
280 
281 	{ 0, 0 }
282 };
283 
284 static driver_t dc_driver = {
285 	"dc",
286 	dc_methods,
287 	sizeof(struct dc_softc)
288 };
289 
290 static devclass_t dc_devclass;
291 
292 DRIVER_MODULE(if_dc, cardbus, dc_driver, dc_devclass, 0, 0);
293 DRIVER_MODULE(if_dc, pci, dc_driver, dc_devclass, 0, 0);
294 DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, 0, 0);
295 
296 #define DC_SETBIT(sc, reg, x)				\
297 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
298 
299 #define DC_CLRBIT(sc, reg, x)				\
300 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
301 
302 #define SIO_SET(x)	DC_SETBIT(sc, DC_SIO, (x))
303 #define SIO_CLR(x)	DC_CLRBIT(sc, DC_SIO, (x))
304 
305 static void dc_delay(sc)
306 	struct dc_softc		*sc;
307 {
308 	int			idx;
309 
310 	for (idx = (300 / 33) + 1; idx > 0; idx--)
311 		CSR_READ_4(sc, DC_BUSCTL);
312 }
313 
314 static void dc_eeprom_idle(sc)
315 	struct dc_softc		*sc;
316 {
317 	register int		i;
318 
319 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
320 	dc_delay(sc);
321 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
322 	dc_delay(sc);
323 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
324 	dc_delay(sc);
325 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
326 	dc_delay(sc);
327 
328 	for (i = 0; i < 25; i++) {
329 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
330 		dc_delay(sc);
331 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
332 		dc_delay(sc);
333 	}
334 
335 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
336 	dc_delay(sc);
337 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
338 	dc_delay(sc);
339 	CSR_WRITE_4(sc, DC_SIO, 0x00000000);
340 
341 	return;
342 }
343 
344 /*
345  * Send a read command and address to the EEPROM, check for ACK.
346  */
347 static void dc_eeprom_putbyte(sc, addr)
348 	struct dc_softc		*sc;
349 	int			addr;
350 {
351 	register int		d, i;
352 
353 	/*
354 	 * The AN985 has a 93C66 EEPROM on it instead of
355 	 * a 93C46. It uses a different bit sequence for
356 	 * specifying the "read" opcode.
357 	 */
358 	if (DC_IS_CENTAUR(sc))
359 		d = addr | (DC_EECMD_READ << 2);
360 	else
361 		d = addr | DC_EECMD_READ;
362 
363 	/*
364 	 * Feed in each bit and strobe the clock.
365 	 */
366 	for (i = 0x400; i; i >>= 1) {
367 		if (d & i) {
368 			SIO_SET(DC_SIO_EE_DATAIN);
369 		} else {
370 			SIO_CLR(DC_SIO_EE_DATAIN);
371 		}
372 		dc_delay(sc);
373 		SIO_SET(DC_SIO_EE_CLK);
374 		dc_delay(sc);
375 		SIO_CLR(DC_SIO_EE_CLK);
376 		dc_delay(sc);
377 	}
378 
379 	return;
380 }
381 
382 /*
383  * Read a word of data stored in the EEPROM at address 'addr.'
384  * The PNIC 82c168/82c169 has its own non-standard way to read
385  * the EEPROM.
386  */
387 static void dc_eeprom_getword_pnic(sc, addr, dest)
388 	struct dc_softc		*sc;
389 	int			addr;
390 	u_int16_t		*dest;
391 {
392 	register int		i;
393 	u_int32_t		r;
394 
395 	CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ|addr);
396 
397 	for (i = 0; i < DC_TIMEOUT; i++) {
398 		DELAY(1);
399 		r = CSR_READ_4(sc, DC_SIO);
400 		if (!(r & DC_PN_SIOCTL_BUSY)) {
401 			*dest = (u_int16_t)(r & 0xFFFF);
402 			return;
403 		}
404 	}
405 
406 	return;
407 }
408 
409 /*
410  * Read a word of data stored in the EEPROM at address 'addr.'
411  * The Xircom X3201 has its own non-standard way to read
412  * the EEPROM, too.
413  */
414 static void dc_eeprom_getword_xircom(sc, addr, dest)
415 	struct dc_softc		*sc;
416 	int			addr;
417 	u_int16_t		*dest;
418 {
419 	SIO_SET(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
420 
421 	addr *= 2;
422 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
423 	*dest = (u_int16_t)CSR_READ_4(sc, DC_SIO)&0xff;
424 	addr += 1;
425 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
426 	*dest |= ((u_int16_t)CSR_READ_4(sc, DC_SIO)&0xff) << 8;
427 
428 	SIO_CLR(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
429 	return;
430 }
431 
432 /*
433  * Read a word of data stored in the EEPROM at address 'addr.'
434  */
435 static void dc_eeprom_getword(sc, addr, dest)
436 	struct dc_softc		*sc;
437 	int			addr;
438 	u_int16_t		*dest;
439 {
440 	register int		i;
441 	u_int16_t		word = 0;
442 
443 	/* Force EEPROM to idle state. */
444 	dc_eeprom_idle(sc);
445 
446 	/* Enter EEPROM access mode. */
447 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
448 	dc_delay(sc);
449 	DC_SETBIT(sc, DC_SIO,  DC_SIO_ROMCTL_READ);
450 	dc_delay(sc);
451 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
452 	dc_delay(sc);
453 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
454 	dc_delay(sc);
455 
456 	/*
457 	 * Send address of word we want to read.
458 	 */
459 	dc_eeprom_putbyte(sc, addr);
460 
461 	/*
462 	 * Start reading bits from EEPROM.
463 	 */
464 	for (i = 0x8000; i; i >>= 1) {
465 		SIO_SET(DC_SIO_EE_CLK);
466 		dc_delay(sc);
467 		if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
468 			word |= i;
469 		dc_delay(sc);
470 		SIO_CLR(DC_SIO_EE_CLK);
471 		dc_delay(sc);
472 	}
473 
474 	/* Turn off EEPROM access mode. */
475 	dc_eeprom_idle(sc);
476 
477 	*dest = word;
478 
479 	return;
480 }
481 
482 /*
483  * Read a sequence of words from the EEPROM.
484  */
485 static void dc_read_eeprom(sc, dest, off, cnt, swap)
486 	struct dc_softc		*sc;
487 	caddr_t			dest;
488 	int			off;
489 	int			cnt;
490 	int			swap;
491 {
492 	int			i;
493 	u_int16_t		word = 0, *ptr;
494 
495 	for (i = 0; i < cnt; i++) {
496 		if (DC_IS_PNIC(sc))
497 			dc_eeprom_getword_pnic(sc, off + i, &word);
498 		else if (DC_IS_XIRCOM(sc))
499 			dc_eeprom_getword_xircom(sc, off + i, &word);
500 		else
501 			dc_eeprom_getword(sc, off + i, &word);
502 		ptr = (u_int16_t *)(dest + (i * 2));
503 		if (swap)
504 			*ptr = ntohs(word);
505 		else
506 			*ptr = word;
507 	}
508 
509 	return;
510 }
511 
512 /*
513  * The following two routines are taken from the Macronix 98713
514  * Application Notes pp.19-21.
515  */
516 /*
517  * Write a bit to the MII bus.
518  */
519 static void dc_mii_writebit(sc, bit)
520 	struct dc_softc		*sc;
521 	int			bit;
522 {
523 	if (bit)
524 		CSR_WRITE_4(sc, DC_SIO,
525 		    DC_SIO_ROMCTL_WRITE|DC_SIO_MII_DATAOUT);
526 	else
527 		CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
528 
529 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
530 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
531 
532 	return;
533 }
534 
535 /*
536  * Read a bit from the MII bus.
537  */
538 static int dc_mii_readbit(sc)
539 	struct dc_softc		*sc;
540 {
541 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_READ|DC_SIO_MII_DIR);
542 	CSR_READ_4(sc, DC_SIO);
543 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
544 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
545 	if (CSR_READ_4(sc, DC_SIO) & DC_SIO_MII_DATAIN)
546 		return(1);
547 
548 	return(0);
549 }
550 
551 /*
552  * Sync the PHYs by setting data bit and strobing the clock 32 times.
553  */
554 static void dc_mii_sync(sc)
555 	struct dc_softc		*sc;
556 {
557 	register int		i;
558 
559 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
560 
561 	for (i = 0; i < 32; i++)
562 		dc_mii_writebit(sc, 1);
563 
564 	return;
565 }
566 
567 /*
568  * Clock a series of bits through the MII.
569  */
570 static void dc_mii_send(sc, bits, cnt)
571 	struct dc_softc		*sc;
572 	u_int32_t		bits;
573 	int			cnt;
574 {
575 	int			i;
576 
577 	for (i = (0x1 << (cnt - 1)); i; i >>= 1)
578 		dc_mii_writebit(sc, bits & i);
579 }
580 
581 /*
582  * Read an PHY register through the MII.
583  */
584 static int dc_mii_readreg(sc, frame)
585 	struct dc_softc		*sc;
586 	struct dc_mii_frame	*frame;
587 
588 {
589 	int			i, ack;
590 
591 	DC_LOCK(sc);
592 
593 	/*
594 	 * Set up frame for RX.
595 	 */
596 	frame->mii_stdelim = DC_MII_STARTDELIM;
597 	frame->mii_opcode = DC_MII_READOP;
598 	frame->mii_turnaround = 0;
599 	frame->mii_data = 0;
600 
601 	/*
602 	 * Sync the PHYs.
603 	 */
604 	dc_mii_sync(sc);
605 
606 	/*
607 	 * Send command/address info.
608 	 */
609 	dc_mii_send(sc, frame->mii_stdelim, 2);
610 	dc_mii_send(sc, frame->mii_opcode, 2);
611 	dc_mii_send(sc, frame->mii_phyaddr, 5);
612 	dc_mii_send(sc, frame->mii_regaddr, 5);
613 
614 #ifdef notdef
615 	/* Idle bit */
616 	dc_mii_writebit(sc, 1);
617 	dc_mii_writebit(sc, 0);
618 #endif
619 
620 	/* Check for ack */
621 	ack = dc_mii_readbit(sc);
622 
623 	/*
624 	 * Now try reading data bits. If the ack failed, we still
625 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
626 	 */
627 	if (ack) {
628 		for(i = 0; i < 16; i++) {
629 			dc_mii_readbit(sc);
630 		}
631 		goto fail;
632 	}
633 
634 	for (i = 0x8000; i; i >>= 1) {
635 		if (!ack) {
636 			if (dc_mii_readbit(sc))
637 				frame->mii_data |= i;
638 		}
639 	}
640 
641 fail:
642 
643 	dc_mii_writebit(sc, 0);
644 	dc_mii_writebit(sc, 0);
645 
646 	DC_UNLOCK(sc);
647 
648 	if (ack)
649 		return(1);
650 	return(0);
651 }
652 
653 /*
654  * Write to a PHY register through the MII.
655  */
656 static int dc_mii_writereg(sc, frame)
657 	struct dc_softc		*sc;
658 	struct dc_mii_frame	*frame;
659 
660 {
661 	DC_LOCK(sc);
662 	/*
663 	 * Set up frame for TX.
664 	 */
665 
666 	frame->mii_stdelim = DC_MII_STARTDELIM;
667 	frame->mii_opcode = DC_MII_WRITEOP;
668 	frame->mii_turnaround = DC_MII_TURNAROUND;
669 
670 	/*
671 	 * Sync the PHYs.
672 	 */
673 	dc_mii_sync(sc);
674 
675 	dc_mii_send(sc, frame->mii_stdelim, 2);
676 	dc_mii_send(sc, frame->mii_opcode, 2);
677 	dc_mii_send(sc, frame->mii_phyaddr, 5);
678 	dc_mii_send(sc, frame->mii_regaddr, 5);
679 	dc_mii_send(sc, frame->mii_turnaround, 2);
680 	dc_mii_send(sc, frame->mii_data, 16);
681 
682 	/* Idle bit. */
683 	dc_mii_writebit(sc, 0);
684 	dc_mii_writebit(sc, 0);
685 
686 	DC_UNLOCK(sc);
687 
688 	return(0);
689 }
690 
691 static int dc_miibus_readreg(dev, phy, reg)
692 	device_t		dev;
693 	int			phy, reg;
694 {
695 	struct dc_mii_frame	frame;
696 	struct dc_softc		*sc;
697 	int			i, rval, phy_reg;
698 
699 	sc = device_get_softc(dev);
700 	bzero((char *)&frame, sizeof(frame));
701 
702 	/*
703 	 * Note: both the AL981 and AN985 have internal PHYs,
704 	 * however the AL981 provides direct access to the PHY
705 	 * registers while the AN985 uses a serial MII interface.
706 	 * The AN985's MII interface is also buggy in that you
707 	 * can read from any MII address (0 to 31), but only address 1
708 	 * behaves normally. To deal with both cases, we pretend
709 	 * that the PHY is at MII address 1.
710 	 */
711 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
712 		return(0);
713 
714 	if (sc->dc_pmode != DC_PMODE_MII) {
715 		if (phy == (MII_NPHY - 1)) {
716 			switch(reg) {
717 			case MII_BMSR:
718 			/*
719 			 * Fake something to make the probe
720 			 * code think there's a PHY here.
