xref: /freebsd/sys/dev/dc/if_dc.c (revision c37420b0d5b3b6ef875fbf0b84a13f6f09be56d6)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ee.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /*
37  * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
38  * series chips and several workalikes including the following:
39  *
40  * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com)
41  * Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
42  * Lite-On 82c168/82c169 PNIC (www.litecom.com)
43  * ASIX Electronics AX88140A (www.asix.com.tw)
44  * ASIX Electronics AX88141 (www.asix.com.tw)
45  * ADMtek AL981 (www.admtek.com.tw)
46  * ADMtek AN985 (www.admtek.com.tw)
47  * Netgear FA511 (www.netgear.com) Appears to be rebadged ADMTek AN985
48  * Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
49  * Accton EN1217 (www.accton.com)
50  * Xircom X3201 (www.xircom.com)
51  * Abocom FE2500
52  * Conexant LANfinity (www.conexant.com)
53  * 3Com OfficeConnect 10/100B 3CSOHO100B (www.3com.com)
54  *
55  * Datasheets for the 21143 are available at developer.intel.com.
56  * Datasheets for the clone parts can be found at their respective sites.
57  * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
58  * The PNIC II is essentially a Macronix 98715A chip; the only difference
59  * worth noting is that its multicast hash table is only 128 bits wide
60  * instead of 512.
61  *
62  * Written by Bill Paul <wpaul@ee.columbia.edu>
63  * Electrical Engineering Department
64  * Columbia University, New York City
65  */
66 /*
67  * The Intel 21143 is the successor to the DEC 21140. It is basically
68  * the same as the 21140 but with a few new features. The 21143 supports
69  * three kinds of media attachments:
70  *
71  * o MII port, for 10Mbps and 100Mbps support and NWAY
72  *   autonegotiation provided by an external PHY.
73  * o SYM port, for symbol mode 100Mbps support.
74  * o 10baseT port.
75  * o AUI/BNC port.
76  *
77  * The 100Mbps SYM port and 10baseT port can be used together in
78  * combination with the internal NWAY support to create a 10/100
79  * autosensing configuration.
80  *
81  * Note that not all tulip workalikes are handled in this driver: we only
82  * deal with those which are relatively well behaved. The Winbond is
83  * handled separately due to its different register offsets and the
84  * special handling needed for its various bugs. The PNIC is handled
85  * here, but I'm not thrilled about it.
86  *
87  * All of the workalike chips use some form of MII transceiver support
88  * with the exception of the Macronix chips, which also have a SYM port.
89  * The ASIX AX88140A is also documented to have a SYM port, but all
90  * the cards I've seen use an MII transceiver, probably because the
91  * AX88140A doesn't support internal NWAY.
92  */
93 
94 #include <sys/param.h>
95 #include <sys/endian.h>
96 #include <sys/systm.h>
97 #include <sys/sockio.h>
98 #include <sys/mbuf.h>
99 #include <sys/malloc.h>
100 #include <sys/kernel.h>
101 #include <sys/module.h>
102 #include <sys/socket.h>
103 #include <sys/sysctl.h>
104 
105 #include <net/if.h>
106 #include <net/if_arp.h>
107 #include <net/ethernet.h>
108 #include <net/if_dl.h>
109 #include <net/if_media.h>
110 #include <net/if_types.h>
111 #include <net/if_vlan_var.h>
112 
113 #include <net/bpf.h>
114 
115 #include <machine/bus_pio.h>
116 #include <machine/bus_memio.h>
117 #include <machine/bus.h>
118 #include <machine/resource.h>
119 #include <sys/bus.h>
120 #include <sys/rman.h>
121 
122 #include <dev/mii/mii.h>
123 #include <dev/mii/miivar.h>
124 
125 #include <dev/pci/pcireg.h>
126 #include <dev/pci/pcivar.h>
127 
128 #define DC_USEIOSPACE
129 #ifdef __alpha__
130 #define SRM_MEDIA
131 #endif
132 
133 #include <pci/if_dcreg.h>
134 
135 #ifdef __sparc64__
136 #include <dev/ofw/openfirm.h>
137 #include <machine/ofw_machdep.h>
138 #endif
139 
140 MODULE_DEPEND(dc, pci, 1, 1, 1);
141 MODULE_DEPEND(dc, ether, 1, 1, 1);
142 MODULE_DEPEND(dc, miibus, 1, 1, 1);
143 
144 /* "controller miibus0" required.  See GENERIC if you get errors here. */
145 #include "miibus_if.h"
146 
147 /*
148  * Various supported device vendors/types and their names.
149  */
150 static struct dc_type dc_devs[] = {
151 	{ DC_VENDORID_DEC, DC_DEVICEID_21143,
152 		"Intel 21143 10/100BaseTX" },
153 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009,
154 		"Davicom DM9009 10/100BaseTX" },
155 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100,
156 		"Davicom DM9100 10/100BaseTX" },
157 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
158 		"Davicom DM9102 10/100BaseTX" },
159 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
160 		"Davicom DM9102A 10/100BaseTX" },
161 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AL981,
162 		"ADMtek AL981 10/100BaseTX" },
163 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AN985,
164 		"ADMtek AN985 10/100BaseTX" },
165 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511,
166 		"ADMtek ADM9511 10/100BaseTX" },
167 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513,
168 		"ADMtek ADM9513 10/100BaseTX" },
169 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_FA511,
170 		"Netgear FA511 10/100BaseTX" },
171 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
172 		"ASIX AX88140A 10/100BaseTX" },
173 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
174 		"ASIX AX88141 10/100BaseTX" },
175 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
176 		"Macronix 98713 10/100BaseTX" },
177 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
178 		"Macronix 98713A 10/100BaseTX" },
179 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
180 		"Compex RL100-TX 10/100BaseTX" },
181 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
182 		"Compex RL100-TX 10/100BaseTX" },
183 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
184 		"Macronix 98715/98715A 10/100BaseTX" },
185 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
186 		"Macronix 98715AEC-C 10/100BaseTX" },
187 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
188 		"Macronix 98725 10/100BaseTX" },
189 	{ DC_VENDORID_MX, DC_DEVICEID_98727,
190 		"Macronix 98727/98732 10/100BaseTX" },
191 	{ DC_VENDORID_LO, DC_DEVICEID_82C115,
192 		"LC82C115 PNIC II 10/100BaseTX" },
193 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
194 		"82c168 PNIC 10/100BaseTX" },
195 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
196 		"82c169 PNIC 10/100BaseTX" },
197 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN1217,
198 		"Accton EN1217 10/100BaseTX" },
199 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN2242,
200 		"Accton EN2242 MiniPCI 10/100BaseTX" },
201 	{ DC_VENDORID_XIRCOM, DC_DEVICEID_X3201,
202 	  	"Xircom X3201 10/100BaseTX" },
203 	{ DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500,
204 		"Abocom FE2500 10/100BaseTX" },
205 	{ DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500MX,
206 		"Abocom FE2500MX 10/100BaseTX" },
207 	{ DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112,
208 		"Conexant LANfinity MiniPCI 10/100BaseTX" },
209 	{ DC_VENDORID_HAWKING, DC_DEVICEID_HAWKING_PN672TX,
210 		"Hawking CB102 CardBus 10/100" },
211 	{ DC_VENDORID_PLANEX, DC_DEVICEID_FNW3602T,
212 		"PlaneX FNW-3602-T CardBus 10/100" },
213 	{ DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB,
214 		"3Com OfficeConnect 10/100B" },
215 	{ DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN120,
216 		"Microsoft MN-120 CardBus 10/100" },
217 	{ DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130,
218 		"Microsoft MN-130 10/100" },
219 	{ DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130_FAKE,
220 		"Microsoft MN-130 10/100" },
221 	{ 0, 0, NULL }
222 };
223 
224 static int dc_probe		(device_t);
225 static int dc_attach		(device_t);
226 static int dc_detach		(device_t);
227 static int dc_suspend		(device_t);
228 static int dc_resume		(device_t);
229 static struct dc_type *dc_devtype	(device_t);
230 static int dc_newbuf		(struct dc_softc *, int, int);
231 static int dc_encap		(struct dc_softc *, struct mbuf **);
232 static void dc_pnic_rx_bug_war	(struct dc_softc *, int);
233 static int dc_rx_resync		(struct dc_softc *);
234 static void dc_rxeof		(struct dc_softc *);
235 static void dc_txeof		(struct dc_softc *);
236 static void dc_tick		(void *);
237 static void dc_tx_underrun	(struct dc_softc *);
238 static void dc_intr		(void *);
239 static void dc_start		(struct ifnet *);
240 static int dc_ioctl		(struct ifnet *, u_long, caddr_t);
241 static void dc_init		(void *);
242 static void dc_stop		(struct dc_softc *);
243 static void dc_watchdog		(struct ifnet *);
244 static void dc_shutdown		(device_t);
245 static int dc_ifmedia_upd	(struct ifnet *);
246 static void dc_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
247 
248 static void dc_delay		(struct dc_softc *);
249 static void dc_eeprom_idle	(struct dc_softc *);
250 static void dc_eeprom_putbyte	(struct dc_softc *, int);
251 static void dc_eeprom_getword	(struct dc_softc *, int, u_int16_t *);
252 static void dc_eeprom_getword_pnic
253 				(struct dc_softc *, int, u_int16_t *);
254 static void dc_eeprom_getword_xircom
255 				(struct dc_softc *, int, u_int16_t *);
256 static void dc_eeprom_width	(struct dc_softc *);
257 static void dc_read_eeprom	(struct dc_softc *, caddr_t, int, int, int);
258 
259 static void dc_mii_writebit	(struct dc_softc *, int);
260 static int dc_mii_readbit	(struct dc_softc *);
261 static void dc_mii_sync		(struct dc_softc *);
262 static void dc_mii_send		(struct dc_softc *, u_int32_t, int);
263 static int dc_mii_readreg	(struct dc_softc *, struct dc_mii_frame *);
264 static int dc_mii_writereg	(struct dc_softc *, struct dc_mii_frame *);
265 static int dc_miibus_readreg	(device_t, int, int);
266 static int dc_miibus_writereg	(device_t, int, int, int);
267 static void dc_miibus_statchg	(device_t);
268 static void dc_miibus_mediainit	(device_t);
269 
270 static void dc_setcfg		(struct dc_softc *, int);
271 static uint32_t dc_mchash_le	(struct dc_softc *, const uint8_t *);
272 static uint32_t dc_mchash_be	(const uint8_t *);
273 static void dc_setfilt_21143	(struct dc_softc *);
274 static void dc_setfilt_asix	(struct dc_softc *);
275 static void dc_setfilt_admtek	(struct dc_softc *);
276 static void dc_setfilt_xircom	(struct dc_softc *);
277 
278 static void dc_setfilt		(struct dc_softc *);
279 
280 static void dc_reset		(struct dc_softc *);
281 static int dc_list_rx_init	(struct dc_softc *);
282 static int dc_list_tx_init	(struct dc_softc *);
283 
284 static void dc_read_srom	(struct dc_softc *, int);
285 static void dc_parse_21143_srom	(struct dc_softc *);
286 static void dc_decode_leaf_sia	(struct dc_softc *, struct dc_eblock_sia *);
287 static void dc_decode_leaf_mii	(struct dc_softc *, struct dc_eblock_mii *);
288 static void dc_decode_leaf_sym	(struct dc_softc *, struct dc_eblock_sym *);
289 static void dc_apply_fixup	(struct dc_softc *, int);
290 
291 static void dc_dma_map_txbuf	(void *, bus_dma_segment_t *, int, bus_size_t,
292 				    int);
293 static void dc_dma_map_rxbuf	(void *, bus_dma_segment_t *, int, bus_size_t,
294 				    int);
295 
296 #ifdef DC_USEIOSPACE
297 #define DC_RES			SYS_RES_IOPORT
298 #define DC_RID			DC_PCI_CFBIO
299 #else
300 #define DC_RES			SYS_RES_MEMORY
301 #define DC_RID			DC_PCI_CFBMA
302 #endif
303 
304 static device_method_t dc_methods[] = {
305 	/* Device interface */
306 	DEVMETHOD(device_probe,		dc_probe),
307 	DEVMETHOD(device_attach,	dc_attach),
308 	DEVMETHOD(device_detach,	dc_detach),
309 	DEVMETHOD(device_suspend,	dc_suspend),
310 	DEVMETHOD(device_resume,	dc_resume),
311 	DEVMETHOD(device_shutdown,	dc_shutdown),
312 
313 	/* bus interface */
314 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
315 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
316 
317 	/* MII interface */
318 	DEVMETHOD(miibus_readreg,	dc_miibus_readreg),
319 	DEVMETHOD(miibus_writereg,	dc_miibus_writereg),
320 	DEVMETHOD(miibus_statchg,	dc_miibus_statchg),
321 	DEVMETHOD(miibus_mediainit,	dc_miibus_mediainit),
322 
323 	{ 0, 0 }
324 };
325 
326 static driver_t dc_driver = {
327 	"dc",
328 	dc_methods,
329 	sizeof(struct dc_softc)
330 };
331 
332 static devclass_t dc_devclass;
333 #ifdef __i386__
334 static int dc_quick = 1;
335 SYSCTL_INT(_hw, OID_AUTO, dc_quick, CTLFLAG_RW, &dc_quick, 0,
336     "do not m_devget() in dc driver");
337 #endif
338 
339 DRIVER_MODULE(dc, cardbus, dc_driver, dc_devclass, 0, 0);
340 DRIVER_MODULE(dc, pci, dc_driver, dc_devclass, 0, 0);
341 DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, 0, 0);
342 
343 #define DC_SETBIT(sc, reg, x)				\
344 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
345 
346 #define DC_CLRBIT(sc, reg, x)				\
347 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
348 
349 #define SIO_SET(x)	DC_SETBIT(sc, DC_SIO, (x))
350 #define SIO_CLR(x)	DC_CLRBIT(sc, DC_SIO, (x))
351 
352 #define IS_MPSAFE 	0
353 
354 static void
355 dc_delay(struct dc_softc *sc)
356 {
357 	int idx;
358 
359 	for (idx = (300 / 33) + 1; idx > 0; idx--)
360 		CSR_READ_4(sc, DC_BUSCTL);
361 }
362 
363 static void
364 dc_eeprom_width(struct dc_softc *sc)
365 {
366 	int i;
367 
368 	/* Force EEPROM to idle state. */
369 	dc_eeprom_idle(sc);
370 
371 	/* Enter EEPROM access mode. */
372 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
373 	dc_delay(sc);
374 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
375 	dc_delay(sc);
376 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
377 	dc_delay(sc);
378 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
379 	dc_delay(sc);
380 
381 	for (i = 3; i--;) {
382 		if (6 & (1 << i))
383 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
384 		else
385 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
386 		dc_delay(sc);
387 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
388 		dc_delay(sc);
389 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
390 		dc_delay(sc);
391 	}
392 
393 	for (i = 1; i <= 12; i++) {
394 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
395 		dc_delay(sc);
396 		if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) {
397 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
398 			dc_delay(sc);
399 			break;
400 		}
401 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
402 		dc_delay(sc);
403 	}
404 
405 	/* Turn off EEPROM access mode. */
406 	dc_eeprom_idle(sc);
407 
408 	if (i < 4 || i > 12)
409 		sc->dc_romwidth = 6;
410 	else
411 		sc->dc_romwidth = i;
412 
413 	/* Enter EEPROM access mode. */
414 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
415 	dc_delay(sc);
416 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
417 	dc_delay(sc);
418 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
419 	dc_delay(sc);
420 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
421 	dc_delay(sc);
422 
423 	/* Turn off EEPROM access mode. */
424 	dc_eeprom_idle(sc);
425 }
426 
427 static void
428 dc_eeprom_idle(struct dc_softc *sc)
429 {
430 	int i;
431 
432 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
433 	dc_delay(sc);
434 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
435 	dc_delay(sc);
436 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
437 	dc_delay(sc);
438 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
439 	dc_delay(sc);
440 
441 	for (i = 0; i < 25; i++) {
442 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
443 		dc_delay(sc);
444 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
445 		dc_delay(sc);
446 	}
447 
448 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
449 	dc_delay(sc);
450 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
451 	dc_delay(sc);
452 	CSR_WRITE_4(sc, DC_SIO, 0x00000000);
453 }
454 
455 /*
456  * Send a read command and address to the EEPROM, check for ACK.
457  */
458 static void
459 dc_eeprom_putbyte(struct dc_softc *sc, int addr)
460 {
461 	int d, i;
462 
463 	d = DC_EECMD_READ >> 6;
464 	for (i = 3; i--; ) {
465 		if (d & (1 << i))
466 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
467 		else
468 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
469 		dc_delay(sc);
470 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
471 		dc_delay(sc);
472 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
473 		dc_delay(sc);
474 	}
475 
476 	/*
477 	 * Feed in each bit and strobe the clock.
