xref: /freebsd/sys/dev/dc/if_dc.c (revision bd66c1b43e33540205dbc1187c2f2a15c58b57ba)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1997, 1998, 1999
5  *	Bill Paul <wpaul@ee.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 /*
37  * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
38  * series chips and several workalikes including the following:
39  *
40  * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com)
41  * Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
42  * Lite-On 82c168/82c169 PNIC (www.litecom.com)
43  * ASIX Electronics AX88140A (www.asix.com.tw)
44  * ASIX Electronics AX88141 (www.asix.com.tw)
45  * ADMtek AL981 (www.admtek.com.tw)
46  * ADMtek AN983 (www.admtek.com.tw)
47  * ADMtek CardBus AN985 (www.admtek.com.tw)
48  * Netgear FA511 (www.netgear.com) Appears to be rebadged ADMTek CardBus AN985
49  * Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
50  * Accton EN1217 (www.accton.com)
51  * Xircom X3201 (www.xircom.com)
52  * Abocom FE2500
53  * Conexant LANfinity (www.conexant.com)
54  * 3Com OfficeConnect 10/100B 3CSOHO100B (www.3com.com)
55  *
56  * Datasheets for the 21143 are available at developer.intel.com.
57  * Datasheets for the clone parts can be found at their respective sites.
58  * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
59  * The PNIC II is essentially a Macronix 98715A chip; the only difference
60  * worth noting is that its multicast hash table is only 128 bits wide
61  * instead of 512.
62  *
63  * Written by Bill Paul <wpaul@ee.columbia.edu>
64  * Electrical Engineering Department
65  * Columbia University, New York City
66  */
67 /*
68  * The Intel 21143 is the successor to the DEC 21140. It is basically
69  * the same as the 21140 but with a few new features. The 21143 supports
70  * three kinds of media attachments:
71  *
72  * o MII port, for 10Mbps and 100Mbps support and NWAY
73  *   autonegotiation provided by an external PHY.
74  * o SYM port, for symbol mode 100Mbps support.
75  * o 10baseT port.
76  * o AUI/BNC port.
77  *
78  * The 100Mbps SYM port and 10baseT port can be used together in
79  * combination with the internal NWAY support to create a 10/100
80  * autosensing configuration.
81  *
82  * Note that not all tulip workalikes are handled in this driver: we only
83  * deal with those which are relatively well behaved. The Winbond is
84  * handled separately due to its different register offsets and the
85  * special handling needed for its various bugs. The PNIC is handled
86  * here, but I'm not thrilled about it.
87  *
88  * All of the workalike chips use some form of MII transceiver support
89  * with the exception of the Macronix chips, which also have a SYM port.
90  * The ASIX AX88140A is also documented to have a SYM port, but all
91  * the cards I've seen use an MII transceiver, probably because the
92  * AX88140A doesn't support internal NWAY.
93  */
94 
95 #ifdef HAVE_KERNEL_OPTION_HEADERS
96 #include "opt_device_polling.h"
97 #endif
98 
99 #include <sys/param.h>
100 #include <sys/endian.h>
101 #include <sys/systm.h>
102 #include <sys/sockio.h>
103 #include <sys/mbuf.h>
104 #include <sys/malloc.h>
105 #include <sys/kernel.h>
106 #include <sys/module.h>
107 #include <sys/socket.h>
108 
109 #include <net/if.h>
110 #include <net/if_var.h>
111 #include <net/if_arp.h>
112 #include <net/ethernet.h>
113 #include <net/if_dl.h>
114 #include <net/if_media.h>
115 #include <net/if_types.h>
116 #include <net/if_vlan_var.h>
117 
118 #include <net/bpf.h>
119 
120 #include <machine/bus.h>
121 #include <machine/resource.h>
122 #include <sys/bus.h>
123 #include <sys/rman.h>
124 
125 #include <dev/mii/mii.h>
126 #include <dev/mii/mii_bitbang.h>
127 #include <dev/mii/miivar.h>
128 
129 #include <dev/pci/pcireg.h>
130 #include <dev/pci/pcivar.h>
131 
132 #define	DC_USEIOSPACE
133 
134 #include <dev/dc/if_dcreg.h>
135 
136 MODULE_DEPEND(dc, pci, 1, 1, 1);
137 MODULE_DEPEND(dc, ether, 1, 1, 1);
138 MODULE_DEPEND(dc, miibus, 1, 1, 1);
139 
140 /*
141  * "device miibus" is required in kernel config.  See GENERIC if you get
142  * errors here.
143  */
144 #include "miibus_if.h"
145 
146 /*
147  * Various supported device vendors/types and their names.
148  */
149 static const struct dc_type dc_devs[] = {
150 	{ DC_DEVID(DC_VENDORID_DEC, DC_DEVICEID_21143), 0,
151 		"Intel 21143 10/100BaseTX" },
152 	{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009), 0,
153 		"Davicom DM9009 10/100BaseTX" },
154 	{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100), 0,
155 		"Davicom DM9100 10/100BaseTX" },
156 	{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102), DC_REVISION_DM9102A,
157 		"Davicom DM9102A 10/100BaseTX" },
158 	{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102), 0,
159 		"Davicom DM9102 10/100BaseTX" },
160 	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AL981), 0,
161 		"ADMtek AL981 10/100BaseTX" },
162 	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN983), 0,
163 		"ADMtek AN983 10/100BaseTX" },
164 	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN985), 0,
165 		"ADMtek AN985 CardBus 10/100BaseTX or clone" },
166 	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511), 0,
167 		"ADMtek ADM9511 10/100BaseTX" },
168 	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513), 0,
169 		"ADMtek ADM9513 10/100BaseTX" },
170 	{ DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A), DC_REVISION_88141,
171 		"ASIX AX88141 10/100BaseTX" },
172 	{ DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A), 0,
173 		"ASIX AX88140A 10/100BaseTX" },
174 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713), DC_REVISION_98713A,
175 		"Macronix 98713A 10/100BaseTX" },
176 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713), 0,
177 		"Macronix 98713 10/100BaseTX" },
178 	{ DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP), DC_REVISION_98713A,
179 		"Compex RL100-TX 10/100BaseTX" },
180 	{ DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP), 0,
181 		"Compex RL100-TX 10/100BaseTX" },
182 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), DC_REVISION_98725,
183 		"Macronix 98725 10/100BaseTX" },
184 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), DC_REVISION_98715AEC_C,
185 		"Macronix 98715AEC-C 10/100BaseTX" },
186 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), 0,
187 		"Macronix 98715/98715A 10/100BaseTX" },
188 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98727), 0,
189 		"Macronix 98727/98732 10/100BaseTX" },
190 	{ DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C115), 0,
191 		"LC82C115 PNIC II 10/100BaseTX" },
192 	{ DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168), DC_REVISION_82C169,
193 		"82c169 PNIC 10/100BaseTX" },
194 	{ DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168), 0,
195 		"82c168 PNIC 10/100BaseTX" },
196 	{ DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN1217), 0,
197 		"Accton EN1217 10/100BaseTX" },
198 	{ DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN2242), 0,
199 		"Accton EN2242 MiniPCI 10/100BaseTX" },
200 	{ DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201), 0,
201 		"Xircom X3201 10/100BaseTX" },
202 	{ DC_DEVID(DC_VENDORID_DLINK, DC_DEVICEID_DRP32TXD), 0,
203 		"Neteasy DRP-32TXD Cardbus 10/100" },
204 	{ DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500), 0,
205 		"Abocom FE2500 10/100BaseTX" },
206 	{ DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500MX), 0,
207 		"Abocom FE2500MX 10/100BaseTX" },
208 	{ DC_DEVID(DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112), 0,
209 		"Conexant LANfinity MiniPCI 10/100BaseTX" },
210 	{ DC_DEVID(DC_VENDORID_HAWKING, DC_DEVICEID_HAWKING_PN672TX), 0,
211 		"Hawking CB102 CardBus 10/100" },
212 	{ DC_DEVID(DC_VENDORID_PLANEX, DC_DEVICEID_FNW3602T), 0,
213 		"PlaneX FNW-3602-T CardBus 10/100" },
214 	{ DC_DEVID(DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB), 0,
215 		"3Com OfficeConnect 10/100B" },
216 	{ DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN120), 0,
217 		"Microsoft MN-120 CardBus 10/100" },
218 	{ DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130), 0,
219 		"Microsoft MN-130 10/100" },
220 	{ DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB08), 0,
221 		"Linksys PCMPC200 CardBus 10/100" },
222 	{ DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB09), 0,
223 		"Linksys PCMPC200 CardBus 10/100" },
224 	{ DC_DEVID(DC_VENDORID_ULI, DC_DEVICEID_M5261), 0,
225 		"ULi M5261 FastEthernet" },
226 	{ DC_DEVID(DC_VENDORID_ULI, DC_DEVICEID_M5263), 0,
227 		"ULi M5263 FastEthernet" },
228 	{ 0, 0, NULL }
229 };
230 
231 static int dc_probe(device_t);
232 static int dc_attach(device_t);
233 static int dc_detach(device_t);
234 static int dc_suspend(device_t);
235 static int dc_resume(device_t);
236 static const struct dc_type *dc_devtype(device_t);
237 static void dc_discard_rxbuf(struct dc_softc *, int);
238 static int dc_newbuf(struct dc_softc *, int);
239 static int dc_encap(struct dc_softc *, struct mbuf **);
240 static void dc_pnic_rx_bug_war(struct dc_softc *, int);
241 static int dc_rx_resync(struct dc_softc *);
242 static int dc_rxeof(struct dc_softc *);
243 static void dc_txeof(struct dc_softc *);
244 static void dc_tick(void *);
245 static void dc_tx_underrun(struct dc_softc *);
246 static void dc_intr(void *);
247 static void dc_start(if_t);
248 static void dc_start_locked(if_t);
249 static int dc_ioctl(if_t, u_long, caddr_t);
250 static void dc_init(void *);
251 static void dc_init_locked(struct dc_softc *);
252 static void dc_stop(struct dc_softc *);
253 static void dc_watchdog(void *);
254 static int dc_shutdown(device_t);
255 static int dc_ifmedia_upd(if_t);
256 static int dc_ifmedia_upd_locked(struct dc_softc *);
257 static void dc_ifmedia_sts(if_t, struct ifmediareq *);
258 
259 static int dc_dma_alloc(struct dc_softc *);
260 static void dc_dma_free(struct dc_softc *);
261 static void dc_dma_map_addr(void *, bus_dma_segment_t *, int, int);
262 
263 static void dc_delay(struct dc_softc *);
264 static void dc_eeprom_idle(struct dc_softc *);
265 static void dc_eeprom_putbyte(struct dc_softc *, int);
266 static void dc_eeprom_getword(struct dc_softc *, int, uint16_t *);
267 static void dc_eeprom_getword_pnic(struct dc_softc *, int, uint16_t *);
268 static void dc_eeprom_getword_xircom(struct dc_softc *, int, uint16_t *);
269 static void dc_eeprom_width(struct dc_softc *);
270 static void dc_read_eeprom(struct dc_softc *, caddr_t, int, int, int);
271 
272 static int dc_miibus_readreg(device_t, int, int);
273 static int dc_miibus_writereg(device_t, int, int, int);
274 static void dc_miibus_statchg(device_t);
275 static void dc_miibus_mediainit(device_t);
276 
277 static void dc_setcfg(struct dc_softc *, int);
278 static void dc_netcfg_wait(struct dc_softc *);
279 static uint32_t dc_mchash_le(struct dc_softc *, const uint8_t *);
280 static uint32_t dc_mchash_be(const uint8_t *);
281 static void dc_setfilt_21143(struct dc_softc *);
282 static void dc_setfilt_asix(struct dc_softc *);
283 static void dc_setfilt_admtek(struct dc_softc *);
284 static void dc_setfilt_uli(struct dc_softc *);
285 static void dc_setfilt_xircom(struct dc_softc *);
286 
287 static void dc_setfilt(struct dc_softc *);
288 
289 static void dc_reset(struct dc_softc *);
290 static int dc_list_rx_init(struct dc_softc *);
291 static int dc_list_tx_init(struct dc_softc *);
292 
293 static int dc_read_srom(struct dc_softc *, int);
294 static int dc_parse_21143_srom(struct dc_softc *);
295 static int dc_decode_leaf_sia(struct dc_softc *, struct dc_eblock_sia *);
296 static int dc_decode_leaf_mii(struct dc_softc *, struct dc_eblock_mii *);
297 static int dc_decode_leaf_sym(struct dc_softc *, struct dc_eblock_sym *);
298 static void dc_apply_fixup(struct dc_softc *, int);
299 static int dc_check_multiport(struct dc_softc *);
300 
301 /*
302  * MII bit-bang glue
303  */
304 static uint32_t dc_mii_bitbang_read(device_t);
305 static void dc_mii_bitbang_write(device_t, uint32_t);
306 
307 static const struct mii_bitbang_ops dc_mii_bitbang_ops = {
308 	dc_mii_bitbang_read,
309 	dc_mii_bitbang_write,
310 	{
311 		DC_SIO_MII_DATAOUT,	/* MII_BIT_MDO */
312 		DC_SIO_MII_DATAIN,	/* MII_BIT_MDI */
313 		DC_SIO_MII_CLK,		/* MII_BIT_MDC */
314 		0,			/* MII_BIT_DIR_HOST_PHY */
315 		DC_SIO_MII_DIR,		/* MII_BIT_DIR_PHY_HOST */
316 	}
317 };
318 
319 #ifdef DC_USEIOSPACE
320 #define	DC_RES			SYS_RES_IOPORT
321 #define	DC_RID			DC_PCI_CFBIO
322 #else
323 #define	DC_RES			SYS_RES_MEMORY
324 #define	DC_RID			DC_PCI_CFBMA
325 #endif
326 
327 static device_method_t dc_methods[] = {
328 	/* Device interface */
329 	DEVMETHOD(device_probe,		dc_probe),
330 	DEVMETHOD(device_attach,	dc_attach),
331 	DEVMETHOD(device_detach,	dc_detach),
332 	DEVMETHOD(device_suspend,	dc_suspend),
333 	DEVMETHOD(device_resume,	dc_resume),
334 	DEVMETHOD(device_shutdown,	dc_shutdown),
335 
336 	/* MII interface */
337 	DEVMETHOD(miibus_readreg,	dc_miibus_readreg),
338 	DEVMETHOD(miibus_writereg,	dc_miibus_writereg),
339 	DEVMETHOD(miibus_statchg,	dc_miibus_statchg),
340 	DEVMETHOD(miibus_mediainit,	dc_miibus_mediainit),
341 
342 	DEVMETHOD_END
343 };
344 
345 static driver_t dc_driver = {
346 	"dc",
347 	dc_methods,
348 	sizeof(struct dc_softc)
349 };
350 
351 DRIVER_MODULE_ORDERED(dc, pci, dc_driver, NULL, NULL, SI_ORDER_ANY);
352 MODULE_PNP_INFO("W32:vendor/device;U8:revision;D:#", pci, dc, dc_devs,
353     nitems(dc_devs) - 1);
354 DRIVER_MODULE(miibus, dc, miibus_driver, NULL, NULL);
355 
356 #define	DC_SETBIT(sc, reg, x)				\
357 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
358 
359 #define	DC_CLRBIT(sc, reg, x)				\
360 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
361 
362 #define	SIO_SET(x)	DC_SETBIT(sc, DC_SIO, (x))
363 #define	SIO_CLR(x)	DC_CLRBIT(sc, DC_SIO, (x))
364 
365 static void
366 dc_delay(struct dc_softc *sc)
367 {
368 	int idx;
369 
370 	for (idx = (300 / 33) + 1; idx > 0; idx--)
371 		CSR_READ_4(sc, DC_BUSCTL);
372 }
373 
374 static void
375 dc_eeprom_width(struct dc_softc *sc)
376 {
377 	int i;
378 
379 	/* Force EEPROM to idle state. */
380 	dc_eeprom_idle(sc);
381 
382 	/* Enter EEPROM access mode. */
383 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
384 	dc_delay(sc);
385 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
386 	dc_delay(sc);
387 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
388 	dc_delay(sc);
389 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
390 	dc_delay(sc);
391 
392 	for (i = 3; i--;) {
393 		if (6 & (1 << i))
394 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
395 		else
396 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
397 		dc_delay(sc);
398 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
399 		dc_delay(sc);
400 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
401 		dc_delay(sc);
402 	}
403 
404 	for (i = 1; i <= 12; i++) {
405 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
406 		dc_delay(sc);
407 		if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) {
408 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
409 			dc_delay(sc);
410 			break;
411 		}
412 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
413 		dc_delay(sc);
414 	}
415 
416 	/* Turn off EEPROM access mode. */
417 	dc_eeprom_idle(sc);
418 
419 	if (i < 4 || i > 12)
420 		sc->dc_romwidth = 6;
421 	else
422 		sc->dc_romwidth = i;
423 
424 	/* Enter EEPROM access mode. */
425 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
426 	dc_delay(sc);
427 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
428 	dc_delay(sc);
429 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
430 	dc_delay(sc);
431 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
432 	dc_delay(sc);
433 
434 	/* Turn off EEPROM access mode. */
435 	dc_eeprom_idle(sc);
436 }
437 
438 static void
439 dc_eeprom_idle(struct dc_softc *sc)
440 {
441 	int i;
442 
443 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
444 	dc_delay(sc);
445 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
446 	dc_delay(sc);
447 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
448 	dc_delay(sc);
449 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
450 	dc_delay(sc);
451 
452 	for (i = 0; i < 25; i++) {
453 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
454 		dc_delay(sc);
455 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
456 		dc_delay(sc);
457 	}
458 
459 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
460 	dc_delay(sc);
461 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
462 	dc_delay(sc);
463 	CSR_WRITE_4(sc, DC_SIO, 0x00000000);
464 }
465 
466 /*
467  * Send a read command and address to the EEPROM, check for ACK.
468  */
469 static void
470 dc_eeprom_putbyte(struct dc_softc *sc, int addr)
471 {
472 	int d, i;
473 
474 	d = DC_EECMD_READ >> 6;
475 	for (i = 3; i--; ) {
476 		if (d & (1 << i))
477 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
478 		else
479 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
480 		dc_delay(sc);
481 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
482 		dc_delay(sc);
483 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
484 		dc_delay(sc);
485 	}
486 
487 	/*
488 	 * Feed in each bit and strobe the clock.
489 	 */
490 	for (i = sc->dc_romwidth; i--;) {
491 		if (addr & (1 << i)) {
492 			SIO_SET(DC_SIO_EE_DATAIN);
493 		} else {
494 			SIO_CLR(DC_SIO_EE_DATAIN);
495 		}
496 		dc_delay(sc);
497 		SIO_SET(DC_SIO_EE_CLK);
498 		dc_delay(sc);
499 		SIO_CLR(DC_SIO_EE_CLK);
500 		dc_delay(sc);
501 	}
502 }
503 
504 /*
505  * Read a word of data stored in the EEPROM at address 'addr.'
506  * The PNIC 82c168/82c169 has its own non-standard way to read
507  * the EEPROM.
508  */
509 static void
510 dc_eeprom_getword_pnic(struct dc_softc *sc, int addr, uint16_t *dest)
511 {
512 	int i;
513 	uint32_t r;
514 
515 	CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ | addr);
516 
517 	for (i = 0; i < DC_TIMEOUT; i++) {
518 		DELAY(1);
519 		r = CSR_READ_4(sc, DC_SIO);
520 		if (!(r & DC_PN_SIOCTL_BUSY)) {
521 			*dest = (uint16_t)(r & 0xFFFF);
522 			return;
523 		}
524 	}
525 }
526 
527 /*
528  * Read a word of data stored in the EEPROM at address 'addr.'
