xref: /freebsd/sys/dev/dc/if_dc.c (revision ca9ac06c99bfd0150b85d4d83c396ce6237c0e05)
1 /*-
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ee.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /*
37  * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
38  * series chips and several workalikes including the following:
39  *
40  * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com)
41  * Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
42  * Lite-On 82c168/82c169 PNIC (www.litecom.com)
43  * ASIX Electronics AX88140A (www.asix.com.tw)
44  * ASIX Electronics AX88141 (www.asix.com.tw)
45  * ADMtek AL981 (www.admtek.com.tw)
46  * ADMtek AN985 (www.admtek.com.tw)
47  * Netgear FA511 (www.netgear.com) Appears to be rebadged ADMTek AN985
48  * Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
49  * Accton EN1217 (www.accton.com)
50  * Xircom X3201 (www.xircom.com)
51  * Abocom FE2500
52  * Conexant LANfinity (www.conexant.com)
53  * 3Com OfficeConnect 10/100B 3CSOHO100B (www.3com.com)
54  *
55  * Datasheets for the 21143 are available at developer.intel.com.
56  * Datasheets for the clone parts can be found at their respective sites.
57  * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
58  * The PNIC II is essentially a Macronix 98715A chip; the only difference
59  * worth noting is that its multicast hash table is only 128 bits wide
60  * instead of 512.
61  *
62  * Written by Bill Paul <wpaul@ee.columbia.edu>
63  * Electrical Engineering Department
64  * Columbia University, New York City
65  */
66 /*
67  * The Intel 21143 is the successor to the DEC 21140. It is basically
68  * the same as the 21140 but with a few new features. The 21143 supports
69  * three kinds of media attachments:
70  *
71  * o MII port, for 10Mbps and 100Mbps support and NWAY
72  *   autonegotiation provided by an external PHY.
73  * o SYM port, for symbol mode 100Mbps support.
74  * o 10baseT port.
75  * o AUI/BNC port.
76  *
77  * The 100Mbps SYM port and 10baseT port can be used together in
78  * combination with the internal NWAY support to create a 10/100
79  * autosensing configuration.
80  *
81  * Note that not all tulip workalikes are handled in this driver: we only
82  * deal with those which are relatively well behaved. The Winbond is
83  * handled separately due to its different register offsets and the
84  * special handling needed for its various bugs. The PNIC is handled
85  * here, but I'm not thrilled about it.
86  *
87  * All of the workalike chips use some form of MII transceiver support
88  * with the exception of the Macronix chips, which also have a SYM port.
89  * The ASIX AX88140A is also documented to have a SYM port, but all
90  * the cards I've seen use an MII transceiver, probably because the
91  * AX88140A doesn't support internal NWAY.
92  */
93 
94 #include <sys/param.h>
95 #include <sys/endian.h>
96 #include <sys/systm.h>
97 #include <sys/sockio.h>
98 #include <sys/mbuf.h>
99 #include <sys/malloc.h>
100 #include <sys/kernel.h>
101 #include <sys/module.h>
102 #include <sys/socket.h>
103 #include <sys/sysctl.h>
104 
105 #include <net/if.h>
106 #include <net/if_arp.h>
107 #include <net/ethernet.h>
108 #include <net/if_dl.h>
109 #include <net/if_media.h>
110 #include <net/if_types.h>
111 #include <net/if_vlan_var.h>
112 
113 #include <net/bpf.h>
114 
115 #include <machine/bus_pio.h>
116 #include <machine/bus_memio.h>
117 #include <machine/bus.h>
118 #include <machine/resource.h>
119 #include <sys/bus.h>
120 #include <sys/rman.h>
121 
122 #include <dev/mii/mii.h>
123 #include <dev/mii/miivar.h>
124 
125 #include <dev/pci/pcireg.h>
126 #include <dev/pci/pcivar.h>
127 
128 #define DC_USEIOSPACE
129 #ifdef __alpha__
130 #define SRM_MEDIA
131 #endif
132 
133 #include <pci/if_dcreg.h>
134 
135 #ifdef __sparc64__
136 #include <dev/ofw/openfirm.h>
137 #include <machine/ofw_machdep.h>
138 #endif
139 
140 MODULE_DEPEND(dc, pci, 1, 1, 1);
141 MODULE_DEPEND(dc, ether, 1, 1, 1);
142 MODULE_DEPEND(dc, miibus, 1, 1, 1);
143 
144 /* "controller miibus0" required.  See GENERIC if you get errors here. */
145 #include "miibus_if.h"
146 
147 /*
148  * Various supported device vendors/types and their names.
149  */
150 static struct dc_type dc_devs[] = {
151 	{ DC_VENDORID_DEC, DC_DEVICEID_21143,
152 		"Intel 21143 10/100BaseTX" },
153 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009,
154 		"Davicom DM9009 10/100BaseTX" },
155 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100,
156 		"Davicom DM9100 10/100BaseTX" },
157 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
158 		"Davicom DM9102 10/100BaseTX" },
159 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
160 		"Davicom DM9102A 10/100BaseTX" },
161 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AL981,
162 		"ADMtek AL981 10/100BaseTX" },
163 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AN985,
164 		"ADMtek AN985 10/100BaseTX" },
165 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511,
166 		"ADMtek ADM9511 10/100BaseTX" },
167 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513,
168 		"ADMtek ADM9513 10/100BaseTX" },
169 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_FA511,
170 		"Netgear FA511 10/100BaseTX" },
171 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
172 		"ASIX AX88140A 10/100BaseTX" },
173 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
174 		"ASIX AX88141 10/100BaseTX" },
175 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
176 		"Macronix 98713 10/100BaseTX" },
177 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
178 		"Macronix 98713A 10/100BaseTX" },
179 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
180 		"Compex RL100-TX 10/100BaseTX" },
181 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
182 		"Compex RL100-TX 10/100BaseTX" },
183 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
184 		"Macronix 98715/98715A 10/100BaseTX" },
185 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
186 		"Macronix 98715AEC-C 10/100BaseTX" },
187 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
188 		"Macronix 98725 10/100BaseTX" },
189 	{ DC_VENDORID_MX, DC_DEVICEID_98727,
190 		"Macronix 98727/98732 10/100BaseTX" },
191 	{ DC_VENDORID_LO, DC_DEVICEID_82C115,
192 		"LC82C115 PNIC II 10/100BaseTX" },
193 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
194 		"82c168 PNIC 10/100BaseTX" },
195 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
196 		"82c169 PNIC 10/100BaseTX" },
197 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN1217,
198 		"Accton EN1217 10/100BaseTX" },
199 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN2242,
200 		"Accton EN2242 MiniPCI 10/100BaseTX" },
201 	{ DC_VENDORID_XIRCOM, DC_DEVICEID_X3201,
202 	  	"Xircom X3201 10/100BaseTX" },
203 	{ DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500,
204 		"Abocom FE2500 10/100BaseTX" },
205 	{ DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500MX,
206 		"Abocom FE2500MX 10/100BaseTX" },
207 	{ DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112,
208 		"Conexant LANfinity MiniPCI 10/100BaseTX" },
209 	{ DC_VENDORID_HAWKING, DC_DEVICEID_HAWKING_PN672TX,
210 		"Hawking CB102 CardBus 10/100" },
211 	{ DC_VENDORID_PLANEX, DC_DEVICEID_FNW3602T,
212 		"PlaneX FNW-3602-T CardBus 10/100" },
213 	{ DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB,
214 		"3Com OfficeConnect 10/100B" },
215 	{ DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN120,
216 		"Microsoft MN-120 CardBus 10/100" },
217 	{ DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130,
218 		"Microsoft MN-130 10/100" },
219 	{ DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130_FAKE,
220 		"Microsoft MN-130 10/100" },
221 	{ 0, 0, NULL }
222 };
223 
224 static int dc_probe(device_t);
225 static int dc_attach(device_t);
226 static int dc_detach(device_t);
227 static int dc_suspend(device_t);
228 static int dc_resume(device_t);
229 static struct dc_type *dc_devtype(device_t);
230 static int dc_newbuf(struct dc_softc *, int, int);
231 static int dc_encap(struct dc_softc *, struct mbuf **);
232 static void dc_pnic_rx_bug_war(struct dc_softc *, int);
233 static int dc_rx_resync(struct dc_softc *);
234 static void dc_rxeof(struct dc_softc *);
235 static void dc_txeof(struct dc_softc *);
236 static void dc_tick(void *);
237 static void dc_tx_underrun(struct dc_softc *);
238 static void dc_intr(void *);
239 static void dc_start(struct ifnet *);
240 static int dc_ioctl(struct ifnet *, u_long, caddr_t);
241 static void dc_init(void *);
242 static void dc_stop(struct dc_softc *);
243 static void dc_watchdog(struct ifnet *);
244 static void dc_shutdown(device_t);
245 static int dc_ifmedia_upd(struct ifnet *);
246 static void dc_ifmedia_sts(struct ifnet *, struct ifmediareq *);
247 
248 static void dc_delay(struct dc_softc *);
249 static void dc_eeprom_idle(struct dc_softc *);
250 static void dc_eeprom_putbyte(struct dc_softc *, int);
251 static void dc_eeprom_getword(struct dc_softc *, int, u_int16_t *);
252 static void dc_eeprom_getword_pnic(struct dc_softc *, int, u_int16_t *);
253 static void dc_eeprom_getword_xircom(struct dc_softc *, int, u_int16_t *);
254 static void dc_eeprom_width(struct dc_softc *);
255 static void dc_read_eeprom(struct dc_softc *, caddr_t, int, int, int);
256 
257 static void dc_mii_writebit(struct dc_softc *, int);
258 static int dc_mii_readbit(struct dc_softc *);
259 static void dc_mii_sync(struct dc_softc *);
260 static void dc_mii_send(struct dc_softc *, u_int32_t, int);
261 static int dc_mii_readreg(struct dc_softc *, struct dc_mii_frame *);
262 static int dc_mii_writereg(struct dc_softc *, struct dc_mii_frame *);
263 static int dc_miibus_readreg(device_t, int, int);
264 static int dc_miibus_writereg(device_t, int, int, int);
265 static void dc_miibus_statchg(device_t);
266 static void dc_miibus_mediainit(device_t);
267 
268 static void dc_setcfg(struct dc_softc *, int);
269 static uint32_t dc_mchash_le(struct dc_softc *, const uint8_t *);
270 static uint32_t dc_mchash_be(const uint8_t *);
271 static void dc_setfilt_21143(struct dc_softc *);
272 static void dc_setfilt_asix(struct dc_softc *);
273 static void dc_setfilt_admtek(struct dc_softc *);
274 static void dc_setfilt_xircom(struct dc_softc *);
275 
276 static void dc_setfilt(struct dc_softc *);
277 
278 static void dc_reset(struct dc_softc *);
279 static int dc_list_rx_init(struct dc_softc *);
280 static int dc_list_tx_init(struct dc_softc *);
281 
282 static void dc_read_srom(struct dc_softc *, int);
283 static void dc_parse_21143_srom(struct dc_softc *);
284 static void dc_decode_leaf_sia(struct dc_softc *, struct dc_eblock_sia *);
285 static void dc_decode_leaf_mii(struct dc_softc *, struct dc_eblock_mii *);
286 static void dc_decode_leaf_sym(struct dc_softc *, struct dc_eblock_sym *);
287 static void dc_apply_fixup(struct dc_softc *, int);
288 
289 static void dc_dma_map_txbuf(void *, bus_dma_segment_t *, int, bus_size_t, int);
290 static void dc_dma_map_rxbuf(void *, bus_dma_segment_t *, int, bus_size_t, int);
291 
292 #ifdef DC_USEIOSPACE
293 #define DC_RES			SYS_RES_IOPORT
294 #define DC_RID			DC_PCI_CFBIO
295 #else
296 #define DC_RES			SYS_RES_MEMORY
297 #define DC_RID			DC_PCI_CFBMA
298 #endif
299 
300 static device_method_t dc_methods[] = {
301 	/* Device interface */
302 	DEVMETHOD(device_probe,		dc_probe),
303 	DEVMETHOD(device_attach,	dc_attach),
304 	DEVMETHOD(device_detach,	dc_detach),
305 	DEVMETHOD(device_suspend,	dc_suspend),
306 	DEVMETHOD(device_resume,	dc_resume),
307 	DEVMETHOD(device_shutdown,	dc_shutdown),
308 
309 	/* bus interface */
310 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
311 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
312 
313 	/* MII interface */
314 	DEVMETHOD(miibus_readreg,	dc_miibus_readreg),
315 	DEVMETHOD(miibus_writereg,	dc_miibus_writereg),
316 	DEVMETHOD(miibus_statchg,	dc_miibus_statchg),
317 	DEVMETHOD(miibus_mediainit,	dc_miibus_mediainit),
318 
319 	{ 0, 0 }
320 };
321 
322 static driver_t dc_driver = {
323 	"dc",
324 	dc_methods,
325 	sizeof(struct dc_softc)
326 };
327 
328 static devclass_t dc_devclass;
329 #ifdef __i386__
330 static int dc_quick = 1;
331 SYSCTL_INT(_hw, OID_AUTO, dc_quick, CTLFLAG_RW, &dc_quick, 0,
332     "do not m_devget() in dc driver");
333 #endif
334 
335 DRIVER_MODULE(dc, cardbus, dc_driver, dc_devclass, 0, 0);
336 DRIVER_MODULE(dc, pci, dc_driver, dc_devclass, 0, 0);
337 DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, 0, 0);
338 
339 #define DC_SETBIT(sc, reg, x)				\
340 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
341 
342 #define DC_CLRBIT(sc, reg, x)				\
343 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
344 
345 #define SIO_SET(x)	DC_SETBIT(sc, DC_SIO, (x))
346 #define SIO_CLR(x)	DC_CLRBIT(sc, DC_SIO, (x))
347 
348 #define IS_MPSAFE 	0
349 
350 static void
351 dc_delay(struct dc_softc *sc)
352 {
353 	int idx;
354 
355 	for (idx = (300 / 33) + 1; idx > 0; idx--)
356 		CSR_READ_4(sc, DC_BUSCTL);
357 }
358 
359 static void
360 dc_eeprom_width(struct dc_softc *sc)
361 {
362 	int i;
363 
364 	/* Force EEPROM to idle state. */
365 	dc_eeprom_idle(sc);
366 
367 	/* Enter EEPROM access mode. */
368 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
369 	dc_delay(sc);
370 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
371 	dc_delay(sc);
372 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
373 	dc_delay(sc);
374 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
375 	dc_delay(sc);
376 
377 	for (i = 3; i--;) {
378 		if (6 & (1 << i))
379 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
380 		else
381 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
382 		dc_delay(sc);
383 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
384 		dc_delay(sc);
385 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
386 		dc_delay(sc);
387 	}
388 
389 	for (i = 1; i <= 12; i++) {
390 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
391 		dc_delay(sc);
392 		if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) {
393 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
394 			dc_delay(sc);
395 			break;
396 		}
397 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
398 		dc_delay(sc);
399 	}
400 
401 	/* Turn off EEPROM access mode. */
402 	dc_eeprom_idle(sc);
403 
404 	if (i < 4 || i > 12)
405 		sc->dc_romwidth = 6;
406 	else
407 		sc->dc_romwidth = i;
408 
409 	/* Enter EEPROM access mode. */
410 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
411 	dc_delay(sc);
412 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
413 	dc_delay(sc);
414 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
415 	dc_delay(sc);
416 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
417 	dc_delay(sc);
418 
419 	/* Turn off EEPROM access mode. */
420 	dc_eeprom_idle(sc);
421 }
422 
423 static void
424 dc_eeprom_idle(struct dc_softc *sc)
425 {
426 	int i;
427 
428 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
429 	dc_delay(sc);
430 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
431 	dc_delay(sc);
432 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
433 	dc_delay(sc);
434 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
435 	dc_delay(sc);
436 
437 	for (i = 0; i < 25; i++) {
438 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
439 		dc_delay(sc);
440 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
441 		dc_delay(sc);
442 	}
443 
444 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
445 	dc_delay(sc);
446 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
447 	dc_delay(sc);
448 	CSR_WRITE_4(sc, DC_SIO, 0x00000000);
449 }
450 
451 /*
452  * Send a read command and address to the EEPROM, check for ACK.
453  */
454 static void
455 dc_eeprom_putbyte(struct dc_softc *sc, int addr)
456 {
457 	int d, i;
458 
459 	d = DC_EECMD_READ >> 6;
460 	for (i = 3; i--; ) {
461 		if (d & (1 << i))
462 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
463 		else
464 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
465 		dc_delay(sc);
466 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
467 		dc_delay(sc);
468 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
469 		dc_delay(sc);
470 	}
471 
472 	/*
473 	 * Feed in each bit and strobe the clock.
