xref: /freebsd/sys/dev/dc/if_dc.c (revision b601c69bdbe8755d26570261d7fd4c02ee4eff74)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ee.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD$
33  */
34 
35 /*
36  * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
37  * series chips and several workalikes including the following:
38  *
39  * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com)
40  * Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
41  * Lite-On 82c168/82c169 PNIC (www.litecom.com)
42  * ASIX Electronics AX88140A (www.asix.com.tw)
43  * ASIX Electronics AX88141 (www.asix.com.tw)
44  * ADMtek AL981 (www.admtek.com.tw)
45  * ADMtek AN985 (www.admtek.com.tw)
46  * Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
47  * Accton EN1217 (www.accton.com)
48  *
49  * Datasheets for the 21143 are available at developer.intel.com.
50  * Datasheets for the clone parts can be found at their respective sites.
51  * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
52  * The PNIC II is essentially a Macronix 98715A chip; the only difference
53  * worth noting is that its multicast hash table is only 128 bits wide
54  * instead of 512.
55  *
56  * Written by Bill Paul <wpaul@ee.columbia.edu>
57  * Electrical Engineering Department
58  * Columbia University, New York City
59  */
60 
61 /*
62  * The Intel 21143 is the successor to the DEC 21140. It is basically
63  * the same as the 21140 but with a few new features. The 21143 supports
64  * three kinds of media attachments:
65  *
66  * o MII port, for 10Mbps and 100Mbps support and NWAY
67  *   autonegotiation provided by an external PHY.
68  * o SYM port, for symbol mode 100Mbps support.
69  * o 10baseT port.
70  * o AUI/BNC port.
71  *
72  * The 100Mbps SYM port and 10baseT port can be used together in
73  * combination with the internal NWAY support to create a 10/100
74  * autosensing configuration.
75  *
76  * Knowing which media is available on a given card is tough: you're
77  * supposed to go slogging through the EEPROM looking for media
78  * description structures. Unfortunately, some card vendors that use
79  * the 21143 don't obey the DEC SROM spec correctly, which means that
80  * what you find in the EEPROM may not agree with reality. Fortunately,
81  * the 21143 provides us a way to get around this issue: lurking in
82  * PCI configuration space is the Configuration Wake-Up Command Register.
83  * This register is loaded with a value from the EEPROM when wake on LAN
84  * mode is enabled; this value tells us quite clearly what kind of media
85  * is attached to the NIC. The main purpose of this register is to tell
86  * the NIC what media to scan when in wake on LAN mode, however by
87  * forcibly enabling wake on LAN mode, we can use to learn what kind of
88  * media a given NIC has available and adapt ourselves accordingly.
89  *
90  * Of course, if the media description blocks in the EEPROM are bogus.
91  * what are the odds that the CWUC aren't bogus as well, right? Well,
92  * the CWUC value is more likely to be correct since wake on LAN mode
93  * won't work correctly without it, and wake on LAN is a big selling
94  * point these days. It's also harder to screw up a single byte than
95  * a whole media descriptor block.
96  *
97  * Note that not all tulip workalikes are handled in this driver: we only
98  * deal with those which are relatively well behaved. The Winbond is
99  * handled separately due to its different register offsets and the
100  * special handling needed for its various bugs. The PNIC is handled
101  * here, but I'm not thrilled about it.
102  *
103  * All of the workalike chips use some form of MII transceiver support
104  * with the exception of the Macronix chips, which also have a SYM port.
105  * The ASIX AX88140A is also documented to have a SYM port, but all
106  * the cards I've seen use an MII transceiver, probably because the
107  * AX88140A doesn't support internal NWAY.
108  */
109 
110 #include <sys/param.h>
111 #include <sys/systm.h>
112 #include <sys/sockio.h>
113 #include <sys/mbuf.h>
114 #include <sys/malloc.h>
115 #include <sys/kernel.h>
116 #include <sys/socket.h>
117 
118 #include <net/if.h>
119 #include <net/if_arp.h>
120 #include <net/ethernet.h>
121 #include <net/if_dl.h>
122 #include <net/if_media.h>
123 
124 #include <net/bpf.h>
125 
126 #include <vm/vm.h>              /* for vtophys */
127 #include <vm/pmap.h>            /* for vtophys */
128 #include <machine/clock.h>      /* for DELAY */
129 #include <machine/bus_pio.h>
130 #include <machine/bus_memio.h>
131 #include <machine/bus.h>
132 #include <machine/resource.h>
133 #include <sys/bus.h>
134 #include <sys/rman.h>
135 
136 #include <dev/mii/mii.h>
137 #include <dev/mii/miivar.h>
138 
139 #include <pci/pcireg.h>
140 #include <pci/pcivar.h>
141 
142 #define DC_USEIOSPACE
143 
144 #include <pci/if_dcreg.h>
145 
146 MODULE_DEPEND(dc, miibus, 1, 1, 1);
147 
148 /* "controller miibus0" required.  See GENERIC if you get errors here. */
149 #include "miibus_if.h"
150 
151 #ifndef lint
152 static const char rcsid[] =
153   "$FreeBSD$";
154 #endif
155 
156 /*
157  * Various supported device vendors/types and their names.
158  */
159 static struct dc_type dc_devs[] = {
160 	{ DC_VENDORID_DEC, DC_DEVICEID_21143,
161 		"Intel 21143 10/100BaseTX" },
162 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100,
163 		"Davicom DM9100 10/100BaseTX" },
164 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
165 		"Davicom DM9102 10/100BaseTX" },
166 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
167 		"Davicom DM9102A 10/100BaseTX" },
168 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AL981,
169 		"ADMtek AL981 10/100BaseTX" },
170 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AN985,
171 		"ADMtek AN985 10/100BaseTX" },
172 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
173 		"ASIX AX88140A 10/100BaseTX" },
174 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
175 		"ASIX AX88141 10/100BaseTX" },
176 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
177 		"Macronix 98713 10/100BaseTX" },
178 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
179 		"Macronix 98713A 10/100BaseTX" },
180 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
181 		"Compex RL100-TX 10/100BaseTX" },
182 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
183 		"Compex RL100-TX 10/100BaseTX" },
184 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
185 		"Macronix 98715/98715A 10/100BaseTX" },
186 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
187 		"Macronix 98715AEC-C 10/100BaseTX" },
188 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
189 		"Macronix 98725 10/100BaseTX" },
190 	{ DC_VENDORID_MX, DC_DEVICEID_98727,
191 		"Macronix 98727/98732 10/100BaseTX" },
192 	{ DC_VENDORID_LO, DC_DEVICEID_82C115,
193 		"LC82C115 PNIC II 10/100BaseTX" },
194 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
195 		"82c168 PNIC 10/100BaseTX" },
196 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
197 		"82c169 PNIC 10/100BaseTX" },
198 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN1217,
199 		"Accton EN1217 10/100BaseTX" },
200 	{ 0, 0, NULL }
201 };
202 
203 static int dc_probe		__P((device_t));
204 static int dc_attach		__P((device_t));
205 static int dc_detach		__P((device_t));
206 static void dc_acpi		__P((device_t));
207 static struct dc_type *dc_devtype	__P((device_t));
208 static int dc_newbuf		__P((struct dc_softc *, int, struct mbuf *));
209 static int dc_encap		__P((struct dc_softc *, struct mbuf *,
210 					u_int32_t *));
211 static int dc_coal		__P((struct dc_softc *, struct mbuf **));
212 static void dc_pnic_rx_bug_war	__P((struct dc_softc *, int));
213 static int dc_rx_resync		__P((struct dc_softc *));
214 static void dc_rxeof		__P((struct dc_softc *));
215 static void dc_txeof		__P((struct dc_softc *));
216 static void dc_tick		__P((void *));
217 static void dc_intr		__P((void *));
218 static void dc_start		__P((struct ifnet *));
219 static int dc_ioctl		__P((struct ifnet *, u_long, caddr_t));
220 static void dc_init		__P((void *));
221 static void dc_stop		__P((struct dc_softc *));
222 static void dc_watchdog		__P((struct ifnet *));
223 static void dc_shutdown		__P((device_t));
224 static int dc_ifmedia_upd	__P((struct ifnet *));
225 static void dc_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
226 
227 static void dc_delay		__P((struct dc_softc *));
228 static void dc_eeprom_idle	__P((struct dc_softc *));
229 static void dc_eeprom_putbyte	__P((struct dc_softc *, int));
230 static void dc_eeprom_getword	__P((struct dc_softc *, int, u_int16_t *));
231 static void dc_eeprom_getword_pnic
232 				__P((struct dc_softc *, int, u_int16_t *));
233 static void dc_read_eeprom	__P((struct dc_softc *, caddr_t, int,
234 							int, int));
235 
236 static void dc_mii_writebit	__P((struct dc_softc *, int));
237 static int dc_mii_readbit	__P((struct dc_softc *));
238 static void dc_mii_sync		__P((struct dc_softc *));
239 static void dc_mii_send		__P((struct dc_softc *, u_int32_t, int));
240 static int dc_mii_readreg	__P((struct dc_softc *, struct dc_mii_frame *));
241 static int dc_mii_writereg	__P((struct dc_softc *, struct dc_mii_frame *));
242 static int dc_miibus_readreg	__P((device_t, int, int));
243 static int dc_miibus_writereg	__P((device_t, int, int, int));
244 static void dc_miibus_statchg	__P((device_t));
245 static void dc_miibus_mediainit	__P((device_t));
246 
247 static void dc_setcfg		__P((struct dc_softc *, int));
248 static u_int32_t dc_crc_le	__P((struct dc_softc *, caddr_t));
249 static u_int32_t dc_crc_be	__P((caddr_t));
250 static void dc_setfilt_21143	__P((struct dc_softc *));
251 static void dc_setfilt_asix	__P((struct dc_softc *));
252 static void dc_setfilt_admtek	__P((struct dc_softc *));
253 
254 static void dc_setfilt		__P((struct dc_softc *));
255 
256 static void dc_reset		__P((struct dc_softc *));
257 static int dc_list_rx_init	__P((struct dc_softc *));
258 static int dc_list_tx_init	__P((struct dc_softc *));
259 
260 #ifdef DC_USEIOSPACE
261 #define DC_RES			SYS_RES_IOPORT
262 #define DC_RID			DC_PCI_CFBIO
263 #else
264 #define DC_RES			SYS_RES_MEMORY
265 #define DC_RID			DC_PCI_CFBMA
266 #endif
267 
268 static device_method_t dc_methods[] = {
269 	/* Device interface */
270 	DEVMETHOD(device_probe,		dc_probe),
271 	DEVMETHOD(device_attach,	dc_attach),
272 	DEVMETHOD(device_detach,	dc_detach),
273 	DEVMETHOD(device_shutdown,	dc_shutdown),
274 
275 	/* bus interface */
276 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
277 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
278 
279 	/* MII interface */
280 	DEVMETHOD(miibus_readreg,	dc_miibus_readreg),
281 	DEVMETHOD(miibus_writereg,	dc_miibus_writereg),
282 	DEVMETHOD(miibus_statchg,	dc_miibus_statchg),
283 	DEVMETHOD(miibus_mediainit,	dc_miibus_mediainit),
284 
285 	{ 0, 0 }
286 };
287 
288 static driver_t dc_driver = {
289 	"dc",
290 	dc_methods,
291 	sizeof(struct dc_softc)
292 };
293 
294 static devclass_t dc_devclass;
295 
296 DRIVER_MODULE(if_dc, pci, dc_driver, dc_devclass, 0, 0);
297 DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, 0, 0);
298 
299 #define DC_SETBIT(sc, reg, x)				\
300 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
301 
302 #define DC_CLRBIT(sc, reg, x)				\
303 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
304 
305 #define SIO_SET(x)	DC_SETBIT(sc, DC_SIO, (x))
306 #define SIO_CLR(x)	DC_CLRBIT(sc, DC_SIO, (x))
307 
308 static void dc_delay(sc)
309 	struct dc_softc		*sc;
310 {
311 	int			idx;
312 
313 	for (idx = (300 / 33) + 1; idx > 0; idx--)
314 		CSR_READ_4(sc, DC_BUSCTL);
315 }
316 
317 static void dc_eeprom_idle(sc)
318 	struct dc_softc		*sc;
319 {
320 	register int		i;
321 
322 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
323 	dc_delay(sc);
324 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
325 	dc_delay(sc);
326 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
327 	dc_delay(sc);
328 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
329 	dc_delay(sc);
330 
331 	for (i = 0; i < 25; i++) {
332 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
333 		dc_delay(sc);
334 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
335 		dc_delay(sc);
336 	}
337 
338 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
339 	dc_delay(sc);
340 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
341 	dc_delay(sc);
342 	CSR_WRITE_4(sc, DC_SIO, 0x00000000);
343 
344 	return;
345 }
346 
347 /*
348  * Send a read command and address to the EEPROM, check for ACK.
