xref: /freebsd/sys/dev/dc/if_dc.c (revision a79b71281cd63ad7a6cc43a6d5673a2510b51630)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ee.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD$
33  */
34 
35 /*
36  * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
37  * series chips and several workalikes including the following:
38  *
39  * Macronix 98713/98715/98725 PMAC (www.macronix.com)
40  * Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
41  * Lite-On 82c168/82c169 PNIC (www.litecom.com)
42  * ASIX Electronics AX88140A (www.asix.com.tw)
43  * ASIX Electronics AX88141 (www.asix.com.tw)
44  * ADMtek AL981 (www.admtek.com.tw)
45  * ADMtek AN985 (www.admtek.com.tw)
46  * Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
47  * Accton EN1217 (www.accton.com)
48  *
49  * Datasheets for the 21143 are available at developer.intel.com.
50  * Datasheets for the clone parts can be found at their respective sites.
51  * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
52  * The PNIC II is essentially a Macronix 98715A chip; the only difference
53  * worth noting is that its multicast hash table is only 128 bits wide
54  * instead of 512.
55  *
56  * Written by Bill Paul <wpaul@ee.columbia.edu>
57  * Electrical Engineering Department
58  * Columbia University, New York City
59  */
60 
61 /*
62  * The Intel 21143 is the successor to the DEC 21140. It is basically
63  * the same as the 21140 but with a few new features. The 21143 supports
64  * three kinds of media attachments:
65  *
66  * o MII port, for 10Mbps and 100Mbps support and NWAY
67  *   autonegotiation provided by an external PHY.
68  * o SYM port, for symbol mode 100Mbps support.
69  * o 10baseT port.
70  * o AUI/BNC port.
71  *
72  * The 100Mbps SYM port and 10baseT port can be used together in
73  * combination with the internal NWAY support to create a 10/100
74  * autosensing configuration.
75  *
76  * Knowing which media is available on a given card is tough: you're
77  * supposed to go slogging through the EEPROM looking for media
78  * description structures. Unfortunately, some card vendors that use
79  * the 21143 don't obey the DEC SROM spec correctly, which means that
80  * what you find in the EEPROM may not agree with reality. Fortunately,
81  * the 21143 provides us a way to get around this issue: lurking in
82  * PCI configuration space is the Configuration Wake-Up Command Register.
83  * This register is loaded with a value from the EEPROM when wake on LAN
84  * mode is enabled; this value tells us quite clearly what kind of media
85  * is attached to the NIC. The main purpose of this register is to tell
86  * the NIC what media to scan when in wake on LAN mode, however by
87  * forcibly enabling wake on LAN mode, we can use to learn what kind of
88  * media a given NIC has available and adapt ourselves accordingly.
89  *
90  * Of course, if the media description blocks in the EEPROM are bogus.
91  * what are the odds that the CWUC aren't bogus as well, right? Well,
92  * the CWUC value is more likely to be correct since wake on LAN mode
93  * won't work correctly without it, and wake on LAN is a big selling
94  * point these days. It's also harder to screw up a single byte than
95  * a whole media descriptor block.
96  *
97  * Note that not all tulip workalikes are handled in this driver: we only
98  * deal with those which are relatively well behaved. The Winbond is
99  * handled separately due to its different register offsets and the
100  * special handling needed for its various bugs. The PNIC is handled
101  * here, but I'm not thrilled about it.
102  *
103  * All of the workalike chips use some form of MII transceiver support
104  * with the exception of the Macronix chips, which also have a SYM port.
105  * The ASIX AX88140A is also documented to have a SYM port, but all
106  * the cards I've seen use an MII transceiver, probably because the
107  * AX88140A doesn't support internal NWAY.