478 	 */
479 	for (i = sc->dc_romwidth; i--;) {
480 		if (addr & (1 << i)) {
481 			SIO_SET(DC_SIO_EE_DATAIN);
482 		} else {
483 			SIO_CLR(DC_SIO_EE_DATAIN);
484 		}
485 		dc_delay(sc);
486 		SIO_SET(DC_SIO_EE_CLK);
487 		dc_delay(sc);
488 		SIO_CLR(DC_SIO_EE_CLK);
489 		dc_delay(sc);
490 	}
491 }
492 
493 /*
494  * Read a word of data stored in the EEPROM at address 'addr.'
495  * The PNIC 82c168/82c169 has its own non-standard way to read
496  * the EEPROM.
497  */
498 static void
499 dc_eeprom_getword_pnic(struct dc_softc *sc, int addr, u_int16_t *dest)
500 {
501 	int i;
502 	u_int32_t r;
503 
504 	CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ | addr);
505 
506 	for (i = 0; i < DC_TIMEOUT; i++) {
507 		DELAY(1);
508 		r = CSR_READ_4(sc, DC_SIO);
509 		if (!(r & DC_PN_SIOCTL_BUSY)) {
510 			*dest = (u_int16_t)(r & 0xFFFF);
511 			return;
512 		}
513 	}
514 }
515 
516 /*
517  * Read a word of data stored in the EEPROM at address 'addr.'
518  * The Xircom X3201 has its own non-standard way to read
519  * the EEPROM, too.
520  */
521 static void
522 dc_eeprom_getword_xircom(struct dc_softc *sc, int addr, u_int16_t *dest)
523 {
524 
525 	SIO_SET(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
526 
527 	addr *= 2;
528 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
529 	*dest = (u_int16_t)CSR_READ_4(sc, DC_SIO) & 0xff;
530 	addr += 1;
531 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
532 	*dest |= ((u_int16_t)CSR_READ_4(sc, DC_SIO) & 0xff) << 8;
533 
534 	SIO_CLR(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
535 }
536 
537 /*
538  * Read a word of data stored in the EEPROM at address 'addr.'
539  */
540 static void
541 dc_eeprom_getword(struct dc_softc *sc, int addr, u_int16_t *dest)
542 {
543 	int i;
544 	u_int16_t word = 0;
545 
546 	/* Force EEPROM to idle state. */
547 	dc_eeprom_idle(sc);
548 
549 	/* Enter EEPROM access mode. */
550 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
551 	dc_delay(sc);
552 	DC_SETBIT(sc, DC_SIO,  DC_SIO_ROMCTL_READ);
553 	dc_delay(sc);
554 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
555 	dc_delay(sc);
556 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
557 	dc_delay(sc);
558 
559 	/*
560 	 * Send address of word we want to read.
561 	 */
562 	dc_eeprom_putbyte(sc, addr);
563 
564 	/*
565 	 * Start reading bits from EEPROM.
566 	 */
567 	for (i = 0x8000; i; i >>= 1) {
568 		SIO_SET(DC_SIO_EE_CLK);
569 		dc_delay(sc);
570 		if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
571 			word |= i;
572 		dc_delay(sc);
573 		SIO_CLR(DC_SIO_EE_CLK);
574 		dc_delay(sc);
575 	}
576 
577 	/* Turn off EEPROM access mode. */
578 	dc_eeprom_idle(sc);
579 
580 	*dest = word;
581 }
582 
583 /*
584  * Read a sequence of words from the EEPROM.
585  */
586 static void
587 dc_read_eeprom(struct dc_softc *sc, caddr_t dest, int off, int cnt, int swap)
588 {
589 	int i;
590 	u_int16_t word = 0, *ptr;
591 
592 	for (i = 0; i < cnt; i++) {
593 		if (DC_IS_PNIC(sc))
594 			dc_eeprom_getword_pnic(sc, off + i, &word);
595 		else if (DC_IS_XIRCOM(sc))
596 			dc_eeprom_getword_xircom(sc, off + i, &word);
597 		else
598 			dc_eeprom_getword(sc, off + i, &word);
599 		ptr = (u_int16_t *)(dest + (i * 2));
600 		if (swap)
601 			*ptr = ntohs(word);
602 		else
603 			*ptr = word;
604 	}
605 }
606 
607 /*
608  * The following two routines are taken from the Macronix 98713
609  * Application Notes pp.19-21.
610  */
611 /*
612  * Write a bit to the MII bus.
613  */
614 static void
615 dc_mii_writebit(struct dc_softc *sc, int bit)
616 {
617 
618 	if (bit)
619 		CSR_WRITE_4(sc, DC_SIO,
620 		    DC_SIO_ROMCTL_WRITE | DC_SIO_MII_DATAOUT);
621 	else
622 		CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
623 
624 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
625 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
626 }
627 
628 /*
629  * Read a bit from the MII bus.
630  */
631 static int
632 dc_mii_readbit(struct dc_softc *sc)
633 {
634 
635 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_READ | DC_SIO_MII_DIR);
636 	CSR_READ_4(sc, DC_SIO);
637 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
638 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
639 	if (CSR_READ_4(sc, DC_SIO) & DC_SIO_MII_DATAIN)
640 		return (1);
641 
642 	return (0);
643 }
644 
645 /*
646  * Sync the PHYs by setting data bit and strobing the clock 32 times.
647  */
648 static void
649 dc_mii_sync(struct dc_softc *sc)
650 {
651 	int i;
652 
653 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
654 
655 	for (i = 0; i < 32; i++)
656 		dc_mii_writebit(sc, 1);
657 }
658 
659 /*
660  * Clock a series of bits through the MII.
661  */
662 static void
663 dc_mii_send(struct dc_softc *sc, u_int32_t bits, int cnt)
664 {
665 	int i;
666 
667 	for (i = (0x1 << (cnt - 1)); i; i >>= 1)
668 		dc_mii_writebit(sc, bits & i);
669 }
670 
671 /*
672  * Read an PHY register through the MII.
673  */
674 static int
675 dc_mii_readreg(struct dc_softc *sc, struct dc_mii_frame *frame)
676 {
677 	int i, ack;
678 
679 	DC_LOCK(sc);
680 
681 	/*
682 	 * Set up frame for RX.
683 	 */
684 	frame->mii_stdelim = DC_MII_STARTDELIM;
685 	frame->mii_opcode = DC_MII_READOP;
686 	frame->mii_turnaround = 0;
687 	frame->mii_data = 0;
688 
689 	/*
690 	 * Sync the PHYs.
691 	 */
692 	dc_mii_sync(sc);
693 
694 	/*
695 	 * Send command/address info.
696 	 */
697 	dc_mii_send(sc, frame->mii_stdelim, 2);
698 	dc_mii_send(sc, frame->mii_opcode, 2);
699 	dc_mii_send(sc, frame->mii_phyaddr, 5);
700 	dc_mii_send(sc, frame->mii_regaddr, 5);
701 
702 #ifdef notdef
703 	/* Idle bit */
704 	dc_mii_writebit(sc, 1);
705 	dc_mii_writebit(sc, 0);
706 #endif
707 
708 	/* Check for ack. */
709 	ack = dc_mii_readbit(sc);
710 
711 	/*
712 	 * Now try reading data bits. If the ack failed, we still
713 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
714 	 */
715 	if (ack) {
716 		for (i = 0; i < 16; i++)
717 			dc_mii_readbit(sc);
718 		goto fail;
719 	}
720 
721 	for (i = 0x8000; i; i >>= 1) {
722 		if (!ack) {
723 			if (dc_mii_readbit(sc))
724 				frame->mii_data |= i;
725 		}
726 	}
727 
728 fail:
729 
730 	dc_mii_writebit(sc, 0);
731 	dc_mii_writebit(sc, 0);
732 
733 	DC_UNLOCK(sc);
734 
735 	if (ack)
736 		return (1);
737 	return (0);
738 }
739 
740 /*
741  * Write to a PHY register through the MII.
742  */
743 static int
744 dc_mii_writereg(struct dc_softc *sc, struct dc_mii_frame *frame)
745 {
746 
747 	DC_LOCK(sc);
748 	/*
749 	 * Set up frame for TX.
750 	 */
751 
752 	frame->mii_stdelim = DC_MII_STARTDELIM;
753 	frame->mii_opcode = DC_MII_WRITEOP;
754 	frame->mii_turnaround = DC_MII_TURNAROUND;
755 
756 	/*
757 	 * Sync the PHYs.
758 	 */
759 	dc_mii_sync(sc);
760 
761 	dc_mii_send(sc, frame->mii_stdelim, 2);
762 	dc_mii_send(sc, frame->mii_opcode, 2);
763 	dc_mii_send(sc, frame->mii_phyaddr, 5);
764 	dc_mii_send(sc, frame->mii_regaddr, 5);
765 	dc_mii_send(sc, frame->mii_turnaround, 2);
766 	dc_mii_send(sc, frame->mii_data, 16);
767 
768 	/* Idle bit. */
769 	dc_mii_writebit(sc, 0);
770 	dc_mii_writebit(sc, 0);
771 
772 	DC_UNLOCK(sc);
773 
774 	return (0);
775 }
776 
777 static int
778 dc_miibus_readreg(device_t dev, int phy, int reg)
779 {
780 	struct dc_mii_frame frame;
781 	struct dc_softc	 *sc;
782 	int i, rval, phy_reg = 0;
783 
784 	sc = device_get_softc(dev);
785 	bzero(&frame, sizeof(frame));
786 
787 	/*
788 	 * Note: both the AL981 and AN985 have internal PHYs,
789 	 * however the AL981 provides direct access to the PHY
790 	 * registers while the AN985 uses a serial MII interface.
791 	 * The AN985's MII interface is also buggy in that you
792 	 * can read from any MII address (0 to 31), but only address 1
793 	 * behaves normally. To deal with both cases, we pretend
794 	 * that the PHY is at MII address 1.
795 	 */
796 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
797 		return (0);
798 
799 	/*
800 	 * Note: the ukphy probes of the RS7112 report a PHY at
801 	 * MII address 0 (possibly HomePNA?) and 1 (ethernet)
802 	 * so we only respond to correct one.
803 	 */
804 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
805 		return (0);
806 
807 	if (sc->dc_pmode != DC_PMODE_MII) {
808 		if (phy == (MII_NPHY - 1)) {
809 			switch (reg) {
810 			case MII_BMSR:
811 			/*
812 			 * Fake something to make the probe
813 			 * code think there's a PHY here.
814 			 */
815 				return (BMSR_MEDIAMASK);
816 				break;
817 			case MII_PHYIDR1:
818 				if (DC_IS_PNIC(sc))
819 					return (DC_VENDORID_LO);
820 				return (DC_VENDORID_DEC);
821 				break;
822 			case MII_PHYIDR2:
823 				if (DC_IS_PNIC(sc))
824 					return (DC_DEVICEID_82C168);
825 				return (DC_DEVICEID_21143);
826 				break;
827 			default:
828 				return (0);
829 				break;
830 			}
831 		} else
832 			return (0);
833 	}
834 
835 	if (DC_IS_PNIC(sc)) {
836 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
837 		    (phy << 23) | (reg << 18));
838 		for (i = 0; i < DC_TIMEOUT; i++) {
839 			DELAY(1);
840 			rval = CSR_READ_4(sc, DC_PN_MII);
841 			if (!(rval & DC_PN_MII_BUSY)) {
842 				rval &= 0xFFFF;
843 				return (rval == 0xFFFF ? 0 : rval);
844 			}
845 		}
846 		return (0);
847 	}
848 
849 	if (DC_IS_COMET(sc)) {
850 		switch (reg) {
851 		case MII_BMCR:
852 			phy_reg = DC_AL_BMCR;
853 			break;
854 		case MII_BMSR:
855 			phy_reg = DC_AL_BMSR;
856 			break;
857 		case MII_PHYIDR1:
858 			phy_reg = DC_AL_VENID;
859 			break;
860 		case MII_PHYIDR2:
861 			phy_reg = DC_AL_DEVID;
862 			break;
863 		case MII_ANAR:
864 			phy_reg = DC_AL_ANAR;
865 			break;
866 		case MII_ANLPAR:
867 			phy_reg = DC_AL_LPAR;
868 			break;
869 		case MII_ANER:
870 			phy_reg = DC_AL_ANER;
871 			break;
872 		default:
873 			printf("dc%d: phy_read: bad phy register %x\n",
874 			    sc->dc_unit, reg);
875 			return (0);
876 			break;
877 		}
878 
879 		rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
880 
881 		if (rval == 0xFFFF)
882 			return (0);
883 		return (rval);
884 	}
885 
886 	frame.mii_phyaddr = phy;
887 	frame.mii_regaddr = reg;
888 	if (sc->dc_type == DC_TYPE_98713) {
889 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
890 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
891 	}
892 	dc_mii_readreg(sc, &frame);
893 	if (sc->dc_type == DC_TYPE_98713)
894 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
895 
896 	return (frame.mii_data);
897 }
898 
899 static int
900 dc_miibus_writereg(device_t dev, int phy, int reg, int data)
901 {
902 	struct dc_softc *sc;
903 	struct dc_mii_frame frame;
904 	int i, phy_reg = 0;
905 
906 	sc = device_get_softc(dev);
907 	bzero(&frame, sizeof(frame));
908 
909 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
910 		return (0);
911 
912 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
913 		return (0);
914 
915 	if (DC_IS_PNIC(sc)) {
916 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
917 		    (phy << 23) | (reg << 10) | data);
918 		for (i = 0; i < DC_TIMEOUT; i++) {
919 			if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
920 				break;
921 		}
922 		return (0);
923 	}
924 
925 	if (DC_IS_COMET(sc)) {
926 		switch (reg) {
927 		case MII_BMCR:
928 			phy_reg = DC_AL_BMCR;
929 			break;
930 		case MII_BMSR:
931 			phy_reg = DC_AL_BMSR;
932 			break;
933 		case MII_PHYIDR1:
934 			phy_reg = DC_AL_VENID;
935 			break;
936 		case MII_PHYIDR2:
937 			phy_reg = DC_AL_DEVID;
938 			break;
939 		case MII_ANAR:
940 			phy_reg = DC_AL_ANAR;
941 			break;
942 		case MII_ANLPAR:
943 			phy_reg = DC_AL_LPAR;
944 			break;
945 		case MII_ANER:
946 			phy_reg = DC_AL_ANER;
947 			break;
948 		default:
949 			printf("dc%d: phy_write: bad phy register %x\n",
950 			    sc->dc_unit, reg);
951 			return (0);
952 			break;
953 		}
954 
955 		CSR_WRITE_4(sc, phy_reg, data);
956 		return (0);
957 	}
958 
959 	frame.mii_phyaddr = phy;
960 	frame.mii_regaddr = reg;
961 	frame.mii_data = data;
962 
963 	if (sc->dc_type == DC_TYPE_98713) {
964 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
965 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
966 	}
967 	dc_mii_writereg(sc, &frame);
968 	if (sc->dc_type == DC_TYPE_98713)
969 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
970 
971 	return (0);
972 }
973 
974 static void
975 dc_miibus_statchg(device_t dev)
976 {
977 	struct dc_softc *sc;
978 	struct mii_data *mii;
979 	struct ifmedia *ifm;
980 
981 	sc = device_get_softc(dev);
982 	if (DC_IS_ADMTEK(sc))
983 		return;
984 
985 	mii = device_get_softc(sc->dc_miibus);
986 	ifm = &mii->mii_media;
987 	if (DC_IS_DAVICOM(sc) &&
988 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
989 		dc_setcfg(sc, ifm->ifm_media);
990 		sc->dc_if_media = ifm->ifm_media;
991 	} else {
992 		dc_setcfg(sc, mii->mii_media_active);
993 		sc->dc_if_media = mii->mii_media_active;
994 	}
995 }
996 
997 /*
998  * Special support for DM9102A cards with HomePNA PHYs. Note:
999  * with the Davicom DM9102A/DM9801 eval board that I have, it seems
1000  * to be impossible to talk to the management interface of the DM9801
1001  * PHY (its MDIO pin is not connected to anything). Consequently,
1002  * the driver has to just 'know' about the additional mode and deal
1003  * with it itself. *sigh*
1004  */
1005 static void
1006 dc_miibus_mediainit(device_t dev)
1007 {
1008 	struct dc_softc *sc;
1009 	struct mii_data *mii;
1010 	struct ifmedia *ifm;
1011 	int rev;
1012 
1013 	rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF;
1014 
1015 	sc = device_get_softc(dev);
1016 	mii = device_get_softc(sc->dc_miibus);
1017 	ifm = &mii->mii_media;
1018 
1019 	if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A)
1020 		ifmedia_add(ifm, IFM_ETHER | IFM_HPNA_1, 0, NULL);
1021 }
1022 
1023 #define DC_BITS_512	9
1024 #define DC_BITS_128	7
1025 #define DC_BITS_64	6
1026 
1027 static uint32_t
1028 dc_mchash_le(struct dc_softc *sc, const uint8_t *addr)
1029 {
1030 	uint32_t crc;
1031 
1032 	/* Compute CRC for the address value. */
1033 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
1034 
1035 	/*
1036 	 * The hash table on the PNIC II and the MX98715AEC-C/D/E
1037 	 * chips is only 128 bits wide.