349  */
350 static void dc_eeprom_putbyte(sc, addr)
351 	struct dc_softc		*sc;
352 	int			addr;
353 {
354 	register int		d, i;
355 
356 	/*
357 	 * The AN985 has a 93C66 EEPROM on it instead of
358 	 * a 93C46. It uses a different bit sequence for
359 	 * specifying the "read" opcode.
360 	 */
361 	if (DC_IS_CENTAUR(sc))
362 		d = addr | (DC_EECMD_READ << 2);
363 	else
364 		d = addr | DC_EECMD_READ;
365 
366 	/*
367 	 * Feed in each bit and strobe the clock.
368 	 */
369 	for (i = 0x400; i; i >>= 1) {
370 		if (d & i) {
371 			SIO_SET(DC_SIO_EE_DATAIN);
372 		} else {
373 			SIO_CLR(DC_SIO_EE_DATAIN);
374 		}
375 		dc_delay(sc);
376 		SIO_SET(DC_SIO_EE_CLK);
377 		dc_delay(sc);
378 		SIO_CLR(DC_SIO_EE_CLK);
379 		dc_delay(sc);
380 	}
381 
382 	return;
383 }
384 
385 /*
386  * Read a word of data stored in the EEPROM at address 'addr.'
387  * The PNIC 82c168/82c169 has its own non-standard way to read
388  * the EEPROM.
389  */
390 static void dc_eeprom_getword_pnic(sc, addr, dest)
391 	struct dc_softc		*sc;
392 	int			addr;
393 	u_int16_t		*dest;
394 {
395 	register int		i;
396 	u_int32_t		r;
397 
398 	CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ|addr);
399 
400 	for (i = 0; i < DC_TIMEOUT; i++) {
401 		DELAY(1);
402 		r = CSR_READ_4(sc, DC_SIO);
403 		if (!(r & DC_PN_SIOCTL_BUSY)) {
404 			*dest = (u_int16_t)(r & 0xFFFF);
405 			return;
406 		}
407 	}
408 
409 	return;
410 }
411 
412 /*
413  * Read a word of data stored in the EEPROM at address 'addr.'
414  */
415 static void dc_eeprom_getword(sc, addr, dest)
416 	struct dc_softc		*sc;
417 	int			addr;
418 	u_int16_t		*dest;
419 {
420 	register int		i;
421 	u_int16_t		word = 0;
422 
423 	/* Force EEPROM to idle state. */
424 	dc_eeprom_idle(sc);
425 
426 	/* Enter EEPROM access mode. */
427 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
428 	dc_delay(sc);
429 	DC_SETBIT(sc, DC_SIO,  DC_SIO_ROMCTL_READ);
430 	dc_delay(sc);
431 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
432 	dc_delay(sc);
433 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
434 	dc_delay(sc);
435 
436 	/*
437 	 * Send address of word we want to read.
438 	 */
439 	dc_eeprom_putbyte(sc, addr);
440 
441 	/*
442 	 * Start reading bits from EEPROM.
443 	 */
444 	for (i = 0x8000; i; i >>= 1) {
445 		SIO_SET(DC_SIO_EE_CLK);
446 		dc_delay(sc);
447 		if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
448 			word |= i;
449 		dc_delay(sc);
450 		SIO_CLR(DC_SIO_EE_CLK);
451 		dc_delay(sc);
452 	}
453 
454 	/* Turn off EEPROM access mode. */
455 	dc_eeprom_idle(sc);
456 
457 	*dest = word;
458 
459 	return;
460 }
461 
462 /*
463  * Read a sequence of words from the EEPROM.
464  */
465 static void dc_read_eeprom(sc, dest, off, cnt, swap)
466 	struct dc_softc		*sc;
467 	caddr_t			dest;
468 	int			off;
469 	int			cnt;
470 	int			swap;
471 {
472 	int			i;
473 	u_int16_t		word = 0, *ptr;
474 
475 	for (i = 0; i < cnt; i++) {
476 		if (DC_IS_PNIC(sc))
477 			dc_eeprom_getword_pnic(sc, off + i, &word);
478 		else
479 			dc_eeprom_getword(sc, off + i, &word);
480 		ptr = (u_int16_t *)(dest + (i * 2));
481 		if (swap)
482 			*ptr = ntohs(word);
483 		else
484 			*ptr = word;
485 	}
486 
487 	return;
488 }
489 
490 /*
491  * The following two routines are taken from the Macronix 98713
492  * Application Notes pp.19-21.
493  */
494 /*
495  * Write a bit to the MII bus.
496  */
497 static void dc_mii_writebit(sc, bit)
498 	struct dc_softc		*sc;
499 	int			bit;
500 {
501 	if (bit)
502 		CSR_WRITE_4(sc, DC_SIO,
503 		    DC_SIO_ROMCTL_WRITE|DC_SIO_MII_DATAOUT);
504 	else
505 		CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
506 
507 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
508 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
509 
510 	return;
511 }
512 
513 /*
514  * Read a bit from the MII bus.
515  */
516 static int dc_mii_readbit(sc)
517 	struct dc_softc		*sc;
518 {
519 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_READ|DC_SIO_MII_DIR);
520 	CSR_READ_4(sc, DC_SIO);
521 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
522 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
523 	if (CSR_READ_4(sc, DC_SIO) & DC_SIO_MII_DATAIN)
524 		return(1);
525 
526 	return(0);
527 }
528 
529 /*
530  * Sync the PHYs by setting data bit and strobing the clock 32 times.
531  */
532 static void dc_mii_sync(sc)
533 	struct dc_softc		*sc;
534 {
535 	register int		i;
536 
537 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
538 
539 	for (i = 0; i < 32; i++)
540 		dc_mii_writebit(sc, 1);
541 
542 	return;
543 }
544 
545 /*
546  * Clock a series of bits through the MII.
547  */
548 static void dc_mii_send(sc, bits, cnt)
549 	struct dc_softc		*sc;
550 	u_int32_t		bits;
551 	int			cnt;
552 {
553 	int			i;
554 
555 	for (i = (0x1 << (cnt - 1)); i; i >>= 1)
556 		dc_mii_writebit(sc, bits & i);
557 }
558 
559 /*
560  * Read an PHY register through the MII.
561  */
562 static int dc_mii_readreg(sc, frame)
563 	struct dc_softc		*sc;
564 	struct dc_mii_frame	*frame;
565 
566 {
567 	int			i, ack, s;
568 
569 	s = splimp();
570 
571 	/*
572 	 * Set up frame for RX.
573 	 */
574 	frame->mii_stdelim = DC_MII_STARTDELIM;
575 	frame->mii_opcode = DC_MII_READOP;
576 	frame->mii_turnaround = 0;
577 	frame->mii_data = 0;
578 
579 	/*
580 	 * Sync the PHYs.
581 	 */
582 	dc_mii_sync(sc);
583 
584 	/*
585 	 * Send command/address info.
586 	 */
587 	dc_mii_send(sc, frame->mii_stdelim, 2);
588 	dc_mii_send(sc, frame->mii_opcode, 2);
589 	dc_mii_send(sc, frame->mii_phyaddr, 5);
590 	dc_mii_send(sc, frame->mii_regaddr, 5);
591 
592 #ifdef notdef
593 	/* Idle bit */
594 	dc_mii_writebit(sc, 1);
595 	dc_mii_writebit(sc, 0);
596 #endif
597 
598 	/* Check for ack */
599 	ack = dc_mii_readbit(sc);
600 
601 	/*
602 	 * Now try reading data bits. If the ack failed, we still
603 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
604 	 */
605 	if (ack) {
606 		for(i = 0; i < 16; i++) {
607 			dc_mii_readbit(sc);
608 		}
609 		goto fail;
610 	}
611 
612 	for (i = 0x8000; i; i >>= 1) {
613 		if (!ack) {
614 			if (dc_mii_readbit(sc))
615 				frame->mii_data |= i;
616 		}
617 	}
618 
619 fail:
620 
621 	dc_mii_writebit(sc, 0);
622 	dc_mii_writebit(sc, 0);
623 
624 	splx(s);
625 
626 	if (ack)
627 		return(1);
628 	return(0);
629 }
630 
631 /*
632  * Write to a PHY register through the MII.
633  */
634 static int dc_mii_writereg(sc, frame)
635 	struct dc_softc		*sc;
636 	struct dc_mii_frame	*frame;
637 
638 {
639 	int			s;
640 
641 	s = splimp();
642 	/*
643 	 * Set up frame for TX.
644 	 */
645 
646 	frame->mii_stdelim = DC_MII_STARTDELIM;
647 	frame->mii_opcode = DC_MII_WRITEOP;
648 	frame->mii_turnaround = DC_MII_TURNAROUND;
649 
650 	/*
651 	 * Sync the PHYs.
652 	 */
653 	dc_mii_sync(sc);
654 
655 	dc_mii_send(sc, frame->mii_stdelim, 2);
656 	dc_mii_send(sc, frame->mii_opcode, 2);
657 	dc_mii_send(sc, frame->mii_phyaddr, 5);
658 	dc_mii_send(sc, frame->mii_regaddr, 5);
659 	dc_mii_send(sc, frame->mii_turnaround, 2);
660 	dc_mii_send(sc, frame->mii_data, 16);
661 
662 	/* Idle bit. */
663 	dc_mii_writebit(sc, 0);
664 	dc_mii_writebit(sc, 0);
665 
666 	splx(s);
667 
668 	return(0);
669 }
670 
671 static int dc_miibus_readreg(dev, phy, reg)
672 	device_t		dev;
673 	int			phy, reg;
674 {
675 	struct dc_mii_frame	frame;
676 	struct dc_softc		*sc;
677 	int			i, rval, phy_reg;
678 
679 	sc = device_get_softc(dev);
680 	bzero((char *)&frame, sizeof(frame));
681 
682 	/*
683 	 * Note: both the AL981 and AN985 have internal PHYs,
684 	 * however the AL981 provides direct access to the PHY
685 	 * registers while the AN985 uses a serial MII interface.
686 	 * The AN985's MII interface is also buggy in that you
687 	 * can read from any MII address (0 to 31), but only address 1
688 	 * behaves normally. To deal with both cases, we pretend
689 	 * that the PHY is at MII address 1.
690 	 */
691 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
692 		return(0);
693 
694 	if (sc->dc_pmode == DC_PMODE_SYM) {
695 		if (phy == (MII_NPHY - 1)) {
696 			switch(reg) {
697 			case MII_BMSR:
698 			/*
699 			 * Fake something to make the probe
700 			 * code think there's a PHY here.