721 			 */
722 				return(BMSR_MEDIAMASK);
723 				break;
724 			case MII_PHYIDR1:
725 				if (DC_IS_PNIC(sc))
726 					return(DC_VENDORID_LO);
727 				return(DC_VENDORID_DEC);
728 				break;
729 			case MII_PHYIDR2:
730 				if (DC_IS_PNIC(sc))
731 					return(DC_DEVICEID_82C168);
732 				return(DC_DEVICEID_21143);
733 				break;
734 			default:
735 				return(0);
736 				break;
737 			}
738 		} else
739 			return(0);
740 	}
741 
742 	if (DC_IS_PNIC(sc)) {
743 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
744 		    (phy << 23) | (reg << 18));
745 		for (i = 0; i < DC_TIMEOUT; i++) {
746 			DELAY(1);
747 			rval = CSR_READ_4(sc, DC_PN_MII);
748 			if (!(rval & DC_PN_MII_BUSY)) {
749 				rval &= 0xFFFF;
750 				return(rval == 0xFFFF ? 0 : rval);
751 			}
752 		}
753 		return(0);
754 	}
755 
756 	if (DC_IS_COMET(sc)) {
757 		switch(reg) {
758 		case MII_BMCR:
759 			phy_reg = DC_AL_BMCR;
760 			break;
761 		case MII_BMSR:
762 			phy_reg = DC_AL_BMSR;
763 			break;
764 		case MII_PHYIDR1:
765 			phy_reg = DC_AL_VENID;
766 			break;
767 		case MII_PHYIDR2:
768 			phy_reg = DC_AL_DEVID;
769 			break;
770 		case MII_ANAR:
771 			phy_reg = DC_AL_ANAR;
772 			break;
773 		case MII_ANLPAR:
774 			phy_reg = DC_AL_LPAR;
775 			break;
776 		case MII_ANER:
777 			phy_reg = DC_AL_ANER;
778 			break;
779 		default:
780 			printf("dc%d: phy_read: bad phy register %x\n",
781 			    sc->dc_unit, reg);
782 			return(0);
783 			break;
784 		}
785 
786 		rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
787 
788 		if (rval == 0xFFFF)
789 			return(0);
790 		return(rval);
791 	}
792 
793 	frame.mii_phyaddr = phy;
794 	frame.mii_regaddr = reg;
795 	phy_reg = CSR_READ_4(sc, DC_NETCFG);
796 	CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
797 	dc_mii_readreg(sc, &frame);
798 	CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
799 
800 	return(frame.mii_data);
801 }
802 
803 static int dc_miibus_writereg(dev, phy, reg, data)
804 	device_t		dev;
805 	int			phy, reg, data;
806 {
807 	struct dc_softc		*sc;
808 	struct dc_mii_frame	frame;
809 	int			i, phy_reg;
810 
811 	sc = device_get_softc(dev);
812 	bzero((char *)&frame, sizeof(frame));
813 
814 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
815 		return(0);
816 
817 	if (DC_IS_PNIC(sc)) {
818 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
819 		    (phy << 23) | (reg << 10) | data);
820 		for (i = 0; i < DC_TIMEOUT; i++) {
821 			if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
822 				break;
823 		}
824 		return(0);
825 	}
826 
827 	if (DC_IS_COMET(sc)) {
828 		switch(reg) {
829 		case MII_BMCR:
830 			phy_reg = DC_AL_BMCR;
831 			break;
832 		case MII_BMSR:
833 			phy_reg = DC_AL_BMSR;
834 			break;
835 		case MII_PHYIDR1:
836 			phy_reg = DC_AL_VENID;
837 			break;
838 		case MII_PHYIDR2:
839 			phy_reg = DC_AL_DEVID;
840 			break;
841 		case MII_ANAR:
842 			phy_reg = DC_AL_ANAR;
843 			break;
844 		case MII_ANLPAR:
845 			phy_reg = DC_AL_LPAR;
846 			break;
847 		case MII_ANER:
848 			phy_reg = DC_AL_ANER;
849 			break;
850 		default:
851 			printf("dc%d: phy_write: bad phy register %x\n",
852 			    sc->dc_unit, reg);
853 			return(0);
854 			break;
855 		}
856 
857 		CSR_WRITE_4(sc, phy_reg, data);
858 		return(0);
859 	}
860 
861 	frame.mii_phyaddr = phy;
862 	frame.mii_regaddr = reg;
863 	frame.mii_data = data;
864 
865 	phy_reg = CSR_READ_4(sc, DC_NETCFG);
866 	CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
867 	dc_mii_writereg(sc, &frame);
868 	CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
869 
870 	return(0);
871 }
872 
873 static void dc_miibus_statchg(dev)
874 	device_t		dev;
875 {
876 	struct dc_softc		*sc;
877 	struct mii_data		*mii;
878 	struct ifmedia		*ifm;
879 
880 	sc = device_get_softc(dev);
881 	if (DC_IS_ADMTEK(sc))
882 		return;
883 
884 	mii = device_get_softc(sc->dc_miibus);
885 	ifm = &mii->mii_media;
886 	if (DC_IS_DAVICOM(sc) &&
887 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_homePNA) {
888 		dc_setcfg(sc, ifm->ifm_media);
889 		sc->dc_if_media = ifm->ifm_media;
890 	} else {
891 		dc_setcfg(sc, mii->mii_media_active);
892 		sc->dc_if_media = mii->mii_media_active;
893 	}
894 
895 	return;
896 }
897 
898 /*
899  * Special support for DM9102A cards with HomePNA PHYs. Note:
900  * with the Davicom DM9102A/DM9801 eval board that I have, it seems
901  * to be impossible to talk to the management interface of the DM9801
902  * PHY (its MDIO pin is not connected to anything). Consequently,
903  * the driver has to just 'know' about the additional mode and deal
904  * with it itself. *sigh*
905  */
906 static void dc_miibus_mediainit(dev)
907 	device_t		dev;
908 {
909 	struct dc_softc		*sc;
910 	struct mii_data		*mii;
911 	struct ifmedia		*ifm;
912 	int			rev;
913 
914 	rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF;
915 
916 	sc = device_get_softc(dev);
917 	mii = device_get_softc(sc->dc_miibus);
918 	ifm = &mii->mii_media;
919 
920 	if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A)
921 		ifmedia_add(ifm, IFM_ETHER|IFM_homePNA, 0, NULL);
922 
923 	return;
924 }
925 
926 #define DC_POLY		0xEDB88320
927 #define DC_BITS_512	9
928 #define DC_BITS_128	7
929 #define DC_BITS_64	6
930 
931 static u_int32_t dc_crc_le(sc, addr)
932 	struct dc_softc		*sc;
933 	caddr_t			addr;
934 {
935 	u_int32_t		idx, bit, data, crc;
936 
937 	/* Compute CRC for the address value. */
938 	crc = 0xFFFFFFFF; /* initial value */
939 
940 	for (idx = 0; idx < 6; idx++) {
941 		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1)
942 			crc = (crc >> 1) ^ (((crc ^ data) & 1) ? DC_POLY : 0);
943 	}
944 
945 	/*
946 	 * The hash table on the PNIC II and the MX98715AEC-C/D/E
947 	 * chips is only 128 bits wide.
948 	 */
949 	if (sc->dc_flags & DC_128BIT_HASH)
950 		return (crc & ((1 << DC_BITS_128) - 1));
951 
952 	/* The hash table on the MX98715BEC is only 64 bits wide. */
953 	if (sc->dc_flags & DC_64BIT_HASH)
954 		return (crc & ((1 << DC_BITS_64) - 1));
955 
956 	/* Xircom's hash filtering table is different (read: weird) */
957 	/* Xircom uses the LEAST significant bits */
958 	if (DC_IS_XIRCOM(sc)) {
959 		if ((crc & 0x180) == 0x180)
960 			return (crc & 0x0F) + (crc	& 0x70)*3 + (14 << 4);
961 		else
962 			return (crc & 0x1F) + ((crc>>1) & 0xF0)*3 + (12 << 4);
963 	}
964 
965 	return (crc & ((1 << DC_BITS_512) - 1));
966 }
967 
968 /*
969  * Calculate CRC of a multicast group address, return the lower 6 bits.
970  */
971 static u_int32_t dc_crc_be(addr)
972 	caddr_t			addr;
973 {
974 	u_int32_t		crc, carry;
975 	int			i, j;
976 	u_int8_t		c;
977 
978 	/* Compute CRC for the address value. */
979 	crc = 0xFFFFFFFF; /* initial value */
980 
981 	for (i = 0; i < 6; i++) {
982 		c = *(addr + i);
983 		for (j = 0; j < 8; j++) {
984 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
985 			crc <<= 1;
986 			c >>= 1;
987 			if (carry)
988 				crc = (crc ^ 0x04c11db6) | carry;
989 		}
990 	}
991 
992 	/* return the filter bit position */
993 	return((crc >> 26) & 0x0000003F);
994 }
995 
996 /*
997  * 21143-style RX filter setup routine. Filter programming is done by
998  * downloading a special setup frame into the TX engine. 21143, Macronix,
999  * PNIC, PNIC II and Davicom chips are programmed this way.
1000  *
1001  * We always program the chip using 'hash perfect' mode, i.e. one perfect
1002  * address (our node address) and a 512-bit hash filter for multicast
1003  * frames. We also sneak the broadcast address into the hash filter since
1004  * we need that too.
1005  */
1006 void dc_setfilt_21143(sc)
1007 	struct dc_softc		*sc;
1008 {
1009 	struct dc_desc		*sframe;
1010 	u_int32_t		h, *sp;
1011 	struct ifmultiaddr	*ifma;
1012 	struct ifnet		*ifp;
1013 	int			i;
1014 
1015 	ifp = &sc->arpcom.ac_if;
1016 
1017 	i = sc->dc_cdata.dc_tx_prod;
1018 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1019 	sc->dc_cdata.dc_tx_cnt++;
1020 	sframe = &sc->dc_ldata->dc_tx_list[i];
1021 	sp = (u_int32_t *)&sc->dc_cdata.dc_sbuf;
1022 	bzero((char *)sp, DC_SFRAME_LEN);
1023 
1024 	sframe->dc_data = vtophys(&sc->dc_cdata.dc_sbuf);
1025 	sframe->dc_ctl = DC_SFRAME_LEN | DC_TXCTL_SETUP | DC_TXCTL_TLINK |
1026 	    DC_FILTER_HASHPERF | DC_TXCTL_FINT;
1027 
1028 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)&sc->dc_cdata.dc_sbuf;
1029 
1030 	/* If we want promiscuous mode, set the allframes bit. */
1031 	if (ifp->if_flags & IFF_PROMISC)
1032 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1033 	else
1034 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1035 
1036 	if (ifp->if_flags & IFF_ALLMULTI)
1037 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1038 	else
1039 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1040 
1041 	for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
1042 	    ifma = ifma->ifma_link.le_next) {
1043 		if (ifma->ifma_addr->sa_family != AF_LINK)
1044 			continue;
1045 		h = dc_crc_le(sc,
1046 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1047 		sp[h >> 4] |= 1 << (h & 0xF);
1048 	}
1049 
1050 	if (ifp->if_flags & IFF_BROADCAST) {
1051 		h = dc_crc_le(sc, (caddr_t)&etherbroadcastaddr);
1052 		sp[h >> 4] |= 1 << (h & 0xF);
1053 	}
1054 
1055 	/* Set our MAC address */
1056 	sp[39] = ((u_int16_t *)sc->arpcom.ac_enaddr)[0];
1057 	sp[40] = ((u_int16_t *)sc->arpcom.ac_enaddr)[1];
1058 	sp[41] = ((u_int16_t *)sc->arpcom.ac_enaddr)[2];
1059 
1060 	sframe->dc_status = DC_TXSTAT_OWN;
1061 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1062 
1063 	/*
1064 	 * The PNIC takes an exceedingly long time to process its
1065 	 * setup frame; wait 10ms after posting the setup frame
1066 	 * before proceeding, just so it has time to swallow its
1067 	 * medicine.
1068 	 */
1069 	DELAY(10000);
1070 
1071 	ifp->if_timer = 5;
1072 
1073 	return;
1074 }
1075 
1076 void dc_setfilt_admtek(sc)
1077 	struct dc_softc		*sc;
1078 {
1079 	struct ifnet		*ifp;
1080 	int			h = 0;
1081 	u_int32_t		hashes[2] = { 0, 0 };
1082 	struct ifmultiaddr	*ifma;
1083 
1084 	ifp = &sc->arpcom.ac_if;
1085 
1086 	/* Init our MAC address */
1087 	CSR_WRITE_4(sc, DC_AL_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1088 	CSR_WRITE_4(sc, DC_AL_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1089 
1090 	/* If we want promiscuous mode, set the allframes bit. */
1091 	if (ifp->if_flags & IFF_PROMISC)
1092 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1093 	else
1094 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1095 
1096 	if (ifp->if_flags & IFF_ALLMULTI)
1097 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1098 	else
1099 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1100 
1101 	/* first, zot all the existing hash bits */
1102 	CSR_WRITE_4(sc, DC_AL_MAR0, 0);
1103 	CSR_WRITE_4(sc, DC_AL_MAR1, 0);
1104 
1105 	/*
1106 	 * If we're already in promisc or allmulti mode, we
1107 	 * don't have to bother programming the multicast filter.