108  */
109 
110 #include <sys/param.h>
111 #include <sys/systm.h>
112 #include <sys/sockio.h>
113 #include <sys/mbuf.h>
114 #include <sys/malloc.h>
115 #include <sys/kernel.h>
116 #include <sys/socket.h>
117 
118 #include <net/if.h>
119 #include <net/if_arp.h>
120 #include <net/ethernet.h>
121 #include <net/if_dl.h>
122 #include <net/if_media.h>
123 
124 #include <net/bpf.h>
125 
126 #include <vm/vm.h>              /* for vtophys */
127 #include <vm/pmap.h>            /* for vtophys */
128 #include <machine/clock.h>      /* for DELAY */
129 #include <machine/bus_pio.h>
130 #include <machine/bus_memio.h>
131 #include <machine/bus.h>
132 #include <machine/resource.h>
133 #include <sys/bus.h>
134 #include <sys/rman.h>
135 
136 #include <dev/mii/mii.h>
137 #include <dev/mii/miivar.h>
138 
139 #include <pci/pcireg.h>
140 #include <pci/pcivar.h>
141 
142 #define DC_USEIOSPACE
143 
144 #include <pci/if_dcreg.h>
145 
146 MODULE_DEPEND(dc, miibus, 1, 1, 1);
147 
148 /* "controller miibus0" required.  See GENERIC if you get errors here. */
149 #include "miibus_if.h"
150 
151 #ifndef lint
152 static const char rcsid[] =
153   "$FreeBSD$";
154 #endif
155 
156 /*
157  * Various supported device vendors/types and their names.
158  */
159 static struct dc_type dc_devs[] = {
160 	{ DC_VENDORID_DEC, DC_DEVICEID_21143,
161 		"Intel 21143 10/100BaseTX" },
162 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100,
163 		"Davicom DM9100 10/100BaseTX" },
164 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
165 		"Davicom DM9102 10/100BaseTX" },
166 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
167 		"Davicom DM9102A 10/100BaseTX" },
168 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AL981,
169 		"ADMtek AL981 10/100BaseTX" },
170 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AN985,
171 		"ADMtek AN985 10/100BaseTX" },
172 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
173 		"ASIX AX88140A 10/100BaseTX" },
174 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
175 		"ASIX AX88141 10/100BaseTX" },
176 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
177 		"Macronix 98713 10/100BaseTX" },
178 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
179 		"Macronix 98713A 10/100BaseTX" },
180 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
181 		"Compex RL100-TX 10/100BaseTX" },
182 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
183 		"Compex RL100-TX 10/100BaseTX" },
184 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
185 		"Macronix 98715/98715A 10/100BaseTX" },
186 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
187 		"Macronix 98725 10/100BaseTX" },
188 	{ DC_VENDORID_LO, DC_DEVICEID_82C115,
189 		"LC82C115 PNIC II 10/100BaseTX" },
190 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
191 		"82c168 PNIC 10/100BaseTX" },
192 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
193 		"82c169 PNIC 10/100BaseTX" },
194 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN1217,
195 		"Accton EN1217 10/100BaseTX" },
196 	{ 0, 0, NULL }
197 };
198 
199 static int dc_probe		__P((device_t));
200 static int dc_attach		__P((device_t));
201 static int dc_detach		__P((device_t));
202 static void dc_acpi		__P((device_t));
203 static struct dc_type *dc_devtype	__P((device_t));
204 static int dc_newbuf		__P((struct dc_softc *, int, struct mbuf *));
205 static int dc_encap		__P((struct dc_softc *, struct mbuf *,
206 					u_int32_t *));
207 static int dc_coal		__P((struct dc_softc *, struct mbuf **));
208 static void dc_pnic_rx_bug_war	__P((struct dc_softc *, int));
209 static int dc_rx_resync		__P((struct dc_softc *));
210 static void dc_rxeof		__P((struct dc_softc *));
211 static void dc_txeof		__P((struct dc_softc *));
212 static void dc_tick		__P((void *));
213 static void dc_intr		__P((void *));
214 static void dc_start		__P((struct ifnet *));
215 static int dc_ioctl		__P((struct ifnet *, u_long, caddr_t));
216 static void dc_init		__P((void *));
217 static void dc_stop		__P((struct dc_softc *));
218 static void dc_watchdog		__P((struct ifnet *));
219 static void dc_shutdown		__P((device_t));
220 static int dc_ifmedia_upd	__P((struct ifnet *));
221 static void dc_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