701 			 */
702 				return(BMSR_MEDIAMASK);
703 				break;
704 			case MII_PHYIDR1:
705 				if (DC_IS_PNIC(sc))
706 					return(DC_VENDORID_LO);
707 				return(DC_VENDORID_DEC);
708 				break;
709 			case MII_PHYIDR2:
710 				if (DC_IS_PNIC(sc))
711 					return(DC_DEVICEID_82C168);
712 				return(DC_DEVICEID_21143);
713 				break;
714 			default:
715 				return(0);
716 				break;
717 			}
718 		} else
719 			return(0);
720 	}
721 
722 	if (DC_IS_PNIC(sc)) {
723 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
724 		    (phy << 23) | (reg << 18));
725 		for (i = 0; i < DC_TIMEOUT; i++) {
726 			DELAY(1);
727 			rval = CSR_READ_4(sc, DC_PN_MII);
728 			if (!(rval & DC_PN_MII_BUSY)) {
729 				rval &= 0xFFFF;
730 				return(rval == 0xFFFF ? 0 : rval);
731 			}
732 		}
733 		return(0);
734 	}
735 
736 	if (DC_IS_COMET(sc)) {
737 		switch(reg) {
738 		case MII_BMCR:
739 			phy_reg = DC_AL_BMCR;
740 			break;
741 		case MII_BMSR:
742 			phy_reg = DC_AL_BMSR;
743 			break;
744 		case MII_PHYIDR1:
745 			phy_reg = DC_AL_VENID;
746 			break;
747 		case MII_PHYIDR2:
748 			phy_reg = DC_AL_DEVID;
749 			break;
750 		case MII_ANAR:
751 			phy_reg = DC_AL_ANAR;
752 			break;
753 		case MII_ANLPAR:
754 			phy_reg = DC_AL_LPAR;
755 			break;
756 		case MII_ANER:
757 			phy_reg = DC_AL_ANER;
758 			break;
759 		default:
760 			printf("dc%d: phy_read: bad phy register %x\n",
761 			    sc->dc_unit, reg);
762 			return(0);
763 			break;
764 		}
765 
766 		rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
767 
768 		if (rval == 0xFFFF)
769 			return(0);
770 		return(rval);
771 	}
772 
773 	frame.mii_phyaddr = phy;
774 	frame.mii_regaddr = reg;
775 	phy_reg = CSR_READ_4(sc, DC_NETCFG);
776 	CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
777 	dc_mii_readreg(sc, &frame);
778 	CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
779 
780 	return(frame.mii_data);
781 }
782 
783 static int dc_miibus_writereg(dev, phy, reg, data)
784 	device_t		dev;
785 	int			phy, reg, data;
786 {
787 	struct dc_softc		*sc;
788 	struct dc_mii_frame	frame;
789 	int			i, phy_reg;
790 
791 	sc = device_get_softc(dev);
792 	bzero((char *)&frame, sizeof(frame));
793 
794 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
795 		return(0);
796 
797 	if (DC_IS_PNIC(sc)) {
798 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
799 		    (phy << 23) | (reg << 10) | data);
800 		for (i = 0; i < DC_TIMEOUT; i++) {
801 			if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
802 				break;
803 		}
804 		return(0);
805 	}
806 
807 	if (DC_IS_COMET(sc)) {
808 		switch(reg) {
809 		case MII_BMCR:
810 			phy_reg = DC_AL_BMCR;
811 			break;
812 		case MII_BMSR:
813 			phy_reg = DC_AL_BMSR;
814 			break;
815 		case MII_PHYIDR1:
816 			phy_reg = DC_AL_VENID;
817 			break;
818 		case MII_PHYIDR2:
819 			phy_reg = DC_AL_DEVID;
820 			break;
821 		case MII_ANAR:
822 			phy_reg = DC_AL_ANAR;
823 			break;
824 		case MII_ANLPAR:
825 			phy_reg = DC_AL_LPAR;
826 			break;
827 		case MII_ANER:
828 			phy_reg = DC_AL_ANER;
829 			break;
830 		default:
831 			printf("dc%d: phy_write: bad phy register %x\n",
832 			    sc->dc_unit, reg);
833 			return(0);
834 			break;
835 		}
836 
837 		CSR_WRITE_4(sc, phy_reg, data);
838 		return(0);
839 	}
840 
841 	frame.mii_phyaddr = phy;
842 	frame.mii_regaddr = reg;
843 	frame.mii_data = data;
844 
845 	phy_reg = CSR_READ_4(sc, DC_NETCFG);
846 	CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
847 	dc_mii_writereg(sc, &frame);
848 	CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
849 
850 	return(0);
851 }
852 
853 static void dc_miibus_statchg(dev)
854 	device_t		dev;
855 {
856 	struct dc_softc		*sc;
857 	struct mii_data		*mii;
858 	struct ifmedia		*ifm;
859 
860 	sc = device_get_softc(dev);
861 	if (DC_IS_ADMTEK(sc))
862 		return;
863 	mii = device_get_softc(sc->dc_miibus);
864 	ifm = &mii->mii_media;
865 	if (DC_IS_DAVICOM(sc) &&
866 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_homePNA) {
867 		dc_setcfg(sc, ifm->ifm_media);
868 		sc->dc_if_media = ifm->ifm_media;
869 	} else {
870 		dc_setcfg(sc, mii->mii_media_active);
871 		sc->dc_if_media = mii->mii_media_active;
872 	}
873 
874 	return;
875 }
876 
877 /*
878  * Special support for DM9102A cards with HomePNA PHYs. Note:
879  * with the Davicom DM9102A/DM9801 eval board that I have, it seems
880  * to be impossible to talk to the management interface of the DM9801
881  * PHY (its MDIO pin is not connected to anything). Consequently,
882  * the driver has to just 'know' about the additional mode and deal
883  * with it itself. *sigh*
884  */
885 static void dc_miibus_mediainit(dev)
886 	device_t		dev;
887 {
888 	struct dc_softc		*sc;
889 	struct mii_data		*mii;
890 	struct ifmedia		*ifm;
891 	int			rev;
892 
893 	rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF;
894 
895 	sc = device_get_softc(dev);
896 	mii = device_get_softc(sc->dc_miibus);
897 	ifm = &mii->mii_media;
898 
899 	if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A)
900 		ifmedia_add(ifm, IFM_ETHER|IFM_homePNA, 0, NULL);
901 
902 	return;
903 }
904 
905 #define DC_POLY		0xEDB88320
906 #define DC_BITS_512	9
907 #define DC_BITS_128	7
908 #define DC_BITS_64	6
909 
910 static u_int32_t dc_crc_le(sc, addr)
911 	struct dc_softc		*sc;
912 	caddr_t			addr;
913 {
914 	u_int32_t		idx, bit, data, crc;
915 
916 	/* Compute CRC for the address value. */
917 	crc = 0xFFFFFFFF; /* initial value */
918 
919 	for (idx = 0; idx < 6; idx++) {
920 		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1)
921 			crc = (crc >> 1) ^ (((crc ^ data) & 1) ? DC_POLY : 0);
922 	}
923 
924 	/*
925 	 * The hash table on the PNIC II and the MX98715AEC-C/D/E
926 	 * chips is only 128 bits wide.
927 	 */
928 	if (sc->dc_flags & DC_128BIT_HASH)
929 		return (crc & ((1 << DC_BITS_128) - 1));
930 
931 	/* The hash table on the MX98715BEC is only 64 bits wide. */
932 	if (sc->dc_flags & DC_64BIT_HASH)
933 		return (crc & ((1 << DC_BITS_64) - 1));
934 
935 	return (crc & ((1 << DC_BITS_512) - 1));
936 }
937 
938 /*
939  * Calculate CRC of a multicast group address, return the lower 6 bits.
940  */
941 static u_int32_t dc_crc_be(addr)
942 	caddr_t			addr;
943 {
944 	u_int32_t		crc, carry;
945 	int			i, j;
946 	u_int8_t		c;
947 
948 	/* Compute CRC for the address value. */
949 	crc = 0xFFFFFFFF; /* initial value */
950 
951 	for (i = 0; i < 6; i++) {
952 		c = *(addr + i);
953 		for (j = 0; j < 8; j++) {
954 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
955 			crc <<= 1;
956 			c >>= 1;
957 			if (carry)
958 				crc = (crc ^ 0x04c11db6) | carry;
959 		}
960 	}
961 
962 	/* return the filter bit position */
963 	return((crc >> 26) & 0x0000003F);
964 }
965 
966 /*
967  * 21143-style RX filter setup routine. Filter programming is done by
968  * downloading a special setup frame into the TX engine. 21143, Macronix,
969  * PNIC, PNIC II and Davicom chips are programmed this way.
970  *
971  * We always program the chip using 'hash perfect' mode, i.e. one perfect
972  * address (our node address) and a 512-bit hash filter for multicast
973  * frames. We also sneak the broadcast address into the hash filter since
974  * we need that too.
975  */
976 void dc_setfilt_21143(sc)
977 	struct dc_softc		*sc;
978 {
979 	struct dc_desc		*sframe;
980 	u_int32_t		h, *sp;
981 	struct ifmultiaddr	*ifma;
982 	struct ifnet		*ifp;
983 	int			i;
984 
985 	ifp = &sc->arpcom.ac_if;
986 
987 	i = sc->dc_cdata.dc_tx_prod;
988 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
989 	sc->dc_cdata.dc_tx_cnt++;
990 	sframe = &sc->dc_ldata->dc_tx_list[i];
991 	sp = (u_int32_t *)&sc->dc_cdata.dc_sbuf;
992 	bzero((char *)sp, DC_SFRAME_LEN);
993 
994 	sframe->dc_data = vtophys(&sc->dc_cdata.dc_sbuf);
995 	sframe->dc_ctl = DC_SFRAME_LEN | DC_TXCTL_SETUP | DC_TXCTL_TLINK |
996 	    DC_FILTER_HASHPERF | DC_TXCTL_FINT;
997 
998 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)&sc->dc_cdata.dc_sbuf;
999 
1000 	/* If we want promiscuous mode, set the allframes bit. */
1001 	if (ifp->if_flags & IFF_PROMISC)
1002 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1003 	else
1004 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1005 
1006 	if (ifp->if_flags & IFF_ALLMULTI)
1007 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1008 	else
1009 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1010 
1011 	for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
1012 	    ifma = ifma->ifma_link.le_next) {
1013 		if (ifma->ifma_addr->sa_family != AF_LINK)
1014 			continue;
1015 		h = dc_crc_le(sc,
1016 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1017 		sp[h >> 4] |= 1 << (h & 0xF);
1018 	}
1019 
1020 	if (ifp->if_flags & IFF_BROADCAST) {
1021 		h = dc_crc_le(sc, (caddr_t)&etherbroadcastaddr);
1022 		sp[h >> 4] |= 1 << (h & 0xF);
1023 	}
1024 
1025 	/* Set our MAC address */
1026 	sp[39] = ((u_int16_t *)sc->arpcom.ac_enaddr)[0];
1027 	sp[40] = ((u_int16_t *)sc->arpcom.ac_enaddr)[1];
1028 	sp[41] = ((u_int16_t *)sc->arpcom.ac_enaddr)[2];
1029 
1030 	sframe->dc_status = DC_TXSTAT_OWN;
1031 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1032 
1033 	/*
1034 	 * The PNIC takes an exceedingly long time to process its
1035 	 * setup frame; wait 10ms after posting the setup frame
1036 	 * before proceeding, just so it has time to swallow its
1037 	 * medicine.
1038 	 */
1039 	DELAY(10000);
1040 
1041 	ifp->if_timer = 5;
1042 
1043 	return;
1044 }
1045 
1046 void dc_setfilt_admtek(sc)
1047 	struct dc_softc		*sc;
1048 {
1049 	struct ifnet		*ifp;
1050 	int			h = 0;
1051 	u_int32_t		hashes[2] = { 0, 0 };
1052 	struct ifmultiaddr	*ifma;
1053 
1054 	ifp = &sc->arpcom.ac_if;
1055 
1056 	/* Init our MAC address */
1057 	CSR_WRITE_4(sc, DC_AL_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1058 	CSR_WRITE_4(sc, DC_AL_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1059 
1060 	/* If we want promiscuous mode, set the allframes bit. */
1061 	if (ifp->if_flags & IFF_PROMISC)
1062 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1063 	else
1064 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1065 
1066 	if (ifp->if_flags & IFF_ALLMULTI)
1067 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1068 	else
1069 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1070 
1071 	/* first, zot all the existing hash bits */
1072 	CSR_WRITE_4(sc, DC_AL_MAR0, 0);
1073 	CSR_WRITE_4(sc, DC_AL_MAR1, 0);
1074 
1075 	/*
1076 	 * If we're already in promisc or allmulti mode, we
1077 	 * don't have to bother programming the multicast filter.
1078 	 */
1079 	if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI))
1080 		return;
1081 
1082 	/* now program new ones */
1083 	for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
1084 	    ifma = ifma->ifma_link.le_next) {
1085 		if (ifma->ifma_addr->sa_family != AF_LINK)
1086 			continue;
1087 		h = dc_crc_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1088 		if (h < 32)
1089 			hashes[0] |= (1 << h);
1090 		else
1091 			hashes[1] |= (1 << (h - 32));
1092 	}
1093 
1094 	CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]);
1095 	CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]);
1096 
1097 	return;
1098 }
1099 
1100 void dc_setfilt_asix(sc)
1101 	struct dc_softc		*sc;
1102 {
1103 	struct ifnet		*ifp;
1104 	int			h = 0;
1105 	u_int32_t		hashes[2] = { 0, 0 };
1106 	struct ifmultiaddr	*ifma;
1107 
1108 	ifp = &sc->arpcom.ac_if;
1109 
1110         /* Init our MAC address */
1111         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
1112         CSR_WRITE_4(sc, DC_AX_FILTDATA,
1113 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1114         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
1115         CSR_WRITE_4(sc, DC_AX_FILTDATA,
1116 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1117 
1118 	/* If we want promiscuous mode, set the allframes bit. */
1119 	if (ifp->if_flags & IFF_PROMISC)
1120 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1121 	else
1122 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1123 
1124 	if (ifp->if_flags & IFF_ALLMULTI)
1125 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1126 	else
1127 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1128 
1129 	/*
1130 	 * The ASIX chip has a special bit to enable reception
1131 	 * of broadcast frames.
1132 	 */
1133 	if (ifp->if_flags & IFF_BROADCAST)
1134 		DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1135 	else
1136 		DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1137 
1138 	/* first, zot all the existing hash bits */
1139 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1140 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1141 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1142 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1143 
1144 	/*
1145 	 * If we're already in promisc or allmulti mode, we
1146 	 * don't have to bother programming the multicast filter.
1147 	 */
1148 	if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI))
1149 		return;
1150 
1151 	/* now program new ones */
1152 	for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
1153 	    ifma = ifma->ifma_link.le_next) {
1154 		if (ifma->ifma_addr->sa_family != AF_LINK)
1155 			continue;
1156 		h = dc_crc_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1157 		if (h < 32)
1158 			hashes[0] |= (1 << h);
1159 		else
1160 			hashes[1] |= (1 << (h - 32));
1161 	}
1162 
1163 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1164 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
1165 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1166 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
1167 
1168 	return;
1169 }
1170 
1171 static void dc_setfilt(sc)
1172 	struct dc_softc		*sc;
1173 {
1174 	if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
1175 	    DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc))
1176 		dc_setfilt_21143(sc);
1177 
1178 	if (DC_IS_ASIX(sc))
1179 		dc_setfilt_asix(sc);
1180 
1181 	if (DC_IS_ADMTEK(sc))
1182 		dc_setfilt_admtek(sc);
1183 
1184 	return;
1185 }
1186 
1187 /*
1188  * In order to fiddle with the
1189  * 'full-duplex' and '100Mbps' bits in the netconfig register, we
1190  * first have to put the transmit and/or receive logic in the idle state.