1108 	 */
1109 	if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI))
1110 		return;
1111 
1112 	/* now program new ones */
1113 	for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
1114 	    ifma = ifma->ifma_link.le_next) {
1115 		if (ifma->ifma_addr->sa_family != AF_LINK)
1116 			continue;
1117 		h = dc_crc_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1118 		if (h < 32)
1119 			hashes[0] |= (1 << h);
1120 		else
1121 			hashes[1] |= (1 << (h - 32));
1122 	}
1123 
1124 	CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]);
1125 	CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]);
1126 
1127 	return;
1128 }
1129 
1130 void dc_setfilt_asix(sc)
1131 	struct dc_softc		*sc;
1132 {
1133 	struct ifnet		*ifp;
1134 	int			h = 0;
1135 	u_int32_t		hashes[2] = { 0, 0 };
1136 	struct ifmultiaddr	*ifma;
1137 
1138 	ifp = &sc->arpcom.ac_if;
1139 
1140         /* Init our MAC address */
1141         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
1142         CSR_WRITE_4(sc, DC_AX_FILTDATA,
1143 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1144         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
1145         CSR_WRITE_4(sc, DC_AX_FILTDATA,
1146 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1147 
1148 	/* If we want promiscuous mode, set the allframes bit. */
1149 	if (ifp->if_flags & IFF_PROMISC)
1150 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1151 	else
1152 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1153 
1154 	if (ifp->if_flags & IFF_ALLMULTI)
1155 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1156 	else
1157 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1158 
1159 	/*
1160 	 * The ASIX chip has a special bit to enable reception
1161 	 * of broadcast frames.
1162 	 */
1163 	if (ifp->if_flags & IFF_BROADCAST)
1164 		DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1165 	else
1166 		DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1167 
1168 	/* first, zot all the existing hash bits */
1169 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1170 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1171 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1172 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1173 
1174 	/*
1175 	 * If we're already in promisc or allmulti mode, we
1176 	 * don't have to bother programming the multicast filter.
1177 	 */
1178 	if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI))
1179 		return;
1180 
1181 	/* now program new ones */
1182 	for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
1183 	    ifma = ifma->ifma_link.le_next) {
1184 		if (ifma->ifma_addr->sa_family != AF_LINK)
1185 			continue;
1186 		h = dc_crc_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1187 		if (h < 32)
1188 			hashes[0] |= (1 << h);
1189 		else
1190 			hashes[1] |= (1 << (h - 32));
1191 	}
1192 
1193 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1194 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
1195 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1196 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
1197 
1198 	return;
1199 }
1200 
1201 void dc_setfilt_xircom(sc)
1202 	struct dc_softc		*sc;
1203 {
1204 	struct dc_desc		*sframe;
1205 	u_int32_t		h, *sp;
1206 	struct ifmultiaddr	*ifma;
1207 	struct ifnet		*ifp;
1208 	int			i;
1209 
1210 	ifp = &sc->arpcom.ac_if;
1211 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON));
1212 
1213 	i = sc->dc_cdata.dc_tx_prod;
1214 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1215 	sc->dc_cdata.dc_tx_cnt++;
1216 	sframe = &sc->dc_ldata->dc_tx_list[i];
1217 	sp = (u_int32_t *)&sc->dc_cdata.dc_sbuf;
1218 	bzero((char *)sp, DC_SFRAME_LEN);
1219 
1220 	sframe->dc_data = vtophys(&sc->dc_cdata.dc_sbuf);
1221 	sframe->dc_ctl = DC_SFRAME_LEN | DC_TXCTL_SETUP | DC_TXCTL_TLINK |
1222 	    DC_FILTER_HASHPERF | DC_TXCTL_FINT;
1223 
1224 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)&sc->dc_cdata.dc_sbuf;
1225 
1226 	/* If we want promiscuous mode, set the allframes bit. */
1227 	if (ifp->if_flags & IFF_PROMISC)
1228 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1229 	else
1230 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1231 
1232 	if (ifp->if_flags & IFF_ALLMULTI)
1233  		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1234 	else
1235 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1236 
1237 	for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
1238 	    ifma = ifma->ifma_link.le_next) {
1239 		if (ifma->ifma_addr->sa_family != AF_LINK)
1240 			continue;
1241 		h = dc_crc_le(sc, LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1242 		sp[h >> 4] |= 1 << (h & 0xF);
1243 	}
1244 
1245 	if (ifp->if_flags & IFF_BROADCAST) {
1246 		h = dc_crc_le(sc, (caddr_t)&etherbroadcastaddr);
1247 		sp[h >> 4] |= 1 << (h & 0xF);
1248 	}
1249 
1250 	/* Set our MAC address */
1251 	sp[0] = ((u_int16_t *)sc->arpcom.ac_enaddr)[0];
1252 	sp[1] = ((u_int16_t *)sc->arpcom.ac_enaddr)[1];
1253 	sp[2] = ((u_int16_t *)sc->arpcom.ac_enaddr)[2];
1254 
1255 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
1256 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
1257 	ifp->if_flags |= IFF_RUNNING;
1258 	sframe->dc_status = DC_TXSTAT_OWN;
1259 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1260 
1261 	/*
1262 	 * wait some time...
1263 	 */
1264 	DELAY(1000);
1265 
1266 	ifp->if_timer = 5;
1267 
1268 	return;
1269 }
1270 
1271 static void dc_setfilt(sc)
1272 	struct dc_softc		*sc;
1273 {
1274 	if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
1275 	    DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc))
1276 		dc_setfilt_21143(sc);
1277 
1278 	if (DC_IS_ASIX(sc))
1279 		dc_setfilt_asix(sc);
1280 
1281 	if (DC_IS_ADMTEK(sc))
1282 		dc_setfilt_admtek(sc);
1283 
1284 	if (DC_IS_XIRCOM(sc))
1285 		dc_setfilt_xircom(sc);
1286 
1287  	return;
1288 }
1289 
1290 /*
1291  * In order to fiddle with the
1292  * 'full-duplex' and '100Mbps' bits in the netconfig register, we
1293  * first have to put the transmit and/or receive logic in the idle state.
1294  */
1295 static void dc_setcfg(sc, media)
1296 	struct dc_softc		*sc;
1297 	int			media;
1298 {
1299 	int			i, restart = 0;
1300 	u_int32_t		isr;
1301 
1302 	if (IFM_SUBTYPE(media) == IFM_NONE)
1303 		return;
1304 
1305 	if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON)) {
1306 		restart = 1;
1307 		DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON));
1308 
1309 		for (i = 0; i < DC_TIMEOUT; i++) {
1310 			DELAY(10);
1311 			isr = CSR_READ_4(sc, DC_ISR);
1312 			if (isr & DC_ISR_TX_IDLE ||
1313 			    (isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED)
1314 				break;
1315 		}
1316 
1317 		if (i == DC_TIMEOUT)
1318 			printf("dc%d: failed to force tx and "
1319 				"rx to idle state\n", sc->dc_unit);
1320 
1321 	}
1322 
1323 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
1324 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1325 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1326 		if (sc->dc_pmode == DC_PMODE_MII) {
1327 			int	watchdogreg;
1328 
1329 			if (DC_IS_INTEL(sc)) {
1330 			/* there's a write enable bit here that reads as 1 */
1331 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1332 				watchdogreg &= ~DC_WDOG_CTLWREN;
1333 				watchdogreg |= DC_WDOG_JABBERDIS;
1334 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1335 			} else {
1336 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1337 			}
1338 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1339 			    DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER));
1340 			if (sc->dc_type == DC_TYPE_98713)
1341 				DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1342 				    DC_NETCFG_SCRAMBLER));
1343 			if (!DC_IS_DAVICOM(sc))
1344 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1345 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1346 		} else {
1347 			if (DC_IS_PNIC(sc)) {
1348 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
1349 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1350 				DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1351 			}
1352 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1353 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1354 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1355 			if (DC_IS_INTEL(sc))
1356 				dc_apply_fixup(sc,
1357 				    (media & IFM_GMASK) == IFM_FDX ?
1358 				    IFM_100_TX|IFM_FDX : IFM_100_TX);
1359 		}
1360 	}
1361 
1362 	if (IFM_SUBTYPE(media) == IFM_10_T) {
1363 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1364 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1365 		if (sc->dc_pmode == DC_PMODE_MII) {
1366 			int	watchdogreg;
1367 
1368 			/* there's a write enable bit here that reads as 1 */
1369 			if (DC_IS_INTEL(sc)) {
1370 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1371 				watchdogreg &= ~DC_WDOG_CTLWREN;
1372 				watchdogreg |= DC_WDOG_JABBERDIS;
1373 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1374 			} else {
1375 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1376 			}
1377 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1378 			    DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER));
1379 			if (sc->dc_type == DC_TYPE_98713)
1380 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1381 			if (!DC_IS_DAVICOM(sc))
1382 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1383 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1384 		} else {
1385 			if (DC_IS_PNIC(sc)) {
1386 				DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
1387 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1388 				DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1389 			}
1390 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1391 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1392 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1393 			if (DC_IS_INTEL(sc)) {
1394 				DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET);
1395 				DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1396 				if ((media & IFM_GMASK) == IFM_FDX)
1397 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D);
1398 				else
1399 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F);
1400 				DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1401 				DC_CLRBIT(sc, DC_10BTCTRL,
1402 				    DC_TCTL_AUTONEGENBL);
1403 				dc_apply_fixup(sc,
1404 				    (media & IFM_GMASK) == IFM_FDX ?
1405 				    IFM_10_T|IFM_FDX : IFM_10_T);
1406 				DELAY(20000);
1407 			}
1408 		}
1409 	}
1410 
1411 	/*
1412 	 * If this is a Davicom DM9102A card with a DM9801 HomePNA
1413 	 * PHY and we want HomePNA mode, set the portsel bit to turn
1414 	 * on the external MII port.
1415 	 */
1416 	if (DC_IS_DAVICOM(sc)) {
1417 		if (IFM_SUBTYPE(media) == IFM_homePNA) {
1418 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1419 			sc->dc_link = 1;
1420 		} else {
1421 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1422 		}
1423 	}
1424 
1425 	if ((media & IFM_GMASK) == IFM_FDX) {
1426 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1427 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1428 			DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1429 	} else {
1430 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1431 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1432 			DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1433 	}
1434 
1435 	if (restart)
1436 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON|DC_NETCFG_RX_ON);
1437 
1438 	return;
1439 }
1440 
1441 static void dc_reset(sc)
1442 	struct dc_softc		*sc;
1443 {
1444 	register int		i;
1445 
1446 	DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1447 
1448 	for (i = 0; i < DC_TIMEOUT; i++) {
1449 		DELAY(10);
1450 		if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
1451 			break;
1452 	}
1453 
1454 	if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_XIRCOM(sc) || DC_IS_INTEL(sc)) {
1455 		DELAY(10000);
1456 		DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1457 		i = 0;
1458 	}
1459 
1460 	if (i == DC_TIMEOUT)
1461 		printf("dc%d: reset never completed!\n", sc->dc_unit);
1462 
1463 	/* Wait a little while for the chip to get its brains in order. */
1464 	DELAY(1000);
1465 
1466 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
1467 	CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
1468 	CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
1469 
1470 	/*
1471 	 * Bring the SIA out of reset. In some cases, it looks
1472 	 * like failing to unreset the SIA soon enough gets it
1473 	 * into a state where it will never come out of reset
1474 	 * until we reset the whole chip again.
1475 	 */
1476 	if (DC_IS_INTEL(sc)) {
1477 		DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1478 		CSR_WRITE_4(sc, DC_10BTCTRL, 0);
1479 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
1480 	}
1481 
1482         return;
1483 }
1484 
1485 static struct dc_type *dc_devtype(dev)
1486 	device_t		dev;
1487 {
1488 	struct dc_type		*t;
1489 	u_int32_t		rev;
1490 
1491 	t = dc_devs;
1492 
1493 	while(t->dc_name != NULL) {
1494 		if ((pci_get_vendor(dev) == t->dc_vid) &&
1495 		    (pci_get_device(dev) == t->dc_did)) {
1496 			/* Check the PCI revision */
1497 			rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF;
1498 			if (t->dc_did == DC_DEVICEID_98713 &&
1499 			    rev >= DC_REVISION_98713A)
1500 				t++;
1501 			if (t->dc_did == DC_DEVICEID_98713_CP &&
1502 			    rev >= DC_REVISION_98713A)
1503 				t++;
1504 			if (t->dc_did == DC_DEVICEID_987x5 &&
1505 			    rev >= DC_REVISION_98715AEC_C)
1506 				t++;
1507 			if (t->dc_did == DC_DEVICEID_987x5 &&
1508 			    rev >= DC_REVISION_98725)
1509 				t++;
1510 			if (t->dc_did == DC_DEVICEID_AX88140A &&
1511 			    rev >= DC_REVISION_88141)
1512 				t++;
1513 			if (t->dc_did == DC_DEVICEID_82C168 &&
1514 			    rev >= DC_REVISION_82C169)
1515 				t++;
1516 			if (t->dc_did == DC_DEVICEID_DM9102 &&
1517 			    rev >= DC_REVISION_DM9102A)
1518 				t++;
1519 			return(t);
1520 		}
1521 		t++;
1522 	}
1523 
1524 	return(NULL);
1525 }
1526 
1527 /*
1528  * Probe for a 21143 or clone chip. Check the PCI vendor and device
1529  * IDs against our list and return a device name if we find a match.
1530  * We do a little bit of extra work to identify the exact type of
1531  * chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
1532  * but different revision IDs. The same is true for 98715/98715A
1533  * chips and the 98725, as well as the ASIX and ADMtek chips. In some
1534  * cases, the exact chip revision affects driver behavior.