474 	 */
475 	for (i = sc->dc_romwidth; i--;) {
476 		if (addr & (1 << i)) {
477 			SIO_SET(DC_SIO_EE_DATAIN);
478 		} else {
479 			SIO_CLR(DC_SIO_EE_DATAIN);
480 		}
481 		dc_delay(sc);
482 		SIO_SET(DC_SIO_EE_CLK);
483 		dc_delay(sc);
484 		SIO_CLR(DC_SIO_EE_CLK);
485 		dc_delay(sc);
486 	}
487 }
488 
489 /*
490  * Read a word of data stored in the EEPROM at address 'addr.'
491  * The PNIC 82c168/82c169 has its own non-standard way to read
492  * the EEPROM.
493  */
494 static void
495 dc_eeprom_getword_pnic(struct dc_softc *sc, int addr, u_int16_t *dest)
496 {
497 	int i;
498 	u_int32_t r;
499 
500 	CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ | addr);
501 
502 	for (i = 0; i < DC_TIMEOUT; i++) {
503 		DELAY(1);
504 		r = CSR_READ_4(sc, DC_SIO);
505 		if (!(r & DC_PN_SIOCTL_BUSY)) {
506 			*dest = (u_int16_t)(r & 0xFFFF);
507 			return;
508 		}
509 	}
510 }
511 
512 /*
513  * Read a word of data stored in the EEPROM at address 'addr.'
514  * The Xircom X3201 has its own non-standard way to read
515  * the EEPROM, too.
516  */
517 static void
518 dc_eeprom_getword_xircom(struct dc_softc *sc, int addr, u_int16_t *dest)
519 {
520 
521 	SIO_SET(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
522 
523 	addr *= 2;
524 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
525 	*dest = (u_int16_t)CSR_READ_4(sc, DC_SIO) & 0xff;
526 	addr += 1;
527 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
528 	*dest |= ((u_int16_t)CSR_READ_4(sc, DC_SIO) & 0xff) << 8;
529 
530 	SIO_CLR(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
531 }
532 
533 /*
534  * Read a word of data stored in the EEPROM at address 'addr.'
535  */
536 static void
537 dc_eeprom_getword(struct dc_softc *sc, int addr, u_int16_t *dest)
538 {
539 	int i;
540 	u_int16_t word = 0;
541 
542 	/* Force EEPROM to idle state. */
543 	dc_eeprom_idle(sc);
544 
545 	/* Enter EEPROM access mode. */
546 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
547 	dc_delay(sc);
548 	DC_SETBIT(sc, DC_SIO,  DC_SIO_ROMCTL_READ);
549 	dc_delay(sc);
550 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
551 	dc_delay(sc);
552 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
553 	dc_delay(sc);
554 
555 	/*
556 	 * Send address of word we want to read.
557 	 */
558 	dc_eeprom_putbyte(sc, addr);
559 
560 	/*
561 	 * Start reading bits from EEPROM.
562 	 */
563 	for (i = 0x8000; i; i >>= 1) {
564 		SIO_SET(DC_SIO_EE_CLK);
565 		dc_delay(sc);
566 		if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
567 			word |= i;
568 		dc_delay(sc);
569 		SIO_CLR(DC_SIO_EE_CLK);
570 		dc_delay(sc);
571 	}
572 
573 	/* Turn off EEPROM access mode. */
574 	dc_eeprom_idle(sc);
575 
576 	*dest = word;
577 }
578 
579 /*
580  * Read a sequence of words from the EEPROM.
581  */
582 static void
583 dc_read_eeprom(struct dc_softc *sc, caddr_t dest, int off, int cnt, int be)
584 {
585 	int i;
586 	u_int16_t word = 0, *ptr;
587 
588 	for (i = 0; i < cnt; i++) {
589 		if (DC_IS_PNIC(sc))
590 			dc_eeprom_getword_pnic(sc, off + i, &word);
591 		else if (DC_IS_XIRCOM(sc))
592 			dc_eeprom_getword_xircom(sc, off + i, &word);
593 		else
594 			dc_eeprom_getword(sc, off + i, &word);
595 		ptr = (u_int16_t *)(dest + (i * 2));
596 		if (be)
597 			*ptr = be16toh(word);
598 		else
599 			*ptr = le16toh(word);
600 	}
601 }
602 
603 /*
604  * The following two routines are taken from the Macronix 98713
605  * Application Notes pp.19-21.
606  */
607 /*
608  * Write a bit to the MII bus.
609  */
610 static void
611 dc_mii_writebit(struct dc_softc *sc, int bit)
612 {
613 
614 	if (bit)
615 		CSR_WRITE_4(sc, DC_SIO,
616 		    DC_SIO_ROMCTL_WRITE | DC_SIO_MII_DATAOUT);
617 	else
618 		CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
619 
620 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
621 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
622 }
623 
624 /*
625  * Read a bit from the MII bus.
626  */
627 static int
628 dc_mii_readbit(struct dc_softc *sc)
629 {
630 
631 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_READ | DC_SIO_MII_DIR);
632 	CSR_READ_4(sc, DC_SIO);
633 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
634 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
635 	if (CSR_READ_4(sc, DC_SIO) & DC_SIO_MII_DATAIN)
636 		return (1);
637 
638 	return (0);
639 }
640 
641 /*
642  * Sync the PHYs by setting data bit and strobing the clock 32 times.
643  */
644 static void
645 dc_mii_sync(struct dc_softc *sc)
646 {
647 	int i;
648 
649 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
650 
651 	for (i = 0; i < 32; i++)
652 		dc_mii_writebit(sc, 1);
653 }
654 
655 /*
656  * Clock a series of bits through the MII.
657  */
658 static void
659 dc_mii_send(struct dc_softc *sc, u_int32_t bits, int cnt)
660 {
661 	int i;
662 
663 	for (i = (0x1 << (cnt - 1)); i; i >>= 1)
664 		dc_mii_writebit(sc, bits & i);
665 }
666 
667 /*
668  * Read an PHY register through the MII.
669  */
670 static int
671 dc_mii_readreg(struct dc_softc *sc, struct dc_mii_frame *frame)
672 {
673 	int i, ack;
674 
675 	DC_LOCK(sc);
676 
677 	/*
678 	 * Set up frame for RX.
679 	 */
680 	frame->mii_stdelim = DC_MII_STARTDELIM;
681 	frame->mii_opcode = DC_MII_READOP;
682 	frame->mii_turnaround = 0;
683 	frame->mii_data = 0;
684 
685 	/*
686 	 * Sync the PHYs.
687 	 */
688 	dc_mii_sync(sc);
689 
690 	/*
691 	 * Send command/address info.
692 	 */
693 	dc_mii_send(sc, frame->mii_stdelim, 2);
694 	dc_mii_send(sc, frame->mii_opcode, 2);
695 	dc_mii_send(sc, frame->mii_phyaddr, 5);
696 	dc_mii_send(sc, frame->mii_regaddr, 5);
697 
698 #ifdef notdef
699 	/* Idle bit */
700 	dc_mii_writebit(sc, 1);
701 	dc_mii_writebit(sc, 0);
702 #endif
703 
704 	/* Check for ack. */
705 	ack = dc_mii_readbit(sc);
706 
707 	/*
708 	 * Now try reading data bits. If the ack failed, we still
709 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
710 	 */
711 	if (ack) {
712 		for (i = 0; i < 16; i++)
713 			dc_mii_readbit(sc);
714 		goto fail;
715 	}
716 
717 	for (i = 0x8000; i; i >>= 1) {
718 		if (!ack) {
719 			if (dc_mii_readbit(sc))
720 				frame->mii_data |= i;
721 		}
722 	}
723 
724 fail:
725 
726 	dc_mii_writebit(sc, 0);
727 	dc_mii_writebit(sc, 0);
728 
729 	DC_UNLOCK(sc);
730 
731 	if (ack)
732 		return (1);
733 	return (0);
734 }
735 
736 /*
737  * Write to a PHY register through the MII.
738  */
739 static int
740 dc_mii_writereg(struct dc_softc *sc, struct dc_mii_frame *frame)
741 {
742 
743 	DC_LOCK(sc);
744 	/*
745 	 * Set up frame for TX.
746 	 */
747 
748 	frame->mii_stdelim = DC_MII_STARTDELIM;
749 	frame->mii_opcode = DC_MII_WRITEOP;
750 	frame->mii_turnaround = DC_MII_TURNAROUND;
751 
752 	/*
753 	 * Sync the PHYs.
754 	 */
755 	dc_mii_sync(sc);
756 
757 	dc_mii_send(sc, frame->mii_stdelim, 2);
758 	dc_mii_send(sc, frame->mii_opcode, 2);
759 	dc_mii_send(sc, frame->mii_phyaddr, 5);
760 	dc_mii_send(sc, frame->mii_regaddr, 5);
761 	dc_mii_send(sc, frame->mii_turnaround, 2);
762 	dc_mii_send(sc, frame->mii_data, 16);
763 
764 	/* Idle bit. */
765 	dc_mii_writebit(sc, 0);
766 	dc_mii_writebit(sc, 0);
767 
768 	DC_UNLOCK(sc);
769 
770 	return (0);
771 }
772 
773 static int
774 dc_miibus_readreg(device_t dev, int phy, int reg)
775 {
776 	struct dc_mii_frame frame;
777 	struct dc_softc	 *sc;
778 	int i, rval, phy_reg = 0;
779 
780 	sc = device_get_softc(dev);
781 	bzero(&frame, sizeof(frame));
782 
783 	/*
784 	 * Note: both the AL981 and AN985 have internal PHYs,
785 	 * however the AL981 provides direct access to the PHY
786 	 * registers while the AN985 uses a serial MII interface.
787 	 * The AN985's MII interface is also buggy in that you
788 	 * can read from any MII address (0 to 31), but only address 1
789 	 * behaves normally. To deal with both cases, we pretend
790 	 * that the PHY is at MII address 1.
791 	 */
792 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
793 		return (0);
794 
795 	/*
796 	 * Note: the ukphy probes of the RS7112 report a PHY at
797 	 * MII address 0 (possibly HomePNA?) and 1 (ethernet)
798 	 * so we only respond to correct one.
799 	 */
800 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
801 		return (0);
802 
803 	if (sc->dc_pmode != DC_PMODE_MII) {
804 		if (phy == (MII_NPHY - 1)) {
805 			switch (reg) {
806 			case MII_BMSR:
807 			/*
808 			 * Fake something to make the probe
809 			 * code think there's a PHY here.
810 			 */
811 				return (BMSR_MEDIAMASK);
812 				break;
813 			case MII_PHYIDR1:
814 				if (DC_IS_PNIC(sc))
815 					return (DC_VENDORID_LO);
816 				return (DC_VENDORID_DEC);
817 				break;
818 			case MII_PHYIDR2:
819 				if (DC_IS_PNIC(sc))
820 					return (DC_DEVICEID_82C168);
821 				return (DC_DEVICEID_21143);
822 				break;
823 			default:
824 				return (0);
825 				break;
826 			}
827 		} else
828 			return (0);
829 	}
830 
831 	if (DC_IS_PNIC(sc)) {
832 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
833 		    (phy << 23) | (reg << 18));
834 		for (i = 0; i < DC_TIMEOUT; i++) {
835 			DELAY(1);
836 			rval = CSR_READ_4(sc, DC_PN_MII);
837 			if (!(rval & DC_PN_MII_BUSY)) {
838 				rval &= 0xFFFF;
839 				return (rval == 0xFFFF ? 0 : rval);
840 			}
841 		}
842 		return (0);
843 	}
844 
845 	if (DC_IS_COMET(sc)) {
846 		switch (reg) {
847 		case MII_BMCR:
848 			phy_reg = DC_AL_BMCR;
849 			break;
850 		case MII_BMSR:
851 			phy_reg = DC_AL_BMSR;
852 			break;
853 		case MII_PHYIDR1:
854 			phy_reg = DC_AL_VENID;
855 			break;
856 		case MII_PHYIDR2:
857 			phy_reg = DC_AL_DEVID;
858 			break;
859 		case MII_ANAR:
860 			phy_reg = DC_AL_ANAR;
861 			break;
862 		case MII_ANLPAR:
863 			phy_reg = DC_AL_LPAR;
864 			break;
865 		case MII_ANER:
866 			phy_reg = DC_AL_ANER;
867 			break;
868 		default:
869 			printf("dc%d: phy_read: bad phy register %x\n",
870 			    sc->dc_unit, reg);
871 			return (0);
872 			break;
873 		}
874 
875 		rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
876 
877 		if (rval == 0xFFFF)
878 			return (0);
879 		return (rval);
880 	}
881 
882 	frame.mii_phyaddr = phy;
883 	frame.mii_regaddr = reg;
884 	if (sc->dc_type == DC_TYPE_98713) {
885 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
886 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
887 	}
888 	dc_mii_readreg(sc, &frame);
889 	if (sc->dc_type == DC_TYPE_98713)
890 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
891 
892 	return (frame.mii_data);
893 }
894 
895 static int
896 dc_miibus_writereg(device_t dev, int phy, int reg, int data)
897 {
898 	struct dc_softc *sc;
899 	struct dc_mii_frame frame;
900 	int i, phy_reg = 0;
901 
902 	sc = device_get_softc(dev);
903 	bzero(&frame, sizeof(frame));
904 
905 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
906 		return (0);
907 
908 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
909 		return (0);
910 
911 	if (DC_IS_PNIC(sc)) {
912 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
913 		    (phy << 23) | (reg << 10) | data);
914 		for (i = 0; i < DC_TIMEOUT; i++) {
915 			if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
916 				break;
917 		}
918 		return (0);
919 	}
920 
921 	if (DC_IS_COMET(sc)) {
922 		switch (reg) {
923 		case MII_BMCR:
924 			phy_reg = DC_AL_BMCR;
925 			break;
926 		case MII_BMSR:
927 			phy_reg = DC_AL_BMSR;
928 			break;
929 		case MII_PHYIDR1:
930 			phy_reg = DC_AL_VENID;
931 			break;
932 		case MII_PHYIDR2:
933 			phy_reg = DC_AL_DEVID;
934 			break;
935 		case MII_ANAR:
936 			phy_reg = DC_AL_ANAR;
937 			break;
938 		case MII_ANLPAR:
939 			phy_reg = DC_AL_LPAR;
940 			break;
941 		case MII_ANER:
942 			phy_reg = DC_AL_ANER;
943 			break;
944 		default:
945 			printf("dc%d: phy_write: bad phy register %x\n",
946 			    sc->dc_unit, reg);
947 			return (0);
948 			break;
949 		}
950 
951 		CSR_WRITE_4(sc, phy_reg, data);
952 		return (0);
953 	}
954 
955 	frame.mii_phyaddr = phy;
956 	frame.mii_regaddr = reg;
957 	frame.mii_data = data;
958 
959 	if (sc->dc_type == DC_TYPE_98713) {
960 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
961 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
962 	}
963 	dc_mii_writereg(sc, &frame);
964 	if (sc->dc_type == DC_TYPE_98713)
965 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
966 
967 	return (0);
968 }
969 
970 static void
971 dc_miibus_statchg(device_t dev)
972 {
973 	struct dc_softc *sc;
974 	struct mii_data *mii;
975 	struct ifmedia *ifm;
976 
977 	sc = device_get_softc(dev);
978 	if (DC_IS_ADMTEK(sc))
979 		return;
980 
981 	mii = device_get_softc(sc->dc_miibus);
982 	ifm = &mii->mii_media;
983 	if (DC_IS_DAVICOM(sc) &&
984 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
985 		dc_setcfg(sc, ifm->ifm_media);
986 		sc->dc_if_media = ifm->ifm_media;
987 	} else {
988 		dc_setcfg(sc, mii->mii_media_active);
989 		sc->dc_if_media = mii->mii_media_active;
990 	}
991 }
992 
993 /*
994  * Special support for DM9102A cards with HomePNA PHYs. Note:
995  * with the Davicom DM9102A/DM9801 eval board that I have, it seems
996  * to be impossible to talk to the management interface of the DM9801
997  * PHY (its MDIO pin is not connected to anything). Consequently,
998  * the driver has to just 'know' about the additional mode and deal
999  * with it itself. *sigh*
1000  */
1001 static void
1002 dc_miibus_mediainit(device_t dev)
1003 {
1004 	struct dc_softc *sc;
1005 	struct mii_data *mii;
1006 	struct ifmedia *ifm;
1007 	int rev;
1008 
1009 	rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF;
1010 
1011 	sc = device_get_softc(dev);
1012 	mii = device_get_softc(sc->dc_miibus);
1013 	ifm = &mii->mii_media;
1014 
1015 	if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A)
1016 		ifmedia_add(ifm, IFM_ETHER | IFM_HPNA_1, 0, NULL);
1017 }
1018 
1019 #define DC_BITS_512	9
1020 #define DC_BITS_128	7
1021 #define DC_BITS_64	6
1022 
1023 static uint32_t
1024 dc_mchash_le(struct dc_softc *sc, const uint8_t *addr)
1025 {
1026 	uint32_t crc;
1027 
1028 	/* Compute CRC for the address value. */
1029 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
1030 
1031 	/*
1032 	 * The hash table on the PNIC II and the MX98715AEC-C/D/E
1033 	 * chips is only 128 bits wide.