1038 	 */
1039 	if (sc->dc_flags & DC_128BIT_HASH)
1040 		return (crc & ((1 << DC_BITS_128) - 1));
1041 
1042 	/* The hash table on the MX98715BEC is only 64 bits wide. */
1043 	if (sc->dc_flags & DC_64BIT_HASH)
1044 		return (crc & ((1 << DC_BITS_64) - 1));
1045 
1046 	/* Xircom's hash filtering table is different (read: weird) */
1047 	/* Xircom uses the LEAST significant bits */
1048 	if (DC_IS_XIRCOM(sc)) {
1049 		if ((crc & 0x180) == 0x180)
1050 			return ((crc & 0x0F) + (crc & 0x70) * 3 + (14 << 4));
1051 		else
1052 			return ((crc & 0x1F) + ((crc >> 1) & 0xF0) * 3 +
1053 			    (12 << 4));
1054 	}
1055 
1056 	return (crc & ((1 << DC_BITS_512) - 1));
1057 }
1058 
1059 /*
1060  * Calculate CRC of a multicast group address, return the lower 6 bits.
1061  */
1062 static uint32_t
1063 dc_mchash_be(const uint8_t *addr)
1064 {
1065 	uint32_t crc;
1066 
1067 	/* Compute CRC for the address value. */
1068 	crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
1069 
1070 	/* Return the filter bit position. */
1071 	return ((crc >> 26) & 0x0000003F);
1072 }
1073 
1074 /*
1075  * 21143-style RX filter setup routine. Filter programming is done by
1076  * downloading a special setup frame into the TX engine. 21143, Macronix,
1077  * PNIC, PNIC II and Davicom chips are programmed this way.
1078  *
1079  * We always program the chip using 'hash perfect' mode, i.e. one perfect
1080  * address (our node address) and a 512-bit hash filter for multicast
1081  * frames. We also sneak the broadcast address into the hash filter since
1082  * we need that too.
1083  */
1084 static void
1085 dc_setfilt_21143(struct dc_softc *sc)
1086 {
1087 	struct dc_desc *sframe;
1088 	u_int32_t h, *sp;
1089 	struct ifmultiaddr *ifma;
1090 	struct ifnet *ifp;
1091 	int i;
1092 
1093 	ifp = &sc->arpcom.ac_if;
1094 
1095 	i = sc->dc_cdata.dc_tx_prod;
1096 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1097 	sc->dc_cdata.dc_tx_cnt++;
1098 	sframe = &sc->dc_ldata->dc_tx_list[i];
1099 	sp = sc->dc_cdata.dc_sbuf;
1100 	bzero(sp, DC_SFRAME_LEN);
1101 
1102 	sframe->dc_data = htole32(sc->dc_saddr);
1103 	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
1104 	    DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
1105 
1106 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
1107 
1108 	/* If we want promiscuous mode, set the allframes bit. */
1109 	if (ifp->if_flags & IFF_PROMISC)
1110 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1111 	else
1112 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1113 
1114 	if (ifp->if_flags & IFF_ALLMULTI)
1115 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1116 	else
1117 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1118 
1119 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1120 		if (ifma->ifma_addr->sa_family != AF_LINK)
1121 			continue;
1122 		h = dc_mchash_le(sc,
1123 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1124 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1125 	}
1126 
1127 	if (ifp->if_flags & IFF_BROADCAST) {
1128 		h = dc_mchash_le(sc, ifp->if_broadcastaddr);
1129 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1130 	}
1131 
1132 	/* Set our MAC address */
1133 	sp[39] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
1134 	sp[40] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
1135 	sp[41] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
1136 
1137 	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1138 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1139 
1140 	/*
1141 	 * The PNIC takes an exceedingly long time to process its
1142 	 * setup frame; wait 10ms after posting the setup frame
1143 	 * before proceeding, just so it has time to swallow its
1144 	 * medicine.
1145 	 */
1146 	DELAY(10000);
1147 
1148 	ifp->if_timer = 5;
1149 }
1150 
1151 static void
1152 dc_setfilt_admtek(struct dc_softc *sc)
1153 {
1154 	struct ifnet *ifp;
1155 	struct ifmultiaddr *ifma;
1156 	int h = 0;
1157 	u_int32_t hashes[2] = { 0, 0 };
1158 
1159 	ifp = &sc->arpcom.ac_if;
1160 
1161 	/* Init our MAC address. */
1162 	CSR_WRITE_4(sc, DC_AL_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1163 	CSR_WRITE_4(sc, DC_AL_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1164 
1165 	/* If we want promiscuous mode, set the allframes bit. */
1166 	if (ifp->if_flags & IFF_PROMISC)
1167 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1168 	else
1169 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1170 
1171 	if (ifp->if_flags & IFF_ALLMULTI)
1172 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1173 	else
1174 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1175 
1176 	/* First, zot all the existing hash bits. */
1177 	CSR_WRITE_4(sc, DC_AL_MAR0, 0);
1178 	CSR_WRITE_4(sc, DC_AL_MAR1, 0);
1179 
1180 	/*
1181 	 * If we're already in promisc or allmulti mode, we
1182 	 * don't have to bother programming the multicast filter.
1183 	 */
1184 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
1185 		return;
1186 
1187 	/* Now program new ones. */
1188 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1189 		if (ifma->ifma_addr->sa_family != AF_LINK)
1190 			continue;
1191 		if (DC_IS_CENTAUR(sc))
1192 			h = dc_mchash_le(sc,
1193 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1194 		else
1195 			h = dc_mchash_be(
1196 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1197 		if (h < 32)
1198 			hashes[0] |= (1 << h);
1199 		else
1200 			hashes[1] |= (1 << (h - 32));
1201 	}
1202 
1203 	CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]);
1204 	CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]);
1205 }
1206 
1207 static void
1208 dc_setfilt_asix(struct dc_softc *sc)
1209 {
1210 	struct ifnet *ifp;
1211 	struct ifmultiaddr *ifma;
1212 	int h = 0;
1213 	u_int32_t hashes[2] = { 0, 0 };
1214 
1215 	ifp = &sc->arpcom.ac_if;
1216 
1217 	/* Init our MAC address */
1218 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
1219 	CSR_WRITE_4(sc, DC_AX_FILTDATA,
1220 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1221 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
1222 	CSR_WRITE_4(sc, DC_AX_FILTDATA,
1223 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1224 
1225 	/* If we want promiscuous mode, set the allframes bit. */
1226 	if (ifp->if_flags & IFF_PROMISC)
1227 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1228 	else
1229 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1230 
1231 	if (ifp->if_flags & IFF_ALLMULTI)
1232 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1233 	else
1234 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1235 
1236 	/*
1237 	 * The ASIX chip has a special bit to enable reception
1238 	 * of broadcast frames.
1239 	 */
1240 	if (ifp->if_flags & IFF_BROADCAST)
1241 		DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1242 	else
1243 		DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1244 
1245 	/* first, zot all the existing hash bits */
1246 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1247 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1248 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1249 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1250 
1251 	/*
1252 	 * If we're already in promisc or allmulti mode, we
1253 	 * don't have to bother programming the multicast filter.
1254 	 */
1255 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
1256 		return;
1257 
1258 	/* now program new ones */
1259 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1260 		if (ifma->ifma_addr->sa_family != AF_LINK)
1261 			continue;
1262 		h = dc_mchash_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1263 		if (h < 32)
1264 			hashes[0] |= (1 << h);
1265 		else
1266 			hashes[1] |= (1 << (h - 32));
1267 	}
1268 
1269 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1270 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
1271 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1272 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
1273 }
1274 
1275 static void
1276 dc_setfilt_xircom(struct dc_softc *sc)
1277 {
1278 	struct ifnet *ifp;
1279 	struct ifmultiaddr *ifma;
1280 	struct dc_desc *sframe;
1281 	u_int32_t h, *sp;
1282 	int i;
1283 
1284 	ifp = &sc->arpcom.ac_if;
1285 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1286 
1287 	i = sc->dc_cdata.dc_tx_prod;
1288 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1289 	sc->dc_cdata.dc_tx_cnt++;
1290 	sframe = &sc->dc_ldata->dc_tx_list[i];
1291 	sp = sc->dc_cdata.dc_sbuf;
1292 	bzero(sp, DC_SFRAME_LEN);
1293 
1294 	sframe->dc_data = htole32(sc->dc_saddr);
1295 	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
1296 	    DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
1297 
1298 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
1299 
1300 	/* If we want promiscuous mode, set the allframes bit. */
1301 	if (ifp->if_flags & IFF_PROMISC)
1302 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1303 	else
1304 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1305 
1306 	if (ifp->if_flags & IFF_ALLMULTI)
1307 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1308 	else
1309 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1310 
1311 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1312 		if (ifma->ifma_addr->sa_family != AF_LINK)
1313 			continue;
1314 		h = dc_mchash_le(sc,
1315 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1316 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1317 	}
1318 
1319 	if (ifp->if_flags & IFF_BROADCAST) {
1320 		h = dc_mchash_le(sc, ifp->if_broadcastaddr);
1321 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1322 	}
1323 
1324 	/* Set our MAC address */
1325 	sp[0] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
1326 	sp[1] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
1327 	sp[2] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
1328 
1329 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
1330 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
1331 	ifp->if_flags |= IFF_RUNNING;
1332 	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1333 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1334 
1335 	/*
1336 	 * Wait some time...
1337 	 */
1338 	DELAY(1000);
1339 
1340 	ifp->if_timer = 5;
1341 }
1342 
1343 static void
1344 dc_setfilt(struct dc_softc *sc)
1345 {
1346 
1347 	if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
1348 	    DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc))
1349 		dc_setfilt_21143(sc);
1350 
1351 	if (DC_IS_ASIX(sc))
1352 		dc_setfilt_asix(sc);
1353 
1354 	if (DC_IS_ADMTEK(sc))
1355 		dc_setfilt_admtek(sc);
1356 
1357 	if (DC_IS_XIRCOM(sc))
1358 		dc_setfilt_xircom(sc);
1359 }
1360 
1361 /*
1362  * In order to fiddle with the 'full-duplex' and '100Mbps' bits in
1363  * the netconfig register, we first have to put the transmit and/or
1364  * receive logic in the idle state.
1365  */
1366 static void
1367 dc_setcfg(struct dc_softc *sc, int media)
1368 {
1369 	int i, restart = 0, watchdogreg;
1370 	u_int32_t isr;
1371 
1372 	if (IFM_SUBTYPE(media) == IFM_NONE)
1373 		return;
1374 
1375 	if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON)) {
1376 		restart = 1;
1377 		DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1378 
1379 		for (i = 0; i < DC_TIMEOUT; i++) {
1380 			isr = CSR_READ_4(sc, DC_ISR);
1381 			if (isr & DC_ISR_TX_IDLE &&
1382 			    ((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
1383 			    (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT))
1384 				break;
1385 			DELAY(10);
1386 		}
1387 
1388 		if (i == DC_TIMEOUT)
1389 			printf("dc%d: failed to force tx and "
1390 				"rx to idle state\n", sc->dc_unit);
1391 	}
1392 
1393 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
1394 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1395 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1396 		if (sc->dc_pmode == DC_PMODE_MII) {
1397 			if (DC_IS_INTEL(sc)) {
1398 			/* There's a write enable bit here that reads as 1. */
1399 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1400 				watchdogreg &= ~DC_WDOG_CTLWREN;
1401 				watchdogreg |= DC_WDOG_JABBERDIS;
1402 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1403 			} else {
1404 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1405 			}
1406 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1407 			    DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
1408 			if (sc->dc_type == DC_TYPE_98713)
1409 				DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1410 				    DC_NETCFG_SCRAMBLER));
1411 			if (!DC_IS_DAVICOM(sc))
1412 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1413 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1414 			if (DC_IS_INTEL(sc))
1415 				dc_apply_fixup(sc, IFM_AUTO);
1416 		} else {
1417 			if (DC_IS_PNIC(sc)) {
1418 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
1419 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1420 				DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1421 			}
1422 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1423 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1424 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1425 			if (DC_IS_INTEL(sc))
1426 				dc_apply_fixup(sc,
1427 				    (media & IFM_GMASK) == IFM_FDX ?
1428 				    IFM_100_TX | IFM_FDX : IFM_100_TX);
1429 		}
1430 	}
1431 
1432 	if (IFM_SUBTYPE(media) == IFM_10_T) {
1433 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1434 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1435 		if (sc->dc_pmode == DC_PMODE_MII) {
1436 			/* There's a write enable bit here that reads as 1. */
1437 			if (DC_IS_INTEL(sc)) {
1438 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1439 				watchdogreg &= ~DC_WDOG_CTLWREN;
1440 				watchdogreg |= DC_WDOG_JABBERDIS;
1441 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1442 			} else {
1443 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1444 			}
1445 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1446 			    DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
1447 			if (sc->dc_type == DC_TYPE_98713)
1448 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1449 			if (!DC_IS_DAVICOM(sc))
1450 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1451 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1452 			if (DC_IS_INTEL(sc))
1453 				dc_apply_fixup(sc, IFM_AUTO);
1454 		} else {
1455 			if (DC_IS_PNIC(sc)) {
1456 				DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
1457 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1458 				DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1459 			}
1460 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1461 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1462 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1463 			if (DC_IS_INTEL(sc)) {
1464 				DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET);
1465 				DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1466 				if ((media & IFM_GMASK) == IFM_FDX)
1467 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D);
1468 				else
1469 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F);
1470 				DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1471 				DC_CLRBIT(sc, DC_10BTCTRL,
1472 				    DC_TCTL_AUTONEGENBL);
1473 				dc_apply_fixup(sc,
1474 				    (media & IFM_GMASK) == IFM_FDX ?
1475 				    IFM_10_T | IFM_FDX : IFM_10_T);
1476 				DELAY(20000);
1477 			}
1478 		}
1479 	}
1480 
1481 	/*
1482 	 * If this is a Davicom DM9102A card with a DM9801 HomePNA
1483 	 * PHY and we want HomePNA mode, set the portsel bit to turn
1484 	 * on the external MII port.
1485 	 */
1486 	if (DC_IS_DAVICOM(sc)) {
1487 		if (IFM_SUBTYPE(media) == IFM_HPNA_1) {
1488 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1489 			sc->dc_link = 1;
1490 		} else {
1491 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1492 		}
1493 	}
1494 
1495 	if ((media & IFM_GMASK) == IFM_FDX) {
1496 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1497 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1498 			DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1499 	} else {
1500 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1501 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1502 			DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1503 	}
1504 
1505 	if (restart)
1506 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON | DC_NETCFG_RX_ON);
1507 }
1508 
1509 static void
1510 dc_reset(struct dc_softc *sc)
1511 {
1512 	int i;
1513 
1514 	DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1515 
1516 	for (i = 0; i < DC_TIMEOUT; i++) {
1517 		DELAY(10);
1518 		if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
1519 			break;
1520 	}
1521 
1522 	if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_CONEXANT(sc) ||
1523 	    DC_IS_XIRCOM(sc) || DC_IS_INTEL(sc)) {
1524 		DELAY(10000);
1525 		DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1526 		i = 0;
1527 	}
1528 
1529 	if (i == DC_TIMEOUT)
1530 		printf("dc%d: reset never completed!\n", sc->dc_unit);
1531 
1532 	/* Wait a little while for the chip to get its brains in order. */
1533 	DELAY(1000);
1534 
1535 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
1536 	CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
1537 	CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
1538 
1539 	/*
1540 	 * Bring the SIA out of reset. In some cases, it looks
1541 	 * like failing to unreset the SIA soon enough gets it
1542 	 * into a state where it will never come out of reset
1543 	 * until we reset the whole chip again.
1544 	 */
1545 	if (DC_IS_INTEL(sc)) {
1546 		DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1547 		CSR_WRITE_4(sc, DC_10BTCTRL, 0);
1548 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
1549 	}
1550 }
1551 
1552 static struct dc_type *
1553 dc_devtype(device_t dev)
1554 {
1555 	struct dc_type *t;
1556 	u_int32_t rev;
1557 
1558 	t = dc_devs;
1559 
1560 	while (t->dc_name != NULL) {
1561 		if ((pci_get_vendor(dev) == t->dc_vid) &&
1562 		    (pci_get_device(dev) == t->dc_did)) {
1563 			/* Check the PCI revision */
1564 			rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF;
1565 			if (t->dc_did == DC_DEVICEID_98713 &&
1566 			    rev >= DC_REVISION_98713A)
1567 				t++;
1568 			if (t->dc_did == DC_DEVICEID_98713_CP &&
1569 			    rev >= DC_REVISION_98713A)
1570 				t++;
1571 			if (t->dc_did == DC_DEVICEID_987x5 &&
1572 			    rev >= DC_REVISION_98715AEC_C)
1573 				t++;
1574 			if (t->dc_did == DC_DEVICEID_987x5 &&
1575 			    rev >= DC_REVISION_98725)
1576 				t++;
1577 			if (t->dc_did == DC_DEVICEID_AX88140A &&
1578 			    rev >= DC_REVISION_88141)
1579 				t++;
1580 			if (t->dc_did == DC_DEVICEID_82C168 &&
1581 			    rev >= DC_REVISION_82C169)
1582 				t++;
1583 			if (t->dc_did == DC_DEVICEID_DM9102 &&
1584 			    rev >= DC_REVISION_DM9102A)
1585 				t++;
1586 			/*
1587 			 * The Microsoft MN-130 has a device ID of 0x0002,
1588 			 * which happens to be the same as the PNIC 82c168.