1191  */
1192 static void dc_setcfg(sc, media)
1193 	struct dc_softc		*sc;
1194 	int			media;
1195 {
1196 	int			i, restart = 0;
1197 	u_int32_t		isr;
1198 
1199 	if (IFM_SUBTYPE(media) == IFM_NONE)
1200 		return;
1201 
1202 	if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON)) {
1203 		restart = 1;
1204 		DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON));
1205 
1206 		for (i = 0; i < DC_TIMEOUT; i++) {
1207 			DELAY(10);
1208 			isr = CSR_READ_4(sc, DC_ISR);
1209 			if (isr & DC_ISR_TX_IDLE ||
1210 			    (isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED)
1211 				break;
1212 		}
1213 
1214 		if (i == DC_TIMEOUT)
1215 			printf("dc%d: failed to force tx and "
1216 				"rx to idle state\n", sc->dc_unit);
1217 
1218 	}
1219 
1220 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
1221 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1222 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1223 		if (sc->dc_pmode == DC_PMODE_MII) {
1224 			DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1225 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1226 			    DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER));
1227 			if (sc->dc_type == DC_TYPE_98713)
1228 				DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1229 				    DC_NETCFG_SCRAMBLER));
1230 			if (!DC_IS_DAVICOM(sc))
1231 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1232 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1233 		} else {
1234 			if (DC_IS_PNIC(sc)) {
1235 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
1236 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1237 				DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1238 			}
1239 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1240 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1241 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1242 		}
1243 	}
1244 
1245 	if (IFM_SUBTYPE(media) == IFM_10_T) {
1246 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1247 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1248 		if (sc->dc_pmode == DC_PMODE_MII) {
1249 			DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1250 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1251 			    DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER));
1252 			if (sc->dc_type == DC_TYPE_98713)
1253 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1254 			if (!DC_IS_DAVICOM(sc))
1255 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1256 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1257 		} else {
1258 			if (DC_IS_PNIC(sc)) {
1259 				DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
1260 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1261 				DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1262 			}
1263 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1264 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1265 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1266 		}
1267 	}
1268 
1269 	/*
1270 	 * If this is a Davicom DM9102A card with a DM9801 HomePNA
1271 	 * PHY and we want HomePNA mode, set the portsel bit to turn
1272 	 * on the external MII port.
1273 	 */
1274 	if (DC_IS_DAVICOM(sc)) {
1275 		if (IFM_SUBTYPE(media) == IFM_homePNA) {
1276 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1277 			sc->dc_link = 1;
1278 		} else {
1279 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1280 		}
1281 	}
1282 
1283 	if ((media & IFM_GMASK) == IFM_FDX) {
1284 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1285 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1286 			DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1287 	} else {
1288 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1289 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1290 			DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1291 	}
1292 
1293 	if (restart)
1294 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON|DC_NETCFG_RX_ON);
1295 
1296 	return;
1297 }
1298 
1299 static void dc_reset(sc)
1300 	struct dc_softc		*sc;
1301 {
1302 	register int		i;
1303 
1304 	DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1305 
1306 	for (i = 0; i < DC_TIMEOUT; i++) {
1307 		DELAY(10);
1308 		if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
1309 			break;
1310 	}
1311 
1312 	if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc)) {
1313 		DELAY(10000);
1314 		DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1315 		i = 0;
1316 	}
1317 
1318 	if (i == DC_TIMEOUT)
1319 		printf("dc%d: reset never completed!\n", sc->dc_unit);
1320 
1321 	/* Wait a little while for the chip to get its brains in order. */
1322 	DELAY(1000);
1323 
1324 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
1325 	CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
1326 	CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
1327 
1328 	/*
1329 	 * Bring the SIA out of reset. In some cases, it looks
1330 	 * like failing to unreset the SIA soon enough gets it
1331 	 * into a state where it will never come out of reset
1332 	 * until we reset the whole chip again.
1333 	 */
1334 	if (DC_IS_INTEL(sc))
1335 		DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1336 
1337         return;
1338 }
1339 
1340 static struct dc_type *dc_devtype(dev)
1341 	device_t		dev;
1342 {
1343 	struct dc_type		*t;
1344 	u_int32_t		rev;
1345 
1346 	t = dc_devs;
1347 
1348 	while(t->dc_name != NULL) {
1349 		if ((pci_get_vendor(dev) == t->dc_vid) &&
1350 		    (pci_get_device(dev) == t->dc_did)) {
1351 			/* Check the PCI revision */
1352 			rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF;
1353 			if (t->dc_did == DC_DEVICEID_98713 &&
1354 			    rev >= DC_REVISION_98713A)
1355 				t++;
1356 			if (t->dc_did == DC_DEVICEID_98713_CP &&
1357 			    rev >= DC_REVISION_98713A)
1358 				t++;
1359 			if (t->dc_did == DC_DEVICEID_987x5 &&
1360 			    rev >= DC_REVISION_98715AEC_C)
1361 				t++;
1362 			if (t->dc_did == DC_DEVICEID_987x5 &&
1363 			    rev >= DC_REVISION_98725)
1364 				t++;
1365 			if (t->dc_did == DC_DEVICEID_AX88140A &&
1366 			    rev >= DC_REVISION_88141)
1367 				t++;
1368 			if (t->dc_did == DC_DEVICEID_82C168 &&
1369 			    rev >= DC_REVISION_82C169)
1370 				t++;
1371 			if (t->dc_did == DC_DEVICEID_DM9102 &&
1372 			    rev >= DC_REVISION_DM9102A)
1373 				t++;
1374 			return(t);
1375 		}
1376 		t++;
1377 	}
1378 
1379 	return(NULL);
1380 }
1381 
1382 /*
1383  * Probe for a 21143 or clone chip. Check the PCI vendor and device
1384  * IDs against our list and return a device name if we find a match.
1385  * We do a little bit of extra work to identify the exact type of
1386  * chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
1387  * but different revision IDs. The same is true for 98715/98715A
1388  * chips and the 98725, as well as the ASIX and ADMtek chips. In some
1389  * cases, the exact chip revision affects driver behavior.
1390  */
1391 static int dc_probe(dev)
1392 	device_t		dev;
1393 {
1394 	struct dc_type		*t;
1395 
1396 	t = dc_devtype(dev);
1397 
1398 	if (t != NULL) {
1399 		device_set_desc(dev, t->dc_name);
1400 		return(0);
1401 	}
1402 
1403 	return(ENXIO);
1404 }
1405 
1406 static void dc_acpi(dev)
1407 	device_t		dev;
1408 {
1409 	u_int32_t		r, cptr;
1410 	int			unit;
1411 
1412 	unit = device_get_unit(dev);
1413 
1414 	/* Find the location of the capabilities block */
1415 	cptr = pci_read_config(dev, DC_PCI_CCAP, 4) & 0xFF;
1416 
1417 	r = pci_read_config(dev, cptr, 4) & 0xFF;
1418 	if (r == 0x01) {
1419 
1420 		r = pci_read_config(dev, cptr + 4, 4);
1421 		if (r & DC_PSTATE_D3) {
1422 			u_int32_t		iobase, membase, irq;
1423 
1424 			/* Save important PCI config data. */
1425 			iobase = pci_read_config(dev, DC_PCI_CFBIO, 4);
1426 			membase = pci_read_config(dev, DC_PCI_CFBMA, 4);
1427 			irq = pci_read_config(dev, DC_PCI_CFIT, 4);
1428 
1429 			/* Reset the power state. */
1430 			printf("dc%d: chip is in D%d power mode "
1431 			    "-- setting to D0\n", unit, r & DC_PSTATE_D3);
1432 			r &= 0xFFFFFFFC;
1433 			pci_write_config(dev, cptr + 4, r, 4);
1434 
1435 			/* Restore PCI config data. */
1436 			pci_write_config(dev, DC_PCI_CFBIO, iobase, 4);
1437 			pci_write_config(dev, DC_PCI_CFBMA, membase, 4);
1438 			pci_write_config(dev, DC_PCI_CFIT, irq, 4);
1439 		}
1440 	}
1441 	return;
1442 }
1443 
1444 /*
1445  * Attach the interface. Allocate softc structures, do ifmedia
1446  * setup and ethernet/BPF attach.
1447  */
1448 static int dc_attach(dev)
1449 	device_t		dev;
1450 {
1451 	int			s;
1452 	u_char			eaddr[ETHER_ADDR_LEN];
1453 	u_int32_t		command;
1454 	struct dc_softc		*sc;
1455 	struct ifnet		*ifp;
1456 	u_int32_t		revision;
1457 	int			unit, error = 0, rid, mac_offset;
1458 
1459 	s = splimp();
1460 
1461 	sc = device_get_softc(dev);
1462 	unit = device_get_unit(dev);
1463 	bzero(sc, sizeof(struct dc_softc));
1464 
1465 	/*
1466 	 * Handle power management nonsense.
1467 	 */
1468 	dc_acpi(dev);
1469 
1470 	/*
1471 	 * Map control/status registers.
1472 	 */
1473 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1474 	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
1475 	pci_write_config(dev, PCIR_COMMAND, command, 4);
1476 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1477 
1478 #ifdef DC_USEIOSPACE
1479 	if (!(command & PCIM_CMD_PORTEN)) {
1480 		printf("dc%d: failed to enable I/O ports!\n", unit);
1481 		error = ENXIO;
1482 		goto fail;
1483 	}
1484 #else
1485 	if (!(command & PCIM_CMD_MEMEN)) {
1486 		printf("dc%d: failed to enable memory mapping!\n", unit);
1487 		error = ENXIO;
1488 		goto fail;
1489 	}
1490 #endif
1491 
1492 	rid = DC_RID;
1493 	sc->dc_res = bus_alloc_resource(dev, DC_RES, &rid,
1494 	    0, ~0, 1, RF_ACTIVE);
1495 
1496 	if (sc->dc_res == NULL) {
1497 		printf("dc%d: couldn't map ports/memory\n", unit);
1498 		error = ENXIO;
1499 		goto fail;
1500 	}
1501 
1502 	sc->dc_btag = rman_get_bustag(sc->dc_res);
1503 	sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
1504 
1505 	/* Allocate interrupt */
1506 	rid = 0;
1507 	sc->dc_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1508 	    RF_SHAREABLE | RF_ACTIVE);
1509 
1510 	if (sc->dc_irq == NULL) {
1511 		printf("dc%d: couldn't map interrupt\n", unit);
1512 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
1513 		error = ENXIO;
1514 		goto fail;
1515 	}
1516 
1517 	error = bus_setup_intr(dev, sc->dc_irq, INTR_TYPE_NET,
1518 	    dc_intr, sc, &sc->dc_intrhand);
1519 
1520 	if (error) {
1521 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
1522 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
1523 		printf("dc%d: couldn't set up irq\n", unit);
1524 		goto fail;
1525 	}
1526 
1527 	/* Need this info to decide on a chip type. */
1528 	sc->dc_info = dc_devtype(dev);
1529 	revision = pci_read_config(dev, DC_PCI_CFRV, 4) & 0x000000FF;
1530 
1531 	switch(sc->dc_info->dc_did) {
1532 	case DC_DEVICEID_21143:
1533 		sc->dc_type = DC_TYPE_21143;
1534 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1535 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1536 		break;
1537 	case DC_DEVICEID_DM9100:
1538 	case DC_DEVICEID_DM9102:
1539 		sc->dc_type = DC_TYPE_DM9102;
1540 		sc->dc_flags |= DC_TX_COALESCE|DC_TX_USE_TX_INTR;
1541 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1542 		sc->dc_pmode = DC_PMODE_MII;
1543 		break;
1544 	case DC_DEVICEID_AL981:
1545 		sc->dc_type = DC_TYPE_AL981;
1546 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1547 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1548 		sc->dc_pmode = DC_PMODE_MII;
1549 		break;
1550 	case DC_DEVICEID_AN985:
1551 		sc->dc_type = DC_TYPE_AN985;
1552 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1553 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1554 		sc->dc_pmode = DC_PMODE_MII;
1555 		break;
1556 	case DC_DEVICEID_98713:
1557 	case DC_DEVICEID_98713_CP:
1558 		if (revision < DC_REVISION_98713A) {
1559 			sc->dc_type = DC_TYPE_98713;
1560 		}
1561 		if (revision >= DC_REVISION_98713A) {
1562 			sc->dc_type = DC_TYPE_98713A;
1563 			sc->dc_flags |= DC_21143_NWAY;
1564 		}
1565 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1566 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1567 		break;
1568 	case DC_DEVICEID_987x5:
1569 	case DC_DEVICEID_EN1217:
1570 		/*
1571 		 * Macronix MX98715AEC-C/D/E parts have only a
1572 		 * 128-bit hash table. We need to deal with these
1573 		 * in the same manner as the PNIC II so that we
1574 		 * get the right number of bits out of the
1575 		 * CRC routine.