1034 	 */
1035 	if (sc->dc_flags & DC_128BIT_HASH)
1036 		return (crc & ((1 << DC_BITS_128) - 1));
1037 
1038 	/* The hash table on the MX98715BEC is only 64 bits wide. */
1039 	if (sc->dc_flags & DC_64BIT_HASH)
1040 		return (crc & ((1 << DC_BITS_64) - 1));
1041 
1042 	/* Xircom's hash filtering table is different (read: weird) */
1043 	/* Xircom uses the LEAST significant bits */
1044 	if (DC_IS_XIRCOM(sc)) {
1045 		if ((crc & 0x180) == 0x180)
1046 			return ((crc & 0x0F) + (crc & 0x70) * 3 + (14 << 4));
1047 		else
1048 			return ((crc & 0x1F) + ((crc >> 1) & 0xF0) * 3 +
1049 			    (12 << 4));
1050 	}
1051 
1052 	return (crc & ((1 << DC_BITS_512) - 1));
1053 }
1054 
1055 /*
1056  * Calculate CRC of a multicast group address, return the lower 6 bits.
1057  */
1058 static uint32_t
1059 dc_mchash_be(const uint8_t *addr)
1060 {
1061 	uint32_t crc;
1062 
1063 	/* Compute CRC for the address value. */
1064 	crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
1065 
1066 	/* Return the filter bit position. */
1067 	return ((crc >> 26) & 0x0000003F);
1068 }
1069 
1070 /*
1071  * 21143-style RX filter setup routine. Filter programming is done by
1072  * downloading a special setup frame into the TX engine. 21143, Macronix,
1073  * PNIC, PNIC II and Davicom chips are programmed this way.
1074  *
1075  * We always program the chip using 'hash perfect' mode, i.e. one perfect
1076  * address (our node address) and a 512-bit hash filter for multicast
1077  * frames. We also sneak the broadcast address into the hash filter since
1078  * we need that too.
1079  */
1080 static void
1081 dc_setfilt_21143(struct dc_softc *sc)
1082 {
1083 	struct dc_desc *sframe;
1084 	u_int32_t h, *sp;
1085 	struct ifmultiaddr *ifma;
1086 	struct ifnet *ifp;
1087 	int i;
1088 
1089 	ifp = &sc->arpcom.ac_if;
1090 
1091 	i = sc->dc_cdata.dc_tx_prod;
1092 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1093 	sc->dc_cdata.dc_tx_cnt++;
1094 	sframe = &sc->dc_ldata->dc_tx_list[i];
1095 	sp = sc->dc_cdata.dc_sbuf;
1096 	bzero(sp, DC_SFRAME_LEN);
1097 
1098 	sframe->dc_data = htole32(sc->dc_saddr);
1099 	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
1100 	    DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
1101 
1102 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
1103 
1104 	/* If we want promiscuous mode, set the allframes bit. */
1105 	if (ifp->if_flags & IFF_PROMISC)
1106 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1107 	else
1108 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1109 
1110 	if (ifp->if_flags & IFF_ALLMULTI)
1111 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1112 	else
1113 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1114 
1115 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1116 		if (ifma->ifma_addr->sa_family != AF_LINK)
1117 			continue;
1118 		h = dc_mchash_le(sc,
1119 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1120 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1121 	}
1122 
1123 	if (ifp->if_flags & IFF_BROADCAST) {
1124 		h = dc_mchash_le(sc, ifp->if_broadcastaddr);
1125 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1126 	}
1127 
1128 	/* Set our MAC address */
1129 	sp[39] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
1130 	sp[40] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
1131 	sp[41] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
1132 
1133 	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1134 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1135 
1136 	/*
1137 	 * The PNIC takes an exceedingly long time to process its
1138 	 * setup frame; wait 10ms after posting the setup frame
1139 	 * before proceeding, just so it has time to swallow its
1140 	 * medicine.
1141 	 */
1142 	DELAY(10000);
1143 
1144 	ifp->if_timer = 5;
1145 }
1146 
1147 static void
1148 dc_setfilt_admtek(struct dc_softc *sc)
1149 {
1150 	struct ifnet *ifp;
1151 	struct ifmultiaddr *ifma;
1152 	int h = 0;
1153 	u_int32_t hashes[2] = { 0, 0 };
1154 
1155 	ifp = &sc->arpcom.ac_if;
1156 
1157 	/* Init our MAC address. */
1158 	CSR_WRITE_4(sc, DC_AL_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1159 	CSR_WRITE_4(sc, DC_AL_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1160 
1161 	/* If we want promiscuous mode, set the allframes bit. */
1162 	if (ifp->if_flags & IFF_PROMISC)
1163 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1164 	else
1165 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1166 
1167 	if (ifp->if_flags & IFF_ALLMULTI)
1168 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1169 	else
1170 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1171 
1172 	/* First, zot all the existing hash bits. */
1173 	CSR_WRITE_4(sc, DC_AL_MAR0, 0);
1174 	CSR_WRITE_4(sc, DC_AL_MAR1, 0);
1175 
1176 	/*
1177 	 * If we're already in promisc or allmulti mode, we
1178 	 * don't have to bother programming the multicast filter.
1179 	 */
1180 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
1181 		return;
1182 
1183 	/* Now program new ones. */
1184 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1185 		if (ifma->ifma_addr->sa_family != AF_LINK)
1186 			continue;
1187 		if (DC_IS_CENTAUR(sc))
1188 			h = dc_mchash_le(sc,
1189 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1190 		else
1191 			h = dc_mchash_be(
1192 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1193 		if (h < 32)
1194 			hashes[0] |= (1 << h);
1195 		else
1196 			hashes[1] |= (1 << (h - 32));
1197 	}
1198 
1199 	CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]);
1200 	CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]);
1201 }
1202 
1203 static void
1204 dc_setfilt_asix(struct dc_softc *sc)
1205 {
1206 	struct ifnet *ifp;
1207 	struct ifmultiaddr *ifma;
1208 	int h = 0;
1209 	u_int32_t hashes[2] = { 0, 0 };
1210 
1211 	ifp = &sc->arpcom.ac_if;
1212 
1213 	/* Init our MAC address */
1214 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
1215 	CSR_WRITE_4(sc, DC_AX_FILTDATA,
1216 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1217 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
1218 	CSR_WRITE_4(sc, DC_AX_FILTDATA,
1219 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1220 
1221 	/* If we want promiscuous mode, set the allframes bit. */
1222 	if (ifp->if_flags & IFF_PROMISC)
1223 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1224 	else
1225 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1226 
1227 	if (ifp->if_flags & IFF_ALLMULTI)
1228 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1229 	else
1230 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1231 
1232 	/*
1233 	 * The ASIX chip has a special bit to enable reception
1234 	 * of broadcast frames.
1235 	 */
1236 	if (ifp->if_flags & IFF_BROADCAST)
1237 		DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1238 	else
1239 		DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1240 
1241 	/* first, zot all the existing hash bits */
1242 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1243 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1244 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1245 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1246 
1247 	/*
1248 	 * If we're already in promisc or allmulti mode, we
1249 	 * don't have to bother programming the multicast filter.
1250 	 */
1251 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
1252 		return;
1253 
1254 	/* now program new ones */
1255 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1256 		if (ifma->ifma_addr->sa_family != AF_LINK)
1257 			continue;
1258 		h = dc_mchash_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1259 		if (h < 32)
1260 			hashes[0] |= (1 << h);
1261 		else
1262 			hashes[1] |= (1 << (h - 32));
1263 	}
1264 
1265 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1266 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
1267 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1268 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
1269 }
1270 
1271 static void
1272 dc_setfilt_xircom(struct dc_softc *sc)
1273 {
1274 	struct ifnet *ifp;
1275 	struct ifmultiaddr *ifma;
1276 	struct dc_desc *sframe;
1277 	u_int32_t h, *sp;
1278 	int i;
1279 
1280 	ifp = &sc->arpcom.ac_if;
1281 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1282 
1283 	i = sc->dc_cdata.dc_tx_prod;
1284 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1285 	sc->dc_cdata.dc_tx_cnt++;
1286 	sframe = &sc->dc_ldata->dc_tx_list[i];
1287 	sp = sc->dc_cdata.dc_sbuf;
1288 	bzero(sp, DC_SFRAME_LEN);
1289 
1290 	sframe->dc_data = htole32(sc->dc_saddr);
1291 	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
1292 	    DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
1293 
1294 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
1295 
1296 	/* If we want promiscuous mode, set the allframes bit. */
1297 	if (ifp->if_flags & IFF_PROMISC)
1298 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1299 	else
1300 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1301 
1302 	if (ifp->if_flags & IFF_ALLMULTI)
1303 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1304 	else
1305 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1306 
1307 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1308 		if (ifma->ifma_addr->sa_family != AF_LINK)
1309 			continue;
1310 		h = dc_mchash_le(sc,
1311 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1312 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1313 	}
1314 
1315 	if (ifp->if_flags & IFF_BROADCAST) {
1316 		h = dc_mchash_le(sc, ifp->if_broadcastaddr);
1317 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1318 	}
1319 
1320 	/* Set our MAC address */
1321 	sp[0] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
1322 	sp[1] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
1323 	sp[2] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
1324 
1325 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
1326 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
1327 	ifp->if_flags |= IFF_RUNNING;
1328 	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1329 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1330 
1331 	/*
1332 	 * Wait some time...
1333 	 */
1334 	DELAY(1000);
1335 
1336 	ifp->if_timer = 5;
1337 }
1338 
1339 static void
1340 dc_setfilt(struct dc_softc *sc)
1341 {
1342 
1343 	if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
1344 	    DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc))
1345 		dc_setfilt_21143(sc);
1346 
1347 	if (DC_IS_ASIX(sc))
1348 		dc_setfilt_asix(sc);
1349 
1350 	if (DC_IS_ADMTEK(sc))
1351 		dc_setfilt_admtek(sc);
1352 
1353 	if (DC_IS_XIRCOM(sc))
1354 		dc_setfilt_xircom(sc);
1355 }
1356 
1357 /*
1358  * In order to fiddle with the 'full-duplex' and '100Mbps' bits in
1359  * the netconfig register, we first have to put the transmit and/or
1360  * receive logic in the idle state.
1361  */
1362 static void
1363 dc_setcfg(struct dc_softc *sc, int media)
1364 {
1365 	int i, restart = 0, watchdogreg;
1366 	u_int32_t isr;
1367 
1368 	if (IFM_SUBTYPE(media) == IFM_NONE)
1369 		return;
1370 
1371 	if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON)) {
1372 		restart = 1;
1373 		DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1374 
1375 		for (i = 0; i < DC_TIMEOUT; i++) {
1376 			isr = CSR_READ_4(sc, DC_ISR);
1377 			if (isr & DC_ISR_TX_IDLE &&
1378 			    ((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
1379 			    (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT))
1380 				break;
1381 			DELAY(10);
1382 		}
1383 
1384 		if (i == DC_TIMEOUT)
1385 			printf("dc%d: failed to force tx and "
1386 				"rx to idle state\n", sc->dc_unit);
1387 	}
1388 
1389 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
1390 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1391 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1392 		if (sc->dc_pmode == DC_PMODE_MII) {
1393 			if (DC_IS_INTEL(sc)) {
1394 			/* There's a write enable bit here that reads as 1. */
1395 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1396 				watchdogreg &= ~DC_WDOG_CTLWREN;
1397 				watchdogreg |= DC_WDOG_JABBERDIS;
1398 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1399 			} else {
1400 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1401 			}
1402 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1403 			    DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
1404 			if (sc->dc_type == DC_TYPE_98713)
1405 				DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1406 				    DC_NETCFG_SCRAMBLER));
1407 			if (!DC_IS_DAVICOM(sc))
1408 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1409 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1410 			if (DC_IS_INTEL(sc))
1411 				dc_apply_fixup(sc, IFM_AUTO);
1412 		} else {
1413 			if (DC_IS_PNIC(sc)) {
1414 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
1415 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1416 				DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1417 			}
1418 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1419 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1420 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1421 			if (DC_IS_INTEL(sc))
1422 				dc_apply_fixup(sc,
1423 				    (media & IFM_GMASK) == IFM_FDX ?
1424 				    IFM_100_TX | IFM_FDX : IFM_100_TX);
1425 		}
1426 	}
1427 
1428 	if (IFM_SUBTYPE(media) == IFM_10_T) {
1429 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1430 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1431 		if (sc->dc_pmode == DC_PMODE_MII) {
1432 			/* There's a write enable bit here that reads as 1. */
1433 			if (DC_IS_INTEL(sc)) {
1434 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1435 				watchdogreg &= ~DC_WDOG_CTLWREN;
1436 				watchdogreg |= DC_WDOG_JABBERDIS;
1437 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1438 			} else {
1439 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1440 			}
1441 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1442 			    DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
1443 			if (sc->dc_type == DC_TYPE_98713)
1444 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1445 			if (!DC_IS_DAVICOM(sc))
1446 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1447 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1448 			if (DC_IS_INTEL(sc))
1449 				dc_apply_fixup(sc, IFM_AUTO);
1450 		} else {
1451 			if (DC_IS_PNIC(sc)) {
1452 				DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
1453 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1454 				DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1455 			}
1456 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1457 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1458 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1459 			if (DC_IS_INTEL(sc)) {
1460 				DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET);
1461 				DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1462 				if ((media & IFM_GMASK) == IFM_FDX)
1463 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D);
1464 				else
1465 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F);
1466 				DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1467 				DC_CLRBIT(sc, DC_10BTCTRL,
1468 				    DC_TCTL_AUTONEGENBL);
1469 				dc_apply_fixup(sc,
1470 				    (media & IFM_GMASK) == IFM_FDX ?
1471 				    IFM_10_T | IFM_FDX : IFM_10_T);
1472 				DELAY(20000);
1473 			}
1474 		}
1475 	}
1476 
1477 	/*
1478 	 * If this is a Davicom DM9102A card with a DM9801 HomePNA
1479 	 * PHY and we want HomePNA mode, set the portsel bit to turn
1480 	 * on the external MII port.
1481 	 */
1482 	if (DC_IS_DAVICOM(sc)) {
1483 		if (IFM_SUBTYPE(media) == IFM_HPNA_1) {
1484 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1485 			sc->dc_link = 1;
1486 		} else {
1487 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1488 		}
1489 	}
1490 
1491 	if ((media & IFM_GMASK) == IFM_FDX) {
1492 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1493 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1494 			DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1495 	} else {
1496 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1497 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1498 			DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1499 	}
1500 
1501 	if (restart)
1502 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON | DC_NETCFG_RX_ON);
1503 }
1504 
1505 static void
1506 dc_reset(struct dc_softc *sc)
1507 {
1508 	int i;
1509 
1510 	DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1511 
1512 	for (i = 0; i < DC_TIMEOUT; i++) {
1513 		DELAY(10);
1514 		if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
1515 			break;
1516 	}
1517 
1518 	if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_CONEXANT(sc) ||
1519 	    DC_IS_XIRCOM(sc) || DC_IS_INTEL(sc)) {
1520 		DELAY(10000);
1521 		DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1522 		i = 0;
1523 	}
1524 
1525 	if (i == DC_TIMEOUT)
1526 		printf("dc%d: reset never completed!\n", sc->dc_unit);
1527 
1528 	/* Wait a little while for the chip to get its brains in order. */
1529 	DELAY(1000);
1530 
1531 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
1532 	CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
1533 	CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
1534 
1535 	/*
1536 	 * Bring the SIA out of reset. In some cases, it looks
1537 	 * like failing to unreset the SIA soon enough gets it
1538 	 * into a state where it will never come out of reset
1539 	 * until we reset the whole chip again.
1540 	 */
1541 	if (DC_IS_INTEL(sc)) {
1542 		DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1543 		CSR_WRITE_4(sc, DC_10BTCTRL, 0);
1544 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
1545 	}
1546 }
1547 
1548 static struct dc_type *
1549 dc_devtype(device_t dev)
1550 {
1551 	struct dc_type *t;
1552 	u_int32_t rev;
1553 
1554 	t = dc_devs;
1555 
1556 	while (t->dc_name != NULL) {
1557 		if ((pci_get_vendor(dev) == t->dc_vid) &&
1558 		    (pci_get_device(dev) == t->dc_did)) {
1559 			/* Check the PCI revision */
1560 			rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF;
1561 			if (t->dc_did == DC_DEVICEID_98713 &&
1562 			    rev >= DC_REVISION_98713A)
1563 				t++;
1564 			if (t->dc_did == DC_DEVICEID_98713_CP &&
1565 			    rev >= DC_REVISION_98713A)
1566 				t++;
1567 			if (t->dc_did == DC_DEVICEID_987x5 &&
1568 			    rev >= DC_REVISION_98715AEC_C)
1569 				t++;
1570 			if (t->dc_did == DC_DEVICEID_987x5 &&
1571 			    rev >= DC_REVISION_98725)
1572 				t++;
1573 			if (t->dc_did == DC_DEVICEID_AX88140A &&
1574 			    rev >= DC_REVISION_88141)
1575 				t++;
1576 			if (t->dc_did == DC_DEVICEID_82C168 &&
1577 			    rev >= DC_REVISION_82C169)
1578 				t++;
1579 			if (t->dc_did == DC_DEVICEID_DM9102 &&
1580 			    rev >= DC_REVISION_DM9102A)
1581 				t++;
1582 			/*
1583 			 * The Microsoft MN-130 has a device ID of 0x0002,
1584 			 * which happens to be the same as the PNIC 82c168.