1589 			 * To keep dc_attach() from getting confused, we
1590 			 * pretend its ID is something different.
1591 			 * XXX: ideally, dc_attach() should be checking
1592 			 * vendorid+deviceid together to avoid such
1593 			 * collisions.
1594 			 */
1595 			if (t->dc_vid == DC_VENDORID_MICROSOFT &&
1596 			    t->dc_did == DC_DEVICEID_MSMN130)
1597 				t++;
1598 			return (t);
1599 		}
1600 		t++;
1601 	}
1602 
1603 	return (NULL);
1604 }
1605 
1606 /*
1607  * Probe for a 21143 or clone chip. Check the PCI vendor and device
1608  * IDs against our list and return a device name if we find a match.
1609  * We do a little bit of extra work to identify the exact type of
1610  * chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
1611  * but different revision IDs. The same is true for 98715/98715A
1612  * chips and the 98725, as well as the ASIX and ADMtek chips. In some
1613  * cases, the exact chip revision affects driver behavior.
1614  */
1615 static int
1616 dc_probe(device_t dev)
1617 {
1618 	struct dc_type *t;
1619 
1620 	t = dc_devtype(dev);
1621 
1622 	if (t != NULL) {
1623 		device_set_desc(dev, t->dc_name);
1624 		return (0);
1625 	}
1626 
1627 	return (ENXIO);
1628 }
1629 
1630 static void
1631 dc_apply_fixup(struct dc_softc *sc, int media)
1632 {
1633 	struct dc_mediainfo *m;
1634 	u_int8_t *p;
1635 	int i;
1636 	u_int32_t reg;
1637 
1638 	m = sc->dc_mi;
1639 
1640 	while (m != NULL) {
1641 		if (m->dc_media == media)
1642 			break;
1643 		m = m->dc_next;
1644 	}
1645 
1646 	if (m == NULL)
1647 		return;
1648 
1649 	for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) {
1650 		reg = (p[0] | (p[1] << 8)) << 16;
1651 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1652 	}
1653 
1654 	for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) {
1655 		reg = (p[0] | (p[1] << 8)) << 16;
1656 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1657 	}
1658 }
1659 
1660 static void
1661 dc_decode_leaf_sia(struct dc_softc *sc, struct dc_eblock_sia *l)
1662 {
1663 	struct dc_mediainfo *m;
1664 
1665 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1666 	switch (l->dc_sia_code & ~DC_SIA_CODE_EXT) {
1667 	case DC_SIA_CODE_10BT:
1668 		m->dc_media = IFM_10_T;
1669 		break;
1670 	case DC_SIA_CODE_10BT_FDX:
1671 		m->dc_media = IFM_10_T | IFM_FDX;
1672 		break;
1673 	case DC_SIA_CODE_10B2:
1674 		m->dc_media = IFM_10_2;
1675 		break;
1676 	case DC_SIA_CODE_10B5:
1677 		m->dc_media = IFM_10_5;
1678 		break;
1679 	default:
1680 		break;
1681 	}
1682 
1683 	/*
1684 	 * We need to ignore CSR13, CSR14, CSR15 for SIA mode.
1685 	 * Things apparently already work for cards that do
1686 	 * supply Media Specific Data.
1687 	 */
1688 	if (l->dc_sia_code & DC_SIA_CODE_EXT) {
1689 		m->dc_gp_len = 2;
1690 		m->dc_gp_ptr =
1691 		(u_int8_t *)&l->dc_un.dc_sia_ext.dc_sia_gpio_ctl;
1692 	} else {
1693 		m->dc_gp_len = 2;
1694 		m->dc_gp_ptr =
1695 		(u_int8_t *)&l->dc_un.dc_sia_noext.dc_sia_gpio_ctl;
1696 	}
1697 
1698 	m->dc_next = sc->dc_mi;
1699 	sc->dc_mi = m;
1700 
1701 	sc->dc_pmode = DC_PMODE_SIA;
1702 }
1703 
1704 static void
1705 dc_decode_leaf_sym(struct dc_softc *sc, struct dc_eblock_sym *l)
1706 {
1707 	struct dc_mediainfo *m;
1708 
1709 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1710 	if (l->dc_sym_code == DC_SYM_CODE_100BT)
1711 		m->dc_media = IFM_100_TX;
1712 
1713 	if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX)
1714 		m->dc_media = IFM_100_TX | IFM_FDX;
1715 
1716 	m->dc_gp_len = 2;
1717 	m->dc_gp_ptr = (u_int8_t *)&l->dc_sym_gpio_ctl;
1718 
1719 	m->dc_next = sc->dc_mi;
1720 	sc->dc_mi = m;
1721 
1722 	sc->dc_pmode = DC_PMODE_SYM;
1723 }
1724 
1725 static void
1726 dc_decode_leaf_mii(struct dc_softc *sc, struct dc_eblock_mii *l)
1727 {
1728 	struct dc_mediainfo *m;
1729 	u_int8_t *p;
1730 
1731 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1732 	/* We abuse IFM_AUTO to represent MII. */
1733 	m->dc_media = IFM_AUTO;
1734 	m->dc_gp_len = l->dc_gpr_len;
1735 
1736 	p = (u_int8_t *)l;
1737 	p += sizeof(struct dc_eblock_mii);
1738 	m->dc_gp_ptr = p;
1739 	p += 2 * l->dc_gpr_len;
1740 	m->dc_reset_len = *p;
1741 	p++;
1742 	m->dc_reset_ptr = p;
1743 
1744 	m->dc_next = sc->dc_mi;
1745 	sc->dc_mi = m;
1746 }
1747 
1748 static void
1749 dc_read_srom(struct dc_softc *sc, int bits)
1750 {
1751 	int size;
1752 
1753 	size = 2 << bits;
1754 	sc->dc_srom = malloc(size, M_DEVBUF, M_NOWAIT);
1755 	dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (size / 2), 0);
1756 }
1757 
1758 static void
1759 dc_parse_21143_srom(struct dc_softc *sc)
1760 {
1761 	struct dc_leaf_hdr *lhdr;
1762 	struct dc_eblock_hdr *hdr;
1763 	int have_mii, i, loff;
1764 	char *ptr;
1765 
1766 	have_mii = 0;
1767 	loff = sc->dc_srom[27];
1768 	lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]);
1769 
1770 	ptr = (char *)lhdr;
1771 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1772 	/*
1773 	 * Look if we got a MII media block.
1774 	 */
1775 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1776 		hdr = (struct dc_eblock_hdr *)ptr;
1777 		if (hdr->dc_type == DC_EBLOCK_MII)
1778 		    have_mii++;
1779 
1780 		ptr += (hdr->dc_len & 0x7F);
1781 		ptr++;
1782 	}
1783 
1784 	/*
1785 	 * Do the same thing again. Only use SIA and SYM media
1786 	 * blocks if no MII media block is available.
1787 	 */
1788 	ptr = (char *)lhdr;
1789 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1790 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1791 		hdr = (struct dc_eblock_hdr *)ptr;
1792 		switch (hdr->dc_type) {
1793 		case DC_EBLOCK_MII:
1794 			dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr);
1795 			break;
1796 		case DC_EBLOCK_SIA:
1797 			if (! have_mii)
1798 				dc_decode_leaf_sia(sc,
1799 				    (struct dc_eblock_sia *)hdr);
1800 			break;
1801 		case DC_EBLOCK_SYM:
1802 			if (! have_mii)
1803 				dc_decode_leaf_sym(sc,
1804 				    (struct dc_eblock_sym *)hdr);
1805 			break;
1806 		default:
1807 			/* Don't care. Yet. */
1808 			break;
1809 		}
1810 		ptr += (hdr->dc_len & 0x7F);
1811 		ptr++;
1812 	}
1813 }
1814 
1815 static void
1816 dc_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1817 {
1818 	u_int32_t *paddr;
1819 
1820 	KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
1821 	paddr = arg;
1822 	*paddr = segs->ds_addr;
1823 }
1824 
1825 /*
1826  * Attach the interface. Allocate softc structures, do ifmedia
1827  * setup and ethernet/BPF attach.
1828  */
1829 static int
1830 dc_attach(device_t dev)
1831 {
1832 	int tmp = 0;
1833 	u_char eaddr[ETHER_ADDR_LEN];
1834 	u_int32_t command;
1835 	struct dc_softc *sc;
1836 	struct ifnet *ifp;
1837 	u_int32_t revision;
1838 	int unit, error = 0, rid, mac_offset;
1839 	int i;
1840 	u_int8_t *mac;
1841 
1842 	sc = device_get_softc(dev);
1843 	unit = device_get_unit(dev);
1844 
1845 	mtx_init(&sc->dc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1846 	    MTX_DEF | MTX_RECURSE);
1847 
1848 	/*
1849 	 * Map control/status registers.
1850 	 */
1851 	pci_enable_busmaster(dev);
1852 
1853 	rid = DC_RID;
1854 	sc->dc_res = bus_alloc_resource_any(dev, DC_RES, &rid, RF_ACTIVE);
1855 
1856 	if (sc->dc_res == NULL) {
1857 		printf("dc%d: couldn't map ports/memory\n", unit);
1858 		error = ENXIO;
1859 		goto fail;
1860 	}
1861 
1862 	sc->dc_btag = rman_get_bustag(sc->dc_res);
1863 	sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
1864 
1865 	/* Allocate interrupt. */
1866 	rid = 0;
1867 	sc->dc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1868 	    RF_SHAREABLE | RF_ACTIVE);
1869 
1870 	if (sc->dc_irq == NULL) {
1871 		printf("dc%d: couldn't map interrupt\n", unit);
1872 		error = ENXIO;
1873 		goto fail;
1874 	}
1875 
1876 	/* Need this info to decide on a chip type. */
1877 	sc->dc_info = dc_devtype(dev);
1878 	revision = pci_read_config(dev, DC_PCI_CFRV, 4) & 0x000000FF;
1879 
1880 	/* Get the eeprom width, but PNIC and XIRCOM have diff eeprom */
1881 	if (sc->dc_info->dc_did != DC_DEVICEID_82C168 &&
1882 	   sc->dc_info->dc_did != DC_DEVICEID_X3201)
1883 		dc_eeprom_width(sc);
1884 
1885 	switch (sc->dc_info->dc_did) {
1886 	case DC_DEVICEID_21143:
1887 		sc->dc_type = DC_TYPE_21143;
1888 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1889 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1890 		/* Save EEPROM contents so we can parse them later. */
1891 		dc_read_srom(sc, sc->dc_romwidth);
1892 		break;
1893 	case DC_DEVICEID_DM9009:
1894 	case DC_DEVICEID_DM9100:
1895 	case DC_DEVICEID_DM9102:
1896 		sc->dc_type = DC_TYPE_DM9102;
1897 		sc->dc_flags |= DC_TX_COALESCE | DC_TX_INTR_ALWAYS;
1898 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_TX_STORENFWD;
1899 		sc->dc_flags |= DC_TX_ALIGN;
1900 		sc->dc_pmode = DC_PMODE_MII;
1901 		/* Increase the latency timer value. */
1902 		command = pci_read_config(dev, DC_PCI_CFLT, 4);
1903 		command &= 0xFFFF00FF;
1904 		command |= 0x00008000;
1905 		pci_write_config(dev, DC_PCI_CFLT, command, 4);
1906 		break;
1907 	case DC_DEVICEID_AL981:
1908 		sc->dc_type = DC_TYPE_AL981;
1909 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1910 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1911 		sc->dc_pmode = DC_PMODE_MII;
1912 		dc_read_srom(sc, sc->dc_romwidth);
1913 		break;
1914 	case DC_DEVICEID_AN985:
1915 	case DC_DEVICEID_ADM9511:
1916 	case DC_DEVICEID_ADM9513:
1917 	case DC_DEVICEID_FA511:
1918 	case DC_DEVICEID_FE2500:
1919 	case DC_DEVICEID_EN2242:
1920 	case DC_DEVICEID_HAWKING_PN672TX:
1921 	case DC_DEVICEID_3CSOHOB:
1922 	case DC_DEVICEID_MSMN120:
1923 	case DC_DEVICEID_MSMN130_FAKE: /* XXX avoid collision with PNIC*/
1924 		sc->dc_type = DC_TYPE_AN985;
1925 		sc->dc_flags |= DC_64BIT_HASH;
1926 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1927 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1928 		sc->dc_pmode = DC_PMODE_MII;
1929 		/* Don't read SROM for - auto-loaded on reset */
1930 		break;
1931 	case DC_DEVICEID_98713:
1932 	case DC_DEVICEID_98713_CP:
1933 		if (revision < DC_REVISION_98713A) {
1934 			sc->dc_type = DC_TYPE_98713;
1935 		}
1936 		if (revision >= DC_REVISION_98713A) {
1937 			sc->dc_type = DC_TYPE_98713A;
1938 			sc->dc_flags |= DC_21143_NWAY;
1939 		}
1940 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1941 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1942 		break;
1943 	case DC_DEVICEID_987x5:
1944 	case DC_DEVICEID_EN1217:
1945 		/*
1946 		 * Macronix MX98715AEC-C/D/E parts have only a
1947 		 * 128-bit hash table. We need to deal with these
1948 		 * in the same manner as the PNIC II so that we
1949 		 * get the right number of bits out of the
1950 		 * CRC routine.
1951 		 */
1952 		if (revision >= DC_REVISION_98715AEC_C &&
1953 		    revision < DC_REVISION_98725)
1954 			sc->dc_flags |= DC_128BIT_HASH;
1955 		sc->dc_type = DC_TYPE_987x5;
1956 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1957 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
1958 		break;
1959 	case DC_DEVICEID_98727:
1960 		sc->dc_type = DC_TYPE_987x5;
1961 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1962 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
1963 		break;
1964 	case DC_DEVICEID_82C115:
1965 		sc->dc_type = DC_TYPE_PNICII;
1966 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR | DC_128BIT_HASH;
1967 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
1968 		break;
1969 	case DC_DEVICEID_82C168:
1970 		sc->dc_type = DC_TYPE_PNIC;
1971 		sc->dc_flags |= DC_TX_STORENFWD | DC_TX_INTR_ALWAYS;
1972 		sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
1973 		sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_NOWAIT);
1974 		if (revision < DC_REVISION_82C169)
1975 			sc->dc_pmode = DC_PMODE_SYM;
1976 		break;
1977 	case DC_DEVICEID_AX88140A:
1978 		sc->dc_type = DC_TYPE_ASIX;
1979 		sc->dc_flags |= DC_TX_USE_TX_INTR | DC_TX_INTR_FIRSTFRAG;
1980 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1981 		sc->dc_pmode = DC_PMODE_MII;
1982 		break;
1983 	case DC_DEVICEID_X3201:
1984 		sc->dc_type = DC_TYPE_XIRCOM;
1985 		sc->dc_flags |= DC_TX_INTR_ALWAYS | DC_TX_COALESCE |
1986 				DC_TX_ALIGN;
1987 		/*
1988 		 * We don't actually need to coalesce, but we're doing
1989 		 * it to obtain a double word aligned buffer.
1990 		 * The DC_TX_COALESCE flag is required.
1991 		 */
1992 		sc->dc_pmode = DC_PMODE_MII;
1993 		break;
1994 	case DC_DEVICEID_RS7112:
1995 		sc->dc_type = DC_TYPE_CONEXANT;
1996 		sc->dc_flags |= DC_TX_INTR_ALWAYS;
1997 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1998 		sc->dc_pmode = DC_PMODE_MII;
1999 		dc_read_srom(sc, sc->dc_romwidth);
2000 		break;
2001 	default:
2002 		printf("dc%d: unknown device: %x\n", sc->dc_unit,
2003 		    sc->dc_info->dc_did);
2004 		break;
2005 	}
2006 
2007 	/* Save the cache line size. */
2008 	if (DC_IS_DAVICOM(sc))
2009 		sc->dc_cachesize = 0;
2010 	else
2011 		sc->dc_cachesize = pci_read_config(dev,
2012 		    DC_PCI_CFLT, 4) & 0xFF;
2013 
2014 	/* Reset the adapter. */
2015 	dc_reset(sc);
2016 
2017 	/* Take 21143 out of snooze mode */
2018 	if (DC_IS_INTEL(sc) || DC_IS_XIRCOM(sc)) {
2019 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
2020 		command &= ~(DC_CFDD_SNOOZE_MODE | DC_CFDD_SLEEP_MODE);
2021 		pci_write_config(dev, DC_PCI_CFDD, command, 4);
2022 	}
2023 
2024 	/*
2025 	 * Try to learn something about the supported media.