1535  */
1536 static int dc_probe(dev)
1537 	device_t		dev;
1538 {
1539 	struct dc_type		*t;
1540 
1541 	t = dc_devtype(dev);
1542 
1543 	if (t != NULL) {
1544 		device_set_desc(dev, t->dc_name);
1545 		return(0);
1546 	}
1547 
1548 	return(ENXIO);
1549 }
1550 
1551 static void dc_acpi(dev)
1552 	device_t		dev;
1553 {
1554 	u_int32_t		r, cptr;
1555 	int			unit;
1556 
1557 	unit = device_get_unit(dev);
1558 
1559 	/* Find the location of the capabilities block */
1560 	cptr = pci_read_config(dev, DC_PCI_CCAP, 4) & 0xFF;
1561 
1562 	r = pci_read_config(dev, cptr, 4) & 0xFF;
1563 	if (r == 0x01) {
1564 
1565 		r = pci_read_config(dev, cptr + 4, 4);
1566 		if (r & DC_PSTATE_D3) {
1567 			u_int32_t		iobase, membase, irq;
1568 
1569 			/* Save important PCI config data. */
1570 			iobase = pci_read_config(dev, DC_PCI_CFBIO, 4);
1571 			membase = pci_read_config(dev, DC_PCI_CFBMA, 4);
1572 			irq = pci_read_config(dev, DC_PCI_CFIT, 4);
1573 
1574 			/* Reset the power state. */
1575 			printf("dc%d: chip is in D%d power mode "
1576 			    "-- setting to D0\n", unit, r & DC_PSTATE_D3);
1577 			r &= 0xFFFFFFFC;
1578 			pci_write_config(dev, cptr + 4, r, 4);
1579 
1580 			/* Restore PCI config data. */
1581 			pci_write_config(dev, DC_PCI_CFBIO, iobase, 4);
1582 			pci_write_config(dev, DC_PCI_CFBMA, membase, 4);
1583 			pci_write_config(dev, DC_PCI_CFIT, irq, 4);
1584 		}
1585 	}
1586 	return;
1587 }
1588 
1589 static void dc_apply_fixup(sc, media)
1590 	struct dc_softc		*sc;
1591 	int			media;
1592 {
1593 	struct dc_mediainfo	*m;
1594 	u_int8_t		*p;
1595 	int			i;
1596 	u_int8_t		reg;
1597 
1598 	m = sc->dc_mi;
1599 
1600 	while (m != NULL) {
1601 		if (m->dc_media == media)
1602 			break;
1603 		m = m->dc_next;
1604 	}
1605 
1606 	if (m == NULL)
1607 		return;
1608 
1609 	for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) {
1610 		reg = (p[0] | (p[1] << 8)) << 16;
1611 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1612 	}
1613 
1614 	for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) {
1615 		reg = (p[0] | (p[1] << 8)) << 16;
1616 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1617 	}
1618 
1619 	return;
1620 }
1621 
1622 static void dc_decode_leaf_sia(sc, l)
1623 	struct dc_softc		*sc;
1624 	struct dc_eblock_sia	*l;
1625 {
1626 	struct dc_mediainfo	*m;
1627 
1628 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT);
1629 	if (l->dc_sia_code == DC_SIA_CODE_10BT)
1630 		m->dc_media = IFM_10_T;
1631 
1632 	if (l->dc_sia_code == DC_SIA_CODE_10BT_FDX)
1633 		m->dc_media = IFM_10_T|IFM_FDX;
1634 
1635 	if (l->dc_sia_code == DC_SIA_CODE_10B2)
1636 		m->dc_media = IFM_10_2;
1637 
1638 	if (l->dc_sia_code == DC_SIA_CODE_10B5)
1639 		m->dc_media = IFM_10_5;
1640 
1641 	m->dc_gp_len = 2;
1642 	m->dc_gp_ptr = (u_int8_t *)&l->dc_sia_gpio_ctl;
1643 
1644 	m->dc_next = sc->dc_mi;
1645 	sc->dc_mi = m;
1646 
1647 	sc->dc_pmode = DC_PMODE_SIA;
1648 
1649 	return;
1650 }
1651 
1652 static void dc_decode_leaf_sym(sc, l)
1653 	struct dc_softc		*sc;
1654 	struct dc_eblock_sym	*l;
1655 {
1656 	struct dc_mediainfo	*m;
1657 
1658 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT);
1659 	if (l->dc_sym_code == DC_SYM_CODE_100BT)
1660 		m->dc_media = IFM_100_TX;
1661 
1662 	if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX)
1663 		m->dc_media = IFM_100_TX|IFM_FDX;
1664 
1665 	m->dc_gp_len = 2;
1666 	m->dc_gp_ptr = (u_int8_t *)&l->dc_sym_gpio_ctl;
1667 
1668 	m->dc_next = sc->dc_mi;
1669 	sc->dc_mi = m;
1670 
1671 	sc->dc_pmode = DC_PMODE_SYM;
1672 
1673 	return;
1674 }
1675 
1676 static void dc_decode_leaf_mii(sc, l)
1677 	struct dc_softc		*sc;
1678 	struct dc_eblock_mii	*l;
1679 {
1680 	u_int8_t		*p;
1681 	struct dc_mediainfo	*m;
1682 
1683 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT);
1684 	/* We abuse IFM_AUTO to represent MII. */
1685 	m->dc_media = IFM_AUTO;
1686 	m->dc_gp_len = l->dc_gpr_len;
1687 
1688 	p = (u_int8_t *)l;
1689 	p += sizeof(struct dc_eblock_mii);
1690 	m->dc_gp_ptr = p;
1691 	p += 2 * l->dc_gpr_len;
1692 	m->dc_reset_len = *p;
1693 	p++;
1694 	m->dc_reset_ptr = p;
1695 
1696 	m->dc_next = sc->dc_mi;
1697 	sc->dc_mi = m;
1698 
1699 	return;
1700 }
1701 
1702 static void dc_parse_21143_srom(sc)
1703 	struct dc_softc		*sc;
1704 {
1705 	struct dc_leaf_hdr	*lhdr;
1706 	struct dc_eblock_hdr	*hdr;
1707 	int			i, loff;
1708 	char			*ptr;
1709 
1710 	loff = sc->dc_srom[27];
1711 	lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]);
1712 
1713 	ptr = (char *)lhdr;
1714 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1715 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1716 		hdr = (struct dc_eblock_hdr *)ptr;
1717 		switch(hdr->dc_type) {
1718 		case DC_EBLOCK_MII:
1719 			dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr);
1720 			break;
1721 		case DC_EBLOCK_SIA:
1722 			dc_decode_leaf_sia(sc, (struct dc_eblock_sia *)hdr);
1723 			break;
1724 		case DC_EBLOCK_SYM:
1725 			dc_decode_leaf_sym(sc, (struct dc_eblock_sym *)hdr);
1726 			break;
1727 		default:
1728 			/* Don't care. Yet. */
1729 			break;
1730 		}
1731 		ptr += (hdr->dc_len & 0x7F);
1732 		ptr++;
1733 	}
1734 
1735 	return;
1736 }
1737 
1738 /*
1739  * Attach the interface. Allocate softc structures, do ifmedia
1740  * setup and ethernet/BPF attach.
1741  */
1742 static int dc_attach(dev)
1743 	device_t		dev;
1744 {
1745 	int			tmp = 0;
1746 	u_char			eaddr[ETHER_ADDR_LEN];
1747 	u_int32_t		command;
1748 	struct dc_softc		*sc;
1749 	struct ifnet		*ifp;
1750 	u_int32_t		revision;
1751 	int			unit, error = 0, rid, mac_offset;
1752 
1753 	sc = device_get_softc(dev);
1754 	unit = device_get_unit(dev);
1755 	bzero(sc, sizeof(struct dc_softc));
1756 
1757 	/*
1758 	 * Handle power management nonsense.
1759 	 */
1760 	dc_acpi(dev);
1761 
1762 	/*
1763 	 * Map control/status registers.
1764 	 */
1765 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1766 	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
1767 	pci_write_config(dev, PCIR_COMMAND, command, 4);
1768 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1769 
1770 #ifdef DC_USEIOSPACE
1771 	if (!(command & PCIM_CMD_PORTEN)) {
1772 		printf("dc%d: failed to enable I/O ports!\n", unit);
1773 		error = ENXIO;
1774 		goto fail;
1775 	}
1776 #else
1777 	if (!(command & PCIM_CMD_MEMEN)) {
1778 		printf("dc%d: failed to enable memory mapping!\n", unit);
1779 		error = ENXIO;
1780 		goto fail;
1781 	}
1782 #endif
1783 
1784 	rid = DC_RID;
1785 	sc->dc_res = bus_alloc_resource(dev, DC_RES, &rid,
1786 	    0, ~0, 1, RF_ACTIVE);
1787 
1788 	if (sc->dc_res == NULL) {
1789 		printf("dc%d: couldn't map ports/memory\n", unit);
1790 		error = ENXIO;
1791 		goto fail;
1792 	}
1793 
1794 	sc->dc_btag = rman_get_bustag(sc->dc_res);
1795 	sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
1796 
1797 	/* Allocate interrupt */
1798 	rid = 0;
1799 	sc->dc_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1800 	    RF_SHAREABLE | RF_ACTIVE);
1801 
1802 	if (sc->dc_irq == NULL) {
1803 		printf("dc%d: couldn't map interrupt\n", unit);
1804 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
1805 		error = ENXIO;
1806 		goto fail;
1807 	}
1808 
1809 	error = bus_setup_intr(dev, sc->dc_irq, INTR_TYPE_NET,
1810 	    dc_intr, sc, &sc->dc_intrhand);
1811 
1812 	if (error) {
1813 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
1814 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
1815 		printf("dc%d: couldn't set up irq\n", unit);
1816 		goto fail;
1817 	}
1818 
1819 	mtx_init(&sc->dc_mtx, device_get_nameunit(dev), MTX_DEF);
1820 	DC_LOCK(sc);
1821 	/* Need this info to decide on a chip type. */
1822 	sc->dc_info = dc_devtype(dev);
1823 	revision = pci_read_config(dev, DC_PCI_CFRV, 4) & 0x000000FF;
1824 
1825 	switch(sc->dc_info->dc_did) {
1826 	case DC_DEVICEID_21143:
1827 		sc->dc_type = DC_TYPE_21143;
1828 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1829 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1830 		/* Save EEPROM contents so we can parse them later. */
1831 		dc_read_eeprom(sc, (caddr_t)&sc->dc_srom, 0, 512, 0);
1832 		break;
1833 	case DC_DEVICEID_DM9100:
1834 	case DC_DEVICEID_DM9102:
1835 		sc->dc_type = DC_TYPE_DM9102;
1836 		sc->dc_flags |= DC_TX_COALESCE|DC_TX_INTR_ALWAYS;
1837 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_TX_STORENFWD;
1838 		sc->dc_pmode = DC_PMODE_MII;
1839 		break;
1840 	case DC_DEVICEID_AL981:
1841 		sc->dc_type = DC_TYPE_AL981;
1842 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1843 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1844 		sc->dc_pmode = DC_PMODE_MII;
1845 		break;
1846 	case DC_DEVICEID_AN985:
1847 		sc->dc_type = DC_TYPE_AN985;
1848 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1849 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1850 		sc->dc_pmode = DC_PMODE_MII;
1851 		break;
1852 	case DC_DEVICEID_98713:
1853 	case DC_DEVICEID_98713_CP:
1854 		if (revision < DC_REVISION_98713A) {
1855 			sc->dc_type = DC_TYPE_98713;
1856 		}
1857 		if (revision >= DC_REVISION_98713A) {
1858 			sc->dc_type = DC_TYPE_98713A;
1859 			sc->dc_flags |= DC_21143_NWAY;
1860 		}
1861 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1862 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1863 		break;
1864 	case DC_DEVICEID_987x5:
1865 	case DC_DEVICEID_EN1217:
1866 		/*
1867 		 * Macronix MX98715AEC-C/D/E parts have only a
1868 		 * 128-bit hash table. We need to deal with these
1869 		 * in the same manner as the PNIC II so that we
1870 		 * get the right number of bits out of the
1871 		 * CRC routine.
1872 		 */
1873 		if (revision >= DC_REVISION_98715AEC_C &&
1874 		    revision < DC_REVISION_98725)
1875 			sc->dc_flags |= DC_128BIT_HASH;
1876 		sc->dc_type = DC_TYPE_987x5;
1877 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1878 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1879 		break;
1880 	case DC_DEVICEID_98727:
1881 		sc->dc_type = DC_TYPE_987x5;
1882 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1883 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1884 		break;
1885 	case DC_DEVICEID_82C115:
1886 		sc->dc_type = DC_TYPE_PNICII;
1887 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR|DC_128BIT_HASH;
1888 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1889 		break;
1890 	case DC_DEVICEID_82C168:
1891 		sc->dc_type = DC_TYPE_PNIC;
1892 		sc->dc_flags |= DC_TX_STORENFWD|DC_TX_INTR_ALWAYS;
1893 		sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
1894 		sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_NOWAIT);
1895 		if (revision < DC_REVISION_82C169)
1896 			sc->dc_pmode = DC_PMODE_SYM;
1897 		break;
1898 	case DC_DEVICEID_AX88140A:
1899 		sc->dc_type = DC_TYPE_ASIX;
1900 		sc->dc_flags |= DC_TX_USE_TX_INTR|DC_TX_INTR_FIRSTFRAG;
1901 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1902 		sc->dc_pmode = DC_PMODE_MII;
1903 		break;
1904 	case DC_DEVICEID_X3201:
1905 		sc->dc_type = DC_TYPE_XIRCOM;
1906 		sc->dc_flags |= DC_TX_INTR_ALWAYS | DC_TX_COALESCE;
1907 		/*
1908 		 * We don't actually need to coalesce, but we're doing
1909 		 * it to obtain a double word aligned buffer.