1585 			 * To keep dc_attach() from getting confused, we
1586 			 * pretend its ID is something different.
1587 			 * XXX: ideally, dc_attach() should be checking
1588 			 * vendorid+deviceid together to avoid such
1589 			 * collisions.
1590 			 */
1591 			if (t->dc_vid == DC_VENDORID_MICROSOFT &&
1592 			    t->dc_did == DC_DEVICEID_MSMN130)
1593 				t++;
1594 			return (t);
1595 		}
1596 		t++;
1597 	}
1598 
1599 	return (NULL);
1600 }
1601 
1602 /*
1603  * Probe for a 21143 or clone chip. Check the PCI vendor and device
1604  * IDs against our list and return a device name if we find a match.
1605  * We do a little bit of extra work to identify the exact type of
1606  * chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
1607  * but different revision IDs. The same is true for 98715/98715A
1608  * chips and the 98725, as well as the ASIX and ADMtek chips. In some
1609  * cases, the exact chip revision affects driver behavior.
1610  */
1611 static int
1612 dc_probe(device_t dev)
1613 {
1614 	struct dc_type *t;
1615 
1616 	t = dc_devtype(dev);
1617 
1618 	if (t != NULL) {
1619 		device_set_desc(dev, t->dc_name);
1620 		return (BUS_PROBE_DEFAULT);
1621 	}
1622 
1623 	return (ENXIO);
1624 }
1625 
1626 static void
1627 dc_apply_fixup(struct dc_softc *sc, int media)
1628 {
1629 	struct dc_mediainfo *m;
1630 	u_int8_t *p;
1631 	int i;
1632 	u_int32_t reg;
1633 
1634 	m = sc->dc_mi;
1635 
1636 	while (m != NULL) {
1637 		if (m->dc_media == media)
1638 			break;
1639 		m = m->dc_next;
1640 	}
1641 
1642 	if (m == NULL)
1643 		return;
1644 
1645 	for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) {
1646 		reg = (p[0] | (p[1] << 8)) << 16;
1647 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1648 	}
1649 
1650 	for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) {
1651 		reg = (p[0] | (p[1] << 8)) << 16;
1652 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1653 	}
1654 }
1655 
1656 static void
1657 dc_decode_leaf_sia(struct dc_softc *sc, struct dc_eblock_sia *l)
1658 {
1659 	struct dc_mediainfo *m;
1660 
1661 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1662 	switch (l->dc_sia_code & ~DC_SIA_CODE_EXT) {
1663 	case DC_SIA_CODE_10BT:
1664 		m->dc_media = IFM_10_T;
1665 		break;
1666 	case DC_SIA_CODE_10BT_FDX:
1667 		m->dc_media = IFM_10_T | IFM_FDX;
1668 		break;
1669 	case DC_SIA_CODE_10B2:
1670 		m->dc_media = IFM_10_2;
1671 		break;
1672 	case DC_SIA_CODE_10B5:
1673 		m->dc_media = IFM_10_5;
1674 		break;
1675 	default:
1676 		break;
1677 	}
1678 
1679 	/*
1680 	 * We need to ignore CSR13, CSR14, CSR15 for SIA mode.
1681 	 * Things apparently already work for cards that do
1682 	 * supply Media Specific Data.
1683 	 */
1684 	if (l->dc_sia_code & DC_SIA_CODE_EXT) {
1685 		m->dc_gp_len = 2;
1686 		m->dc_gp_ptr =
1687 		(u_int8_t *)&l->dc_un.dc_sia_ext.dc_sia_gpio_ctl;
1688 	} else {
1689 		m->dc_gp_len = 2;
1690 		m->dc_gp_ptr =
1691 		(u_int8_t *)&l->dc_un.dc_sia_noext.dc_sia_gpio_ctl;
1692 	}
1693 
1694 	m->dc_next = sc->dc_mi;
1695 	sc->dc_mi = m;
1696 
1697 	sc->dc_pmode = DC_PMODE_SIA;
1698 }
1699 
1700 static void
1701 dc_decode_leaf_sym(struct dc_softc *sc, struct dc_eblock_sym *l)
1702 {
1703 	struct dc_mediainfo *m;
1704 
1705 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1706 	if (l->dc_sym_code == DC_SYM_CODE_100BT)
1707 		m->dc_media = IFM_100_TX;
1708 
1709 	if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX)
1710 		m->dc_media = IFM_100_TX | IFM_FDX;
1711 
1712 	m->dc_gp_len = 2;
1713 	m->dc_gp_ptr = (u_int8_t *)&l->dc_sym_gpio_ctl;
1714 
1715 	m->dc_next = sc->dc_mi;
1716 	sc->dc_mi = m;
1717 
1718 	sc->dc_pmode = DC_PMODE_SYM;
1719 }
1720 
1721 static void
1722 dc_decode_leaf_mii(struct dc_softc *sc, struct dc_eblock_mii *l)
1723 {
1724 	struct dc_mediainfo *m;
1725 	u_int8_t *p;
1726 
1727 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1728 	/* We abuse IFM_AUTO to represent MII. */
1729 	m->dc_media = IFM_AUTO;
1730 	m->dc_gp_len = l->dc_gpr_len;
1731 
1732 	p = (u_int8_t *)l;
1733 	p += sizeof(struct dc_eblock_mii);
1734 	m->dc_gp_ptr = p;
1735 	p += 2 * l->dc_gpr_len;
1736 	m->dc_reset_len = *p;
1737 	p++;
1738 	m->dc_reset_ptr = p;
1739 
1740 	m->dc_next = sc->dc_mi;
1741 	sc->dc_mi = m;
1742 }
1743 
1744 static void
1745 dc_read_srom(struct dc_softc *sc, int bits)
1746 {
1747 	int size;
1748 
1749 	size = 2 << bits;
1750 	sc->dc_srom = malloc(size, M_DEVBUF, M_NOWAIT);
1751 	dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (size / 2), 0);
1752 }
1753 
1754 static void
1755 dc_parse_21143_srom(struct dc_softc *sc)
1756 {
1757 	struct dc_leaf_hdr *lhdr;
1758 	struct dc_eblock_hdr *hdr;
1759 	int have_mii, i, loff;
1760 	char *ptr;
1761 
1762 	have_mii = 0;
1763 	loff = sc->dc_srom[27];
1764 	lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]);
1765 
1766 	ptr = (char *)lhdr;
1767 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1768 	/*
1769 	 * Look if we got a MII media block.
1770 	 */
1771 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1772 		hdr = (struct dc_eblock_hdr *)ptr;
1773 		if (hdr->dc_type == DC_EBLOCK_MII)
1774 		    have_mii++;
1775 
1776 		ptr += (hdr->dc_len & 0x7F);
1777 		ptr++;
1778 	}
1779 
1780 	/*
1781 	 * Do the same thing again. Only use SIA and SYM media
1782 	 * blocks if no MII media block is available.
1783 	 */
1784 	ptr = (char *)lhdr;
1785 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1786 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1787 		hdr = (struct dc_eblock_hdr *)ptr;
1788 		switch (hdr->dc_type) {
1789 		case DC_EBLOCK_MII:
1790 			dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr);
1791 			break;
1792 		case DC_EBLOCK_SIA:
1793 			if (! have_mii)
1794 				dc_decode_leaf_sia(sc,
1795 				    (struct dc_eblock_sia *)hdr);
1796 			break;
1797 		case DC_EBLOCK_SYM:
1798 			if (! have_mii)
1799 				dc_decode_leaf_sym(sc,
1800 				    (struct dc_eblock_sym *)hdr);
1801 			break;
1802 		default:
1803 			/* Don't care. Yet. */
1804 			break;
1805 		}
1806 		ptr += (hdr->dc_len & 0x7F);
1807 		ptr++;
1808 	}
1809 }
1810 
1811 static void
1812 dc_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1813 {
1814 	u_int32_t *paddr;
1815 
1816 	KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
1817 	paddr = arg;
1818 	*paddr = segs->ds_addr;
1819 }
1820 
1821 /*
1822  * Attach the interface. Allocate softc structures, do ifmedia
1823  * setup and ethernet/BPF attach.
1824  */
1825 static int
1826 dc_attach(device_t dev)
1827 {
1828 	int tmp = 0;
1829 	u_char eaddr[ETHER_ADDR_LEN];
1830 	u_int32_t command;
1831 	struct dc_softc *sc;
1832 	struct ifnet *ifp;
1833 	u_int32_t revision;
1834 	int unit, error = 0, rid, mac_offset;
1835 	int i;
1836 	u_int8_t *mac;
1837 
1838 	sc = device_get_softc(dev);
1839 	unit = device_get_unit(dev);
1840 
1841 	mtx_init(&sc->dc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1842 	    MTX_DEF | MTX_RECURSE);
1843 
1844 	/*
1845 	 * Map control/status registers.
1846 	 */
1847 	pci_enable_busmaster(dev);
1848 
1849 	rid = DC_RID;
1850 	sc->dc_res = bus_alloc_resource_any(dev, DC_RES, &rid, RF_ACTIVE);
1851 
1852 	if (sc->dc_res == NULL) {
1853 		printf("dc%d: couldn't map ports/memory\n", unit);
1854 		error = ENXIO;
1855 		goto fail;
1856 	}
1857 
1858 	sc->dc_btag = rman_get_bustag(sc->dc_res);
1859 	sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
1860 
1861 	/* Allocate interrupt. */
1862 	rid = 0;
1863 	sc->dc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1864 	    RF_SHAREABLE | RF_ACTIVE);
1865 
1866 	if (sc->dc_irq == NULL) {
1867 		printf("dc%d: couldn't map interrupt\n", unit);
1868 		error = ENXIO;
1869 		goto fail;
1870 	}
1871 
1872 	/* Need this info to decide on a chip type. */
1873 	sc->dc_info = dc_devtype(dev);
1874 	revision = pci_read_config(dev, DC_PCI_CFRV, 4) & 0x000000FF;
1875 
1876 	/* Get the eeprom width, but PNIC and XIRCOM have diff eeprom */
1877 	if (sc->dc_info->dc_did != DC_DEVICEID_82C168 &&
1878 	   sc->dc_info->dc_did != DC_DEVICEID_X3201)
1879 		dc_eeprom_width(sc);
1880 
1881 	switch (sc->dc_info->dc_did) {
1882 	case DC_DEVICEID_21143:
1883 		sc->dc_type = DC_TYPE_21143;
1884 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1885 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1886 		/* Save EEPROM contents so we can parse them later. */
1887 		dc_read_srom(sc, sc->dc_romwidth);
1888 		break;
1889 	case DC_DEVICEID_DM9009:
1890 	case DC_DEVICEID_DM9100:
1891 	case DC_DEVICEID_DM9102:
1892 		sc->dc_type = DC_TYPE_DM9102;
1893 		sc->dc_flags |= DC_TX_COALESCE | DC_TX_INTR_ALWAYS;
1894 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_TX_STORENFWD;
1895 		sc->dc_flags |= DC_TX_ALIGN;
1896 		sc->dc_pmode = DC_PMODE_MII;
1897 		/* Increase the latency timer value. */
1898 		command = pci_read_config(dev, DC_PCI_CFLT, 4);
1899 		command &= 0xFFFF00FF;
1900 		command |= 0x00008000;
1901 		pci_write_config(dev, DC_PCI_CFLT, command, 4);
1902 		break;
1903 	case DC_DEVICEID_AL981:
1904 		sc->dc_type = DC_TYPE_AL981;
1905 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1906 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1907 		sc->dc_pmode = DC_PMODE_MII;
1908 		dc_read_srom(sc, sc->dc_romwidth);
1909 		break;
1910 	case DC_DEVICEID_AN985:
1911 	case DC_DEVICEID_ADM9511:
1912 	case DC_DEVICEID_ADM9513:
1913 	case DC_DEVICEID_FA511:
1914 	case DC_DEVICEID_FE2500:
1915 	case DC_DEVICEID_EN2242:
1916 	case DC_DEVICEID_HAWKING_PN672TX:
1917 	case DC_DEVICEID_3CSOHOB:
1918 	case DC_DEVICEID_MSMN120:
1919 	case DC_DEVICEID_MSMN130_FAKE: /* XXX avoid collision with PNIC*/
1920 		sc->dc_type = DC_TYPE_AN985;
1921 		sc->dc_flags |= DC_64BIT_HASH;
1922 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1923 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1924 		sc->dc_pmode = DC_PMODE_MII;
1925 		/* Don't read SROM for - auto-loaded on reset */
1926 		break;
1927 	case DC_DEVICEID_98713:
1928 	case DC_DEVICEID_98713_CP:
1929 		if (revision < DC_REVISION_98713A) {
1930 			sc->dc_type = DC_TYPE_98713;
1931 		}
1932 		if (revision >= DC_REVISION_98713A) {
1933 			sc->dc_type = DC_TYPE_98713A;
1934 			sc->dc_flags |= DC_21143_NWAY;
1935 		}
1936 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1937 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1938 		break;
1939 	case DC_DEVICEID_987x5:
1940 	case DC_DEVICEID_EN1217:
1941 		/*
1942 		 * Macronix MX98715AEC-C/D/E parts have only a
1943 		 * 128-bit hash table. We need to deal with these
1944 		 * in the same manner as the PNIC II so that we
1945 		 * get the right number of bits out of the
1946 		 * CRC routine.
1947 		 */
1948 		if (revision >= DC_REVISION_98715AEC_C &&
1949 		    revision < DC_REVISION_98725)
1950 			sc->dc_flags |= DC_128BIT_HASH;
1951 		sc->dc_type = DC_TYPE_987x5;
1952 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1953 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
1954 		break;
1955 	case DC_DEVICEID_98727:
1956 		sc->dc_type = DC_TYPE_987x5;
1957 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1958 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
1959 		break;
1960 	case DC_DEVICEID_82C115:
1961 		sc->dc_type = DC_TYPE_PNICII;
1962 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR | DC_128BIT_HASH;
1963 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
1964 		break;
1965 	case DC_DEVICEID_82C168:
1966 		sc->dc_type = DC_TYPE_PNIC;
1967 		sc->dc_flags |= DC_TX_STORENFWD | DC_TX_INTR_ALWAYS;
1968 		sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
1969 		sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_NOWAIT);
1970 		if (revision < DC_REVISION_82C169)
1971 			sc->dc_pmode = DC_PMODE_SYM;
1972 		break;
1973 	case DC_DEVICEID_AX88140A:
1974 		sc->dc_type = DC_TYPE_ASIX;
1975 		sc->dc_flags |= DC_TX_USE_TX_INTR | DC_TX_INTR_FIRSTFRAG;
1976 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1977 		sc->dc_pmode = DC_PMODE_MII;
1978 		break;
1979 	case DC_DEVICEID_X3201:
1980 		sc->dc_type = DC_TYPE_XIRCOM;
1981 		sc->dc_flags |= DC_TX_INTR_ALWAYS | DC_TX_COALESCE |
1982 				DC_TX_ALIGN;
1983 		/*
1984 		 * We don't actually need to coalesce, but we're doing
1985 		 * it to obtain a double word aligned buffer.
1986 		 * The DC_TX_COALESCE flag is required.
1987 		 */
1988 		sc->dc_pmode = DC_PMODE_MII;
1989 		break;
1990 	case DC_DEVICEID_RS7112:
1991 		sc->dc_type = DC_TYPE_CONEXANT;
1992 		sc->dc_flags |= DC_TX_INTR_ALWAYS;
1993 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1994 		sc->dc_pmode = DC_PMODE_MII;
1995 		dc_read_srom(sc, sc->dc_romwidth);
1996 		break;
1997 	default:
1998 		printf("dc%d: unknown device: %x\n", sc->dc_unit,
1999 		    sc->dc_info->dc_did);
2000 		break;
2001 	}
2002 
2003 	/* Save the cache line size. */
2004 	if (DC_IS_DAVICOM(sc))
2005 		sc->dc_cachesize = 0;
2006 	else
2007 		sc->dc_cachesize = pci_read_config(dev,
2008 		    DC_PCI_CFLT, 4) & 0xFF;
2009 
2010 	/* Reset the adapter. */
2011 	dc_reset(sc);
2012 
2013 	/* Take 21143 out of snooze mode */
2014 	if (DC_IS_INTEL(sc) || DC_IS_XIRCOM(sc)) {
2015 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
2016 		command &= ~(DC_CFDD_SNOOZE_MODE | DC_CFDD_SLEEP_MODE);
2017 		pci_write_config(dev, DC_PCI_CFDD, command, 4);
2018 	}
2019 
2020 	/*
2021 	 * Try to learn something about the supported media.