2026 	 * We know that ASIX and ADMtek and Davicom devices
2027 	 * will *always* be using MII media, so that's a no-brainer.
2028 	 * The tricky ones are the Macronix/PNIC II and the
2029 	 * Intel 21143.
2030 	 */
2031 	if (DC_IS_INTEL(sc))
2032 		dc_parse_21143_srom(sc);
2033 	else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
2034 		if (sc->dc_type == DC_TYPE_98713)
2035 			sc->dc_pmode = DC_PMODE_MII;
2036 		else
2037 			sc->dc_pmode = DC_PMODE_SYM;
2038 	} else if (!sc->dc_pmode)
2039 		sc->dc_pmode = DC_PMODE_MII;
2040 
2041 	/*
2042 	 * Get station address from the EEPROM.
2043 	 */
2044 	switch(sc->dc_type) {
2045 	case DC_TYPE_98713:
2046 	case DC_TYPE_98713A:
2047 	case DC_TYPE_987x5:
2048 	case DC_TYPE_PNICII:
2049 		dc_read_eeprom(sc, (caddr_t)&mac_offset,
2050 		    (DC_EE_NODEADDR_OFFSET / 2), 1, 0);
2051 		dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
2052 		break;
2053 	case DC_TYPE_PNIC:
2054 		dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
2055 		break;
2056 	case DC_TYPE_DM9102:
2057 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2058 #ifdef __sparc64__
2059 		/*
2060 		 * If this is an onboard dc(4) the station address read from
2061 		 * the EEPROM is all zero and we have to get it from the fcode.
2062 		 */
2063 		for (i = 0; i < ETHER_ADDR_LEN; i++)
2064 			if (eaddr[i] != 0x00)
2065 				break;
2066 		if (i >= ETHER_ADDR_LEN)
2067 			OF_getetheraddr(dev, eaddr);
2068 #endif
2069 		break;
2070 	case DC_TYPE_21143:
2071 	case DC_TYPE_ASIX:
2072 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2073 		break;
2074 	case DC_TYPE_AL981:
2075 	case DC_TYPE_AN985:
2076 		*(u_int32_t *)(&eaddr[0]) = CSR_READ_4(sc, DC_AL_PAR0);
2077 		*(u_int16_t *)(&eaddr[4]) = CSR_READ_4(sc, DC_AL_PAR1);
2078 		break;
2079 	case DC_TYPE_CONEXANT:
2080 		bcopy(sc->dc_srom + DC_CONEXANT_EE_NODEADDR, &eaddr,
2081 		    ETHER_ADDR_LEN);
2082 		break;
2083 	case DC_TYPE_XIRCOM:
2084 		/* The MAC comes from the CIS. */
2085 		mac = pci_get_ether(dev);
2086 		if (!mac) {
2087 			device_printf(dev, "No station address in CIS!\n");
2088 			error = ENXIO;
2089 			goto fail;
2090 		}
2091 		bcopy(mac, eaddr, ETHER_ADDR_LEN);
2092 		break;
2093 	default:
2094 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2095 		break;
2096 	}
2097 
2098 	sc->dc_unit = unit;
2099 	bcopy(eaddr, &sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
2100 
2101 	/* Allocate a busdma tag and DMA safe memory for TX/RX descriptors. */
2102 	error = bus_dma_tag_create(NULL, PAGE_SIZE, 0, BUS_SPACE_MAXADDR_32BIT,
2103 	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct dc_list_data), 1,
2104 	    sizeof(struct dc_list_data), 0, NULL, NULL, &sc->dc_ltag);
2105 	if (error) {
2106 		printf("dc%d: failed to allocate busdma tag\n", unit);
2107 		error = ENXIO;
2108 		goto fail;
2109 	}
2110 	error = bus_dmamem_alloc(sc->dc_ltag, (void **)&sc->dc_ldata,
2111 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->dc_lmap);
2112 	if (error) {
2113 		printf("dc%d: failed to allocate DMA safe memory\n", unit);
2114 		error = ENXIO;
2115 		goto fail;
2116 	}
2117 	error = bus_dmamap_load(sc->dc_ltag, sc->dc_lmap, sc->dc_ldata,
2118 	    sizeof(struct dc_list_data), dc_dma_map_addr, &sc->dc_laddr,
2119 	    BUS_DMA_NOWAIT);
2120 	if (error) {
2121 		printf("dc%d: cannot get address of the descriptors\n", unit);
2122 		error = ENXIO;
2123 		goto fail;
2124 	}
2125 
2126 	/*
2127 	 * Allocate a busdma tag and DMA safe memory for the multicast
2128 	 * setup frame.
2129 	 */
2130 	error = bus_dma_tag_create(NULL, PAGE_SIZE, 0, BUS_SPACE_MAXADDR_32BIT,
2131 	    BUS_SPACE_MAXADDR, NULL, NULL, DC_SFRAME_LEN + DC_MIN_FRAMELEN, 1,
2132 	    DC_SFRAME_LEN + DC_MIN_FRAMELEN, 0, NULL, NULL, &sc->dc_stag);
2133 	if (error) {
2134 		printf("dc%d: failed to allocate busdma tag\n", unit);
2135 		error = ENXIO;
2136 		goto fail;
2137 	}
2138 	error = bus_dmamem_alloc(sc->dc_stag, (void **)&sc->dc_cdata.dc_sbuf,
2139 	    BUS_DMA_NOWAIT, &sc->dc_smap);
2140 	if (error) {
2141 		printf("dc%d: failed to allocate DMA safe memory\n", unit);
2142 		error = ENXIO;
2143 		goto fail;
2144 	}
2145 	error = bus_dmamap_load(sc->dc_stag, sc->dc_smap, sc->dc_cdata.dc_sbuf,
2146 	    DC_SFRAME_LEN, dc_dma_map_addr, &sc->dc_saddr, BUS_DMA_NOWAIT);
2147 	if (error) {
2148 		printf("dc%d: cannot get address of the descriptors\n", unit);
2149 		error = ENXIO;
2150 		goto fail;
2151 	}
2152 
2153 	/* Allocate a busdma tag for mbufs. */
2154 	error = bus_dma_tag_create(NULL, PAGE_SIZE, 0, BUS_SPACE_MAXADDR_32BIT,
2155 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * DC_TX_LIST_CNT,
2156 	    DC_TX_LIST_CNT, MCLBYTES, 0, NULL, NULL, &sc->dc_mtag);
2157 	if (error) {
2158 		printf("dc%d: failed to allocate busdma tag\n", unit);
2159 		error = ENXIO;
2160 		goto fail;
2161 	}
2162 
2163 	/* Create the TX/RX busdma maps. */
2164 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2165 		error = bus_dmamap_create(sc->dc_mtag, 0,
2166 		    &sc->dc_cdata.dc_tx_map[i]);
2167 		if (error) {
2168 			printf("dc%d: failed to init TX ring\n", unit);
2169 			error = ENXIO;
2170 			goto fail;
2171 		}
2172 	}
2173 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2174 		error = bus_dmamap_create(sc->dc_mtag, 0,
2175 		    &sc->dc_cdata.dc_rx_map[i]);
2176 		if (error) {
2177 			printf("dc%d: failed to init RX ring\n", unit);
2178 			error = ENXIO;
2179 			goto fail;
2180 		}
2181 	}
2182 	error = bus_dmamap_create(sc->dc_mtag, 0, &sc->dc_sparemap);
2183 	if (error) {
2184 		printf("dc%d: failed to init RX ring\n", unit);
2185 		error = ENXIO;
2186 		goto fail;
2187 	}
2188 
2189 	ifp = &sc->arpcom.ac_if;
2190 	ifp->if_softc = sc;
2191 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2192 	/* XXX: bleah, MTU gets overwritten in ether_ifattach() */
2193 	ifp->if_mtu = ETHERMTU;
2194 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2195 	ifp->if_ioctl = dc_ioctl;
2196 	ifp->if_start = dc_start;
2197 	ifp->if_watchdog = dc_watchdog;
2198 	ifp->if_init = dc_init;
2199 	ifp->if_baudrate = 10000000;
2200 	ifp->if_snd.ifq_maxlen = DC_TX_LIST_CNT - 1;
2201 
2202 	/*
2203 	 * Do MII setup. If this is a 21143, check for a PHY on the
2204 	 * MII bus after applying any necessary fixups to twiddle the
2205 	 * GPIO bits. If we don't end up finding a PHY, restore the
2206 	 * old selection (SIA only or SIA/SYM) and attach the dcphy
2207 	 * driver instead.
2208 	 */
2209 	if (DC_IS_INTEL(sc)) {
2210 		dc_apply_fixup(sc, IFM_AUTO);
2211 		tmp = sc->dc_pmode;
2212 		sc->dc_pmode = DC_PMODE_MII;
2213 	}
2214 
2215 	error = mii_phy_probe(dev, &sc->dc_miibus,
2216 	    dc_ifmedia_upd, dc_ifmedia_sts);
2217 
2218 	if (error && DC_IS_INTEL(sc)) {
2219 		sc->dc_pmode = tmp;
2220 		if (sc->dc_pmode != DC_PMODE_SIA)
2221 			sc->dc_pmode = DC_PMODE_SYM;
2222 		sc->dc_flags |= DC_21143_NWAY;
2223 		mii_phy_probe(dev, &sc->dc_miibus,
2224 		    dc_ifmedia_upd, dc_ifmedia_sts);
2225 		/*
2226 		 * For non-MII cards, we need to have the 21143
2227 		 * drive the LEDs. Except there are some systems
2228 		 * like the NEC VersaPro NoteBook PC which have no
2229 		 * LEDs, and twiddling these bits has adverse effects
2230 		 * on them. (I.e. you suddenly can't get a link.)
2231 		 */
2232 		if (pci_read_config(dev, DC_PCI_CSID, 4) != 0x80281033)
2233 			sc->dc_flags |= DC_TULIP_LEDS;
2234 		error = 0;
2235 	}
2236 
2237 	if (error) {
2238 		printf("dc%d: MII without any PHY!\n", sc->dc_unit);
2239 		goto fail;
2240 	}
2241 
2242 	if (DC_IS_XIRCOM(sc)) {
2243 		/*
2244 		 * setup General Purpose Port mode and data so the tulip
2245 		 * can talk to the MII.
2246 		 */
2247 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
2248 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2249 		DELAY(10);
2250 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
2251 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2252 		DELAY(10);
2253 	}
2254 
2255 	if (DC_IS_ADMTEK(sc)) {
2256 		/*
2257 		 * Set automatic TX underrun recovery for the ADMtek chips
2258 		 */
2259 		DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR);
2260 	}
2261 
2262 	/*
2263 	 * Tell the upper layer(s) we support long frames.
2264 	 */
2265 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2266 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
2267 #ifdef DEVICE_POLLING
2268 	ifp->if_capabilities |= IFCAP_POLLING;
2269 #endif
2270 	ifp->if_capenable = ifp->if_capabilities;
2271 
2272 	callout_init(&sc->dc_stat_ch, IS_MPSAFE ? CALLOUT_MPSAFE : 0);
2273 
2274 #ifdef SRM_MEDIA
2275 	sc->dc_srm_media = 0;
2276 
2277 	/* Remember the SRM console media setting */
2278 	if (DC_IS_INTEL(sc)) {
2279 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
2280 		command &= ~(DC_CFDD_SNOOZE_MODE | DC_CFDD_SLEEP_MODE);
2281 		switch ((command >> 8) & 0xff) {
2282 		case 3:
2283 			sc->dc_srm_media = IFM_10_T;
2284 			break;
2285 		case 4:
2286 			sc->dc_srm_media = IFM_10_T | IFM_FDX;
2287 			break;
2288 		case 5:
2289 			sc->dc_srm_media = IFM_100_TX;
2290 			break;
2291 		case 6:
2292 			sc->dc_srm_media = IFM_100_TX | IFM_FDX;
2293 			break;
2294 		}
2295 		if (sc->dc_srm_media)
2296 			sc->dc_srm_media |= IFM_ACTIVE | IFM_ETHER;
2297 	}
2298 #endif
2299 
2300 	/*
2301 	 * Call MI attach routine.
2302 	 */
2303 	ether_ifattach(ifp, eaddr);
2304 
2305 	/* Hook interrupt last to avoid having to lock softc */
2306 	error = bus_setup_intr(dev, sc->dc_irq, INTR_TYPE_NET |
2307 	    (IS_MPSAFE ? INTR_MPSAFE : 0),
2308 	    dc_intr, sc, &sc->dc_intrhand);
2309 
2310 	if (error) {
2311 		printf("dc%d: couldn't set up irq\n", unit);
2312 		ether_ifdetach(ifp);
2313 		goto fail;
2314 	}
2315 
2316 fail:
2317 	if (error)
2318 		dc_detach(dev);
2319 	return (error);
2320 }
2321 
2322 /*
2323  * Shutdown hardware and free up resources. This can be called any
2324  * time after the mutex has been initialized. It is called in both
2325  * the error case in attach and the normal detach case so it needs
2326  * to be careful about only freeing resources that have actually been
2327  * allocated.
2328  */
2329 static int
2330 dc_detach(device_t dev)
2331 {
2332 	struct dc_softc *sc;
2333 	struct ifnet *ifp;
2334 	struct dc_mediainfo *m;
2335 	int i;
2336 
2337 	sc = device_get_softc(dev);
2338 	KASSERT(mtx_initialized(&sc->dc_mtx), ("dc mutex not initialized"));
2339 	DC_LOCK(sc);
2340 
2341 	ifp = &sc->arpcom.ac_if;
2342 
2343 	/* These should only be active if attach succeeded */
2344 	if (device_is_attached(dev)) {
2345 		dc_stop(sc);
2346 		ether_ifdetach(ifp);
2347 	}
2348 	if (sc->dc_miibus)
2349 		device_delete_child(dev, sc->dc_miibus);
2350 	bus_generic_detach(dev);
2351 
2352 	if (sc->dc_intrhand)
2353 		bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2354 	if (sc->dc_irq)
2355 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2356 	if (sc->dc_res)
2357 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2358 
2359 	if (sc->dc_cdata.dc_sbuf != NULL)
2360 		bus_dmamem_free(sc->dc_stag, sc->dc_cdata.dc_sbuf, sc->dc_smap);
2361 	if (sc->dc_ldata != NULL)
2362 		bus_dmamem_free(sc->dc_ltag, sc->dc_ldata, sc->dc_lmap);
2363 	for (i = 0; i < DC_TX_LIST_CNT; i++)
2364 		bus_dmamap_destroy(sc->dc_mtag, sc->dc_cdata.dc_tx_map[i]);
2365 	for (i = 0; i < DC_RX_LIST_CNT; i++)
2366 		bus_dmamap_destroy(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i]);
2367 	bus_dmamap_destroy(sc->dc_mtag, sc->dc_sparemap);
2368 	if (sc->dc_stag)
2369 		bus_dma_tag_destroy(sc->dc_stag);
2370 	if (sc->dc_mtag)
2371 		bus_dma_tag_destroy(sc->dc_mtag);
2372 	if (sc->dc_ltag)
2373 		bus_dma_tag_destroy(sc->dc_ltag);
2374 
2375 	free(sc->dc_pnic_rx_buf, M_DEVBUF);
2376 
2377 	while (sc->dc_mi != NULL) {
2378 		m = sc->dc_mi->dc_next;
2379 		free(sc->dc_mi, M_DEVBUF);
2380 		sc->dc_mi = m;
2381 	}
2382 	free(sc->dc_srom, M_DEVBUF);
2383 
2384 	DC_UNLOCK(sc);
2385 	mtx_destroy(&sc->dc_mtx);
2386 
2387 	return (0);
2388 }
2389 
2390 /*
2391  * Initialize the transmit descriptors.
2392  */
2393 static int
2394 dc_list_tx_init(struct dc_softc *sc)
2395 {
2396 	struct dc_chain_data *cd;
2397 	struct dc_list_data *ld;
2398 	int i, nexti;
2399 
2400 	cd = &sc->dc_cdata;
2401 	ld = sc->dc_ldata;
2402 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2403 		if (i == DC_TX_LIST_CNT - 1)
2404 			nexti = 0;
2405 		else
2406 			nexti = i + 1;
2407 		ld->dc_tx_list[i].dc_next = htole32(DC_TXDESC(sc, nexti));
2408 		cd->dc_tx_chain[i] = NULL;
2409 		ld->dc_tx_list[i].dc_data = 0;
2410 		ld->dc_tx_list[i].dc_ctl = 0;
2411 	}
2412 
2413 	cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
2414 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
2415 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2416 	return (0);
2417 }
2418 
2419 
2420 /*
2421  * Initialize the RX descriptors and allocate mbufs for them. Note that
2422  * we arrange the descriptors in a closed ring, so that the last descriptor
2423  * points back to the first.