1576 		 */
1577 		if (revision >= DC_REVISION_98715AEC_C &&
1578 		    revision < DC_REVISION_98725)
1579 			sc->dc_flags |= DC_128BIT_HASH;
1580 		sc->dc_type = DC_TYPE_987x5;
1581 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1582 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1583 		break;
1584 	case DC_DEVICEID_98727:
1585 		sc->dc_type = DC_TYPE_987x5;
1586 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1587 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1588 		break;
1589 	case DC_DEVICEID_82C115:
1590 		sc->dc_type = DC_TYPE_PNICII;
1591 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR|DC_128BIT_HASH;
1592 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1593 		break;
1594 	case DC_DEVICEID_82C168:
1595 		sc->dc_type = DC_TYPE_PNIC;
1596 		sc->dc_flags |= DC_TX_STORENFWD|DC_TX_INTR_ALWAYS;
1597 		sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
1598 		sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_NOWAIT);
1599 		if (revision < DC_REVISION_82C169)
1600 			sc->dc_pmode = DC_PMODE_SYM;
1601 		break;
1602 	case DC_DEVICEID_AX88140A:
1603 		sc->dc_type = DC_TYPE_ASIX;
1604 		sc->dc_flags |= DC_TX_USE_TX_INTR|DC_TX_INTR_FIRSTFRAG;
1605 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1606 		sc->dc_pmode = DC_PMODE_MII;
1607 		break;
1608 	default:
1609 		printf("dc%d: unknown device: %x\n", sc->dc_unit,
1610 		    sc->dc_info->dc_did);
1611 		break;
1612 	}
1613 
1614 	/* Save the cache line size. */
1615 	if (DC_IS_DAVICOM(sc))
1616 		sc->dc_cachesize = 0;
1617 	else
1618 		sc->dc_cachesize = pci_read_config(dev,
1619 		    DC_PCI_CFLT, 4) & 0xFF;
1620 
1621 	/* Reset the adapter. */
1622 	dc_reset(sc);
1623 
1624 	/* Take 21143 out of snooze mode */
1625 	if (DC_IS_INTEL(sc)) {
1626 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
1627 		command &= ~(DC_CFDD_SNOOZE_MODE|DC_CFDD_SLEEP_MODE);
1628 		pci_write_config(dev, DC_PCI_CFDD, command, 4);
1629 	}
1630 
1631 	/*
1632 	 * Try to learn something about the supported media.
1633 	 * We know that ASIX and ADMtek and Davicom devices
1634 	 * will *always* be using MII media, so that's a no-brainer.
1635 	 * The tricky ones are the Macronix/PNIC II and the
1636 	 * Intel 21143.
1637 	 */
1638 	if (DC_IS_INTEL(sc)) {
1639 		u_int32_t		media, cwuc;
1640 		cwuc = pci_read_config(dev, DC_PCI_CWUC, 4);
1641 		cwuc |= DC_CWUC_FORCE_WUL;
1642 		pci_write_config(dev, DC_PCI_CWUC, cwuc, 4);
1643 		DELAY(10000);
1644 		media = pci_read_config(dev, DC_PCI_CWUC, 4);
1645 		cwuc &= ~DC_CWUC_FORCE_WUL;
1646 		pci_write_config(dev, DC_PCI_CWUC, cwuc, 4);
1647 		DELAY(10000);
1648 		if (media & DC_CWUC_MII_ABILITY)
1649 			sc->dc_pmode = DC_PMODE_MII;
1650 		if (media & DC_CWUC_SYM_ABILITY) {
1651 			sc->dc_pmode = DC_PMODE_SYM;
1652 			sc->dc_flags |= DC_21143_NWAY;
1653 		}
1654 		/*
1655 		 * If none of the bits are set, then this NIC
1656 		 * isn't meant to support 'wake up LAN' mode.
1657 		 * This is usually only the case on multiport
1658 		 * cards, and these cards almost always have
1659 		 * MII transceivers.
1660 		 */
1661 		if (media == 0)
1662 			sc->dc_pmode = DC_PMODE_MII;
1663 	} else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
1664 		if (sc->dc_type == DC_TYPE_98713)
1665 			sc->dc_pmode = DC_PMODE_MII;
1666 		else
1667 			sc->dc_pmode = DC_PMODE_SYM;
1668 	} else if (!sc->dc_pmode)
1669 		sc->dc_pmode = DC_PMODE_MII;
1670 
1671 	/*
1672 	 * Get station address from the EEPROM.
1673 	 */
1674 	switch(sc->dc_type) {
1675 	case DC_TYPE_98713:
1676 	case DC_TYPE_98713A:
1677 	case DC_TYPE_987x5:
1678 	case DC_TYPE_PNICII:
1679 		dc_read_eeprom(sc, (caddr_t)&mac_offset,
1680 		    (DC_EE_NODEADDR_OFFSET / 2), 1, 0);
1681 		dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
1682 		break;
1683 	case DC_TYPE_PNIC:
1684 		dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
1685 		break;
1686 	case DC_TYPE_DM9102:
1687 	case DC_TYPE_21143:
1688 	case DC_TYPE_ASIX:
1689 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
1690 		break;
1691 	case DC_TYPE_AL981:
1692 	case DC_TYPE_AN985:
1693 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_AL_EE_NODEADDR, 3, 0);
1694 		break;
1695 	default:
1696 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
1697 		break;
1698 	}
1699 
1700 	/*
1701 	 * A 21143 or clone chip was detected. Inform the world.
1702 	 */
1703 	printf("dc%d: Ethernet address: %6D\n", unit, eaddr, ":");
1704 
1705 	sc->dc_unit = unit;
1706 	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
1707 
1708 	sc->dc_ldata = contigmalloc(sizeof(struct dc_list_data), M_DEVBUF,
1709 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1710 
1711 	if (sc->dc_ldata == NULL) {
1712 		printf("dc%d: no memory for list buffers!\n", unit);
1713 		bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
1714 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
1715 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
1716 		error = ENXIO;
1717 		goto fail;
1718 	}
1719 
1720 	bzero(sc->dc_ldata, sizeof(struct dc_list_data));
1721 
1722 	ifp = &sc->arpcom.ac_if;
1723 	ifp->if_softc = sc;
1724 	ifp->if_unit = unit;
1725 	ifp->if_name = "dc";
1726 	ifp->if_mtu = ETHERMTU;
1727 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1728 	ifp->if_ioctl = dc_ioctl;
1729 	ifp->if_output = ether_output;
1730 	ifp->if_start = dc_start;
1731 	ifp->if_watchdog = dc_watchdog;
1732 	ifp->if_init = dc_init;
1733 	ifp->if_baudrate = 10000000;
1734 	ifp->if_snd.ifq_maxlen = DC_TX_LIST_CNT - 1;
1735 
1736 	/*
1737 	 * Do MII setup.
1738 	 */
1739 	error = mii_phy_probe(dev, &sc->dc_miibus,
1740 	    dc_ifmedia_upd, dc_ifmedia_sts);
1741 
1742 	if (error && DC_IS_INTEL(sc)) {
1743 		sc->dc_pmode = DC_PMODE_SYM;
1744 		sc->dc_flags |= DC_21143_NWAY;
1745 		mii_phy_probe(dev, &sc->dc_miibus,
1746 		    dc_ifmedia_upd, dc_ifmedia_sts);
1747 		error = 0;
1748 	}
1749 
1750 	if (error) {
1751 		printf("dc%d: MII without any PHY!\n", sc->dc_unit);
1752 		bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
1753 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
1754 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
1755 		error = ENXIO;
1756 		goto fail;
1757 	}
1758 
1759 	/*
1760 	 * Call MI attach routine.
1761 	 */
1762 	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
1763 	callout_handle_init(&sc->dc_stat_ch);
1764 
1765 #ifdef __alpha__
1766         sc->dc_srm_media = 0;
1767 
1768 	/* Remember the SRM console media setting */
1769 	if (DC_IS_INTEL(sc)) {
1770 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
1771 		command &= ~(DC_CFDD_SNOOZE_MODE|DC_CFDD_SLEEP_MODE);
1772 		switch ((command >> 8) & 0xff) {
1773 		case 3:
1774 			sc->dc_srm_media = IFM_10_T;
1775 			break;
1776 		case 4:
1777 			sc->dc_srm_media = IFM_10_T | IFM_FDX;
1778 			break;
1779 		case 5:
1780 			sc->dc_srm_media = IFM_100_TX;
1781 			break;
1782 		case 6:
1783 			sc->dc_srm_media = IFM_100_TX | IFM_FDX;
1784 			break;
1785 		}
1786 		if (sc->dc_srm_media)
1787 			sc->dc_srm_media |= IFM_ACTIVE | IFM_ETHER;
1788 	}
1789 #endif
1790 
1791 
1792 fail:
1793 	splx(s);
1794 
1795 	return(error);
1796 }
1797 
1798 static int dc_detach(dev)
1799 	device_t		dev;
1800 {
1801 	struct dc_softc		*sc;
1802 	struct ifnet		*ifp;
1803 	int			s;
1804 
1805 	s = splimp();
1806 
1807 	sc = device_get_softc(dev);
1808 	ifp = &sc->arpcom.ac_if;
1809 
1810 	dc_stop(sc);
1811 	ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
1812 
1813 	bus_generic_detach(dev);
1814 	device_delete_child(dev, sc->dc_miibus);
1815 
1816 	bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
1817 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
1818 	bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
1819 
1820 	contigfree(sc->dc_ldata, sizeof(struct dc_list_data), M_DEVBUF);
1821 	if (sc->dc_pnic_rx_buf != NULL)
1822 		free(sc->dc_pnic_rx_buf, M_DEVBUF);
1823 
1824 	splx(s);
1825 
1826 	return(0);
1827 }
1828 
1829 /*
1830  * Initialize the transmit descriptors.
1831  */
1832 static int dc_list_tx_init(sc)
1833 	struct dc_softc		*sc;
1834 {
1835 	struct dc_chain_data	*cd;
1836 	struct dc_list_data	*ld;
1837 	int			i;
1838 
1839 	cd = &sc->dc_cdata;
1840 	ld = sc->dc_ldata;
1841 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
1842 		if (i == (DC_TX_LIST_CNT - 1)) {
1843 			ld->dc_tx_list[i].dc_next =
1844 			    vtophys(&ld->dc_tx_list[0]);
1845 		} else {
1846 			ld->dc_tx_list[i].dc_next =
1847 			    vtophys(&ld->dc_tx_list[i + 1]);
1848 		}
1849 		cd->dc_tx_chain[i] = NULL;
1850 		ld->dc_tx_list[i].dc_data = 0;
1851 		ld->dc_tx_list[i].dc_ctl = 0;
1852 	}
1853 
1854 	cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
1855 
1856 	return(0);
1857 }
1858 
1859 
1860 /*
1861  * Initialize the RX descriptors and allocate mbufs for them. Note that
1862  * we arrange the descriptors in a closed ring, so that the last descriptor
1863  * points back to the first.
1864  */
1865 static int dc_list_rx_init(sc)
1866 	struct dc_softc		*sc;
1867 {
1868 	struct dc_chain_data	*cd;
1869 	struct dc_list_data	*ld;
1870 	int			i;
1871 
1872 	cd = &sc->dc_cdata;
1873 	ld = sc->dc_ldata;
1874 
1875 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
1876 		if (dc_newbuf(sc, i, NULL) == ENOBUFS)
1877 			return(ENOBUFS);
1878 		if (i == (DC_RX_LIST_CNT - 1)) {
1879 			ld->dc_rx_list[i].dc_next =
1880 			    vtophys(&ld->dc_rx_list[0]);
1881 		} else {
1882 			ld->dc_rx_list[i].dc_next =
1883 			    vtophys(&ld->dc_rx_list[i + 1]);
1884 		}
1885 	}
1886 
1887 	cd->dc_rx_prod = 0;
1888 
1889 	return(0);
1890 }
1891 
1892 /*
1893  * Initialize an RX descriptor and attach an MBUF cluster.