529  * The Xircom X3201 has its own non-standard way to read
530  * the EEPROM, too.
531  */
532 static void
533 dc_eeprom_getword_xircom(struct dc_softc *sc, int addr, uint16_t *dest)
534 {
535 
536 	SIO_SET(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
537 
538 	addr *= 2;
539 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
540 	*dest = (uint16_t)CSR_READ_4(sc, DC_SIO) & 0xff;
541 	addr += 1;
542 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
543 	*dest |= ((uint16_t)CSR_READ_4(sc, DC_SIO) & 0xff) << 8;
544 
545 	SIO_CLR(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
546 }
547 
548 /*
549  * Read a word of data stored in the EEPROM at address 'addr.'
550  */
551 static void
552 dc_eeprom_getword(struct dc_softc *sc, int addr, uint16_t *dest)
553 {
554 	int i;
555 	uint16_t word = 0;
556 
557 	/* Force EEPROM to idle state. */
558 	dc_eeprom_idle(sc);
559 
560 	/* Enter EEPROM access mode. */
561 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
562 	dc_delay(sc);
563 	DC_SETBIT(sc, DC_SIO,  DC_SIO_ROMCTL_READ);
564 	dc_delay(sc);
565 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
566 	dc_delay(sc);
567 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
568 	dc_delay(sc);
569 
570 	/*
571 	 * Send address of word we want to read.
572 	 */
573 	dc_eeprom_putbyte(sc, addr);
574 
575 	/*
576 	 * Start reading bits from EEPROM.
577 	 */
578 	for (i = 0x8000; i; i >>= 1) {
579 		SIO_SET(DC_SIO_EE_CLK);
580 		dc_delay(sc);
581 		if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
582 			word |= i;
583 		dc_delay(sc);
584 		SIO_CLR(DC_SIO_EE_CLK);
585 		dc_delay(sc);
586 	}
587 
588 	/* Turn off EEPROM access mode. */
589 	dc_eeprom_idle(sc);
590 
591 	*dest = word;
592 }
593 
594 /*
595  * Read a sequence of words from the EEPROM.
596  */
597 static void
598 dc_read_eeprom(struct dc_softc *sc, caddr_t dest, int off, int cnt, int be)
599 {
600 	int i;
601 	uint16_t word = 0, *ptr;
602 
603 	for (i = 0; i < cnt; i++) {
604 		if (DC_IS_PNIC(sc))
605 			dc_eeprom_getword_pnic(sc, off + i, &word);
606 		else if (DC_IS_XIRCOM(sc))
607 			dc_eeprom_getword_xircom(sc, off + i, &word);
608 		else
609 			dc_eeprom_getword(sc, off + i, &word);
610 		ptr = (uint16_t *)(dest + (i * 2));
611 		if (be)
612 			*ptr = be16toh(word);
613 		else
614 			*ptr = le16toh(word);
615 	}
616 }
617 
618 /*
619  * Write the MII serial port for the MII bit-bang module.
620  */
621 static void
622 dc_mii_bitbang_write(device_t dev, uint32_t val)
623 {
624 	struct dc_softc *sc;
625 
626 	sc = device_get_softc(dev);
627 
628 	CSR_WRITE_4(sc, DC_SIO, val);
629 	CSR_BARRIER_4(sc, DC_SIO,
630 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
631 }
632 
633 /*
634  * Read the MII serial port for the MII bit-bang module.
635  */
636 static uint32_t
637 dc_mii_bitbang_read(device_t dev)
638 {
639 	struct dc_softc *sc;
640 	uint32_t val;
641 
642 	sc = device_get_softc(dev);
643 
644 	val = CSR_READ_4(sc, DC_SIO);
645 	CSR_BARRIER_4(sc, DC_SIO,
646 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
647 
648 	return (val);
649 }
650 
651 static int
652 dc_miibus_readreg(device_t dev, int phy, int reg)
653 {
654 	struct dc_softc *sc;
655 	int i, rval, phy_reg = 0;
656 
657 	sc = device_get_softc(dev);
658 
659 	if (sc->dc_pmode != DC_PMODE_MII) {
660 		if (phy == (MII_NPHY - 1)) {
661 			switch (reg) {
662 			case MII_BMSR:
663 			/*
664 			 * Fake something to make the probe
665 			 * code think there's a PHY here.
666 			 */
667 				return (BMSR_MEDIAMASK);
668 			case MII_PHYIDR1:
669 				if (DC_IS_PNIC(sc))
670 					return (DC_VENDORID_LO);
671 				return (DC_VENDORID_DEC);
672 			case MII_PHYIDR2:
673 				if (DC_IS_PNIC(sc))
674 					return (DC_DEVICEID_82C168);
675 				return (DC_DEVICEID_21143);
676 			default:
677 				return (0);
678 			}
679 		} else
680 			return (0);
681 	}
682 
683 	if (DC_IS_PNIC(sc)) {
684 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
685 		    (phy << 23) | (reg << 18));
686 		for (i = 0; i < DC_TIMEOUT; i++) {
687 			DELAY(1);
688 			rval = CSR_READ_4(sc, DC_PN_MII);
689 			if (!(rval & DC_PN_MII_BUSY)) {
690 				rval &= 0xFFFF;
691 				return (rval == 0xFFFF ? 0 : rval);
692 			}
693 		}
694 		return (0);
695 	}
696 
697 	if (sc->dc_type == DC_TYPE_ULI_M5263) {
698 		CSR_WRITE_4(sc, DC_ROM,
699 		    ((phy << DC_ULI_PHY_ADDR_SHIFT) & DC_ULI_PHY_ADDR_MASK) |
700 		    ((reg << DC_ULI_PHY_REG_SHIFT) & DC_ULI_PHY_REG_MASK) |
701 		    DC_ULI_PHY_OP_READ);
702 		for (i = 0; i < DC_TIMEOUT; i++) {
703 			DELAY(1);
704 			rval = CSR_READ_4(sc, DC_ROM);
705 			if ((rval & DC_ULI_PHY_OP_DONE) != 0) {
706 				return (rval & DC_ULI_PHY_DATA_MASK);
707 			}
708 		}
709 		if (i == DC_TIMEOUT)
710 			device_printf(dev, "phy read timed out\n");
711 		return (0);
712 	}
713 
714 	if (DC_IS_COMET(sc)) {
715 		switch (reg) {
716 		case MII_BMCR:
717 			phy_reg = DC_AL_BMCR;
718 			break;
719 		case MII_BMSR:
720 			phy_reg = DC_AL_BMSR;
721 			break;
722 		case MII_PHYIDR1:
723 			phy_reg = DC_AL_VENID;
724 			break;
725 		case MII_PHYIDR2:
726 			phy_reg = DC_AL_DEVID;
727 			break;
728 		case MII_ANAR:
729 			phy_reg = DC_AL_ANAR;
730 			break;
731 		case MII_ANLPAR:
732 			phy_reg = DC_AL_LPAR;
733 			break;
734 		case MII_ANER:
735 			phy_reg = DC_AL_ANER;
736 			break;
737 		default:
738 			device_printf(dev, "phy_read: bad phy register %x\n",
739 			    reg);
740 			return (0);
741 		}
742 
743 		rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
744 		if (rval == 0xFFFF)
745 			return (0);
746 		return (rval);
747 	}
748 
749 	if (sc->dc_type == DC_TYPE_98713) {
750 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
751 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
752 	}
753 	rval = mii_bitbang_readreg(dev, &dc_mii_bitbang_ops, phy, reg);
754 	if (sc->dc_type == DC_TYPE_98713)
755 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
756 
757 	return (rval);
758 }
759 
760 static int
761 dc_miibus_writereg(device_t dev, int phy, int reg, int data)
762 {
763 	struct dc_softc *sc;
764 	int i, phy_reg = 0;
765 
766 	sc = device_get_softc(dev);
767 
768 	if (DC_IS_PNIC(sc)) {
769 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
770 		    (phy << 23) | (reg << 10) | data);
771 		for (i = 0; i < DC_TIMEOUT; i++) {
772 			if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
773 				break;
774 		}
775 		return (0);
776 	}
777 
778 	if (sc->dc_type == DC_TYPE_ULI_M5263) {
779 		CSR_WRITE_4(sc, DC_ROM,
780 		    ((phy << DC_ULI_PHY_ADDR_SHIFT) & DC_ULI_PHY_ADDR_MASK) |
781 		    ((reg << DC_ULI_PHY_REG_SHIFT) & DC_ULI_PHY_REG_MASK) |
782 		    ((data << DC_ULI_PHY_DATA_SHIFT) & DC_ULI_PHY_DATA_MASK) |
783 		    DC_ULI_PHY_OP_WRITE);
784 		DELAY(1);
785 		return (0);
786 	}
787 
788 	if (DC_IS_COMET(sc)) {
789 		switch (reg) {
790 		case MII_BMCR:
791 			phy_reg = DC_AL_BMCR;
792 			break;
793 		case MII_BMSR:
794 			phy_reg = DC_AL_BMSR;
795 			break;
796 		case MII_PHYIDR1:
797 			phy_reg = DC_AL_VENID;
798 			break;
799 		case MII_PHYIDR2:
800 			phy_reg = DC_AL_DEVID;
801 			break;
802 		case MII_ANAR:
803 			phy_reg = DC_AL_ANAR;
804 			break;
805 		case MII_ANLPAR:
806 			phy_reg = DC_AL_LPAR;
807 			break;
808 		case MII_ANER:
809 			phy_reg = DC_AL_ANER;
810 			break;
811 		default:
812 			device_printf(dev, "phy_write: bad phy register %x\n",
813 			    reg);
814 			return (0);
815 			break;
816 		}
817 
818 		CSR_WRITE_4(sc, phy_reg, data);
819 		return (0);
820 	}
821 
822 	if (sc->dc_type == DC_TYPE_98713) {
823 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
824 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
825 	}
826 	mii_bitbang_writereg(dev, &dc_mii_bitbang_ops, phy, reg, data);
827 	if (sc->dc_type == DC_TYPE_98713)
828 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
829 
830 	return (0);
831 }
832 
833 static void
834 dc_miibus_statchg(device_t dev)
835 {
836 	struct dc_softc *sc;
837 	if_t ifp;
838 	struct mii_data *mii;
839 	struct ifmedia *ifm;
840 
841 	sc = device_get_softc(dev);
842 
843 	mii = device_get_softc(sc->dc_miibus);
844 	ifp = sc->dc_ifp;
845 	if (mii == NULL || ifp == NULL ||
846 	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
847 		return;
848 
849 	ifm = &mii->mii_media;
850 	if (DC_IS_DAVICOM(sc) && IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
851 		dc_setcfg(sc, ifm->ifm_media);
852 		return;
853 	} else if (!DC_IS_ADMTEK(sc))
854 		dc_setcfg(sc, mii->mii_media_active);
855 
856 	sc->dc_link = 0;
857 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
858 	    (IFM_ACTIVE | IFM_AVALID)) {
859 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
860 		case IFM_10_T:
861 		case IFM_100_TX:
862 			sc->dc_link = 1;
863 			break;
864 		}
865 	}
866 }
867 
868 /*
869  * Special support for DM9102A cards with HomePNA PHYs. Note:
870  * with the Davicom DM9102A/DM9801 eval board that I have, it seems
871  * to be impossible to talk to the management interface of the DM9801
872  * PHY (its MDIO pin is not connected to anything). Consequently,
873  * the driver has to just 'know' about the additional mode and deal
874  * with it itself. *sigh*
875  */
876 static void
877 dc_miibus_mediainit(device_t dev)
878 {
879 	struct dc_softc *sc;
880 	struct mii_data *mii;
881 	struct ifmedia *ifm;
882 	int rev;
883 
884 	rev = pci_get_revid(dev);
885 
886 	sc = device_get_softc(dev);
887 	mii = device_get_softc(sc->dc_miibus);
888 	ifm = &mii->mii_media;
889 
890 	if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A)
891 		ifmedia_add(ifm, IFM_ETHER | IFM_HPNA_1, 0, NULL);
892 }
893 
894 #define	DC_BITS_512	9
895 #define	DC_BITS_128	7
896 #define	DC_BITS_64	6
897 
898 static uint32_t
899 dc_mchash_le(struct dc_softc *sc, const uint8_t *addr)
900 {
901 	uint32_t crc;
902 
903 	/* Compute CRC for the address value. */
904 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
905 
906 	/*
907 	 * The hash table on the PNIC II and the MX98715AEC-C/D/E
908 	 * chips is only 128 bits wide.
909 	 */
910 	if (sc->dc_flags & DC_128BIT_HASH)
911 		return (crc & ((1 << DC_BITS_128) - 1));
912 
913 	/* The hash table on the MX98715BEC is only 64 bits wide. */
914 	if (sc->dc_flags & DC_64BIT_HASH)
915 		return (crc & ((1 << DC_BITS_64) - 1));
916 
917 	/* Xircom's hash filtering table is different (read: weird) */
918 	/* Xircom uses the LEAST significant bits */
919 	if (DC_IS_XIRCOM(sc)) {
920 		if ((crc & 0x180) == 0x180)
921 			return ((crc & 0x0F) + (crc & 0x70) * 3 + (14 << 4));
922 		else
923 			return ((crc & 0x1F) + ((crc >> 1) & 0xF0) * 3 +
924 			    (12 << 4));
925 	}
926 
927 	return (crc & ((1 << DC_BITS_512) - 1));
928 }
929 
930 /*
931  * Calculate CRC of a multicast group address, return the lower 6 bits.
932  */
933 static uint32_t
934 dc_mchash_be(const uint8_t *addr)
935 {
936 	uint32_t crc;
937 
938 	/* Compute CRC for the address value. */
939 	crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
940 
941 	/* Return the filter bit position. */
942 	return ((crc >> 26) & 0x0000003F);
943 }
944 
945 /*
946  * 21143-style RX filter setup routine. Filter programming is done by
947  * downloading a special setup frame into the TX engine. 21143, Macronix,
948  * PNIC, PNIC II and Davicom chips are programmed this way.
949  *
950  * We always program the chip using 'hash perfect' mode, i.e. one perfect
951  * address (our node address) and a 512-bit hash filter for multicast
952  * frames. We also sneak the broadcast address into the hash filter since
953  * we need that too.
954  */
955 static u_int
956 dc_hash_maddr_21143(void *arg, struct sockaddr_dl *sdl, u_int cnt)
957 {
958 	struct dc_softc *sc = arg;
959 	uint32_t h;
960 
961 	h = dc_mchash_le(sc, LLADDR(sdl));
962 	sc->dc_cdata.dc_sbuf[h >> 4] |= htole32(1 << (h & 0xF));
963 
964 	return (1);
965 }
966 
967 static void
968 dc_setfilt_21143(struct dc_softc *sc)
969 {
970 	uint16_t eaddr[(ETHER_ADDR_LEN+1)/2];
971 	struct dc_desc *sframe;
972 	uint32_t h, *sp;
973 	if_t ifp;
974 	int i;
975 
976 	ifp = sc->dc_ifp;
977 
978 	i = sc->dc_cdata.dc_tx_prod;
979 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
980 	sc->dc_cdata.dc_tx_cnt++;
981 	sframe = &sc->dc_ldata.dc_tx_list[i];
982 	sp = sc->dc_cdata.dc_sbuf;
983 	bzero(sp, DC_SFRAME_LEN);
984 
985 	sframe->dc_data = htole32(DC_ADDR_LO(sc->dc_saddr));
986 	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
987 	    DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
988 
989 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
990 
991 	/* If we want promiscuous mode, set the allframes bit. */
992 	if (if_getflags(ifp) & IFF_PROMISC)
993 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
994 	else
995 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
996 
997 	if (if_getflags(ifp) & IFF_ALLMULTI)
998 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
999 	else
1000 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1001 
1002 	if_foreach_llmaddr(ifp, dc_hash_maddr_21143, sp);
1003 
1004 	if (if_getflags(ifp) & IFF_BROADCAST) {
1005 		h = dc_mchash_le(sc, if_getbroadcastaddr(ifp));
1006 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1007 	}
1008 
1009 	/* Set our MAC address. */
1010 	bcopy(if_getlladdr(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1011 	sp[39] = DC_SP_MAC(eaddr[0]);
1012 	sp[40] = DC_SP_MAC(eaddr[1]);
1013 	sp[41] = DC_SP_MAC(eaddr[2]);
1014 
1015 	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1016 	bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap, BUS_DMASYNC_PREREAD |
1017 	    BUS_DMASYNC_PREWRITE);
1018 	bus_dmamap_sync(sc->dc_stag, sc->dc_smap, BUS_DMASYNC_PREWRITE);
1019 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1020 
1021 	/*
1022 	 * The PNIC takes an exceedingly long time to process its
1023 	 * setup frame; wait 10ms after posting the setup frame
1024 	 * before proceeding, just so it has time to swallow its
1025 	 * medicine.
1026 	 */
1027 	DELAY(10000);
1028 
1029 	sc->dc_wdog_timer = 5;
1030 }
1031 
1032 static u_int
1033 dc_hash_maddr_admtek_be(void *arg, struct sockaddr_dl *sdl, u_int cnt)
1034 {
1035 	uint32_t *hashes = arg;
1036 	int h = 0;
1037 
1038 	h = dc_mchash_be(LLADDR(sdl));
1039 	if (h < 32)
1040 		hashes[0] |= (1 << h);
1041 	else
1042 		hashes[1] |= (1 << (h - 32));
1043 
1044 	return (1);
1045 }
1046 
1047 struct dc_hash_maddr_admtek_le_ctx {
1048 	struct dc_softc *sc;
1049 	uint32_t hashes[2];
1050 };
1051 
1052 static u_int
1053 dc_hash_maddr_admtek_le(void *arg, struct sockaddr_dl *sdl, u_int cnt)
1054 {
1055 	struct dc_hash_maddr_admtek_le_ctx *ctx = arg;
1056 	int h = 0;
1057 
1058 	h = dc_mchash_le(ctx->sc, LLADDR(sdl));
1059 	if (h < 32)
1060 		ctx->hashes[0] |= (1 << h);
1061 	else
1062 		ctx->hashes[1] |= (1 << (h - 32));
1063 
1064 	return (1);
1065 }
1066 
1067 static void
1068 dc_setfilt_admtek(struct dc_softc *sc)
1069 {
1070 	uint8_t eaddr[ETHER_ADDR_LEN];
1071 	if_t ifp;
1072 	struct dc_hash_maddr_admtek_le_ctx ctx = { sc, { 0, 0 }};
1073 
1074 	ifp = sc->dc_ifp;
1075 
1076 	/* Init our MAC address. */
1077 	bcopy(if_getlladdr(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1078 	CSR_WRITE_4(sc, DC_AL_PAR0, eaddr[3] << 24 | eaddr[2] << 16 |
1079 	    eaddr[1] << 8 | eaddr[0]);
1080 	CSR_WRITE_4(sc, DC_AL_PAR1, eaddr[5] << 8 | eaddr[4]);
1081 
1082 	/* If we want promiscuous mode, set the allframes bit. */
1083 	if (if_getflags(ifp) & IFF_PROMISC)
1084 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1085 	else
1086 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1087 
1088 	if (if_getflags(ifp) & IFF_ALLMULTI)
1089 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1090 	else
1091 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1092 
1093 	/* First, zot all the existing hash bits. */
1094 	CSR_WRITE_4(sc, DC_AL_MAR0, 0);
1095 	CSR_WRITE_4(sc, DC_AL_MAR1, 0);
1096 
1097 	/*
1098 	 * If we're already in promisc or allmulti mode, we
1099 	 * don't have to bother programming the multicast filter.