2424  */
2425 static int
2426 dc_list_rx_init(struct dc_softc *sc)
2427 {
2428 	struct dc_chain_data *cd;
2429 	struct dc_list_data *ld;
2430 	int i, nexti;
2431 
2432 	cd = &sc->dc_cdata;
2433 	ld = sc->dc_ldata;
2434 
2435 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2436 		if (dc_newbuf(sc, i, 1) != 0)
2437 			return (ENOBUFS);
2438 		if (i == DC_RX_LIST_CNT - 1)
2439 			nexti = 0;
2440 		else
2441 			nexti = i + 1;
2442 		ld->dc_rx_list[i].dc_next = htole32(DC_RXDESC(sc, nexti));
2443 	}
2444 
2445 	cd->dc_rx_prod = 0;
2446 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
2447 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2448 	return (0);
2449 }
2450 
2451 static void
2452 dc_dma_map_rxbuf(arg, segs, nseg, mapsize, error)
2453 	void *arg;
2454 	bus_dma_segment_t *segs;
2455 	int nseg;
2456 	bus_size_t mapsize;
2457 	int error;
2458 {
2459 	struct dc_softc *sc;
2460 	struct dc_desc *c;
2461 
2462 	sc = arg;
2463 	c = &sc->dc_ldata->dc_rx_list[sc->dc_cdata.dc_rx_cur];
2464 	if (error) {
2465 		sc->dc_cdata.dc_rx_err = error;
2466 		return;
2467 	}
2468 
2469 	KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
2470 	sc->dc_cdata.dc_rx_err = 0;
2471 	c->dc_data = htole32(segs->ds_addr);
2472 }
2473 
2474 /*
2475  * Initialize an RX descriptor and attach an MBUF cluster.
2476  */
2477 static int
2478 dc_newbuf(struct dc_softc *sc, int i, int alloc)
2479 {
2480 	struct mbuf *m_new;
2481 	bus_dmamap_t tmp;
2482 	int error;
2483 
2484 	if (alloc) {
2485 		m_new = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2486 		if (m_new == NULL)
2487 			return (ENOBUFS);
2488 	} else {
2489 		m_new = sc->dc_cdata.dc_rx_chain[i];
2490 		m_new->m_data = m_new->m_ext.ext_buf;
2491 	}
2492 	m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2493 	m_adj(m_new, sizeof(u_int64_t));
2494 
2495 	/*
2496 	 * If this is a PNIC chip, zero the buffer. This is part
2497 	 * of the workaround for the receive bug in the 82c168 and
2498 	 * 82c169 chips.
2499 	 */
2500 	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
2501 		bzero(mtod(m_new, char *), m_new->m_len);
2502 
2503 	/* No need to remap the mbuf if we're reusing it. */
2504 	if (alloc) {
2505 		sc->dc_cdata.dc_rx_cur = i;
2506 		error = bus_dmamap_load_mbuf(sc->dc_mtag, sc->dc_sparemap,
2507 		    m_new, dc_dma_map_rxbuf, sc, 0);
2508 		if (error) {
2509 			m_freem(m_new);
2510 			return (error);
2511 		}
2512 		if (sc->dc_cdata.dc_rx_err != 0) {
2513 			m_freem(m_new);
2514 			return (sc->dc_cdata.dc_rx_err);
2515 		}
2516 		bus_dmamap_unload(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i]);
2517 		tmp = sc->dc_cdata.dc_rx_map[i];
2518 		sc->dc_cdata.dc_rx_map[i] = sc->dc_sparemap;
2519 		sc->dc_sparemap = tmp;
2520 		sc->dc_cdata.dc_rx_chain[i] = m_new;
2521 	}
2522 
2523 	sc->dc_ldata->dc_rx_list[i].dc_ctl = htole32(DC_RXCTL_RLINK | DC_RXLEN);
2524 	sc->dc_ldata->dc_rx_list[i].dc_status = htole32(DC_RXSTAT_OWN);
2525 	bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i],
2526 	    BUS_DMASYNC_PREREAD);
2527 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
2528 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2529 	return (0);
2530 }
2531 
2532 /*
2533  * Grrrrr.
2534  * The PNIC chip has a terrible bug in it that manifests itself during
2535  * periods of heavy activity. The exact mode of failure if difficult to
2536  * pinpoint: sometimes it only happens in promiscuous mode, sometimes it
2537  * will happen on slow machines. The bug is that sometimes instead of
2538  * uploading one complete frame during reception, it uploads what looks
2539  * like the entire contents of its FIFO memory. The frame we want is at
2540  * the end of the whole mess, but we never know exactly how much data has
2541  * been uploaded, so salvaging the frame is hard.
2542  *
2543  * There is only one way to do it reliably, and it's disgusting.
2544  * Here's what we know:
2545  *
2546  * - We know there will always be somewhere between one and three extra
2547  *   descriptors uploaded.
2548  *
2549  * - We know the desired received frame will always be at the end of the
2550  *   total data upload.
2551  *
2552  * - We know the size of the desired received frame because it will be
2553  *   provided in the length field of the status word in the last descriptor.
2554  *
2555  * Here's what we do:
2556  *
2557  * - When we allocate buffers for the receive ring, we bzero() them.
2558  *   This means that we know that the buffer contents should be all
2559  *   zeros, except for data uploaded by the chip.
2560  *
2561  * - We also force the PNIC chip to upload frames that include the
2562  *   ethernet CRC at the end.
2563  *
2564  * - We gather all of the bogus frame data into a single buffer.
2565  *
2566  * - We then position a pointer at the end of this buffer and scan
2567  *   backwards until we encounter the first non-zero byte of data.
2568  *   This is the end of the received frame. We know we will encounter
2569  *   some data at the end of the frame because the CRC will always be
2570  *   there, so even if the sender transmits a packet of all zeros,
2571  *   we won't be fooled.
2572  *
2573  * - We know the size of the actual received frame, so we subtract
2574  *   that value from the current pointer location. This brings us
2575  *   to the start of the actual received packet.
2576  *
2577  * - We copy this into an mbuf and pass it on, along with the actual
2578  *   frame length.
2579  *
2580  * The performance hit is tremendous, but it beats dropping frames all
2581  * the time.
2582  */
2583 
2584 #define DC_WHOLEFRAME	(DC_RXSTAT_FIRSTFRAG | DC_RXSTAT_LASTFRAG)
2585 static void
2586 dc_pnic_rx_bug_war(struct dc_softc *sc, int idx)
2587 {
2588 	struct dc_desc *cur_rx;
2589 	struct dc_desc *c = NULL;
2590 	struct mbuf *m = NULL;
2591 	unsigned char *ptr;
2592 	int i, total_len;
2593 	u_int32_t rxstat = 0;
2594 
2595 	i = sc->dc_pnic_rx_bug_save;
2596 	cur_rx = &sc->dc_ldata->dc_rx_list[idx];
2597 	ptr = sc->dc_pnic_rx_buf;
2598 	bzero(ptr, DC_RXLEN * 5);
2599 
2600 	/* Copy all the bytes from the bogus buffers. */
2601 	while (1) {
2602 		c = &sc->dc_ldata->dc_rx_list[i];
2603 		rxstat = le32toh(c->dc_status);
2604 		m = sc->dc_cdata.dc_rx_chain[i];
2605 		bcopy(mtod(m, char *), ptr, DC_RXLEN);
2606 		ptr += DC_RXLEN;
2607 		/* If this is the last buffer, break out. */
2608 		if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
2609 			break;
2610 		dc_newbuf(sc, i, 0);
2611 		DC_INC(i, DC_RX_LIST_CNT);
2612 	}
2613 
2614 	/* Find the length of the actual receive frame. */
2615 	total_len = DC_RXBYTES(rxstat);
2616 
2617 	/* Scan backwards until we hit a non-zero byte. */
2618 	while (*ptr == 0x00)
2619 		ptr--;
2620 
2621 	/* Round off. */
2622 	if ((uintptr_t)(ptr) & 0x3)
2623 		ptr -= 1;
2624 
2625 	/* Now find the start of the frame. */
2626 	ptr -= total_len;
2627 	if (ptr < sc->dc_pnic_rx_buf)
2628 		ptr = sc->dc_pnic_rx_buf;
2629 
2630 	/*
2631 	 * Now copy the salvaged frame to the last mbuf and fake up
2632 	 * the status word to make it look like a successful
2633 	 * frame reception.
2634 	 */
2635 	dc_newbuf(sc, i, 0);
2636 	bcopy(ptr, mtod(m, char *), total_len);
2637 	cur_rx->dc_status = htole32(rxstat | DC_RXSTAT_FIRSTFRAG);
2638 }
2639 
2640 /*
2641  * This routine searches the RX ring for dirty descriptors in the
2642  * event that the rxeof routine falls out of sync with the chip's
2643  * current descriptor pointer. This may happen sometimes as a result
2644  * of a "no RX buffer available" condition that happens when the chip
2645  * consumes all of the RX buffers before the driver has a chance to
2646  * process the RX ring. This routine may need to be called more than
2647  * once to bring the driver back in sync with the chip, however we
2648  * should still be getting RX DONE interrupts to drive the search
2649  * for new packets in the RX ring, so we should catch up eventually.
2650  */
2651 static int
2652 dc_rx_resync(struct dc_softc *sc)
2653 {
2654 	struct dc_desc *cur_rx;
2655 	int i, pos;
2656 
2657 	pos = sc->dc_cdata.dc_rx_prod;
2658 
2659 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2660 		cur_rx = &sc->dc_ldata->dc_rx_list[pos];
2661 		if (!(le32toh(cur_rx->dc_status) & DC_RXSTAT_OWN))
2662 			break;
2663 		DC_INC(pos, DC_RX_LIST_CNT);
2664 	}
2665 
2666 	/* If the ring really is empty, then just return. */
2667 	if (i == DC_RX_LIST_CNT)
2668 		return (0);
2669 
2670 	/* We've fallen behing the chip: catch it. */
2671 	sc->dc_cdata.dc_rx_prod = pos;
2672 
2673 	return (EAGAIN);
2674 }
2675 
2676 /*
2677  * A frame has been uploaded: pass the resulting mbuf chain up to
2678  * the higher level protocols.
2679  */
2680 static void
2681 dc_rxeof(struct dc_softc *sc)
2682 {
2683 	struct mbuf *m;
2684 	struct ifnet *ifp;
2685 	struct dc_desc *cur_rx;
2686 	int i, total_len = 0;
2687 	u_int32_t rxstat;
2688 
2689 	DC_LOCK_ASSERT(sc);
2690 
2691 	ifp = &sc->arpcom.ac_if;
2692 	i = sc->dc_cdata.dc_rx_prod;
2693 
2694 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap, BUS_DMASYNC_POSTREAD);
2695 	while (!(le32toh(sc->dc_ldata->dc_rx_list[i].dc_status) &
2696 	    DC_RXSTAT_OWN)) {
2697 #ifdef DEVICE_POLLING
2698 		if (ifp->if_flags & IFF_POLLING) {
2699 			if (sc->rxcycles <= 0)
2700 				break;
2701 			sc->rxcycles--;
2702 		}
2703 #endif
2704 		cur_rx = &sc->dc_ldata->dc_rx_list[i];
2705 		rxstat = le32toh(cur_rx->dc_status);
2706 		m = sc->dc_cdata.dc_rx_chain[i];
2707 		bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i],
2708 		    BUS_DMASYNC_POSTREAD);
2709 		total_len = DC_RXBYTES(rxstat);
2710 
2711 		if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2712 			if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
2713 				if (rxstat & DC_RXSTAT_FIRSTFRAG)
2714 					sc->dc_pnic_rx_bug_save = i;
2715 				if ((rxstat & DC_RXSTAT_LASTFRAG) == 0) {
2716 					DC_INC(i, DC_RX_LIST_CNT);
2717 					continue;
2718 				}
2719 				dc_pnic_rx_bug_war(sc, i);
2720 				rxstat = le32toh(cur_rx->dc_status);
2721 				total_len = DC_RXBYTES(rxstat);
2722 			}
2723 		}
2724 
2725 		/*
2726 		 * If an error occurs, update stats, clear the
2727 		 * status word and leave the mbuf cluster in place:
2728 		 * it should simply get re-used next time this descriptor
2729 		 * comes up in the ring.  However, don't report long
2730 		 * frames as errors since they could be vlans.
2731 		 */
2732 		if ((rxstat & DC_RXSTAT_RXERR)) {
2733 			if (!(rxstat & DC_RXSTAT_GIANT) ||
2734 			    (rxstat & (DC_RXSTAT_CRCERR | DC_RXSTAT_DRIBBLE |
2735 				       DC_RXSTAT_MIIERE | DC_RXSTAT_COLLSEEN |
2736 				       DC_RXSTAT_RUNT   | DC_RXSTAT_DE))) {
2737 				ifp->if_ierrors++;
2738 				if (rxstat & DC_RXSTAT_COLLSEEN)
2739 					ifp->if_collisions++;
2740 				dc_newbuf(sc, i, 0);
2741 				if (rxstat & DC_RXSTAT_CRCERR) {
2742 					DC_INC(i, DC_RX_LIST_CNT);
2743 					continue;
2744 				} else {
2745 					dc_init(sc);
2746 					return;
2747 				}
2748 			}
2749 		}
2750 
2751 		/* No errors; receive the packet. */
2752 		total_len -= ETHER_CRC_LEN;
2753 #ifdef __i386__
2754 		/*
2755 		 * On the x86 we do not have alignment problems, so try to
2756 		 * allocate a new buffer for the receive ring, and pass up
2757 		 * the one where the packet is already, saving the expensive
2758 		 * copy done in m_devget().
2759 		 * If we are on an architecture with alignment problems, or
2760 		 * if the allocation fails, then use m_devget and leave the
2761 		 * existing buffer in the receive ring.
2762 		 */
2763 		if (dc_quick && dc_newbuf(sc, i, 1) == 0) {
2764 			m->m_pkthdr.rcvif = ifp;
2765 			m->m_pkthdr.len = m->m_len = total_len;
2766 			DC_INC(i, DC_RX_LIST_CNT);
2767 		} else
2768 #endif
2769 		{
2770 			struct mbuf *m0;
2771 
2772 			m0 = m_devget(mtod(m, char *), total_len,
2773 				ETHER_ALIGN, ifp, NULL);
2774 			dc_newbuf(sc, i, 0);
2775 			DC_INC(i, DC_RX_LIST_CNT);
2776 			if (m0 == NULL) {
2777 				ifp->if_ierrors++;
2778 				continue;
2779 			}
2780 			m = m0;
2781 		}
2782 
2783 		ifp->if_ipackets++;
2784 		DC_UNLOCK(sc);
2785 		(*ifp->if_input)(ifp, m);
2786 		DC_LOCK(sc);
2787 	}
2788 
2789 	sc->dc_cdata.dc_rx_prod = i;
2790 }
2791 
2792 /*
2793  * A frame was downloaded to the chip. It's safe for us to clean up
2794  * the list buffers.
2795  */
2796 
2797 static void
2798 dc_txeof(struct dc_softc *sc)
2799 {
2800 	struct dc_desc *cur_tx = NULL;
2801 	struct ifnet *ifp;
2802 	int idx;
2803 	u_int32_t ctl, txstat;
2804 
2805 	ifp = &sc->arpcom.ac_if;
2806 
2807 	/*
2808 	 * Go through our tx list and free mbufs for those
2809 	 * frames that have been transmitted.
2810 	 */
2811 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap, BUS_DMASYNC_POSTREAD);
2812 	idx = sc->dc_cdata.dc_tx_cons;
2813 	while (idx != sc->dc_cdata.dc_tx_prod) {
2814 
2815 		cur_tx = &sc->dc_ldata->dc_tx_list[idx];
2816 		txstat = le32toh(cur_tx->dc_status);
2817 		ctl = le32toh(cur_tx->dc_ctl);
2818 
2819 		if (txstat & DC_TXSTAT_OWN)
2820 			break;
2821 
2822 		if (!(ctl & DC_TXCTL_LASTFRAG) || ctl & DC_TXCTL_SETUP) {
2823 			if (ctl & DC_TXCTL_SETUP) {
2824 				/*
2825 				 * Yes, the PNIC is so brain damaged
2826 				 * that it will sometimes generate a TX
2827 				 * underrun error while DMAing the RX
2828 				 * filter setup frame. If we detect this,
2829 				 * we have to send the setup frame again,
2830 				 * or else the filter won't be programmed
2831 				 * correctly.
2832 				 */
2833 				if (DC_IS_PNIC(sc)) {
2834 					if (txstat & DC_TXSTAT_ERRSUM)
2835 						dc_setfilt(sc);
2836 				}
2837 				sc->dc_cdata.dc_tx_chain[idx] = NULL;
2838 			}
2839 			sc->dc_cdata.dc_tx_cnt--;
2840 			DC_INC(idx, DC_TX_LIST_CNT);
2841 			continue;
2842 		}
2843 
2844 		if (DC_IS_XIRCOM(sc) || DC_IS_CONEXANT(sc)) {
2845 			/*
2846 			 * XXX: Why does my Xircom taunt me so?
