xref: /freebsd/sys/dev/dc/if_dc.c (revision d0ba1baed3f6e4936a0c1b89c25f6c59168ef6de)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1997, 1998, 1999
5  *	Bill Paul <wpaul@ee.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 /*
39  * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
40  * series chips and several workalikes including the following:
41  *
42  * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com)
43  * Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
44  * Lite-On 82c168/82c169 PNIC (www.litecom.com)
45  * ASIX Electronics AX88140A (www.asix.com.tw)
46  * ASIX Electronics AX88141 (www.asix.com.tw)
47  * ADMtek AL981 (www.admtek.com.tw)
48  * ADMtek AN983 (www.admtek.com.tw)
49  * ADMtek CardBus AN985 (www.admtek.com.tw)
50  * Netgear FA511 (www.netgear.com) Appears to be rebadged ADMTek CardBus AN985
51  * Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
52  * Accton EN1217 (www.accton.com)
53  * Xircom X3201 (www.xircom.com)
54  * Abocom FE2500
55  * Conexant LANfinity (www.conexant.com)
56  * 3Com OfficeConnect 10/100B 3CSOHO100B (www.3com.com)
57  *
58  * Datasheets for the 21143 are available at developer.intel.com.
59  * Datasheets for the clone parts can be found at their respective sites.
60  * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
61  * The PNIC II is essentially a Macronix 98715A chip; the only difference
62  * worth noting is that its multicast hash table is only 128 bits wide
63  * instead of 512.
64  *
65  * Written by Bill Paul <wpaul@ee.columbia.edu>
66  * Electrical Engineering Department
67  * Columbia University, New York City
68  */
69 /*
70  * The Intel 21143 is the successor to the DEC 21140. It is basically
71  * the same as the 21140 but with a few new features. The 21143 supports
72  * three kinds of media attachments:
73  *
74  * o MII port, for 10Mbps and 100Mbps support and NWAY
75  *   autonegotiation provided by an external PHY.
76  * o SYM port, for symbol mode 100Mbps support.
77  * o 10baseT port.
78  * o AUI/BNC port.
79  *
80  * The 100Mbps SYM port and 10baseT port can be used together in
81  * combination with the internal NWAY support to create a 10/100
82  * autosensing configuration.
83  *
84  * Note that not all tulip workalikes are handled in this driver: we only
85  * deal with those which are relatively well behaved. The Winbond is
86  * handled separately due to its different register offsets and the
87  * special handling needed for its various bugs. The PNIC is handled
88  * here, but I'm not thrilled about it.
89  *
90  * All of the workalike chips use some form of MII transceiver support
91  * with the exception of the Macronix chips, which also have a SYM port.
92  * The ASIX AX88140A is also documented to have a SYM port, but all
93  * the cards I've seen use an MII transceiver, probably because the
94  * AX88140A doesn't support internal NWAY.
95  */
96 
97 #ifdef HAVE_KERNEL_OPTION_HEADERS
98 #include "opt_device_polling.h"
99 #endif
100 
101 #include <sys/param.h>
102 #include <sys/endian.h>
103 #include <sys/systm.h>
104 #include <sys/sockio.h>
105 #include <sys/mbuf.h>
106 #include <sys/malloc.h>
107 #include <sys/kernel.h>
108 #include <sys/module.h>
109 #include <sys/socket.h>
110 
111 #include <net/if.h>
112 #include <net/if_var.h>
113 #include <net/if_arp.h>
114 #include <net/ethernet.h>
115 #include <net/if_dl.h>
116 #include <net/if_media.h>
117 #include <net/if_types.h>
118 #include <net/if_vlan_var.h>
119 
120 #include <net/bpf.h>
121 
122 #include <machine/bus.h>
123 #include <machine/resource.h>
124 #include <sys/bus.h>
125 #include <sys/rman.h>
126 
127 #include <dev/mii/mii.h>
128 #include <dev/mii/mii_bitbang.h>
129 #include <dev/mii/miivar.h>
130 
131 #include <dev/pci/pcireg.h>
132 #include <dev/pci/pcivar.h>
133 
134 #define	DC_USEIOSPACE
135 
136 #include <dev/dc/if_dcreg.h>
137 
138 #ifdef __sparc64__
139 #include <dev/ofw/openfirm.h>
140 #include <machine/ofw_machdep.h>
141 #endif
142 
143 MODULE_DEPEND(dc, pci, 1, 1, 1);
144 MODULE_DEPEND(dc, ether, 1, 1, 1);
145 MODULE_DEPEND(dc, miibus, 1, 1, 1);
146 
147 /*
148  * "device miibus" is required in kernel config.  See GENERIC if you get
149  * errors here.
150  */
151 #include "miibus_if.h"
152 
153 /*
154  * Various supported device vendors/types and their names.
155  */
156 static const struct dc_type dc_devs[] = {
157 	{ DC_DEVID(DC_VENDORID_DEC, DC_DEVICEID_21143), 0,
158 		"Intel 21143 10/100BaseTX" },
159 	{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009), 0,
160 		"Davicom DM9009 10/100BaseTX" },
161 	{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100), 0,
162 		"Davicom DM9100 10/100BaseTX" },
163 	{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102), DC_REVISION_DM9102A,
164 		"Davicom DM9102A 10/100BaseTX" },
165 	{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102), 0,
166 		"Davicom DM9102 10/100BaseTX" },
167 	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AL981), 0,
168 		"ADMtek AL981 10/100BaseTX" },
169 	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN983), 0,
170 		"ADMtek AN983 10/100BaseTX" },
171 	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN985), 0,
172 		"ADMtek AN985 CardBus 10/100BaseTX or clone" },
173 	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511), 0,
174 		"ADMtek ADM9511 10/100BaseTX" },
175 	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513), 0,
176 		"ADMtek ADM9513 10/100BaseTX" },
177 	{ DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A), DC_REVISION_88141,
178 		"ASIX AX88141 10/100BaseTX" },
179 	{ DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A), 0,
180 		"ASIX AX88140A 10/100BaseTX" },
181 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713), DC_REVISION_98713A,
182 		"Macronix 98713A 10/100BaseTX" },
183 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713), 0,
184 		"Macronix 98713 10/100BaseTX" },
185 	{ DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP), DC_REVISION_98713A,
186 		"Compex RL100-TX 10/100BaseTX" },
187 	{ DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP), 0,
188 		"Compex RL100-TX 10/100BaseTX" },
189 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), DC_REVISION_98725,
190 		"Macronix 98725 10/100BaseTX" },
191 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), DC_REVISION_98715AEC_C,
192 		"Macronix 98715AEC-C 10/100BaseTX" },
193 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), 0,
194 		"Macronix 98715/98715A 10/100BaseTX" },
195 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98727), 0,
196 		"Macronix 98727/98732 10/100BaseTX" },
197 	{ DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C115), 0,
198 		"LC82C115 PNIC II 10/100BaseTX" },
199 	{ DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168), DC_REVISION_82C169,
200 		"82c169 PNIC 10/100BaseTX" },
201 	{ DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168), 0,
202 		"82c168 PNIC 10/100BaseTX" },
203 	{ DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN1217), 0,
204 		"Accton EN1217 10/100BaseTX" },
205 	{ DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN2242), 0,
206 		"Accton EN2242 MiniPCI 10/100BaseTX" },
207 	{ DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201), 0,
208 		"Xircom X3201 10/100BaseTX" },
209 	{ DC_DEVID(DC_VENDORID_DLINK, DC_DEVICEID_DRP32TXD), 0,
210 		"Neteasy DRP-32TXD Cardbus 10/100" },
211 	{ DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500), 0,
212 		"Abocom FE2500 10/100BaseTX" },
213 	{ DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500MX), 0,
214 		"Abocom FE2500MX 10/100BaseTX" },
215 	{ DC_DEVID(DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112), 0,
216 		"Conexant LANfinity MiniPCI 10/100BaseTX" },
217 	{ DC_DEVID(DC_VENDORID_HAWKING, DC_DEVICEID_HAWKING_PN672TX), 0,
218 		"Hawking CB102 CardBus 10/100" },
219 	{ DC_DEVID(DC_VENDORID_PLANEX, DC_DEVICEID_FNW3602T), 0,
220 		"PlaneX FNW-3602-T CardBus 10/100" },
221 	{ DC_DEVID(DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB), 0,
222 		"3Com OfficeConnect 10/100B" },
223 	{ DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN120), 0,
224 		"Microsoft MN-120 CardBus 10/100" },
225 	{ DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130), 0,
226 		"Microsoft MN-130 10/100" },
227 	{ DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB08), 0,
228 		"Linksys PCMPC200 CardBus 10/100" },
229 	{ DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB09), 0,
230 		"Linksys PCMPC200 CardBus 10/100" },
231 	{ DC_DEVID(DC_VENDORID_ULI, DC_DEVICEID_M5261), 0,
232 		"ULi M5261 FastEthernet" },
233 	{ DC_DEVID(DC_VENDORID_ULI, DC_DEVICEID_M5263), 0,
234 		"ULi M5263 FastEthernet" },
235 	{ 0, 0, NULL }
236 };
237 
238 static int dc_probe(device_t);
239 static int dc_attach(device_t);
240 static int dc_detach(device_t);
241 static int dc_suspend(device_t);
242 static int dc_resume(device_t);
243 static const struct dc_type *dc_devtype(device_t);
244 static void dc_discard_rxbuf(struct dc_softc *, int);
245 static int dc_newbuf(struct dc_softc *, int);
246 static int dc_encap(struct dc_softc *, struct mbuf **);
247 static void dc_pnic_rx_bug_war(struct dc_softc *, int);
248 static int dc_rx_resync(struct dc_softc *);
249 static int dc_rxeof(struct dc_softc *);
250 static void dc_txeof(struct dc_softc *);
251 static void dc_tick(void *);
252 static void dc_tx_underrun(struct dc_softc *);
253 static void dc_intr(void *);
254 static void dc_start(struct ifnet *);
255 static void dc_start_locked(struct ifnet *);
256 static int dc_ioctl(struct ifnet *, u_long, caddr_t);
257 static void dc_init(void *);
258 static void dc_init_locked(struct dc_softc *);
259 static void dc_stop(struct dc_softc *);
260 static void dc_watchdog(void *);
261 static int dc_shutdown(device_t);
262 static int dc_ifmedia_upd(struct ifnet *);
263 static int dc_ifmedia_upd_locked(struct dc_softc *);
264 static void dc_ifmedia_sts(struct ifnet *, struct ifmediareq *);
265 
266 static int dc_dma_alloc(struct dc_softc *);
267 static void dc_dma_free(struct dc_softc *);
268 static void dc_dma_map_addr(void *, bus_dma_segment_t *, int, int);
269 
270 static void dc_delay(struct dc_softc *);
271 static void dc_eeprom_idle(struct dc_softc *);
272 static void dc_eeprom_putbyte(struct dc_softc *, int);
273 static void dc_eeprom_getword(struct dc_softc *, int, uint16_t *);
274 static void dc_eeprom_getword_pnic(struct dc_softc *, int, uint16_t *);
275 static void dc_eeprom_getword_xircom(struct dc_softc *, int, uint16_t *);
276 static void dc_eeprom_width(struct dc_softc *);
277 static void dc_read_eeprom(struct dc_softc *, caddr_t, int, int, int);
278 
279 static int dc_miibus_readreg(device_t, int, int);
280 static int dc_miibus_writereg(device_t, int, int, int);
281 static void dc_miibus_statchg(device_t);
282 static void dc_miibus_mediainit(device_t);
283 
284 static void dc_setcfg(struct dc_softc *, int);
285 static void dc_netcfg_wait(struct dc_softc *);
286 static uint32_t dc_mchash_le(struct dc_softc *, const uint8_t *);
287 static uint32_t dc_mchash_be(const uint8_t *);
288 static void dc_setfilt_21143(struct dc_softc *);
289 static void dc_setfilt_asix(struct dc_softc *);
290 static void dc_setfilt_admtek(struct dc_softc *);
291 static void dc_setfilt_uli(struct dc_softc *);
292 static void dc_setfilt_xircom(struct dc_softc *);
293 
294 static void dc_setfilt(struct dc_softc *);
295 
296 static void dc_reset(struct dc_softc *);
297 static int dc_list_rx_init(struct dc_softc *);
298 static int dc_list_tx_init(struct dc_softc *);
299 
300 static int dc_read_srom(struct dc_softc *, int);
301 static int dc_parse_21143_srom(struct dc_softc *);
302 static int dc_decode_leaf_sia(struct dc_softc *, struct dc_eblock_sia *);
303 static int dc_decode_leaf_mii(struct dc_softc *, struct dc_eblock_mii *);
304 static int dc_decode_leaf_sym(struct dc_softc *, struct dc_eblock_sym *);
305 static void dc_apply_fixup(struct dc_softc *, int);
306 static int dc_check_multiport(struct dc_softc *);
307 
308 /*
309  * MII bit-bang glue
310  */
311 static uint32_t dc_mii_bitbang_read(device_t);
312 static void dc_mii_bitbang_write(device_t, uint32_t);
313 
314 static const struct mii_bitbang_ops dc_mii_bitbang_ops = {
315 	dc_mii_bitbang_read,
316 	dc_mii_bitbang_write,
317 	{
318 		DC_SIO_MII_DATAOUT,	/* MII_BIT_MDO */
319 		DC_SIO_MII_DATAIN,	/* MII_BIT_MDI */
320 		DC_SIO_MII_CLK,		/* MII_BIT_MDC */
321 		0,			/* MII_BIT_DIR_HOST_PHY */
322 		DC_SIO_MII_DIR,		/* MII_BIT_DIR_PHY_HOST */
323 	}
324 };
325 
326 #ifdef DC_USEIOSPACE
327 #define	DC_RES			SYS_RES_IOPORT
328 #define	DC_RID			DC_PCI_CFBIO
329 #else
330 #define	DC_RES			SYS_RES_MEMORY
331 #define	DC_RID			DC_PCI_CFBMA
332 #endif
333 
334 static device_method_t dc_methods[] = {
335 	/* Device interface */
336 	DEVMETHOD(device_probe,		dc_probe),
337 	DEVMETHOD(device_attach,	dc_attach),
338 	DEVMETHOD(device_detach,	dc_detach),
339 	DEVMETHOD(device_suspend,	dc_suspend),
340 	DEVMETHOD(device_resume,	dc_resume),
341 	DEVMETHOD(device_shutdown,	dc_shutdown),
342 
343 	/* MII interface */
344 	DEVMETHOD(miibus_readreg,	dc_miibus_readreg),
345 	DEVMETHOD(miibus_writereg,	dc_miibus_writereg),
346 	DEVMETHOD(miibus_statchg,	dc_miibus_statchg),
347 	DEVMETHOD(miibus_mediainit,	dc_miibus_mediainit),
348 
349 	DEVMETHOD_END
350 };
351 
352 static driver_t dc_driver = {
353 	"dc",
354 	dc_methods,
355 	sizeof(struct dc_softc)
356 };
357 
358 static devclass_t dc_devclass;
359 
360 DRIVER_MODULE_ORDERED(dc, pci, dc_driver, dc_devclass, NULL, NULL,
361     SI_ORDER_ANY);
362 DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, NULL, NULL);
363 
364 #define	DC_SETBIT(sc, reg, x)				\
365 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
366 
367 #define	DC_CLRBIT(sc, reg, x)				\
368 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
369 
370 #define	SIO_SET(x)	DC_SETBIT(sc, DC_SIO, (x))
371 #define	SIO_CLR(x)	DC_CLRBIT(sc, DC_SIO, (x))
372 
373 static void
374 dc_delay(struct dc_softc *sc)
375 {
376 	int idx;
377 
378 	for (idx = (300 / 33) + 1; idx > 0; idx--)
379 		CSR_READ_4(sc, DC_BUSCTL);
380 }
381 
382 static void
383 dc_eeprom_width(struct dc_softc *sc)
384 {
385 	int i;
386 
387 	/* Force EEPROM to idle state. */
388 	dc_eeprom_idle(sc);
389 
390 	/* Enter EEPROM access mode. */
391 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
392 	dc_delay(sc);
393 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
394 	dc_delay(sc);
395 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
396 	dc_delay(sc);
397 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
398 	dc_delay(sc);
399 
400 	for (i = 3; i--;) {
401 		if (6 & (1 << i))
402 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
403 		else
404 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
405 		dc_delay(sc);
406 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
407 		dc_delay(sc);
408 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
409 		dc_delay(sc);
410 	}
411 
412 	for (i = 1; i <= 12; i++) {
413 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
414 		dc_delay(sc);
415 		if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) {
416 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
417 			dc_delay(sc);
418 			break;
419 		}
420 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
421 		dc_delay(sc);
422 	}
423 
424 	/* Turn off EEPROM access mode. */
425 	dc_eeprom_idle(sc);
426 
427 	if (i < 4 || i > 12)
428 		sc->dc_romwidth = 6;
429 	else
430 		sc->dc_romwidth = i;
431 
432 	/* Enter EEPROM access mode. */
433 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
434 	dc_delay(sc);
435 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
436 	dc_delay(sc);
437 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
438 	dc_delay(sc);
439 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
440 	dc_delay(sc);
441 
442 	/* Turn off EEPROM access mode. */
443 	dc_eeprom_idle(sc);
444 }
445 
446 static void
447 dc_eeprom_idle(struct dc_softc *sc)
448 {
449 	int i;
450 
451 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
452 	dc_delay(sc);
453 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
454 	dc_delay(sc);
455 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
456 	dc_delay(sc);
457 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
458 	dc_delay(sc);
459 
460 	for (i = 0; i < 25; i++) {
461 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
462 		dc_delay(sc);
463 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
464 		dc_delay(sc);
465 	}
466 
467 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
468 	dc_delay(sc);
469 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
470 	dc_delay(sc);
471 	CSR_WRITE_4(sc, DC_SIO, 0x00000000);
472 }
473 
474 /*
475  * Send a read command and address to the EEPROM, check for ACK.
476  */
477 static void
478 dc_eeprom_putbyte(struct dc_softc *sc, int addr)
479 {
480 	int d, i;
481 
482 	d = DC_EECMD_READ >> 6;
483 	for (i = 3; i--; ) {
484 		if (d & (1 << i))
485 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
486 		else
487 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
488 		dc_delay(sc);
489 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
490 		dc_delay(sc);
491 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
492 		dc_delay(sc);
493 	}
494 
495 	/*
496 	 * Feed in each bit and strobe the clock.
497 	 */
498 	for (i = sc->dc_romwidth; i--;) {
499 		if (addr & (1 << i)) {
500 			SIO_SET(DC_SIO_EE_DATAIN);
501 		} else {
502 			SIO_CLR(DC_SIO_EE_DATAIN);
503 		}
504 		dc_delay(sc);
505 		SIO_SET(DC_SIO_EE_CLK);
506 		dc_delay(sc);
507 		SIO_CLR(DC_SIO_EE_CLK);
508 		dc_delay(sc);
509 	}
510 }
511 
512 /*
513  * Read a word of data stored in the EEPROM at address 'addr.'
514  * The PNIC 82c168/82c169 has its own non-standard way to read
515  * the EEPROM.
516  */
517 static void
518 dc_eeprom_getword_pnic(struct dc_softc *sc, int addr, uint16_t *dest)
519 {
520 	int i;
521 	uint32_t r;
522 
523 	CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ | addr);
524 
525 	for (i = 0; i < DC_TIMEOUT; i++) {
526 		DELAY(1);
527 		r = CSR_READ_4(sc, DC_SIO);
528 		if (!(r & DC_PN_SIOCTL_BUSY)) {
529 			*dest = (uint16_t)(r & 0xFFFF);
530 			return;
531 		}
532 	}
533 }
534 
535 /*
536  * Read a word of data stored in the EEPROM at address 'addr.'