1910 		 */
1911 		break;
1912 	default:
1913 		printf("dc%d: unknown device: %x\n", sc->dc_unit,
1914 		    sc->dc_info->dc_did);
1915 		break;
1916 	}
1917 
1918 	/* Save the cache line size. */
1919 	if (DC_IS_DAVICOM(sc))
1920 		sc->dc_cachesize = 0;
1921 	else
1922 		sc->dc_cachesize = pci_read_config(dev,
1923 		    DC_PCI_CFLT, 4) & 0xFF;
1924 
1925 	/* Reset the adapter. */
1926 	dc_reset(sc);
1927 
1928 	/* Take 21143 out of snooze mode */
1929 	if (DC_IS_INTEL(sc) || DC_IS_XIRCOM(sc)) {
1930 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
1931 		command &= ~(DC_CFDD_SNOOZE_MODE|DC_CFDD_SLEEP_MODE);
1932 		pci_write_config(dev, DC_PCI_CFDD, command, 4);
1933 	}
1934 
1935 	/*
1936 	 * Try to learn something about the supported media.
1937 	 * We know that ASIX and ADMtek and Davicom devices
1938 	 * will *always* be using MII media, so that's a no-brainer.
1939 	 * The tricky ones are the Macronix/PNIC II and the
1940 	 * Intel 21143.
1941 	 */
1942 	if (DC_IS_INTEL(sc))
1943 		dc_parse_21143_srom(sc);
1944 	else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
1945 		if (sc->dc_type == DC_TYPE_98713)
1946 			sc->dc_pmode = DC_PMODE_MII;
1947 		else
1948 			sc->dc_pmode = DC_PMODE_SYM;
1949 	} else if (!sc->dc_pmode)
1950 		sc->dc_pmode = DC_PMODE_MII;
1951 
1952 	/*
1953 	 * Get station address from the EEPROM.
1954 	 */
1955 	switch(sc->dc_type) {
1956 	case DC_TYPE_98713:
1957 	case DC_TYPE_98713A:
1958 	case DC_TYPE_987x5:
1959 	case DC_TYPE_PNICII:
1960 		dc_read_eeprom(sc, (caddr_t)&mac_offset,
1961 		    (DC_EE_NODEADDR_OFFSET / 2), 1, 0);
1962 		dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
1963 		break;
1964 	case DC_TYPE_PNIC:
1965 		dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
1966 		break;
1967 	case DC_TYPE_DM9102:
1968 	case DC_TYPE_21143:
1969 	case DC_TYPE_ASIX:
1970 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
1971 		break;
1972 	case DC_TYPE_AL981:
1973 	case DC_TYPE_AN985:
1974 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_AL_EE_NODEADDR, 3, 0);
1975 		break;
1976 	case DC_TYPE_XIRCOM:
1977 		dc_read_eeprom(sc, (caddr_t)&eaddr, 3, 3, 0);
1978 		break;
1979 	default:
1980 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
1981 		break;
1982 	}
1983 
1984 	/*
1985 	 * A 21143 or clone chip was detected. Inform the world.
1986 	 */
1987 	printf("dc%d: Ethernet address: %6D\n", unit, eaddr, ":");
1988 
1989 	sc->dc_unit = unit;
1990 	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
1991 
1992 	sc->dc_ldata = contigmalloc(sizeof(struct dc_list_data), M_DEVBUF,
1993 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1994 
1995 	if (sc->dc_ldata == NULL) {
1996 		printf("dc%d: no memory for list buffers!\n", unit);
1997 		bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
1998 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
1999 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2000 		error = ENXIO;
2001 		goto fail;
2002 	}
2003 
2004 	bzero(sc->dc_ldata, sizeof(struct dc_list_data));
2005 
2006 	ifp = &sc->arpcom.ac_if;
2007 	ifp->if_softc = sc;
2008 	ifp->if_unit = unit;
2009 	ifp->if_name = "dc";
2010 	/* XXX: bleah, MTU gets overwritten in ether_ifattach() */
2011 	ifp->if_mtu = ETHERMTU;
2012 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2013 	ifp->if_ioctl = dc_ioctl;
2014 	ifp->if_output = ether_output;
2015 	ifp->if_start = dc_start;
2016 	ifp->if_watchdog = dc_watchdog;
2017 	ifp->if_init = dc_init;
2018 	ifp->if_baudrate = 10000000;
2019 	ifp->if_snd.ifq_maxlen = DC_TX_LIST_CNT - 1;
2020 
2021 	/*
2022 	 * Do MII setup. If this is a 21143, check for a PHY on the
2023 	 * MII bus after applying any necessary fixups to twiddle the
2024 	 * GPIO bits. If we don't end up finding a PHY, restore the
2025 	 * old selection (SIA only or SIA/SYM) and attach the dcphy
2026 	 * driver instead.
2027 	 */
2028 	if (DC_IS_INTEL(sc)) {
2029 		dc_apply_fixup(sc, IFM_AUTO);
2030 		tmp = sc->dc_pmode;
2031 		sc->dc_pmode = DC_PMODE_MII;
2032 	}
2033 
2034 	error = mii_phy_probe(dev, &sc->dc_miibus,
2035 	    dc_ifmedia_upd, dc_ifmedia_sts);
2036 
2037 	if (error && DC_IS_INTEL(sc)) {
2038 		sc->dc_pmode = tmp;
2039 		if (sc->dc_pmode != DC_PMODE_SIA)
2040 			sc->dc_pmode = DC_PMODE_SYM;
2041 		sc->dc_flags |= DC_21143_NWAY;
2042 		mii_phy_probe(dev, &sc->dc_miibus,
2043 		    dc_ifmedia_upd, dc_ifmedia_sts);
2044 		/*
2045 		 * For non-MII cards, we need to have the 21143
2046 		 * drive the LEDs. Except there are some systems
2047 		 * like the NEC VersaPro NoteBook PC which have no
2048 		 * LEDs, and twiddling these bits has adverse effects
2049 		 * on them. (I.e. you suddenly can't get a link.)
2050 		 */
2051 		if (pci_read_config(dev, DC_PCI_CSID, 4) != 0x80281033)
2052 			sc->dc_flags |= DC_TULIP_LEDS;
2053 		error = 0;
2054 	}
2055 
2056 	if (error) {
2057 		printf("dc%d: MII without any PHY!\n", sc->dc_unit);
2058 		bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2059 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2060 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2061 		error = ENXIO;
2062 		goto fail;
2063 	}
2064 
2065 	if (DC_IS_XIRCOM(sc)) {
2066 		/*
2067 		 * setup General Purpose Port mode and data so the tulip
2068 		 * can talk to the MII.
2069 		 */
2070 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
2071 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2072 		DELAY(10);
2073 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
2074 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2075 		DELAY(10);
2076 	}
2077 
2078 	/*
2079 	 * Call MI attach routine.
2080 	 */
2081 	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
2082 	callout_handle_init(&sc->dc_stat_ch);
2083 
2084 #ifdef SRM_MEDIA
2085         sc->dc_srm_media = 0;
2086 
2087 	/* Remember the SRM console media setting */
2088 	if (DC_IS_INTEL(sc)) {
2089 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
2090 		command &= ~(DC_CFDD_SNOOZE_MODE|DC_CFDD_SLEEP_MODE);
2091 		switch ((command >> 8) & 0xff) {
2092 		case 3:
2093 			sc->dc_srm_media = IFM_10_T;
2094 			break;
2095 		case 4:
2096 			sc->dc_srm_media = IFM_10_T | IFM_FDX;
2097 			break;
2098 		case 5:
2099 			sc->dc_srm_media = IFM_100_TX;
2100 			break;
2101 		case 6:
2102 			sc->dc_srm_media = IFM_100_TX | IFM_FDX;
2103 			break;
2104 		}
2105 		if (sc->dc_srm_media)
2106 			sc->dc_srm_media |= IFM_ACTIVE | IFM_ETHER;
2107 	}
2108 #endif
2109 
2110 	DC_UNLOCK(sc);
2111 	return(0);
2112 
2113 fail:
2114 	DC_UNLOCK(sc);
2115 	mtx_destroy(&sc->dc_mtx);
2116 	return(error);
2117 }
2118 
2119 static int dc_detach(dev)
2120 	device_t		dev;
2121 {
2122 	struct dc_softc		*sc;
2123 	struct ifnet		*ifp;
2124 	struct dc_mediainfo	*m;
2125 
2126 	sc = device_get_softc(dev);
2127 
2128 	DC_LOCK(sc);
2129 
2130 	ifp = &sc->arpcom.ac_if;
2131 
2132 	dc_stop(sc);
2133 	ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
2134 
2135 	bus_generic_detach(dev);
2136 	device_delete_child(dev, sc->dc_miibus);
2137 
2138 	bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2139 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2140 	bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2141 
2142 	contigfree(sc->dc_ldata, sizeof(struct dc_list_data), M_DEVBUF);
2143 	if (sc->dc_pnic_rx_buf != NULL)
2144 		free(sc->dc_pnic_rx_buf, M_DEVBUF);
2145 
2146 	while(sc->dc_mi != NULL) {
2147 		m = sc->dc_mi->dc_next;
2148 		free(sc->dc_mi, M_DEVBUF);
2149 		sc->dc_mi = m;
2150 	}
2151 
2152 	DC_UNLOCK(sc);
2153 	mtx_destroy(&sc->dc_mtx);
2154 
2155 	return(0);
2156 }
2157 
2158 /*
2159  * Initialize the transmit descriptors.
2160  */
2161 static int dc_list_tx_init(sc)
2162 	struct dc_softc		*sc;
2163 {
2164 	struct dc_chain_data	*cd;
2165 	struct dc_list_data	*ld;
2166 	int			i;
2167 
2168 	cd = &sc->dc_cdata;
2169 	ld = sc->dc_ldata;
2170 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2171 		if (i == (DC_TX_LIST_CNT - 1)) {
2172 			ld->dc_tx_list[i].dc_next =
2173 			    vtophys(&ld->dc_tx_list[0]);
2174 		} else {
2175 			ld->dc_tx_list[i].dc_next =
2176 			    vtophys(&ld->dc_tx_list[i + 1]);
2177 		}
2178 		cd->dc_tx_chain[i] = NULL;
2179 		ld->dc_tx_list[i].dc_data = 0;
2180 		ld->dc_tx_list[i].dc_ctl = 0;
2181 	}
2182 
2183 	cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
2184 
2185 	return(0);
2186 }
2187 
2188 
2189 /*
2190  * Initialize the RX descriptors and allocate mbufs for them. Note that
2191  * we arrange the descriptors in a closed ring, so that the last descriptor
2192  * points back to the first.
2193  */
2194 static int dc_list_rx_init(sc)
2195 	struct dc_softc		*sc;
2196 {
2197 	struct dc_chain_data	*cd;
2198 	struct dc_list_data	*ld;
2199 	int			i;
2200 
2201 	cd = &sc->dc_cdata;
2202 	ld = sc->dc_ldata;
2203 
2204 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2205 		if (dc_newbuf(sc, i, NULL) == ENOBUFS)
2206 			return(ENOBUFS);
2207 		if (i == (DC_RX_LIST_CNT - 1)) {
2208 			ld->dc_rx_list[i].dc_next =
2209 			    vtophys(&ld->dc_rx_list[0]);
2210 		} else {
2211 			ld->dc_rx_list[i].dc_next =
2212 			    vtophys(&ld->dc_rx_list[i + 1]);
2213 		}
2214 	}
2215 
2216 	cd->dc_rx_prod = 0;
2217 
2218 	return(0);
2219 }
2220 
2221 /*
2222  * Initialize an RX descriptor and attach an MBUF cluster.
2223  */
2224 static int dc_newbuf(sc, i, m)
2225 	struct dc_softc		*sc;
2226 	int			i;
2227 	struct mbuf		*m;
2228 {
2229 	struct mbuf		*m_new = NULL;
2230 	struct dc_desc		*c;
2231 
2232 	c = &sc->dc_ldata->dc_rx_list[i];
2233 
2234 	if (m == NULL) {
2235 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
2236 		if (m_new == NULL) {
2237 			printf("dc%d: no memory for rx list "
2238 			    "-- packet dropped!\n", sc->dc_unit);
2239 			return(ENOBUFS);
2240 		}
2241 
2242 		MCLGET(m_new, M_DONTWAIT);
2243 		if (!(m_new->m_flags & M_EXT)) {
2244 			printf("dc%d: no memory for rx list "
2245 			    "-- packet dropped!\n", sc->dc_unit);
2246 			m_freem(m_new);
2247 			return(ENOBUFS);
2248 		}
2249 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2250 	} else {
2251 		m_new = m;
2252 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2253 		m_new->m_data = m_new->m_ext.ext_buf;
2254 	}
2255 
2256 	m_adj(m_new, sizeof(u_int64_t));
2257 
2258 	/*
2259 	 * If this is a PNIC chip, zero the buffer. This is part
2260 	 * of the workaround for the receive bug in the 82c168 and
2261 	 * 82c169 chips.