1894  */
1895 static int dc_newbuf(sc, i, m)
1896 	struct dc_softc		*sc;
1897 	int			i;
1898 	struct mbuf		*m;
1899 {
1900 	struct mbuf		*m_new = NULL;
1901 	struct dc_desc		*c;
1902 
1903 	c = &sc->dc_ldata->dc_rx_list[i];
1904 
1905 	if (m == NULL) {
1906 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1907 		if (m_new == NULL) {
1908 			printf("dc%d: no memory for rx list "
1909 			    "-- packet dropped!\n", sc->dc_unit);
1910 			return(ENOBUFS);
1911 		}
1912 
1913 		MCLGET(m_new, M_DONTWAIT);
1914 		if (!(m_new->m_flags & M_EXT)) {
1915 			printf("dc%d: no memory for rx list "
1916 			    "-- packet dropped!\n", sc->dc_unit);
1917 			m_freem(m_new);
1918 			return(ENOBUFS);
1919 		}
1920 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1921 	} else {
1922 		m_new = m;
1923 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1924 		m_new->m_data = m_new->m_ext.ext_buf;
1925 	}
1926 
1927 	m_adj(m_new, sizeof(u_int64_t));
1928 
1929 	/*
1930 	 * If this is a PNIC chip, zero the buffer. This is part
1931 	 * of the workaround for the receive bug in the 82c168 and
1932 	 * 82c169 chips.
1933 	 */
1934 	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
1935 		bzero((char *)mtod(m_new, char *), m_new->m_len);
1936 
1937 	sc->dc_cdata.dc_rx_chain[i] = m_new;
1938 	c->dc_data = vtophys(mtod(m_new, caddr_t));
1939 	c->dc_ctl = DC_RXCTL_RLINK | DC_RXLEN;
1940 	c->dc_status = DC_RXSTAT_OWN;
1941 
1942 	return(0);
1943 }
1944 
1945 /*
1946  * Grrrrr.
1947  * The PNIC chip has a terrible bug in it that manifests itself during
1948  * periods of heavy activity. The exact mode of failure if difficult to
1949  * pinpoint: sometimes it only happens in promiscuous mode, sometimes it
1950  * will happen on slow machines. The bug is that sometimes instead of
1951  * uploading one complete frame during reception, it uploads what looks
1952  * like the entire contents of its FIFO memory. The frame we want is at
1953  * the end of the whole mess, but we never know exactly how much data has
1954  * been uploaded, so salvaging the frame is hard.
1955  *
1956  * There is only one way to do it reliably, and it's disgusting.
1957  * Here's what we know:
1958  *
1959  * - We know there will always be somewhere between one and three extra
1960  *   descriptors uploaded.
1961  *
1962  * - We know the desired received frame will always be at the end of the
1963  *   total data upload.
1964  *
1965  * - We know the size of the desired received frame because it will be
1966  *   provided in the length field of the status word in the last descriptor.
1967  *
1968  * Here's what we do:
1969  *
1970  * - When we allocate buffers for the receive ring, we bzero() them.
1971  *   This means that we know that the buffer contents should be all
1972  *   zeros, except for data uploaded by the chip.
1973  *
1974  * - We also force the PNIC chip to upload frames that include the
1975  *   ethernet CRC at the end.
1976  *
1977  * - We gather all of the bogus frame data into a single buffer.
1978  *
1979  * - We then position a pointer at the end of this buffer and scan
1980  *   backwards until we encounter the first non-zero byte of data.
1981  *   This is the end of the received frame. We know we will encounter
1982  *   some data at the end of the frame because the CRC will always be
1983  *   there, so even if the sender transmits a packet of all zeros,
1984  *   we won't be fooled.
1985  *
1986  * - We know the size of the actual received frame, so we subtract
1987  *   that value from the current pointer location. This brings us
1988  *   to the start of the actual received packet.
1989  *
1990  * - We copy this into an mbuf and pass it on, along with the actual
1991  *   frame length.
1992  *
1993  * The performance hit is tremendous, but it beats dropping frames all
1994  * the time.
1995  */
1996 
1997 #define DC_WHOLEFRAME	(DC_RXSTAT_FIRSTFRAG|DC_RXSTAT_LASTFRAG)
1998 static void dc_pnic_rx_bug_war(sc, idx)
1999 	struct dc_softc		*sc;
2000 	int			idx;
2001 {
2002 	struct dc_desc		*cur_rx;
2003 	struct dc_desc		*c = NULL;
2004 	struct mbuf		*m = NULL;
2005 	unsigned char		*ptr;
2006 	int			i, total_len;
2007 	u_int32_t		rxstat = 0;
2008 
2009 	i = sc->dc_pnic_rx_bug_save;
2010 	cur_rx = &sc->dc_ldata->dc_rx_list[idx];
2011 	ptr = sc->dc_pnic_rx_buf;
2012 	bzero(ptr, sizeof(DC_RXLEN * 5));
2013 
2014 	/* Copy all the bytes from the bogus buffers. */
2015 	while (1) {
2016 		c = &sc->dc_ldata->dc_rx_list[i];
2017 		rxstat = c->dc_status;
2018 		m = sc->dc_cdata.dc_rx_chain[i];
2019 		bcopy(mtod(m, char *), ptr, DC_RXLEN);
2020 		ptr += DC_RXLEN;
2021 		/* If this is the last buffer, break out. */
2022 		if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
2023 			break;
2024 		dc_newbuf(sc, i, m);
2025 		DC_INC(i, DC_RX_LIST_CNT);
2026 	}
2027 
2028 	/* Find the length of the actual receive frame. */
2029 	total_len = DC_RXBYTES(rxstat);
2030 
2031 	/* Scan backwards until we hit a non-zero byte. */
2032 	while(*ptr == 0x00)
2033 		ptr--;
2034 
2035 	/* Round off. */
2036 	if ((uintptr_t)(ptr) & 0x3)
2037 		ptr -= 1;
2038 
2039 	/* Now find the start of the frame. */
2040 	ptr -= total_len;
2041 	if (ptr < sc->dc_pnic_rx_buf)
2042 		ptr = sc->dc_pnic_rx_buf;
2043 
2044 	/*
2045 	 * Now copy the salvaged frame to the last mbuf and fake up
2046 	 * the status word to make it look like a successful
2047  	 * frame reception.
2048 	 */
2049 	dc_newbuf(sc, i, m);
2050 	bcopy(ptr, mtod(m, char *), total_len);
2051 	cur_rx->dc_status = rxstat | DC_RXSTAT_FIRSTFRAG;
2052 
2053 	return;
2054 }
2055 
2056 /*
2057  * This routine searches the RX ring for dirty descriptors in the
2058  * event that the rxeof routine falls out of sync with the chip's
2059  * current descriptor pointer. This may happen sometimes as a result
2060  * of a "no RX buffer available" condition that happens when the chip
2061  * consumes all of the RX buffers before the driver has a chance to
2062  * process the RX ring. This routine may need to be called more than
2063  * once to bring the driver back in sync with the chip, however we
2064  * should still be getting RX DONE interrupts to drive the search
2065  * for new packets in the RX ring, so we should catch up eventually.
2066  */
2067 static int dc_rx_resync(sc)
2068 	struct dc_softc		*sc;
2069 {
2070 	int			i, pos;
2071 	struct dc_desc		*cur_rx;
2072 
2073 	pos = sc->dc_cdata.dc_rx_prod;
2074 
2075 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2076 		cur_rx = &sc->dc_ldata->dc_rx_list[pos];
2077 		if (!(cur_rx->dc_status & DC_RXSTAT_OWN))
2078 			break;
2079 		DC_INC(pos, DC_RX_LIST_CNT);
2080 	}
2081 
2082 	/* If the ring really is empty, then just return. */
2083 	if (i == DC_RX_LIST_CNT)
2084 		return(0);
2085 
2086 	/* We've fallen behing the chip: catch it. */
2087 	sc->dc_cdata.dc_rx_prod = pos;
2088 
2089 	return(EAGAIN);
2090 }
2091 
2092 /*
2093  * A frame has been uploaded: pass the resulting mbuf chain up to
2094  * the higher level protocols.
2095  */
2096 static void dc_rxeof(sc)
2097 	struct dc_softc		*sc;
2098 {
2099         struct ether_header	*eh;
2100         struct mbuf		*m;
2101         struct ifnet		*ifp;
2102 	struct dc_desc		*cur_rx;
2103 	int			i, total_len = 0;
2104 	u_int32_t		rxstat;
2105 
2106 	ifp = &sc->arpcom.ac_if;
2107 	i = sc->dc_cdata.dc_rx_prod;
2108 
2109 	while(!(sc->dc_ldata->dc_rx_list[i].dc_status & DC_RXSTAT_OWN)) {
2110 		struct mbuf		*m0 = NULL;
2111 
2112 		cur_rx = &sc->dc_ldata->dc_rx_list[i];
2113 		rxstat = cur_rx->dc_status;
2114 		m = sc->dc_cdata.dc_rx_chain[i];
2115 		total_len = DC_RXBYTES(rxstat);
2116 
2117 		if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2118 			if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
2119 				if (rxstat & DC_RXSTAT_FIRSTFRAG)
2120 					sc->dc_pnic_rx_bug_save = i;
2121 				if ((rxstat & DC_RXSTAT_LASTFRAG) == 0) {
2122 					DC_INC(i, DC_RX_LIST_CNT);
2123 					continue;
2124 				}
2125 				dc_pnic_rx_bug_war(sc, i);
2126 				rxstat = cur_rx->dc_status;
2127 				total_len = DC_RXBYTES(rxstat);
2128 			}
2129 		}
2130 
2131 		sc->dc_cdata.dc_rx_chain[i] = NULL;
2132 
2133 		/*
2134 		 * If an error occurs, update stats, clear the
2135 		 * status word and leave the mbuf cluster in place:
2136 		 * it should simply get re-used next time this descriptor
2137 	 	 * comes up in the ring.
2138 		 */
2139 		if (rxstat & DC_RXSTAT_RXERR) {
2140 			ifp->if_ierrors++;
2141 			if (rxstat & DC_RXSTAT_COLLSEEN)
2142 				ifp->if_collisions++;
2143 			dc_newbuf(sc, i, m);
2144 			if (rxstat & DC_RXSTAT_CRCERR) {
2145 				DC_INC(i, DC_RX_LIST_CNT);
2146 				continue;
2147 			} else {
2148 				dc_init(sc);
2149 				return;
2150 			}
2151 		}
2152 
2153 		/* No errors; receive the packet. */
2154 		total_len -= ETHER_CRC_LEN;
2155 
2156 		m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2157 		    total_len + ETHER_ALIGN, 0, ifp, NULL);
2158 		dc_newbuf(sc, i, m);
2159 		DC_INC(i, DC_RX_LIST_CNT);
2160 		if (m0 == NULL) {
2161 			ifp->if_ierrors++;
2162 			continue;
2163 		}
2164 		m_adj(m0, ETHER_ALIGN);
2165 		m = m0;
2166 
2167 		ifp->if_ipackets++;
2168 		eh = mtod(m, struct ether_header *);
2169 
2170 		/* Remove header from mbuf and pass it on. */
2171 		m_adj(m, sizeof(struct ether_header));
2172 		ether_input(ifp, eh, m);
2173 	}
2174 
2175 	sc->dc_cdata.dc_rx_prod = i;
2176 }
2177 
2178 /*
2179  * A frame was downloaded to the chip. It's safe for us to clean up
2180  * the list buffers.
2181  */
2182 
2183 static void dc_txeof(sc)
2184 	struct dc_softc		*sc;
2185 {
2186 	struct dc_desc		*cur_tx = NULL;
2187 	struct ifnet		*ifp;
2188 	int			idx;
2189 
2190 	ifp = &sc->arpcom.ac_if;
2191 
2192 	/* Clear the timeout timer. */
2193 	ifp->if_timer = 0;
2194 
2195 	/*
2196 	 * Go through our tx list and free mbufs for those
2197 	 * frames that have been transmitted.
2198 	 */
2199 	idx = sc->dc_cdata.dc_tx_cons;
2200 	while(idx != sc->dc_cdata.dc_tx_prod) {
2201 		u_int32_t		txstat;
2202 
2203 		cur_tx = &sc->dc_ldata->dc_tx_list[idx];
2204 		txstat = cur_tx->dc_status;
2205 
2206 		if (txstat & DC_TXSTAT_OWN)
2207 			break;
2208 
2209 		if (!(cur_tx->dc_ctl & DC_TXCTL_LASTFRAG) ||
2210 		    cur_tx->dc_ctl & DC_TXCTL_SETUP) {
2211 			sc->dc_cdata.dc_tx_cnt--;
2212 			if (cur_tx->dc_ctl & DC_TXCTL_SETUP) {
2213 				/*
2214 				 * Yes, the PNIC is so brain damaged
2215 				 * that it will sometimes generate a TX
2216 				 * underrun error while DMAing the RX
2217 				 * filter setup frame. If we detect this,
2218 				 * we have to send the setup frame again,
2219 				 * or else the filter won't be programmed
2220 				 * correctly.