537  * The Xircom X3201 has its own non-standard way to read
538  * the EEPROM, too.
539  */
540 static void
541 dc_eeprom_getword_xircom(struct dc_softc *sc, int addr, uint16_t *dest)
542 {
543 
544 	SIO_SET(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
545 
546 	addr *= 2;
547 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
548 	*dest = (uint16_t)CSR_READ_4(sc, DC_SIO) & 0xff;
549 	addr += 1;
550 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
551 	*dest |= ((uint16_t)CSR_READ_4(sc, DC_SIO) & 0xff) << 8;
552 
553 	SIO_CLR(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
554 }
555 
556 /*
557  * Read a word of data stored in the EEPROM at address 'addr.'
558  */
559 static void
560 dc_eeprom_getword(struct dc_softc *sc, int addr, uint16_t *dest)
561 {
562 	int i;
563 	uint16_t word = 0;
564 
565 	/* Force EEPROM to idle state. */
566 	dc_eeprom_idle(sc);
567 
568 	/* Enter EEPROM access mode. */
569 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
570 	dc_delay(sc);
571 	DC_SETBIT(sc, DC_SIO,  DC_SIO_ROMCTL_READ);
572 	dc_delay(sc);
573 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
574 	dc_delay(sc);
575 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
576 	dc_delay(sc);
577 
578 	/*
579 	 * Send address of word we want to read.
580 	 */
581 	dc_eeprom_putbyte(sc, addr);
582 
583 	/*
584 	 * Start reading bits from EEPROM.
585 	 */
586 	for (i = 0x8000; i; i >>= 1) {
587 		SIO_SET(DC_SIO_EE_CLK);
588 		dc_delay(sc);
589 		if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
590 			word |= i;
591 		dc_delay(sc);
592 		SIO_CLR(DC_SIO_EE_CLK);
593 		dc_delay(sc);
594 	}
595 
596 	/* Turn off EEPROM access mode. */
597 	dc_eeprom_idle(sc);
598 
599 	*dest = word;
600 }
601 
602 /*
603  * Read a sequence of words from the EEPROM.
604  */
605 static void
606 dc_read_eeprom(struct dc_softc *sc, caddr_t dest, int off, int cnt, int be)
607 {
608 	int i;
609 	uint16_t word = 0, *ptr;
610 
611 	for (i = 0; i < cnt; i++) {
612 		if (DC_IS_PNIC(sc))
613 			dc_eeprom_getword_pnic(sc, off + i, &word);
614 		else if (DC_IS_XIRCOM(sc))
615 			dc_eeprom_getword_xircom(sc, off + i, &word);
616 		else
617 			dc_eeprom_getword(sc, off + i, &word);
618 		ptr = (uint16_t *)(dest + (i * 2));
619 		if (be)
620 			*ptr = be16toh(word);
621 		else
622 			*ptr = le16toh(word);
623 	}
624 }
625 
626 /*
627  * Write the MII serial port for the MII bit-bang module.
628  */
629 static void
630 dc_mii_bitbang_write(device_t dev, uint32_t val)
631 {
632 	struct dc_softc *sc;
633 
634 	sc = device_get_softc(dev);
635 
636 	CSR_WRITE_4(sc, DC_SIO, val);
637 	CSR_BARRIER_4(sc, DC_SIO,
638 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
639 }
640 
641 /*
642  * Read the MII serial port for the MII bit-bang module.
643  */
644 static uint32_t
645 dc_mii_bitbang_read(device_t dev)
646 {
647 	struct dc_softc *sc;
648 	uint32_t val;
649 
650 	sc = device_get_softc(dev);
651 
652 	val = CSR_READ_4(sc, DC_SIO);
653 	CSR_BARRIER_4(sc, DC_SIO,
654 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
655 
656 	return (val);
657 }
658 
659 static int
660 dc_miibus_readreg(device_t dev, int phy, int reg)
661 {
662 	struct dc_softc *sc;
663 	int i, rval, phy_reg = 0;
664 
665 	sc = device_get_softc(dev);
666 
667 	if (sc->dc_pmode != DC_PMODE_MII) {
668 		if (phy == (MII_NPHY - 1)) {
669 			switch (reg) {
670 			case MII_BMSR:
671 			/*
672 			 * Fake something to make the probe
673 			 * code think there's a PHY here.
674 			 */
675 				return (BMSR_MEDIAMASK);
676 			case MII_PHYIDR1:
677 				if (DC_IS_PNIC(sc))
678 					return (DC_VENDORID_LO);
679 				return (DC_VENDORID_DEC);
680 			case MII_PHYIDR2:
681 				if (DC_IS_PNIC(sc))
682 					return (DC_DEVICEID_82C168);
683 				return (DC_DEVICEID_21143);
684 			default:
685 				return (0);
686 			}
687 		} else
688 			return (0);
689 	}
690 
691 	if (DC_IS_PNIC(sc)) {
692 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
693 		    (phy << 23) | (reg << 18));
694 		for (i = 0; i < DC_TIMEOUT; i++) {
695 			DELAY(1);
696 			rval = CSR_READ_4(sc, DC_PN_MII);
697 			if (!(rval & DC_PN_MII_BUSY)) {
698 				rval &= 0xFFFF;
699 				return (rval == 0xFFFF ? 0 : rval);
700 			}
701 		}
702 		return (0);
703 	}
704 
705 	if (sc->dc_type == DC_TYPE_ULI_M5263) {
706 		CSR_WRITE_4(sc, DC_ROM,
707 		    ((phy << DC_ULI_PHY_ADDR_SHIFT) & DC_ULI_PHY_ADDR_MASK) |
708 		    ((reg << DC_ULI_PHY_REG_SHIFT) & DC_ULI_PHY_REG_MASK) |
709 		    DC_ULI_PHY_OP_READ);
710 		for (i = 0; i < DC_TIMEOUT; i++) {
711 			DELAY(1);
712 			rval = CSR_READ_4(sc, DC_ROM);
713 			if ((rval & DC_ULI_PHY_OP_DONE) != 0) {
714 				return (rval & DC_ULI_PHY_DATA_MASK);
715 			}
716 		}
717 		if (i == DC_TIMEOUT)
718 			device_printf(dev, "phy read timed out\n");
719 		return (0);
720 	}
721 
722 	if (DC_IS_COMET(sc)) {
723 		switch (reg) {
724 		case MII_BMCR:
725 			phy_reg = DC_AL_BMCR;
726 			break;
727 		case MII_BMSR:
728 			phy_reg = DC_AL_BMSR;
729 			break;
730 		case MII_PHYIDR1:
731 			phy_reg = DC_AL_VENID;
732 			break;
733 		case MII_PHYIDR2:
734 			phy_reg = DC_AL_DEVID;
735 			break;
736 		case MII_ANAR:
737 			phy_reg = DC_AL_ANAR;
738 			break;
739 		case MII_ANLPAR:
740 			phy_reg = DC_AL_LPAR;
741 			break;
742 		case MII_ANER:
743 			phy_reg = DC_AL_ANER;
744 			break;
745 		default:
746 			device_printf(dev, "phy_read: bad phy register %x\n",
747 			    reg);
748 			return (0);
749 		}
750 
751 		rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
752 		if (rval == 0xFFFF)
753 			return (0);
754 		return (rval);
755 	}
756 
757 	if (sc->dc_type == DC_TYPE_98713) {
758 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
759 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
760 	}
761 	rval = mii_bitbang_readreg(dev, &dc_mii_bitbang_ops, phy, reg);
762 	if (sc->dc_type == DC_TYPE_98713)
763 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
764 
765 	return (rval);
766 }
767 
768 static int
769 dc_miibus_writereg(device_t dev, int phy, int reg, int data)
770 {
771 	struct dc_softc *sc;
772 	int i, phy_reg = 0;
773 
774 	sc = device_get_softc(dev);
775 
776 	if (DC_IS_PNIC(sc)) {
777 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
778 		    (phy << 23) | (reg << 10) | data);
779 		for (i = 0; i < DC_TIMEOUT; i++) {
780 			if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
781 				break;
782 		}
783 		return (0);
784 	}
785 
786 	if (sc->dc_type == DC_TYPE_ULI_M5263) {
787 		CSR_WRITE_4(sc, DC_ROM,
788 		    ((phy << DC_ULI_PHY_ADDR_SHIFT) & DC_ULI_PHY_ADDR_MASK) |
789 		    ((reg << DC_ULI_PHY_REG_SHIFT) & DC_ULI_PHY_REG_MASK) |
790 		    ((data << DC_ULI_PHY_DATA_SHIFT) & DC_ULI_PHY_DATA_MASK) |
791 		    DC_ULI_PHY_OP_WRITE);
792 		DELAY(1);
793 		return (0);
794 	}
795 
796 	if (DC_IS_COMET(sc)) {
797 		switch (reg) {
798 		case MII_BMCR:
799 			phy_reg = DC_AL_BMCR;
800 			break;
801 		case MII_BMSR:
802 			phy_reg = DC_AL_BMSR;
803 			break;
804 		case MII_PHYIDR1:
805 			phy_reg = DC_AL_VENID;
806 			break;
807 		case MII_PHYIDR2:
808 			phy_reg = DC_AL_DEVID;
809 			break;
810 		case MII_ANAR:
811 			phy_reg = DC_AL_ANAR;
812 			break;
813 		case MII_ANLPAR:
814 			phy_reg = DC_AL_LPAR;
815 			break;
816 		case MII_ANER:
817 			phy_reg = DC_AL_ANER;
818 			break;
819 		default:
820 			device_printf(dev, "phy_write: bad phy register %x\n",
821 			    reg);
822 			return (0);
823 			break;
824 		}
825 
826 		CSR_WRITE_4(sc, phy_reg, data);
827 		return (0);
828 	}
829 
830 	if (sc->dc_type == DC_TYPE_98713) {
831 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
832 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
833 	}
834 	mii_bitbang_writereg(dev, &dc_mii_bitbang_ops, phy, reg, data);
835 	if (sc->dc_type == DC_TYPE_98713)
836 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
837 
838 	return (0);
839 }
840 
841 static void
842 dc_miibus_statchg(device_t dev)
843 {
844 	struct dc_softc *sc;
845 	struct ifnet *ifp;
846 	struct mii_data *mii;
847 	struct ifmedia *ifm;
848 
849 	sc = device_get_softc(dev);
850 
851 	mii = device_get_softc(sc->dc_miibus);
852 	ifp = sc->dc_ifp;
853 	if (mii == NULL || ifp == NULL ||
854 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
855 		return;
856 
857 	ifm = &mii->mii_media;
858 	if (DC_IS_DAVICOM(sc) && IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
859 		dc_setcfg(sc, ifm->ifm_media);
860 		return;
861 	} else if (!DC_IS_ADMTEK(sc))
862 		dc_setcfg(sc, mii->mii_media_active);
863 
864 	sc->dc_link = 0;
865 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
866 	    (IFM_ACTIVE | IFM_AVALID)) {
867 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
868 		case IFM_10_T:
869 		case IFM_100_TX:
870 			sc->dc_link = 1;
871 			break;
872 		}
873 	}
874 }
875 
876 /*
877  * Special support for DM9102A cards with HomePNA PHYs. Note:
878  * with the Davicom DM9102A/DM9801 eval board that I have, it seems
879  * to be impossible to talk to the management interface of the DM9801
880  * PHY (its MDIO pin is not connected to anything). Consequently,
881  * the driver has to just 'know' about the additional mode and deal
882  * with it itself. *sigh*
883  */
884 static void
885 dc_miibus_mediainit(device_t dev)
886 {
887 	struct dc_softc *sc;
888 	struct mii_data *mii;
889 	struct ifmedia *ifm;
890 	int rev;
891 
892 	rev = pci_get_revid(dev);
893 
894 	sc = device_get_softc(dev);
895 	mii = device_get_softc(sc->dc_miibus);
896 	ifm = &mii->mii_media;
897 
898 	if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A)
899 		ifmedia_add(ifm, IFM_ETHER | IFM_HPNA_1, 0, NULL);
900 }
901 
902 #define	DC_BITS_512	9
903 #define	DC_BITS_128	7
904 #define	DC_BITS_64	6
905 
906 static uint32_t
907 dc_mchash_le(struct dc_softc *sc, const uint8_t *addr)
908 {
909 	uint32_t crc;
910 
911 	/* Compute CRC for the address value. */
912 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
913 
914 	/*
915 	 * The hash table on the PNIC II and the MX98715AEC-C/D/E
916 	 * chips is only 128 bits wide.
917 	 */
918 	if (sc->dc_flags & DC_128BIT_HASH)
919 		return (crc & ((1 << DC_BITS_128) - 1));
920 
921 	/* The hash table on the MX98715BEC is only 64 bits wide. */
922 	if (sc->dc_flags & DC_64BIT_HASH)
923 		return (crc & ((1 << DC_BITS_64) - 1));
924 
925 	/* Xircom's hash filtering table is different (read: weird) */
926 	/* Xircom uses the LEAST significant bits */
927 	if (DC_IS_XIRCOM(sc)) {
928 		if ((crc & 0x180) == 0x180)
929 			return ((crc & 0x0F) + (crc & 0x70) * 3 + (14 << 4));
930 		else
931 			return ((crc & 0x1F) + ((crc >> 1) & 0xF0) * 3 +
932 			    (12 << 4));
933 	}
934 
935 	return (crc & ((1 << DC_BITS_512) - 1));
936 }
937 
938 /*
939  * Calculate CRC of a multicast group address, return the lower 6 bits.
940  */
941 static uint32_t
942 dc_mchash_be(const uint8_t *addr)
943 {
944 	uint32_t crc;
945 
946 	/* Compute CRC for the address value. */
947 	crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
948 
949 	/* Return the filter bit position. */
950 	return ((crc >> 26) & 0x0000003F);
951 }
952 
953 /*
954  * 21143-style RX filter setup routine. Filter programming is done by
955  * downloading a special setup frame into the TX engine. 21143, Macronix,
956  * PNIC, PNIC II and Davicom chips are programmed this way.
957  *
958  * We always program the chip using 'hash perfect' mode, i.e. one perfect
959  * address (our node address) and a 512-bit hash filter for multicast
960  * frames. We also sneak the broadcast address into the hash filter since
961  * we need that too.
962  */
963 static void
964 dc_setfilt_21143(struct dc_softc *sc)
965 {
966 	uint16_t eaddr[(ETHER_ADDR_LEN+1)/2];
967 	struct dc_desc *sframe;
968 	uint32_t h, *sp;
969 	struct ifmultiaddr *ifma;
970 	struct ifnet *ifp;
971 	int i;
972 
973 	ifp = sc->dc_ifp;
974 
975 	i = sc->dc_cdata.dc_tx_prod;
976 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
977 	sc->dc_cdata.dc_tx_cnt++;
978 	sframe = &sc->dc_ldata.dc_tx_list[i];
979 	sp = sc->dc_cdata.dc_sbuf;
980 	bzero(sp, DC_SFRAME_LEN);
981 
982 	sframe->dc_data = htole32(DC_ADDR_LO(sc->dc_saddr));
983 	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
984 	    DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
985 
986 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
987 
988 	/* If we want promiscuous mode, set the allframes bit. */
989 	if (ifp->if_flags & IFF_PROMISC)
990 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
991 	else
992 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
993 
994 	if (ifp->if_flags & IFF_ALLMULTI)
995 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
996 	else
997 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
998 
999 	if_maddr_rlock(ifp);
1000 	CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1001 		if (ifma->ifma_addr->sa_family != AF_LINK)
1002 			continue;
1003 		h = dc_mchash_le(sc,
1004 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1005 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1006 	}
1007 	if_maddr_runlock(ifp);
1008 
1009 	if (ifp->if_flags & IFF_BROADCAST) {
1010 		h = dc_mchash_le(sc, ifp->if_broadcastaddr);
1011 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1012 	}
1013 
1014 	/* Set our MAC address. */
1015 	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1016 	sp[39] = DC_SP_MAC(eaddr[0]);
1017 	sp[40] = DC_SP_MAC(eaddr[1]);
1018 	sp[41] = DC_SP_MAC(eaddr[2]);
1019 
1020 	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1021 	bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap, BUS_DMASYNC_PREREAD |
1022 	    BUS_DMASYNC_PREWRITE);
1023 	bus_dmamap_sync(sc->dc_stag, sc->dc_smap, BUS_DMASYNC_PREWRITE);
1024 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1025 
1026 	/*
1027 	 * The PNIC takes an exceedingly long time to process its
1028 	 * setup frame; wait 10ms after posting the setup frame
1029 	 * before proceeding, just so it has time to swallow its
1030 	 * medicine.
1031 	 */
1032 	DELAY(10000);
1033 
1034 	sc->dc_wdog_timer = 5;
1035 }
1036 
1037 static void
1038 dc_setfilt_admtek(struct dc_softc *sc)
1039 {
1040 	uint8_t eaddr[ETHER_ADDR_LEN];
1041 	struct ifnet *ifp;
1042 	struct ifmultiaddr *ifma;
1043 	int h = 0;
1044 	uint32_t hashes[2] = { 0, 0 };
1045 
1046 	ifp = sc->dc_ifp;
1047 
1048 	/* Init our MAC address. */
1049 	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1050 	CSR_WRITE_4(sc, DC_AL_PAR0, eaddr[3] << 24 | eaddr[2] << 16 |
1051 	    eaddr[1] << 8 | eaddr[0]);
1052 	CSR_WRITE_4(sc, DC_AL_PAR1, eaddr[5] << 8 | eaddr[4]);
1053 
1054 	/* If we want promiscuous mode, set the allframes bit. */
1055 	if (ifp->if_flags & IFF_PROMISC)
1056 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1057 	else
1058 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1059 
1060 	if (ifp->if_flags & IFF_ALLMULTI)
1061 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1062 	else
1063 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1064 
1065 	/* First, zot all the existing hash bits. */
1066 	CSR_WRITE_4(sc, DC_AL_MAR0, 0);
1067 	CSR_WRITE_4(sc, DC_AL_MAR1, 0);
1068 
1069 	/*
1070 	 * If we're already in promisc or allmulti mode, we
1071 	 * don't have to bother programming the multicast filter.
1072 	 */
1073 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
1074 		return;
1075 
1076 	/* Now program new ones. */
1077 	if_maddr_rlock(ifp);
1078 	CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1079 		if (ifma->ifma_addr->sa_family != AF_LINK)
1080 			continue;
1081 		if (DC_IS_CENTAUR(sc))
1082 			h = dc_mchash_le(sc,
1083 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1084 		else
1085 			h = dc_mchash_be(
1086 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1087 		if (h < 32)
1088 			hashes[0] |= (1 << h);
1089 		else
1090 			hashes[1] |= (1 << (h - 32));
1091 	}
1092 	if_maddr_runlock(ifp);
1093 
1094 	CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]);
1095 	CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]);
1096 }
1097 
1098 static void
1099 dc_setfilt_asix(struct dc_softc *sc)
1100 {
1101 	uint32_t eaddr[(ETHER_ADDR_LEN+3)/4];
1102 	struct ifnet *ifp;
1103 	struct ifmultiaddr *ifma;
1104 	int h = 0;
1105 	uint32_t hashes[2] = { 0, 0 };
1106 
1107 	ifp = sc->dc_ifp;
1108 
1109 	/* Init our MAC address. */
1110 	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1111 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
1112 	CSR_WRITE_4(sc, DC_AX_FILTDATA, eaddr[0]);
1113 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
1114 	CSR_WRITE_4(sc, DC_AX_FILTDATA, eaddr[1]);
1115 
1116 	/* If we want promiscuous mode, set the allframes bit. */
1117 	if (ifp->if_flags & IFF_PROMISC)
1118 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1119 	else
1120 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1121 
1122 	if (ifp->if_flags & IFF_ALLMULTI)
1123 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1124 	else
1125 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1126 
1127 	/*
1128 	 * The ASIX chip has a special bit to enable reception
1129 	 * of broadcast frames.