2022 	 * We know that ASIX and ADMtek and Davicom devices
2023 	 * will *always* be using MII media, so that's a no-brainer.
2024 	 * The tricky ones are the Macronix/PNIC II and the
2025 	 * Intel 21143.
2026 	 */
2027 	if (DC_IS_INTEL(sc))
2028 		dc_parse_21143_srom(sc);
2029 	else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
2030 		if (sc->dc_type == DC_TYPE_98713)
2031 			sc->dc_pmode = DC_PMODE_MII;
2032 		else
2033 			sc->dc_pmode = DC_PMODE_SYM;
2034 	} else if (!sc->dc_pmode)
2035 		sc->dc_pmode = DC_PMODE_MII;
2036 
2037 	/*
2038 	 * Get station address from the EEPROM.
2039 	 */
2040 	switch(sc->dc_type) {
2041 	case DC_TYPE_98713:
2042 	case DC_TYPE_98713A:
2043 	case DC_TYPE_987x5:
2044 	case DC_TYPE_PNICII:
2045 		dc_read_eeprom(sc, (caddr_t)&mac_offset,
2046 		    (DC_EE_NODEADDR_OFFSET / 2), 1, 0);
2047 		dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
2048 		break;
2049 	case DC_TYPE_PNIC:
2050 		dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
2051 		break;
2052 	case DC_TYPE_DM9102:
2053 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2054 #ifdef __sparc64__
2055 		/*
2056 		 * If this is an onboard dc(4) the station address read from
2057 		 * the EEPROM is all zero and we have to get it from the fcode.
2058 		 */
2059 		for (i = 0; i < ETHER_ADDR_LEN; i++)
2060 			if (eaddr[i] != 0x00)
2061 				break;
2062 		if (i >= ETHER_ADDR_LEN)
2063 			OF_getetheraddr(dev, eaddr);
2064 #endif
2065 		break;
2066 	case DC_TYPE_21143:
2067 	case DC_TYPE_ASIX:
2068 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2069 		break;
2070 	case DC_TYPE_AL981:
2071 	case DC_TYPE_AN985:
2072 		*(u_int32_t *)(&eaddr[0]) = CSR_READ_4(sc, DC_AL_PAR0);
2073 		*(u_int16_t *)(&eaddr[4]) = CSR_READ_4(sc, DC_AL_PAR1);
2074 		break;
2075 	case DC_TYPE_CONEXANT:
2076 		bcopy(sc->dc_srom + DC_CONEXANT_EE_NODEADDR, &eaddr,
2077 		    ETHER_ADDR_LEN);
2078 		break;
2079 	case DC_TYPE_XIRCOM:
2080 		/* The MAC comes from the CIS. */
2081 		mac = pci_get_ether(dev);
2082 		if (!mac) {
2083 			device_printf(dev, "No station address in CIS!\n");
2084 			error = ENXIO;
2085 			goto fail;
2086 		}
2087 		bcopy(mac, eaddr, ETHER_ADDR_LEN);
2088 		break;
2089 	default:
2090 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2091 		break;
2092 	}
2093 
2094 	sc->dc_unit = unit;
2095 	bcopy(eaddr, &sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
2096 
2097 	/* Allocate a busdma tag and DMA safe memory for TX/RX descriptors. */
2098 	error = bus_dma_tag_create(NULL, PAGE_SIZE, 0, BUS_SPACE_MAXADDR_32BIT,
2099 	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct dc_list_data), 1,
2100 	    sizeof(struct dc_list_data), 0, NULL, NULL, &sc->dc_ltag);
2101 	if (error) {
2102 		printf("dc%d: failed to allocate busdma tag\n", unit);
2103 		error = ENXIO;
2104 		goto fail;
2105 	}
2106 	error = bus_dmamem_alloc(sc->dc_ltag, (void **)&sc->dc_ldata,
2107 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->dc_lmap);
2108 	if (error) {
2109 		printf("dc%d: failed to allocate DMA safe memory\n", unit);
2110 		error = ENXIO;
2111 		goto fail;
2112 	}
2113 	error = bus_dmamap_load(sc->dc_ltag, sc->dc_lmap, sc->dc_ldata,
2114 	    sizeof(struct dc_list_data), dc_dma_map_addr, &sc->dc_laddr,
2115 	    BUS_DMA_NOWAIT);
2116 	if (error) {
2117 		printf("dc%d: cannot get address of the descriptors\n", unit);
2118 		error = ENXIO;
2119 		goto fail;
2120 	}
2121 
2122 	/*
2123 	 * Allocate a busdma tag and DMA safe memory for the multicast
2124 	 * setup frame.
2125 	 */
2126 	error = bus_dma_tag_create(NULL, PAGE_SIZE, 0, BUS_SPACE_MAXADDR_32BIT,
2127 	    BUS_SPACE_MAXADDR, NULL, NULL, DC_SFRAME_LEN + DC_MIN_FRAMELEN, 1,
2128 	    DC_SFRAME_LEN + DC_MIN_FRAMELEN, 0, NULL, NULL, &sc->dc_stag);
2129 	if (error) {
2130 		printf("dc%d: failed to allocate busdma tag\n", unit);
2131 		error = ENXIO;
2132 		goto fail;
2133 	}
2134 	error = bus_dmamem_alloc(sc->dc_stag, (void **)&sc->dc_cdata.dc_sbuf,
2135 	    BUS_DMA_NOWAIT, &sc->dc_smap);
2136 	if (error) {
2137 		printf("dc%d: failed to allocate DMA safe memory\n", unit);
2138 		error = ENXIO;
2139 		goto fail;
2140 	}
2141 	error = bus_dmamap_load(sc->dc_stag, sc->dc_smap, sc->dc_cdata.dc_sbuf,
2142 	    DC_SFRAME_LEN, dc_dma_map_addr, &sc->dc_saddr, BUS_DMA_NOWAIT);
2143 	if (error) {
2144 		printf("dc%d: cannot get address of the descriptors\n", unit);
2145 		error = ENXIO;
2146 		goto fail;
2147 	}
2148 
2149 	/* Allocate a busdma tag for mbufs. */
2150 	error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
2151 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, DC_TX_LIST_CNT, MCLBYTES,
2152 	    0, NULL, NULL, &sc->dc_mtag);
2153 	if (error) {
2154 		printf("dc%d: failed to allocate busdma tag\n", unit);
2155 		error = ENXIO;
2156 		goto fail;
2157 	}
2158 
2159 	/* Create the TX/RX busdma maps. */
2160 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2161 		error = bus_dmamap_create(sc->dc_mtag, 0,
2162 		    &sc->dc_cdata.dc_tx_map[i]);
2163 		if (error) {
2164 			printf("dc%d: failed to init TX ring\n", unit);
2165 			error = ENXIO;
2166 			goto fail;
2167 		}
2168 	}
2169 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2170 		error = bus_dmamap_create(sc->dc_mtag, 0,
2171 		    &sc->dc_cdata.dc_rx_map[i]);
2172 		if (error) {
2173 			printf("dc%d: failed to init RX ring\n", unit);
2174 			error = ENXIO;
2175 			goto fail;
2176 		}
2177 	}
2178 	error = bus_dmamap_create(sc->dc_mtag, 0, &sc->dc_sparemap);
2179 	if (error) {
2180 		printf("dc%d: failed to init RX ring\n", unit);
2181 		error = ENXIO;
2182 		goto fail;
2183 	}
2184 
2185 	ifp = &sc->arpcom.ac_if;
2186 	ifp->if_softc = sc;
2187 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2188 	/* XXX: bleah, MTU gets overwritten in ether_ifattach() */
2189 	ifp->if_mtu = ETHERMTU;
2190 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2191 	if (!IS_MPSAFE)
2192 		ifp->if_flags |= IFF_NEEDSGIANT;
2193 	ifp->if_ioctl = dc_ioctl;
2194 	ifp->if_start = dc_start;
2195 	ifp->if_watchdog = dc_watchdog;
2196 	ifp->if_init = dc_init;
2197 	ifp->if_baudrate = 10000000;
2198 	IFQ_SET_MAXLEN(&ifp->if_snd, DC_TX_LIST_CNT - 1);
2199 	ifp->if_snd.ifq_drv_maxlen = DC_TX_LIST_CNT - 1;
2200 	IFQ_SET_READY(&ifp->if_snd);
2201 
2202 	/*
2203 	 * Do MII setup. If this is a 21143, check for a PHY on the
2204 	 * MII bus after applying any necessary fixups to twiddle the
2205 	 * GPIO bits. If we don't end up finding a PHY, restore the
2206 	 * old selection (SIA only or SIA/SYM) and attach the dcphy
2207 	 * driver instead.
2208 	 */
2209 	if (DC_IS_INTEL(sc)) {
2210 		dc_apply_fixup(sc, IFM_AUTO);
2211 		tmp = sc->dc_pmode;
2212 		sc->dc_pmode = DC_PMODE_MII;
2213 	}
2214 
2215 	error = mii_phy_probe(dev, &sc->dc_miibus,
2216 	    dc_ifmedia_upd, dc_ifmedia_sts);
2217 
2218 	if (error && DC_IS_INTEL(sc)) {
2219 		sc->dc_pmode = tmp;
2220 		if (sc->dc_pmode != DC_PMODE_SIA)
2221 			sc->dc_pmode = DC_PMODE_SYM;
2222 		sc->dc_flags |= DC_21143_NWAY;
2223 		mii_phy_probe(dev, &sc->dc_miibus,
2224 		    dc_ifmedia_upd, dc_ifmedia_sts);
2225 		/*
2226 		 * For non-MII cards, we need to have the 21143
2227 		 * drive the LEDs. Except there are some systems
2228 		 * like the NEC VersaPro NoteBook PC which have no
2229 		 * LEDs, and twiddling these bits has adverse effects
2230 		 * on them. (I.e. you suddenly can't get a link.)
2231 		 */
2232 		if (pci_read_config(dev, DC_PCI_CSID, 4) != 0x80281033)
2233 			sc->dc_flags |= DC_TULIP_LEDS;
2234 		error = 0;
2235 	}
2236 
2237 	if (error) {
2238 		printf("dc%d: MII without any PHY!\n", sc->dc_unit);
2239 		goto fail;
2240 	}
2241 
2242 	if (DC_IS_XIRCOM(sc)) {
2243 		/*
2244 		 * setup General Purpose Port mode and data so the tulip
2245 		 * can talk to the MII.
2246 		 */
2247 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
2248 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2249 		DELAY(10);
2250 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
2251 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2252 		DELAY(10);
2253 	}
2254 
2255 	if (DC_IS_ADMTEK(sc)) {
2256 		/*
2257 		 * Set automatic TX underrun recovery for the ADMtek chips
2258 		 */
2259 		DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR);
2260 	}
2261 
2262 	/*
2263 	 * Tell the upper layer(s) we support long frames.
2264 	 */
2265 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2266 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
2267 #ifdef DEVICE_POLLING
2268 	ifp->if_capabilities |= IFCAP_POLLING;
2269 #endif
2270 	ifp->if_capenable = ifp->if_capabilities;
2271 
2272 	callout_init(&sc->dc_stat_ch, IS_MPSAFE ? CALLOUT_MPSAFE : 0);
2273 
2274 #ifdef SRM_MEDIA
2275 	sc->dc_srm_media = 0;
2276 
2277 	/* Remember the SRM console media setting */
2278 	if (DC_IS_INTEL(sc)) {
2279 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
2280 		command &= ~(DC_CFDD_SNOOZE_MODE | DC_CFDD_SLEEP_MODE);
2281 		switch ((command >> 8) & 0xff) {
2282 		case 3:
2283 			sc->dc_srm_media = IFM_10_T;
2284 			break;
2285 		case 4:
2286 			sc->dc_srm_media = IFM_10_T | IFM_FDX;
2287 			break;
2288 		case 5:
2289 			sc->dc_srm_media = IFM_100_TX;
2290 			break;
2291 		case 6:
2292 			sc->dc_srm_media = IFM_100_TX | IFM_FDX;
2293 			break;
2294 		}
2295 		if (sc->dc_srm_media)
2296 			sc->dc_srm_media |= IFM_ACTIVE | IFM_ETHER;
2297 	}
2298 #endif
2299 
2300 	/*
2301 	 * Call MI attach routine.
2302 	 */
2303 	ether_ifattach(ifp, eaddr);
2304 
2305 	/* Hook interrupt last to avoid having to lock softc */
2306 	error = bus_setup_intr(dev, sc->dc_irq, INTR_TYPE_NET |
2307 	    (IS_MPSAFE ? INTR_MPSAFE : 0),
2308 	    dc_intr, sc, &sc->dc_intrhand);
2309 
2310 	if (error) {
2311 		printf("dc%d: couldn't set up irq\n", unit);
2312 		ether_ifdetach(ifp);
2313 		goto fail;
2314 	}
2315 
2316 fail:
2317 	if (error)
2318 		dc_detach(dev);
2319 	return (error);
2320 }
2321 
2322 /*
2323  * Shutdown hardware and free up resources. This can be called any
2324  * time after the mutex has been initialized. It is called in both
2325  * the error case in attach and the normal detach case so it needs
2326  * to be careful about only freeing resources that have actually been
2327  * allocated.
2328  */
2329 static int
2330 dc_detach(device_t dev)
2331 {
2332 	struct dc_softc *sc;
2333 	struct ifnet *ifp;
2334 	struct dc_mediainfo *m;
2335 	int i;
2336 
2337 	sc = device_get_softc(dev);
2338 	KASSERT(mtx_initialized(&sc->dc_mtx), ("dc mutex not initialized"));
2339 	DC_LOCK(sc);
2340 
2341 	ifp = &sc->arpcom.ac_if;
2342 
2343 	/* These should only be active if attach succeeded */
2344 	if (device_is_attached(dev)) {
2345 		dc_stop(sc);
2346 		ether_ifdetach(ifp);
2347 	}
2348 	if (sc->dc_miibus)
2349 		device_delete_child(dev, sc->dc_miibus);
2350 	bus_generic_detach(dev);
2351 
2352 	if (sc->dc_intrhand)
2353 		bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2354 	if (sc->dc_irq)
2355 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2356 	if (sc->dc_res)
2357 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2358 
2359 	if (sc->dc_cdata.dc_sbuf != NULL)
2360 		bus_dmamem_free(sc->dc_stag, sc->dc_cdata.dc_sbuf, sc->dc_smap);
2361 	if (sc->dc_ldata != NULL)
2362 		bus_dmamem_free(sc->dc_ltag, sc->dc_ldata, sc->dc_lmap);
2363 	for (i = 0; i < DC_TX_LIST_CNT; i++)
2364 		bus_dmamap_destroy(sc->dc_mtag, sc->dc_cdata.dc_tx_map[i]);
2365 	for (i = 0; i < DC_RX_LIST_CNT; i++)
2366 		bus_dmamap_destroy(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i]);
2367 	bus_dmamap_destroy(sc->dc_mtag, sc->dc_sparemap);
2368 	if (sc->dc_stag)
2369 		bus_dma_tag_destroy(sc->dc_stag);
2370 	if (sc->dc_mtag)
2371 		bus_dma_tag_destroy(sc->dc_mtag);
2372 	if (sc->dc_ltag)
2373 		bus_dma_tag_destroy(sc->dc_ltag);
2374 
2375 	free(sc->dc_pnic_rx_buf, M_DEVBUF);
2376 
2377 	while (sc->dc_mi != NULL) {
2378 		m = sc->dc_mi->dc_next;
2379 		free(sc->dc_mi, M_DEVBUF);
2380 		sc->dc_mi = m;
2381 	}
2382 	free(sc->dc_srom, M_DEVBUF);
2383 
2384 	DC_UNLOCK(sc);
2385 	mtx_destroy(&sc->dc_mtx);
2386 
2387 	return (0);
2388 }
2389 
2390 /*
2391  * Initialize the transmit descriptors.
2392  */
2393 static int
2394 dc_list_tx_init(struct dc_softc *sc)
2395 {
2396 	struct dc_chain_data *cd;
2397 	struct dc_list_data *ld;
2398 	int i, nexti;
2399 
2400 	cd = &sc->dc_cdata;
2401 	ld = sc->dc_ldata;
2402 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2403 		if (i == DC_TX_LIST_CNT - 1)
2404 			nexti = 0;
2405 		else
2406 			nexti = i + 1;
2407 		ld->dc_tx_list[i].dc_next = htole32(DC_TXDESC(sc, nexti));
2408 		cd->dc_tx_chain[i] = NULL;
2409 		ld->dc_tx_list[i].dc_data = 0;
2410 		ld->dc_tx_list[i].dc_ctl = 0;
2411 	}
2412 
2413 	cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
2414 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
2415 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2416 	return (0);
2417 }
2418 
2419 
2420 /*
2421  * Initialize the RX descriptors and allocate mbufs for them. Note that
2422  * we arrange the descriptors in a closed ring, so that the last descriptor
2423  * points back to the first.