2262 	 */
2263 	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
2264 		bzero((char *)mtod(m_new, char *), m_new->m_len);
2265 
2266 	sc->dc_cdata.dc_rx_chain[i] = m_new;
2267 	c->dc_data = vtophys(mtod(m_new, caddr_t));
2268 	c->dc_ctl = DC_RXCTL_RLINK | DC_RXLEN;
2269 	c->dc_status = DC_RXSTAT_OWN;
2270 
2271 	return(0);
2272 }
2273 
2274 /*
2275  * Grrrrr.
2276  * The PNIC chip has a terrible bug in it that manifests itself during
2277  * periods of heavy activity. The exact mode of failure if difficult to
2278  * pinpoint: sometimes it only happens in promiscuous mode, sometimes it
2279  * will happen on slow machines. The bug is that sometimes instead of
2280  * uploading one complete frame during reception, it uploads what looks
2281  * like the entire contents of its FIFO memory. The frame we want is at
2282  * the end of the whole mess, but we never know exactly how much data has
2283  * been uploaded, so salvaging the frame is hard.
2284  *
2285  * There is only one way to do it reliably, and it's disgusting.
2286  * Here's what we know:
2287  *
2288  * - We know there will always be somewhere between one and three extra
2289  *   descriptors uploaded.
2290  *
2291  * - We know the desired received frame will always be at the end of the
2292  *   total data upload.
2293  *
2294  * - We know the size of the desired received frame because it will be
2295  *   provided in the length field of the status word in the last descriptor.
2296  *
2297  * Here's what we do:
2298  *
2299  * - When we allocate buffers for the receive ring, we bzero() them.
2300  *   This means that we know that the buffer contents should be all
2301  *   zeros, except for data uploaded by the chip.
2302  *
2303  * - We also force the PNIC chip to upload frames that include the
2304  *   ethernet CRC at the end.
2305  *
2306  * - We gather all of the bogus frame data into a single buffer.
2307  *
2308  * - We then position a pointer at the end of this buffer and scan
2309  *   backwards until we encounter the first non-zero byte of data.
2310  *   This is the end of the received frame. We know we will encounter
2311  *   some data at the end of the frame because the CRC will always be
2312  *   there, so even if the sender transmits a packet of all zeros,
2313  *   we won't be fooled.
2314  *
2315  * - We know the size of the actual received frame, so we subtract
2316  *   that value from the current pointer location. This brings us
2317  *   to the start of the actual received packet.
2318  *
2319  * - We copy this into an mbuf and pass it on, along with the actual
2320  *   frame length.
2321  *
2322  * The performance hit is tremendous, but it beats dropping frames all
2323  * the time.
2324  */
2325 
2326 #define DC_WHOLEFRAME	(DC_RXSTAT_FIRSTFRAG|DC_RXSTAT_LASTFRAG)
2327 static void dc_pnic_rx_bug_war(sc, idx)
2328 	struct dc_softc		*sc;
2329 	int			idx;
2330 {
2331 	struct dc_desc		*cur_rx;
2332 	struct dc_desc		*c = NULL;
2333 	struct mbuf		*m = NULL;
2334 	unsigned char		*ptr;
2335 	int			i, total_len;
2336 	u_int32_t		rxstat = 0;
2337 
2338 	i = sc->dc_pnic_rx_bug_save;
2339 	cur_rx = &sc->dc_ldata->dc_rx_list[idx];
2340 	ptr = sc->dc_pnic_rx_buf;
2341 	bzero(ptr, sizeof(DC_RXLEN * 5));
2342 
2343 	/* Copy all the bytes from the bogus buffers. */
2344 	while (1) {
2345 		c = &sc->dc_ldata->dc_rx_list[i];
2346 		rxstat = c->dc_status;
2347 		m = sc->dc_cdata.dc_rx_chain[i];
2348 		bcopy(mtod(m, char *), ptr, DC_RXLEN);
2349 		ptr += DC_RXLEN;
2350 		/* If this is the last buffer, break out. */
2351 		if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
2352 			break;
2353 		dc_newbuf(sc, i, m);
2354 		DC_INC(i, DC_RX_LIST_CNT);
2355 	}
2356 
2357 	/* Find the length of the actual receive frame. */
2358 	total_len = DC_RXBYTES(rxstat);
2359 
2360 	/* Scan backwards until we hit a non-zero byte. */
2361 	while(*ptr == 0x00)
2362 		ptr--;
2363 
2364 	/* Round off. */
2365 	if ((uintptr_t)(ptr) & 0x3)
2366 		ptr -= 1;
2367 
2368 	/* Now find the start of the frame. */
2369 	ptr -= total_len;
2370 	if (ptr < sc->dc_pnic_rx_buf)
2371 		ptr = sc->dc_pnic_rx_buf;
2372 
2373 	/*
2374 	 * Now copy the salvaged frame to the last mbuf and fake up
2375 	 * the status word to make it look like a successful
2376  	 * frame reception.
2377 	 */
2378 	dc_newbuf(sc, i, m);
2379 	bcopy(ptr, mtod(m, char *), total_len);
2380 	cur_rx->dc_status = rxstat | DC_RXSTAT_FIRSTFRAG;
2381 
2382 	return;
2383 }
2384 
2385 /*
2386  * This routine searches the RX ring for dirty descriptors in the
2387  * event that the rxeof routine falls out of sync with the chip's
2388  * current descriptor pointer. This may happen sometimes as a result
2389  * of a "no RX buffer available" condition that happens when the chip
2390  * consumes all of the RX buffers before the driver has a chance to
2391  * process the RX ring. This routine may need to be called more than
2392  * once to bring the driver back in sync with the chip, however we
2393  * should still be getting RX DONE interrupts to drive the search
2394  * for new packets in the RX ring, so we should catch up eventually.
2395  */
2396 static int dc_rx_resync(sc)
2397 	struct dc_softc		*sc;
2398 {
2399 	int			i, pos;
2400 	struct dc_desc		*cur_rx;
2401 
2402 	pos = sc->dc_cdata.dc_rx_prod;
2403 
2404 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2405 		cur_rx = &sc->dc_ldata->dc_rx_list[pos];
2406 		if (!(cur_rx->dc_status & DC_RXSTAT_OWN))
2407 			break;
2408 		DC_INC(pos, DC_RX_LIST_CNT);
2409 	}
2410 
2411 	/* If the ring really is empty, then just return. */
2412 	if (i == DC_RX_LIST_CNT)
2413 		return(0);
2414 
2415 	/* We've fallen behing the chip: catch it. */
2416 	sc->dc_cdata.dc_rx_prod = pos;
2417 
2418 	return(EAGAIN);
2419 }
2420 
2421 /*
2422  * A frame has been uploaded: pass the resulting mbuf chain up to
2423  * the higher level protocols.
2424  */
2425 static void dc_rxeof(sc)
2426 	struct dc_softc		*sc;
2427 {
2428         struct ether_header	*eh;
2429         struct mbuf		*m;
2430         struct ifnet		*ifp;
2431 	struct dc_desc		*cur_rx;
2432 	int			i, total_len = 0;
2433 	u_int32_t		rxstat;
2434 
2435 	ifp = &sc->arpcom.ac_if;
2436 	i = sc->dc_cdata.dc_rx_prod;
2437 
2438 	while(!(sc->dc_ldata->dc_rx_list[i].dc_status & DC_RXSTAT_OWN)) {
2439 		struct mbuf		*m0 = NULL;
2440 
2441 		cur_rx = &sc->dc_ldata->dc_rx_list[i];
2442 		rxstat = cur_rx->dc_status;
2443 		m = sc->dc_cdata.dc_rx_chain[i];
2444 		total_len = DC_RXBYTES(rxstat);
2445 
2446 		if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2447 			if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
2448 				if (rxstat & DC_RXSTAT_FIRSTFRAG)
2449 					sc->dc_pnic_rx_bug_save = i;
2450 				if ((rxstat & DC_RXSTAT_LASTFRAG) == 0) {
2451 					DC_INC(i, DC_RX_LIST_CNT);
2452 					continue;
2453 				}
2454 				dc_pnic_rx_bug_war(sc, i);
2455 				rxstat = cur_rx->dc_status;
2456 				total_len = DC_RXBYTES(rxstat);
2457 			}
2458 		}
2459 
2460 		sc->dc_cdata.dc_rx_chain[i] = NULL;
2461 
2462 		/*
2463 		 * If an error occurs, update stats, clear the
2464 		 * status word and leave the mbuf cluster in place:
2465 		 * it should simply get re-used next time this descriptor
2466 	 	 * comes up in the ring.
2467 		 */
2468 		if (rxstat & DC_RXSTAT_RXERR) {
2469 			ifp->if_ierrors++;
2470 			if (rxstat & DC_RXSTAT_COLLSEEN)
2471 				ifp->if_collisions++;
2472 			dc_newbuf(sc, i, m);
2473 			if (rxstat & DC_RXSTAT_CRCERR) {
2474 				DC_INC(i, DC_RX_LIST_CNT);
2475 				continue;
2476 			} else {
2477 				dc_init(sc);
2478 				return;
2479 			}
2480 		}
2481 
2482 		/* No errors; receive the packet. */
2483 		total_len -= ETHER_CRC_LEN;
2484 
2485 		m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2486 		    total_len + ETHER_ALIGN, 0, ifp, NULL);
2487 		dc_newbuf(sc, i, m);
2488 		DC_INC(i, DC_RX_LIST_CNT);
2489 		if (m0 == NULL) {
2490 			ifp->if_ierrors++;
2491 			continue;
2492 		}
2493 		m_adj(m0, ETHER_ALIGN);
2494 		m = m0;
2495 
2496 		ifp->if_ipackets++;
2497 		eh = mtod(m, struct ether_header *);
2498 
2499 		/* Remove header from mbuf and pass it on. */
2500 		m_adj(m, sizeof(struct ether_header));
2501 		ether_input(ifp, eh, m);
2502 	}
2503 
2504 	sc->dc_cdata.dc_rx_prod = i;
2505 }
2506 
2507 /*
2508  * A frame was downloaded to the chip. It's safe for us to clean up
2509  * the list buffers.
2510  */
2511 
2512 static void dc_txeof(sc)
2513 	struct dc_softc		*sc;
2514 {
2515 	struct dc_desc		*cur_tx = NULL;
2516 	struct ifnet		*ifp;
2517 	int			idx;
2518 
2519 	ifp = &sc->arpcom.ac_if;
2520 
2521 	/* Clear the timeout timer. */
2522 	ifp->if_timer = 0;
2523 
2524 	/*
2525 	 * Go through our tx list and free mbufs for those
2526 	 * frames that have been transmitted.
2527 	 */
2528 	idx = sc->dc_cdata.dc_tx_cons;
2529 	while(idx != sc->dc_cdata.dc_tx_prod) {
2530 		u_int32_t		txstat;
2531 
2532 		cur_tx = &sc->dc_ldata->dc_tx_list[idx];
2533 		txstat = cur_tx->dc_status;
2534 
2535 		if (txstat & DC_TXSTAT_OWN)
2536 			break;
2537 
2538 		if (!(cur_tx->dc_ctl & DC_TXCTL_LASTFRAG) ||
2539 		    cur_tx->dc_ctl & DC_TXCTL_SETUP) {
2540 			sc->dc_cdata.dc_tx_cnt--;
2541 			if (cur_tx->dc_ctl & DC_TXCTL_SETUP) {
2542 				/*
2543 				 * Yes, the PNIC is so brain damaged
2544 				 * that it will sometimes generate a TX
2545 				 * underrun error while DMAing the RX
2546 				 * filter setup frame. If we detect this,
2547 				 * we have to send the setup frame again,
2548 				 * or else the filter won't be programmed
2549 				 * correctly.
2550 				 */
2551 				if (DC_IS_PNIC(sc)) {
2552 					if (txstat & DC_TXSTAT_ERRSUM)
2553 						dc_setfilt(sc);
2554 				}
2555 				sc->dc_cdata.dc_tx_chain[idx] = NULL;
2556 			}
2557 			DC_INC(idx, DC_TX_LIST_CNT);
2558 			continue;
2559 		}
2560 
2561 		if (DC_IS_XIRCOM(sc)) {
2562 			/*
2563 			 * XXX: Why does my Xircom taunt me so?