1100 	 */
1101 	if (if_getflags(ifp) & (IFF_PROMISC | IFF_ALLMULTI))
1102 		return;
1103 
1104 	/* Now program new ones. */
1105 	if (DC_IS_CENTAUR(sc))
1106 		if_foreach_llmaddr(ifp, dc_hash_maddr_admtek_le, &ctx);
1107 	else
1108 		if_foreach_llmaddr(ifp, dc_hash_maddr_admtek_be, &ctx.hashes);
1109 
1110 	CSR_WRITE_4(sc, DC_AL_MAR0, ctx.hashes[0]);
1111 	CSR_WRITE_4(sc, DC_AL_MAR1, ctx.hashes[1]);
1112 }
1113 
1114 static void
1115 dc_setfilt_asix(struct dc_softc *sc)
1116 {
1117 	uint32_t eaddr[(ETHER_ADDR_LEN+3)/4];
1118 	if_t ifp;
1119 	uint32_t hashes[2] = { 0, 0 };
1120 
1121 	ifp = sc->dc_ifp;
1122 
1123 	/* Init our MAC address. */
1124 	bcopy(if_getlladdr(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1125 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
1126 	CSR_WRITE_4(sc, DC_AX_FILTDATA, eaddr[0]);
1127 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
1128 	CSR_WRITE_4(sc, DC_AX_FILTDATA, eaddr[1]);
1129 
1130 	/* If we want promiscuous mode, set the allframes bit. */
1131 	if (if_getflags(ifp) & IFF_PROMISC)
1132 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1133 	else
1134 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1135 
1136 	if (if_getflags(ifp) & IFF_ALLMULTI)
1137 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1138 	else
1139 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1140 
1141 	/*
1142 	 * The ASIX chip has a special bit to enable reception
1143 	 * of broadcast frames.
1144 	 */
1145 	if (if_getflags(ifp) & IFF_BROADCAST)
1146 		DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1147 	else
1148 		DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1149 
1150 	/* first, zot all the existing hash bits */
1151 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1152 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1153 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1154 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1155 
1156 	/*
1157 	 * If we're already in promisc or allmulti mode, we
1158 	 * don't have to bother programming the multicast filter.
1159 	 */
1160 	if (if_getflags(ifp) & (IFF_PROMISC | IFF_ALLMULTI))
1161 		return;
1162 
1163 	/* now program new ones */
1164 	if_foreach_llmaddr(ifp, dc_hash_maddr_admtek_be, hashes);
1165 
1166 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1167 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
1168 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1169 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
1170 }
1171 
1172 static u_int
1173 dc_hash_maddr_uli(void *arg, struct sockaddr_dl *sdl, u_int mcnt)
1174 {
1175 	uint32_t **sp = arg;
1176 	uint8_t *ma;
1177 
1178 	if (mcnt == DC_ULI_FILTER_NPERF)
1179 		return (0);
1180 	ma = LLADDR(sdl);
1181 	*(*sp)++ = DC_SP_MAC(ma[1] << 8 | ma[0]);
1182 	*(*sp)++ = DC_SP_MAC(ma[3] << 8 | ma[2]);
1183 	*(*sp)++ = DC_SP_MAC(ma[5] << 8 | ma[4]);
1184 
1185 	return (1);
1186 }
1187 
1188 static void
1189 dc_setfilt_uli(struct dc_softc *sc)
1190 {
1191 	uint8_t eaddr[ETHER_ADDR_LEN];
1192 	if_t ifp;
1193 	struct dc_desc *sframe;
1194 	uint32_t filter, *sp;
1195 	int i, mcnt;
1196 
1197 	ifp = sc->dc_ifp;
1198 
1199 	i = sc->dc_cdata.dc_tx_prod;
1200 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1201 	sc->dc_cdata.dc_tx_cnt++;
1202 	sframe = &sc->dc_ldata.dc_tx_list[i];
1203 	sp = sc->dc_cdata.dc_sbuf;
1204 	bzero(sp, DC_SFRAME_LEN);
1205 
1206 	sframe->dc_data = htole32(DC_ADDR_LO(sc->dc_saddr));
1207 	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
1208 	    DC_TXCTL_TLINK | DC_FILTER_PERFECT | DC_TXCTL_FINT);
1209 
1210 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
1211 
1212 	/* Set station address. */
1213 	bcopy(if_getlladdr(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1214 	*sp++ = DC_SP_MAC(eaddr[1] << 8 | eaddr[0]);
1215 	*sp++ = DC_SP_MAC(eaddr[3] << 8 | eaddr[2]);
1216 	*sp++ = DC_SP_MAC(eaddr[5] << 8 | eaddr[4]);
1217 
1218 	/* Set broadcast address. */
1219 	*sp++ = DC_SP_MAC(0xFFFF);
1220 	*sp++ = DC_SP_MAC(0xFFFF);
1221 	*sp++ = DC_SP_MAC(0xFFFF);
1222 
1223 	/* Extract current filter configuration. */
1224 	filter = CSR_READ_4(sc, DC_NETCFG);
1225 	filter &= ~(DC_NETCFG_RX_PROMISC | DC_NETCFG_RX_ALLMULTI);
1226 
1227 	/* Now build perfect filters. */
1228 	mcnt = if_foreach_llmaddr(ifp, dc_hash_maddr_uli, &sp);
1229 
1230 	if (mcnt == DC_ULI_FILTER_NPERF)
1231 		filter |= DC_NETCFG_RX_ALLMULTI;
1232 	else
1233 		for (; mcnt < DC_ULI_FILTER_NPERF; mcnt++) {
1234 			*sp++ = DC_SP_MAC(0xFFFF);
1235 			*sp++ = DC_SP_MAC(0xFFFF);
1236 			*sp++ = DC_SP_MAC(0xFFFF);
1237 		}
1238 
1239 	if (filter & (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON))
1240 		CSR_WRITE_4(sc, DC_NETCFG,
1241 		    filter & ~(DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1242 	if (if_getflags(ifp) & IFF_PROMISC)
1243 		filter |= DC_NETCFG_RX_PROMISC | DC_NETCFG_RX_ALLMULTI;
1244 	if (if_getflags(ifp) & IFF_ALLMULTI)
1245 		filter |= DC_NETCFG_RX_ALLMULTI;
1246 	CSR_WRITE_4(sc, DC_NETCFG,
1247 	    filter & ~(DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1248 	if (filter & (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON))
1249 		CSR_WRITE_4(sc, DC_NETCFG, filter);
1250 
1251 	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1252 	bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap, BUS_DMASYNC_PREREAD |
1253 	    BUS_DMASYNC_PREWRITE);
1254 	bus_dmamap_sync(sc->dc_stag, sc->dc_smap, BUS_DMASYNC_PREWRITE);
1255 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1256 
1257 	/*
1258 	 * Wait some time...
1259 	 */
1260 	DELAY(1000);
1261 
1262 	sc->dc_wdog_timer = 5;
1263 }
1264 
1265 static u_int
1266 dc_hash_maddr_xircom(void *arg, struct sockaddr_dl *sdl, u_int cnt)
1267 {
1268 	struct dc_softc *sc = arg;
1269 	uint32_t h;
1270 
1271 	h = dc_mchash_le(sc, LLADDR(sdl));
1272 	sc->dc_cdata.dc_sbuf[h >> 4] |= htole32(1 << (h & 0xF));
1273 	return (1);
1274 }
1275 
1276 static void
1277 dc_setfilt_xircom(struct dc_softc *sc)
1278 {
1279 	uint16_t eaddr[(ETHER_ADDR_LEN+1)/2];
1280 	if_t ifp;
1281 	struct dc_desc *sframe;
1282 	uint32_t h, *sp;
1283 	int i;
1284 
1285 	ifp = sc->dc_ifp;
1286 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1287 
1288 	i = sc->dc_cdata.dc_tx_prod;
1289 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1290 	sc->dc_cdata.dc_tx_cnt++;
1291 	sframe = &sc->dc_ldata.dc_tx_list[i];
1292 	sp = sc->dc_cdata.dc_sbuf;
1293 	bzero(sp, DC_SFRAME_LEN);
1294 
1295 	sframe->dc_data = htole32(DC_ADDR_LO(sc->dc_saddr));
1296 	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
1297 	    DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
1298 
1299 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
1300 
1301 	/* If we want promiscuous mode, set the allframes bit. */
1302 	if (if_getflags(ifp) & IFF_PROMISC)
1303 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1304 	else
1305 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1306 
1307 	if (if_getflags(ifp) & IFF_ALLMULTI)
1308 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1309 	else
1310 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1311 
1312 	if_foreach_llmaddr(ifp, dc_hash_maddr_xircom, &sp);
1313 
1314 	if (if_getflags(ifp) & IFF_BROADCAST) {
1315 		h = dc_mchash_le(sc, if_getbroadcastaddr(ifp));
1316 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1317 	}
1318 
1319 	/* Set our MAC address. */
1320 	bcopy(if_getlladdr(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1321 	sp[0] = DC_SP_MAC(eaddr[0]);
1322 	sp[1] = DC_SP_MAC(eaddr[1]);
1323 	sp[2] = DC_SP_MAC(eaddr[2]);
1324 
1325 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
1326 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
1327 	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1328 	bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap, BUS_DMASYNC_PREREAD |
1329 	    BUS_DMASYNC_PREWRITE);
1330 	bus_dmamap_sync(sc->dc_stag, sc->dc_smap, BUS_DMASYNC_PREWRITE);
1331 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1332 
1333 	/*
1334 	 * Wait some time...
1335 	 */
1336 	DELAY(1000);
1337 
1338 	sc->dc_wdog_timer = 5;
1339 }
1340 
1341 static void
1342 dc_setfilt(struct dc_softc *sc)
1343 {
1344 
1345 	if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
1346 	    DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc))
1347 		dc_setfilt_21143(sc);
1348 
1349 	if (DC_IS_ASIX(sc))
1350 		dc_setfilt_asix(sc);
1351 
1352 	if (DC_IS_ADMTEK(sc))
1353 		dc_setfilt_admtek(sc);
1354 
1355 	if (DC_IS_ULI(sc))
1356 		dc_setfilt_uli(sc);
1357 
1358 	if (DC_IS_XIRCOM(sc))
1359 		dc_setfilt_xircom(sc);
1360 }
1361 
1362 static void
1363 dc_netcfg_wait(struct dc_softc *sc)
1364 {
1365 	uint32_t isr;
1366 	int i;
1367 
1368 	for (i = 0; i < DC_TIMEOUT; i++) {
1369 		isr = CSR_READ_4(sc, DC_ISR);
1370 		if (isr & DC_ISR_TX_IDLE &&
1371 		    ((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
1372 		    (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT))
1373 			break;
1374 		DELAY(10);
1375 	}
1376 	if (i == DC_TIMEOUT && bus_child_present(sc->dc_dev)) {
1377 		if (!(isr & DC_ISR_TX_IDLE) && !DC_IS_ASIX(sc))
1378 			device_printf(sc->dc_dev,
1379 			    "%s: failed to force tx to idle state\n", __func__);
1380 		if (!((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
1381 		    (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT) &&
1382 		    !DC_HAS_BROKEN_RXSTATE(sc))
1383 			device_printf(sc->dc_dev,
1384 			    "%s: failed to force rx to idle state\n", __func__);
1385 	}
1386 }
1387 
1388 /*
1389  * In order to fiddle with the 'full-duplex' and '100Mbps' bits in
1390  * the netconfig register, we first have to put the transmit and/or
1391  * receive logic in the idle state.
1392  */
1393 static void
1394 dc_setcfg(struct dc_softc *sc, int media)
1395 {
1396 	int restart = 0, watchdogreg;
1397 
1398 	if (IFM_SUBTYPE(media) == IFM_NONE)
1399 		return;
1400 
1401 	if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON)) {
1402 		restart = 1;
1403 		DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1404 		dc_netcfg_wait(sc);
1405 	}
1406 
1407 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
1408 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1409 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1410 		if (sc->dc_pmode == DC_PMODE_MII) {
1411 			if (DC_IS_INTEL(sc)) {
1412 			/* There's a write enable bit here that reads as 1. */
1413 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1414 				watchdogreg &= ~DC_WDOG_CTLWREN;
1415 				watchdogreg |= DC_WDOG_JABBERDIS;
1416 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1417 			} else {
1418 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1419 			}
1420 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1421 			    DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
1422 			if (sc->dc_type == DC_TYPE_98713)
1423 				DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1424 				    DC_NETCFG_SCRAMBLER));
1425 			if (!DC_IS_DAVICOM(sc))
1426 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1427 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1428 		} else {
1429 			if (DC_IS_PNIC(sc)) {
1430 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
1431 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1432 				DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1433 			}
1434 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1435 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1436 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1437 		}
1438 	}
1439 
1440 	if (IFM_SUBTYPE(media) == IFM_10_T) {
1441 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1442 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1443 		if (sc->dc_pmode == DC_PMODE_MII) {
1444 			/* There's a write enable bit here that reads as 1. */
1445 			if (DC_IS_INTEL(sc)) {
1446 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1447 				watchdogreg &= ~DC_WDOG_CTLWREN;
1448 				watchdogreg |= DC_WDOG_JABBERDIS;
1449 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1450 			} else {
1451 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1452 			}
1453 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1454 			    DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
1455 			if (sc->dc_type == DC_TYPE_98713)
1456 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1457 			if (!DC_IS_DAVICOM(sc))
1458 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1459 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1460 		} else {
1461 			if (DC_IS_PNIC(sc)) {
1462 				DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
1463 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1464 				DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1465 			}
1466 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1467 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1468 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1469 			if (DC_IS_INTEL(sc)) {
1470 				DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET);
1471 				DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1472 				if ((media & IFM_GMASK) == IFM_FDX)
1473 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D);
1474 				else
1475 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F);
1476 				DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1477 				DC_CLRBIT(sc, DC_10BTCTRL,
1478 				    DC_TCTL_AUTONEGENBL);
1479 				DELAY(20000);
1480 			}
1481 		}
1482 	}
1483 
1484 	/*
1485 	 * If this is a Davicom DM9102A card with a DM9801 HomePNA
1486 	 * PHY and we want HomePNA mode, set the portsel bit to turn
1487 	 * on the external MII port.
1488 	 */
1489 	if (DC_IS_DAVICOM(sc)) {
1490 		if (IFM_SUBTYPE(media) == IFM_HPNA_1) {
1491 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1492 			sc->dc_link = 1;
1493 		} else {
1494 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1495 		}
1496 	}
1497 
1498 	if ((media & IFM_GMASK) == IFM_FDX) {
1499 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1500 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1501 			DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1502 	} else {
1503 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1504 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1505 			DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1506 	}
1507 
1508 	if (restart)
1509 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON | DC_NETCFG_RX_ON);
1510 }
1511 
1512 static void
1513 dc_reset(struct dc_softc *sc)
1514 {
1515 	int i;
1516 
1517 	DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1518 
1519 	for (i = 0; i < DC_TIMEOUT; i++) {
1520 		DELAY(10);
1521 		if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
1522 			break;
1523 	}
1524 
1525 	if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_CONEXANT(sc) ||
1526 	    DC_IS_XIRCOM(sc) || DC_IS_INTEL(sc) || DC_IS_ULI(sc)) {
1527 		DELAY(10000);
1528 		DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1529 		i = 0;
1530 	}
1531 
1532 	if (i == DC_TIMEOUT)
1533 		device_printf(sc->dc_dev, "reset never completed!\n");
1534 
1535 	/* Wait a little while for the chip to get its brains in order. */
1536 	DELAY(1000);
1537 
1538 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
1539 	CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
1540 	CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
1541 
1542 	/*
1543 	 * Bring the SIA out of reset. In some cases, it looks
1544 	 * like failing to unreset the SIA soon enough gets it
1545 	 * into a state where it will never come out of reset
1546 	 * until we reset the whole chip again.
1547 	 */
1548 	if (DC_IS_INTEL(sc)) {
1549 		DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1550 		CSR_WRITE_4(sc, DC_10BTCTRL, 0xFFFFFFFF);
1551 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
1552 	}
1553 }
1554 
1555 static const struct dc_type *
1556 dc_devtype(device_t dev)
1557 {
1558 	const struct dc_type *t;
1559 	uint32_t devid;
1560 	uint8_t rev;
1561 
1562 	t = dc_devs;
1563 	devid = pci_get_devid(dev);
1564 	rev = pci_get_revid(dev);
1565 
1566 	while (t->dc_name != NULL) {
1567 		if (devid == t->dc_devid && rev >= t->dc_minrev)
1568 			return (t);
1569 		t++;
1570 	}
1571 
1572 	return (NULL);
1573 }
1574 
1575 /*
1576  * Probe for a 21143 or clone chip. Check the PCI vendor and device
1577  * IDs against our list and return a device name if we find a match.
1578  * We do a little bit of extra work to identify the exact type of
1579  * chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
1580  * but different revision IDs. The same is true for 98715/98715A
1581  * chips and the 98725, as well as the ASIX and ADMtek chips. In some
1582  * cases, the exact chip revision affects driver behavior.
1583  */
1584 static int
1585 dc_probe(device_t dev)
1586 {
1587 	const struct dc_type *t;
1588 
1589 	t = dc_devtype(dev);
1590 
1591 	if (t != NULL) {
1592 		device_set_desc(dev, t->dc_name);
1593 		return (BUS_PROBE_DEFAULT);
1594 	}
1595 
1596 	return (ENXIO);
1597 }
1598 
1599 static void
1600 dc_apply_fixup(struct dc_softc *sc, int media)
1601 {
1602 	struct dc_mediainfo *m;
1603 	uint8_t *p;
1604 	int i;
1605 	uint32_t reg;
1606 
1607 	m = sc->dc_mi;
1608 
1609 	while (m != NULL) {
1610 		if (m->dc_media == media)
1611 			break;
1612 		m = m->dc_next;
1613 	}
1614 
1615 	if (m == NULL)
1616 		return;
1617 
1618 	for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) {
1619 		reg = (p[0] | (p[1] << 8)) << 16;
1620 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1621 	}
1622 
1623 	for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) {
1624 		reg = (p[0] | (p[1] << 8)) << 16;
1625 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1626 	}
1627 }
1628 
1629 static int
1630 dc_decode_leaf_sia(struct dc_softc *sc, struct dc_eblock_sia *l)
1631 {
1632 	struct dc_mediainfo *m;
1633 
1634 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1635 	if (m == NULL) {
1636 		device_printf(sc->dc_dev, "Could not allocate mediainfo\n");
1637 		return (ENOMEM);
1638 	}
1639 	switch (l->dc_sia_code & ~DC_SIA_CODE_EXT) {
1640 	case DC_SIA_CODE_10BT:
1641 		m->dc_media = IFM_10_T;
1642 		break;
1643 	case DC_SIA_CODE_10BT_FDX:
1644 		m->dc_media = IFM_10_T | IFM_FDX;
1645 		break;
1646 	case DC_SIA_CODE_10B2:
1647 		m->dc_media = IFM_10_2;
1648 		break;
1649 	case DC_SIA_CODE_10B5:
1650 		m->dc_media = IFM_10_5;
1651 		break;
1652 	default:
1653 		break;
1654 	}
1655 
1656 	/*
1657 	 * We need to ignore CSR13, CSR14, CSR15 for SIA mode.
1658 	 * Things apparently already work for cards that do
1659 	 * supply Media Specific Data.