2847 			 * For some reason it likes setting the CARRLOST flag
2848 			 * even when the carrier is there. wtf?!?
2849 			 * Who knows, but Conexant chips have the
2850 			 * same problem. Maybe they took lessons
2851 			 * from Xircom.
2852 			 */
2853 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2854 			    sc->dc_pmode == DC_PMODE_MII &&
2855 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
2856 			    DC_TXSTAT_NOCARRIER)))
2857 				txstat &= ~DC_TXSTAT_ERRSUM;
2858 		} else {
2859 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2860 			    sc->dc_pmode == DC_PMODE_MII &&
2861 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
2862 			    DC_TXSTAT_NOCARRIER | DC_TXSTAT_CARRLOST)))
2863 				txstat &= ~DC_TXSTAT_ERRSUM;
2864 		}
2865 
2866 		if (txstat & DC_TXSTAT_ERRSUM) {
2867 			ifp->if_oerrors++;
2868 			if (txstat & DC_TXSTAT_EXCESSCOLL)
2869 				ifp->if_collisions++;
2870 			if (txstat & DC_TXSTAT_LATECOLL)
2871 				ifp->if_collisions++;
2872 			if (!(txstat & DC_TXSTAT_UNDERRUN)) {
2873 				dc_init(sc);
2874 				return;
2875 			}
2876 		}
2877 
2878 		ifp->if_collisions += (txstat & DC_TXSTAT_COLLCNT) >> 3;
2879 
2880 		ifp->if_opackets++;
2881 		if (sc->dc_cdata.dc_tx_chain[idx] != NULL) {
2882 			bus_dmamap_sync(sc->dc_mtag,
2883 			    sc->dc_cdata.dc_tx_map[idx],
2884 			    BUS_DMASYNC_POSTWRITE);
2885 			bus_dmamap_unload(sc->dc_mtag,
2886 			    sc->dc_cdata.dc_tx_map[idx]);
2887 			m_freem(sc->dc_cdata.dc_tx_chain[idx]);
2888 			sc->dc_cdata.dc_tx_chain[idx] = NULL;
2889 		}
2890 
2891 		sc->dc_cdata.dc_tx_cnt--;
2892 		DC_INC(idx, DC_TX_LIST_CNT);
2893 	}
2894 
2895 	if (idx != sc->dc_cdata.dc_tx_cons) {
2896 	    	/* Some buffers have been freed. */
2897 		sc->dc_cdata.dc_tx_cons = idx;
2898 		ifp->if_flags &= ~IFF_OACTIVE;
2899 	}
2900 	ifp->if_timer = (sc->dc_cdata.dc_tx_cnt == 0) ? 0 : 5;
2901 }
2902 
2903 static void
2904 dc_tick(void *xsc)
2905 {
2906 	struct dc_softc *sc;
2907 	struct mii_data *mii;
2908 	struct ifnet *ifp;
2909 	u_int32_t r;
2910 
2911 	sc = xsc;
2912 	DC_LOCK(sc);
2913 	ifp = &sc->arpcom.ac_if;
2914 	mii = device_get_softc(sc->dc_miibus);
2915 
2916 	if (sc->dc_flags & DC_REDUCED_MII_POLL) {
2917 		if (sc->dc_flags & DC_21143_NWAY) {
2918 			r = CSR_READ_4(sc, DC_10BTSTAT);
2919 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2920 			    IFM_100_TX && (r & DC_TSTAT_LS100)) {
2921 				sc->dc_link = 0;
2922 				mii_mediachg(mii);
2923 			}
2924 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2925 			    IFM_10_T && (r & DC_TSTAT_LS10)) {
2926 				sc->dc_link = 0;
2927 				mii_mediachg(mii);
2928 			}
2929 			if (sc->dc_link == 0)
2930 				mii_tick(mii);
2931 		} else {
2932 			r = CSR_READ_4(sc, DC_ISR);
2933 			if ((r & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT &&
2934 			    sc->dc_cdata.dc_tx_cnt == 0) {
2935 				mii_tick(mii);
2936 				if (!(mii->mii_media_status & IFM_ACTIVE))
2937 					sc->dc_link = 0;
2938 			}
2939 		}
2940 	} else
2941 		mii_tick(mii);
2942 
2943 	/*
2944 	 * When the init routine completes, we expect to be able to send
2945 	 * packets right away, and in fact the network code will send a
2946 	 * gratuitous ARP the moment the init routine marks the interface
2947 	 * as running. However, even though the MAC may have been initialized,
2948 	 * there may be a delay of a few seconds before the PHY completes
2949 	 * autonegotiation and the link is brought up. Any transmissions
2950 	 * made during that delay will be lost. Dealing with this is tricky:
2951 	 * we can't just pause in the init routine while waiting for the
2952 	 * PHY to come ready since that would bring the whole system to
2953 	 * a screeching halt for several seconds.
2954 	 *
2955 	 * What we do here is prevent the TX start routine from sending
2956 	 * any packets until a link has been established. After the
2957 	 * interface has been initialized, the tick routine will poll
2958 	 * the state of the PHY until the IFM_ACTIVE flag is set. Until
2959 	 * that time, packets will stay in the send queue, and once the
2960 	 * link comes up, they will be flushed out to the wire.
2961 	 */
2962 	if (!sc->dc_link && mii->mii_media_status & IFM_ACTIVE &&
2963 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2964 		sc->dc_link++;
2965 		if (ifp->if_snd.ifq_head != NULL)
2966 			dc_start(ifp);
2967 	}
2968 
2969 	if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link)
2970 		callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
2971 	else
2972 		callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
2973 
2974 	DC_UNLOCK(sc);
2975 }
2976 
2977 /*
2978  * A transmit underrun has occurred.  Back off the transmit threshold,
2979  * or switch to store and forward mode if we have to.
2980  */
2981 static void
2982 dc_tx_underrun(struct dc_softc *sc)
2983 {
2984 	u_int32_t isr;
2985 	int i;
2986 
2987 	if (DC_IS_DAVICOM(sc))
2988 		dc_init(sc);
2989 
2990 	if (DC_IS_INTEL(sc)) {
2991 		/*
2992 		 * The real 21143 requires that the transmitter be idle
2993 		 * in order to change the transmit threshold or store
2994 		 * and forward state.
2995 		 */
2996 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2997 
2998 		for (i = 0; i < DC_TIMEOUT; i++) {
2999 			isr = CSR_READ_4(sc, DC_ISR);
3000 			if (isr & DC_ISR_TX_IDLE)
3001 				break;
3002 			DELAY(10);
3003 		}
3004 		if (i == DC_TIMEOUT) {
3005 			printf("dc%d: failed to force tx to idle state\n",
3006 			    sc->dc_unit);
3007 			dc_init(sc);
3008 		}
3009 	}
3010 
3011 	printf("dc%d: TX underrun -- ", sc->dc_unit);
3012 	sc->dc_txthresh += DC_TXTHRESH_INC;
3013 	if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3014 		printf("using store and forward mode\n");
3015 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3016 	} else {
3017 		printf("increasing TX threshold\n");
3018 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3019 		DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3020 	}
3021 
3022 	if (DC_IS_INTEL(sc))
3023 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3024 }
3025 
3026 #ifdef DEVICE_POLLING
3027 static poll_handler_t dc_poll;
3028 
3029 static void
3030 dc_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
3031 {
3032 	struct dc_softc *sc = ifp->if_softc;
3033 
3034 	if (!(ifp->if_capenable & IFCAP_POLLING)) {
3035 		ether_poll_deregister(ifp);
3036 		cmd = POLL_DEREGISTER;
3037 	}
3038 	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
3039 		/* Re-enable interrupts. */
3040 		CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3041 		return;
3042 	}
3043 	DC_LOCK(sc);
3044 	sc->rxcycles = count;
3045 	dc_rxeof(sc);
3046 	dc_txeof(sc);
3047 	if (ifp->if_snd.ifq_head != NULL && !(ifp->if_flags & IFF_OACTIVE))
3048 		dc_start(ifp);
3049 
3050 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
3051 		u_int32_t	status;
3052 
3053 		status = CSR_READ_4(sc, DC_ISR);
3054 		status &= (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF |
3055 			DC_ISR_TX_NOBUF | DC_ISR_TX_IDLE | DC_ISR_TX_UNDERRUN |
3056 			DC_ISR_BUS_ERR);
3057 		if (!status) {
3058 			DC_UNLOCK(sc);
3059 			return;
3060 		}
3061 		/* ack what we have */
3062 		CSR_WRITE_4(sc, DC_ISR, status);
3063 
3064 		if (status & (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF)) {
3065 			u_int32_t r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
3066 			ifp->if_ierrors += (r & 0xffff) + ((r >> 17) & 0x7ff);
3067 
3068 			if (dc_rx_resync(sc))
3069 				dc_rxeof(sc);
3070 		}
3071 		/* restart transmit unit if necessary */
3072 		if (status & DC_ISR_TX_IDLE && sc->dc_cdata.dc_tx_cnt)
3073 			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3074 
3075 		if (status & DC_ISR_TX_UNDERRUN)
3076 			dc_tx_underrun(sc);
3077 
3078 		if (status & DC_ISR_BUS_ERR) {
3079 			printf("dc_poll: dc%d bus error\n", sc->dc_unit);
3080 			dc_reset(sc);
3081 			dc_init(sc);
3082 		}
3083 	}
3084 	DC_UNLOCK(sc);
3085 }
3086 #endif /* DEVICE_POLLING */
3087 
3088 static void
3089 dc_intr(void *arg)
3090 {
3091 	struct dc_softc *sc;
3092 	struct ifnet *ifp;
3093 	u_int32_t status;
3094 
3095 	sc = arg;
3096 
3097 	if (sc->suspended)
3098 		return;
3099 
3100 	if ((CSR_READ_4(sc, DC_ISR) & DC_INTRS) == 0)
3101 		return;
3102 
3103 	DC_LOCK(sc);
3104 	ifp = &sc->arpcom.ac_if;
3105 #ifdef DEVICE_POLLING
3106 	if (ifp->if_flags & IFF_POLLING)
3107 		goto done;
3108 	if ((ifp->if_capenable & IFCAP_POLLING) &&
3109 	    ether_poll_register(dc_poll, ifp)) { /* ok, disable interrupts */
3110 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3111 		goto done;
3112 	}
3113 #endif
3114 
3115 	/* Suppress unwanted interrupts */
3116 	if (!(ifp->if_flags & IFF_UP)) {
3117 		if (CSR_READ_4(sc, DC_ISR) & DC_INTRS)
3118 			dc_stop(sc);
3119 		DC_UNLOCK(sc);
3120 		return;
3121 	}
3122 
3123 	/* Disable interrupts. */
3124 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3125 
3126 	while (((status = CSR_READ_4(sc, DC_ISR)) & DC_INTRS)
3127 	      && status != 0xFFFFFFFF) {
3128 
3129 		CSR_WRITE_4(sc, DC_ISR, status);
3130 
3131 		if (status & DC_ISR_RX_OK) {
3132 			int		curpkts;
3133 			curpkts = ifp->if_ipackets;
3134 			dc_rxeof(sc);
3135 			if (curpkts == ifp->if_ipackets) {
3136 				while (dc_rx_resync(sc))
3137 					dc_rxeof(sc);
3138 			}
3139 		}
3140 
3141 		if (status & (DC_ISR_TX_OK | DC_ISR_TX_NOBUF))
3142 			dc_txeof(sc);
3143 
3144 		if (status & DC_ISR_TX_IDLE) {
3145 			dc_txeof(sc);
3146 			if (sc->dc_cdata.dc_tx_cnt) {
3147 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3148 				CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3149 			}
3150 		}
3151 
3152 		if (status & DC_ISR_TX_UNDERRUN)
3153 			dc_tx_underrun(sc);
3154 
3155 		if ((status & DC_ISR_RX_WATDOGTIMEO)
3156 		    || (status & DC_ISR_RX_NOBUF)) {
3157 			int		curpkts;
3158 			curpkts = ifp->if_ipackets;
3159 			dc_rxeof(sc);
3160 			if (curpkts == ifp->if_ipackets) {
3161 				while (dc_rx_resync(sc))
3162 					dc_rxeof(sc);
3163 			}
3164 		}
3165 
3166 		if (status & DC_ISR_BUS_ERR) {
3167 			dc_reset(sc);
3168 			dc_init(sc);
3169 		}
3170 	}
3171 
3172 	/* Re-enable interrupts. */
3173 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3174 
3175 	if (ifp->if_snd.ifq_head != NULL)
3176 		dc_start(ifp);
3177 
3178 #ifdef DEVICE_POLLING
3179 done:
3180 #endif
3181 
3182 	DC_UNLOCK(sc);
3183 }
3184 
3185 static void
3186 dc_dma_map_txbuf(arg, segs, nseg, mapsize, error)
3187 	void *arg;
3188 	bus_dma_segment_t *segs;
3189 	int nseg;
3190 	bus_size_t mapsize;
3191 	int error;
3192 {
3193 	struct dc_softc *sc;
3194 	struct dc_desc *f;
3195 	int cur, first, frag, i;
3196 
3197 	sc = arg;
3198 	if (error) {
3199 		sc->dc_cdata.dc_tx_err = error;
3200 		return;
3201 	}
3202 
3203 	first = cur = frag = sc->dc_cdata.dc_tx_prod;
3204 	for (i = 0; i < nseg; i++) {
3205 		if ((sc->dc_flags & DC_TX_ADMTEK_WAR) &&
3206 		    (frag == (DC_TX_LIST_CNT - 1)) &&
3207 		    (first != sc->dc_cdata.dc_tx_first)) {
3208 			bus_dmamap_unload(sc->dc_mtag,
3209 			    sc->dc_cdata.dc_tx_map[first]);
3210 			sc->dc_cdata.dc_tx_err = ENOBUFS;
3211 			return;
3212 		}
3213 
3214 		f = &sc->dc_ldata->dc_tx_list[frag];
3215 		f->dc_ctl = htole32(DC_TXCTL_TLINK | segs[i].ds_len);
3216 		if (i == 0) {
3217 			f->dc_status = 0;
3218 			f->dc_ctl |= htole32(DC_TXCTL_FIRSTFRAG);
3219 		} else
3220 			f->dc_status = htole32(DC_TXSTAT_OWN);
3221 		f->dc_data = htole32(segs[i].ds_addr);
3222 		cur = frag;
3223 		DC_INC(frag, DC_TX_LIST_CNT);
3224 	}
3225 
3226 	sc->dc_cdata.dc_tx_err = 0;
3227 	sc->dc_cdata.dc_tx_prod = frag;
3228 	sc->dc_cdata.dc_tx_cnt += nseg;
3229 	sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_LASTFRAG);
3230 	sc->dc_cdata.dc_tx_chain[cur] = sc->dc_cdata.dc_tx_mapping;
3231 	if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
3232 		sc->dc_ldata->dc_tx_list[first].dc_ctl |=
3233 		    htole32(DC_TXCTL_FINT);
3234 	if (sc->dc_flags & DC_TX_INTR_ALWAYS)
3235 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
3236 	if (sc->dc_flags & DC_TX_USE_TX_INTR && sc->dc_cdata.dc_tx_cnt > 64)
3237 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
3238 	sc->dc_ldata->dc_tx_list[first].dc_status = htole32(DC_TXSTAT_OWN);
3239 }
3240 
3241 /*
3242  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
3243  * pointers to the fragment pointers.
3244  */
3245 static int
3246 dc_encap(struct dc_softc *sc, struct mbuf **m_head)
3247 {
3248 	struct mbuf *m;
3249 	int error, idx, chainlen = 0;
3250 
3251 	/*
3252 	 * If there's no way we can send any packets, return now.
3253 	 */
3254 	if (DC_TX_LIST_CNT - sc->dc_cdata.dc_tx_cnt < 6)
3255 		return (ENOBUFS);
3256 
3257 	/*
3258 	 * Count the number of frags in this chain to see if
3259 	 * we need to m_defrag.  Since the descriptor list is shared
3260 	 * by all packets, we'll m_defrag long chains so that they
3261 	 * do not use up the entire list, even if they would fit.
3262 	 */
3263 	for (m = *m_head; m != NULL; m = m->m_next)
3264 		chainlen++;
3265 
3266 	if ((chainlen > DC_TX_LIST_CNT / 4) ||
3267 	    ((DC_TX_LIST_CNT - (chainlen + sc->dc_cdata.dc_tx_cnt)) < 6)) {
3268 		m = m_defrag(*m_head, M_DONTWAIT);
3269 		if (m == NULL)
3270 			return (ENOBUFS);
3271 		*m_head = m;
3272 	}
3273 
3274 	/*
3275 	 * Start packing the mbufs in this chain into
3276 	 * the fragment pointers. Stop when we run out
3277 	 * of fragments or hit the end of the mbuf chain.