1130 	 */
1131 	if (ifp->if_flags & IFF_BROADCAST)
1132 		DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1133 	else
1134 		DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1135 
1136 	/* first, zot all the existing hash bits */
1137 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1138 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1139 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1140 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1141 
1142 	/*
1143 	 * If we're already in promisc or allmulti mode, we
1144 	 * don't have to bother programming the multicast filter.
1145 	 */
1146 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
1147 		return;
1148 
1149 	/* now program new ones */
1150 	if_maddr_rlock(ifp);
1151 	CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1152 		if (ifma->ifma_addr->sa_family != AF_LINK)
1153 			continue;
1154 		h = dc_mchash_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1155 		if (h < 32)
1156 			hashes[0] |= (1 << h);
1157 		else
1158 			hashes[1] |= (1 << (h - 32));
1159 	}
1160 	if_maddr_runlock(ifp);
1161 
1162 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1163 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
1164 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1165 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
1166 }
1167 
1168 static void
1169 dc_setfilt_uli(struct dc_softc *sc)
1170 {
1171 	uint8_t eaddr[ETHER_ADDR_LEN];
1172 	struct ifnet *ifp;
1173 	struct ifmultiaddr *ifma;
1174 	struct dc_desc *sframe;
1175 	uint32_t filter, *sp;
1176 	uint8_t *ma;
1177 	int i, mcnt;
1178 
1179 	ifp = sc->dc_ifp;
1180 
1181 	i = sc->dc_cdata.dc_tx_prod;
1182 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1183 	sc->dc_cdata.dc_tx_cnt++;
1184 	sframe = &sc->dc_ldata.dc_tx_list[i];
1185 	sp = sc->dc_cdata.dc_sbuf;
1186 	bzero(sp, DC_SFRAME_LEN);
1187 
1188 	sframe->dc_data = htole32(DC_ADDR_LO(sc->dc_saddr));
1189 	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
1190 	    DC_TXCTL_TLINK | DC_FILTER_PERFECT | DC_TXCTL_FINT);
1191 
1192 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
1193 
1194 	/* Set station address. */
1195 	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1196 	*sp++ = DC_SP_MAC(eaddr[1] << 8 | eaddr[0]);
1197 	*sp++ = DC_SP_MAC(eaddr[3] << 8 | eaddr[2]);
1198 	*sp++ = DC_SP_MAC(eaddr[5] << 8 | eaddr[4]);
1199 
1200 	/* Set broadcast address. */
1201 	*sp++ = DC_SP_MAC(0xFFFF);
1202 	*sp++ = DC_SP_MAC(0xFFFF);
1203 	*sp++ = DC_SP_MAC(0xFFFF);
1204 
1205 	/* Extract current filter configuration. */
1206 	filter = CSR_READ_4(sc, DC_NETCFG);
1207 	filter &= ~(DC_NETCFG_RX_PROMISC | DC_NETCFG_RX_ALLMULTI);
1208 
1209 	/* Now build perfect filters. */
1210 	mcnt = 0;
1211 	if_maddr_rlock(ifp);
1212 	CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1213 		if (ifma->ifma_addr->sa_family != AF_LINK)
1214 			continue;
1215 		if (mcnt >= DC_ULI_FILTER_NPERF) {
1216 			filter |= DC_NETCFG_RX_ALLMULTI;
1217 			break;
1218 		}
1219 		ma = LLADDR((struct sockaddr_dl *)ifma->ifma_addr);
1220 		*sp++ = DC_SP_MAC(ma[1] << 8 | ma[0]);
1221 		*sp++ = DC_SP_MAC(ma[3] << 8 | ma[2]);
1222 		*sp++ = DC_SP_MAC(ma[5] << 8 | ma[4]);
1223 		mcnt++;
1224 	}
1225 	if_maddr_runlock(ifp);
1226 
1227 	for (; mcnt < DC_ULI_FILTER_NPERF; mcnt++) {
1228 		*sp++ = DC_SP_MAC(0xFFFF);
1229 		*sp++ = DC_SP_MAC(0xFFFF);
1230 		*sp++ = DC_SP_MAC(0xFFFF);
1231 	}
1232 
1233 	if (filter & (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON))
1234 		CSR_WRITE_4(sc, DC_NETCFG,
1235 		    filter & ~(DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1236 	if (ifp->if_flags & IFF_PROMISC)
1237 		filter |= DC_NETCFG_RX_PROMISC | DC_NETCFG_RX_ALLMULTI;
1238 	if (ifp->if_flags & IFF_ALLMULTI)
1239 		filter |= DC_NETCFG_RX_ALLMULTI;
1240 	CSR_WRITE_4(sc, DC_NETCFG,
1241 	    filter & ~(DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1242 	if (filter & (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON))
1243 		CSR_WRITE_4(sc, DC_NETCFG, filter);
1244 
1245 	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1246 	bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap, BUS_DMASYNC_PREREAD |
1247 	    BUS_DMASYNC_PREWRITE);
1248 	bus_dmamap_sync(sc->dc_stag, sc->dc_smap, BUS_DMASYNC_PREWRITE);
1249 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1250 
1251 	/*
1252 	 * Wait some time...
1253 	 */
1254 	DELAY(1000);
1255 
1256 	sc->dc_wdog_timer = 5;
1257 }
1258 
1259 static void
1260 dc_setfilt_xircom(struct dc_softc *sc)
1261 {
1262 	uint16_t eaddr[(ETHER_ADDR_LEN+1)/2];
1263 	struct ifnet *ifp;
1264 	struct ifmultiaddr *ifma;
1265 	struct dc_desc *sframe;
1266 	uint32_t h, *sp;
1267 	int i;
1268 
1269 	ifp = sc->dc_ifp;
1270 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1271 
1272 	i = sc->dc_cdata.dc_tx_prod;
1273 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1274 	sc->dc_cdata.dc_tx_cnt++;
1275 	sframe = &sc->dc_ldata.dc_tx_list[i];
1276 	sp = sc->dc_cdata.dc_sbuf;
1277 	bzero(sp, DC_SFRAME_LEN);
1278 
1279 	sframe->dc_data = htole32(DC_ADDR_LO(sc->dc_saddr));
1280 	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
1281 	    DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
1282 
1283 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
1284 
1285 	/* If we want promiscuous mode, set the allframes bit. */
1286 	if (ifp->if_flags & IFF_PROMISC)
1287 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1288 	else
1289 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1290 
1291 	if (ifp->if_flags & IFF_ALLMULTI)
1292 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1293 	else
1294 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1295 
1296 	if_maddr_rlock(ifp);
1297 	CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1298 		if (ifma->ifma_addr->sa_family != AF_LINK)
1299 			continue;
1300 		h = dc_mchash_le(sc,
1301 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1302 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1303 	}
1304 	if_maddr_runlock(ifp);
1305 
1306 	if (ifp->if_flags & IFF_BROADCAST) {
1307 		h = dc_mchash_le(sc, ifp->if_broadcastaddr);
1308 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1309 	}
1310 
1311 	/* Set our MAC address. */
1312 	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1313 	sp[0] = DC_SP_MAC(eaddr[0]);
1314 	sp[1] = DC_SP_MAC(eaddr[1]);
1315 	sp[2] = DC_SP_MAC(eaddr[2]);
1316 
1317 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
1318 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
1319 	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1320 	bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap, BUS_DMASYNC_PREREAD |
1321 	    BUS_DMASYNC_PREWRITE);
1322 	bus_dmamap_sync(sc->dc_stag, sc->dc_smap, BUS_DMASYNC_PREWRITE);
1323 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1324 
1325 	/*
1326 	 * Wait some time...
1327 	 */
1328 	DELAY(1000);
1329 
1330 	sc->dc_wdog_timer = 5;
1331 }
1332 
1333 static void
1334 dc_setfilt(struct dc_softc *sc)
1335 {
1336 
1337 	if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
1338 	    DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc))
1339 		dc_setfilt_21143(sc);
1340 
1341 	if (DC_IS_ASIX(sc))
1342 		dc_setfilt_asix(sc);
1343 
1344 	if (DC_IS_ADMTEK(sc))
1345 		dc_setfilt_admtek(sc);
1346 
1347 	if (DC_IS_ULI(sc))
1348 		dc_setfilt_uli(sc);
1349 
1350 	if (DC_IS_XIRCOM(sc))
1351 		dc_setfilt_xircom(sc);
1352 }
1353 
1354 static void
1355 dc_netcfg_wait(struct dc_softc *sc)
1356 {
1357 	uint32_t isr;
1358 	int i;
1359 
1360 	for (i = 0; i < DC_TIMEOUT; i++) {
1361 		isr = CSR_READ_4(sc, DC_ISR);
1362 		if (isr & DC_ISR_TX_IDLE &&
1363 		    ((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
1364 		    (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT))
1365 			break;
1366 		DELAY(10);
1367 	}
1368 	if (i == DC_TIMEOUT && bus_child_present(sc->dc_dev)) {
1369 		if (!(isr & DC_ISR_TX_IDLE) && !DC_IS_ASIX(sc))
1370 			device_printf(sc->dc_dev,
1371 			    "%s: failed to force tx to idle state\n", __func__);
1372 		if (!((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
1373 		    (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT) &&
1374 		    !DC_HAS_BROKEN_RXSTATE(sc))
1375 			device_printf(sc->dc_dev,
1376 			    "%s: failed to force rx to idle state\n", __func__);
1377 	}
1378 }
1379 
1380 /*
1381  * In order to fiddle with the 'full-duplex' and '100Mbps' bits in
1382  * the netconfig register, we first have to put the transmit and/or
1383  * receive logic in the idle state.
1384  */
1385 static void
1386 dc_setcfg(struct dc_softc *sc, int media)
1387 {
1388 	int restart = 0, watchdogreg;
1389 
1390 	if (IFM_SUBTYPE(media) == IFM_NONE)
1391 		return;
1392 
1393 	if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON)) {
1394 		restart = 1;
1395 		DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1396 		dc_netcfg_wait(sc);
1397 	}
1398 
1399 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
1400 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1401 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1402 		if (sc->dc_pmode == DC_PMODE_MII) {
1403 			if (DC_IS_INTEL(sc)) {
1404 			/* There's a write enable bit here that reads as 1. */
1405 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1406 				watchdogreg &= ~DC_WDOG_CTLWREN;
1407 				watchdogreg |= DC_WDOG_JABBERDIS;
1408 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1409 			} else {
1410 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1411 			}
1412 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1413 			    DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
1414 			if (sc->dc_type == DC_TYPE_98713)
1415 				DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1416 				    DC_NETCFG_SCRAMBLER));
1417 			if (!DC_IS_DAVICOM(sc))
1418 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1419 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1420 		} else {
1421 			if (DC_IS_PNIC(sc)) {
1422 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
1423 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1424 				DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1425 			}
1426 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1427 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1428 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1429 		}
1430 	}
1431 
1432 	if (IFM_SUBTYPE(media) == IFM_10_T) {
1433 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1434 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1435 		if (sc->dc_pmode == DC_PMODE_MII) {
1436 			/* There's a write enable bit here that reads as 1. */
1437 			if (DC_IS_INTEL(sc)) {
1438 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1439 				watchdogreg &= ~DC_WDOG_CTLWREN;
1440 				watchdogreg |= DC_WDOG_JABBERDIS;
1441 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1442 			} else {
1443 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1444 			}
1445 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1446 			    DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
1447 			if (sc->dc_type == DC_TYPE_98713)
1448 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1449 			if (!DC_IS_DAVICOM(sc))
1450 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1451 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1452 		} else {
1453 			if (DC_IS_PNIC(sc)) {
1454 				DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
1455 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1456 				DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1457 			}
1458 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1459 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1460 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1461 			if (DC_IS_INTEL(sc)) {
1462 				DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET);
1463 				DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1464 				if ((media & IFM_GMASK) == IFM_FDX)
1465 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D);
1466 				else
1467 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F);
1468 				DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1469 				DC_CLRBIT(sc, DC_10BTCTRL,
1470 				    DC_TCTL_AUTONEGENBL);
1471 				DELAY(20000);
1472 			}
1473 		}
1474 	}
1475 
1476 	/*
1477 	 * If this is a Davicom DM9102A card with a DM9801 HomePNA
1478 	 * PHY and we want HomePNA mode, set the portsel bit to turn
1479 	 * on the external MII port.
1480 	 */
1481 	if (DC_IS_DAVICOM(sc)) {
1482 		if (IFM_SUBTYPE(media) == IFM_HPNA_1) {
1483 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1484 			sc->dc_link = 1;
1485 		} else {
1486 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1487 		}
1488 	}
1489 
1490 	if ((media & IFM_GMASK) == IFM_FDX) {
1491 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1492 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1493 			DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1494 	} else {
1495 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1496 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1497 			DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1498 	}
1499 
1500 	if (restart)
1501 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON | DC_NETCFG_RX_ON);
1502 }
1503 
1504 static void
1505 dc_reset(struct dc_softc *sc)
1506 {
1507 	int i;
1508 
1509 	DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1510 
1511 	for (i = 0; i < DC_TIMEOUT; i++) {
1512 		DELAY(10);
1513 		if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
1514 			break;
1515 	}
1516 
1517 	if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_CONEXANT(sc) ||
1518 	    DC_IS_XIRCOM(sc) || DC_IS_INTEL(sc) || DC_IS_ULI(sc)) {
1519 		DELAY(10000);
1520 		DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1521 		i = 0;
1522 	}
1523 
1524 	if (i == DC_TIMEOUT)
1525 		device_printf(sc->dc_dev, "reset never completed!\n");
1526 
1527 	/* Wait a little while for the chip to get its brains in order. */
1528 	DELAY(1000);
1529 
1530 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
1531 	CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
1532 	CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
1533 
1534 	/*
1535 	 * Bring the SIA out of reset. In some cases, it looks
1536 	 * like failing to unreset the SIA soon enough gets it
1537 	 * into a state where it will never come out of reset
1538 	 * until we reset the whole chip again.
1539 	 */
1540 	if (DC_IS_INTEL(sc)) {
1541 		DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1542 		CSR_WRITE_4(sc, DC_10BTCTRL, 0xFFFFFFFF);
1543 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
1544 	}
1545 }
1546 
1547 static const struct dc_type *
1548 dc_devtype(device_t dev)
1549 {
1550 	const struct dc_type *t;
1551 	uint32_t devid;
1552 	uint8_t rev;
1553 
1554 	t = dc_devs;
1555 	devid = pci_get_devid(dev);
1556 	rev = pci_get_revid(dev);
1557 
1558 	while (t->dc_name != NULL) {
1559 		if (devid == t->dc_devid && rev >= t->dc_minrev)
1560 			return (t);
1561 		t++;
1562 	}
1563 
1564 	return (NULL);
1565 }
1566 
1567 /*
1568  * Probe for a 21143 or clone chip. Check the PCI vendor and device
1569  * IDs against our list and return a device name if we find a match.
1570  * We do a little bit of extra work to identify the exact type of
1571  * chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
1572  * but different revision IDs. The same is true for 98715/98715A
1573  * chips and the 98725, as well as the ASIX and ADMtek chips. In some
1574  * cases, the exact chip revision affects driver behavior.
1575  */
1576 static int
1577 dc_probe(device_t dev)
1578 {
1579 	const struct dc_type *t;
1580 
1581 	t = dc_devtype(dev);
1582 
1583 	if (t != NULL) {
1584 		device_set_desc(dev, t->dc_name);
1585 		return (BUS_PROBE_DEFAULT);
1586 	}
1587 
1588 	return (ENXIO);
1589 }
1590 
1591 static void
1592 dc_apply_fixup(struct dc_softc *sc, int media)
1593 {
1594 	struct dc_mediainfo *m;
1595 	uint8_t *p;
1596 	int i;
1597 	uint32_t reg;
1598 
1599 	m = sc->dc_mi;
1600 
1601 	while (m != NULL) {
1602 		if (m->dc_media == media)
1603 			break;
1604 		m = m->dc_next;
1605 	}
1606 
1607 	if (m == NULL)
1608 		return;
1609 
1610 	for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) {
1611 		reg = (p[0] | (p[1] << 8)) << 16;
1612 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1613 	}
1614 
1615 	for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) {
1616 		reg = (p[0] | (p[1] << 8)) << 16;
1617 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1618 	}
1619 }
1620 
1621 static int
1622 dc_decode_leaf_sia(struct dc_softc *sc, struct dc_eblock_sia *l)
1623 {
1624 	struct dc_mediainfo *m;
1625 
1626 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1627 	if (m == NULL) {
1628 		device_printf(sc->dc_dev, "Could not allocate mediainfo\n");
1629 		return (ENOMEM);
1630 	}
1631 	switch (l->dc_sia_code & ~DC_SIA_CODE_EXT) {
1632 	case DC_SIA_CODE_10BT:
1633 		m->dc_media = IFM_10_T;
1634 		break;
1635 	case DC_SIA_CODE_10BT_FDX:
1636 		m->dc_media = IFM_10_T | IFM_FDX;
1637 		break;
1638 	case DC_SIA_CODE_10B2:
1639 		m->dc_media = IFM_10_2;
1640 		break;
1641 	case DC_SIA_CODE_10B5:
1642 		m->dc_media = IFM_10_5;
1643 		break;
1644 	default:
1645 		break;
1646 	}
1647 
1648 	/*
1649 	 * We need to ignore CSR13, CSR14, CSR15 for SIA mode.
1650 	 * Things apparently already work for cards that do
1651 	 * supply Media Specific Data.