2564 			 * For some reason it likes setting the CARRLOST flag
2565 			 * even when the carrier is there. wtf?!? */
2566 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2567 			    sc->dc_pmode == DC_PMODE_MII &&
2568 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM|
2569 						   DC_TXSTAT_NOCARRIER)))
2570 				txstat &= ~DC_TXSTAT_ERRSUM;
2571 		} else {
2572 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2573 			    sc->dc_pmode == DC_PMODE_MII &&
2574 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM|
2575 						   DC_TXSTAT_NOCARRIER|DC_TXSTAT_CARRLOST)))
2576 				txstat &= ~DC_TXSTAT_ERRSUM;
2577 		}
2578 
2579 		if (txstat & DC_TXSTAT_ERRSUM) {
2580 			ifp->if_oerrors++;
2581 			if (txstat & DC_TXSTAT_EXCESSCOLL)
2582 				ifp->if_collisions++;
2583 			if (txstat & DC_TXSTAT_LATECOLL)
2584 				ifp->if_collisions++;
2585 			if (!(txstat & DC_TXSTAT_UNDERRUN)) {
2586 				dc_init(sc);
2587 				return;
2588 			}
2589 		}
2590 
2591 		ifp->if_collisions += (txstat & DC_TXSTAT_COLLCNT) >> 3;
2592 
2593 		ifp->if_opackets++;
2594 		if (sc->dc_cdata.dc_tx_chain[idx] != NULL) {
2595 			m_freem(sc->dc_cdata.dc_tx_chain[idx]);
2596 			sc->dc_cdata.dc_tx_chain[idx] = NULL;
2597 		}
2598 
2599 		sc->dc_cdata.dc_tx_cnt--;
2600 		DC_INC(idx, DC_TX_LIST_CNT);
2601 	}
2602 
2603 	sc->dc_cdata.dc_tx_cons = idx;
2604 	if (cur_tx != NULL)
2605 		ifp->if_flags &= ~IFF_OACTIVE;
2606 
2607 	return;
2608 }
2609 
2610 static void dc_tick(xsc)
2611 	void			*xsc;
2612 {
2613 	struct dc_softc		*sc;
2614 	struct mii_data		*mii;
2615 	struct ifnet		*ifp;
2616 	u_int32_t		r;
2617 
2618 	sc = xsc;
2619 	DC_LOCK(sc);
2620 	ifp = &sc->arpcom.ac_if;
2621 	mii = device_get_softc(sc->dc_miibus);
2622 
2623 	if (sc->dc_flags & DC_REDUCED_MII_POLL) {
2624 		if (sc->dc_flags & DC_21143_NWAY) {
2625 			r = CSR_READ_4(sc, DC_10BTSTAT);
2626 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2627 			    IFM_100_TX && (r & DC_TSTAT_LS100)) {
2628 				sc->dc_link = 0;
2629 				mii_mediachg(mii);
2630 			}
2631 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2632 			    IFM_10_T && (r & DC_TSTAT_LS10)) {
2633 				sc->dc_link = 0;
2634 				mii_mediachg(mii);
2635 			}
2636 			if (sc->dc_link == 0)
2637 				mii_tick(mii);
2638 		} else {
2639 			r = CSR_READ_4(sc, DC_ISR);
2640 			if ((r & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT &&
2641 			    sc->dc_cdata.dc_tx_cnt == 0)
2642 				mii_tick(mii);
2643 				if (!(mii->mii_media_status & IFM_ACTIVE))
2644 					sc->dc_link = 0;
2645 		}
2646 	} else
2647 		mii_tick(mii);
2648 
2649 	/*
2650 	 * When the init routine completes, we expect to be able to send
2651 	 * packets right away, and in fact the network code will send a
2652 	 * gratuitous ARP the moment the init routine marks the interface
2653 	 * as running. However, even though the MAC may have been initialized,
2654 	 * there may be a delay of a few seconds before the PHY completes
2655 	 * autonegotiation and the link is brought up. Any transmissions
2656 	 * made during that delay will be lost. Dealing with this is tricky:
2657 	 * we can't just pause in the init routine while waiting for the
2658 	 * PHY to come ready since that would bring the whole system to
2659 	 * a screeching halt for several seconds.
2660 	 *
2661 	 * What we do here is prevent the TX start routine from sending
2662 	 * any packets until a link has been established. After the
2663 	 * interface has been initialized, the tick routine will poll
2664 	 * the state of the PHY until the IFM_ACTIVE flag is set. Until
2665 	 * that time, packets will stay in the send queue, and once the
2666 	 * link comes up, they will be flushed out to the wire.
2667 	 */
2668 	if (!sc->dc_link) {
2669 		mii_pollstat(mii);
2670 		if (mii->mii_media_status & IFM_ACTIVE &&
2671 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2672 			sc->dc_link++;
2673 			if (ifp->if_snd.ifq_head != NULL)
2674 				dc_start(ifp);
2675 		}
2676 	}
2677 
2678 	if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link)
2679 		sc->dc_stat_ch = timeout(dc_tick, sc, hz/10);
2680 	else
2681 		sc->dc_stat_ch = timeout(dc_tick, sc, hz);
2682 
2683 	DC_UNLOCK(sc);
2684 
2685 	return;
2686 }
2687 
2688 static void dc_intr(arg)
2689 	void			*arg;
2690 {
2691 	struct dc_softc		*sc;
2692 	struct ifnet		*ifp;
2693 	u_int32_t		status;
2694 
2695 	sc = arg;
2696 	DC_LOCK(sc);
2697 	ifp = &sc->arpcom.ac_if;
2698 
2699 	/* Supress unwanted interrupts */
2700 	if (!(ifp->if_flags & IFF_UP)) {
2701 		if (CSR_READ_4(sc, DC_ISR) & DC_INTRS)
2702 			dc_stop(sc);
2703 		DC_UNLOCK(sc);
2704 		return;
2705 	}
2706 
2707 	/* Disable interrupts. */
2708 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
2709 
2710 	while(((status = CSR_READ_4(sc, DC_ISR)) & DC_INTRS)
2711 	      && status != 0xFFFFFFFF) {
2712 
2713 		CSR_WRITE_4(sc, DC_ISR, status);
2714 
2715 		if (status & DC_ISR_RX_OK) {
2716 			int		curpkts;
2717 			curpkts = ifp->if_ipackets;
2718 			dc_rxeof(sc);
2719 			if (curpkts == ifp->if_ipackets) {
2720 				while(dc_rx_resync(sc))
2721 					dc_rxeof(sc);
2722 			}
2723 		}
2724 
2725 		if (status & (DC_ISR_TX_OK|DC_ISR_TX_NOBUF))
2726 			dc_txeof(sc);
2727 
2728 		if (status & DC_ISR_TX_IDLE) {
2729 			dc_txeof(sc);
2730 			if (sc->dc_cdata.dc_tx_cnt) {
2731 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2732 				CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
2733 			}
2734 		}
2735 
2736 		if (status & DC_ISR_TX_UNDERRUN) {
2737 			u_int32_t		cfg;
2738 
2739 			printf("dc%d: TX underrun -- ", sc->dc_unit);
2740 			if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc))
2741 				dc_init(sc);
2742 			cfg = CSR_READ_4(sc, DC_NETCFG);
2743 			cfg &= ~DC_NETCFG_TX_THRESH;
2744 			if (sc->dc_txthresh == DC_TXTHRESH_160BYTES) {
2745 				printf("using store and forward mode\n");
2746 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
2747 			} else if (sc->dc_flags & DC_TX_STORENFWD) {
2748 				printf("resetting\n");
2749 			} else {
2750 				sc->dc_txthresh += 0x4000;
2751 				printf("increasing TX threshold\n");
2752 				CSR_WRITE_4(sc, DC_NETCFG, cfg);
2753 				DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
2754 				DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
2755 			}
2756 		}
2757 
2758 		if ((status & DC_ISR_RX_WATDOGTIMEO)
2759 		    || (status & DC_ISR_RX_NOBUF)) {
2760 			int		curpkts;
2761 			curpkts = ifp->if_ipackets;
2762 			dc_rxeof(sc);
2763 			if (curpkts == ifp->if_ipackets) {
2764 				while(dc_rx_resync(sc))
2765 					dc_rxeof(sc);
2766 			}
2767 		}
2768 
2769 		if (status & DC_ISR_BUS_ERR) {
2770 			dc_reset(sc);
2771 			dc_init(sc);
2772 		}
2773 	}
2774 
2775 	/* Re-enable interrupts. */
2776 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
2777 
2778 	if (ifp->if_snd.ifq_head != NULL)
2779 		dc_start(ifp);
2780 
2781 	DC_UNLOCK(sc);
2782 
2783 	return;
2784 }
2785 
2786 /*
2787  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
2788  * pointers to the fragment pointers.
2789  */
2790 static int dc_encap(sc, m_head, txidx)
2791 	struct dc_softc		*sc;
2792 	struct mbuf		*m_head;
2793 	u_int32_t		*txidx;
2794 {
2795 	struct dc_desc		*f = NULL;
2796 	struct mbuf		*m;
2797 	int			frag, cur, cnt = 0;
2798 
2799 	/*
2800  	 * Start packing the mbufs in this chain into
2801 	 * the fragment pointers. Stop when we run out
2802  	 * of fragments or hit the end of the mbuf chain.
2803 	 */
2804 	m = m_head;
2805 	cur = frag = *txidx;
2806 
2807 	for (m = m_head; m != NULL; m = m->m_next) {
2808 		if (m->m_len != 0) {
2809 			if (sc->dc_flags & DC_TX_ADMTEK_WAR) {
2810 				if (*txidx != sc->dc_cdata.dc_tx_prod &&
2811 				    frag == (DC_TX_LIST_CNT - 1))
2812 					return(ENOBUFS);
2813 			}
2814 			if ((DC_TX_LIST_CNT -
2815 			    (sc->dc_cdata.dc_tx_cnt + cnt)) < 5)
2816 				return(ENOBUFS);
2817 
2818 			f = &sc->dc_ldata->dc_tx_list[frag];
2819 			f->dc_ctl = DC_TXCTL_TLINK | m->m_len;
2820 			if (cnt == 0) {
2821 				f->dc_status = 0;
2822 				f->dc_ctl |= DC_TXCTL_FIRSTFRAG;
2823 			} else
2824 				f->dc_status = DC_TXSTAT_OWN;
2825 			f->dc_data = vtophys(mtod(m, vm_offset_t));
2826 			cur = frag;
2827 			DC_INC(frag, DC_TX_LIST_CNT);
2828 			cnt++;
2829 		}
2830 	}
2831 
2832 	if (m != NULL)
2833 		return(ENOBUFS);
2834 
2835 	sc->dc_cdata.dc_tx_cnt += cnt;
2836 	sc->dc_cdata.dc_tx_chain[cur] = m_head;
2837 	sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_LASTFRAG;
2838 	if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
2839 		sc->dc_ldata->dc_tx_list[*txidx].dc_ctl |= DC_TXCTL_FINT;
2840 	if (sc->dc_flags & DC_TX_INTR_ALWAYS)
2841 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT;
2842 	if (sc->dc_flags & DC_TX_USE_TX_INTR && sc->dc_cdata.dc_tx_cnt > 64)
2843 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT;
2844 	sc->dc_ldata->dc_tx_list[*txidx].dc_status = DC_TXSTAT_OWN;
2845 	*txidx = frag;
2846 
2847 	return(0);
2848 }
2849 
2850 /*
2851  * Coalesce an mbuf chain into a single mbuf cluster buffer.
2852  * Needed for some really badly behaved chips that just can't
2853  * do scatter/gather correctly.
2854  */
2855 static int dc_coal(sc, m_head)
2856 	struct dc_softc		*sc;
2857 	struct mbuf		**m_head;
2858 {
2859         struct mbuf		*m_new, *m;
2860 
2861 	m = *m_head;
2862 	MGETHDR(m_new, M_DONTWAIT, MT_DATA);
2863 	if (m_new == NULL) {
2864 		printf("dc%d: no memory for tx list", sc->dc_unit);
2865 		return(ENOBUFS);
2866 	}
2867 	if (m->m_pkthdr.len > MHLEN) {
2868 		MCLGET(m_new, M_DONTWAIT);
2869 		if (!(m_new->m_flags & M_EXT)) {
2870 			m_freem(m_new);
2871 			printf("dc%d: no memory for tx list", sc->dc_unit);
2872 			return(ENOBUFS);
2873 		}
2874 	}
2875 	m_copydata(m, 0, m->m_pkthdr.len, mtod(m_new, caddr_t));
2876 	m_new->m_pkthdr.len = m_new->m_len = m->m_pkthdr.len;
2877 	m_freem(m);
2878 	*m_head = m_new;
2879 
2880 	return(0);
2881 }
2882 
2883 /*
2884  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2885  * to the mbuf data regions directly in the transmit lists. We also save a
2886  * copy of the pointers since the transmit list fragment pointers are
2887  * physical addresses.
2888  */
2889 
2890 static void dc_start(ifp)
2891 	struct ifnet		*ifp;
2892 {
2893 	struct dc_softc		*sc;
2894 	struct mbuf		*m_head = NULL;
2895 	int			idx;
2896 
2897 	sc = ifp->if_softc;
2898 
2899 	DC_LOCK(sc);
2900 
2901 	if (!sc->dc_link) {
2902 		DC_UNLOCK(sc);
2903 		return;
2904 	}
2905 
2906 	if (ifp->if_flags & IFF_OACTIVE) {
2907 		DC_UNLOCK(sc);
2908 		return;
2909 	}
2910 
2911 	idx = sc->dc_cdata.dc_tx_prod;
2912 
2913 	while(sc->dc_cdata.dc_tx_chain[idx] == NULL) {
2914 		IF_DEQUEUE(&ifp->if_snd, m_head);
2915 		if (m_head == NULL)
2916 			break;
2917 
2918 		if (sc->dc_flags & DC_TX_COALESCE) {
2919 			if (dc_coal(sc, &m_head)) {
2920 				IF_PREPEND(&ifp->if_snd, m_head);
2921 				ifp->if_flags |= IFF_OACTIVE;
2922 				break;
2923 			}
2924 		}
2925 
2926 		if (dc_encap(sc, m_head, &idx)) {
2927 			IF_PREPEND(&ifp->if_snd, m_head);
2928 			ifp->if_flags |= IFF_OACTIVE;
2929 			break;
2930 		}
2931 
2932 		/*
2933 		 * If there's a BPF listener, bounce a copy of this frame
2934 		 * to him.