2424  */
2425 static int
2426 dc_list_rx_init(struct dc_softc *sc)
2427 {
2428 	struct dc_chain_data *cd;
2429 	struct dc_list_data *ld;
2430 	int i, nexti;
2431 
2432 	cd = &sc->dc_cdata;
2433 	ld = sc->dc_ldata;
2434 
2435 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2436 		if (dc_newbuf(sc, i, 1) != 0)
2437 			return (ENOBUFS);
2438 		if (i == DC_RX_LIST_CNT - 1)
2439 			nexti = 0;
2440 		else
2441 			nexti = i + 1;
2442 		ld->dc_rx_list[i].dc_next = htole32(DC_RXDESC(sc, nexti));
2443 	}
2444 
2445 	cd->dc_rx_prod = 0;
2446 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
2447 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2448 	return (0);
2449 }
2450 
2451 static void
2452 dc_dma_map_rxbuf(arg, segs, nseg, mapsize, error)
2453 	void *arg;
2454 	bus_dma_segment_t *segs;
2455 	int nseg;
2456 	bus_size_t mapsize;
2457 	int error;
2458 {
2459 	struct dc_softc *sc;
2460 	struct dc_desc *c;
2461 
2462 	sc = arg;
2463 	c = &sc->dc_ldata->dc_rx_list[sc->dc_cdata.dc_rx_cur];
2464 	if (error) {
2465 		sc->dc_cdata.dc_rx_err = error;
2466 		return;
2467 	}
2468 
2469 	KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
2470 	sc->dc_cdata.dc_rx_err = 0;
2471 	c->dc_data = htole32(segs->ds_addr);
2472 }
2473 
2474 /*
2475  * Initialize an RX descriptor and attach an MBUF cluster.
2476  */
2477 static int
2478 dc_newbuf(struct dc_softc *sc, int i, int alloc)
2479 {
2480 	struct mbuf *m_new;
2481 	bus_dmamap_t tmp;
2482 	int error;
2483 
2484 	if (alloc) {
2485 		m_new = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2486 		if (m_new == NULL)
2487 			return (ENOBUFS);
2488 	} else {
2489 		m_new = sc->dc_cdata.dc_rx_chain[i];
2490 		m_new->m_data = m_new->m_ext.ext_buf;
2491 	}
2492 	m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2493 	m_adj(m_new, sizeof(u_int64_t));
2494 
2495 	/*
2496 	 * If this is a PNIC chip, zero the buffer. This is part
2497 	 * of the workaround for the receive bug in the 82c168 and
2498 	 * 82c169 chips.
2499 	 */
2500 	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
2501 		bzero(mtod(m_new, char *), m_new->m_len);
2502 
2503 	/* No need to remap the mbuf if we're reusing it. */
2504 	if (alloc) {
2505 		sc->dc_cdata.dc_rx_cur = i;
2506 		error = bus_dmamap_load_mbuf(sc->dc_mtag, sc->dc_sparemap,
2507 		    m_new, dc_dma_map_rxbuf, sc, 0);
2508 		if (error) {
2509 			m_freem(m_new);
2510 			return (error);
2511 		}
2512 		if (sc->dc_cdata.dc_rx_err != 0) {
2513 			m_freem(m_new);
2514 			return (sc->dc_cdata.dc_rx_err);
2515 		}
2516 		bus_dmamap_unload(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i]);
2517 		tmp = sc->dc_cdata.dc_rx_map[i];
2518 		sc->dc_cdata.dc_rx_map[i] = sc->dc_sparemap;
2519 		sc->dc_sparemap = tmp;
2520 		sc->dc_cdata.dc_rx_chain[i] = m_new;
2521 	}
2522 
2523 	sc->dc_ldata->dc_rx_list[i].dc_ctl = htole32(DC_RXCTL_RLINK | DC_RXLEN);
2524 	sc->dc_ldata->dc_rx_list[i].dc_status = htole32(DC_RXSTAT_OWN);
2525 	bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i],
2526 	    BUS_DMASYNC_PREREAD);
2527 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
2528 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2529 	return (0);
2530 }
2531 
2532 /*
2533  * Grrrrr.
2534  * The PNIC chip has a terrible bug in it that manifests itself during
2535  * periods of heavy activity. The exact mode of failure if difficult to
2536  * pinpoint: sometimes it only happens in promiscuous mode, sometimes it
2537  * will happen on slow machines. The bug is that sometimes instead of
2538  * uploading one complete frame during reception, it uploads what looks
2539  * like the entire contents of its FIFO memory. The frame we want is at
2540  * the end of the whole mess, but we never know exactly how much data has
2541  * been uploaded, so salvaging the frame is hard.
2542  *
2543  * There is only one way to do it reliably, and it's disgusting.
2544  * Here's what we know:
2545  *
2546  * - We know there will always be somewhere between one and three extra
2547  *   descriptors uploaded.
2548  *
2549  * - We know the desired received frame will always be at the end of the
2550  *   total data upload.
2551  *
2552  * - We know the size of the desired received frame because it will be
2553  *   provided in the length field of the status word in the last descriptor.
2554  *
2555  * Here's what we do:
2556  *
2557  * - When we allocate buffers for the receive ring, we bzero() them.
2558  *   This means that we know that the buffer contents should be all
2559  *   zeros, except for data uploaded by the chip.
2560  *
2561  * - We also force the PNIC chip to upload frames that include the
2562  *   ethernet CRC at the end.
2563  *
2564  * - We gather all of the bogus frame data into a single buffer.
2565  *
2566  * - We then position a pointer at the end of this buffer and scan
2567  *   backwards until we encounter the first non-zero byte of data.
2568  *   This is the end of the received frame. We know we will encounter
2569  *   some data at the end of the frame because the CRC will always be
2570  *   there, so even if the sender transmits a packet of all zeros,
2571  *   we won't be fooled.
2572  *
2573  * - We know the size of the actual received frame, so we subtract
2574  *   that value from the current pointer location. This brings us
2575  *   to the start of the actual received packet.
2576  *
2577  * - We copy this into an mbuf and pass it on, along with the actual
2578  *   frame length.
2579  *
2580  * The performance hit is tremendous, but it beats dropping frames all
2581  * the time.
2582  */
2583 
2584 #define DC_WHOLEFRAME	(DC_RXSTAT_FIRSTFRAG | DC_RXSTAT_LASTFRAG)
2585 static void
2586 dc_pnic_rx_bug_war(struct dc_softc *sc, int idx)
2587 {
2588 	struct dc_desc *cur_rx;
2589 	struct dc_desc *c = NULL;
2590 	struct mbuf *m = NULL;
2591 	unsigned char *ptr;
2592 	int i, total_len;
2593 	u_int32_t rxstat = 0;
2594 
2595 	i = sc->dc_pnic_rx_bug_save;
2596 	cur_rx = &sc->dc_ldata->dc_rx_list[idx];
2597 	ptr = sc->dc_pnic_rx_buf;
2598 	bzero(ptr, DC_RXLEN * 5);
2599 
2600 	/* Copy all the bytes from the bogus buffers. */
2601 	while (1) {
2602 		c = &sc->dc_ldata->dc_rx_list[i];
2603 		rxstat = le32toh(c->dc_status);
2604 		m = sc->dc_cdata.dc_rx_chain[i];
2605 		bcopy(mtod(m, char *), ptr, DC_RXLEN);
2606 		ptr += DC_RXLEN;
2607 		/* If this is the last buffer, break out. */
2608 		if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
2609 			break;
2610 		dc_newbuf(sc, i, 0);
2611 		DC_INC(i, DC_RX_LIST_CNT);
2612 	}
2613 
2614 	/* Find the length of the actual receive frame. */
2615 	total_len = DC_RXBYTES(rxstat);
2616 
2617 	/* Scan backwards until we hit a non-zero byte. */
2618 	while (*ptr == 0x00)
2619 		ptr--;
2620 
2621 	/* Round off. */
2622 	if ((uintptr_t)(ptr) & 0x3)
2623 		ptr -= 1;
2624 
2625 	/* Now find the start of the frame. */
2626 	ptr -= total_len;
2627 	if (ptr < sc->dc_pnic_rx_buf)
2628 		ptr = sc->dc_pnic_rx_buf;
2629 
2630 	/*
2631 	 * Now copy the salvaged frame to the last mbuf and fake up
2632 	 * the status word to make it look like a successful
2633 	 * frame reception.
2634 	 */
2635 	dc_newbuf(sc, i, 0);
2636 	bcopy(ptr, mtod(m, char *), total_len);
2637 	cur_rx->dc_status = htole32(rxstat | DC_RXSTAT_FIRSTFRAG);
2638 }
2639 
2640 /*
2641  * This routine searches the RX ring for dirty descriptors in the
2642  * event that the rxeof routine falls out of sync with the chip's
2643  * current descriptor pointer. This may happen sometimes as a result
2644  * of a "no RX buffer available" condition that happens when the chip
2645  * consumes all of the RX buffers before the driver has a chance to
2646  * process the RX ring. This routine may need to be called more than
2647  * once to bring the driver back in sync with the chip, however we
2648  * should still be getting RX DONE interrupts to drive the search
2649  * for new packets in the RX ring, so we should catch up eventually.
2650  */
2651 static int
2652 dc_rx_resync(struct dc_softc *sc)
2653 {
2654 	struct dc_desc *cur_rx;
2655 	int i, pos;
2656 
2657 	pos = sc->dc_cdata.dc_rx_prod;
2658 
2659 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2660 		cur_rx = &sc->dc_ldata->dc_rx_list[pos];
2661 		if (!(le32toh(cur_rx->dc_status) & DC_RXSTAT_OWN))
2662 			break;
2663 		DC_INC(pos, DC_RX_LIST_CNT);
2664 	}
2665 
2666 	/* If the ring really is empty, then just return. */
2667 	if (i == DC_RX_LIST_CNT)
2668 		return (0);
2669 
2670 	/* We've fallen behing the chip: catch it. */
2671 	sc->dc_cdata.dc_rx_prod = pos;
2672 
2673 	return (EAGAIN);
2674 }
2675 
2676 /*
2677  * A frame has been uploaded: pass the resulting mbuf chain up to
2678  * the higher level protocols.
2679  */
2680 static void
2681 dc_rxeof(struct dc_softc *sc)
2682 {
2683 	struct mbuf *m;
2684 	struct ifnet *ifp;
2685 	struct dc_desc *cur_rx;
2686 	int i, total_len = 0;
2687 	u_int32_t rxstat;
2688 
2689 	DC_LOCK_ASSERT(sc);
2690 
2691 	ifp = &sc->arpcom.ac_if;
2692 	i = sc->dc_cdata.dc_rx_prod;
2693 
2694 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap, BUS_DMASYNC_POSTREAD);
2695 	while (!(le32toh(sc->dc_ldata->dc_rx_list[i].dc_status) &
2696 	    DC_RXSTAT_OWN)) {
2697 #ifdef DEVICE_POLLING
2698 		if (ifp->if_flags & IFF_POLLING) {
2699 			if (sc->rxcycles <= 0)
2700 				break;
2701 			sc->rxcycles--;
2702 		}
2703 #endif
2704 		cur_rx = &sc->dc_ldata->dc_rx_list[i];
2705 		rxstat = le32toh(cur_rx->dc_status);
2706 		m = sc->dc_cdata.dc_rx_chain[i];
2707 		bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i],
2708 		    BUS_DMASYNC_POSTREAD);
2709 		total_len = DC_RXBYTES(rxstat);
2710 
2711 		if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2712 			if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
2713 				if (rxstat & DC_RXSTAT_FIRSTFRAG)
2714 					sc->dc_pnic_rx_bug_save = i;
2715 				if ((rxstat & DC_RXSTAT_LASTFRAG) == 0) {
2716 					DC_INC(i, DC_RX_LIST_CNT);
2717 					continue;
2718 				}
2719 				dc_pnic_rx_bug_war(sc, i);
2720 				rxstat = le32toh(cur_rx->dc_status);
2721 				total_len = DC_RXBYTES(rxstat);
2722 			}
2723 		}
2724 
2725 		/*
2726 		 * If an error occurs, update stats, clear the
2727 		 * status word and leave the mbuf cluster in place:
2728 		 * it should simply get re-used next time this descriptor
2729 		 * comes up in the ring.  However, don't report long
2730 		 * frames as errors since they could be vlans.
2731 		 */
2732 		if ((rxstat & DC_RXSTAT_RXERR)) {
2733 			if (!(rxstat & DC_RXSTAT_GIANT) ||
2734 			    (rxstat & (DC_RXSTAT_CRCERR | DC_RXSTAT_DRIBBLE |
2735 				       DC_RXSTAT_MIIERE | DC_RXSTAT_COLLSEEN |
2736 				       DC_RXSTAT_RUNT   | DC_RXSTAT_DE))) {
2737 				ifp->if_ierrors++;
2738 				if (rxstat & DC_RXSTAT_COLLSEEN)
2739 					ifp->if_collisions++;
2740 				dc_newbuf(sc, i, 0);
2741 				if (rxstat & DC_RXSTAT_CRCERR) {
2742 					DC_INC(i, DC_RX_LIST_CNT);
2743 					continue;
2744 				} else {
2745 					dc_init(sc);
2746 					return;
2747 				}
2748 			}
2749 		}
2750 
2751 		/* No errors; receive the packet. */
2752 		total_len -= ETHER_CRC_LEN;
2753 #ifdef __i386__
2754 		/*
2755 		 * On the x86 we do not have alignment problems, so try to
2756 		 * allocate a new buffer for the receive ring, and pass up
2757 		 * the one where the packet is already, saving the expensive
2758 		 * copy done in m_devget().
2759 		 * If we are on an architecture with alignment problems, or
2760 		 * if the allocation fails, then use m_devget and leave the
2761 		 * existing buffer in the receive ring.
2762 		 */
2763 		if (dc_quick && dc_newbuf(sc, i, 1) == 0) {
2764 			m->m_pkthdr.rcvif = ifp;
2765 			m->m_pkthdr.len = m->m_len = total_len;
2766 			DC_INC(i, DC_RX_LIST_CNT);
2767 		} else
2768 #endif
2769 		{
2770 			struct mbuf *m0;
2771 
2772 			m0 = m_devget(mtod(m, char *), total_len,
2773 				ETHER_ALIGN, ifp, NULL);
2774 			dc_newbuf(sc, i, 0);
2775 			DC_INC(i, DC_RX_LIST_CNT);
2776 			if (m0 == NULL) {
2777 				ifp->if_ierrors++;
2778 				continue;
2779 			}
2780 			m = m0;
2781 		}
2782 
2783 		ifp->if_ipackets++;
2784 		DC_UNLOCK(sc);
2785 		(*ifp->if_input)(ifp, m);
2786 		DC_LOCK(sc);
2787 	}
2788 
2789 	sc->dc_cdata.dc_rx_prod = i;
2790 }
2791 
2792 /*
2793  * A frame was downloaded to the chip. It's safe for us to clean up
2794  * the list buffers.
2795  */
2796 
2797 static void
2798 dc_txeof(struct dc_softc *sc)
2799 {
2800 	struct dc_desc *cur_tx = NULL;
2801 	struct ifnet *ifp;
2802 	int idx;
2803 	u_int32_t ctl, txstat;
2804 
2805 	ifp = &sc->arpcom.ac_if;
2806 
2807 	/*
2808 	 * Go through our tx list and free mbufs for those
2809 	 * frames that have been transmitted.
2810 	 */
2811 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap, BUS_DMASYNC_POSTREAD);
2812 	idx = sc->dc_cdata.dc_tx_cons;
2813 	while (idx != sc->dc_cdata.dc_tx_prod) {
2814 
2815 		cur_tx = &sc->dc_ldata->dc_tx_list[idx];
2816 		txstat = le32toh(cur_tx->dc_status);
2817 		ctl = le32toh(cur_tx->dc_ctl);
2818 
2819 		if (txstat & DC_TXSTAT_OWN)
2820 			break;
2821 
2822 		if (!(ctl & DC_TXCTL_LASTFRAG) || ctl & DC_TXCTL_SETUP) {
2823 			if (ctl & DC_TXCTL_SETUP) {
2824 				/*
2825 				 * Yes, the PNIC is so brain damaged
2826 				 * that it will sometimes generate a TX
2827 				 * underrun error while DMAing the RX
2828 				 * filter setup frame. If we detect this,
2829 				 * we have to send the setup frame again,
2830 				 * or else the filter won't be programmed
2831 				 * correctly.
2832 				 */
2833 				if (DC_IS_PNIC(sc)) {
2834 					if (txstat & DC_TXSTAT_ERRSUM)
2835 						dc_setfilt(sc);
2836 				}
2837 				sc->dc_cdata.dc_tx_chain[idx] = NULL;
2838 			}
2839 			sc->dc_cdata.dc_tx_cnt--;
2840 			DC_INC(idx, DC_TX_LIST_CNT);
2841 			continue;
2842 		}
2843 
2844 		if (DC_IS_XIRCOM(sc) || DC_IS_CONEXANT(sc)) {
2845 			/*
2846 			 * XXX: Why does my Xircom taunt me so?