1652 	 */
1653 	if (l->dc_sia_code & DC_SIA_CODE_EXT) {
1654 		m->dc_gp_len = 2;
1655 		m->dc_gp_ptr =
1656 		(uint8_t *)&l->dc_un.dc_sia_ext.dc_sia_gpio_ctl;
1657 	} else {
1658 		m->dc_gp_len = 2;
1659 		m->dc_gp_ptr =
1660 		(uint8_t *)&l->dc_un.dc_sia_noext.dc_sia_gpio_ctl;
1661 	}
1662 
1663 	m->dc_next = sc->dc_mi;
1664 	sc->dc_mi = m;
1665 
1666 	sc->dc_pmode = DC_PMODE_SIA;
1667 	return (0);
1668 }
1669 
1670 static int
1671 dc_decode_leaf_sym(struct dc_softc *sc, struct dc_eblock_sym *l)
1672 {
1673 	struct dc_mediainfo *m;
1674 
1675 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1676 	if (m == NULL) {
1677 		device_printf(sc->dc_dev, "Could not allocate mediainfo\n");
1678 		return (ENOMEM);
1679 	}
1680 	if (l->dc_sym_code == DC_SYM_CODE_100BT)
1681 		m->dc_media = IFM_100_TX;
1682 
1683 	if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX)
1684 		m->dc_media = IFM_100_TX | IFM_FDX;
1685 
1686 	m->dc_gp_len = 2;
1687 	m->dc_gp_ptr = (uint8_t *)&l->dc_sym_gpio_ctl;
1688 
1689 	m->dc_next = sc->dc_mi;
1690 	sc->dc_mi = m;
1691 
1692 	sc->dc_pmode = DC_PMODE_SYM;
1693 	return (0);
1694 }
1695 
1696 static int
1697 dc_decode_leaf_mii(struct dc_softc *sc, struct dc_eblock_mii *l)
1698 {
1699 	struct dc_mediainfo *m;
1700 	uint8_t *p;
1701 
1702 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1703 	if (m == NULL) {
1704 		device_printf(sc->dc_dev, "Could not allocate mediainfo\n");
1705 		return (ENOMEM);
1706 	}
1707 	/* We abuse IFM_AUTO to represent MII. */
1708 	m->dc_media = IFM_AUTO;
1709 	m->dc_gp_len = l->dc_gpr_len;
1710 
1711 	p = (uint8_t *)l;
1712 	p += sizeof(struct dc_eblock_mii);
1713 	m->dc_gp_ptr = p;
1714 	p += 2 * l->dc_gpr_len;
1715 	m->dc_reset_len = *p;
1716 	p++;
1717 	m->dc_reset_ptr = p;
1718 
1719 	m->dc_next = sc->dc_mi;
1720 	sc->dc_mi = m;
1721 	return (0);
1722 }
1723 
1724 static int
1725 dc_read_srom(struct dc_softc *sc, int bits)
1726 {
1727 	int size;
1728 
1729 	size = DC_ROM_SIZE(bits);
1730 	sc->dc_srom = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
1731 	if (sc->dc_srom == NULL) {
1732 		device_printf(sc->dc_dev, "Could not allocate SROM buffer\n");
1733 		return (ENOMEM);
1734 	}
1735 	dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (size / 2), 0);
1736 	return (0);
1737 }
1738 
1739 static int
1740 dc_parse_21143_srom(struct dc_softc *sc)
1741 {
1742 	struct dc_leaf_hdr *lhdr;
1743 	struct dc_eblock_hdr *hdr;
1744 	int error, have_mii, i, loff;
1745 	char *ptr;
1746 
1747 	have_mii = 0;
1748 	loff = sc->dc_srom[27];
1749 	lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]);
1750 
1751 	ptr = (char *)lhdr;
1752 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1753 	/*
1754 	 * Look if we got a MII media block.
1755 	 */
1756 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1757 		hdr = (struct dc_eblock_hdr *)ptr;
1758 		if (hdr->dc_type == DC_EBLOCK_MII)
1759 		    have_mii++;
1760 
1761 		ptr += (hdr->dc_len & 0x7F);
1762 		ptr++;
1763 	}
1764 
1765 	/*
1766 	 * Do the same thing again. Only use SIA and SYM media
1767 	 * blocks if no MII media block is available.
1768 	 */
1769 	ptr = (char *)lhdr;
1770 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1771 	error = 0;
1772 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1773 		hdr = (struct dc_eblock_hdr *)ptr;
1774 		switch (hdr->dc_type) {
1775 		case DC_EBLOCK_MII:
1776 			error = dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr);
1777 			break;
1778 		case DC_EBLOCK_SIA:
1779 			if (! have_mii)
1780 				error = dc_decode_leaf_sia(sc,
1781 				    (struct dc_eblock_sia *)hdr);
1782 			break;
1783 		case DC_EBLOCK_SYM:
1784 			if (! have_mii)
1785 				error = dc_decode_leaf_sym(sc,
1786 				    (struct dc_eblock_sym *)hdr);
1787 			break;
1788 		default:
1789 			/* Don't care. Yet. */
1790 			break;
1791 		}
1792 		ptr += (hdr->dc_len & 0x7F);
1793 		ptr++;
1794 	}
1795 	return (error);
1796 }
1797 
1798 static void
1799 dc_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1800 {
1801 	bus_addr_t *paddr;
1802 
1803 	KASSERT(nseg == 1,
1804 	    ("%s: wrong number of segments (%d)", __func__, nseg));
1805 	paddr = arg;
1806 	*paddr = segs->ds_addr;
1807 }
1808 
1809 static int
1810 dc_dma_alloc(struct dc_softc *sc)
1811 {
1812 	int error, i;
1813 
1814 	error = bus_dma_tag_create(bus_get_dma_tag(sc->dc_dev), 1, 0,
1815 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1816 	    BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0,
1817 	    NULL, NULL, &sc->dc_ptag);
1818 	if (error) {
1819 		device_printf(sc->dc_dev,
1820 		    "failed to allocate parent DMA tag\n");
1821 		goto fail;
1822 	}
1823 
1824 	/* Allocate a busdma tag and DMA safe memory for TX/RX descriptors. */
1825 	error = bus_dma_tag_create(sc->dc_ptag, DC_LIST_ALIGN, 0,
1826 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, DC_RX_LIST_SZ, 1,
1827 	    DC_RX_LIST_SZ, 0, NULL, NULL, &sc->dc_rx_ltag);
1828 	if (error) {
1829 		device_printf(sc->dc_dev, "failed to create RX list DMA tag\n");
1830 		goto fail;
1831 	}
1832 
1833 	error = bus_dma_tag_create(sc->dc_ptag, DC_LIST_ALIGN, 0,
1834 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, DC_TX_LIST_SZ, 1,
1835 	    DC_TX_LIST_SZ, 0, NULL, NULL, &sc->dc_tx_ltag);
1836 	if (error) {
1837 		device_printf(sc->dc_dev, "failed to create TX list DMA tag\n");
1838 		goto fail;
1839 	}
1840 
1841 	/* RX descriptor list. */
1842 	error = bus_dmamem_alloc(sc->dc_rx_ltag,
1843 	    (void **)&sc->dc_ldata.dc_rx_list, BUS_DMA_NOWAIT |
1844 	    BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->dc_rx_lmap);
1845 	if (error) {
1846 		device_printf(sc->dc_dev,
1847 		    "failed to allocate DMA'able memory for RX list\n");
1848 		goto fail;
1849 	}
1850 	error = bus_dmamap_load(sc->dc_rx_ltag, sc->dc_rx_lmap,
1851 	    sc->dc_ldata.dc_rx_list, DC_RX_LIST_SZ, dc_dma_map_addr,
1852 	    &sc->dc_ldata.dc_rx_list_paddr, BUS_DMA_NOWAIT);
1853 	if (error) {
1854 		device_printf(sc->dc_dev,
1855 		    "failed to load DMA'able memory for RX list\n");
1856 		goto fail;
1857 	}
1858 	/* TX descriptor list. */
1859 	error = bus_dmamem_alloc(sc->dc_tx_ltag,
1860 	    (void **)&sc->dc_ldata.dc_tx_list, BUS_DMA_NOWAIT |
1861 	    BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->dc_tx_lmap);
1862 	if (error) {
1863 		device_printf(sc->dc_dev,
1864 		    "failed to allocate DMA'able memory for TX list\n");
1865 		goto fail;
1866 	}
1867 	error = bus_dmamap_load(sc->dc_tx_ltag, sc->dc_tx_lmap,
1868 	    sc->dc_ldata.dc_tx_list, DC_TX_LIST_SZ, dc_dma_map_addr,
1869 	    &sc->dc_ldata.dc_tx_list_paddr, BUS_DMA_NOWAIT);
1870 	if (error) {
1871 		device_printf(sc->dc_dev,
1872 		    "cannot load DMA'able memory for TX list\n");
1873 		goto fail;
1874 	}
1875 
1876 	/*
1877 	 * Allocate a busdma tag and DMA safe memory for the multicast
1878 	 * setup frame.
1879 	 */
1880 	error = bus_dma_tag_create(sc->dc_ptag, DC_LIST_ALIGN, 0,
1881 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1882 	    DC_SFRAME_LEN + DC_MIN_FRAMELEN, 1, DC_SFRAME_LEN + DC_MIN_FRAMELEN,
1883 	    0, NULL, NULL, &sc->dc_stag);
1884 	if (error) {
1885 		device_printf(sc->dc_dev,
1886 		    "failed to create DMA tag for setup frame\n");
1887 		goto fail;
1888 	}
1889 	error = bus_dmamem_alloc(sc->dc_stag, (void **)&sc->dc_cdata.dc_sbuf,
1890 	    BUS_DMA_NOWAIT, &sc->dc_smap);
1891 	if (error) {
1892 		device_printf(sc->dc_dev,
1893 		    "failed to allocate DMA'able memory for setup frame\n");
1894 		goto fail;
1895 	}
1896 	error = bus_dmamap_load(sc->dc_stag, sc->dc_smap, sc->dc_cdata.dc_sbuf,
1897 	    DC_SFRAME_LEN, dc_dma_map_addr, &sc->dc_saddr, BUS_DMA_NOWAIT);
1898 	if (error) {
1899 		device_printf(sc->dc_dev,
1900 		    "cannot load DMA'able memory for setup frame\n");
1901 		goto fail;
1902 	}
1903 
1904 	/* Allocate a busdma tag for RX mbufs. */
1905 	error = bus_dma_tag_create(sc->dc_ptag, DC_RXBUF_ALIGN, 0,
1906 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1907 	    MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &sc->dc_rx_mtag);
1908 	if (error) {
1909 		device_printf(sc->dc_dev, "failed to create RX mbuf tag\n");
1910 		goto fail;
1911 	}
1912 
1913 	/* Allocate a busdma tag for TX mbufs. */
1914 	error = bus_dma_tag_create(sc->dc_ptag, 1, 0,
1915 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1916 	    MCLBYTES * DC_MAXFRAGS, DC_MAXFRAGS, MCLBYTES,
1917 	    0, NULL, NULL, &sc->dc_tx_mtag);
1918 	if (error) {
1919 		device_printf(sc->dc_dev, "failed to create TX mbuf tag\n");
1920 		goto fail;
1921 	}
1922 
1923 	/* Create the TX/RX busdma maps. */
1924 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
1925 		error = bus_dmamap_create(sc->dc_tx_mtag, 0,
1926 		    &sc->dc_cdata.dc_tx_map[i]);
1927 		if (error) {
1928 			device_printf(sc->dc_dev,
1929 			    "failed to create TX mbuf dmamap\n");
1930 			goto fail;
1931 		}
1932 	}
1933 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
1934 		error = bus_dmamap_create(sc->dc_rx_mtag, 0,
1935 		    &sc->dc_cdata.dc_rx_map[i]);
1936 		if (error) {
1937 			device_printf(sc->dc_dev,
1938 			    "failed to create RX mbuf dmamap\n");
1939 			goto fail;
1940 		}
1941 	}
1942 	error = bus_dmamap_create(sc->dc_rx_mtag, 0, &sc->dc_sparemap);
1943 	if (error) {
1944 		device_printf(sc->dc_dev,
1945 		    "failed to create spare RX mbuf dmamap\n");
1946 		goto fail;
1947 	}
1948 
1949 fail:
1950 	return (error);
1951 }
1952 
1953 static void
1954 dc_dma_free(struct dc_softc *sc)
1955 {
1956 	int i;
1957 
1958 	/* RX buffers. */
1959 	if (sc->dc_rx_mtag != NULL) {
1960 		for (i = 0; i < DC_RX_LIST_CNT; i++) {
1961 			if (sc->dc_cdata.dc_rx_map[i] != NULL)
1962 				bus_dmamap_destroy(sc->dc_rx_mtag,
1963 				    sc->dc_cdata.dc_rx_map[i]);
1964 		}
1965 		if (sc->dc_sparemap != NULL)
1966 			bus_dmamap_destroy(sc->dc_rx_mtag, sc->dc_sparemap);
1967 		bus_dma_tag_destroy(sc->dc_rx_mtag);
1968 	}
1969 
1970 	/* TX buffers. */
1971 	if (sc->dc_rx_mtag != NULL) {
1972 		for (i = 0; i < DC_TX_LIST_CNT; i++) {
1973 			if (sc->dc_cdata.dc_tx_map[i] != NULL)
1974 				bus_dmamap_destroy(sc->dc_tx_mtag,
1975 				    sc->dc_cdata.dc_tx_map[i]);
1976 		}
1977 		bus_dma_tag_destroy(sc->dc_tx_mtag);
1978 	}
1979 
1980 	/* RX descriptor list. */
1981 	if (sc->dc_rx_ltag) {
1982 		if (sc->dc_ldata.dc_rx_list_paddr != 0)
1983 			bus_dmamap_unload(sc->dc_rx_ltag, sc->dc_rx_lmap);
1984 		if (sc->dc_ldata.dc_rx_list != NULL)
1985 			bus_dmamem_free(sc->dc_rx_ltag, sc->dc_ldata.dc_rx_list,
1986 			    sc->dc_rx_lmap);
1987 		bus_dma_tag_destroy(sc->dc_rx_ltag);
1988 	}
1989 
1990 	/* TX descriptor list. */
1991 	if (sc->dc_tx_ltag) {
1992 		if (sc->dc_ldata.dc_tx_list_paddr != 0)
1993 			bus_dmamap_unload(sc->dc_tx_ltag, sc->dc_tx_lmap);
1994 		if (sc->dc_ldata.dc_tx_list != NULL)
1995 			bus_dmamem_free(sc->dc_tx_ltag, sc->dc_ldata.dc_tx_list,
1996 			    sc->dc_tx_lmap);
1997 		bus_dma_tag_destroy(sc->dc_tx_ltag);
1998 	}
1999 
2000 	/* multicast setup frame. */
2001 	if (sc->dc_stag) {
2002 		if (sc->dc_saddr != 0)
2003 			bus_dmamap_unload(sc->dc_stag, sc->dc_smap);
2004 		if (sc->dc_cdata.dc_sbuf != NULL)
2005 			bus_dmamem_free(sc->dc_stag, sc->dc_cdata.dc_sbuf,
2006 			    sc->dc_smap);
2007 		bus_dma_tag_destroy(sc->dc_stag);
2008 	}
2009 }
2010 
2011 /*
2012  * Attach the interface. Allocate softc structures, do ifmedia
2013  * setup and ethernet/BPF attach.
2014  */
2015 static int
2016 dc_attach(device_t dev)
2017 {
2018 	uint32_t eaddr[(ETHER_ADDR_LEN+3)/4];
2019 	uint32_t command;
2020 	struct dc_softc *sc;
2021 	struct ifnet *ifp;
2022 	struct dc_mediainfo *m;
2023 	uint32_t reg, revision;
2024 	uint16_t *srom;
2025 	int error, mac_offset, n, phy, rid, tmp;
2026 	uint8_t *mac;
2027 
2028 	sc = device_get_softc(dev);
2029 	sc->dc_dev = dev;
2030 
2031 	mtx_init(&sc->dc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
2032 	    MTX_DEF);
2033 
2034 	/*
2035 	 * Map control/status registers.
2036 	 */
2037 	pci_enable_busmaster(dev);
2038 
2039 	rid = DC_RID;
2040 	sc->dc_res = bus_alloc_resource_any(dev, DC_RES, &rid, RF_ACTIVE);
2041 
2042 	if (sc->dc_res == NULL) {
2043 		device_printf(dev, "couldn't map ports/memory\n");
2044 		error = ENXIO;
2045 		goto fail;
2046 	}
2047 
2048 	sc->dc_btag = rman_get_bustag(sc->dc_res);
2049 	sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
2050 
2051 	/* Allocate interrupt. */
2052 	rid = 0;
2053 	sc->dc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
2054 	    RF_SHAREABLE | RF_ACTIVE);
2055 
2056 	if (sc->dc_irq == NULL) {
2057 		device_printf(dev, "couldn't map interrupt\n");
2058 		error = ENXIO;
2059 		goto fail;
2060 	}
2061 
2062 	/* Need this info to decide on a chip type. */
2063 	sc->dc_info = dc_devtype(dev);
2064 	revision = pci_get_revid(dev);
2065 
2066 	error = 0;
2067 	/* Get the eeprom width, but PNIC and XIRCOM have diff eeprom */
2068 	if (sc->dc_info->dc_devid !=
2069 	    DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168) &&
2070 	    sc->dc_info->dc_devid !=
2071 	    DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201))
2072 		dc_eeprom_width(sc);
2073 
2074 	switch (sc->dc_info->dc_devid) {
2075 	case DC_DEVID(DC_VENDORID_DEC, DC_DEVICEID_21143):
2076 		sc->dc_type = DC_TYPE_21143;
2077 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
2078 		sc->dc_flags |= DC_REDUCED_MII_POLL;
2079 		/* Save EEPROM contents so we can parse them later. */
2080 		error = dc_read_srom(sc, sc->dc_romwidth);
2081 		if (error != 0)
2082 			goto fail;
2083 		break;
2084 	case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009):
2085 	case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100):
2086 	case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102):
2087 		sc->dc_type = DC_TYPE_DM9102;
2088 		sc->dc_flags |= DC_TX_COALESCE | DC_TX_INTR_ALWAYS;
2089 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_TX_STORENFWD;
2090 		sc->dc_flags |= DC_TX_ALIGN;
2091 		sc->dc_pmode = DC_PMODE_MII;
2092 
2093 		/* Increase the latency timer value. */
2094 		pci_write_config(dev, PCIR_LATTIMER, 0x80, 1);
2095 		break;
2096 	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AL981):
2097 		sc->dc_type = DC_TYPE_AL981;
2098 		sc->dc_flags |= DC_TX_USE_TX_INTR;
2099 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
2100 		sc->dc_pmode = DC_PMODE_MII;
2101 		error = dc_read_srom(sc, sc->dc_romwidth);
2102 		if (error != 0)
2103 			goto fail;
2104 		break;
2105 	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN983):
2106 	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN985):
2107 	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511):
2108 	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513):
2109 	case DC_DEVID(DC_VENDORID_DLINK, DC_DEVICEID_DRP32TXD):
2110 	case DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500):
2111 	case DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500MX):
2112 	case DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN2242):
2113 	case DC_DEVID(DC_VENDORID_HAWKING, DC_DEVICEID_HAWKING_PN672TX):
2114 	case DC_DEVID(DC_VENDORID_PLANEX, DC_DEVICEID_FNW3602T):
2115 	case DC_DEVID(DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB):
2116 	case DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN120):
2117 	case DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130):
2118 	case DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB08):
2119 	case DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB09):
2120 		sc->dc_type = DC_TYPE_AN983;
2121 		sc->dc_flags |= DC_64BIT_HASH;
2122 		sc->dc_flags |= DC_TX_USE_TX_INTR;
2123 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
2124 		sc->dc_pmode = DC_PMODE_MII;
2125 		/* Don't read SROM for - auto-loaded on reset */
2126 		break;
2127 	case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713):
2128 	case DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP):
2129 		if (revision < DC_REVISION_98713A) {
2130 			sc->dc_type = DC_TYPE_98713;
2131 		}
2132 		if (revision >= DC_REVISION_98713A) {
2133 			sc->dc_type = DC_TYPE_98713A;
2134 			sc->dc_flags |= DC_21143_NWAY;
2135 		}
2136 		sc->dc_flags |= DC_REDUCED_MII_POLL;
2137 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
2138 		break;
2139 	case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5):
2140 	case DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN1217):
2141 		/*
2142 		 * Macronix MX98715AEC-C/D/E parts have only a
2143 		 * 128-bit hash table. We need to deal with these
2144 		 * in the same manner as the PNIC II so that we
2145 		 * get the right number of bits out of the
2146 		 * CRC routine.