1660 	 */
1661 	if (l->dc_sia_code & DC_SIA_CODE_EXT) {
1662 		m->dc_gp_len = 2;
1663 		m->dc_gp_ptr =
1664 		(uint8_t *)&l->dc_un.dc_sia_ext.dc_sia_gpio_ctl;
1665 	} else {
1666 		m->dc_gp_len = 2;
1667 		m->dc_gp_ptr =
1668 		(uint8_t *)&l->dc_un.dc_sia_noext.dc_sia_gpio_ctl;
1669 	}
1670 
1671 	m->dc_next = sc->dc_mi;
1672 	sc->dc_mi = m;
1673 
1674 	sc->dc_pmode = DC_PMODE_SIA;
1675 	return (0);
1676 }
1677 
1678 static int
1679 dc_decode_leaf_sym(struct dc_softc *sc, struct dc_eblock_sym *l)
1680 {
1681 	struct dc_mediainfo *m;
1682 
1683 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1684 	if (m == NULL) {
1685 		device_printf(sc->dc_dev, "Could not allocate mediainfo\n");
1686 		return (ENOMEM);
1687 	}
1688 	if (l->dc_sym_code == DC_SYM_CODE_100BT)
1689 		m->dc_media = IFM_100_TX;
1690 
1691 	if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX)
1692 		m->dc_media = IFM_100_TX | IFM_FDX;
1693 
1694 	m->dc_gp_len = 2;
1695 	m->dc_gp_ptr = (uint8_t *)&l->dc_sym_gpio_ctl;
1696 
1697 	m->dc_next = sc->dc_mi;
1698 	sc->dc_mi = m;
1699 
1700 	sc->dc_pmode = DC_PMODE_SYM;
1701 	return (0);
1702 }
1703 
1704 static int
1705 dc_decode_leaf_mii(struct dc_softc *sc, struct dc_eblock_mii *l)
1706 {
1707 	struct dc_mediainfo *m;
1708 	uint8_t *p;
1709 
1710 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1711 	if (m == NULL) {
1712 		device_printf(sc->dc_dev, "Could not allocate mediainfo\n");
1713 		return (ENOMEM);
1714 	}
1715 	/* We abuse IFM_AUTO to represent MII. */
1716 	m->dc_media = IFM_AUTO;
1717 	m->dc_gp_len = l->dc_gpr_len;
1718 
1719 	p = (uint8_t *)l;
1720 	p += sizeof(struct dc_eblock_mii);
1721 	m->dc_gp_ptr = p;
1722 	p += 2 * l->dc_gpr_len;
1723 	m->dc_reset_len = *p;
1724 	p++;
1725 	m->dc_reset_ptr = p;
1726 
1727 	m->dc_next = sc->dc_mi;
1728 	sc->dc_mi = m;
1729 	return (0);
1730 }
1731 
1732 static int
1733 dc_read_srom(struct dc_softc *sc, int bits)
1734 {
1735 	int size;
1736 
1737 	size = DC_ROM_SIZE(bits);
1738 	sc->dc_srom = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
1739 	if (sc->dc_srom == NULL) {
1740 		device_printf(sc->dc_dev, "Could not allocate SROM buffer\n");
1741 		return (ENOMEM);
1742 	}
1743 	dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (size / 2), 0);
1744 	return (0);
1745 }
1746 
1747 static int
1748 dc_parse_21143_srom(struct dc_softc *sc)
1749 {
1750 	struct dc_leaf_hdr *lhdr;
1751 	struct dc_eblock_hdr *hdr;
1752 	int error, have_mii, i, loff;
1753 	char *ptr;
1754 
1755 	have_mii = 0;
1756 	loff = sc->dc_srom[27];
1757 	lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]);
1758 
1759 	ptr = (char *)lhdr;
1760 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1761 	/*
1762 	 * Look if we got a MII media block.
1763 	 */
1764 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1765 		hdr = (struct dc_eblock_hdr *)ptr;
1766 		if (hdr->dc_type == DC_EBLOCK_MII)
1767 		    have_mii++;
1768 
1769 		ptr += (hdr->dc_len & 0x7F);
1770 		ptr++;
1771 	}
1772 
1773 	/*
1774 	 * Do the same thing again. Only use SIA and SYM media
1775 	 * blocks if no MII media block is available.
1776 	 */
1777 	ptr = (char *)lhdr;
1778 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1779 	error = 0;
1780 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1781 		hdr = (struct dc_eblock_hdr *)ptr;
1782 		switch (hdr->dc_type) {
1783 		case DC_EBLOCK_MII:
1784 			error = dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr);
1785 			break;
1786 		case DC_EBLOCK_SIA:
1787 			if (! have_mii)
1788 				error = dc_decode_leaf_sia(sc,
1789 				    (struct dc_eblock_sia *)hdr);
1790 			break;
1791 		case DC_EBLOCK_SYM:
1792 			if (! have_mii)
1793 				error = dc_decode_leaf_sym(sc,
1794 				    (struct dc_eblock_sym *)hdr);
1795 			break;
1796 		default:
1797 			/* Don't care. Yet. */
1798 			break;
1799 		}
1800 		ptr += (hdr->dc_len & 0x7F);
1801 		ptr++;
1802 	}
1803 	return (error);
1804 }
1805 
1806 static void
1807 dc_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1808 {
1809 	bus_addr_t *paddr;
1810 
1811 	KASSERT(nseg == 1,
1812 	    ("%s: wrong number of segments (%d)", __func__, nseg));
1813 	paddr = arg;
1814 	*paddr = segs->ds_addr;
1815 }
1816 
1817 static int
1818 dc_dma_alloc(struct dc_softc *sc)
1819 {
1820 	int error, i;
1821 
1822 	error = bus_dma_tag_create(bus_get_dma_tag(sc->dc_dev), 1, 0,
1823 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1824 	    BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0,
1825 	    NULL, NULL, &sc->dc_ptag);
1826 	if (error) {
1827 		device_printf(sc->dc_dev,
1828 		    "failed to allocate parent DMA tag\n");
1829 		goto fail;
1830 	}
1831 
1832 	/* Allocate a busdma tag and DMA safe memory for TX/RX descriptors. */
1833 	error = bus_dma_tag_create(sc->dc_ptag, DC_LIST_ALIGN, 0,
1834 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, DC_RX_LIST_SZ, 1,
1835 	    DC_RX_LIST_SZ, 0, NULL, NULL, &sc->dc_rx_ltag);
1836 	if (error) {
1837 		device_printf(sc->dc_dev, "failed to create RX list DMA tag\n");
1838 		goto fail;
1839 	}
1840 
1841 	error = bus_dma_tag_create(sc->dc_ptag, DC_LIST_ALIGN, 0,
1842 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, DC_TX_LIST_SZ, 1,
1843 	    DC_TX_LIST_SZ, 0, NULL, NULL, &sc->dc_tx_ltag);
1844 	if (error) {
1845 		device_printf(sc->dc_dev, "failed to create TX list DMA tag\n");
1846 		goto fail;
1847 	}
1848 
1849 	/* RX descriptor list. */
1850 	error = bus_dmamem_alloc(sc->dc_rx_ltag,
1851 	    (void **)&sc->dc_ldata.dc_rx_list, BUS_DMA_NOWAIT |
1852 	    BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->dc_rx_lmap);
1853 	if (error) {
1854 		device_printf(sc->dc_dev,
1855 		    "failed to allocate DMA'able memory for RX list\n");
1856 		goto fail;
1857 	}
1858 	error = bus_dmamap_load(sc->dc_rx_ltag, sc->dc_rx_lmap,
1859 	    sc->dc_ldata.dc_rx_list, DC_RX_LIST_SZ, dc_dma_map_addr,
1860 	    &sc->dc_ldata.dc_rx_list_paddr, BUS_DMA_NOWAIT);
1861 	if (error) {
1862 		device_printf(sc->dc_dev,
1863 		    "failed to load DMA'able memory for RX list\n");
1864 		goto fail;
1865 	}
1866 	/* TX descriptor list. */
1867 	error = bus_dmamem_alloc(sc->dc_tx_ltag,
1868 	    (void **)&sc->dc_ldata.dc_tx_list, BUS_DMA_NOWAIT |
1869 	    BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->dc_tx_lmap);
1870 	if (error) {
1871 		device_printf(sc->dc_dev,
1872 		    "failed to allocate DMA'able memory for TX list\n");
1873 		goto fail;
1874 	}
1875 	error = bus_dmamap_load(sc->dc_tx_ltag, sc->dc_tx_lmap,
1876 	    sc->dc_ldata.dc_tx_list, DC_TX_LIST_SZ, dc_dma_map_addr,
1877 	    &sc->dc_ldata.dc_tx_list_paddr, BUS_DMA_NOWAIT);
1878 	if (error) {
1879 		device_printf(sc->dc_dev,
1880 		    "cannot load DMA'able memory for TX list\n");
1881 		goto fail;
1882 	}
1883 
1884 	/*
1885 	 * Allocate a busdma tag and DMA safe memory for the multicast
1886 	 * setup frame.
1887 	 */
1888 	error = bus_dma_tag_create(sc->dc_ptag, DC_LIST_ALIGN, 0,
1889 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1890 	    DC_SFRAME_LEN + DC_MIN_FRAMELEN, 1, DC_SFRAME_LEN + DC_MIN_FRAMELEN,
1891 	    0, NULL, NULL, &sc->dc_stag);
1892 	if (error) {
1893 		device_printf(sc->dc_dev,
1894 		    "failed to create DMA tag for setup frame\n");
1895 		goto fail;
1896 	}
1897 	error = bus_dmamem_alloc(sc->dc_stag, (void **)&sc->dc_cdata.dc_sbuf,
1898 	    BUS_DMA_NOWAIT, &sc->dc_smap);
1899 	if (error) {
1900 		device_printf(sc->dc_dev,
1901 		    "failed to allocate DMA'able memory for setup frame\n");
1902 		goto fail;
1903 	}
1904 	error = bus_dmamap_load(sc->dc_stag, sc->dc_smap, sc->dc_cdata.dc_sbuf,
1905 	    DC_SFRAME_LEN, dc_dma_map_addr, &sc->dc_saddr, BUS_DMA_NOWAIT);
1906 	if (error) {
1907 		device_printf(sc->dc_dev,
1908 		    "cannot load DMA'able memory for setup frame\n");
1909 		goto fail;
1910 	}
1911 
1912 	/* Allocate a busdma tag for RX mbufs. */
1913 	error = bus_dma_tag_create(sc->dc_ptag, DC_RXBUF_ALIGN, 0,
1914 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1915 	    MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &sc->dc_rx_mtag);
1916 	if (error) {
1917 		device_printf(sc->dc_dev, "failed to create RX mbuf tag\n");
1918 		goto fail;
1919 	}
1920 
1921 	/* Allocate a busdma tag for TX mbufs. */
1922 	error = bus_dma_tag_create(sc->dc_ptag, 1, 0,
1923 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1924 	    MCLBYTES * DC_MAXFRAGS, DC_MAXFRAGS, MCLBYTES,
1925 	    0, NULL, NULL, &sc->dc_tx_mtag);
1926 	if (error) {
1927 		device_printf(sc->dc_dev, "failed to create TX mbuf tag\n");
1928 		goto fail;
1929 	}
1930 
1931 	/* Create the TX/RX busdma maps. */
1932 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
1933 		error = bus_dmamap_create(sc->dc_tx_mtag, 0,
1934 		    &sc->dc_cdata.dc_tx_map[i]);
1935 		if (error) {
1936 			device_printf(sc->dc_dev,
1937 			    "failed to create TX mbuf dmamap\n");
1938 			goto fail;
1939 		}
1940 	}
1941 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
1942 		error = bus_dmamap_create(sc->dc_rx_mtag, 0,
1943 		    &sc->dc_cdata.dc_rx_map[i]);
1944 		if (error) {
1945 			device_printf(sc->dc_dev,
1946 			    "failed to create RX mbuf dmamap\n");
1947 			goto fail;
1948 		}
1949 	}
1950 	error = bus_dmamap_create(sc->dc_rx_mtag, 0, &sc->dc_sparemap);
1951 	if (error) {
1952 		device_printf(sc->dc_dev,
1953 		    "failed to create spare RX mbuf dmamap\n");
1954 		goto fail;
1955 	}
1956 
1957 fail:
1958 	return (error);
1959 }
1960 
1961 static void
1962 dc_dma_free(struct dc_softc *sc)
1963 {
1964 	int i;
1965 
1966 	/* RX buffers. */
1967 	if (sc->dc_rx_mtag != NULL) {
1968 		for (i = 0; i < DC_RX_LIST_CNT; i++) {
1969 			if (sc->dc_cdata.dc_rx_map[i] != NULL)
1970 				bus_dmamap_destroy(sc->dc_rx_mtag,
1971 				    sc->dc_cdata.dc_rx_map[i]);
1972 		}
1973 		if (sc->dc_sparemap != NULL)
1974 			bus_dmamap_destroy(sc->dc_rx_mtag, sc->dc_sparemap);
1975 		bus_dma_tag_destroy(sc->dc_rx_mtag);
1976 	}
1977 
1978 	/* TX buffers. */
1979 	if (sc->dc_rx_mtag != NULL) {
1980 		for (i = 0; i < DC_TX_LIST_CNT; i++) {
1981 			if (sc->dc_cdata.dc_tx_map[i] != NULL)
1982 				bus_dmamap_destroy(sc->dc_tx_mtag,
1983 				    sc->dc_cdata.dc_tx_map[i]);
1984 		}
1985 		bus_dma_tag_destroy(sc->dc_tx_mtag);
1986 	}
1987 
1988 	/* RX descriptor list. */
1989 	if (sc->dc_rx_ltag) {
1990 		if (sc->dc_ldata.dc_rx_list_paddr != 0)
1991 			bus_dmamap_unload(sc->dc_rx_ltag, sc->dc_rx_lmap);
1992 		if (sc->dc_ldata.dc_rx_list != NULL)
1993 			bus_dmamem_free(sc->dc_rx_ltag, sc->dc_ldata.dc_rx_list,
1994 			    sc->dc_rx_lmap);
1995 		bus_dma_tag_destroy(sc->dc_rx_ltag);
1996 	}
1997 
1998 	/* TX descriptor list. */
1999 	if (sc->dc_tx_ltag) {
2000 		if (sc->dc_ldata.dc_tx_list_paddr != 0)
2001 			bus_dmamap_unload(sc->dc_tx_ltag, sc->dc_tx_lmap);
2002 		if (sc->dc_ldata.dc_tx_list != NULL)
2003 			bus_dmamem_free(sc->dc_tx_ltag, sc->dc_ldata.dc_tx_list,
2004 			    sc->dc_tx_lmap);
2005 		bus_dma_tag_destroy(sc->dc_tx_ltag);
2006 	}
2007 
2008 	/* multicast setup frame. */
2009 	if (sc->dc_stag) {
2010 		if (sc->dc_saddr != 0)
2011 			bus_dmamap_unload(sc->dc_stag, sc->dc_smap);
2012 		if (sc->dc_cdata.dc_sbuf != NULL)
2013 			bus_dmamem_free(sc->dc_stag, sc->dc_cdata.dc_sbuf,
2014 			    sc->dc_smap);
2015 		bus_dma_tag_destroy(sc->dc_stag);
2016 	}
2017 }
2018 
2019 /*
2020  * Attach the interface. Allocate softc structures, do ifmedia
2021  * setup and ethernet/BPF attach.
2022  */
2023 static int
2024 dc_attach(device_t dev)
2025 {
2026 	uint32_t eaddr[(ETHER_ADDR_LEN+3)/4];
2027 	uint32_t command;
2028 	struct dc_softc *sc;
2029 	if_t ifp;
2030 	struct dc_mediainfo *m;
2031 	uint32_t reg, revision;
2032 	uint16_t *srom;
2033 	int error, mac_offset, n, phy, rid, tmp;
2034 	uint8_t *mac;
2035 
2036 	sc = device_get_softc(dev);
2037 	sc->dc_dev = dev;
2038 
2039 	mtx_init(&sc->dc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
2040 	    MTX_DEF);
2041 
2042 	/*
2043 	 * Map control/status registers.
2044 	 */
2045 	pci_enable_busmaster(dev);
2046 
2047 	rid = DC_RID;
2048 	sc->dc_res = bus_alloc_resource_any(dev, DC_RES, &rid, RF_ACTIVE);
2049 
2050 	if (sc->dc_res == NULL) {
2051 		device_printf(dev, "couldn't map ports/memory\n");
2052 		error = ENXIO;
2053 		goto fail;
2054 	}
2055 
2056 	sc->dc_btag = rman_get_bustag(sc->dc_res);
2057 	sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
2058 
2059 	/* Allocate interrupt. */
2060 	rid = 0;
2061 	sc->dc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
2062 	    RF_SHAREABLE | RF_ACTIVE);
2063 
2064 	if (sc->dc_irq == NULL) {
2065 		device_printf(dev, "couldn't map interrupt\n");
2066 		error = ENXIO;
2067 		goto fail;
2068 	}
2069 
2070 	/* Need this info to decide on a chip type. */
2071 	sc->dc_info = dc_devtype(dev);
2072 	revision = pci_get_revid(dev);
2073 
2074 	error = 0;
2075 	/* Get the eeprom width, but PNIC and XIRCOM have diff eeprom */
2076 	if (sc->dc_info->dc_devid !=
2077 	    DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168) &&
2078 	    sc->dc_info->dc_devid !=
2079 	    DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201))
2080 		dc_eeprom_width(sc);
2081 
2082 	switch (sc->dc_info->dc_devid) {
2083 	case DC_DEVID(DC_VENDORID_DEC, DC_DEVICEID_21143):
2084 		sc->dc_type = DC_TYPE_21143;
2085 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
2086 		sc->dc_flags |= DC_REDUCED_MII_POLL;
2087 		/* Save EEPROM contents so we can parse them later. */
2088 		error = dc_read_srom(sc, sc->dc_romwidth);
2089 		if (error != 0)
2090 			goto fail;
2091 		break;
2092 	case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009):
2093 	case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100):
2094 	case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102):
2095 		sc->dc_type = DC_TYPE_DM9102;
2096 		sc->dc_flags |= DC_TX_COALESCE | DC_TX_INTR_ALWAYS;
2097 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_TX_STORENFWD;
2098 		sc->dc_flags |= DC_TX_ALIGN;
2099 		sc->dc_pmode = DC_PMODE_MII;
2100 
2101 		/* Increase the latency timer value. */
2102 		pci_write_config(dev, PCIR_LATTIMER, 0x80, 1);
2103 		break;
2104 	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AL981):
2105 		sc->dc_type = DC_TYPE_AL981;
2106 		sc->dc_flags |= DC_TX_USE_TX_INTR;
2107 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
2108 		sc->dc_pmode = DC_PMODE_MII;
2109 		error = dc_read_srom(sc, sc->dc_romwidth);
2110 		if (error != 0)
2111 			goto fail;
2112 		break;
2113 	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN983):
2114 	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN985):
2115 	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511):
2116 	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513):
2117 	case DC_DEVID(DC_VENDORID_DLINK, DC_DEVICEID_DRP32TXD):
2118 	case DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500):
2119 	case DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500MX):
2120 	case DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN2242):
2121 	case DC_DEVID(DC_VENDORID_HAWKING, DC_DEVICEID_HAWKING_PN672TX):
2122 	case DC_DEVID(DC_VENDORID_PLANEX, DC_DEVICEID_FNW3602T):
2123 	case DC_DEVID(DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB):
2124 	case DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN120):
2125 	case DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130):
2126 	case DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB08):
2127 	case DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB09):
2128 		sc->dc_type = DC_TYPE_AN983;
2129 		sc->dc_flags |= DC_64BIT_HASH;
2130 		sc->dc_flags |= DC_TX_USE_TX_INTR;
2131 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
2132 		sc->dc_pmode = DC_PMODE_MII;
2133 		/* Don't read SROM for - auto-loaded on reset */
2134 		break;
2135 	case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713):
2136 	case DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP):
2137 		if (revision < DC_REVISION_98713A) {
2138 			sc->dc_type = DC_TYPE_98713;
2139 		}
2140 		if (revision >= DC_REVISION_98713A) {
2141 			sc->dc_type = DC_TYPE_98713A;
2142 			sc->dc_flags |= DC_21143_NWAY;
2143 		}
2144 		sc->dc_flags |= DC_REDUCED_MII_POLL;
2145 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
2146 		break;
2147 	case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5):
2148 	case DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN1217):
2149 		/*
2150 		 * Macronix MX98715AEC-C/D/E parts have only a
2151 		 * 128-bit hash table. We need to deal with these
2152 		 * in the same manner as the PNIC II so that we
2153 		 * get the right number of bits out of the
2154 		 * CRC routine.