2935 		 */
2936 		if (ifp->if_bpf)
2937 			bpf_mtap(ifp, m_head);
2938 
2939 		if (sc->dc_flags & DC_TX_ONE) {
2940 			ifp->if_flags |= IFF_OACTIVE;
2941 			break;
2942 		}
2943 	}
2944 
2945 	/* Transmit */
2946 	sc->dc_cdata.dc_tx_prod = idx;
2947 	if (!(sc->dc_flags & DC_TX_POLL))
2948 		CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
2949 
2950 	/*
2951 	 * Set a timeout in case the chip goes out to lunch.
2952 	 */
2953 	ifp->if_timer = 5;
2954 
2955 	DC_UNLOCK(sc);
2956 
2957 	return;
2958 }
2959 
2960 static void dc_init(xsc)
2961 	void			*xsc;
2962 {
2963 	struct dc_softc		*sc = xsc;
2964 	struct ifnet		*ifp = &sc->arpcom.ac_if;
2965 	struct mii_data		*mii;
2966 
2967 	DC_LOCK(sc);
2968 
2969 	mii = device_get_softc(sc->dc_miibus);
2970 
2971 	/*
2972 	 * Cancel pending I/O and free all RX/TX buffers.
2973 	 */
2974 	dc_stop(sc);
2975 	dc_reset(sc);
2976 
2977 	/*
2978 	 * Set cache alignment and burst length.
2979 	 */
2980 	if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc))
2981 		CSR_WRITE_4(sc, DC_BUSCTL, 0);
2982 	else
2983 		CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME|DC_BUSCTL_MRLE);
2984 	if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
2985 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
2986 	} else {
2987 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
2988 	}
2989 	if (sc->dc_flags & DC_TX_POLL)
2990 		DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
2991 	switch(sc->dc_cachesize) {
2992 	case 32:
2993 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
2994 		break;
2995 	case 16:
2996 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
2997 		break;
2998 	case 8:
2999 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
3000 		break;
3001 	case 0:
3002 	default:
3003 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
3004 		break;
3005 	}
3006 
3007 	if (sc->dc_flags & DC_TX_STORENFWD)
3008 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3009 	else {
3010 		if (sc->dc_txthresh == DC_TXTHRESH_160BYTES) {
3011 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3012 		} else {
3013 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3014 			DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3015 		}
3016 	}
3017 
3018 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
3019 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
3020 
3021 	if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
3022 		/*
3023 		 * The app notes for the 98713 and 98715A say that
3024 		 * in order to have the chips operate properly, a magic
3025 		 * number must be written to CSR16. Macronix does not
3026 		 * document the meaning of these bits so there's no way
3027 		 * to know exactly what they do. The 98713 has a magic
3028 		 * number all its own; the rest all use a different one.
3029 		 */
3030 		DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
3031 		if (sc->dc_type == DC_TYPE_98713)
3032 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
3033 		else
3034 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
3035 	}
3036 
3037 	if (DC_IS_XIRCOM(sc)) {
3038 		/*
3039 		 * setup General Purpose Port mode and data so the tulip
3040 		 * can talk to the MII.
3041 		 */
3042 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
3043 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3044 		DELAY(10);
3045 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
3046 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3047 		DELAY(10);
3048 	}
3049 
3050 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3051 	DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_72BYTES);
3052 
3053 	/* Init circular RX list. */
3054 	if (dc_list_rx_init(sc) == ENOBUFS) {
3055 		printf("dc%d: initialization failed: no "
3056 		    "memory for rx buffers\n", sc->dc_unit);
3057 		dc_stop(sc);
3058 		DC_UNLOCK(sc);
3059 		return;
3060 	}
3061 
3062 	/*
3063 	 * Init tx descriptors.
3064 	 */
3065 	dc_list_tx_init(sc);
3066 
3067 	/*
3068 	 * Load the address of the RX list.
3069 	 */
3070 	CSR_WRITE_4(sc, DC_RXADDR, vtophys(&sc->dc_ldata->dc_rx_list[0]));
3071 	CSR_WRITE_4(sc, DC_TXADDR, vtophys(&sc->dc_ldata->dc_tx_list[0]));
3072 
3073 	/*
3074 	 * Enable interrupts.
3075 	 */
3076 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3077 	CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
3078 
3079 	/* Enable transmitter. */
3080 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3081 
3082 	/*
3083 	 * If this is an Intel 21143 and we're not using the
3084 	 * MII port, program the LED control pins so we get
3085 	 * link and activity indications.
3086 	 */
3087 	if (sc->dc_flags & DC_TULIP_LEDS) {
3088 		CSR_WRITE_4(sc, DC_WATCHDOG,
3089 		    DC_WDOG_CTLWREN|DC_WDOG_LINK|DC_WDOG_ACTIVITY);
3090 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
3091 	}
3092 
3093 	/*
3094 	 * Load the RX/multicast filter. We do this sort of late
3095 	 * because the filter programming scheme on the 21143 and
3096 	 * some clones requires DMAing a setup frame via the TX
3097 	 * engine, and we need the transmitter enabled for that.
3098 	 */
3099 	dc_setfilt(sc);
3100 
3101 	/* Enable receiver. */
3102 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
3103 	CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
3104 
3105 	mii_mediachg(mii);
3106 	dc_setcfg(sc, sc->dc_if_media);
3107 
3108 	ifp->if_flags |= IFF_RUNNING;
3109 	ifp->if_flags &= ~IFF_OACTIVE;
3110 
3111 	/* Don't start the ticker if this is a homePNA link. */
3112 	if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_homePNA)
3113 		sc->dc_link = 1;
3114 	else {
3115 		if (sc->dc_flags & DC_21143_NWAY)
3116 			sc->dc_stat_ch = timeout(dc_tick, sc, hz/10);
3117 		else
3118 			sc->dc_stat_ch = timeout(dc_tick, sc, hz);
3119 	}
3120 
3121 #ifdef SRM_MEDIA
3122         if(sc->dc_srm_media) {
3123 		struct ifreq ifr;
3124 
3125 		ifr.ifr_media = sc->dc_srm_media;
3126 		ifmedia_ioctl(ifp, &ifr, &mii->mii_media, SIOCSIFMEDIA);
3127 		sc->dc_srm_media = 0;
3128 	}
3129 #endif
3130 	DC_UNLOCK(sc);
3131 	return;
3132 }
3133 
3134 /*
3135  * Set media options.
3136  */
3137 static int dc_ifmedia_upd(ifp)
3138 	struct ifnet		*ifp;
3139 {
3140 	struct dc_softc		*sc;
3141 	struct mii_data		*mii;
3142 	struct ifmedia		*ifm;
3143 
3144 	sc = ifp->if_softc;
3145 	mii = device_get_softc(sc->dc_miibus);
3146 	mii_mediachg(mii);
3147 	ifm = &mii->mii_media;
3148 
3149 	if (DC_IS_DAVICOM(sc) &&
3150 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_homePNA)
3151 		dc_setcfg(sc, ifm->ifm_media);
3152 	else
3153 		sc->dc_link = 0;
3154 
3155 	return(0);
3156 }
3157 
3158 /*
3159  * Report current media status.
3160  */
3161 static void dc_ifmedia_sts(ifp, ifmr)
3162 	struct ifnet		*ifp;
3163 	struct ifmediareq	*ifmr;
3164 {
3165 	struct dc_softc		*sc;
3166 	struct mii_data		*mii;
3167 	struct ifmedia		*ifm;
3168 
3169 	sc = ifp->if_softc;
3170 	mii = device_get_softc(sc->dc_miibus);
3171 	mii_pollstat(mii);
3172 	ifm = &mii->mii_media;
3173 	if (DC_IS_DAVICOM(sc)) {
3174 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_homePNA) {
3175 			ifmr->ifm_active = ifm->ifm_media;
3176 			ifmr->ifm_status = 0;
3177 			return;
3178 		}
3179 	}
3180 	ifmr->ifm_active = mii->mii_media_active;
3181 	ifmr->ifm_status = mii->mii_media_status;
3182 
3183 	return;
3184 }
3185 
3186 static int dc_ioctl(ifp, command, data)
3187 	struct ifnet		*ifp;
3188 	u_long			command;
3189 	caddr_t			data;
3190 {
3191 	struct dc_softc		*sc = ifp->if_softc;
3192 	struct ifreq		*ifr = (struct ifreq *) data;
3193 	struct mii_data		*mii;
3194 	int			error = 0;
3195 
3196 	DC_LOCK(sc);
3197 
3198 	switch(command) {
3199 	case SIOCSIFADDR:
3200 	case SIOCGIFADDR:
3201 	case SIOCSIFMTU:
3202 		error = ether_ioctl(ifp, command, data);
3203 		break;
3204 	case SIOCSIFFLAGS:
3205 		if (ifp->if_flags & IFF_UP) {
3206 			if (ifp->if_flags & IFF_RUNNING &&
3207 			    ifp->if_flags & IFF_PROMISC &&
3208 			    !(sc->dc_if_flags & IFF_PROMISC)) {
3209 				dc_setfilt(sc);
3210 			} else if (ifp->if_flags & IFF_RUNNING &&
3211 			    !(ifp->if_flags & IFF_PROMISC) &&
3212 			    sc->dc_if_flags & IFF_PROMISC) {
3213 				dc_setfilt(sc);
3214 			} else if (!(ifp->if_flags & IFF_RUNNING)) {
3215 				sc->dc_txthresh = 0;
3216 				dc_init(sc);
3217 			}
3218 		} else {
3219 			if (ifp->if_flags & IFF_RUNNING)
3220 				dc_stop(sc);
3221 		}
3222 		sc->dc_if_flags = ifp->if_flags;
3223 		error = 0;
3224 		break;
3225 	case SIOCADDMULTI:
3226 	case SIOCDELMULTI:
3227 		dc_setfilt(sc);
3228 		error = 0;
3229 		break;
3230 	case SIOCGIFMEDIA:
3231 	case SIOCSIFMEDIA:
3232 		mii = device_get_softc(sc->dc_miibus);
3233 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
3234 #ifdef SRM_MEDIA
3235 		if (sc->dc_srm_media)
3236 			sc->dc_srm_media = 0;
3237 #endif
3238 		break;
3239 	default:
3240 		error = EINVAL;
3241 		break;
3242 	}
3243 
3244 	DC_UNLOCK(sc);
3245 
3246 	return(error);
3247 }
3248 
3249 static void dc_watchdog(ifp)
3250 	struct ifnet		*ifp;
3251 {
3252 	struct dc_softc		*sc;
3253 
3254 	sc = ifp->if_softc;
3255 
3256 	DC_LOCK(sc);
3257 
3258 	ifp->if_oerrors++;
3259 	printf("dc%d: watchdog timeout\n", sc->dc_unit);
3260 
3261 	dc_stop(sc);
3262 	dc_reset(sc);
3263 	dc_init(sc);
3264 
3265 	if (ifp->if_snd.ifq_head != NULL)
3266 		dc_start(ifp);
3267 
3268 	DC_UNLOCK(sc);
3269 
3270 	return;
3271 }
3272 
3273 /*
3274  * Stop the adapter and free any mbufs allocated to the
3275  * RX and TX lists.
3276  */
3277 static void dc_stop(sc)
3278 	struct dc_softc		*sc;
3279 {
3280 	register int		i;
3281 	struct ifnet		*ifp;
3282 
3283 	DC_LOCK(sc);
3284 
3285 	ifp = &sc->arpcom.ac_if;
3286 	ifp->if_timer = 0;
3287 
3288 	untimeout(dc_tick, sc, sc->dc_stat_ch);
3289 
3290 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ON|DC_NETCFG_TX_ON));
3291 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3292 	CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
3293 	CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
3294 	sc->dc_link = 0;
3295 
3296 	/*
3297 	 * Free data in the RX lists.
3298 	 */
3299 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
3300 		if (sc->dc_cdata.dc_rx_chain[i] != NULL) {
3301 			m_freem(sc->dc_cdata.dc_rx_chain[i]);
3302 			sc->dc_cdata.dc_rx_chain[i] = NULL;
3303 		}
3304 	}
3305 	bzero((char *)&sc->dc_ldata->dc_rx_list,
3306 		sizeof(sc->dc_ldata->dc_rx_list));
3307 
3308 	/*
3309 	 * Free the TX list buffers.
3310 	 */
3311 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
3312 		if (sc->dc_cdata.dc_tx_chain[i] != NULL) {
3313 			if (sc->dc_ldata->dc_tx_list[i].dc_ctl &
3314 			    DC_TXCTL_SETUP) {
3315 				sc->dc_cdata.dc_tx_chain[i] = NULL;
3316 				continue;
3317 			}
3318 			m_freem(sc->dc_cdata.dc_tx_chain[i]);
3319 			sc->dc_cdata.dc_tx_chain[i] = NULL;
3320 		}
3321 	}
3322 
3323 	bzero((char *)&sc->dc_ldata->dc_tx_list,
3324 		sizeof(sc->dc_ldata->dc_tx_list));
3325 
3326 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3327 
3328 	DC_UNLOCK(sc);
3329 
3330 	return;
3331 }
3332 
3333 /*
3334  * Stop all chip I/O so that the kernel's probe routines don't
3335  * get confused by errant DMAs when rebooting.
3336  */
3337 static void dc_shutdown(dev)
3338 	device_t		dev;
3339 {
3340 	struct dc_softc		*sc;
3341 
3342 	sc = device_get_softc(dev);
3343 
3344 	dc_stop(sc);
3345 
3346 	return;
3347 }
3348