2147 		 */
2148 		if (revision >= DC_REVISION_98715AEC_C &&
2149 		    revision < DC_REVISION_98725)
2150 			sc->dc_flags |= DC_128BIT_HASH;
2151 		sc->dc_type = DC_TYPE_987x5;
2152 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
2153 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
2154 		break;
2155 	case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98727):
2156 		sc->dc_type = DC_TYPE_987x5;
2157 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
2158 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
2159 		break;
2160 	case DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C115):
2161 		sc->dc_type = DC_TYPE_PNICII;
2162 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR | DC_128BIT_HASH;
2163 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
2164 		break;
2165 	case DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168):
2166 		sc->dc_type = DC_TYPE_PNIC;
2167 		sc->dc_flags |= DC_TX_STORENFWD | DC_TX_INTR_ALWAYS;
2168 		sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
2169 		sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_NOWAIT);
2170 		if (sc->dc_pnic_rx_buf == NULL) {
2171 			device_printf(sc->dc_dev,
2172 			    "Could not allocate PNIC RX buffer\n");
2173 			error = ENOMEM;
2174 			goto fail;
2175 		}
2176 		if (revision < DC_REVISION_82C169)
2177 			sc->dc_pmode = DC_PMODE_SYM;
2178 		break;
2179 	case DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A):
2180 		sc->dc_type = DC_TYPE_ASIX;
2181 		sc->dc_flags |= DC_TX_USE_TX_INTR | DC_TX_INTR_FIRSTFRAG;
2182 		sc->dc_flags |= DC_REDUCED_MII_POLL;
2183 		sc->dc_pmode = DC_PMODE_MII;
2184 		break;
2185 	case DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201):
2186 		sc->dc_type = DC_TYPE_XIRCOM;
2187 		sc->dc_flags |= DC_TX_INTR_ALWAYS | DC_TX_COALESCE |
2188 				DC_TX_ALIGN;
2189 		/*
2190 		 * We don't actually need to coalesce, but we're doing
2191 		 * it to obtain a double word aligned buffer.
2192 		 * The DC_TX_COALESCE flag is required.
2193 		 */
2194 		sc->dc_pmode = DC_PMODE_MII;
2195 		break;
2196 	case DC_DEVID(DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112):
2197 		sc->dc_type = DC_TYPE_CONEXANT;
2198 		sc->dc_flags |= DC_TX_INTR_ALWAYS;
2199 		sc->dc_flags |= DC_REDUCED_MII_POLL;
2200 		sc->dc_pmode = DC_PMODE_MII;
2201 		error = dc_read_srom(sc, sc->dc_romwidth);
2202 		if (error != 0)
2203 			goto fail;
2204 		break;
2205 	case DC_DEVID(DC_VENDORID_ULI, DC_DEVICEID_M5261):
2206 	case DC_DEVID(DC_VENDORID_ULI, DC_DEVICEID_M5263):
2207 		if (sc->dc_info->dc_devid ==
2208 		    DC_DEVID(DC_VENDORID_ULI, DC_DEVICEID_M5261))
2209 			sc->dc_type = DC_TYPE_ULI_M5261;
2210 		else
2211 			sc->dc_type = DC_TYPE_ULI_M5263;
2212 		/* TX buffers should be aligned on 4 byte boundary. */
2213 		sc->dc_flags |= DC_TX_INTR_ALWAYS | DC_TX_COALESCE |
2214 		    DC_TX_ALIGN;
2215 		sc->dc_pmode = DC_PMODE_MII;
2216 		error = dc_read_srom(sc, sc->dc_romwidth);
2217 		if (error != 0)
2218 			goto fail;
2219 		break;
2220 	default:
2221 		device_printf(dev, "unknown device: %x\n",
2222 		    sc->dc_info->dc_devid);
2223 		break;
2224 	}
2225 
2226 	/* Save the cache line size. */
2227 	if (DC_IS_DAVICOM(sc))
2228 		sc->dc_cachesize = 0;
2229 	else
2230 		sc->dc_cachesize = pci_get_cachelnsz(dev);
2231 
2232 	/* Reset the adapter. */
2233 	dc_reset(sc);
2234 
2235 	/* Take 21143 out of snooze mode */
2236 	if (DC_IS_INTEL(sc) || DC_IS_XIRCOM(sc)) {
2237 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
2238 		command &= ~(DC_CFDD_SNOOZE_MODE | DC_CFDD_SLEEP_MODE);
2239 		pci_write_config(dev, DC_PCI_CFDD, command, 4);
2240 	}
2241 
2242 	/*
2243 	 * Try to learn something about the supported media.
2244 	 * We know that ASIX and ADMtek and Davicom devices
2245 	 * will *always* be using MII media, so that's a no-brainer.
2246 	 * The tricky ones are the Macronix/PNIC II and the
2247 	 * Intel 21143.
2248 	 */
2249 	if (DC_IS_INTEL(sc)) {
2250 		error = dc_parse_21143_srom(sc);
2251 		if (error != 0)
2252 			goto fail;
2253 	} else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
2254 		if (sc->dc_type == DC_TYPE_98713)
2255 			sc->dc_pmode = DC_PMODE_MII;
2256 		else
2257 			sc->dc_pmode = DC_PMODE_SYM;
2258 	} else if (!sc->dc_pmode)
2259 		sc->dc_pmode = DC_PMODE_MII;
2260 
2261 	/*
2262 	 * Get station address from the EEPROM.
2263 	 */
2264 	switch(sc->dc_type) {
2265 	case DC_TYPE_98713:
2266 	case DC_TYPE_98713A:
2267 	case DC_TYPE_987x5:
2268 	case DC_TYPE_PNICII:
2269 		dc_read_eeprom(sc, (caddr_t)&mac_offset,
2270 		    (DC_EE_NODEADDR_OFFSET / 2), 1, 0);
2271 		dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
2272 		break;
2273 	case DC_TYPE_PNIC:
2274 		dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
2275 		break;
2276 	case DC_TYPE_DM9102:
2277 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2278 #ifdef __sparc64__
2279 		/*
2280 		 * If this is an onboard dc(4) the station address read from
2281 		 * the EEPROM is all zero and we have to get it from the FCode.
2282 		 */
2283 		if (eaddr[0] == 0 && (eaddr[1] & ~0xffff) == 0)
2284 			OF_getetheraddr(dev, (caddr_t)&eaddr);
2285 #endif
2286 		break;
2287 	case DC_TYPE_21143:
2288 	case DC_TYPE_ASIX:
2289 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2290 		break;
2291 	case DC_TYPE_AL981:
2292 	case DC_TYPE_AN983:
2293 		reg = CSR_READ_4(sc, DC_AL_PAR0);
2294 		mac = (uint8_t *)&eaddr[0];
2295 		mac[0] = (reg >> 0) & 0xff;
2296 		mac[1] = (reg >> 8) & 0xff;
2297 		mac[2] = (reg >> 16) & 0xff;
2298 		mac[3] = (reg >> 24) & 0xff;
2299 		reg = CSR_READ_4(sc, DC_AL_PAR1);
2300 		mac[4] = (reg >> 0) & 0xff;
2301 		mac[5] = (reg >> 8) & 0xff;
2302 		break;
2303 	case DC_TYPE_CONEXANT:
2304 		bcopy(sc->dc_srom + DC_CONEXANT_EE_NODEADDR, &eaddr,
2305 		    ETHER_ADDR_LEN);
2306 		break;
2307 	case DC_TYPE_XIRCOM:
2308 		/* The MAC comes from the CIS. */
2309 		mac = pci_get_ether(dev);
2310 		if (!mac) {
2311 			device_printf(dev, "No station address in CIS!\n");
2312 			error = ENXIO;
2313 			goto fail;
2314 		}
2315 		bcopy(mac, eaddr, ETHER_ADDR_LEN);
2316 		break;
2317 	case DC_TYPE_ULI_M5261:
2318 	case DC_TYPE_ULI_M5263:
2319 		srom = (uint16_t *)sc->dc_srom;
2320 		if (srom == NULL || *srom == 0xFFFF || *srom == 0) {
2321 			/*
2322 			 * No valid SROM present, read station address
2323 			 * from ID Table.
2324 			 */
2325 			device_printf(dev,
2326 			    "Reading station address from ID Table.\n");
2327 			CSR_WRITE_4(sc, DC_BUSCTL, 0x10000);
2328 			CSR_WRITE_4(sc, DC_SIARESET, 0x01C0);
2329 			CSR_WRITE_4(sc, DC_10BTCTRL, 0x0000);
2330 			CSR_WRITE_4(sc, DC_10BTCTRL, 0x0010);
2331 			CSR_WRITE_4(sc, DC_10BTCTRL, 0x0000);
2332 			CSR_WRITE_4(sc, DC_SIARESET, 0x0000);
2333 			CSR_WRITE_4(sc, DC_SIARESET, 0x01B0);
2334 			mac = (uint8_t *)eaddr;
2335 			for (n = 0; n < ETHER_ADDR_LEN; n++)
2336 				mac[n] = (uint8_t)CSR_READ_4(sc, DC_10BTCTRL);
2337 			CSR_WRITE_4(sc, DC_SIARESET, 0x0000);
2338 			CSR_WRITE_4(sc, DC_BUSCTL, 0x0000);
2339 			DELAY(10);
2340 		} else
2341 			dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3,
2342 			    0);
2343 		break;
2344 	default:
2345 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2346 		break;
2347 	}
2348 
2349 	bcopy(eaddr, sc->dc_eaddr, sizeof(eaddr));
2350 	/*
2351 	 * If we still have invalid station address, see whether we can
2352 	 * find station address for chip 0.  Some multi-port controllers
2353 	 * just store station address for chip 0 if they have a shared
2354 	 * SROM.
2355 	 */
2356 	if ((sc->dc_eaddr[0] == 0 && (sc->dc_eaddr[1] & ~0xffff) == 0) ||
2357 	    (sc->dc_eaddr[0] == 0xffffffff &&
2358 	    (sc->dc_eaddr[1] & 0xffff) == 0xffff)) {
2359 		error = dc_check_multiport(sc);
2360 		if (error == 0) {
2361 			bcopy(sc->dc_eaddr, eaddr, sizeof(eaddr));
2362 			/* Extract media information. */
2363 			if (DC_IS_INTEL(sc) && sc->dc_srom != NULL) {
2364 				while (sc->dc_mi != NULL) {
2365 					m = sc->dc_mi->dc_next;
2366 					free(sc->dc_mi, M_DEVBUF);
2367 					sc->dc_mi = m;
2368 				}
2369 				error = dc_parse_21143_srom(sc);
2370 				if (error != 0)
2371 					goto fail;
2372 			}
2373 		} else if (error == ENOMEM)
2374 			goto fail;
2375 		else
2376 			error = 0;
2377 	}
2378 
2379 	if ((error = dc_dma_alloc(sc)) != 0)
2380 		goto fail;
2381 
2382 	ifp = sc->dc_ifp = if_alloc(IFT_ETHER);
2383 	if (ifp == NULL) {
2384 		device_printf(dev, "can not if_alloc()\n");
2385 		error = ENOSPC;
2386 		goto fail;
2387 	}
2388 	ifp->if_softc = sc;
2389 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2390 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2391 	ifp->if_ioctl = dc_ioctl;
2392 	ifp->if_start = dc_start;
2393 	ifp->if_init = dc_init;
2394 	IFQ_SET_MAXLEN(&ifp->if_snd, DC_TX_LIST_CNT - 1);
2395 	ifp->if_snd.ifq_drv_maxlen = DC_TX_LIST_CNT - 1;
2396 	IFQ_SET_READY(&ifp->if_snd);
2397 
2398 	/*
2399 	 * Do MII setup. If this is a 21143, check for a PHY on the
2400 	 * MII bus after applying any necessary fixups to twiddle the
2401 	 * GPIO bits. If we don't end up finding a PHY, restore the
2402 	 * old selection (SIA only or SIA/SYM) and attach the dcphy
2403 	 * driver instead.
2404 	 */
2405 	tmp = 0;
2406 	if (DC_IS_INTEL(sc)) {
2407 		dc_apply_fixup(sc, IFM_AUTO);
2408 		tmp = sc->dc_pmode;
2409 		sc->dc_pmode = DC_PMODE_MII;
2410 	}
2411 
2412 	/*
2413 	 * Setup General Purpose port mode and data so the tulip can talk
2414 	 * to the MII.  This needs to be done before mii_attach so that
2415 	 * we can actually see them.
2416 	 */
2417 	if (DC_IS_XIRCOM(sc)) {
2418 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
2419 		    DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2420 		DELAY(10);
2421 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
2422 		    DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2423 		DELAY(10);
2424 	}
2425 
2426 	phy = MII_PHY_ANY;
2427 	/*
2428 	 * Note: both the AL981 and AN983 have internal PHYs, however the
2429 	 * AL981 provides direct access to the PHY registers while the AN983
2430 	 * uses a serial MII interface. The AN983's MII interface is also
2431 	 * buggy in that you can read from any MII address (0 to 31), but
2432 	 * only address 1 behaves normally. To deal with both cases, we
2433 	 * pretend that the PHY is at MII address 1.
2434 	 */
2435 	if (DC_IS_ADMTEK(sc))
2436 		phy = DC_ADMTEK_PHYADDR;
2437 
2438 	/*
2439 	 * Note: the ukphy probes of the RS7112 report a PHY at MII address
2440 	 * 0 (possibly HomePNA?) and 1 (ethernet) so we only respond to the
2441 	 * correct one.
2442 	 */
2443 	if (DC_IS_CONEXANT(sc))
2444 		phy = DC_CONEXANT_PHYADDR;
2445 
2446 	error = mii_attach(dev, &sc->dc_miibus, ifp, dc_ifmedia_upd,
2447 	    dc_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
2448 
2449 	if (error && DC_IS_INTEL(sc)) {
2450 		sc->dc_pmode = tmp;
2451 		if (sc->dc_pmode != DC_PMODE_SIA)
2452 			sc->dc_pmode = DC_PMODE_SYM;
2453 		sc->dc_flags |= DC_21143_NWAY;
2454 		/*
2455 		 * For non-MII cards, we need to have the 21143
2456 		 * drive the LEDs. Except there are some systems
2457 		 * like the NEC VersaPro NoteBook PC which have no
2458 		 * LEDs, and twiddling these bits has adverse effects
2459 		 * on them. (I.e. you suddenly can't get a link.)
2460 		 */
2461 		if (!(pci_get_subvendor(dev) == 0x1033 &&
2462 		    pci_get_subdevice(dev) == 0x8028))
2463 			sc->dc_flags |= DC_TULIP_LEDS;
2464 		error = mii_attach(dev, &sc->dc_miibus, ifp, dc_ifmedia_upd,
2465 		    dc_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY,
2466 		    MII_OFFSET_ANY, 0);
2467 	}
2468 
2469 	if (error) {
2470 		device_printf(dev, "attaching PHYs failed\n");
2471 		goto fail;
2472 	}
2473 
2474 	if (DC_IS_ADMTEK(sc)) {
2475 		/*
2476 		 * Set automatic TX underrun recovery for the ADMtek chips
2477 		 */
2478 		DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR);
2479 	}
2480 
2481 	/*
2482 	 * Tell the upper layer(s) we support long frames.
2483 	 */
2484 	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
2485 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
2486 	ifp->if_capenable = ifp->if_capabilities;
2487 #ifdef DEVICE_POLLING
2488 	ifp->if_capabilities |= IFCAP_POLLING;
2489 #endif
2490 
2491 	callout_init_mtx(&sc->dc_stat_ch, &sc->dc_mtx, 0);
2492 	callout_init_mtx(&sc->dc_wdog_ch, &sc->dc_mtx, 0);
2493 
2494 	/*
2495 	 * Call MI attach routine.
2496 	 */
2497 	ether_ifattach(ifp, (caddr_t)eaddr);
2498 
2499 	/* Hook interrupt last to avoid having to lock softc */
2500 	error = bus_setup_intr(dev, sc->dc_irq, INTR_TYPE_NET | INTR_MPSAFE,
2501 	    NULL, dc_intr, sc, &sc->dc_intrhand);
2502 
2503 	if (error) {
2504 		device_printf(dev, "couldn't set up irq\n");
2505 		ether_ifdetach(ifp);
2506 		goto fail;
2507 	}
2508 
2509 fail:
2510 	if (error)
2511 		dc_detach(dev);
2512 	return (error);
2513 }
2514 
2515 /*
2516  * Shutdown hardware and free up resources. This can be called any
2517  * time after the mutex has been initialized. It is called in both
2518  * the error case in attach and the normal detach case so it needs
2519  * to be careful about only freeing resources that have actually been
2520  * allocated.
2521  */
2522 static int
2523 dc_detach(device_t dev)
2524 {
2525 	struct dc_softc *sc;
2526 	struct ifnet *ifp;
2527 	struct dc_mediainfo *m;
2528 
2529 	sc = device_get_softc(dev);
2530 	KASSERT(mtx_initialized(&sc->dc_mtx), ("dc mutex not initialized"));
2531 
2532 	ifp = sc->dc_ifp;
2533 
2534 #ifdef DEVICE_POLLING
2535 	if (ifp != NULL && ifp->if_capenable & IFCAP_POLLING)
2536 		ether_poll_deregister(ifp);
2537 #endif
2538 
2539 	/* These should only be active if attach succeeded */
2540 	if (device_is_attached(dev)) {
2541 		DC_LOCK(sc);
2542 		dc_stop(sc);
2543 		DC_UNLOCK(sc);
2544 		callout_drain(&sc->dc_stat_ch);
2545 		callout_drain(&sc->dc_wdog_ch);
2546 		ether_ifdetach(ifp);
2547 	}
2548 	if (sc->dc_miibus)
2549 		device_delete_child(dev, sc->dc_miibus);
2550 	bus_generic_detach(dev);
2551 
2552 	if (sc->dc_intrhand)
2553 		bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2554 	if (sc->dc_irq)
2555 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2556 	if (sc->dc_res)
2557 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2558 
2559 	if (ifp != NULL)
2560 		if_free(ifp);
2561 
2562 	dc_dma_free(sc);
2563 
2564 	free(sc->dc_pnic_rx_buf, M_DEVBUF);
2565 
2566 	while (sc->dc_mi != NULL) {
2567 		m = sc->dc_mi->dc_next;
2568 		free(sc->dc_mi, M_DEVBUF);
2569 		sc->dc_mi = m;
2570 	}
2571 	free(sc->dc_srom, M_DEVBUF);
2572 
2573 	mtx_destroy(&sc->dc_mtx);
2574 
2575 	return (0);
2576 }
2577 
2578 /*
2579  * Initialize the transmit descriptors.
2580  */
2581 static int
2582 dc_list_tx_init(struct dc_softc *sc)
2583 {
2584 	struct dc_chain_data *cd;
2585 	struct dc_list_data *ld;
2586 	int i, nexti;
2587 
2588 	cd = &sc->dc_cdata;
2589 	ld = &sc->dc_ldata;
2590 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2591 		if (i == DC_TX_LIST_CNT - 1)
2592 			nexti = 0;
2593 		else
2594 			nexti = i + 1;
2595 		ld->dc_tx_list[i].dc_status = 0;
2596 		ld->dc_tx_list[i].dc_ctl = 0;
2597 		ld->dc_tx_list[i].dc_data = 0;
2598 		ld->dc_tx_list[i].dc_next = htole32(DC_TXDESC(sc, nexti));
2599 		cd->dc_tx_chain[i] = NULL;
2600 	}
2601 
2602 	cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
2603 	cd->dc_tx_pkts = 0;
2604 	bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap,
2605 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2606 	return (0);
2607 }
2608 
2609 /*
2610  * Initialize the RX descriptors and allocate mbufs for them. Note that
2611  * we arrange the descriptors in a closed ring, so that the last descriptor
2612  * points back to the first.