2155 		 */
2156 		if (revision >= DC_REVISION_98715AEC_C &&
2157 		    revision < DC_REVISION_98725)
2158 			sc->dc_flags |= DC_128BIT_HASH;
2159 		sc->dc_type = DC_TYPE_987x5;
2160 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
2161 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
2162 		break;
2163 	case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98727):
2164 		sc->dc_type = DC_TYPE_987x5;
2165 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
2166 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
2167 		break;
2168 	case DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C115):
2169 		sc->dc_type = DC_TYPE_PNICII;
2170 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR | DC_128BIT_HASH;
2171 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
2172 		break;
2173 	case DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168):
2174 		sc->dc_type = DC_TYPE_PNIC;
2175 		sc->dc_flags |= DC_TX_STORENFWD | DC_TX_INTR_ALWAYS;
2176 		sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
2177 		sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_NOWAIT);
2178 		if (sc->dc_pnic_rx_buf == NULL) {
2179 			device_printf(sc->dc_dev,
2180 			    "Could not allocate PNIC RX buffer\n");
2181 			error = ENOMEM;
2182 			goto fail;
2183 		}
2184 		if (revision < DC_REVISION_82C169)
2185 			sc->dc_pmode = DC_PMODE_SYM;
2186 		break;
2187 	case DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A):
2188 		sc->dc_type = DC_TYPE_ASIX;
2189 		sc->dc_flags |= DC_TX_USE_TX_INTR | DC_TX_INTR_FIRSTFRAG;
2190 		sc->dc_flags |= DC_REDUCED_MII_POLL;
2191 		sc->dc_pmode = DC_PMODE_MII;
2192 		break;
2193 	case DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201):
2194 		sc->dc_type = DC_TYPE_XIRCOM;
2195 		sc->dc_flags |= DC_TX_INTR_ALWAYS | DC_TX_COALESCE |
2196 				DC_TX_ALIGN;
2197 		/*
2198 		 * We don't actually need to coalesce, but we're doing
2199 		 * it to obtain a double word aligned buffer.
2200 		 * The DC_TX_COALESCE flag is required.
2201 		 */
2202 		sc->dc_pmode = DC_PMODE_MII;
2203 		break;
2204 	case DC_DEVID(DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112):
2205 		sc->dc_type = DC_TYPE_CONEXANT;
2206 		sc->dc_flags |= DC_TX_INTR_ALWAYS;
2207 		sc->dc_flags |= DC_REDUCED_MII_POLL;
2208 		sc->dc_pmode = DC_PMODE_MII;
2209 		error = dc_read_srom(sc, sc->dc_romwidth);
2210 		if (error != 0)
2211 			goto fail;
2212 		break;
2213 	case DC_DEVID(DC_VENDORID_ULI, DC_DEVICEID_M5261):
2214 	case DC_DEVID(DC_VENDORID_ULI, DC_DEVICEID_M5263):
2215 		if (sc->dc_info->dc_devid ==
2216 		    DC_DEVID(DC_VENDORID_ULI, DC_DEVICEID_M5261))
2217 			sc->dc_type = DC_TYPE_ULI_M5261;
2218 		else
2219 			sc->dc_type = DC_TYPE_ULI_M5263;
2220 		/* TX buffers should be aligned on 4 byte boundary. */
2221 		sc->dc_flags |= DC_TX_INTR_ALWAYS | DC_TX_COALESCE |
2222 		    DC_TX_ALIGN;
2223 		sc->dc_pmode = DC_PMODE_MII;
2224 		error = dc_read_srom(sc, sc->dc_romwidth);
2225 		if (error != 0)
2226 			goto fail;
2227 		break;
2228 	default:
2229 		device_printf(dev, "unknown device: %x\n",
2230 		    sc->dc_info->dc_devid);
2231 		break;
2232 	}
2233 
2234 	/* Save the cache line size. */
2235 	if (DC_IS_DAVICOM(sc))
2236 		sc->dc_cachesize = 0;
2237 	else
2238 		sc->dc_cachesize = pci_get_cachelnsz(dev);
2239 
2240 	/* Reset the adapter. */
2241 	dc_reset(sc);
2242 
2243 	/* Take 21143 out of snooze mode */
2244 	if (DC_IS_INTEL(sc) || DC_IS_XIRCOM(sc)) {
2245 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
2246 		command &= ~(DC_CFDD_SNOOZE_MODE | DC_CFDD_SLEEP_MODE);
2247 		pci_write_config(dev, DC_PCI_CFDD, command, 4);
2248 	}
2249 
2250 	/*
2251 	 * Try to learn something about the supported media.
2252 	 * We know that ASIX and ADMtek and Davicom devices
2253 	 * will *always* be using MII media, so that's a no-brainer.
2254 	 * The tricky ones are the Macronix/PNIC II and the
2255 	 * Intel 21143.
2256 	 */
2257 	if (DC_IS_INTEL(sc)) {
2258 		error = dc_parse_21143_srom(sc);
2259 		if (error != 0)
2260 			goto fail;
2261 	} else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
2262 		if (sc->dc_type == DC_TYPE_98713)
2263 			sc->dc_pmode = DC_PMODE_MII;
2264 		else
2265 			sc->dc_pmode = DC_PMODE_SYM;
2266 	} else if (!sc->dc_pmode)
2267 		sc->dc_pmode = DC_PMODE_MII;
2268 
2269 	/*
2270 	 * Get station address from the EEPROM.
2271 	 */
2272 	switch(sc->dc_type) {
2273 	case DC_TYPE_98713:
2274 	case DC_TYPE_98713A:
2275 	case DC_TYPE_987x5:
2276 	case DC_TYPE_PNICII:
2277 		dc_read_eeprom(sc, (caddr_t)&mac_offset,
2278 		    (DC_EE_NODEADDR_OFFSET / 2), 1, 0);
2279 		dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
2280 		break;
2281 	case DC_TYPE_PNIC:
2282 		dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
2283 		break;
2284 	case DC_TYPE_DM9102:
2285 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2286 		break;
2287 	case DC_TYPE_21143:
2288 	case DC_TYPE_ASIX:
2289 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2290 		break;
2291 	case DC_TYPE_AL981:
2292 	case DC_TYPE_AN983:
2293 		reg = CSR_READ_4(sc, DC_AL_PAR0);
2294 		mac = (uint8_t *)&eaddr[0];
2295 		mac[0] = (reg >> 0) & 0xff;
2296 		mac[1] = (reg >> 8) & 0xff;
2297 		mac[2] = (reg >> 16) & 0xff;
2298 		mac[3] = (reg >> 24) & 0xff;
2299 		reg = CSR_READ_4(sc, DC_AL_PAR1);
2300 		mac[4] = (reg >> 0) & 0xff;
2301 		mac[5] = (reg >> 8) & 0xff;
2302 		break;
2303 	case DC_TYPE_CONEXANT:
2304 		bcopy(sc->dc_srom + DC_CONEXANT_EE_NODEADDR, &eaddr,
2305 		    ETHER_ADDR_LEN);
2306 		break;
2307 	case DC_TYPE_XIRCOM:
2308 		/* The MAC comes from the CIS. */
2309 		mac = pci_get_ether(dev);
2310 		if (!mac) {
2311 			device_printf(dev, "No station address in CIS!\n");
2312 			error = ENXIO;
2313 			goto fail;
2314 		}
2315 		bcopy(mac, eaddr, ETHER_ADDR_LEN);
2316 		break;
2317 	case DC_TYPE_ULI_M5261:
2318 	case DC_TYPE_ULI_M5263:
2319 		srom = (uint16_t *)sc->dc_srom;
2320 		if (srom == NULL || *srom == 0xFFFF || *srom == 0) {
2321 			/*
2322 			 * No valid SROM present, read station address
2323 			 * from ID Table.
2324 			 */
2325 			device_printf(dev,
2326 			    "Reading station address from ID Table.\n");
2327 			CSR_WRITE_4(sc, DC_BUSCTL, 0x10000);
2328 			CSR_WRITE_4(sc, DC_SIARESET, 0x01C0);
2329 			CSR_WRITE_4(sc, DC_10BTCTRL, 0x0000);
2330 			CSR_WRITE_4(sc, DC_10BTCTRL, 0x0010);
2331 			CSR_WRITE_4(sc, DC_10BTCTRL, 0x0000);
2332 			CSR_WRITE_4(sc, DC_SIARESET, 0x0000);
2333 			CSR_WRITE_4(sc, DC_SIARESET, 0x01B0);
2334 			mac = (uint8_t *)eaddr;
2335 			for (n = 0; n < ETHER_ADDR_LEN; n++)
2336 				mac[n] = (uint8_t)CSR_READ_4(sc, DC_10BTCTRL);
2337 			CSR_WRITE_4(sc, DC_SIARESET, 0x0000);
2338 			CSR_WRITE_4(sc, DC_BUSCTL, 0x0000);
2339 			DELAY(10);
2340 		} else
2341 			dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3,
2342 			    0);
2343 		break;
2344 	default:
2345 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2346 		break;
2347 	}
2348 
2349 	bcopy(eaddr, sc->dc_eaddr, sizeof(eaddr));
2350 	/*
2351 	 * If we still have invalid station address, see whether we can
2352 	 * find station address for chip 0.  Some multi-port controllers
2353 	 * just store station address for chip 0 if they have a shared
2354 	 * SROM.
2355 	 */
2356 	if ((sc->dc_eaddr[0] == 0 && (sc->dc_eaddr[1] & ~0xffff) == 0) ||
2357 	    (sc->dc_eaddr[0] == 0xffffffff &&
2358 	    (sc->dc_eaddr[1] & 0xffff) == 0xffff)) {
2359 		error = dc_check_multiport(sc);
2360 		if (error == 0) {
2361 			bcopy(sc->dc_eaddr, eaddr, sizeof(eaddr));
2362 			/* Extract media information. */
2363 			if (DC_IS_INTEL(sc) && sc->dc_srom != NULL) {
2364 				while (sc->dc_mi != NULL) {
2365 					m = sc->dc_mi->dc_next;
2366 					free(sc->dc_mi, M_DEVBUF);
2367 					sc->dc_mi = m;
2368 				}
2369 				error = dc_parse_21143_srom(sc);
2370 				if (error != 0)
2371 					goto fail;
2372 			}
2373 		} else if (error == ENOMEM)
2374 			goto fail;
2375 		else
2376 			error = 0;
2377 	}
2378 
2379 	if ((error = dc_dma_alloc(sc)) != 0)
2380 		goto fail;
2381 
2382 	ifp = sc->dc_ifp = if_alloc(IFT_ETHER);
2383 	if_setsoftc(ifp, sc);
2384 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2385 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
2386 	if_setioctlfn(ifp, dc_ioctl);
2387 	if_setstartfn(ifp, dc_start);
2388 	if_setinitfn(ifp, dc_init);
2389 	if_setsendqlen(ifp, DC_TX_LIST_CNT - 1);
2390 	if_setsendqready(ifp);
2391 
2392 	/*
2393 	 * Do MII setup. If this is a 21143, check for a PHY on the
2394 	 * MII bus after applying any necessary fixups to twiddle the
2395 	 * GPIO bits. If we don't end up finding a PHY, restore the
2396 	 * old selection (SIA only or SIA/SYM) and attach the dcphy
2397 	 * driver instead.
2398 	 */
2399 	tmp = 0;
2400 	if (DC_IS_INTEL(sc)) {
2401 		dc_apply_fixup(sc, IFM_AUTO);
2402 		tmp = sc->dc_pmode;
2403 		sc->dc_pmode = DC_PMODE_MII;
2404 	}
2405 
2406 	/*
2407 	 * Setup General Purpose port mode and data so the tulip can talk
2408 	 * to the MII.  This needs to be done before mii_attach so that
2409 	 * we can actually see them.
2410 	 */
2411 	if (DC_IS_XIRCOM(sc)) {
2412 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
2413 		    DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2414 		DELAY(10);
2415 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
2416 		    DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2417 		DELAY(10);
2418 	}
2419 
2420 	phy = MII_PHY_ANY;
2421 	/*
2422 	 * Note: both the AL981 and AN983 have internal PHYs, however the
2423 	 * AL981 provides direct access to the PHY registers while the AN983
2424 	 * uses a serial MII interface. The AN983's MII interface is also
2425 	 * buggy in that you can read from any MII address (0 to 31), but
2426 	 * only address 1 behaves normally. To deal with both cases, we
2427 	 * pretend that the PHY is at MII address 1.
2428 	 */
2429 	if (DC_IS_ADMTEK(sc))
2430 		phy = DC_ADMTEK_PHYADDR;
2431 
2432 	/*
2433 	 * Note: the ukphy probes of the RS7112 report a PHY at MII address
2434 	 * 0 (possibly HomePNA?) and 1 (ethernet) so we only respond to the
2435 	 * correct one.
2436 	 */
2437 	if (DC_IS_CONEXANT(sc))
2438 		phy = DC_CONEXANT_PHYADDR;
2439 
2440 	error = mii_attach(dev, &sc->dc_miibus, ifp, dc_ifmedia_upd,
2441 	    dc_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
2442 
2443 	if (error && DC_IS_INTEL(sc)) {
2444 		sc->dc_pmode = tmp;
2445 		if (sc->dc_pmode != DC_PMODE_SIA)
2446 			sc->dc_pmode = DC_PMODE_SYM;
2447 		sc->dc_flags |= DC_21143_NWAY;
2448 		/*
2449 		 * For non-MII cards, we need to have the 21143
2450 		 * drive the LEDs. Except there are some systems
2451 		 * like the NEC VersaPro NoteBook PC which have no
2452 		 * LEDs, and twiddling these bits has adverse effects
2453 		 * on them. (I.e. you suddenly can't get a link.)
2454 		 */
2455 		if (!(pci_get_subvendor(dev) == 0x1033 &&
2456 		    pci_get_subdevice(dev) == 0x8028))
2457 			sc->dc_flags |= DC_TULIP_LEDS;
2458 		error = mii_attach(dev, &sc->dc_miibus, ifp, dc_ifmedia_upd,
2459 		    dc_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY,
2460 		    MII_OFFSET_ANY, 0);
2461 	}
2462 
2463 	if (error) {
2464 		device_printf(dev, "attaching PHYs failed\n");
2465 		goto fail;
2466 	}
2467 
2468 	if (DC_IS_ADMTEK(sc)) {
2469 		/*
2470 		 * Set automatic TX underrun recovery for the ADMtek chips
2471 		 */
2472 		DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR);
2473 	}
2474 
2475 	/*
2476 	 * Tell the upper layer(s) we support long frames.
2477 	 */
2478 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
2479 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU, 0);
2480 	if_setcapenable(ifp, if_getcapabilities(ifp));
2481 #ifdef DEVICE_POLLING
2482 	if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0);
2483 #endif
2484 
2485 	callout_init_mtx(&sc->dc_stat_ch, &sc->dc_mtx, 0);
2486 	callout_init_mtx(&sc->dc_wdog_ch, &sc->dc_mtx, 0);
2487 
2488 	/*
2489 	 * Call MI attach routine.
2490 	 */
2491 	ether_ifattach(ifp, (caddr_t)eaddr);
2492 
2493 	/* Hook interrupt last to avoid having to lock softc */
2494 	error = bus_setup_intr(dev, sc->dc_irq, INTR_TYPE_NET | INTR_MPSAFE,
2495 	    NULL, dc_intr, sc, &sc->dc_intrhand);
2496 
2497 	if (error) {
2498 		device_printf(dev, "couldn't set up irq\n");
2499 		ether_ifdetach(ifp);
2500 		goto fail;
2501 	}
2502 
2503 fail:
2504 	if (error)
2505 		dc_detach(dev);
2506 	return (error);
2507 }
2508 
2509 /*
2510  * Shutdown hardware and free up resources. This can be called any
2511  * time after the mutex has been initialized. It is called in both
2512  * the error case in attach and the normal detach case so it needs
2513  * to be careful about only freeing resources that have actually been
2514  * allocated.
2515  */
2516 static int
2517 dc_detach(device_t dev)
2518 {
2519 	struct dc_softc *sc;
2520 	if_t ifp;
2521 	struct dc_mediainfo *m;
2522 
2523 	sc = device_get_softc(dev);
2524 	KASSERT(mtx_initialized(&sc->dc_mtx), ("dc mutex not initialized"));
2525 
2526 	ifp = sc->dc_ifp;
2527 
2528 #ifdef DEVICE_POLLING
2529 	if (ifp != NULL && if_getcapenable(ifp) & IFCAP_POLLING)
2530 		ether_poll_deregister(ifp);
2531 #endif
2532 
2533 	/* These should only be active if attach succeeded */
2534 	if (device_is_attached(dev)) {
2535 		DC_LOCK(sc);
2536 		dc_stop(sc);
2537 		DC_UNLOCK(sc);
2538 		callout_drain(&sc->dc_stat_ch);
2539 		callout_drain(&sc->dc_wdog_ch);
2540 		ether_ifdetach(ifp);
2541 	}
2542 	if (sc->dc_miibus)
2543 		device_delete_child(dev, sc->dc_miibus);
2544 	bus_generic_detach(dev);
2545 
2546 	if (sc->dc_intrhand)
2547 		bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2548 	if (sc->dc_irq)
2549 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2550 	if (sc->dc_res)
2551 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2552 
2553 	if (ifp != NULL)
2554 		if_free(ifp);
2555 
2556 	dc_dma_free(sc);
2557 
2558 	free(sc->dc_pnic_rx_buf, M_DEVBUF);
2559 
2560 	while (sc->dc_mi != NULL) {
2561 		m = sc->dc_mi->dc_next;
2562 		free(sc->dc_mi, M_DEVBUF);
2563 		sc->dc_mi = m;
2564 	}
2565 	free(sc->dc_srom, M_DEVBUF);
2566 
2567 	mtx_destroy(&sc->dc_mtx);
2568 
2569 	return (0);
2570 }
2571 
2572 /*
2573  * Initialize the transmit descriptors.
2574  */
2575 static int
2576 dc_list_tx_init(struct dc_softc *sc)
2577 {
2578 	struct dc_chain_data *cd;
2579 	struct dc_list_data *ld;
2580 	int i, nexti;
2581 
2582 	cd = &sc->dc_cdata;
2583 	ld = &sc->dc_ldata;
2584 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2585 		if (i == DC_TX_LIST_CNT - 1)
2586 			nexti = 0;
2587 		else
2588 			nexti = i + 1;
2589 		ld->dc_tx_list[i].dc_status = 0;
2590 		ld->dc_tx_list[i].dc_ctl = 0;
2591 		ld->dc_tx_list[i].dc_data = 0;
2592 		ld->dc_tx_list[i].dc_next = htole32(DC_TXDESC(sc, nexti));
2593 		cd->dc_tx_chain[i] = NULL;
2594 	}
2595 
2596 	cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
2597 	cd->dc_tx_pkts = 0;
2598 	bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap,
2599 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2600 	return (0);
2601 }
2602 
2603 /*
2604  * Initialize the RX descriptors and allocate mbufs for them. Note that
2605  * we arrange the descriptors in a closed ring, so that the last descriptor
2606  * points back to the first.