2221 				 */
2222 				if (DC_IS_PNIC(sc)) {
2223 					if (txstat & DC_TXSTAT_ERRSUM)
2224 						dc_setfilt(sc);
2225 				}
2226 				sc->dc_cdata.dc_tx_chain[idx] = NULL;
2227 			}
2228 			DC_INC(idx, DC_TX_LIST_CNT);
2229 			continue;
2230 		}
2231 
2232 		if (/*sc->dc_type == DC_TYPE_21143 &&*/
2233 		    sc->dc_pmode == DC_PMODE_MII &&
2234 		    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM|
2235 		    DC_TXSTAT_NOCARRIER|DC_TXSTAT_CARRLOST)))
2236 			txstat &= ~DC_TXSTAT_ERRSUM;
2237 
2238 		if (txstat & DC_TXSTAT_ERRSUM) {
2239 			ifp->if_oerrors++;
2240 			if (txstat & DC_TXSTAT_EXCESSCOLL)
2241 				ifp->if_collisions++;
2242 			if (txstat & DC_TXSTAT_LATECOLL)
2243 				ifp->if_collisions++;
2244 			if (!(txstat & DC_TXSTAT_UNDERRUN)) {
2245 				dc_init(sc);
2246 				return;
2247 			}
2248 		}
2249 
2250 		ifp->if_collisions += (txstat & DC_TXSTAT_COLLCNT) >> 3;
2251 
2252 		ifp->if_opackets++;
2253 		if (sc->dc_cdata.dc_tx_chain[idx] != NULL) {
2254 			m_freem(sc->dc_cdata.dc_tx_chain[idx]);
2255 			sc->dc_cdata.dc_tx_chain[idx] = NULL;
2256 		}
2257 
2258 		sc->dc_cdata.dc_tx_cnt--;
2259 		DC_INC(idx, DC_TX_LIST_CNT);
2260 	}
2261 
2262 	sc->dc_cdata.dc_tx_cons = idx;
2263 	if (cur_tx != NULL)
2264 		ifp->if_flags &= ~IFF_OACTIVE;
2265 
2266 	return;
2267 }
2268 
2269 static void dc_tick(xsc)
2270 	void			*xsc;
2271 {
2272 	struct dc_softc		*sc;
2273 	struct mii_data		*mii;
2274 	struct ifnet		*ifp;
2275 	int			s;
2276 	u_int32_t		r;
2277 
2278 	s = splimp();
2279 
2280 	sc = xsc;
2281 	ifp = &sc->arpcom.ac_if;
2282 	mii = device_get_softc(sc->dc_miibus);
2283 
2284 	if (sc->dc_flags & DC_REDUCED_MII_POLL) {
2285 		if (sc->dc_flags & DC_21143_NWAY) {
2286 			r = CSR_READ_4(sc, DC_10BTSTAT);
2287 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2288 			    IFM_100_TX && (r & DC_TSTAT_LS100)) {
2289 				sc->dc_link = 0;
2290 				mii_mediachg(mii);
2291 			}
2292 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2293 			    IFM_10_T && (r & DC_TSTAT_LS10)) {
2294 				sc->dc_link = 0;
2295 				mii_mediachg(mii);
2296 			}
2297 			if (sc->dc_link == 0)
2298 				mii_tick(mii);
2299 		} else {
2300 			r = CSR_READ_4(sc, DC_ISR);
2301 			if ((r & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT &&
2302 			    sc->dc_cdata.dc_tx_cnt == 0)
2303 				mii_tick(mii);
2304 				if (!(mii->mii_media_status & IFM_ACTIVE))
2305 					sc->dc_link = 0;
2306 		}
2307 	} else
2308 		mii_tick(mii);
2309 
2310 	/*
2311 	 * When the init routine completes, we expect to be able to send
2312 	 * packets right away, and in fact the network code will send a
2313 	 * gratuitous ARP the moment the init routine marks the interface
2314 	 * as running. However, even though the MAC may have been initialized,
2315 	 * there may be a delay of a few seconds before the PHY completes
2316 	 * autonegotiation and the link is brought up. Any transmissions
2317 	 * made during that delay will be lost. Dealing with this is tricky:
2318 	 * we can't just pause in the init routine while waiting for the
2319 	 * PHY to come ready since that would bring the whole system to
2320 	 * a screeching halt for several seconds.
2321 	 *
2322 	 * What we do here is prevent the TX start routine from sending
2323 	 * any packets until a link has been established. After the
2324 	 * interface has been initialized, the tick routine will poll
2325 	 * the state of the PHY until the IFM_ACTIVE flag is set. Until
2326 	 * that time, packets will stay in the send queue, and once the
2327 	 * link comes up, they will be flushed out to the wire.
2328 	 */
2329 	if (!sc->dc_link) {
2330 		mii_pollstat(mii);
2331 		if (mii->mii_media_status & IFM_ACTIVE &&
2332 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2333 			sc->dc_link++;
2334 			if (ifp->if_snd.ifq_head != NULL)
2335 				dc_start(ifp);
2336 		}
2337 	}
2338 
2339 	if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link)
2340 		sc->dc_stat_ch = timeout(dc_tick, sc, hz/10);
2341 	else
2342 		sc->dc_stat_ch = timeout(dc_tick, sc, hz);
2343 
2344 	splx(s);
2345 
2346 	return;
2347 }
2348 
2349 static void dc_intr(arg)
2350 	void			*arg;
2351 {
2352 	struct dc_softc		*sc;
2353 	struct ifnet		*ifp;
2354 	u_int32_t		status;
2355 
2356 	sc = arg;
2357 	ifp = &sc->arpcom.ac_if;
2358 
2359 	/* Supress unwanted interrupts */
2360 	if (!(ifp->if_flags & IFF_UP)) {
2361 		if (CSR_READ_4(sc, DC_ISR) & DC_INTRS)
2362 			dc_stop(sc);
2363 		return;
2364 	}
2365 
2366 	/* Disable interrupts. */
2367 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
2368 
2369 	while((status = CSR_READ_4(sc, DC_ISR)) & DC_INTRS) {
2370 
2371 		CSR_WRITE_4(sc, DC_ISR, status);
2372 
2373 		if (status & DC_ISR_RX_OK) {
2374 			int		curpkts;
2375 			curpkts = ifp->if_ipackets;
2376 			dc_rxeof(sc);
2377 			if (curpkts == ifp->if_ipackets) {
2378 				while(dc_rx_resync(sc))
2379 					dc_rxeof(sc);
2380 			}
2381 		}
2382 
2383 		if (status & (DC_ISR_TX_OK|DC_ISR_TX_NOBUF))
2384 			dc_txeof(sc);
2385 
2386 		if (status & DC_ISR_TX_IDLE) {
2387 			dc_txeof(sc);
2388 			if (sc->dc_cdata.dc_tx_cnt) {
2389 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2390 				CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
2391 			}
2392 		}
2393 
2394 		if (status & DC_ISR_TX_UNDERRUN) {
2395 			u_int32_t		cfg;
2396 
2397 			printf("dc%d: TX underrun -- ", sc->dc_unit);
2398 			if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc))
2399 				dc_init(sc);
2400 			cfg = CSR_READ_4(sc, DC_NETCFG);
2401 			cfg &= ~DC_NETCFG_TX_THRESH;
2402 			if (sc->dc_txthresh == DC_TXTHRESH_160BYTES) {
2403 				printf("using store and forward mode\n");
2404 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
2405 			} else if (sc->dc_flags & DC_TX_STORENFWD) {
2406 				printf("resetting\n");
2407 			} else {
2408 				sc->dc_txthresh += 0x4000;
2409 				printf("increasing TX threshold\n");
2410 				CSR_WRITE_4(sc, DC_NETCFG, cfg);
2411 				DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
2412 				DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
2413 			}
2414 		}
2415 
2416 		if ((status & DC_ISR_RX_WATDOGTIMEO)
2417 		    || (status & DC_ISR_RX_NOBUF)) {
2418 			int		curpkts;
2419 			curpkts = ifp->if_ipackets;
2420 			dc_rxeof(sc);
2421 			if (curpkts == ifp->if_ipackets) {
2422 				while(dc_rx_resync(sc))
2423 					dc_rxeof(sc);
2424 			}
2425 		}
2426 
2427 		if (status & DC_ISR_BUS_ERR) {
2428 			dc_reset(sc);
2429 			dc_init(sc);
2430 		}
2431 	}
2432 
2433 	/* Re-enable interrupts. */
2434 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
2435 
2436 	if (ifp->if_snd.ifq_head != NULL)
2437 		dc_start(ifp);
2438 
2439 	return;
2440 }
2441 
2442 /*
2443  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
2444  * pointers to the fragment pointers.
2445  */
2446 static int dc_encap(sc, m_head, txidx)
2447 	struct dc_softc		*sc;
2448 	struct mbuf		*m_head;
2449 	u_int32_t		*txidx;
2450 {
2451 	struct dc_desc		*f = NULL;
2452 	struct mbuf		*m;
2453 	int			frag, cur, cnt = 0;
2454 
2455 	/*
2456  	 * Start packing the mbufs in this chain into
2457 	 * the fragment pointers. Stop when we run out
2458  	 * of fragments or hit the end of the mbuf chain.
2459 	 */
2460 	m = m_head;
2461 	cur = frag = *txidx;
2462 
2463 	for (m = m_head; m != NULL; m = m->m_next) {
2464 		if (m->m_len != 0) {
2465 			if (sc->dc_flags & DC_TX_ADMTEK_WAR) {
2466 				if (*txidx != sc->dc_cdata.dc_tx_prod &&
2467 				    frag == (DC_TX_LIST_CNT - 1))
2468 					return(ENOBUFS);
2469 			}
2470 			if ((DC_TX_LIST_CNT -
2471 			    (sc->dc_cdata.dc_tx_cnt + cnt)) < 5)
2472 				return(ENOBUFS);
2473 
2474 			f = &sc->dc_ldata->dc_tx_list[frag];
2475 			f->dc_ctl = DC_TXCTL_TLINK | m->m_len;
2476 			if (cnt == 0) {
2477 				f->dc_status = 0;
2478 				f->dc_ctl |= DC_TXCTL_FIRSTFRAG;
2479 			} else
2480 				f->dc_status = DC_TXSTAT_OWN;
2481 			f->dc_data = vtophys(mtod(m, vm_offset_t));
2482 			cur = frag;
2483 			DC_INC(frag, DC_TX_LIST_CNT);
2484 			cnt++;
2485 		}
2486 	}
2487 
2488 	if (m != NULL)
2489 		return(ENOBUFS);
2490 
2491 	sc->dc_cdata.dc_tx_cnt += cnt;
2492 	sc->dc_cdata.dc_tx_chain[cur] = m_head;
2493 	sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_LASTFRAG;
2494 	if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
2495 		sc->dc_ldata->dc_tx_list[*txidx].dc_ctl |= DC_TXCTL_FINT;
2496 	if (sc->dc_flags & DC_TX_INTR_ALWAYS)
2497 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT;
2498 	if (sc->dc_flags & DC_TX_USE_TX_INTR && sc->dc_cdata.dc_tx_cnt > 64)
2499 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT;
2500 	sc->dc_ldata->dc_tx_list[*txidx].dc_status = DC_TXSTAT_OWN;
2501 	*txidx = frag;
2502 
2503 	return(0);
2504 }
2505 
2506 /*
2507  * Coalesce an mbuf chain into a single mbuf cluster buffer.
2508  * Needed for some really badly behaved chips that just can't
2509  * do scatter/gather correctly.
2510  */
2511 static int dc_coal(sc, m_head)
2512 	struct dc_softc		*sc;
2513 	struct mbuf		**m_head;
2514 {
2515         struct mbuf		*m_new, *m;
2516 
2517 	m = *m_head;
2518 	MGETHDR(m_new, M_DONTWAIT, MT_DATA);
2519 	if (m_new == NULL) {
2520 		printf("dc%d: no memory for tx list", sc->dc_unit);
2521 		return(ENOBUFS);
2522 	}
2523 	if (m->m_pkthdr.len > MHLEN) {
2524 		MCLGET(m_new, M_DONTWAIT);
2525 		if (!(m_new->m_flags & M_EXT)) {
2526 			m_freem(m_new);
2527 			printf("dc%d: no memory for tx list", sc->dc_unit);
2528 			return(ENOBUFS);
2529 		}
2530 	}
2531 	m_copydata(m, 0, m->m_pkthdr.len, mtod(m_new, caddr_t));
2532 	m_new->m_pkthdr.len = m_new->m_len = m->m_pkthdr.len;
2533 	m_freem(m);
2534 	*m_head = m_new;
2535 
2536 	return(0);
2537 }
2538 
2539 /*
2540  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2541  * to the mbuf data regions directly in the transmit lists. We also save a
2542  * copy of the pointers since the transmit list fragment pointers are
2543  * physical addresses.