2613  */
2614 static int
2615 dc_list_rx_init(struct dc_softc *sc)
2616 {
2617 	struct dc_chain_data *cd;
2618 	struct dc_list_data *ld;
2619 	int i, nexti;
2620 
2621 	cd = &sc->dc_cdata;
2622 	ld = &sc->dc_ldata;
2623 
2624 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2625 		if (dc_newbuf(sc, i) != 0)
2626 			return (ENOBUFS);
2627 		if (i == DC_RX_LIST_CNT - 1)
2628 			nexti = 0;
2629 		else
2630 			nexti = i + 1;
2631 		ld->dc_rx_list[i].dc_next = htole32(DC_RXDESC(sc, nexti));
2632 	}
2633 
2634 	cd->dc_rx_prod = 0;
2635 	bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_rx_lmap,
2636 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2637 	return (0);
2638 }
2639 
2640 /*
2641  * Initialize an RX descriptor and attach an MBUF cluster.
2642  */
2643 static int
2644 dc_newbuf(struct dc_softc *sc, int i)
2645 {
2646 	struct mbuf *m;
2647 	bus_dmamap_t map;
2648 	bus_dma_segment_t segs[1];
2649 	int error, nseg;
2650 
2651 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2652 	if (m == NULL)
2653 		return (ENOBUFS);
2654 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2655 	m_adj(m, sizeof(u_int64_t));
2656 
2657 	/*
2658 	 * If this is a PNIC chip, zero the buffer. This is part
2659 	 * of the workaround for the receive bug in the 82c168 and
2660 	 * 82c169 chips.
2661 	 */
2662 	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
2663 		bzero(mtod(m, char *), m->m_len);
2664 
2665 	error = bus_dmamap_load_mbuf_sg(sc->dc_rx_mtag, sc->dc_sparemap,
2666 	    m, segs, &nseg, 0);
2667 	if (error) {
2668 		m_freem(m);
2669 		return (error);
2670 	}
2671 	KASSERT(nseg == 1, ("%s: wrong number of segments (%d)", __func__,
2672 	    nseg));
2673 	if (sc->dc_cdata.dc_rx_chain[i] != NULL)
2674 		bus_dmamap_unload(sc->dc_rx_mtag, sc->dc_cdata.dc_rx_map[i]);
2675 
2676 	map = sc->dc_cdata.dc_rx_map[i];
2677 	sc->dc_cdata.dc_rx_map[i] = sc->dc_sparemap;
2678 	sc->dc_sparemap = map;
2679 	sc->dc_cdata.dc_rx_chain[i] = m;
2680 	bus_dmamap_sync(sc->dc_rx_mtag, sc->dc_cdata.dc_rx_map[i],
2681 	    BUS_DMASYNC_PREREAD);
2682 
2683 	sc->dc_ldata.dc_rx_list[i].dc_ctl = htole32(DC_RXCTL_RLINK | DC_RXLEN);
2684 	sc->dc_ldata.dc_rx_list[i].dc_data =
2685 	    htole32(DC_ADDR_LO(segs[0].ds_addr));
2686 	sc->dc_ldata.dc_rx_list[i].dc_status = htole32(DC_RXSTAT_OWN);
2687 	bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_rx_lmap,
2688 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2689 	return (0);
2690 }
2691 
2692 /*
2693  * Grrrrr.
2694  * The PNIC chip has a terrible bug in it that manifests itself during
2695  * periods of heavy activity. The exact mode of failure if difficult to
2696  * pinpoint: sometimes it only happens in promiscuous mode, sometimes it
2697  * will happen on slow machines. The bug is that sometimes instead of
2698  * uploading one complete frame during reception, it uploads what looks
2699  * like the entire contents of its FIFO memory. The frame we want is at
2700  * the end of the whole mess, but we never know exactly how much data has
2701  * been uploaded, so salvaging the frame is hard.
2702  *
2703  * There is only one way to do it reliably, and it's disgusting.
2704  * Here's what we know:
2705  *
2706  * - We know there will always be somewhere between one and three extra
2707  *   descriptors uploaded.
2708  *
2709  * - We know the desired received frame will always be at the end of the
2710  *   total data upload.
2711  *
2712  * - We know the size of the desired received frame because it will be
2713  *   provided in the length field of the status word in the last descriptor.
2714  *
2715  * Here's what we do:
2716  *
2717  * - When we allocate buffers for the receive ring, we bzero() them.
2718  *   This means that we know that the buffer contents should be all
2719  *   zeros, except for data uploaded by the chip.
2720  *
2721  * - We also force the PNIC chip to upload frames that include the
2722  *   ethernet CRC at the end.
2723  *
2724  * - We gather all of the bogus frame data into a single buffer.
2725  *
2726  * - We then position a pointer at the end of this buffer and scan
2727  *   backwards until we encounter the first non-zero byte of data.
2728  *   This is the end of the received frame. We know we will encounter
2729  *   some data at the end of the frame because the CRC will always be
2730  *   there, so even if the sender transmits a packet of all zeros,
2731  *   we won't be fooled.
2732  *
2733  * - We know the size of the actual received frame, so we subtract
2734  *   that value from the current pointer location. This brings us
2735  *   to the start of the actual received packet.
2736  *
2737  * - We copy this into an mbuf and pass it on, along with the actual
2738  *   frame length.
2739  *
2740  * The performance hit is tremendous, but it beats dropping frames all
2741  * the time.
2742  */
2743 
2744 #define	DC_WHOLEFRAME	(DC_RXSTAT_FIRSTFRAG | DC_RXSTAT_LASTFRAG)
2745 static void
2746 dc_pnic_rx_bug_war(struct dc_softc *sc, int idx)
2747 {
2748 	struct dc_desc *cur_rx;
2749 	struct dc_desc *c = NULL;
2750 	struct mbuf *m = NULL;
2751 	unsigned char *ptr;
2752 	int i, total_len;
2753 	uint32_t rxstat = 0;
2754 
2755 	i = sc->dc_pnic_rx_bug_save;
2756 	cur_rx = &sc->dc_ldata.dc_rx_list[idx];
2757 	ptr = sc->dc_pnic_rx_buf;
2758 	bzero(ptr, DC_RXLEN * 5);
2759 
2760 	/* Copy all the bytes from the bogus buffers. */
2761 	while (1) {
2762 		c = &sc->dc_ldata.dc_rx_list[i];
2763 		rxstat = le32toh(c->dc_status);
2764 		m = sc->dc_cdata.dc_rx_chain[i];
2765 		bcopy(mtod(m, char *), ptr, DC_RXLEN);
2766 		ptr += DC_RXLEN;
2767 		/* If this is the last buffer, break out. */
2768 		if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
2769 			break;
2770 		dc_discard_rxbuf(sc, i);
2771 		DC_INC(i, DC_RX_LIST_CNT);
2772 	}
2773 
2774 	/* Find the length of the actual receive frame. */
2775 	total_len = DC_RXBYTES(rxstat);
2776 
2777 	/* Scan backwards until we hit a non-zero byte. */
2778 	while (*ptr == 0x00)
2779 		ptr--;
2780 
2781 	/* Round off. */
2782 	if ((uintptr_t)(ptr) & 0x3)
2783 		ptr -= 1;
2784 
2785 	/* Now find the start of the frame. */
2786 	ptr -= total_len;
2787 	if (ptr < sc->dc_pnic_rx_buf)
2788 		ptr = sc->dc_pnic_rx_buf;
2789 
2790 	/*
2791 	 * Now copy the salvaged frame to the last mbuf and fake up
2792 	 * the status word to make it look like a successful
2793 	 * frame reception.
2794 	 */
2795 	bcopy(ptr, mtod(m, char *), total_len);
2796 	cur_rx->dc_status = htole32(rxstat | DC_RXSTAT_FIRSTFRAG);
2797 }
2798 
2799 /*
2800  * This routine searches the RX ring for dirty descriptors in the
2801  * event that the rxeof routine falls out of sync with the chip's
2802  * current descriptor pointer. This may happen sometimes as a result
2803  * of a "no RX buffer available" condition that happens when the chip
2804  * consumes all of the RX buffers before the driver has a chance to
2805  * process the RX ring. This routine may need to be called more than
2806  * once to bring the driver back in sync with the chip, however we
2807  * should still be getting RX DONE interrupts to drive the search
2808  * for new packets in the RX ring, so we should catch up eventually.
2809  */
2810 static int
2811 dc_rx_resync(struct dc_softc *sc)
2812 {
2813 	struct dc_desc *cur_rx;
2814 	int i, pos;
2815 
2816 	pos = sc->dc_cdata.dc_rx_prod;
2817 
2818 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2819 		cur_rx = &sc->dc_ldata.dc_rx_list[pos];
2820 		if (!(le32toh(cur_rx->dc_status) & DC_RXSTAT_OWN))
2821 			break;
2822 		DC_INC(pos, DC_RX_LIST_CNT);
2823 	}
2824 
2825 	/* If the ring really is empty, then just return. */
2826 	if (i == DC_RX_LIST_CNT)
2827 		return (0);
2828 
2829 	/* We've fallen behing the chip: catch it. */
2830 	sc->dc_cdata.dc_rx_prod = pos;
2831 
2832 	return (EAGAIN);
2833 }
2834 
2835 static void
2836 dc_discard_rxbuf(struct dc_softc *sc, int i)
2837 {
2838 	struct mbuf *m;
2839 
2840 	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2841 		m = sc->dc_cdata.dc_rx_chain[i];
2842 		bzero(mtod(m, char *), m->m_len);
2843 	}
2844 
2845 	sc->dc_ldata.dc_rx_list[i].dc_ctl = htole32(DC_RXCTL_RLINK | DC_RXLEN);
2846 	sc->dc_ldata.dc_rx_list[i].dc_status = htole32(DC_RXSTAT_OWN);
2847 	bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_rx_lmap, BUS_DMASYNC_PREREAD |
2848 	    BUS_DMASYNC_PREWRITE);
2849 }
2850 
2851 /*
2852  * A frame has been uploaded: pass the resulting mbuf chain up to
2853  * the higher level protocols.
2854  */
2855 static int
2856 dc_rxeof(struct dc_softc *sc)
2857 {
2858 	struct mbuf *m;
2859 	struct ifnet *ifp;
2860 	struct dc_desc *cur_rx;
2861 	int i, total_len, rx_npkts;
2862 	uint32_t rxstat;
2863 
2864 	DC_LOCK_ASSERT(sc);
2865 
2866 	ifp = sc->dc_ifp;
2867 	rx_npkts = 0;
2868 
2869 	bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_rx_lmap, BUS_DMASYNC_POSTREAD |
2870 	    BUS_DMASYNC_POSTWRITE);
2871 	for (i = sc->dc_cdata.dc_rx_prod;
2872 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
2873 	    DC_INC(i, DC_RX_LIST_CNT)) {
2874 #ifdef DEVICE_POLLING
2875 		if (ifp->if_capenable & IFCAP_POLLING) {
2876 			if (sc->rxcycles <= 0)
2877 				break;
2878 			sc->rxcycles--;
2879 		}
2880 #endif
2881 		cur_rx = &sc->dc_ldata.dc_rx_list[i];
2882 		rxstat = le32toh(cur_rx->dc_status);
2883 		if ((rxstat & DC_RXSTAT_OWN) != 0)
2884 			break;
2885 		m = sc->dc_cdata.dc_rx_chain[i];
2886 		bus_dmamap_sync(sc->dc_rx_mtag, sc->dc_cdata.dc_rx_map[i],
2887 		    BUS_DMASYNC_POSTREAD);
2888 		total_len = DC_RXBYTES(rxstat);
2889 		rx_npkts++;
2890 
2891 		if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2892 			if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
2893 				if (rxstat & DC_RXSTAT_FIRSTFRAG)
2894 					sc->dc_pnic_rx_bug_save = i;
2895 				if ((rxstat & DC_RXSTAT_LASTFRAG) == 0)
2896 					continue;
2897 				dc_pnic_rx_bug_war(sc, i);
2898 				rxstat = le32toh(cur_rx->dc_status);
2899 				total_len = DC_RXBYTES(rxstat);
2900 			}
2901 		}
2902 
2903 		/*
2904 		 * If an error occurs, update stats, clear the
2905 		 * status word and leave the mbuf cluster in place:
2906 		 * it should simply get re-used next time this descriptor
2907 		 * comes up in the ring.  However, don't report long
2908 		 * frames as errors since they could be vlans.
2909 		 */
2910 		if ((rxstat & DC_RXSTAT_RXERR)) {
2911 			if (!(rxstat & DC_RXSTAT_GIANT) ||
2912 			    (rxstat & (DC_RXSTAT_CRCERR | DC_RXSTAT_DRIBBLE |
2913 				       DC_RXSTAT_MIIERE | DC_RXSTAT_COLLSEEN |
2914 				       DC_RXSTAT_RUNT   | DC_RXSTAT_DE))) {
2915 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2916 				if (rxstat & DC_RXSTAT_COLLSEEN)
2917 					if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
2918 				dc_discard_rxbuf(sc, i);
2919 				if (rxstat & DC_RXSTAT_CRCERR)
2920 					continue;
2921 				else {
2922 					ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2923 					dc_init_locked(sc);
2924 					return (rx_npkts);
2925 				}
2926 			}
2927 		}
2928 
2929 		/* No errors; receive the packet. */
2930 		total_len -= ETHER_CRC_LEN;
2931 #ifdef __NO_STRICT_ALIGNMENT
2932 		/*
2933 		 * On architectures without alignment problems we try to
2934 		 * allocate a new buffer for the receive ring, and pass up
2935 		 * the one where the packet is already, saving the expensive
2936 		 * copy done in m_devget().
2937 		 * If we are on an architecture with alignment problems, or
2938 		 * if the allocation fails, then use m_devget and leave the
2939 		 * existing buffer in the receive ring.
2940 		 */
2941 		if (dc_newbuf(sc, i) != 0) {
2942 			dc_discard_rxbuf(sc, i);
2943 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2944 			continue;
2945 		}
2946 		m->m_pkthdr.rcvif = ifp;
2947 		m->m_pkthdr.len = m->m_len = total_len;
2948 #else
2949 		{
2950 			struct mbuf *m0;
2951 
2952 			m0 = m_devget(mtod(m, char *), total_len,
2953 				ETHER_ALIGN, ifp, NULL);
2954 			dc_discard_rxbuf(sc, i);
2955 			if (m0 == NULL) {
2956 				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2957 				continue;
2958 			}
2959 			m = m0;
2960 		}
2961 #endif
2962 
2963 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2964 		DC_UNLOCK(sc);
2965 		(*ifp->if_input)(ifp, m);
2966 		DC_LOCK(sc);
2967 	}
2968 
2969 	sc->dc_cdata.dc_rx_prod = i;
2970 	return (rx_npkts);
2971 }
2972 
2973 /*
2974  * A frame was downloaded to the chip. It's safe for us to clean up
2975  * the list buffers.
2976  */
2977 static void
2978 dc_txeof(struct dc_softc *sc)
2979 {
2980 	struct dc_desc *cur_tx;
2981 	struct ifnet *ifp;
2982 	int idx, setup;
2983 	uint32_t ctl, txstat;
2984 
2985 	if (sc->dc_cdata.dc_tx_cnt == 0)
2986 		return;
2987 
2988 	ifp = sc->dc_ifp;
2989 
2990 	/*
2991 	 * Go through our tx list and free mbufs for those
2992 	 * frames that have been transmitted.
2993 	 */
2994 	bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap, BUS_DMASYNC_POSTREAD |
2995 	    BUS_DMASYNC_POSTWRITE);
2996 	setup = 0;
2997 	for (idx = sc->dc_cdata.dc_tx_cons; idx != sc->dc_cdata.dc_tx_prod;
2998 	    DC_INC(idx, DC_TX_LIST_CNT), sc->dc_cdata.dc_tx_cnt--) {
2999 		cur_tx = &sc->dc_ldata.dc_tx_list[idx];
3000 		txstat = le32toh(cur_tx->dc_status);
3001 		ctl = le32toh(cur_tx->dc_ctl);
3002 
3003 		if (txstat & DC_TXSTAT_OWN)
3004 			break;
3005 
3006 		if (sc->dc_cdata.dc_tx_chain[idx] == NULL)
3007 			continue;
3008 
3009 		if (ctl & DC_TXCTL_SETUP) {
3010 			cur_tx->dc_ctl = htole32(ctl & ~DC_TXCTL_SETUP);
3011 			setup++;
3012 			bus_dmamap_sync(sc->dc_stag, sc->dc_smap,
3013 			    BUS_DMASYNC_POSTWRITE);
3014 			/*
3015 			 * Yes, the PNIC is so brain damaged
3016 			 * that it will sometimes generate a TX
3017 			 * underrun error while DMAing the RX
3018 			 * filter setup frame. If we detect this,
3019 			 * we have to send the setup frame again,
3020 			 * or else the filter won't be programmed
3021 			 * correctly.
3022 			 */
3023 			if (DC_IS_PNIC(sc)) {
3024 				if (txstat & DC_TXSTAT_ERRSUM)
3025 					dc_setfilt(sc);
3026 			}
3027 			sc->dc_cdata.dc_tx_chain[idx] = NULL;
3028 			continue;
3029 		}
3030 
3031 		if (DC_IS_XIRCOM(sc) || DC_IS_CONEXANT(sc)) {
3032 			/*
3033 			 * XXX: Why does my Xircom taunt me so?
3034 			 * For some reason it likes setting the CARRLOST flag
3035 			 * even when the carrier is there. wtf?!?
3036 			 * Who knows, but Conexant chips have the
3037 			 * same problem. Maybe they took lessons
3038 			 * from Xircom.
3039 			 */
3040 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
3041 			    sc->dc_pmode == DC_PMODE_MII &&
3042 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
3043 			    DC_TXSTAT_NOCARRIER)))
3044 				txstat &= ~DC_TXSTAT_ERRSUM;
3045 		} else {
3046 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
3047 			    sc->dc_pmode == DC_PMODE_MII &&
3048 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
3049 			    DC_TXSTAT_NOCARRIER | DC_TXSTAT_CARRLOST)))
3050 				txstat &= ~DC_TXSTAT_ERRSUM;
3051 		}
3052 
3053 		if (txstat & DC_TXSTAT_ERRSUM) {
3054 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3055 			if (txstat & DC_TXSTAT_EXCESSCOLL)
3056 				if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
3057 			if (txstat & DC_TXSTAT_LATECOLL)
3058 				if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
3059 			if (!(txstat & DC_TXSTAT_UNDERRUN)) {
3060 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3061 				dc_init_locked(sc);
3062 				return;
3063 			}
3064 		} else
3065 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
3066 		if_inc_counter(ifp, IFCOUNTER_COLLISIONS, (txstat & DC_TXSTAT_COLLCNT) >> 3);
3067 
3068 		bus_dmamap_sync(sc->dc_tx_mtag, sc->dc_cdata.dc_tx_map[idx],
3069 		    BUS_DMASYNC_POSTWRITE);
3070 		bus_dmamap_unload(sc->dc_tx_mtag, sc->dc_cdata.dc_tx_map[idx]);
3071 		m_freem(sc->dc_cdata.dc_tx_chain[idx]);
3072 		sc->dc_cdata.dc_tx_chain[idx] = NULL;
3073 	}
3074 	sc->dc_cdata.dc_tx_cons = idx;
3075 
3076 	if (sc->dc_cdata.dc_tx_cnt <= DC_TX_LIST_CNT - DC_TX_LIST_RSVD) {
3077 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3078 		if (sc->dc_cdata.dc_tx_cnt == 0)
3079 			sc->dc_wdog_timer = 0;
3080 	}
3081 	if (setup > 0)
3082 		bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap,
3083 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3084 }
3085 
3086 static void
3087 dc_tick(void *xsc)
3088 {
3089 	struct dc_softc *sc;
3090 	struct mii_data *mii;
3091 	struct ifnet *ifp;
3092 	uint32_t r;
3093 
3094 	sc = xsc;
3095 	DC_LOCK_ASSERT(sc);
3096 	ifp = sc->dc_ifp;
3097 	mii = device_get_softc(sc->dc_miibus);
3098 
3099 	/*
3100 	 * Reclaim transmitted frames for controllers that do
3101 	 * not generate TX completion interrupt for every frame.