3278 	 */
3279 	idx = sc->dc_cdata.dc_tx_prod;
3280 	sc->dc_cdata.dc_tx_mapping = *m_head;
3281 	error = bus_dmamap_load_mbuf(sc->dc_mtag, sc->dc_cdata.dc_tx_map[idx],
3282 	    *m_head, dc_dma_map_txbuf, sc, 0);
3283 	if (error)
3284 		return (error);
3285 	if (sc->dc_cdata.dc_tx_err != 0)
3286 		return (sc->dc_cdata.dc_tx_err);
3287 	bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_tx_map[idx],
3288 	    BUS_DMASYNC_PREWRITE);
3289 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
3290 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
3291 	return (0);
3292 }
3293 
3294 /*
3295  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3296  * to the mbuf data regions directly in the transmit lists. We also save a
3297  * copy of the pointers since the transmit list fragment pointers are
3298  * physical addresses.
3299  */
3300 
3301 static void
3302 dc_start(struct ifnet *ifp)
3303 {
3304 	struct dc_softc *sc;
3305 	struct mbuf *m_head = NULL, *m;
3306 	int idx;
3307 
3308 	sc = ifp->if_softc;
3309 
3310 	DC_LOCK(sc);
3311 
3312 	if (!sc->dc_link && ifp->if_snd.ifq_len < 10) {
3313 		DC_UNLOCK(sc);
3314 		return;
3315 	}
3316 
3317 	if (ifp->if_flags & IFF_OACTIVE) {
3318 		DC_UNLOCK(sc);
3319 		return;
3320 	}
3321 
3322 	idx = sc->dc_cdata.dc_tx_first = sc->dc_cdata.dc_tx_prod;
3323 
3324 	while (sc->dc_cdata.dc_tx_chain[idx] == NULL) {
3325 		IF_DEQUEUE(&ifp->if_snd, m_head);
3326 		if (m_head == NULL)
3327 			break;
3328 
3329 		if (sc->dc_flags & DC_TX_COALESCE &&
3330 		    (m_head->m_next != NULL ||
3331 		     sc->dc_flags & DC_TX_ALIGN)) {
3332 			m = m_defrag(m_head, M_DONTWAIT);
3333 			if (m == NULL) {
3334 				IF_PREPEND(&ifp->if_snd, m_head);
3335 				ifp->if_flags |= IFF_OACTIVE;
3336 				break;
3337 			} else {
3338 				m_head = m;
3339 			}
3340 		}
3341 
3342 		if (dc_encap(sc, &m_head)) {
3343 			IF_PREPEND(&ifp->if_snd, m_head);
3344 			ifp->if_flags |= IFF_OACTIVE;
3345 			break;
3346 		}
3347 		idx = sc->dc_cdata.dc_tx_prod;
3348 
3349 		/*
3350 		 * If there's a BPF listener, bounce a copy of this frame
3351 		 * to him.
3352 		 */
3353 		BPF_MTAP(ifp, m_head);
3354 
3355 		if (sc->dc_flags & DC_TX_ONE) {
3356 			ifp->if_flags |= IFF_OACTIVE;
3357 			break;
3358 		}
3359 	}
3360 
3361 	/* Transmit */
3362 	if (!(sc->dc_flags & DC_TX_POLL))
3363 		CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3364 
3365 	/*
3366 	 * Set a timeout in case the chip goes out to lunch.
3367 	 */
3368 	ifp->if_timer = 5;
3369 
3370 	DC_UNLOCK(sc);
3371 }
3372 
3373 static void
3374 dc_init(void *xsc)
3375 {
3376 	struct dc_softc *sc = xsc;
3377 	struct ifnet *ifp = &sc->arpcom.ac_if;
3378 	struct mii_data *mii;
3379 
3380 	DC_LOCK(sc);
3381 
3382 	mii = device_get_softc(sc->dc_miibus);
3383 
3384 	/*
3385 	 * Cancel pending I/O and free all RX/TX buffers.
3386 	 */
3387 	dc_stop(sc);
3388 	dc_reset(sc);
3389 
3390 	/*
3391 	 * Set cache alignment and burst length.
3392 	 */
3393 	if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc))
3394 		CSR_WRITE_4(sc, DC_BUSCTL, 0);
3395 	else
3396 		CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME | DC_BUSCTL_MRLE);
3397 	/*
3398 	 * Evenly share the bus between receive and transmit process.
3399 	 */
3400 	if (DC_IS_INTEL(sc))
3401 		DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION);
3402 	if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
3403 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
3404 	} else {
3405 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
3406 	}
3407 	if (sc->dc_flags & DC_TX_POLL)
3408 		DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
3409 	switch(sc->dc_cachesize) {
3410 	case 32:
3411 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
3412 		break;
3413 	case 16:
3414 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
3415 		break;
3416 	case 8:
3417 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
3418 		break;
3419 	case 0:
3420 	default:
3421 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
3422 		break;
3423 	}
3424 
3425 	if (sc->dc_flags & DC_TX_STORENFWD)
3426 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3427 	else {
3428 		if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3429 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3430 		} else {
3431 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3432 			DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3433 		}
3434 	}
3435 
3436 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
3437 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
3438 
3439 	if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
3440 		/*
3441 		 * The app notes for the 98713 and 98715A say that
3442 		 * in order to have the chips operate properly, a magic
3443 		 * number must be written to CSR16. Macronix does not
3444 		 * document the meaning of these bits so there's no way
3445 		 * to know exactly what they do. The 98713 has a magic
3446 		 * number all its own; the rest all use a different one.
3447 		 */
3448 		DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
3449 		if (sc->dc_type == DC_TYPE_98713)
3450 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
3451 		else
3452 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
3453 	}
3454 
3455 	if (DC_IS_XIRCOM(sc)) {
3456 		/*
3457 		 * setup General Purpose Port mode and data so the tulip
3458 		 * can talk to the MII.
3459 		 */
3460 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
3461 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3462 		DELAY(10);
3463 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
3464 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3465 		DELAY(10);
3466 	}
3467 
3468 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3469 	DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN);
3470 
3471 	/* Init circular RX list. */
3472 	if (dc_list_rx_init(sc) == ENOBUFS) {
3473 		printf("dc%d: initialization failed: no "
3474 		    "memory for rx buffers\n", sc->dc_unit);
3475 		dc_stop(sc);
3476 		DC_UNLOCK(sc);
3477 		return;
3478 	}
3479 
3480 	/*
3481 	 * Init TX descriptors.
3482 	 */
3483 	dc_list_tx_init(sc);
3484 
3485 	/*
3486 	 * Load the address of the RX list.
3487 	 */
3488 	CSR_WRITE_4(sc, DC_RXADDR, DC_RXDESC(sc, 0));
3489 	CSR_WRITE_4(sc, DC_TXADDR, DC_TXDESC(sc, 0));
3490 
3491 	/*
3492 	 * Enable interrupts.
3493 	 */
3494 #ifdef DEVICE_POLLING
3495 	/*
3496 	 * ... but only if we are not polling, and make sure they are off in
3497 	 * the case of polling. Some cards (e.g. fxp) turn interrupts on
3498 	 * after a reset.
3499 	 */
3500 	if (ifp->if_flags & IFF_POLLING)
3501 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3502 	else
3503 #endif
3504 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3505 	CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
3506 
3507 	/* Enable transmitter. */
3508 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3509 
3510 	/*
3511 	 * If this is an Intel 21143 and we're not using the
3512 	 * MII port, program the LED control pins so we get
3513 	 * link and activity indications.
3514 	 */
3515 	if (sc->dc_flags & DC_TULIP_LEDS) {
3516 		CSR_WRITE_4(sc, DC_WATCHDOG,
3517 		    DC_WDOG_CTLWREN | DC_WDOG_LINK | DC_WDOG_ACTIVITY);
3518 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
3519 	}
3520 
3521 	/*
3522 	 * Load the RX/multicast filter. We do this sort of late
3523 	 * because the filter programming scheme on the 21143 and
3524 	 * some clones requires DMAing a setup frame via the TX
3525 	 * engine, and we need the transmitter enabled for that.
3526 	 */
3527 	dc_setfilt(sc);
3528 
3529 	/* Enable receiver. */
3530 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
3531 	CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
3532 
3533 	mii_mediachg(mii);
3534 	dc_setcfg(sc, sc->dc_if_media);
3535 
3536 	ifp->if_flags |= IFF_RUNNING;
3537 	ifp->if_flags &= ~IFF_OACTIVE;
3538 
3539 	/* Don't start the ticker if this is a homePNA link. */
3540 	if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_HPNA_1)
3541 		sc->dc_link = 1;
3542 	else {
3543 		if (sc->dc_flags & DC_21143_NWAY)
3544 			callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
3545 		else
3546 			callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
3547 	}
3548 
3549 #ifdef SRM_MEDIA
3550 	if(sc->dc_srm_media) {
3551 		struct ifreq ifr;
3552 
3553 		ifr.ifr_media = sc->dc_srm_media;
3554 		ifmedia_ioctl(ifp, &ifr, &mii->mii_media, SIOCSIFMEDIA);
3555 		sc->dc_srm_media = 0;
3556 	}
3557 #endif
3558 	DC_UNLOCK(sc);
3559 }
3560 
3561 /*
3562  * Set media options.
3563  */
3564 static int
3565 dc_ifmedia_upd(struct ifnet *ifp)
3566 {
3567 	struct dc_softc *sc;
3568 	struct mii_data *mii;
3569 	struct ifmedia *ifm;
3570 
3571 	sc = ifp->if_softc;
3572 	mii = device_get_softc(sc->dc_miibus);
3573 	mii_mediachg(mii);
3574 	ifm = &mii->mii_media;
3575 
3576 	if (DC_IS_DAVICOM(sc) &&
3577 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1)
3578 		dc_setcfg(sc, ifm->ifm_media);
3579 	else
3580 		sc->dc_link = 0;
3581 
3582 	return (0);
3583 }
3584 
3585 /*
3586  * Report current media status.
3587  */
3588 static void
3589 dc_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3590 {
3591 	struct dc_softc *sc;
3592 	struct mii_data *mii;
3593 	struct ifmedia *ifm;
3594 
3595 	sc = ifp->if_softc;
3596 	mii = device_get_softc(sc->dc_miibus);
3597 	mii_pollstat(mii);
3598 	ifm = &mii->mii_media;
3599 	if (DC_IS_DAVICOM(sc)) {
3600 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
3601 			ifmr->ifm_active = ifm->ifm_media;
3602 			ifmr->ifm_status = 0;
3603 			return;
3604 		}
3605 	}
3606 	ifmr->ifm_active = mii->mii_media_active;
3607 	ifmr->ifm_status = mii->mii_media_status;
3608 }
3609 
3610 static int
3611 dc_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
3612 {
3613 	struct dc_softc *sc = ifp->if_softc;
3614 	struct ifreq *ifr = (struct ifreq *)data;
3615 	struct mii_data *mii;
3616 	int error = 0;
3617 
3618 	DC_LOCK(sc);
3619 
3620 	switch (command) {
3621 	case SIOCSIFFLAGS:
3622 		if (ifp->if_flags & IFF_UP) {
3623 			int need_setfilt = (ifp->if_flags ^ sc->dc_if_flags) &
3624 				(IFF_PROMISC | IFF_ALLMULTI);
3625 
3626 			if (ifp->if_flags & IFF_RUNNING) {
3627 				if (need_setfilt)
3628 					dc_setfilt(sc);
3629 			} else {
3630 				sc->dc_txthresh = 0;
3631 				dc_init(sc);
3632 			}
3633 		} else {
3634 			if (ifp->if_flags & IFF_RUNNING)
3635 				dc_stop(sc);
3636 		}
3637 		sc->dc_if_flags = ifp->if_flags;
3638 		error = 0;
3639 		break;
3640 	case SIOCADDMULTI:
3641 	case SIOCDELMULTI:
3642 		dc_setfilt(sc);
3643 		error = 0;
3644 		break;
3645 	case SIOCGIFMEDIA:
3646 	case SIOCSIFMEDIA:
3647 		mii = device_get_softc(sc->dc_miibus);
3648 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
3649 #ifdef SRM_MEDIA
3650 		if (sc->dc_srm_media)
3651 			sc->dc_srm_media = 0;
3652 #endif
3653 		break;
3654 	case SIOCSIFCAP:
3655 		ifp->if_capenable &= ~IFCAP_POLLING;
3656 		ifp->if_capenable |= ifr->ifr_reqcap & IFCAP_POLLING;
3657 		break;
3658 	default:
3659 		error = ether_ioctl(ifp, command, data);
3660 		break;
3661 	}
3662 
3663 	DC_UNLOCK(sc);
3664 
3665 	return (error);
3666 }
3667 
3668 static void
3669 dc_watchdog(struct ifnet *ifp)
3670 {
3671 	struct dc_softc *sc;
3672 
3673 	sc = ifp->if_softc;
3674 
3675 	DC_LOCK(sc);
3676 
3677 	ifp->if_oerrors++;
3678 	printf("dc%d: watchdog timeout\n", sc->dc_unit);
3679 
3680 	dc_stop(sc);
3681 	dc_reset(sc);
3682 	dc_init(sc);
3683 
3684 	if (ifp->if_snd.ifq_head != NULL)
3685 		dc_start(ifp);
3686 
3687 	DC_UNLOCK(sc);
3688 }
3689 
3690 /*
3691  * Stop the adapter and free any mbufs allocated to the
3692  * RX and TX lists.
3693  */
3694 static void
3695 dc_stop(struct dc_softc *sc)
3696 {
3697 	struct ifnet *ifp;
3698 	struct dc_list_data *ld;
3699 	struct dc_chain_data *cd;
3700 	int i;
3701 	u_int32_t ctl;
3702 
3703 	DC_LOCK(sc);
3704 
3705 	ifp = &sc->arpcom.ac_if;
3706 	ifp->if_timer = 0;
3707 	ld = sc->dc_ldata;
3708 	cd = &sc->dc_cdata;
3709 
3710 	callout_stop(&sc->dc_stat_ch);
3711 
3712 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3713 #ifdef DEVICE_POLLING
3714 	ether_poll_deregister(ifp);
3715 #endif
3716 
3717 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ON | DC_NETCFG_TX_ON));
3718 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3719 	CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
3720 	CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
3721 	sc->dc_link = 0;
3722 
3723 	/*
3724 	 * Free data in the RX lists.
3725 	 */
3726 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
3727 		if (cd->dc_rx_chain[i] != NULL) {
3728 			m_freem(cd->dc_rx_chain[i]);
3729 			cd->dc_rx_chain[i] = NULL;
3730 		}
3731 	}
3732 	bzero(&ld->dc_rx_list, sizeof(ld->dc_rx_list));
3733 
3734 	/*
3735 	 * Free the TX list buffers.
3736 	 */
3737 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
3738 		if (cd->dc_tx_chain[i] != NULL) {
3739 			ctl = le32toh(ld->dc_tx_list[i].dc_ctl);
3740 			if ((ctl & DC_TXCTL_SETUP) ||
3741 			    !(ctl & DC_TXCTL_LASTFRAG)) {
3742 				cd->dc_tx_chain[i] = NULL;
3743 				continue;
3744 			}
3745 			bus_dmamap_unload(sc->dc_mtag, cd->dc_tx_map[i]);
3746 			m_freem(cd->dc_tx_chain[i]);
3747 			cd->dc_tx_chain[i] = NULL;
3748 		}
3749 	}
3750 	bzero(&ld->dc_tx_list, sizeof(ld->dc_tx_list));
3751 
3752 	DC_UNLOCK(sc);
3753 }
3754 
3755 /*
3756  * Device suspend routine.  Stop the interface and save some PCI
3757  * settings in case the BIOS doesn't restore them properly on
3758  * resume.
3759  */
3760 static int
3761 dc_suspend(device_t dev)
3762 {
3763 	struct dc_softc *sc;
3764 	int s;
3765 
3766 	s = splimp();
3767 
3768 	sc = device_get_softc(dev);
3769 	dc_stop(sc);
3770 	sc->suspended = 1;
3771 
3772 	splx(s);
3773 	return (0);
3774 }
3775 
3776 /*
3777  * Device resume routine.  Restore some PCI settings in case the BIOS
3778  * doesn't, re-enable busmastering, and restart the interface if
3779  * appropriate.
3780  */
3781 static int
3782 dc_resume(device_t dev)
3783 {
3784 	struct dc_softc *sc;
3785 	struct ifnet *ifp;
3786 	int s;
3787 
3788 	s = splimp();
3789 
3790 	sc = device_get_softc(dev);
3791 	ifp = &sc->arpcom.ac_if;
3792 
3793 	/* reinitialize interface if necessary */
3794 	if (ifp->if_flags & IFF_UP)
3795 		dc_init(sc);
3796 
3797 	sc->suspended = 0;
3798 
3799 	splx(s);
3800 	return (0);
3801 }
3802 
3803 /*
3804  * Stop all chip I/O so that the kernel's probe routines don't
3805  * get confused by errant DMAs when rebooting.
3806  */
3807 static void
3808 dc_shutdown(device_t dev)
3809 {
3810 	struct dc_softc *sc;
3811 
3812 	sc = device_get_softc(dev);
3813 
3814 	dc_stop(sc);
3815 }
3816