2607  */
2608 static int
2609 dc_list_rx_init(struct dc_softc *sc)
2610 {
2611 	struct dc_chain_data *cd;
2612 	struct dc_list_data *ld;
2613 	int i, nexti;
2614 
2615 	cd = &sc->dc_cdata;
2616 	ld = &sc->dc_ldata;
2617 
2618 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2619 		if (dc_newbuf(sc, i) != 0)
2620 			return (ENOBUFS);
2621 		if (i == DC_RX_LIST_CNT - 1)
2622 			nexti = 0;
2623 		else
2624 			nexti = i + 1;
2625 		ld->dc_rx_list[i].dc_next = htole32(DC_RXDESC(sc, nexti));
2626 	}
2627 
2628 	cd->dc_rx_prod = 0;
2629 	bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_rx_lmap,
2630 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2631 	return (0);
2632 }
2633 
2634 /*
2635  * Initialize an RX descriptor and attach an MBUF cluster.
2636  */
2637 static int
2638 dc_newbuf(struct dc_softc *sc, int i)
2639 {
2640 	struct mbuf *m;
2641 	bus_dmamap_t map;
2642 	bus_dma_segment_t segs[1];
2643 	int error, nseg;
2644 
2645 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2646 	if (m == NULL)
2647 		return (ENOBUFS);
2648 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2649 	m_adj(m, sizeof(u_int64_t));
2650 
2651 	/*
2652 	 * If this is a PNIC chip, zero the buffer. This is part
2653 	 * of the workaround for the receive bug in the 82c168 and
2654 	 * 82c169 chips.
2655 	 */
2656 	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
2657 		bzero(mtod(m, char *), m->m_len);
2658 
2659 	error = bus_dmamap_load_mbuf_sg(sc->dc_rx_mtag, sc->dc_sparemap,
2660 	    m, segs, &nseg, 0);
2661 	if (error) {
2662 		m_freem(m);
2663 		return (error);
2664 	}
2665 	KASSERT(nseg == 1, ("%s: wrong number of segments (%d)", __func__,
2666 	    nseg));
2667 	if (sc->dc_cdata.dc_rx_chain[i] != NULL)
2668 		bus_dmamap_unload(sc->dc_rx_mtag, sc->dc_cdata.dc_rx_map[i]);
2669 
2670 	map = sc->dc_cdata.dc_rx_map[i];
2671 	sc->dc_cdata.dc_rx_map[i] = sc->dc_sparemap;
2672 	sc->dc_sparemap = map;
2673 	sc->dc_cdata.dc_rx_chain[i] = m;
2674 	bus_dmamap_sync(sc->dc_rx_mtag, sc->dc_cdata.dc_rx_map[i],
2675 	    BUS_DMASYNC_PREREAD);
2676 
2677 	sc->dc_ldata.dc_rx_list[i].dc_ctl = htole32(DC_RXCTL_RLINK | DC_RXLEN);
2678 	sc->dc_ldata.dc_rx_list[i].dc_data =
2679 	    htole32(DC_ADDR_LO(segs[0].ds_addr));
2680 	sc->dc_ldata.dc_rx_list[i].dc_status = htole32(DC_RXSTAT_OWN);
2681 	bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_rx_lmap,
2682 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2683 	return (0);
2684 }
2685 
2686 /*
2687  * Grrrrr.
2688  * The PNIC chip has a terrible bug in it that manifests itself during
2689  * periods of heavy activity. The exact mode of failure if difficult to
2690  * pinpoint: sometimes it only happens in promiscuous mode, sometimes it
2691  * will happen on slow machines. The bug is that sometimes instead of
2692  * uploading one complete frame during reception, it uploads what looks
2693  * like the entire contents of its FIFO memory. The frame we want is at
2694  * the end of the whole mess, but we never know exactly how much data has
2695  * been uploaded, so salvaging the frame is hard.
2696  *
2697  * There is only one way to do it reliably, and it's disgusting.
2698  * Here's what we know:
2699  *
2700  * - We know there will always be somewhere between one and three extra
2701  *   descriptors uploaded.
2702  *
2703  * - We know the desired received frame will always be at the end of the
2704  *   total data upload.
2705  *
2706  * - We know the size of the desired received frame because it will be
2707  *   provided in the length field of the status word in the last descriptor.
2708  *
2709  * Here's what we do:
2710  *
2711  * - When we allocate buffers for the receive ring, we bzero() them.
2712  *   This means that we know that the buffer contents should be all
2713  *   zeros, except for data uploaded by the chip.
2714  *
2715  * - We also force the PNIC chip to upload frames that include the
2716  *   ethernet CRC at the end.
2717  *
2718  * - We gather all of the bogus frame data into a single buffer.
2719  *
2720  * - We then position a pointer at the end of this buffer and scan
2721  *   backwards until we encounter the first non-zero byte of data.
2722  *   This is the end of the received frame. We know we will encounter
2723  *   some data at the end of the frame because the CRC will always be
2724  *   there, so even if the sender transmits a packet of all zeros,
2725  *   we won't be fooled.
2726  *
2727  * - We know the size of the actual received frame, so we subtract
2728  *   that value from the current pointer location. This brings us
2729  *   to the start of the actual received packet.
2730  *
2731  * - We copy this into an mbuf and pass it on, along with the actual
2732  *   frame length.
2733  *
2734  * The performance hit is tremendous, but it beats dropping frames all
2735  * the time.
2736  */
2737 
2738 #define	DC_WHOLEFRAME	(DC_RXSTAT_FIRSTFRAG | DC_RXSTAT_LASTFRAG)
2739 static void
2740 dc_pnic_rx_bug_war(struct dc_softc *sc, int idx)
2741 {
2742 	struct dc_desc *cur_rx;
2743 	struct dc_desc *c = NULL;
2744 	struct mbuf *m = NULL;
2745 	unsigned char *ptr;
2746 	int i, total_len;
2747 	uint32_t rxstat = 0;
2748 
2749 	i = sc->dc_pnic_rx_bug_save;
2750 	cur_rx = &sc->dc_ldata.dc_rx_list[idx];
2751 	ptr = sc->dc_pnic_rx_buf;
2752 	bzero(ptr, DC_RXLEN * 5);
2753 
2754 	/* Copy all the bytes from the bogus buffers. */
2755 	while (1) {
2756 		c = &sc->dc_ldata.dc_rx_list[i];
2757 		rxstat = le32toh(c->dc_status);
2758 		m = sc->dc_cdata.dc_rx_chain[i];
2759 		bcopy(mtod(m, char *), ptr, DC_RXLEN);
2760 		ptr += DC_RXLEN;
2761 		/* If this is the last buffer, break out. */
2762 		if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
2763 			break;
2764 		dc_discard_rxbuf(sc, i);
2765 		DC_INC(i, DC_RX_LIST_CNT);
2766 	}
2767 
2768 	/* Find the length of the actual receive frame. */
2769 	total_len = DC_RXBYTES(rxstat);
2770 
2771 	/* Scan backwards until we hit a non-zero byte. */
2772 	while (*ptr == 0x00)
2773 		ptr--;
2774 
2775 	/* Round off. */
2776 	if ((uintptr_t)(ptr) & 0x3)
2777 		ptr -= 1;
2778 
2779 	/* Now find the start of the frame. */
2780 	ptr -= total_len;
2781 	if (ptr < sc->dc_pnic_rx_buf)
2782 		ptr = sc->dc_pnic_rx_buf;
2783 
2784 	/*
2785 	 * Now copy the salvaged frame to the last mbuf and fake up
2786 	 * the status word to make it look like a successful
2787 	 * frame reception.
2788 	 */
2789 	bcopy(ptr, mtod(m, char *), total_len);
2790 	cur_rx->dc_status = htole32(rxstat | DC_RXSTAT_FIRSTFRAG);
2791 }
2792 
2793 /*
2794  * This routine searches the RX ring for dirty descriptors in the
2795  * event that the rxeof routine falls out of sync with the chip's
2796  * current descriptor pointer. This may happen sometimes as a result
2797  * of a "no RX buffer available" condition that happens when the chip
2798  * consumes all of the RX buffers before the driver has a chance to
2799  * process the RX ring. This routine may need to be called more than
2800  * once to bring the driver back in sync with the chip, however we
2801  * should still be getting RX DONE interrupts to drive the search
2802  * for new packets in the RX ring, so we should catch up eventually.
2803  */
2804 static int
2805 dc_rx_resync(struct dc_softc *sc)
2806 {
2807 	struct dc_desc *cur_rx;
2808 	int i, pos;
2809 
2810 	pos = sc->dc_cdata.dc_rx_prod;
2811 
2812 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2813 		cur_rx = &sc->dc_ldata.dc_rx_list[pos];
2814 		if (!(le32toh(cur_rx->dc_status) & DC_RXSTAT_OWN))
2815 			break;
2816 		DC_INC(pos, DC_RX_LIST_CNT);
2817 	}
2818 
2819 	/* If the ring really is empty, then just return. */
2820 	if (i == DC_RX_LIST_CNT)
2821 		return (0);
2822 
2823 	/* We've fallen behing the chip: catch it. */
2824 	sc->dc_cdata.dc_rx_prod = pos;
2825 
2826 	return (EAGAIN);
2827 }
2828 
2829 static void
2830 dc_discard_rxbuf(struct dc_softc *sc, int i)
2831 {
2832 	struct mbuf *m;
2833 
2834 	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2835 		m = sc->dc_cdata.dc_rx_chain[i];
2836 		bzero(mtod(m, char *), m->m_len);
2837 	}
2838 
2839 	sc->dc_ldata.dc_rx_list[i].dc_ctl = htole32(DC_RXCTL_RLINK | DC_RXLEN);
2840 	sc->dc_ldata.dc_rx_list[i].dc_status = htole32(DC_RXSTAT_OWN);
2841 	bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_rx_lmap, BUS_DMASYNC_PREREAD |
2842 	    BUS_DMASYNC_PREWRITE);
2843 }
2844 
2845 /*
2846  * A frame has been uploaded: pass the resulting mbuf chain up to
2847  * the higher level protocols.
2848  */
2849 static int
2850 dc_rxeof(struct dc_softc *sc)
2851 {
2852 	struct mbuf *m;
2853 	if_t ifp;
2854 	struct dc_desc *cur_rx;
2855 	int i, total_len, rx_npkts;
2856 	uint32_t rxstat;
2857 
2858 	DC_LOCK_ASSERT(sc);
2859 
2860 	ifp = sc->dc_ifp;
2861 	rx_npkts = 0;
2862 
2863 	bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_rx_lmap, BUS_DMASYNC_POSTREAD |
2864 	    BUS_DMASYNC_POSTWRITE);
2865 	for (i = sc->dc_cdata.dc_rx_prod;
2866 	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0;
2867 	    DC_INC(i, DC_RX_LIST_CNT)) {
2868 #ifdef DEVICE_POLLING
2869 		if (if_getcapenable(ifp) & IFCAP_POLLING) {
2870 			if (sc->rxcycles <= 0)
2871 				break;
2872 			sc->rxcycles--;
2873 		}
2874 #endif
2875 		cur_rx = &sc->dc_ldata.dc_rx_list[i];
2876 		rxstat = le32toh(cur_rx->dc_status);
2877 		if ((rxstat & DC_RXSTAT_OWN) != 0)
2878 			break;
2879 		m = sc->dc_cdata.dc_rx_chain[i];
2880 		bus_dmamap_sync(sc->dc_rx_mtag, sc->dc_cdata.dc_rx_map[i],
2881 		    BUS_DMASYNC_POSTREAD);
2882 		total_len = DC_RXBYTES(rxstat);
2883 		rx_npkts++;
2884 
2885 		if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2886 			if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
2887 				if (rxstat & DC_RXSTAT_FIRSTFRAG)
2888 					sc->dc_pnic_rx_bug_save = i;
2889 				if ((rxstat & DC_RXSTAT_LASTFRAG) == 0)
2890 					continue;
2891 				dc_pnic_rx_bug_war(sc, i);
2892 				rxstat = le32toh(cur_rx->dc_status);
2893 				total_len = DC_RXBYTES(rxstat);
2894 			}
2895 		}
2896 
2897 		/*
2898 		 * If an error occurs, update stats, clear the
2899 		 * status word and leave the mbuf cluster in place:
2900 		 * it should simply get re-used next time this descriptor
2901 		 * comes up in the ring.  However, don't report long
2902 		 * frames as errors since they could be vlans.
2903 		 */
2904 		if ((rxstat & DC_RXSTAT_RXERR)) {
2905 			if (!(rxstat & DC_RXSTAT_GIANT) ||
2906 			    (rxstat & (DC_RXSTAT_CRCERR | DC_RXSTAT_DRIBBLE |
2907 				       DC_RXSTAT_MIIERE | DC_RXSTAT_COLLSEEN |
2908 				       DC_RXSTAT_RUNT   | DC_RXSTAT_DE))) {
2909 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2910 				if (rxstat & DC_RXSTAT_COLLSEEN)
2911 					if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
2912 				dc_discard_rxbuf(sc, i);
2913 				if (rxstat & DC_RXSTAT_CRCERR)
2914 					continue;
2915 				else {
2916 					if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2917 					dc_init_locked(sc);
2918 					return (rx_npkts);
2919 				}
2920 			}
2921 		}
2922 
2923 		/* No errors; receive the packet. */
2924 		total_len -= ETHER_CRC_LEN;
2925 #ifdef __NO_STRICT_ALIGNMENT
2926 		/*
2927 		 * On architectures without alignment problems we try to
2928 		 * allocate a new buffer for the receive ring, and pass up
2929 		 * the one where the packet is already, saving the expensive
2930 		 * copy done in m_devget().
2931 		 * If we are on an architecture with alignment problems, or
2932 		 * if the allocation fails, then use m_devget and leave the
2933 		 * existing buffer in the receive ring.
2934 		 */
2935 		if (dc_newbuf(sc, i) != 0) {
2936 			dc_discard_rxbuf(sc, i);
2937 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2938 			continue;
2939 		}
2940 		m->m_pkthdr.rcvif = ifp;
2941 		m->m_pkthdr.len = m->m_len = total_len;
2942 #else
2943 		{
2944 			struct mbuf *m0;
2945 
2946 			m0 = m_devget(mtod(m, char *), total_len,
2947 				ETHER_ALIGN, ifp, NULL);
2948 			dc_discard_rxbuf(sc, i);
2949 			if (m0 == NULL) {
2950 				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2951 				continue;
2952 			}
2953 			m = m0;
2954 		}
2955 #endif
2956 
2957 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2958 		DC_UNLOCK(sc);
2959 		if_input(ifp, m);
2960 		DC_LOCK(sc);
2961 	}
2962 
2963 	sc->dc_cdata.dc_rx_prod = i;
2964 	return (rx_npkts);
2965 }
2966 
2967 /*
2968  * A frame was downloaded to the chip. It's safe for us to clean up
2969  * the list buffers.
2970  */
2971 static void
2972 dc_txeof(struct dc_softc *sc)
2973 {
2974 	struct dc_desc *cur_tx;
2975 	if_t ifp;
2976 	int idx, setup;
2977 	uint32_t ctl, txstat;
2978 
2979 	if (sc->dc_cdata.dc_tx_cnt == 0)
2980 		return;
2981 
2982 	ifp = sc->dc_ifp;
2983 
2984 	/*
2985 	 * Go through our tx list and free mbufs for those
2986 	 * frames that have been transmitted.
2987 	 */
2988 	bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap, BUS_DMASYNC_POSTREAD |
2989 	    BUS_DMASYNC_POSTWRITE);
2990 	setup = 0;
2991 	for (idx = sc->dc_cdata.dc_tx_cons; idx != sc->dc_cdata.dc_tx_prod;
2992 	    DC_INC(idx, DC_TX_LIST_CNT), sc->dc_cdata.dc_tx_cnt--) {
2993 		cur_tx = &sc->dc_ldata.dc_tx_list[idx];
2994 		txstat = le32toh(cur_tx->dc_status);
2995 		ctl = le32toh(cur_tx->dc_ctl);
2996 
2997 		if (txstat & DC_TXSTAT_OWN)
2998 			break;
2999 
3000 		if (sc->dc_cdata.dc_tx_chain[idx] == NULL)
3001 			continue;
3002 
3003 		if (ctl & DC_TXCTL_SETUP) {
3004 			cur_tx->dc_ctl = htole32(ctl & ~DC_TXCTL_SETUP);
3005 			setup++;
3006 			bus_dmamap_sync(sc->dc_stag, sc->dc_smap,
3007 			    BUS_DMASYNC_POSTWRITE);
3008 			/*
3009 			 * Yes, the PNIC is so brain damaged
3010 			 * that it will sometimes generate a TX
3011 			 * underrun error while DMAing the RX
3012 			 * filter setup frame. If we detect this,
3013 			 * we have to send the setup frame again,
3014 			 * or else the filter won't be programmed
3015 			 * correctly.
3016 			 */
3017 			if (DC_IS_PNIC(sc)) {
3018 				if (txstat & DC_TXSTAT_ERRSUM)
3019 					dc_setfilt(sc);
3020 			}
3021 			sc->dc_cdata.dc_tx_chain[idx] = NULL;
3022 			continue;
3023 		}
3024 
3025 		if (DC_IS_XIRCOM(sc) || DC_IS_CONEXANT(sc)) {
3026 			/*
3027 			 * XXX: Why does my Xircom taunt me so?
3028 			 * For some reason it likes setting the CARRLOST flag
3029 			 * even when the carrier is there. wtf?!?
3030 			 * Who knows, but Conexant chips have the
3031 			 * same problem. Maybe they took lessons
3032 			 * from Xircom.
3033 			 */
3034 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
3035 			    sc->dc_pmode == DC_PMODE_MII &&
3036 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
3037 			    DC_TXSTAT_NOCARRIER)))
3038 				txstat &= ~DC_TXSTAT_ERRSUM;
3039 		} else {
3040 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
3041 			    sc->dc_pmode == DC_PMODE_MII &&
3042 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
3043 			    DC_TXSTAT_NOCARRIER | DC_TXSTAT_CARRLOST)))
3044 				txstat &= ~DC_TXSTAT_ERRSUM;
3045 		}
3046 
3047 		if (txstat & DC_TXSTAT_ERRSUM) {
3048 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3049 			if (txstat & DC_TXSTAT_EXCESSCOLL)
3050 				if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
3051 			if (txstat & DC_TXSTAT_LATECOLL)
3052 				if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
3053 			if (!(txstat & DC_TXSTAT_UNDERRUN)) {
3054 				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
3055 				dc_init_locked(sc);
3056 				return;
3057 			}
3058 		} else
3059 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
3060 		if_inc_counter(ifp, IFCOUNTER_COLLISIONS, (txstat & DC_TXSTAT_COLLCNT) >> 3);
3061 
3062 		bus_dmamap_sync(sc->dc_tx_mtag, sc->dc_cdata.dc_tx_map[idx],
3063 		    BUS_DMASYNC_POSTWRITE);
3064 		bus_dmamap_unload(sc->dc_tx_mtag, sc->dc_cdata.dc_tx_map[idx]);
3065 		m_freem(sc->dc_cdata.dc_tx_chain[idx]);
3066 		sc->dc_cdata.dc_tx_chain[idx] = NULL;
3067 	}
3068 	sc->dc_cdata.dc_tx_cons = idx;
3069 
3070 	if (sc->dc_cdata.dc_tx_cnt <= DC_TX_LIST_CNT - DC_TX_LIST_RSVD) {
3071 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
3072 		if (sc->dc_cdata.dc_tx_cnt == 0)
3073 			sc->dc_wdog_timer = 0;
3074 	}
3075 	if (setup > 0)
3076 		bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap,
3077 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3078 }
3079 
3080 static void
3081 dc_tick(void *xsc)
3082 {
3083 	struct dc_softc *sc;
3084 	struct mii_data *mii;
3085 	if_t ifp;
3086 	uint32_t r;
3087 
3088 	sc = xsc;
3089 	DC_LOCK_ASSERT(sc);
3090 	ifp = sc->dc_ifp;
3091 	mii = device_get_softc(sc->dc_miibus);
3092 
3093 	/*
3094 	 * Reclaim transmitted frames for controllers that do
3095 	 * not generate TX completion interrupt for every frame.