3102 	 */
3103 	if (sc->dc_flags & DC_TX_USE_TX_INTR)
3104 		dc_txeof(sc);
3105 
3106 	if (sc->dc_flags & DC_REDUCED_MII_POLL) {
3107 		if (sc->dc_flags & DC_21143_NWAY) {
3108 			r = CSR_READ_4(sc, DC_10BTSTAT);
3109 			if (IFM_SUBTYPE(mii->mii_media_active) ==
3110 			    IFM_100_TX && (r & DC_TSTAT_LS100)) {
3111 				sc->dc_link = 0;
3112 				mii_mediachg(mii);
3113 			}
3114 			if (IFM_SUBTYPE(mii->mii_media_active) ==
3115 			    IFM_10_T && (r & DC_TSTAT_LS10)) {
3116 				sc->dc_link = 0;
3117 				mii_mediachg(mii);
3118 			}
3119 			if (sc->dc_link == 0)
3120 				mii_tick(mii);
3121 		} else {
3122 			/*
3123 			 * For NICs which never report DC_RXSTATE_WAIT, we
3124 			 * have to bite the bullet...
3125 			 */
3126 			if ((DC_HAS_BROKEN_RXSTATE(sc) || (CSR_READ_4(sc,
3127 			    DC_ISR) & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT) &&
3128 			    sc->dc_cdata.dc_tx_cnt == 0)
3129 				mii_tick(mii);
3130 		}
3131 	} else
3132 		mii_tick(mii);
3133 
3134 	/*
3135 	 * When the init routine completes, we expect to be able to send
3136 	 * packets right away, and in fact the network code will send a
3137 	 * gratuitous ARP the moment the init routine marks the interface
3138 	 * as running. However, even though the MAC may have been initialized,
3139 	 * there may be a delay of a few seconds before the PHY completes
3140 	 * autonegotiation and the link is brought up. Any transmissions
3141 	 * made during that delay will be lost. Dealing with this is tricky:
3142 	 * we can't just pause in the init routine while waiting for the
3143 	 * PHY to come ready since that would bring the whole system to
3144 	 * a screeching halt for several seconds.
3145 	 *
3146 	 * What we do here is prevent the TX start routine from sending
3147 	 * any packets until a link has been established. After the
3148 	 * interface has been initialized, the tick routine will poll
3149 	 * the state of the PHY until the IFM_ACTIVE flag is set. Until
3150 	 * that time, packets will stay in the send queue, and once the
3151 	 * link comes up, they will be flushed out to the wire.
3152 	 */
3153 	if (sc->dc_link != 0 && !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3154 		dc_start_locked(ifp);
3155 
3156 	if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link)
3157 		callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
3158 	else
3159 		callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
3160 }
3161 
3162 /*
3163  * A transmit underrun has occurred.  Back off the transmit threshold,
3164  * or switch to store and forward mode if we have to.
3165  */
3166 static void
3167 dc_tx_underrun(struct dc_softc *sc)
3168 {
3169 	uint32_t netcfg, isr;
3170 	int i, reinit;
3171 
3172 	reinit = 0;
3173 	netcfg = CSR_READ_4(sc, DC_NETCFG);
3174 	device_printf(sc->dc_dev, "TX underrun -- ");
3175 	if ((sc->dc_flags & DC_TX_STORENFWD) == 0) {
3176 		if (sc->dc_txthresh + DC_TXTHRESH_INC > DC_TXTHRESH_MAX) {
3177 			printf("using store and forward mode\n");
3178 			netcfg |= DC_NETCFG_STORENFWD;
3179 		} else {
3180 			printf("increasing TX threshold\n");
3181 			sc->dc_txthresh += DC_TXTHRESH_INC;
3182 			netcfg &= ~DC_NETCFG_TX_THRESH;
3183 			netcfg |= sc->dc_txthresh;
3184 		}
3185 
3186 		if (DC_IS_INTEL(sc)) {
3187 			/*
3188 			 * The real 21143 requires that the transmitter be idle
3189 			 * in order to change the transmit threshold or store
3190 			 * and forward state.
3191 			 */
3192 			CSR_WRITE_4(sc, DC_NETCFG, netcfg & ~DC_NETCFG_TX_ON);
3193 
3194 			for (i = 0; i < DC_TIMEOUT; i++) {
3195 				isr = CSR_READ_4(sc, DC_ISR);
3196 				if (isr & DC_ISR_TX_IDLE)
3197 					break;
3198 				DELAY(10);
3199 			}
3200 			if (i == DC_TIMEOUT) {
3201 				device_printf(sc->dc_dev,
3202 				    "%s: failed to force tx to idle state\n",
3203 				    __func__);
3204 				reinit++;
3205 			}
3206 		}
3207 	} else {
3208 		printf("resetting\n");
3209 		reinit++;
3210 	}
3211 
3212 	if (reinit == 0) {
3213 		CSR_WRITE_4(sc, DC_NETCFG, netcfg);
3214 		if (DC_IS_INTEL(sc))
3215 			CSR_WRITE_4(sc, DC_NETCFG, netcfg | DC_NETCFG_TX_ON);
3216 	} else {
3217 		sc->dc_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3218 		dc_init_locked(sc);
3219 	}
3220 }
3221 
3222 #ifdef DEVICE_POLLING
3223 static poll_handler_t dc_poll;
3224 
3225 static int
3226 dc_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
3227 {
3228 	struct dc_softc *sc = ifp->if_softc;
3229 	int rx_npkts = 0;
3230 
3231 	DC_LOCK(sc);
3232 
3233 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3234 		DC_UNLOCK(sc);
3235 		return (rx_npkts);
3236 	}
3237 
3238 	sc->rxcycles = count;
3239 	rx_npkts = dc_rxeof(sc);
3240 	dc_txeof(sc);
3241 	if (!IFQ_IS_EMPTY(&ifp->if_snd) &&
3242 	    !(ifp->if_drv_flags & IFF_DRV_OACTIVE))
3243 		dc_start_locked(ifp);
3244 
3245 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
3246 		uint32_t	status;
3247 
3248 		status = CSR_READ_4(sc, DC_ISR);
3249 		status &= (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF |
3250 			DC_ISR_TX_NOBUF | DC_ISR_TX_IDLE | DC_ISR_TX_UNDERRUN |
3251 			DC_ISR_BUS_ERR);
3252 		if (!status) {
3253 			DC_UNLOCK(sc);
3254 			return (rx_npkts);
3255 		}
3256 		/* ack what we have */
3257 		CSR_WRITE_4(sc, DC_ISR, status);
3258 
3259 		if (status & (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF)) {
3260 			uint32_t r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
3261 			if_inc_counter(ifp, IFCOUNTER_IERRORS, (r & 0xffff) + ((r >> 17) & 0x7ff));
3262 
3263 			if (dc_rx_resync(sc))
3264 				dc_rxeof(sc);
3265 		}
3266 		/* restart transmit unit if necessary */
3267 		if (status & DC_ISR_TX_IDLE && sc->dc_cdata.dc_tx_cnt)
3268 			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3269 
3270 		if (status & DC_ISR_TX_UNDERRUN)
3271 			dc_tx_underrun(sc);
3272 
3273 		if (status & DC_ISR_BUS_ERR) {
3274 			if_printf(ifp, "%s: bus error\n", __func__);
3275 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3276 			dc_init_locked(sc);
3277 		}
3278 	}
3279 	DC_UNLOCK(sc);
3280 	return (rx_npkts);
3281 }
3282 #endif /* DEVICE_POLLING */
3283 
3284 static void
3285 dc_intr(void *arg)
3286 {
3287 	struct dc_softc *sc;
3288 	struct ifnet *ifp;
3289 	uint32_t r, status;
3290 	int n;
3291 
3292 	sc = arg;
3293 
3294 	if (sc->suspended)
3295 		return;
3296 
3297 	DC_LOCK(sc);
3298 	status = CSR_READ_4(sc, DC_ISR);
3299 	if (status == 0xFFFFFFFF || (status & DC_INTRS) == 0) {
3300 		DC_UNLOCK(sc);
3301 		return;
3302 	}
3303 	ifp = sc->dc_ifp;
3304 #ifdef DEVICE_POLLING
3305 	if (ifp->if_capenable & IFCAP_POLLING) {
3306 		DC_UNLOCK(sc);
3307 		return;
3308 	}
3309 #endif
3310 	/* Disable interrupts. */
3311 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3312 
3313 	for (n = 16; n > 0; n--) {
3314 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
3315 			break;
3316 		/* Ack interrupts. */
3317 		CSR_WRITE_4(sc, DC_ISR, status);
3318 
3319 		if (status & DC_ISR_RX_OK) {
3320 			if (dc_rxeof(sc) == 0) {
3321 				while (dc_rx_resync(sc))
3322 					dc_rxeof(sc);
3323 			}
3324 		}
3325 
3326 		if (status & (DC_ISR_TX_OK | DC_ISR_TX_NOBUF))
3327 			dc_txeof(sc);
3328 
3329 		if (status & DC_ISR_TX_IDLE) {
3330 			dc_txeof(sc);
3331 			if (sc->dc_cdata.dc_tx_cnt) {
3332 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3333 				CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3334 			}
3335 		}
3336 
3337 		if (status & DC_ISR_TX_UNDERRUN)
3338 			dc_tx_underrun(sc);
3339 
3340 		if ((status & DC_ISR_RX_WATDOGTIMEO)
3341 		    || (status & DC_ISR_RX_NOBUF)) {
3342 			r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
3343 			if_inc_counter(ifp, IFCOUNTER_IERRORS, (r & 0xffff) + ((r >> 17) & 0x7ff));
3344 			if (dc_rxeof(sc) == 0) {
3345 				while (dc_rx_resync(sc))
3346 					dc_rxeof(sc);
3347 			}
3348 		}
3349 
3350 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3351 			dc_start_locked(ifp);
3352 
3353 		if (status & DC_ISR_BUS_ERR) {
3354 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3355 			dc_init_locked(sc);
3356 			DC_UNLOCK(sc);
3357 			return;
3358 		}
3359 		status = CSR_READ_4(sc, DC_ISR);
3360 		if (status == 0xFFFFFFFF || (status & DC_INTRS) == 0)
3361 			break;
3362 	}
3363 
3364 	/* Re-enable interrupts. */
3365 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3366 		CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3367 
3368 	DC_UNLOCK(sc);
3369 }
3370 
3371 /*
3372  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
3373  * pointers to the fragment pointers.
3374  */
3375 static int
3376 dc_encap(struct dc_softc *sc, struct mbuf **m_head)
3377 {
3378 	bus_dma_segment_t segs[DC_MAXFRAGS];
3379 	bus_dmamap_t map;
3380 	struct dc_desc *f;
3381 	struct mbuf *m;
3382 	int cur, defragged, error, first, frag, i, idx, nseg;
3383 
3384 	m = NULL;
3385 	defragged = 0;
3386 	if (sc->dc_flags & DC_TX_COALESCE &&
3387 	    ((*m_head)->m_next != NULL || sc->dc_flags & DC_TX_ALIGN)) {
3388 		m = m_defrag(*m_head, M_NOWAIT);
3389 		defragged = 1;
3390 	} else {
3391 		/*
3392 		 * Count the number of frags in this chain to see if we
3393 		 * need to m_collapse.  Since the descriptor list is shared
3394 		 * by all packets, we'll m_collapse long chains so that they
3395 		 * do not use up the entire list, even if they would fit.
3396 		 */
3397 		i = 0;
3398 		for (m = *m_head; m != NULL; m = m->m_next)
3399 			i++;
3400 		if (i > DC_TX_LIST_CNT / 4 ||
3401 		    DC_TX_LIST_CNT - i + sc->dc_cdata.dc_tx_cnt <=
3402 		    DC_TX_LIST_RSVD) {
3403 			m = m_collapse(*m_head, M_NOWAIT, DC_MAXFRAGS);
3404 			defragged = 1;
3405 		}
3406 	}
3407 	if (defragged != 0) {
3408 		if (m == NULL) {
3409 			m_freem(*m_head);
3410 			*m_head = NULL;
3411 			return (ENOBUFS);
3412 		}
3413 		*m_head = m;
3414 	}
3415 
3416 	idx = sc->dc_cdata.dc_tx_prod;
3417 	error = bus_dmamap_load_mbuf_sg(sc->dc_tx_mtag,
3418 	    sc->dc_cdata.dc_tx_map[idx], *m_head, segs, &nseg, 0);
3419 	if (error == EFBIG) {
3420 		if (defragged != 0 || (m = m_collapse(*m_head, M_NOWAIT,
3421 		    DC_MAXFRAGS)) == NULL) {
3422 			m_freem(*m_head);
3423 			*m_head = NULL;
3424 			return (defragged != 0 ? error : ENOBUFS);
3425 		}
3426 		*m_head = m;
3427 		error = bus_dmamap_load_mbuf_sg(sc->dc_tx_mtag,
3428 		    sc->dc_cdata.dc_tx_map[idx], *m_head, segs, &nseg, 0);
3429 		if (error != 0) {
3430 			m_freem(*m_head);
3431 			*m_head = NULL;
3432 			return (error);
3433 		}
3434 	} else if (error != 0)
3435 		return (error);
3436 	KASSERT(nseg <= DC_MAXFRAGS,
3437 	    ("%s: wrong number of segments (%d)", __func__, nseg));
3438 	if (nseg == 0) {
3439 		m_freem(*m_head);
3440 		*m_head = NULL;
3441 		return (EIO);
3442 	}
3443 
3444 	/* Check descriptor overruns. */
3445 	if (sc->dc_cdata.dc_tx_cnt + nseg > DC_TX_LIST_CNT - DC_TX_LIST_RSVD) {
3446 		bus_dmamap_unload(sc->dc_tx_mtag, sc->dc_cdata.dc_tx_map[idx]);
3447 		return (ENOBUFS);
3448 	}
3449 	bus_dmamap_sync(sc->dc_tx_mtag, sc->dc_cdata.dc_tx_map[idx],
3450 	    BUS_DMASYNC_PREWRITE);
3451 
3452 	first = cur = frag = sc->dc_cdata.dc_tx_prod;
3453 	for (i = 0; i < nseg; i++) {
3454 		if ((sc->dc_flags & DC_TX_ADMTEK_WAR) &&
3455 		    (frag == (DC_TX_LIST_CNT - 1)) &&
3456 		    (first != sc->dc_cdata.dc_tx_first)) {
3457 			bus_dmamap_unload(sc->dc_tx_mtag,
3458 			    sc->dc_cdata.dc_tx_map[first]);
3459 			m_freem(*m_head);
3460 			*m_head = NULL;
3461 			return (ENOBUFS);
3462 		}
3463 
3464 		f = &sc->dc_ldata.dc_tx_list[frag];
3465 		f->dc_ctl = htole32(DC_TXCTL_TLINK | segs[i].ds_len);
3466 		if (i == 0) {
3467 			f->dc_status = 0;
3468 			f->dc_ctl |= htole32(DC_TXCTL_FIRSTFRAG);
3469 		} else
3470 			f->dc_status = htole32(DC_TXSTAT_OWN);
3471 		f->dc_data = htole32(DC_ADDR_LO(segs[i].ds_addr));
3472 		cur = frag;
3473 		DC_INC(frag, DC_TX_LIST_CNT);
3474 	}
3475 
3476 	sc->dc_cdata.dc_tx_prod = frag;
3477 	sc->dc_cdata.dc_tx_cnt += nseg;
3478 	sc->dc_cdata.dc_tx_chain[cur] = *m_head;
3479 	sc->dc_ldata.dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_LASTFRAG);
3480 	if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
3481 		sc->dc_ldata.dc_tx_list[first].dc_ctl |=
3482 		    htole32(DC_TXCTL_FINT);
3483 	if (sc->dc_flags & DC_TX_INTR_ALWAYS)
3484 		sc->dc_ldata.dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
3485 	if (sc->dc_flags & DC_TX_USE_TX_INTR &&
3486 	    ++sc->dc_cdata.dc_tx_pkts >= 8) {
3487 		sc->dc_cdata.dc_tx_pkts = 0;
3488 		sc->dc_ldata.dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
3489 	}
3490 	sc->dc_ldata.dc_tx_list[first].dc_status = htole32(DC_TXSTAT_OWN);
3491 
3492 	bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap,
3493 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3494 
3495 	/*
3496 	 * Swap the last and the first dmamaps to ensure the map for
3497 	 * this transmission is placed at the last descriptor.
3498 	 */
3499 	map = sc->dc_cdata.dc_tx_map[cur];
3500 	sc->dc_cdata.dc_tx_map[cur] = sc->dc_cdata.dc_tx_map[first];
3501 	sc->dc_cdata.dc_tx_map[first] = map;
3502 
3503 	return (0);
3504 }
3505 
3506 static void
3507 dc_start(struct ifnet *ifp)
3508 {
3509 	struct dc_softc *sc;
3510 
3511 	sc = ifp->if_softc;
3512 	DC_LOCK(sc);
3513 	dc_start_locked(ifp);
3514 	DC_UNLOCK(sc);
3515 }
3516 
3517 /*
3518  * Main transmit routine
3519  * To avoid having to do mbuf copies, we put pointers to the mbuf data
3520  * regions directly in the transmit lists.  We also save a copy of the
3521  * pointers since the transmit list fragment pointers are physical
3522  * addresses.
3523  */
3524 static void
3525 dc_start_locked(struct ifnet *ifp)
3526 {
3527 	struct dc_softc *sc;
3528 	struct mbuf *m_head;
3529 	int queued;
3530 
3531 	sc = ifp->if_softc;
3532 
3533 	DC_LOCK_ASSERT(sc);
3534 
3535 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
3536 	    IFF_DRV_RUNNING || sc->dc_link == 0)
3537 		return;
3538 
3539 	sc->dc_cdata.dc_tx_first = sc->dc_cdata.dc_tx_prod;
3540 
3541 	for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
3542 		/*
3543 		 * If there's no way we can send any packets, return now.
3544 		 */
3545 		if (sc->dc_cdata.dc_tx_cnt > DC_TX_LIST_CNT - DC_TX_LIST_RSVD) {
3546 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3547 			break;
3548 		}
3549 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
3550 		if (m_head == NULL)
3551 			break;
3552 
3553 		if (dc_encap(sc, &m_head)) {
3554 			if (m_head == NULL)
3555 				break;
3556 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
3557 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3558 			break;
3559 		}
3560 
3561 		queued++;
3562 		/*
3563 		 * If there's a BPF listener, bounce a copy of this frame
3564 		 * to him.