222 
223 static void dc_delay		__P((struct dc_softc *));
224 static void dc_eeprom_idle	__P((struct dc_softc *));
225 static void dc_eeprom_putbyte	__P((struct dc_softc *, int));
226 static void dc_eeprom_getword	__P((struct dc_softc *, int, u_int16_t *));
227 static void dc_eeprom_getword_pnic
228 				__P((struct dc_softc *, int, u_int16_t *));
229 static void dc_read_eeprom	__P((struct dc_softc *, caddr_t, int,
230 							int, int));
231 
232 static void dc_mii_writebit	__P((struct dc_softc *, int));
233 static int dc_mii_readbit	__P((struct dc_softc *));
234 static void dc_mii_sync		__P((struct dc_softc *));
235 static void dc_mii_send		__P((struct dc_softc *, u_int32_t, int));
236 static int dc_mii_readreg	__P((struct dc_softc *, struct dc_mii_frame *));
237 static int dc_mii_writereg	__P((struct dc_softc *, struct dc_mii_frame *));
238 static int dc_miibus_readreg	__P((device_t, int, int));
239 static int dc_miibus_writereg	__P((device_t, int, int, int));
240 static void dc_miibus_statchg	__P((device_t));
241 static void dc_miibus_mediainit	__P((device_t));
242 
243 static void dc_setcfg		__P((struct dc_softc *, int));
244 static u_int32_t dc_crc_le	__P((struct dc_softc *, caddr_t));
245 static u_int32_t dc_crc_be	__P((caddr_t));
246 static void dc_setfilt_21143	__P((struct dc_softc *));
247 static void dc_setfilt_asix	__P((struct dc_softc *));
248 static void dc_setfilt_admtek	__P((struct dc_softc *));
249 
250 static void dc_setfilt		__P((struct dc_softc *));
251 
252 static void dc_reset		__P((struct dc_softc *));
253 static int dc_list_rx_init	__P((struct dc_softc *));
254 static int dc_list_tx_init	__P((struct dc_softc *));
255 
256 #ifdef DC_USEIOSPACE
257 #define DC_RES			SYS_RES_IOPORT
258 #define DC_RID			DC_PCI_CFBIO
259 #else
260 #define DC_RES			SYS_RES_MEMORY
261 #define DC_RID			DC_PCI_CFBMA
262 #endif
263 
264 static device_method_t dc_methods[] = {
265 	/* Device interface */
266 	DEVMETHOD(device_probe,		dc_probe),
267 	DEVMETHOD(device_attach,	dc_attach),
268 	DEVMETHOD(device_detach,	dc_detach),
269 	DEVMETHOD(device_shutdown,	dc_shutdown),
270 
271 	/* bus interface */
272 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
273 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
274 
275 	/* MII interface */
276 	DEVMETHOD(miibus_readreg,	dc_miibus_readreg),
277 	DEVMETHOD(miibus_writereg,	dc_miibus_writereg),
278 	DEVMETHOD(miibus_statchg,	dc_miibus_statchg),
279 	DEVMETHOD(miibus_mediainit,	dc_miibus_mediainit),
280 
281 	{ 0, 0 }
282 };
283 
284 static driver_t dc_driver = {
285 	"dc",
286 	dc_methods,
287 	sizeof(struct dc_softc)
288 };
289 
290 static devclass_t dc_devclass;
291 
292 DRIVER_MODULE(if_dc, pci, dc_driver, dc_devclass, 0, 0);
293 DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, 0, 0);
294 
295 #define DC_SETBIT(sc, reg, x)				\
296 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
297 
298 #define DC_CLRBIT(sc, reg, x)				\
299 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
300 
301 #define SIO_SET(x)	DC_SETBIT(sc, DC_SIO, (x))
302 #define SIO_CLR(x)	DC_CLRBIT(sc, DC_SIO, (x))
303 
304 static void dc_delay(sc)
305 	struct dc_softc		*sc;
306 {
307 	int			idx;
308 
309 	for (idx = (300 / 33) + 1; idx > 0; idx--)
310 		CSR_READ_4(sc, DC_BUSCTL);
311 }
312 
313 static void dc_eeprom_idle(sc)
314 	struct dc_softc		*sc;
315 {
316 	register int		i;
317 
318 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
319 	dc_delay(sc);
320 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
321 	dc_delay(sc);
322 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
323 	dc_delay(sc);
324 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
325 	dc_delay(sc);
326 
327 	for (i = 0; i < 25; i++) {
328 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
329 		dc_delay(sc);
330 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
331 		dc_delay(sc);
332 	}
333 
334 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
335 	dc_delay(sc);
336 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
337 	dc_delay(sc);
338 	CSR_WRITE_4(sc, DC_SIO, 0x00000000);
339 
340 	return;
341 }
342 
343 /*
344  * Send a read command and address to the EEPROM, check for ACK.