3096 	 */
3097 	if (sc->dc_flags & DC_TX_USE_TX_INTR)
3098 		dc_txeof(sc);
3099 
3100 	if (sc->dc_flags & DC_REDUCED_MII_POLL) {
3101 		if (sc->dc_flags & DC_21143_NWAY) {
3102 			r = CSR_READ_4(sc, DC_10BTSTAT);
3103 			if (IFM_SUBTYPE(mii->mii_media_active) ==
3104 			    IFM_100_TX && (r & DC_TSTAT_LS100)) {
3105 				sc->dc_link = 0;
3106 				mii_mediachg(mii);
3107 			}
3108 			if (IFM_SUBTYPE(mii->mii_media_active) ==
3109 			    IFM_10_T && (r & DC_TSTAT_LS10)) {
3110 				sc->dc_link = 0;
3111 				mii_mediachg(mii);
3112 			}
3113 			if (sc->dc_link == 0)
3114 				mii_tick(mii);
3115 		} else {
3116 			/*
3117 			 * For NICs which never report DC_RXSTATE_WAIT, we
3118 			 * have to bite the bullet...
3119 			 */
3120 			if ((DC_HAS_BROKEN_RXSTATE(sc) || (CSR_READ_4(sc,
3121 			    DC_ISR) & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT) &&
3122 			    sc->dc_cdata.dc_tx_cnt == 0)
3123 				mii_tick(mii);
3124 		}
3125 	} else
3126 		mii_tick(mii);
3127 
3128 	/*
3129 	 * When the init routine completes, we expect to be able to send
3130 	 * packets right away, and in fact the network code will send a
3131 	 * gratuitous ARP the moment the init routine marks the interface
3132 	 * as running. However, even though the MAC may have been initialized,
3133 	 * there may be a delay of a few seconds before the PHY completes
3134 	 * autonegotiation and the link is brought up. Any transmissions
3135 	 * made during that delay will be lost. Dealing with this is tricky:
3136 	 * we can't just pause in the init routine while waiting for the
3137 	 * PHY to come ready since that would bring the whole system to
3138 	 * a screeching halt for several seconds.
3139 	 *
3140 	 * What we do here is prevent the TX start routine from sending
3141 	 * any packets until a link has been established. After the
3142 	 * interface has been initialized, the tick routine will poll
3143 	 * the state of the PHY until the IFM_ACTIVE flag is set. Until
3144 	 * that time, packets will stay in the send queue, and once the
3145 	 * link comes up, they will be flushed out to the wire.
3146 	 */
3147 	if (sc->dc_link != 0 && !if_sendq_empty(ifp))
3148 		dc_start_locked(ifp);
3149 
3150 	if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link)
3151 		callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
3152 	else
3153 		callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
3154 }
3155 
3156 /*
3157  * A transmit underrun has occurred.  Back off the transmit threshold,
3158  * or switch to store and forward mode if we have to.
3159  */
3160 static void
3161 dc_tx_underrun(struct dc_softc *sc)
3162 {
3163 	uint32_t netcfg, isr;
3164 	int i, reinit;
3165 
3166 	reinit = 0;
3167 	netcfg = CSR_READ_4(sc, DC_NETCFG);
3168 	device_printf(sc->dc_dev, "TX underrun -- ");
3169 	if ((sc->dc_flags & DC_TX_STORENFWD) == 0) {
3170 		if (sc->dc_txthresh + DC_TXTHRESH_INC > DC_TXTHRESH_MAX) {
3171 			printf("using store and forward mode\n");
3172 			netcfg |= DC_NETCFG_STORENFWD;
3173 		} else {
3174 			printf("increasing TX threshold\n");
3175 			sc->dc_txthresh += DC_TXTHRESH_INC;
3176 			netcfg &= ~DC_NETCFG_TX_THRESH;
3177 			netcfg |= sc->dc_txthresh;
3178 		}
3179 
3180 		if (DC_IS_INTEL(sc)) {
3181 			/*
3182 			 * The real 21143 requires that the transmitter be idle
3183 			 * in order to change the transmit threshold or store
3184 			 * and forward state.
3185 			 */
3186 			CSR_WRITE_4(sc, DC_NETCFG, netcfg & ~DC_NETCFG_TX_ON);
3187 
3188 			for (i = 0; i < DC_TIMEOUT; i++) {
3189 				isr = CSR_READ_4(sc, DC_ISR);
3190 				if (isr & DC_ISR_TX_IDLE)
3191 					break;
3192 				DELAY(10);
3193 			}
3194 			if (i == DC_TIMEOUT) {
3195 				device_printf(sc->dc_dev,
3196 				    "%s: failed to force tx to idle state\n",
3197 				    __func__);
3198 				reinit++;
3199 			}
3200 		}
3201 	} else {
3202 		printf("resetting\n");
3203 		reinit++;
3204 	}
3205 
3206 	if (reinit == 0) {
3207 		CSR_WRITE_4(sc, DC_NETCFG, netcfg);
3208 		if (DC_IS_INTEL(sc))
3209 			CSR_WRITE_4(sc, DC_NETCFG, netcfg | DC_NETCFG_TX_ON);
3210 	} else {
3211 		if_setdrvflagbits(sc->dc_ifp, 0, IFF_DRV_RUNNING);
3212 		dc_init_locked(sc);
3213 	}
3214 }
3215 
3216 #ifdef DEVICE_POLLING
3217 static poll_handler_t dc_poll;
3218 
3219 static int
3220 dc_poll(if_t ifp, enum poll_cmd cmd, int count)
3221 {
3222 	struct dc_softc *sc = if_getsoftc(ifp);
3223 	int rx_npkts = 0;
3224 
3225 	DC_LOCK(sc);
3226 
3227 	if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
3228 		DC_UNLOCK(sc);
3229 		return (rx_npkts);
3230 	}
3231 
3232 	sc->rxcycles = count;
3233 	rx_npkts = dc_rxeof(sc);
3234 	dc_txeof(sc);
3235 	if (!if_sendq_empty(ifp) &&
3236 	    !(if_getdrvflags(ifp) & IFF_DRV_OACTIVE))
3237 		dc_start_locked(ifp);
3238 
3239 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
3240 		uint32_t	status;
3241 
3242 		status = CSR_READ_4(sc, DC_ISR);
3243 		status &= (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF |
3244 			DC_ISR_TX_NOBUF | DC_ISR_TX_IDLE | DC_ISR_TX_UNDERRUN |
3245 			DC_ISR_BUS_ERR);
3246 		if (!status) {
3247 			DC_UNLOCK(sc);
3248 			return (rx_npkts);
3249 		}
3250 		/* ack what we have */
3251 		CSR_WRITE_4(sc, DC_ISR, status);
3252 
3253 		if (status & (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF)) {
3254 			uint32_t r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
3255 			if_inc_counter(ifp, IFCOUNTER_IERRORS, (r & 0xffff) + ((r >> 17) & 0x7ff));
3256 
3257 			if (dc_rx_resync(sc))
3258 				dc_rxeof(sc);
3259 		}
3260 		/* restart transmit unit if necessary */
3261 		if (status & DC_ISR_TX_IDLE && sc->dc_cdata.dc_tx_cnt)
3262 			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3263 
3264 		if (status & DC_ISR_TX_UNDERRUN)
3265 			dc_tx_underrun(sc);
3266 
3267 		if (status & DC_ISR_BUS_ERR) {
3268 			if_printf(ifp, "%s: bus error\n", __func__);
3269 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
3270 			dc_init_locked(sc);
3271 		}
3272 	}
3273 	DC_UNLOCK(sc);
3274 	return (rx_npkts);
3275 }
3276 #endif /* DEVICE_POLLING */
3277 
3278 static void
3279 dc_intr(void *arg)
3280 {
3281 	struct dc_softc *sc;
3282 	if_t ifp;
3283 	uint32_t r, status;
3284 	int n;
3285 
3286 	sc = arg;
3287 
3288 	if (sc->suspended)
3289 		return;
3290 
3291 	DC_LOCK(sc);
3292 	status = CSR_READ_4(sc, DC_ISR);
3293 	if (status == 0xFFFFFFFF || (status & DC_INTRS) == 0) {
3294 		DC_UNLOCK(sc);
3295 		return;
3296 	}
3297 	ifp = sc->dc_ifp;
3298 #ifdef DEVICE_POLLING
3299 	if (if_getcapenable(ifp) & IFCAP_POLLING) {
3300 		DC_UNLOCK(sc);
3301 		return;
3302 	}
3303 #endif
3304 	/* Disable interrupts. */
3305 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3306 
3307 	for (n = 16; n > 0; n--) {
3308 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
3309 			break;
3310 		/* Ack interrupts. */
3311 		CSR_WRITE_4(sc, DC_ISR, status);
3312 
3313 		if (status & DC_ISR_RX_OK) {
3314 			if (dc_rxeof(sc) == 0) {
3315 				while (dc_rx_resync(sc))
3316 					dc_rxeof(sc);
3317 			}
3318 		}
3319 
3320 		if (status & (DC_ISR_TX_OK | DC_ISR_TX_NOBUF))
3321 			dc_txeof(sc);
3322 
3323 		if (status & DC_ISR_TX_IDLE) {
3324 			dc_txeof(sc);
3325 			if (sc->dc_cdata.dc_tx_cnt) {
3326 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3327 				CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3328 			}
3329 		}
3330 
3331 		if (status & DC_ISR_TX_UNDERRUN)
3332 			dc_tx_underrun(sc);
3333 
3334 		if ((status & DC_ISR_RX_WATDOGTIMEO)
3335 		    || (status & DC_ISR_RX_NOBUF)) {
3336 			r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
3337 			if_inc_counter(ifp, IFCOUNTER_IERRORS, (r & 0xffff) + ((r >> 17) & 0x7ff));
3338 			if (dc_rxeof(sc) == 0) {
3339 				while (dc_rx_resync(sc))
3340 					dc_rxeof(sc);
3341 			}
3342 		}
3343 
3344 		if (!if_sendq_empty(ifp))
3345 			dc_start_locked(ifp);
3346 
3347 		if (status & DC_ISR_BUS_ERR) {
3348 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
3349 			dc_init_locked(sc);
3350 			DC_UNLOCK(sc);
3351 			return;
3352 		}
3353 		status = CSR_READ_4(sc, DC_ISR);
3354 		if (status == 0xFFFFFFFF || (status & DC_INTRS) == 0)
3355 			break;
3356 	}
3357 
3358 	/* Re-enable interrupts. */
3359 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
3360 		CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3361 
3362 	DC_UNLOCK(sc);
3363 }
3364 
3365 /*
3366  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
3367  * pointers to the fragment pointers.
3368  */
3369 static int
3370 dc_encap(struct dc_softc *sc, struct mbuf **m_head)
3371 {
3372 	bus_dma_segment_t segs[DC_MAXFRAGS];
3373 	bus_dmamap_t map;
3374 	struct dc_desc *f;
3375 	struct mbuf *m;
3376 	int cur, defragged, error, first, frag, i, idx, nseg;
3377 
3378 	m = NULL;
3379 	defragged = 0;
3380 	if (sc->dc_flags & DC_TX_COALESCE &&
3381 	    ((*m_head)->m_next != NULL || sc->dc_flags & DC_TX_ALIGN)) {
3382 		m = m_defrag(*m_head, M_NOWAIT);
3383 		defragged = 1;
3384 	} else {
3385 		/*
3386 		 * Count the number of frags in this chain to see if we
3387 		 * need to m_collapse.  Since the descriptor list is shared
3388 		 * by all packets, we'll m_collapse long chains so that they
3389 		 * do not use up the entire list, even if they would fit.
3390 		 */
3391 		i = 0;
3392 		for (m = *m_head; m != NULL; m = m->m_next)
3393 			i++;
3394 		if (i > DC_TX_LIST_CNT / 4 ||
3395 		    DC_TX_LIST_CNT - i + sc->dc_cdata.dc_tx_cnt <=
3396 		    DC_TX_LIST_RSVD) {
3397 			m = m_collapse(*m_head, M_NOWAIT, DC_MAXFRAGS);
3398 			defragged = 1;
3399 		}
3400 	}
3401 	if (defragged != 0) {
3402 		if (m == NULL) {
3403 			m_freem(*m_head);
3404 			*m_head = NULL;
3405 			return (ENOBUFS);
3406 		}
3407 		*m_head = m;
3408 	}
3409 
3410 	idx = sc->dc_cdata.dc_tx_prod;
3411 	error = bus_dmamap_load_mbuf_sg(sc->dc_tx_mtag,
3412 	    sc->dc_cdata.dc_tx_map[idx], *m_head, segs, &nseg, 0);
3413 	if (error == EFBIG) {
3414 		if (defragged != 0 || (m = m_collapse(*m_head, M_NOWAIT,
3415 		    DC_MAXFRAGS)) == NULL) {
3416 			m_freem(*m_head);
3417 			*m_head = NULL;
3418 			return (defragged != 0 ? error : ENOBUFS);
3419 		}
3420 		*m_head = m;
3421 		error = bus_dmamap_load_mbuf_sg(sc->dc_tx_mtag,
3422 		    sc->dc_cdata.dc_tx_map[idx], *m_head, segs, &nseg, 0);
3423 		if (error != 0) {
3424 			m_freem(*m_head);
3425 			*m_head = NULL;
3426 			return (error);
3427 		}
3428 	} else if (error != 0)
3429 		return (error);
3430 	KASSERT(nseg <= DC_MAXFRAGS,
3431 	    ("%s: wrong number of segments (%d)", __func__, nseg));
3432 	if (nseg == 0) {
3433 		m_freem(*m_head);
3434 		*m_head = NULL;
3435 		return (EIO);
3436 	}
3437 
3438 	/* Check descriptor overruns. */
3439 	if (sc->dc_cdata.dc_tx_cnt + nseg > DC_TX_LIST_CNT - DC_TX_LIST_RSVD) {
3440 		bus_dmamap_unload(sc->dc_tx_mtag, sc->dc_cdata.dc_tx_map[idx]);
3441 		return (ENOBUFS);
3442 	}
3443 	bus_dmamap_sync(sc->dc_tx_mtag, sc->dc_cdata.dc_tx_map[idx],
3444 	    BUS_DMASYNC_PREWRITE);
3445 
3446 	first = cur = frag = sc->dc_cdata.dc_tx_prod;
3447 	for (i = 0; i < nseg; i++) {
3448 		if ((sc->dc_flags & DC_TX_ADMTEK_WAR) &&
3449 		    (frag == (DC_TX_LIST_CNT - 1)) &&
3450 		    (first != sc->dc_cdata.dc_tx_first)) {
3451 			bus_dmamap_unload(sc->dc_tx_mtag,
3452 			    sc->dc_cdata.dc_tx_map[first]);
3453 			m_freem(*m_head);
3454 			*m_head = NULL;
3455 			return (ENOBUFS);
3456 		}
3457 
3458 		f = &sc->dc_ldata.dc_tx_list[frag];
3459 		f->dc_ctl = htole32(DC_TXCTL_TLINK | segs[i].ds_len);
3460 		if (i == 0) {
3461 			f->dc_status = 0;
3462 			f->dc_ctl |= htole32(DC_TXCTL_FIRSTFRAG);
3463 		} else
3464 			f->dc_status = htole32(DC_TXSTAT_OWN);
3465 		f->dc_data = htole32(DC_ADDR_LO(segs[i].ds_addr));
3466 		cur = frag;
3467 		DC_INC(frag, DC_TX_LIST_CNT);
3468 	}
3469 
3470 	sc->dc_cdata.dc_tx_prod = frag;
3471 	sc->dc_cdata.dc_tx_cnt += nseg;
3472 	sc->dc_cdata.dc_tx_chain[cur] = *m_head;
3473 	sc->dc_ldata.dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_LASTFRAG);
3474 	if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
3475 		sc->dc_ldata.dc_tx_list[first].dc_ctl |=
3476 		    htole32(DC_TXCTL_FINT);
3477 	if (sc->dc_flags & DC_TX_INTR_ALWAYS)
3478 		sc->dc_ldata.dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
3479 	if (sc->dc_flags & DC_TX_USE_TX_INTR &&
3480 	    ++sc->dc_cdata.dc_tx_pkts >= 8) {
3481 		sc->dc_cdata.dc_tx_pkts = 0;
3482 		sc->dc_ldata.dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
3483 	}
3484 	sc->dc_ldata.dc_tx_list[first].dc_status = htole32(DC_TXSTAT_OWN);
3485 
3486 	bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap,
3487 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3488 
3489 	/*
3490 	 * Swap the last and the first dmamaps to ensure the map for
3491 	 * this transmission is placed at the last descriptor.
3492 	 */
3493 	map = sc->dc_cdata.dc_tx_map[cur];
3494 	sc->dc_cdata.dc_tx_map[cur] = sc->dc_cdata.dc_tx_map[first];
3495 	sc->dc_cdata.dc_tx_map[first] = map;
3496 
3497 	return (0);
3498 }
3499 
3500 static void
3501 dc_start(if_t ifp)
3502 {
3503 	struct dc_softc *sc;
3504 
3505 	sc = if_getsoftc(ifp);
3506 	DC_LOCK(sc);
3507 	dc_start_locked(ifp);
3508 	DC_UNLOCK(sc);
3509 }
3510 
3511 /*
3512  * Main transmit routine
3513  * To avoid having to do mbuf copies, we put pointers to the mbuf data
3514  * regions directly in the transmit lists.  We also save a copy of the
3515  * pointers since the transmit list fragment pointers are physical
3516  * addresses.
3517  */
3518 static void
3519 dc_start_locked(if_t ifp)
3520 {
3521 	struct dc_softc *sc;
3522 	struct mbuf *m_head;
3523 	int queued;
3524 
3525 	sc = if_getsoftc(ifp);
3526 
3527 	DC_LOCK_ASSERT(sc);
3528 
3529 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
3530 	    IFF_DRV_RUNNING || sc->dc_link == 0)
3531 		return;
3532 
3533 	sc->dc_cdata.dc_tx_first = sc->dc_cdata.dc_tx_prod;
3534 
3535 	for (queued = 0; !if_sendq_empty(ifp); ) {
3536 		/*
3537 		 * If there's no way we can send any packets, return now.
3538 		 */
3539 		if (sc->dc_cdata.dc_tx_cnt > DC_TX_LIST_CNT - DC_TX_LIST_RSVD) {
3540 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
3541 			break;
3542 		}
3543 		m_head = if_dequeue(ifp);
3544 		if (m_head == NULL)
3545 			break;
3546 
3547 		if (dc_encap(sc, &m_head)) {
3548 			if (m_head == NULL)
3549 				break;
3550 			if_sendq_prepend(ifp, m_head);
3551 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
3552 			break;
3553 		}
3554 
3555 		queued++;
3556 		/*
3557 		 * If there's a BPF listener, bounce a copy of this frame
3558 		 * to him.