2544  */
2545 
2546 static void dc_start(ifp)
2547 	struct ifnet		*ifp;
2548 {
2549 	struct dc_softc		*sc;
2550 	struct mbuf		*m_head = NULL;
2551 	int			idx;
2552 
2553 	sc = ifp->if_softc;
2554 
2555 	if (!sc->dc_link)
2556 		return;
2557 
2558 	if (ifp->if_flags & IFF_OACTIVE)
2559 		return;
2560 
2561 	idx = sc->dc_cdata.dc_tx_prod;
2562 
2563 	while(sc->dc_cdata.dc_tx_chain[idx] == NULL) {
2564 		IF_DEQUEUE(&ifp->if_snd, m_head);
2565 		if (m_head == NULL)
2566 			break;
2567 
2568 		if (sc->dc_flags & DC_TX_COALESCE) {
2569 			if (dc_coal(sc, &m_head)) {
2570 				IF_PREPEND(&ifp->if_snd, m_head);
2571 				ifp->if_flags |= IFF_OACTIVE;
2572 				break;
2573 			}
2574 		}
2575 
2576 		if (dc_encap(sc, m_head, &idx)) {
2577 			IF_PREPEND(&ifp->if_snd, m_head);
2578 			ifp->if_flags |= IFF_OACTIVE;
2579 			break;
2580 		}
2581 
2582 		/*
2583 		 * If there's a BPF listener, bounce a copy of this frame
2584 		 * to him.
2585 		 */
2586 		if (ifp->if_bpf)
2587 			bpf_mtap(ifp, m_head);
2588 	}
2589 
2590 	/* Transmit */
2591 	sc->dc_cdata.dc_tx_prod = idx;
2592 	if (!(sc->dc_flags & DC_TX_POLL))
2593 		CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
2594 
2595 	/*
2596 	 * Set a timeout in case the chip goes out to lunch.
2597 	 */
2598 	ifp->if_timer = 5;
2599 
2600 	return;
2601 }
2602 
2603 static void dc_init(xsc)
2604 	void			*xsc;
2605 {
2606 	struct dc_softc		*sc = xsc;
2607 	struct ifnet		*ifp = &sc->arpcom.ac_if;
2608 	struct mii_data		*mii;
2609 	int			s;
2610 
2611 	s = splimp();
2612 
2613 	mii = device_get_softc(sc->dc_miibus);
2614 
2615 	/*
2616 	 * Cancel pending I/O and free all RX/TX buffers.
2617 	 */
2618 	dc_stop(sc);
2619 	dc_reset(sc);
2620 
2621 	/*
2622 	 * Set cache alignment and burst length.
2623 	 */
2624 	if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc))
2625 		CSR_WRITE_4(sc, DC_BUSCTL, 0);
2626 	else
2627 		CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME|DC_BUSCTL_MRLE);
2628 	if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
2629 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
2630 	} else {
2631 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
2632 	}
2633 	if (sc->dc_flags & DC_TX_POLL)
2634 		DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
2635 	switch(sc->dc_cachesize) {
2636 	case 32:
2637 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
2638 		break;
2639 	case 16:
2640 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
2641 		break;
2642 	case 8:
2643 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
2644 		break;
2645 	case 0:
2646 	default:
2647 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
2648 		break;
2649 	}
2650 
2651 	if (sc->dc_flags & DC_TX_STORENFWD)
2652 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
2653 	else {
2654 		if (sc->dc_txthresh == DC_TXTHRESH_160BYTES) {
2655 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
2656 		} else {
2657 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
2658 			DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
2659 		}
2660 	}
2661 
2662 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
2663 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
2664 
2665 	if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
2666 		/*
2667 		 * The app notes for the 98713 and 98715A say that
2668 		 * in order to have the chips operate properly, a magic
2669 		 * number must be written to CSR16. Macronix does not
2670 		 * document the meaning of these bits so there's no way
2671 		 * to know exactly what they do. The 98713 has a magic
2672 		 * number all its own; the rest all use a different one.
2673 		 */
2674 		DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
2675 		if (sc->dc_type == DC_TYPE_98713)
2676 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
2677 		else
2678 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
2679 	}
2680 
2681 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
2682 	DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_72BYTES);
2683 
2684 	/* Init circular RX list. */
2685 	if (dc_list_rx_init(sc) == ENOBUFS) {
2686 		printf("dc%d: initialization failed: no "
2687 		    "memory for rx buffers\n", sc->dc_unit);
2688 		dc_stop(sc);
2689 		(void)splx(s);
2690 		return;
2691 	}
2692 
2693 	/*
2694 	 * Init tx descriptors.
2695 	 */
2696 	dc_list_tx_init(sc);
2697 
2698 	/*
2699 	 * Load the address of the RX list.
2700 	 */
2701 	CSR_WRITE_4(sc, DC_RXADDR, vtophys(&sc->dc_ldata->dc_rx_list[0]));
2702 	CSR_WRITE_4(sc, DC_TXADDR, vtophys(&sc->dc_ldata->dc_tx_list[0]));
2703 
2704 	/*
2705 	 * Enable interrupts.
2706 	 */
2707 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
2708 	CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
2709 
2710 	/* Enable transmitter. */
2711 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2712 
2713 	/*
2714 	 * Load the RX/multicast filter. We do this sort of late
2715 	 * because the filter programming scheme on the 21143 and
2716 	 * some clones requires DMAing a setup frame via the TX
2717 	 * engine, and we need the transmitter enabled for that.
2718 	 */
2719 	dc_setfilt(sc);
2720 
2721 	/* Enable receiver. */
2722 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
2723 	CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
2724 
2725 	mii_mediachg(mii);
2726 	dc_setcfg(sc, sc->dc_if_media);
2727 
2728 	ifp->if_flags |= IFF_RUNNING;
2729 	ifp->if_flags &= ~IFF_OACTIVE;
2730 
2731 	(void)splx(s);
2732 
2733 	if (sc->dc_flags & DC_21143_NWAY)
2734 		sc->dc_stat_ch = timeout(dc_tick, sc, hz/10);
2735 	else
2736 		sc->dc_stat_ch = timeout(dc_tick, sc, hz);
2737 
2738 #ifdef __alpha__
2739         if(sc->dc_srm_media) {
2740 		struct ifreq ifr;
2741 
2742 		ifr.ifr_media = sc->dc_srm_media;
2743 		ifmedia_ioctl(ifp, &ifr, &mii->mii_media, SIOCSIFMEDIA);
2744 		sc->dc_srm_media = 0;
2745 	}
2746 #endif
2747 	return;
2748 }
2749 
2750 /*
2751  * Set media options.
2752  */
2753 static int dc_ifmedia_upd(ifp)
2754 	struct ifnet		*ifp;
2755 {
2756 	struct dc_softc		*sc;
2757 	struct mii_data		*mii;
2758 	struct ifmedia		*ifm;
2759 
2760 	sc = ifp->if_softc;
2761 	mii = device_get_softc(sc->dc_miibus);
2762 	mii_mediachg(mii);
2763 	ifm = &mii->mii_media;
2764 
2765 	if (DC_IS_DAVICOM(sc) &&
2766 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_homePNA)
2767 		dc_setcfg(sc, ifm->ifm_media);
2768 	else
2769 		sc->dc_link = 0;
2770 
2771 	return(0);
2772 }
2773 
2774 /*
2775  * Report current media status.
2776  */
2777 static void dc_ifmedia_sts(ifp, ifmr)
2778 	struct ifnet		*ifp;
2779 	struct ifmediareq	*ifmr;
2780 {
2781 	struct dc_softc		*sc;
2782 	struct mii_data		*mii;
2783 	struct ifmedia		*ifm;
2784 
2785 	sc = ifp->if_softc;
2786 	mii = device_get_softc(sc->dc_miibus);
2787 	mii_pollstat(mii);
2788 	ifm = &mii->mii_media;
2789 	if (DC_IS_DAVICOM(sc)) {
2790 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_homePNA) {
2791 			ifmr->ifm_active = ifm->ifm_media;
2792 			ifmr->ifm_status = 0;
2793 			return;
2794 		}
2795 	}
2796 	ifmr->ifm_active = mii->mii_media_active;
2797 	ifmr->ifm_status = mii->mii_media_status;
2798 
2799 	return;
2800 }
2801 
2802 static int dc_ioctl(ifp, command, data)
2803 	struct ifnet		*ifp;
2804 	u_long			command;
2805 	caddr_t			data;
2806 {
2807 	struct dc_softc		*sc = ifp->if_softc;
2808 	struct ifreq		*ifr = (struct ifreq *) data;
2809 	struct mii_data		*mii;
2810 	int			s, error = 0;
2811 
2812 	s = splimp();
2813 
2814 	switch(command) {
2815 	case SIOCSIFADDR:
2816 	case SIOCGIFADDR:
2817 	case SIOCSIFMTU:
2818 		error = ether_ioctl(ifp, command, data);
2819 		break;
2820 	case SIOCSIFFLAGS:
2821 		if (ifp->if_flags & IFF_UP) {
2822 			if (ifp->if_flags & IFF_RUNNING &&
2823 			    ifp->if_flags & IFF_PROMISC &&
2824 			    !(sc->dc_if_flags & IFF_PROMISC)) {
2825 				dc_setfilt(sc);
2826 			} else if (ifp->if_flags & IFF_RUNNING &&
2827 			    !(ifp->if_flags & IFF_PROMISC) &&
2828 			    sc->dc_if_flags & IFF_PROMISC) {
2829 				dc_setfilt(sc);
2830 			} else if (!(ifp->if_flags & IFF_RUNNING)) {
2831 				sc->dc_txthresh = 0;
2832 				dc_init(sc);
2833 			}
2834 		} else {
2835 			if (ifp->if_flags & IFF_RUNNING)
2836 				dc_stop(sc);
2837 		}
2838 		sc->dc_if_flags = ifp->if_flags;
2839 		error = 0;
2840 		break;
2841 	case SIOCADDMULTI:
2842 	case SIOCDELMULTI:
2843 		dc_setfilt(sc);
2844 		error = 0;
2845 		break;
2846 	case SIOCGIFMEDIA:
2847 	case SIOCSIFMEDIA:
2848 		mii = device_get_softc(sc->dc_miibus);
2849 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2850 #ifdef __alpha__
2851 		if (sc->dc_srm_media)
2852 			sc->dc_srm_media = 0;
2853 #endif
2854 		break;
2855 	default:
2856 		error = EINVAL;
2857 		break;
2858 	}
2859 
2860 	(void)splx(s);
2861 
2862 	return(error);
2863 }
2864 
2865 static void dc_watchdog(ifp)
2866 	struct ifnet		*ifp;
2867 {
2868 	struct dc_softc		*sc;
2869 
2870 	sc = ifp->if_softc;
2871 
2872 	ifp->if_oerrors++;
2873 	printf("dc%d: watchdog timeout\n", sc->dc_unit);
2874 
2875 	dc_stop(sc);
2876 	dc_reset(sc);
2877 	dc_init(sc);
2878 
2879 	if (ifp->if_snd.ifq_head != NULL)
2880 		dc_start(ifp);
2881 
2882 	return;
2883 }
2884 
2885 /*
2886  * Stop the adapter and free any mbufs allocated to the
2887  * RX and TX lists.
2888  */
2889 static void dc_stop(sc)
2890 	struct dc_softc		*sc;
2891 {
2892 	register int		i;
2893 	struct ifnet		*ifp;
2894 
2895 	ifp = &sc->arpcom.ac_if;
2896 	ifp->if_timer = 0;
2897 
2898 	untimeout(dc_tick, sc, sc->dc_stat_ch);
2899 
2900 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ON|DC_NETCFG_TX_ON));
2901 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
2902 	CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
2903 	CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
2904 	sc->dc_link = 0;
2905 
2906 	/*
2907 	 * Free data in the RX lists.
2908 	 */
2909 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2910 		if (sc->dc_cdata.dc_rx_chain[i] != NULL) {
2911 			m_freem(sc->dc_cdata.dc_rx_chain[i]);
2912 			sc->dc_cdata.dc_rx_chain[i] = NULL;
2913 		}
2914 	}
2915 	bzero((char *)&sc->dc_ldata->dc_rx_list,
2916 		sizeof(sc->dc_ldata->dc_rx_list));
2917 
2918 	/*
2919 	 * Free the TX list buffers.
2920 	 */
2921 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2922 		if (sc->dc_cdata.dc_tx_chain[i] != NULL) {
2923 			if (sc->dc_ldata->dc_tx_list[i].dc_ctl &
2924 			    DC_TXCTL_SETUP) {
2925 				sc->dc_cdata.dc_tx_chain[i] = NULL;
2926 				continue;
2927 			}
2928 			m_freem(sc->dc_cdata.dc_tx_chain[i]);
2929 			sc->dc_cdata.dc_tx_chain[i] = NULL;
2930 		}
2931 	}
2932 
2933 	bzero((char *)&sc->dc_ldata->dc_tx_list,
2934 		sizeof(sc->dc_ldata->dc_tx_list));
2935 
2936 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2937 
2938 	return;
2939 }
2940 
2941 /*
2942  * Stop all chip I/O so that the kernel's probe routines don't
2943  * get confused by errant DMAs when rebooting.
2944  */
2945 static void dc_shutdown(dev)
2946 	device_t		dev;
2947 {
2948 	struct dc_softc		*sc;
2949 
2950 	sc = device_get_softc(dev);
2951 
2952 	dc_stop(sc);
2953 
2954 	return;
2955 }
2956