3565 		 */
3566 		BPF_MTAP(ifp, m_head);
3567 	}
3568 
3569 	if (queued > 0) {
3570 		/* Transmit */
3571 		if (!(sc->dc_flags & DC_TX_POLL))
3572 			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3573 
3574 		/*
3575 		 * Set a timeout in case the chip goes out to lunch.
3576 		 */
3577 		sc->dc_wdog_timer = 5;
3578 	}
3579 }
3580 
3581 static void
3582 dc_init(void *xsc)
3583 {
3584 	struct dc_softc *sc = xsc;
3585 
3586 	DC_LOCK(sc);
3587 	dc_init_locked(sc);
3588 	DC_UNLOCK(sc);
3589 }
3590 
3591 static void
3592 dc_init_locked(struct dc_softc *sc)
3593 {
3594 	struct ifnet *ifp = sc->dc_ifp;
3595 	struct mii_data *mii;
3596 	struct ifmedia *ifm;
3597 
3598 	DC_LOCK_ASSERT(sc);
3599 
3600 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
3601 		return;
3602 
3603 	mii = device_get_softc(sc->dc_miibus);
3604 
3605 	/*
3606 	 * Cancel pending I/O and free all RX/TX buffers.
3607 	 */
3608 	dc_stop(sc);
3609 	dc_reset(sc);
3610 	if (DC_IS_INTEL(sc)) {
3611 		ifm = &mii->mii_media;
3612 		dc_apply_fixup(sc, ifm->ifm_media);
3613 	}
3614 
3615 	/*
3616 	 * Set cache alignment and burst length.
3617 	 */
3618 	if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc) || DC_IS_ULI(sc))
3619 		CSR_WRITE_4(sc, DC_BUSCTL, 0);
3620 	else
3621 		CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME | DC_BUSCTL_MRLE);
3622 	/*
3623 	 * Evenly share the bus between receive and transmit process.
3624 	 */
3625 	if (DC_IS_INTEL(sc))
3626 		DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION);
3627 	if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
3628 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
3629 	} else {
3630 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
3631 	}
3632 	if (sc->dc_flags & DC_TX_POLL)
3633 		DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
3634 	switch(sc->dc_cachesize) {
3635 	case 32:
3636 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
3637 		break;
3638 	case 16:
3639 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
3640 		break;
3641 	case 8:
3642 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
3643 		break;
3644 	case 0:
3645 	default:
3646 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
3647 		break;
3648 	}
3649 
3650 	if (sc->dc_flags & DC_TX_STORENFWD)
3651 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3652 	else {
3653 		if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3654 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3655 		} else {
3656 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3657 			DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3658 		}
3659 	}
3660 
3661 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
3662 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
3663 
3664 	if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
3665 		/*
3666 		 * The app notes for the 98713 and 98715A say that
3667 		 * in order to have the chips operate properly, a magic
3668 		 * number must be written to CSR16. Macronix does not
3669 		 * document the meaning of these bits so there's no way
3670 		 * to know exactly what they do. The 98713 has a magic
3671 		 * number all its own; the rest all use a different one.
3672 		 */
3673 		DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
3674 		if (sc->dc_type == DC_TYPE_98713)
3675 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
3676 		else
3677 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
3678 	}
3679 
3680 	if (DC_IS_XIRCOM(sc)) {
3681 		/*
3682 		 * setup General Purpose Port mode and data so the tulip
3683 		 * can talk to the MII.
3684 		 */
3685 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
3686 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3687 		DELAY(10);
3688 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
3689 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3690 		DELAY(10);
3691 	}
3692 
3693 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3694 	DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN);
3695 
3696 	/* Init circular RX list. */
3697 	if (dc_list_rx_init(sc) == ENOBUFS) {
3698 		device_printf(sc->dc_dev,
3699 		    "initialization failed: no memory for rx buffers\n");
3700 		dc_stop(sc);
3701 		return;
3702 	}
3703 
3704 	/*
3705 	 * Init TX descriptors.
3706 	 */
3707 	dc_list_tx_init(sc);
3708 
3709 	/*
3710 	 * Load the address of the RX list.
3711 	 */
3712 	CSR_WRITE_4(sc, DC_RXADDR, DC_RXDESC(sc, 0));
3713 	CSR_WRITE_4(sc, DC_TXADDR, DC_TXDESC(sc, 0));
3714 
3715 	/*
3716 	 * Enable interrupts.
3717 	 */
3718 #ifdef DEVICE_POLLING
3719 	/*
3720 	 * ... but only if we are not polling, and make sure they are off in
3721 	 * the case of polling. Some cards (e.g. fxp) turn interrupts on
3722 	 * after a reset.
3723 	 */
3724 	if (ifp->if_capenable & IFCAP_POLLING)
3725 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3726 	else
3727 #endif
3728 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3729 	CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
3730 
3731 	/* Initialize TX jabber and RX watchdog timer. */
3732 	if (DC_IS_ULI(sc))
3733 		CSR_WRITE_4(sc, DC_WATCHDOG, DC_WDOG_JABBERCLK |
3734 		    DC_WDOG_HOSTUNJAB);
3735 
3736 	/* Enable transmitter. */
3737 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3738 
3739 	/*
3740 	 * If this is an Intel 21143 and we're not using the
3741 	 * MII port, program the LED control pins so we get
3742 	 * link and activity indications.
3743 	 */
3744 	if (sc->dc_flags & DC_TULIP_LEDS) {
3745 		CSR_WRITE_4(sc, DC_WATCHDOG,
3746 		    DC_WDOG_CTLWREN | DC_WDOG_LINK | DC_WDOG_ACTIVITY);
3747 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
3748 	}
3749 
3750 	/*
3751 	 * Load the RX/multicast filter. We do this sort of late
3752 	 * because the filter programming scheme on the 21143 and
3753 	 * some clones requires DMAing a setup frame via the TX
3754 	 * engine, and we need the transmitter enabled for that.
3755 	 */
3756 	dc_setfilt(sc);
3757 
3758 	/* Enable receiver. */
3759 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
3760 	CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
3761 
3762 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3763 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3764 
3765 	dc_ifmedia_upd_locked(sc);
3766 
3767 	/* Clear missed frames and overflow counter. */
3768 	CSR_READ_4(sc, DC_FRAMESDISCARDED);
3769 
3770 	/* Don't start the ticker if this is a homePNA link. */
3771 	if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_HPNA_1)
3772 		sc->dc_link = 1;
3773 	else {
3774 		if (sc->dc_flags & DC_21143_NWAY)
3775 			callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
3776 		else
3777 			callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
3778 	}
3779 
3780 	sc->dc_wdog_timer = 0;
3781 	callout_reset(&sc->dc_wdog_ch, hz, dc_watchdog, sc);
3782 }
3783 
3784 /*
3785  * Set media options.
3786  */
3787 static int
3788 dc_ifmedia_upd(struct ifnet *ifp)
3789 {
3790 	struct dc_softc *sc;
3791 	int error;
3792 
3793 	sc = ifp->if_softc;
3794 	DC_LOCK(sc);
3795 	error = dc_ifmedia_upd_locked(sc);
3796 	DC_UNLOCK(sc);
3797 	return (error);
3798 }
3799 
3800 static int
3801 dc_ifmedia_upd_locked(struct dc_softc *sc)
3802 {
3803 	struct mii_data *mii;
3804 	struct ifmedia *ifm;
3805 	int error;
3806 
3807 	DC_LOCK_ASSERT(sc);
3808 
3809 	sc->dc_link = 0;
3810 	mii = device_get_softc(sc->dc_miibus);
3811 	error = mii_mediachg(mii);
3812 	if (error == 0) {
3813 		ifm = &mii->mii_media;
3814 		if (DC_IS_INTEL(sc))
3815 			dc_setcfg(sc, ifm->ifm_media);
3816 		else if (DC_IS_DAVICOM(sc) &&
3817 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1)
3818 			dc_setcfg(sc, ifm->ifm_media);
3819 	}
3820 
3821 	return (error);
3822 }
3823 
3824 /*
3825  * Report current media status.
3826  */
3827 static void
3828 dc_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3829 {
3830 	struct dc_softc *sc;
3831 	struct mii_data *mii;
3832 	struct ifmedia *ifm;
3833 
3834 	sc = ifp->if_softc;
3835 	mii = device_get_softc(sc->dc_miibus);
3836 	DC_LOCK(sc);
3837 	mii_pollstat(mii);
3838 	ifm = &mii->mii_media;
3839 	if (DC_IS_DAVICOM(sc)) {
3840 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
3841 			ifmr->ifm_active = ifm->ifm_media;
3842 			ifmr->ifm_status = 0;
3843 			DC_UNLOCK(sc);
3844 			return;
3845 		}
3846 	}
3847 	ifmr->ifm_active = mii->mii_media_active;
3848 	ifmr->ifm_status = mii->mii_media_status;
3849 	DC_UNLOCK(sc);
3850 }
3851 
3852 static int
3853 dc_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
3854 {
3855 	struct dc_softc *sc = ifp->if_softc;
3856 	struct ifreq *ifr = (struct ifreq *)data;
3857 	struct mii_data *mii;
3858 	int error = 0;
3859 
3860 	switch (command) {
3861 	case SIOCSIFFLAGS:
3862 		DC_LOCK(sc);
3863 		if (ifp->if_flags & IFF_UP) {
3864 			int need_setfilt = (ifp->if_flags ^ sc->dc_if_flags) &
3865 				(IFF_PROMISC | IFF_ALLMULTI);
3866 
3867 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3868 				if (need_setfilt)
3869 					dc_setfilt(sc);
3870 			} else {
3871 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3872 				dc_init_locked(sc);
3873 			}
3874 		} else {
3875 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3876 				dc_stop(sc);
3877 		}
3878 		sc->dc_if_flags = ifp->if_flags;
3879 		DC_UNLOCK(sc);
3880 		break;
3881 	case SIOCADDMULTI:
3882 	case SIOCDELMULTI:
3883 		DC_LOCK(sc);
3884 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3885 			dc_setfilt(sc);
3886 		DC_UNLOCK(sc);
3887 		break;
3888 	case SIOCGIFMEDIA:
3889 	case SIOCSIFMEDIA:
3890 		mii = device_get_softc(sc->dc_miibus);
3891 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
3892 		break;
3893 	case SIOCSIFCAP:
3894 #ifdef DEVICE_POLLING
3895 		if (ifr->ifr_reqcap & IFCAP_POLLING &&
3896 		    !(ifp->if_capenable & IFCAP_POLLING)) {
3897 			error = ether_poll_register(dc_poll, ifp);
3898 			if (error)
3899 				return(error);
3900 			DC_LOCK(sc);
3901 			/* Disable interrupts */
3902 			CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3903 			ifp->if_capenable |= IFCAP_POLLING;
3904 			DC_UNLOCK(sc);
3905 			return (error);
3906 		}
3907 		if (!(ifr->ifr_reqcap & IFCAP_POLLING) &&
3908 		    ifp->if_capenable & IFCAP_POLLING) {
3909 			error = ether_poll_deregister(ifp);
3910 			/* Enable interrupts. */
3911 			DC_LOCK(sc);
3912 			CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3913 			ifp->if_capenable &= ~IFCAP_POLLING;
3914 			DC_UNLOCK(sc);
3915 			return (error);
3916 		}
3917 #endif /* DEVICE_POLLING */
3918 		break;
3919 	default:
3920 		error = ether_ioctl(ifp, command, data);
3921 		break;
3922 	}
3923 
3924 	return (error);
3925 }
3926 
3927 static void
3928 dc_watchdog(void *xsc)
3929 {
3930 	struct dc_softc *sc = xsc;
3931 	struct ifnet *ifp;
3932 
3933 	DC_LOCK_ASSERT(sc);
3934 
3935 	if (sc->dc_wdog_timer == 0 || --sc->dc_wdog_timer != 0) {
3936 		callout_reset(&sc->dc_wdog_ch, hz, dc_watchdog, sc);
3937 		return;
3938 	}
3939 
3940 	ifp = sc->dc_ifp;
3941 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3942 	device_printf(sc->dc_dev, "watchdog timeout\n");
3943 
3944 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3945 	dc_init_locked(sc);
3946 
3947 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3948 		dc_start_locked(ifp);
3949 }
3950 
3951 /*
3952  * Stop the adapter and free any mbufs allocated to the
3953  * RX and TX lists.
3954  */
3955 static void
3956 dc_stop(struct dc_softc *sc)
3957 {
3958 	struct ifnet *ifp;
3959 	struct dc_list_data *ld;
3960 	struct dc_chain_data *cd;
3961 	int i;
3962 	uint32_t ctl, netcfg;
3963 
3964 	DC_LOCK_ASSERT(sc);
3965 
3966 	ifp = sc->dc_ifp;
3967 	ld = &sc->dc_ldata;
3968 	cd = &sc->dc_cdata;
3969 
3970 	callout_stop(&sc->dc_stat_ch);
3971 	callout_stop(&sc->dc_wdog_ch);
3972 	sc->dc_wdog_timer = 0;
3973 	sc->dc_link = 0;
3974 
3975 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3976 
3977 	netcfg = CSR_READ_4(sc, DC_NETCFG);
3978 	if (netcfg & (DC_NETCFG_RX_ON | DC_NETCFG_TX_ON))
3979 		CSR_WRITE_4(sc, DC_NETCFG,
3980 		   netcfg & ~(DC_NETCFG_RX_ON | DC_NETCFG_TX_ON));
3981 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3982 	/* Wait the completion of TX/RX SM. */
3983 	if (netcfg & (DC_NETCFG_RX_ON | DC_NETCFG_TX_ON))
3984 		dc_netcfg_wait(sc);
3985 
3986 	CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
3987 	CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
3988 
3989 	/*
3990 	 * Free data in the RX lists.
3991 	 */
3992 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
3993 		if (cd->dc_rx_chain[i] != NULL) {
3994 			bus_dmamap_sync(sc->dc_rx_mtag,
3995 			    cd->dc_rx_map[i], BUS_DMASYNC_POSTREAD);
3996 			bus_dmamap_unload(sc->dc_rx_mtag,
3997 			    cd->dc_rx_map[i]);
3998 			m_freem(cd->dc_rx_chain[i]);
3999 			cd->dc_rx_chain[i] = NULL;
4000 		}
4001 	}
4002 	bzero(ld->dc_rx_list, DC_RX_LIST_SZ);
4003 	bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_rx_lmap,
4004 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4005 
4006 	/*
4007 	 * Free the TX list buffers.
4008 	 */
4009 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
4010 		if (cd->dc_tx_chain[i] != NULL) {
4011 			ctl = le32toh(ld->dc_tx_list[i].dc_ctl);
4012 			if (ctl & DC_TXCTL_SETUP) {
4013 				bus_dmamap_sync(sc->dc_stag, sc->dc_smap,
4014 				    BUS_DMASYNC_POSTWRITE);
4015 			} else {
4016 				bus_dmamap_sync(sc->dc_tx_mtag,
4017 				    cd->dc_tx_map[i], BUS_DMASYNC_POSTWRITE);
4018 				bus_dmamap_unload(sc->dc_tx_mtag,
4019 				    cd->dc_tx_map[i]);
4020 				m_freem(cd->dc_tx_chain[i]);
4021 			}
4022 			cd->dc_tx_chain[i] = NULL;
4023 		}
4024 	}
4025 	bzero(ld->dc_tx_list, DC_TX_LIST_SZ);
4026 	bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap,
4027 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4028 }
4029 
4030 /*
4031  * Device suspend routine.  Stop the interface and save some PCI
4032  * settings in case the BIOS doesn't restore them properly on
4033  * resume.
4034  */
4035 static int
4036 dc_suspend(device_t dev)
4037 {
4038 	struct dc_softc *sc;
4039 
4040 	sc = device_get_softc(dev);
4041 	DC_LOCK(sc);
4042 	dc_stop(sc);
4043 	sc->suspended = 1;
4044 	DC_UNLOCK(sc);
4045 
4046 	return (0);
4047 }
4048 
4049 /*
4050  * Device resume routine.  Restore some PCI settings in case the BIOS
4051  * doesn't, re-enable busmastering, and restart the interface if
4052  * appropriate.
4053  */
4054 static int
4055 dc_resume(device_t dev)
4056 {
4057 	struct dc_softc *sc;
4058 	struct ifnet *ifp;
4059 
4060 	sc = device_get_softc(dev);
4061 	ifp = sc->dc_ifp;
4062 
4063 	/* reinitialize interface if necessary */
4064 	DC_LOCK(sc);
4065 	if (ifp->if_flags & IFF_UP)
4066 		dc_init_locked(sc);
4067 
4068 	sc->suspended = 0;
4069 	DC_UNLOCK(sc);
4070 
4071 	return (0);
4072 }
4073 
4074 /*
4075  * Stop all chip I/O so that the kernel's probe routines don't
4076  * get confused by errant DMAs when rebooting.
4077  */
4078 static int
4079 dc_shutdown(device_t dev)
4080 {
4081 	struct dc_softc *sc;
4082 
4083 	sc = device_get_softc(dev);
4084 
4085 	DC_LOCK(sc);
4086 	dc_stop(sc);
4087 	DC_UNLOCK(sc);
4088 
4089 	return (0);
4090 }
4091 
4092 static int
4093 dc_check_multiport(struct dc_softc *sc)
4094 {
4095 	struct dc_softc *dsc;
4096 	devclass_t dc;
4097 	device_t child;
4098 	uint8_t *eaddr;
4099 	int unit;
4100 
4101 	dc = devclass_find("dc");
4102 	for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
4103 		child = devclass_get_device(dc, unit);
4104 		if (child == NULL)
4105 			continue;
4106 		if (child == sc->dc_dev)
4107 			continue;
4108 		if (device_get_parent(child) != device_get_parent(sc->dc_dev))
4109 			continue;
4110 		if (unit > device_get_unit(sc->dc_dev))
4111 			continue;
4112 		if (device_is_attached(child) == 0)
4113 			continue;
4114 		dsc = device_get_softc(child);
4115 		device_printf(sc->dc_dev,
4116 		    "Using station address of %s as base\n",
4117 		    device_get_nameunit(child));
4118 		bcopy(dsc->dc_eaddr, sc->dc_eaddr, ETHER_ADDR_LEN);
4119 		eaddr = (uint8_t *)sc->dc_eaddr;
4120 		eaddr[5]++;
4121 		/* Prepare SROM to parse again. */
4122 		if (DC_IS_INTEL(sc) && dsc->dc_srom != NULL &&
4123 		    sc->dc_romwidth != 0) {
4124 			free(sc->dc_srom, M_DEVBUF);
4125 			sc->dc_romwidth = dsc->dc_romwidth;
4126 			sc->dc_srom = malloc(DC_ROM_SIZE(sc->dc_romwidth),
4127 			    M_DEVBUF, M_NOWAIT);
4128 			if (sc->dc_srom == NULL) {
4129 				device_printf(sc->dc_dev,
4130 				    "Could not allocate SROM buffer\n");
4131 				return (ENOMEM);
4132 			}
4133 			bcopy(dsc->dc_srom, sc->dc_srom,
4134 			    DC_ROM_SIZE(sc->dc_romwidth));
4135 		}
4136 		return (0);
4137 	}
4138 	return (ENOENT);
4139 }
4140