3559 		 */
3560 		BPF_MTAP(ifp, m_head);
3561 	}
3562 
3563 	if (queued > 0) {
3564 		/* Transmit */
3565 		if (!(sc->dc_flags & DC_TX_POLL))
3566 			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3567 
3568 		/*
3569 		 * Set a timeout in case the chip goes out to lunch.
3570 		 */
3571 		sc->dc_wdog_timer = 5;
3572 	}
3573 }
3574 
3575 static void
3576 dc_init(void *xsc)
3577 {
3578 	struct dc_softc *sc = xsc;
3579 
3580 	DC_LOCK(sc);
3581 	dc_init_locked(sc);
3582 	DC_UNLOCK(sc);
3583 }
3584 
3585 static void
3586 dc_init_locked(struct dc_softc *sc)
3587 {
3588 	if_t ifp = sc->dc_ifp;
3589 	struct mii_data *mii;
3590 	struct ifmedia *ifm;
3591 
3592 	DC_LOCK_ASSERT(sc);
3593 
3594 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
3595 		return;
3596 
3597 	mii = device_get_softc(sc->dc_miibus);
3598 
3599 	/*
3600 	 * Cancel pending I/O and free all RX/TX buffers.
3601 	 */
3602 	dc_stop(sc);
3603 	dc_reset(sc);
3604 	if (DC_IS_INTEL(sc)) {
3605 		ifm = &mii->mii_media;
3606 		dc_apply_fixup(sc, ifm->ifm_media);
3607 	}
3608 
3609 	/*
3610 	 * Set cache alignment and burst length.
3611 	 */
3612 	if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc) || DC_IS_ULI(sc))
3613 		CSR_WRITE_4(sc, DC_BUSCTL, 0);
3614 	else
3615 		CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME | DC_BUSCTL_MRLE);
3616 	/*
3617 	 * Evenly share the bus between receive and transmit process.
3618 	 */
3619 	if (DC_IS_INTEL(sc))
3620 		DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION);
3621 	if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
3622 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
3623 	} else {
3624 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
3625 	}
3626 	if (sc->dc_flags & DC_TX_POLL)
3627 		DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
3628 	switch(sc->dc_cachesize) {
3629 	case 32:
3630 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
3631 		break;
3632 	case 16:
3633 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
3634 		break;
3635 	case 8:
3636 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
3637 		break;
3638 	case 0:
3639 	default:
3640 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
3641 		break;
3642 	}
3643 
3644 	if (sc->dc_flags & DC_TX_STORENFWD)
3645 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3646 	else {
3647 		if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3648 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3649 		} else {
3650 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3651 			DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3652 		}
3653 	}
3654 
3655 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
3656 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
3657 
3658 	if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
3659 		/*
3660 		 * The app notes for the 98713 and 98715A say that
3661 		 * in order to have the chips operate properly, a magic
3662 		 * number must be written to CSR16. Macronix does not
3663 		 * document the meaning of these bits so there's no way
3664 		 * to know exactly what they do. The 98713 has a magic
3665 		 * number all its own; the rest all use a different one.
3666 		 */
3667 		DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
3668 		if (sc->dc_type == DC_TYPE_98713)
3669 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
3670 		else
3671 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
3672 	}
3673 
3674 	if (DC_IS_XIRCOM(sc)) {
3675 		/*
3676 		 * setup General Purpose Port mode and data so the tulip
3677 		 * can talk to the MII.
3678 		 */
3679 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
3680 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3681 		DELAY(10);
3682 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
3683 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3684 		DELAY(10);
3685 	}
3686 
3687 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3688 	DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN);
3689 
3690 	/* Init circular RX list. */
3691 	if (dc_list_rx_init(sc) == ENOBUFS) {
3692 		device_printf(sc->dc_dev,
3693 		    "initialization failed: no memory for rx buffers\n");
3694 		dc_stop(sc);
3695 		return;
3696 	}
3697 
3698 	/*
3699 	 * Init TX descriptors.
3700 	 */
3701 	dc_list_tx_init(sc);
3702 
3703 	/*
3704 	 * Load the address of the RX list.
3705 	 */
3706 	CSR_WRITE_4(sc, DC_RXADDR, DC_RXDESC(sc, 0));
3707 	CSR_WRITE_4(sc, DC_TXADDR, DC_TXDESC(sc, 0));
3708 
3709 	/*
3710 	 * Enable interrupts.
3711 	 */
3712 #ifdef DEVICE_POLLING
3713 	/*
3714 	 * ... but only if we are not polling, and make sure they are off in
3715 	 * the case of polling. Some cards (e.g. fxp) turn interrupts on
3716 	 * after a reset.
3717 	 */
3718 	if (if_getcapenable(ifp) & IFCAP_POLLING)
3719 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3720 	else
3721 #endif
3722 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3723 	CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
3724 
3725 	/* Initialize TX jabber and RX watchdog timer. */
3726 	if (DC_IS_ULI(sc))
3727 		CSR_WRITE_4(sc, DC_WATCHDOG, DC_WDOG_JABBERCLK |
3728 		    DC_WDOG_HOSTUNJAB);
3729 
3730 	/* Enable transmitter. */
3731 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3732 
3733 	/*
3734 	 * If this is an Intel 21143 and we're not using the
3735 	 * MII port, program the LED control pins so we get
3736 	 * link and activity indications.
3737 	 */
3738 	if (sc->dc_flags & DC_TULIP_LEDS) {
3739 		CSR_WRITE_4(sc, DC_WATCHDOG,
3740 		    DC_WDOG_CTLWREN | DC_WDOG_LINK | DC_WDOG_ACTIVITY);
3741 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
3742 	}
3743 
3744 	/*
3745 	 * Load the RX/multicast filter. We do this sort of late
3746 	 * because the filter programming scheme on the 21143 and
3747 	 * some clones requires DMAing a setup frame via the TX
3748 	 * engine, and we need the transmitter enabled for that.
3749 	 */
3750 	dc_setfilt(sc);
3751 
3752 	/* Enable receiver. */
3753 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
3754 	CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
3755 
3756 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
3757 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
3758 
3759 	dc_ifmedia_upd_locked(sc);
3760 
3761 	/* Clear missed frames and overflow counter. */
3762 	CSR_READ_4(sc, DC_FRAMESDISCARDED);
3763 
3764 	/* Don't start the ticker if this is a homePNA link. */
3765 	if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_HPNA_1)
3766 		sc->dc_link = 1;
3767 	else {
3768 		if (sc->dc_flags & DC_21143_NWAY)
3769 			callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
3770 		else
3771 			callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
3772 	}
3773 
3774 	sc->dc_wdog_timer = 0;
3775 	callout_reset(&sc->dc_wdog_ch, hz, dc_watchdog, sc);
3776 }
3777 
3778 /*
3779  * Set media options.
3780  */
3781 static int
3782 dc_ifmedia_upd(if_t ifp)
3783 {
3784 	struct dc_softc *sc;
3785 	int error;
3786 
3787 	sc = if_getsoftc(ifp);
3788 	DC_LOCK(sc);
3789 	error = dc_ifmedia_upd_locked(sc);
3790 	DC_UNLOCK(sc);
3791 	return (error);
3792 }
3793 
3794 static int
3795 dc_ifmedia_upd_locked(struct dc_softc *sc)
3796 {
3797 	struct mii_data *mii;
3798 	struct ifmedia *ifm;
3799 	int error;
3800 
3801 	DC_LOCK_ASSERT(sc);
3802 
3803 	sc->dc_link = 0;
3804 	mii = device_get_softc(sc->dc_miibus);
3805 	error = mii_mediachg(mii);
3806 	if (error == 0) {
3807 		ifm = &mii->mii_media;
3808 		if (DC_IS_INTEL(sc))
3809 			dc_setcfg(sc, ifm->ifm_media);
3810 		else if (DC_IS_DAVICOM(sc) &&
3811 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1)
3812 			dc_setcfg(sc, ifm->ifm_media);
3813 	}
3814 
3815 	return (error);
3816 }
3817 
3818 /*
3819  * Report current media status.
3820  */
3821 static void
3822 dc_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
3823 {
3824 	struct dc_softc *sc;
3825 	struct mii_data *mii;
3826 	struct ifmedia *ifm;
3827 
3828 	sc = if_getsoftc(ifp);
3829 	mii = device_get_softc(sc->dc_miibus);
3830 	DC_LOCK(sc);
3831 	mii_pollstat(mii);
3832 	ifm = &mii->mii_media;
3833 	if (DC_IS_DAVICOM(sc)) {
3834 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
3835 			ifmr->ifm_active = ifm->ifm_media;
3836 			ifmr->ifm_status = 0;
3837 			DC_UNLOCK(sc);
3838 			return;
3839 		}
3840 	}
3841 	ifmr->ifm_active = mii->mii_media_active;
3842 	ifmr->ifm_status = mii->mii_media_status;
3843 	DC_UNLOCK(sc);
3844 }
3845 
3846 static int
3847 dc_ioctl(if_t ifp, u_long command, caddr_t data)
3848 {
3849 	struct dc_softc *sc = if_getsoftc(ifp);
3850 	struct ifreq *ifr = (struct ifreq *)data;
3851 	struct mii_data *mii;
3852 	int error = 0;
3853 
3854 	switch (command) {
3855 	case SIOCSIFFLAGS:
3856 		DC_LOCK(sc);
3857 		if (if_getflags(ifp) & IFF_UP) {
3858 			int need_setfilt = (if_getflags(ifp) ^ sc->dc_if_flags) &
3859 				(IFF_PROMISC | IFF_ALLMULTI);
3860 
3861 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
3862 				if (need_setfilt)
3863 					dc_setfilt(sc);
3864 			} else {
3865 				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
3866 				dc_init_locked(sc);
3867 			}
3868 		} else {
3869 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
3870 				dc_stop(sc);
3871 		}
3872 		sc->dc_if_flags = if_getflags(ifp);
3873 		DC_UNLOCK(sc);
3874 		break;
3875 	case SIOCADDMULTI:
3876 	case SIOCDELMULTI:
3877 		DC_LOCK(sc);
3878 		if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
3879 			dc_setfilt(sc);
3880 		DC_UNLOCK(sc);
3881 		break;
3882 	case SIOCGIFMEDIA:
3883 	case SIOCSIFMEDIA:
3884 		mii = device_get_softc(sc->dc_miibus);
3885 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
3886 		break;
3887 	case SIOCSIFCAP:
3888 #ifdef DEVICE_POLLING
3889 		if (ifr->ifr_reqcap & IFCAP_POLLING &&
3890 		    !(if_getcapenable(ifp) & IFCAP_POLLING)) {
3891 			error = ether_poll_register(dc_poll, ifp);
3892 			if (error)
3893 				return(error);
3894 			DC_LOCK(sc);
3895 			/* Disable interrupts */
3896 			CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3897 			if_setcapenablebit(ifp, IFCAP_POLLING, 0);
3898 			DC_UNLOCK(sc);
3899 			return (error);
3900 		}
3901 		if (!(ifr->ifr_reqcap & IFCAP_POLLING) &&
3902 		    if_getcapenable(ifp) & IFCAP_POLLING) {
3903 			error = ether_poll_deregister(ifp);
3904 			/* Enable interrupts. */
3905 			DC_LOCK(sc);
3906 			CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3907 			if_setcapenablebit(ifp, 0, IFCAP_POLLING);
3908 			DC_UNLOCK(sc);
3909 			return (error);
3910 		}
3911 #endif /* DEVICE_POLLING */
3912 		break;
3913 	default:
3914 		error = ether_ioctl(ifp, command, data);
3915 		break;
3916 	}
3917 
3918 	return (error);
3919 }
3920 
3921 static void
3922 dc_watchdog(void *xsc)
3923 {
3924 	struct dc_softc *sc = xsc;
3925 	if_t ifp;
3926 
3927 	DC_LOCK_ASSERT(sc);
3928 
3929 	if (sc->dc_wdog_timer == 0 || --sc->dc_wdog_timer != 0) {
3930 		callout_reset(&sc->dc_wdog_ch, hz, dc_watchdog, sc);
3931 		return;
3932 	}
3933 
3934 	ifp = sc->dc_ifp;
3935 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3936 	device_printf(sc->dc_dev, "watchdog timeout\n");
3937 
3938 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
3939 	dc_init_locked(sc);
3940 
3941 	if (!if_sendq_empty(ifp))
3942 		dc_start_locked(ifp);
3943 }
3944 
3945 /*
3946  * Stop the adapter and free any mbufs allocated to the
3947  * RX and TX lists.
3948  */
3949 static void
3950 dc_stop(struct dc_softc *sc)
3951 {
3952 	if_t ifp;
3953 	struct dc_list_data *ld;
3954 	struct dc_chain_data *cd;
3955 	int i;
3956 	uint32_t ctl, netcfg;
3957 
3958 	DC_LOCK_ASSERT(sc);
3959 
3960 	ifp = sc->dc_ifp;
3961 	ld = &sc->dc_ldata;
3962 	cd = &sc->dc_cdata;
3963 
3964 	callout_stop(&sc->dc_stat_ch);
3965 	callout_stop(&sc->dc_wdog_ch);
3966 	sc->dc_wdog_timer = 0;
3967 	sc->dc_link = 0;
3968 
3969 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
3970 
3971 	netcfg = CSR_READ_4(sc, DC_NETCFG);
3972 	if (netcfg & (DC_NETCFG_RX_ON | DC_NETCFG_TX_ON))
3973 		CSR_WRITE_4(sc, DC_NETCFG,
3974 		   netcfg & ~(DC_NETCFG_RX_ON | DC_NETCFG_TX_ON));
3975 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3976 	/* Wait the completion of TX/RX SM. */
3977 	if (netcfg & (DC_NETCFG_RX_ON | DC_NETCFG_TX_ON))
3978 		dc_netcfg_wait(sc);
3979 
3980 	CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
3981 	CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
3982 
3983 	/*
3984 	 * Free data in the RX lists.
3985 	 */
3986 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
3987 		if (cd->dc_rx_chain[i] != NULL) {
3988 			bus_dmamap_sync(sc->dc_rx_mtag,
3989 			    cd->dc_rx_map[i], BUS_DMASYNC_POSTREAD);
3990 			bus_dmamap_unload(sc->dc_rx_mtag,
3991 			    cd->dc_rx_map[i]);
3992 			m_freem(cd->dc_rx_chain[i]);
3993 			cd->dc_rx_chain[i] = NULL;
3994 		}
3995 	}
3996 	bzero(ld->dc_rx_list, DC_RX_LIST_SZ);
3997 	bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_rx_lmap,
3998 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3999 
4000 	/*
4001 	 * Free the TX list buffers.
4002 	 */
4003 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
4004 		if (cd->dc_tx_chain[i] != NULL) {
4005 			ctl = le32toh(ld->dc_tx_list[i].dc_ctl);
4006 			if (ctl & DC_TXCTL_SETUP) {
4007 				bus_dmamap_sync(sc->dc_stag, sc->dc_smap,
4008 				    BUS_DMASYNC_POSTWRITE);
4009 			} else {
4010 				bus_dmamap_sync(sc->dc_tx_mtag,
4011 				    cd->dc_tx_map[i], BUS_DMASYNC_POSTWRITE);
4012 				bus_dmamap_unload(sc->dc_tx_mtag,
4013 				    cd->dc_tx_map[i]);
4014 				m_freem(cd->dc_tx_chain[i]);
4015 			}
4016 			cd->dc_tx_chain[i] = NULL;
4017 		}
4018 	}
4019 	bzero(ld->dc_tx_list, DC_TX_LIST_SZ);
4020 	bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap,
4021 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4022 }
4023 
4024 /*
4025  * Device suspend routine.  Stop the interface and save some PCI
4026  * settings in case the BIOS doesn't restore them properly on
4027  * resume.
4028  */
4029 static int
4030 dc_suspend(device_t dev)
4031 {
4032 	struct dc_softc *sc;
4033 
4034 	sc = device_get_softc(dev);
4035 	DC_LOCK(sc);
4036 	dc_stop(sc);
4037 	sc->suspended = 1;
4038 	DC_UNLOCK(sc);
4039 
4040 	return (0);
4041 }
4042 
4043 /*
4044  * Device resume routine.  Restore some PCI settings in case the BIOS
4045  * doesn't, re-enable busmastering, and restart the interface if
4046  * appropriate.
4047  */
4048 static int
4049 dc_resume(device_t dev)
4050 {
4051 	struct dc_softc *sc;
4052 	if_t ifp;
4053 
4054 	sc = device_get_softc(dev);
4055 	ifp = sc->dc_ifp;
4056 
4057 	/* reinitialize interface if necessary */
4058 	DC_LOCK(sc);
4059 	if (if_getflags(ifp) & IFF_UP)
4060 		dc_init_locked(sc);
4061 
4062 	sc->suspended = 0;
4063 	DC_UNLOCK(sc);
4064 
4065 	return (0);
4066 }
4067 
4068 /*
4069  * Stop all chip I/O so that the kernel's probe routines don't
4070  * get confused by errant DMAs when rebooting.
4071  */
4072 static int
4073 dc_shutdown(device_t dev)
4074 {
4075 	struct dc_softc *sc;
4076 
4077 	sc = device_get_softc(dev);
4078 
4079 	DC_LOCK(sc);
4080 	dc_stop(sc);
4081 	DC_UNLOCK(sc);
4082 
4083 	return (0);
4084 }
4085 
4086 static int
4087 dc_check_multiport(struct dc_softc *sc)
4088 {
4089 	struct dc_softc *dsc;
4090 	devclass_t dc;
4091 	device_t child;
4092 	uint8_t *eaddr;
4093 	int unit;
4094 
4095 	dc = devclass_find("dc");
4096 	for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
4097 		child = devclass_get_device(dc, unit);
4098 		if (child == NULL)
4099 			continue;
4100 		if (child == sc->dc_dev)
4101 			continue;
4102 		if (device_get_parent(child) != device_get_parent(sc->dc_dev))
4103 			continue;
4104 		if (unit > device_get_unit(sc->dc_dev))
4105 			continue;
4106 		if (device_is_attached(child) == 0)
4107 			continue;
4108 		dsc = device_get_softc(child);
4109 		device_printf(sc->dc_dev,
4110 		    "Using station address of %s as base\n",
4111 		    device_get_nameunit(child));
4112 		bcopy(dsc->dc_eaddr, sc->dc_eaddr, ETHER_ADDR_LEN);
4113 		eaddr = (uint8_t *)sc->dc_eaddr;
4114 		eaddr[5]++;
4115 		/* Prepare SROM to parse again. */
4116 		if (DC_IS_INTEL(sc) && dsc->dc_srom != NULL &&
4117 		    sc->dc_romwidth != 0) {
4118 			free(sc->dc_srom, M_DEVBUF);
4119 			sc->dc_romwidth = dsc->dc_romwidth;
4120 			sc->dc_srom = malloc(DC_ROM_SIZE(sc->dc_romwidth),
4121 			    M_DEVBUF, M_NOWAIT);
4122 			if (sc->dc_srom == NULL) {
4123 				device_printf(sc->dc_dev,
4124 				    "Could not allocate SROM buffer\n");
4125 				return (ENOMEM);
4126 			}
4127 			bcopy(dsc->dc_srom, sc->dc_srom,
4128 			    DC_ROM_SIZE(sc->dc_romwidth));
4129 		}
4130 		return (0);
4131 	}
4132 	return (ENOENT);
4133 }
4134