2847 			 * For some reason it likes setting the CARRLOST flag
2848 			 * even when the carrier is there. wtf?!?
2849 			 * Who knows, but Conexant chips have the
2850 			 * same problem. Maybe they took lessons
2851 			 * from Xircom.
2852 			 */
2853 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2854 			    sc->dc_pmode == DC_PMODE_MII &&
2855 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
2856 			    DC_TXSTAT_NOCARRIER)))
2857 				txstat &= ~DC_TXSTAT_ERRSUM;
2858 		} else {
2859 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2860 			    sc->dc_pmode == DC_PMODE_MII &&
2861 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
2862 			    DC_TXSTAT_NOCARRIER | DC_TXSTAT_CARRLOST)))
2863 				txstat &= ~DC_TXSTAT_ERRSUM;
2864 		}
2865 
2866 		if (txstat & DC_TXSTAT_ERRSUM) {
2867 			ifp->if_oerrors++;
2868 			if (txstat & DC_TXSTAT_EXCESSCOLL)
2869 				ifp->if_collisions++;
2870 			if (txstat & DC_TXSTAT_LATECOLL)
2871 				ifp->if_collisions++;
2872 			if (!(txstat & DC_TXSTAT_UNDERRUN)) {
2873 				dc_init(sc);
2874 				return;
2875 			}
2876 		}
2877 
2878 		ifp->if_collisions += (txstat & DC_TXSTAT_COLLCNT) >> 3;
2879 
2880 		ifp->if_opackets++;
2881 		if (sc->dc_cdata.dc_tx_chain[idx] != NULL) {
2882 			bus_dmamap_sync(sc->dc_mtag,
2883 			    sc->dc_cdata.dc_tx_map[idx],
2884 			    BUS_DMASYNC_POSTWRITE);
2885 			bus_dmamap_unload(sc->dc_mtag,
2886 			    sc->dc_cdata.dc_tx_map[idx]);
2887 			m_freem(sc->dc_cdata.dc_tx_chain[idx]);
2888 			sc->dc_cdata.dc_tx_chain[idx] = NULL;
2889 		}
2890 
2891 		sc->dc_cdata.dc_tx_cnt--;
2892 		DC_INC(idx, DC_TX_LIST_CNT);
2893 	}
2894 
2895 	if (idx != sc->dc_cdata.dc_tx_cons) {
2896 	    	/* Some buffers have been freed. */
2897 		sc->dc_cdata.dc_tx_cons = idx;
2898 		ifp->if_flags &= ~IFF_OACTIVE;
2899 	}
2900 	ifp->if_timer = (sc->dc_cdata.dc_tx_cnt == 0) ? 0 : 5;
2901 }
2902 
2903 static void
2904 dc_tick(void *xsc)
2905 {
2906 	struct dc_softc *sc;
2907 	struct mii_data *mii;
2908 	struct ifnet *ifp;
2909 	u_int32_t r;
2910 
2911 	sc = xsc;
2912 	DC_LOCK(sc);
2913 	ifp = &sc->arpcom.ac_if;
2914 	mii = device_get_softc(sc->dc_miibus);
2915 
2916 	if (sc->dc_flags & DC_REDUCED_MII_POLL) {
2917 		if (sc->dc_flags & DC_21143_NWAY) {
2918 			r = CSR_READ_4(sc, DC_10BTSTAT);
2919 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2920 			    IFM_100_TX && (r & DC_TSTAT_LS100)) {
2921 				sc->dc_link = 0;
2922 				mii_mediachg(mii);
2923 			}
2924 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2925 			    IFM_10_T && (r & DC_TSTAT_LS10)) {
2926 				sc->dc_link = 0;
2927 				mii_mediachg(mii);
2928 			}
2929 			if (sc->dc_link == 0)
2930 				mii_tick(mii);
2931 		} else {
2932 			r = CSR_READ_4(sc, DC_ISR);
2933 			if ((r & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT &&
2934 			    sc->dc_cdata.dc_tx_cnt == 0) {
2935 				mii_tick(mii);
2936 				if (!(mii->mii_media_status & IFM_ACTIVE))
2937 					sc->dc_link = 0;
2938 			}
2939 		}
2940 	} else
2941 		mii_tick(mii);
2942 
2943 	/*
2944 	 * When the init routine completes, we expect to be able to send
2945 	 * packets right away, and in fact the network code will send a
2946 	 * gratuitous ARP the moment the init routine marks the interface
2947 	 * as running. However, even though the MAC may have been initialized,
2948 	 * there may be a delay of a few seconds before the PHY completes
2949 	 * autonegotiation and the link is brought up. Any transmissions
2950 	 * made during that delay will be lost. Dealing with this is tricky:
2951 	 * we can't just pause in the init routine while waiting for the
2952 	 * PHY to come ready since that would bring the whole system to
2953 	 * a screeching halt for several seconds.
2954 	 *
2955 	 * What we do here is prevent the TX start routine from sending
2956 	 * any packets until a link has been established. After the
2957 	 * interface has been initialized, the tick routine will poll
2958 	 * the state of the PHY until the IFM_ACTIVE flag is set. Until
2959 	 * that time, packets will stay in the send queue, and once the
2960 	 * link comes up, they will be flushed out to the wire.
2961 	 */
2962 	if (!sc->dc_link && mii->mii_media_status & IFM_ACTIVE &&
2963 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2964 		sc->dc_link++;
2965 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2966 			dc_start(ifp);
2967 	}
2968 
2969 	if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link)
2970 		callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
2971 	else
2972 		callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
2973 
2974 	DC_UNLOCK(sc);
2975 }
2976 
2977 /*
2978  * A transmit underrun has occurred.  Back off the transmit threshold,
2979  * or switch to store and forward mode if we have to.
2980  */
2981 static void
2982 dc_tx_underrun(struct dc_softc *sc)
2983 {
2984 	u_int32_t isr;
2985 	int i;
2986 
2987 	if (DC_IS_DAVICOM(sc))
2988 		dc_init(sc);
2989 
2990 	if (DC_IS_INTEL(sc)) {
2991 		/*
2992 		 * The real 21143 requires that the transmitter be idle
2993 		 * in order to change the transmit threshold or store
2994 		 * and forward state.
2995 		 */
2996 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2997 
2998 		for (i = 0; i < DC_TIMEOUT; i++) {
2999 			isr = CSR_READ_4(sc, DC_ISR);
3000 			if (isr & DC_ISR_TX_IDLE)
3001 				break;
3002 			DELAY(10);
3003 		}
3004 		if (i == DC_TIMEOUT) {
3005 			printf("dc%d: failed to force tx to idle state\n",
3006 			    sc->dc_unit);
3007 			dc_init(sc);
3008 		}
3009 	}
3010 
3011 	printf("dc%d: TX underrun -- ", sc->dc_unit);
3012 	sc->dc_txthresh += DC_TXTHRESH_INC;
3013 	if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3014 		printf("using store and forward mode\n");
3015 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3016 	} else {
3017 		printf("increasing TX threshold\n");
3018 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3019 		DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3020 	}
3021 
3022 	if (DC_IS_INTEL(sc))
3023 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3024 }
3025 
3026 #ifdef DEVICE_POLLING
3027 static poll_handler_t dc_poll;
3028 
3029 static void
3030 dc_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
3031 {
3032 	struct dc_softc *sc = ifp->if_softc;
3033 
3034 	if (!(ifp->if_capenable & IFCAP_POLLING)) {
3035 		ether_poll_deregister(ifp);
3036 		cmd = POLL_DEREGISTER;
3037 	}
3038 	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
3039 		/* Re-enable interrupts. */
3040 		CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3041 		return;
3042 	}
3043 	DC_LOCK(sc);
3044 	sc->rxcycles = count;
3045 	dc_rxeof(sc);
3046 	dc_txeof(sc);
3047 	if (!IFQ_IS_EMPTY(&ifp->if_snd) && !(ifp->if_flags & IFF_OACTIVE))
3048 		dc_start(ifp);
3049 
3050 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
3051 		u_int32_t	status;
3052 
3053 		status = CSR_READ_4(sc, DC_ISR);
3054 		status &= (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF |
3055 			DC_ISR_TX_NOBUF | DC_ISR_TX_IDLE | DC_ISR_TX_UNDERRUN |
3056 			DC_ISR_BUS_ERR);
3057 		if (!status) {
3058 			DC_UNLOCK(sc);
3059 			return;
3060 		}
3061 		/* ack what we have */
3062 		CSR_WRITE_4(sc, DC_ISR, status);
3063 
3064 		if (status & (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF)) {
3065 			u_int32_t r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
3066 			ifp->if_ierrors += (r & 0xffff) + ((r >> 17) & 0x7ff);
3067 
3068 			if (dc_rx_resync(sc))
3069 				dc_rxeof(sc);
3070 		}
3071 		/* restart transmit unit if necessary */
3072 		if (status & DC_ISR_TX_IDLE && sc->dc_cdata.dc_tx_cnt)
3073 			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3074 
3075 		if (status & DC_ISR_TX_UNDERRUN)
3076 			dc_tx_underrun(sc);
3077 
3078 		if (status & DC_ISR_BUS_ERR) {
3079 			printf("dc_poll: dc%d bus error\n", sc->dc_unit);
3080 			dc_reset(sc);
3081 			dc_init(sc);
3082 		}
3083 	}
3084 	DC_UNLOCK(sc);
3085 }
3086 #endif /* DEVICE_POLLING */
3087 
3088 static void
3089 dc_intr(void *arg)
3090 {
3091 	struct dc_softc *sc;
3092 	struct ifnet *ifp;
3093 	u_int32_t status;
3094 
3095 	sc = arg;
3096 
3097 	if (sc->suspended)
3098 		return;
3099 
3100 	if ((CSR_READ_4(sc, DC_ISR) & DC_INTRS) == 0)
3101 		return;
3102 
3103 	DC_LOCK(sc);
3104 	ifp = &sc->arpcom.ac_if;
3105 #ifdef DEVICE_POLLING
3106 	if (ifp->if_flags & IFF_POLLING)
3107 		goto done;
3108 	if ((ifp->if_capenable & IFCAP_POLLING) &&
3109 	    ether_poll_register(dc_poll, ifp)) { /* ok, disable interrupts */
3110 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3111 		goto done;
3112 	}
3113 #endif
3114 
3115 	/* Suppress unwanted interrupts */
3116 	if (!(ifp->if_flags & IFF_UP)) {
3117 		if (CSR_READ_4(sc, DC_ISR) & DC_INTRS)
3118 			dc_stop(sc);
3119 		DC_UNLOCK(sc);
3120 		return;
3121 	}
3122 
3123 	/* Disable interrupts. */
3124 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3125 
3126 	while (((status = CSR_READ_4(sc, DC_ISR)) & DC_INTRS)
3127 	      && status != 0xFFFFFFFF) {
3128 
3129 		CSR_WRITE_4(sc, DC_ISR, status);
3130 
3131 		if (status & DC_ISR_RX_OK) {
3132 			int		curpkts;
3133 			curpkts = ifp->if_ipackets;
3134 			dc_rxeof(sc);
3135 			if (curpkts == ifp->if_ipackets) {
3136 				while (dc_rx_resync(sc))
3137 					dc_rxeof(sc);
3138 			}
3139 		}
3140 
3141 		if (status & (DC_ISR_TX_OK | DC_ISR_TX_NOBUF))
3142 			dc_txeof(sc);
3143 
3144 		if (status & DC_ISR_TX_IDLE) {
3145 			dc_txeof(sc);
3146 			if (sc->dc_cdata.dc_tx_cnt) {
3147 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3148 				CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3149 			}
3150 		}
3151 
3152 		if (status & DC_ISR_TX_UNDERRUN)
3153 			dc_tx_underrun(sc);
3154 
3155 		if ((status & DC_ISR_RX_WATDOGTIMEO)
3156 		    || (status & DC_ISR_RX_NOBUF)) {
3157 			int		curpkts;
3158 			curpkts = ifp->if_ipackets;
3159 			dc_rxeof(sc);
3160 			if (curpkts == ifp->if_ipackets) {
3161 				while (dc_rx_resync(sc))
3162 					dc_rxeof(sc);
3163 			}
3164 		}
3165 
3166 		if (status & DC_ISR_BUS_ERR) {
3167 			dc_reset(sc);
3168 			dc_init(sc);
3169 		}
3170 	}
3171 
3172 	/* Re-enable interrupts. */
3173 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3174 
3175 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3176 		dc_start(ifp);
3177 
3178 #ifdef DEVICE_POLLING
3179 done:
3180 #endif
3181 
3182 	DC_UNLOCK(sc);
3183 }
3184 
3185 static void
3186 dc_dma_map_txbuf(arg, segs, nseg, mapsize, error)
3187 	void *arg;
3188 	bus_dma_segment_t *segs;
3189 	int nseg;
3190 	bus_size_t mapsize;
3191 	int error;
3192 {
3193 	struct dc_softc *sc;
3194 	struct dc_desc *f;
3195 	int cur, first, frag, i;
3196 
3197 	sc = arg;
3198 	if (error) {
3199 		sc->dc_cdata.dc_tx_err = error;
3200 		return;
3201 	}
3202 
3203 	first = cur = frag = sc->dc_cdata.dc_tx_prod;
3204 	for (i = 0; i < nseg; i++) {
3205 		if ((sc->dc_flags & DC_TX_ADMTEK_WAR) &&
3206 		    (frag == (DC_TX_LIST_CNT - 1)) &&
3207 		    (first != sc->dc_cdata.dc_tx_first)) {
3208 			bus_dmamap_unload(sc->dc_mtag,
3209 			    sc->dc_cdata.dc_tx_map[first]);
3210 			sc->dc_cdata.dc_tx_err = ENOBUFS;
3211 			return;
3212 		}
3213 
3214 		f = &sc->dc_ldata->dc_tx_list[frag];
3215 		f->dc_ctl = htole32(DC_TXCTL_TLINK | segs[i].ds_len);
3216 		if (i == 0) {
3217 			f->dc_status = 0;
3218 			f->dc_ctl |= htole32(DC_TXCTL_FIRSTFRAG);
3219 		} else
3220 			f->dc_status = htole32(DC_TXSTAT_OWN);
3221 		f->dc_data = htole32(segs[i].ds_addr);
3222 		cur = frag;
3223 		DC_INC(frag, DC_TX_LIST_CNT);
3224 	}
3225 
3226 	sc->dc_cdata.dc_tx_err = 0;
3227 	sc->dc_cdata.dc_tx_prod = frag;
3228 	sc->dc_cdata.dc_tx_cnt += nseg;
3229 	sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_LASTFRAG);
3230 	sc->dc_cdata.dc_tx_chain[cur] = sc->dc_cdata.dc_tx_mapping;
3231 	if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
3232 		sc->dc_ldata->dc_tx_list[first].dc_ctl |=
3233 		    htole32(DC_TXCTL_FINT);
3234 	if (sc->dc_flags & DC_TX_INTR_ALWAYS)
3235 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
3236 	if (sc->dc_flags & DC_TX_USE_TX_INTR && sc->dc_cdata.dc_tx_cnt > 64)
3237 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
3238 	sc->dc_ldata->dc_tx_list[first].dc_status = htole32(DC_TXSTAT_OWN);
3239 }
3240 
3241 /*
3242  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
3243  * pointers to the fragment pointers.
3244  */
3245 static int
3246 dc_encap(struct dc_softc *sc, struct mbuf **m_head)
3247 {
3248 	struct mbuf *m;
3249 	int error, idx, chainlen = 0;
3250 
3251 	/*
3252 	 * If there's no way we can send any packets, return now.
3253 	 */
3254 	if (DC_TX_LIST_CNT - sc->dc_cdata.dc_tx_cnt < 6)
3255 		return (ENOBUFS);
3256 
3257 	/*
3258 	 * Count the number of frags in this chain to see if
3259 	 * we need to m_defrag.  Since the descriptor list is shared
3260 	 * by all packets, we'll m_defrag long chains so that they
3261 	 * do not use up the entire list, even if they would fit.
3262 	 */
3263 	for (m = *m_head; m != NULL; m = m->m_next)
3264 		chainlen++;
3265 
3266 	if ((chainlen > DC_TX_LIST_CNT / 4) ||
3267 	    ((DC_TX_LIST_CNT - (chainlen + sc->dc_cdata.dc_tx_cnt)) < 6)) {
3268 		m = m_defrag(*m_head, M_DONTWAIT);
3269 		if (m == NULL)
3270 			return (ENOBUFS);
3271 		*m_head = m;
3272 	}
3273 
3274 	/*
3275 	 * Start packing the mbufs in this chain into
3276 	 * the fragment pointers. Stop when we run out
3277 	 * of fragments or hit the end of the mbuf chain.
3278 	 */
3279 	idx = sc->dc_cdata.dc_tx_prod;
3280 	sc->dc_cdata.dc_tx_mapping = *m_head;
3281 	error = bus_dmamap_load_mbuf(sc->dc_mtag, sc->dc_cdata.dc_tx_map[idx],
3282 	    *m_head, dc_dma_map_txbuf, sc, 0);
3283 	if (error)
3284 		return (error);
3285 	if (sc->dc_cdata.dc_tx_err != 0)
3286 		return (sc->dc_cdata.dc_tx_err);
3287 	bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_tx_map[idx],
3288 	    BUS_DMASYNC_PREWRITE);
3289 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
3290 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
3291 	return (0);
3292 }
3293 
3294 /*
3295  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3296  * to the mbuf data regions directly in the transmit lists. We also save a
3297  * copy of the pointers since the transmit list fragment pointers are
3298  * physical addresses.
3299  */
3300 
3301 static void
3302 dc_start(struct ifnet *ifp)
3303 {
3304 	struct dc_softc *sc;
3305 	struct mbuf *m_head = NULL, *m;
3306 	unsigned int queued = 0;
3307 	int idx;
3308 
3309 	sc = ifp->if_softc;
3310 
3311 	DC_LOCK(sc);
3312 
3313 	if (!sc->dc_link && ifp->if_snd.ifq_len < 10) {
3314 		DC_UNLOCK(sc);
3315 		return;
3316 	}
3317 
3318 	if (ifp->if_flags & IFF_OACTIVE) {
3319 		DC_UNLOCK(sc);
3320 		return;
3321 	}
3322 
3323 	idx = sc->dc_cdata.dc_tx_first = sc->dc_cdata.dc_tx_prod;
3324 
3325 	while (sc->dc_cdata.dc_tx_chain[idx] == NULL) {
3326 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
3327 		if (m_head == NULL)
3328 			break;
3329 
3330 		if (sc->dc_flags & DC_TX_COALESCE &&
3331 		    (m_head->m_next != NULL ||
3332 		     sc->dc_flags & DC_TX_ALIGN)) {
3333 			m = m_defrag(m_head, M_DONTWAIT);
3334 			if (m == NULL) {
3335 				IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
3336 				ifp->if_flags |= IFF_OACTIVE;
3337 				break;
3338 			} else {
3339 				m_head = m;
3340 			}
3341 		}
3342 
3343 		if (dc_encap(sc, &m_head)) {
3344 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
3345 			ifp->if_flags |= IFF_OACTIVE;
3346 			break;
3347 		}
3348 		idx = sc->dc_cdata.dc_tx_prod;
3349 
3350 		queued++;
3351 		/*
3352 		 * If there's a BPF listener, bounce a copy of this frame
3353 		 * to him.
3354 		 */
3355 		BPF_MTAP(ifp, m_head);
3356 
3357 		if (sc->dc_flags & DC_TX_ONE) {
3358 			ifp->if_flags |= IFF_OACTIVE;
3359 			break;
3360 		}
3361 	}
3362 
3363 	if (queued > 0) {
3364 		/* Transmit */
3365 		if (!(sc->dc_flags & DC_TX_POLL))
3366 			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3367 
3368 		/*
3369 		 * Set a timeout in case the chip goes out to lunch.
3370 		 */
3371 		ifp->if_timer = 5;
3372 	}
3373 
3374 	DC_UNLOCK(sc);
3375 }
3376 
3377 static void
3378 dc_init(void *xsc)
3379 {
3380 	struct dc_softc *sc = xsc;
3381 	struct ifnet *ifp = &sc->arpcom.ac_if;
3382 	struct mii_data *mii;
3383 
3384 	DC_LOCK(sc);
3385 
3386 	mii = device_get_softc(sc->dc_miibus);
3387 
3388 	/*
3389 	 * Cancel pending I/O and free all RX/TX buffers.
3390 	 */
3391 	dc_stop(sc);
3392 	dc_reset(sc);
3393 
3394 	/*
3395 	 * Set cache alignment and burst length.
3396 	 */
3397 	if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc))
3398 		CSR_WRITE_4(sc, DC_BUSCTL, 0);
3399 	else
3400 		CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME | DC_BUSCTL_MRLE);
3401 	/*
3402 	 * Evenly share the bus between receive and transmit process.
3403 	 */
3404 	if (DC_IS_INTEL(sc))
3405 		DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION);
3406 	if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
3407 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
3408 	} else {
3409 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
3410 	}
3411 	if (sc->dc_flags & DC_TX_POLL)
3412 		DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
3413 	switch(sc->dc_cachesize) {
3414 	case 32:
3415 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
3416 		break;
3417 	case 16:
3418 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
3419 		break;
3420 	case 8:
3421 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
3422 		break;
3423 	case 0:
3424 	default:
3425 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
3426 		break;
3427 	}
3428 
3429 	if (sc->dc_flags & DC_TX_STORENFWD)
3430 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3431 	else {
3432 		if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3433 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3434 		} else {
3435 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3436 			DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3437 		}
3438 	}
3439 
3440 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
3441 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
3442 
3443 	if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
3444 		/*
3445 		 * The app notes for the 98713 and 98715A say that
3446 		 * in order to have the chips operate properly, a magic
3447 		 * number must be written to CSR16. Macronix does not
3448 		 * document the meaning of these bits so there's no way
3449 		 * to know exactly what they do. The 98713 has a magic
3450 		 * number all its own; the rest all use a different one.
3451 		 */
3452 		DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
3453 		if (sc->dc_type == DC_TYPE_98713)
3454 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
3455 		else
3456 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
3457 	}
3458 
3459 	if (DC_IS_XIRCOM(sc)) {
3460 		/*
3461 		 * setup General Purpose Port mode and data so the tulip
3462 		 * can talk to the MII.
3463 		 */
3464 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
3465 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3466 		DELAY(10);
3467 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
3468 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3469 		DELAY(10);
3470 	}
3471 
3472 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3473 	DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN);
3474 
3475 	/* Init circular RX list. */
3476 	if (dc_list_rx_init(sc) == ENOBUFS) {
3477 		printf("dc%d: initialization failed: no "
3478 		    "memory for rx buffers\n", sc->dc_unit);
3479 		dc_stop(sc);
3480 		DC_UNLOCK(sc);
3481 		return;
3482 	}
3483 
3484 	/*
3485 	 * Init TX descriptors.
3486 	 */
3487 	dc_list_tx_init(sc);
3488 
3489 	/*
3490 	 * Load the address of the RX list.
3491 	 */
3492 	CSR_WRITE_4(sc, DC_RXADDR, DC_RXDESC(sc, 0));
3493 	CSR_WRITE_4(sc, DC_TXADDR, DC_TXDESC(sc, 0));
3494 
3495 	/*
3496 	 * Enable interrupts.
3497 	 */
3498 #ifdef DEVICE_POLLING
3499 	/*
3500 	 * ... but only if we are not polling, and make sure they are off in
3501 	 * the case of polling. Some cards (e.g. fxp) turn interrupts on
3502 	 * after a reset.
3503 	 */
3504 	if (ifp->if_flags & IFF_POLLING)
3505 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3506 	else
3507 #endif
3508 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3509 	CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
3510 
3511 	/* Enable transmitter. */
3512 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3513 
3514 	/*
3515 	 * If this is an Intel 21143 and we're not using the
3516 	 * MII port, program the LED control pins so we get
3517 	 * link and activity indications.
3518 	 */
3519 	if (sc->dc_flags & DC_TULIP_LEDS) {
3520 		CSR_WRITE_4(sc, DC_WATCHDOG,
3521 		    DC_WDOG_CTLWREN | DC_WDOG_LINK | DC_WDOG_ACTIVITY);
3522 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
3523 	}
3524 
3525 	/*
3526 	 * Load the RX/multicast filter. We do this sort of late
3527 	 * because the filter programming scheme on the 21143 and
3528 	 * some clones requires DMAing a setup frame via the TX
3529 	 * engine, and we need the transmitter enabled for that.
3530 	 */
3531 	dc_setfilt(sc);
3532 
3533 	/* Enable receiver. */
3534 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
3535 	CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
3536 
3537 	mii_mediachg(mii);
3538 	dc_setcfg(sc, sc->dc_if_media);
3539 
3540 	ifp->if_flags |= IFF_RUNNING;
3541 	ifp->if_flags &= ~IFF_OACTIVE;
3542 
3543 	/* Don't start the ticker if this is a homePNA link. */
3544 	if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_HPNA_1)
3545 		sc->dc_link = 1;
3546 	else {
3547 		if (sc->dc_flags & DC_21143_NWAY)
3548 			callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
3549 		else
3550 			callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
3551 	}
3552 
3553 #ifdef SRM_MEDIA
3554 	if(sc->dc_srm_media) {
3555 		struct ifreq ifr;
3556 
3557 		ifr.ifr_media = sc->dc_srm_media;
3558 		ifmedia_ioctl(ifp, &ifr, &mii->mii_media, SIOCSIFMEDIA);
3559 		sc->dc_srm_media = 0;
3560 	}
3561 #endif
3562 	DC_UNLOCK(sc);
3563 }
3564 
3565 /*
3566  * Set media options.
3567  */
3568 static int
3569 dc_ifmedia_upd(struct ifnet *ifp)
3570 {
3571 	struct dc_softc *sc;
3572 	struct mii_data *mii;
3573 	struct ifmedia *ifm;
3574 
3575 	sc = ifp->if_softc;
3576 	mii = device_get_softc(sc->dc_miibus);
3577 	mii_mediachg(mii);
3578 	ifm = &mii->mii_media;
3579 
3580 	if (DC_IS_DAVICOM(sc) &&
3581 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1)
3582 		dc_setcfg(sc, ifm->ifm_media);
3583 	else
3584 		sc->dc_link = 0;
3585 
3586 	return (0);
3587 }
3588 
3589 /*
3590  * Report current media status.
3591  */
3592 static void
3593 dc_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3594 {
3595 	struct dc_softc *sc;
3596 	struct mii_data *mii;
3597 	struct ifmedia *ifm;
3598 
3599 	sc = ifp->if_softc;
3600 	mii = device_get_softc(sc->dc_miibus);
3601 	mii_pollstat(mii);
3602 	ifm = &mii->mii_media;
3603 	if (DC_IS_DAVICOM(sc)) {
3604 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
3605 			ifmr->ifm_active = ifm->ifm_media;
3606 			ifmr->ifm_status = 0;
3607 			return;
3608 		}
3609 	}
3610 	ifmr->ifm_active = mii->mii_media_active;
3611 	ifmr->ifm_status = mii->mii_media_status;
3612 }
3613 
3614 static int
3615 dc_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
3616 {
3617 	struct dc_softc *sc = ifp->if_softc;
3618 	struct ifreq *ifr = (struct ifreq *)data;
3619 	struct mii_data *mii;
3620 	int error = 0;
3621 
3622 	DC_LOCK(sc);
3623 
3624 	switch (command) {
3625 	case SIOCSIFFLAGS:
3626 		if (ifp->if_flags & IFF_UP) {
3627 			int need_setfilt = (ifp->if_flags ^ sc->dc_if_flags) &
3628 				(IFF_PROMISC | IFF_ALLMULTI);
3629 
3630 			if (ifp->if_flags & IFF_RUNNING) {
3631 				if (need_setfilt)
3632 					dc_setfilt(sc);
3633 			} else {
3634 				sc->dc_txthresh = 0;
3635 				dc_init(sc);
3636 			}
3637 		} else {
3638 			if (ifp->if_flags & IFF_RUNNING)
3639 				dc_stop(sc);
3640 		}
3641 		sc->dc_if_flags = ifp->if_flags;
3642 		error = 0;
3643 		break;
3644 	case SIOCADDMULTI:
3645 	case SIOCDELMULTI:
3646 		dc_setfilt(sc);
3647 		error = 0;
3648 		break;
3649 	case SIOCGIFMEDIA:
3650 	case SIOCSIFMEDIA:
3651 		mii = device_get_softc(sc->dc_miibus);
3652 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
3653 #ifdef SRM_MEDIA
3654 		if (sc->dc_srm_media)
3655 			sc->dc_srm_media = 0;
3656 #endif
3657 		break;
3658 	case SIOCSIFCAP:
3659 		ifp->if_capenable &= ~IFCAP_POLLING;
3660 		ifp->if_capenable |= ifr->ifr_reqcap & IFCAP_POLLING;
3661 		break;
3662 	default:
3663 		error = ether_ioctl(ifp, command, data);
3664 		break;
3665 	}
3666 
3667 	DC_UNLOCK(sc);
3668 
3669 	return (error);
3670 }
3671 
3672 static void
3673 dc_watchdog(struct ifnet *ifp)
3674 {
3675 	struct dc_softc *sc;
3676 
3677 	sc = ifp->if_softc;
3678 
3679 	DC_LOCK(sc);
3680 
3681 	ifp->if_oerrors++;
3682 	printf("dc%d: watchdog timeout\n", sc->dc_unit);
3683 
3684 	dc_stop(sc);
3685 	dc_reset(sc);
3686 	dc_init(sc);
3687 
3688 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3689 		dc_start(ifp);
3690 
3691 	DC_UNLOCK(sc);
3692 }
3693 
3694 /*
3695  * Stop the adapter and free any mbufs allocated to the
3696  * RX and TX lists.
3697  */
3698 static void
3699 dc_stop(struct dc_softc *sc)
3700 {
3701 	struct ifnet *ifp;
3702 	struct dc_list_data *ld;
3703 	struct dc_chain_data *cd;
3704 	int i;
3705 	u_int32_t ctl;
3706 
3707 	DC_LOCK(sc);
3708 
3709 	ifp = &sc->arpcom.ac_if;
3710 	ifp->if_timer = 0;
3711 	ld = sc->dc_ldata;
3712 	cd = &sc->dc_cdata;
3713 
3714 	callout_stop(&sc->dc_stat_ch);
3715 
3716 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3717 #ifdef DEVICE_POLLING
3718 	ether_poll_deregister(ifp);
3719 #endif
3720 
3721 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ON | DC_NETCFG_TX_ON));
3722 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3723 	CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
3724 	CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
3725 	sc->dc_link = 0;
3726 
3727 	/*
3728 	 * Free data in the RX lists.
3729 	 */
3730 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
3731 		if (cd->dc_rx_chain[i] != NULL) {
3732 			m_freem(cd->dc_rx_chain[i]);
3733 			cd->dc_rx_chain[i] = NULL;
3734 		}
3735 	}
3736 	bzero(&ld->dc_rx_list, sizeof(ld->dc_rx_list));
3737 
3738 	/*
3739 	 * Free the TX list buffers.
3740 	 */
3741 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
3742 		if (cd->dc_tx_chain[i] != NULL) {
3743 			ctl = le32toh(ld->dc_tx_list[i].dc_ctl);
3744 			if ((ctl & DC_TXCTL_SETUP) ||
3745 			    !(ctl & DC_TXCTL_LASTFRAG)) {
3746 				cd->dc_tx_chain[i] = NULL;
3747 				continue;
3748 			}
3749 			bus_dmamap_unload(sc->dc_mtag, cd->dc_tx_map[i]);
3750 			m_freem(cd->dc_tx_chain[i]);
3751 			cd->dc_tx_chain[i] = NULL;
3752 		}
3753 	}
3754 	bzero(&ld->dc_tx_list, sizeof(ld->dc_tx_list));
3755 
3756 	DC_UNLOCK(sc);
3757 }
3758 
3759 /*
3760  * Device suspend routine.  Stop the interface and save some PCI
3761  * settings in case the BIOS doesn't restore them properly on
3762  * resume.
3763  */
3764 static int
3765 dc_suspend(device_t dev)
3766 {
3767 	struct dc_softc *sc;
3768 	int s;
3769 
3770 	s = splimp();
3771 
3772 	sc = device_get_softc(dev);
3773 	dc_stop(sc);
3774 	sc->suspended = 1;
3775 
3776 	splx(s);
3777 	return (0);
3778 }
3779 
3780 /*
3781  * Device resume routine.  Restore some PCI settings in case the BIOS
3782  * doesn't, re-enable busmastering, and restart the interface if
3783  * appropriate.
3784  */
3785 static int
3786 dc_resume(device_t dev)
3787 {
3788 	struct dc_softc *sc;
3789 	struct ifnet *ifp;
3790 	int s;
3791 
3792 	s = splimp();
3793 
3794 	sc = device_get_softc(dev);
3795 	ifp = &sc->arpcom.ac_if;
3796 
3797 	/* reinitialize interface if necessary */
3798 	if (ifp->if_flags & IFF_UP)
3799 		dc_init(sc);
3800 
3801 	sc->suspended = 0;
3802 
3803 	splx(s);
3804 	return (0);
3805 }
3806 
3807 /*
3808  * Stop all chip I/O so that the kernel's probe routines don't
3809  * get confused by errant DMAs when rebooting.
3810  */
3811 static void
3812 dc_shutdown(device_t dev)
3813 {
3814 	struct dc_softc *sc;
3815 
3816 	sc = device_get_softc(dev);
3817 
3818 	dc_stop(sc);
3819 }
3820