345  */
346 static void dc_eeprom_putbyte(sc, addr)
347 	struct dc_softc		*sc;
348 	int			addr;
349 {
350 	register int		d, i;
351 
352 	/*
353 	 * The AN985 has a 93C66 EEPROM on it instead of
354 	 * a 93C46. It uses a different bit sequence for
355 	 * specifying the "read" opcode.
356 	 */
357 	if (DC_IS_CENTAUR(sc))
358 		d = addr | (DC_EECMD_READ << 2);
359 	else
360 		d = addr | DC_EECMD_READ;
361 
362 	/*
363 	 * Feed in each bit and strobe the clock.
364 	 */
365 	for (i = 0x400; i; i >>= 1) {
366 		if (d & i) {
367 			SIO_SET(DC_SIO_EE_DATAIN);
368 		} else {
369 			SIO_CLR(DC_SIO_EE_DATAIN);
370 		}
371 		dc_delay(sc);
372 		SIO_SET(DC_SIO_EE_CLK);
373 		dc_delay(sc);
374 		SIO_CLR(DC_SIO_EE_CLK);
375 		dc_delay(sc);
376 	}
377 
378 	return;
379 }
380 
381 /*
382  * Read a word of data stored in the EEPROM at address 'addr.'
383  * The PNIC 82c168/82c169 has its own non-standard way to read
384  * the EEPROM.
385  */
386 static void dc_eeprom_getword_pnic(sc, addr, dest)
387 	struct dc_softc		*sc;
388 	int			addr;
389 	u_int16_t		*dest;
390 {
391 	register int		i;
392 	u_int32_t		r;
393 
394 	CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ|addr);
395 
396 	for (i = 0; i < DC_TIMEOUT; i++) {
397 		DELAY(1);
398 		r = CSR_READ_4(sc, DC_SIO);
399 		if (!(r & DC_PN_SIOCTL_BUSY)) {
400 			*dest = (u_int16_t)(r & 0xFFFF);
401 			return;
402 		}
403 	}
404 
405 	return;
406 }
407 
408 /*
409  * Read a word of data stored in the EEPROM at address 'addr.'
410  */
411 static void dc_eeprom_getword(sc, addr, dest)
412 	struct dc_softc		*sc;
413 	int			addr;
414 	u_int16_t		*dest;
415 {
416 	register int		i;
417 	u_int16_t		word = 0;
418 
419 	/* Force EEPROM to idle state. */
420 	dc_eeprom_idle(sc);
421 
422 	/* Enter EEPROM access mode. */
423 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
424 	dc_delay(sc);
425 	DC_SETBIT(sc, DC_SIO,  DC_SIO_ROMCTL_READ);
426 	dc_delay(sc);
427 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
428 	dc_delay(sc);
429 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
430 	dc_delay(sc);
431 
432 	/*
433 	 * Send address of word we want to read.
434 	 */
435 	dc_eeprom_putbyte(sc, addr);
436 
437 	/*
438 	 * Start reading bits from EEPROM.
439 	 */
440 	for (i = 0x8000; i; i >>= 1) {
441 		SIO_SET(DC_SIO_EE_CLK);
442 		dc_delay(sc);
443 		if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
444 			word |= i;
445 		dc_delay(sc);
446 		SIO_CLR(DC_SIO_EE_CLK);
447 		dc_delay(sc);
448 	}
449 
450 	/* Turn off EEPROM access mode. */
451 	dc_eeprom_idle(sc);
452 
453 	*dest = word;
454 
455 	return;
456 }
457 
458 /*
459  * Read a sequence of words from the EEPROM.
460  */
461 static void dc_read_eeprom(sc, dest, off, cnt, swap)
462 	struct dc_softc		*sc;
463 	caddr_t			dest;
464 	int			off;
465 	int			cnt;
466 	int			swap;
467 {
468 	int			i;
469 	u_int16_t		word = 0, *ptr;
470 
471 	for (i = 0; i < cnt; i++) {
472 		if (DC_IS_PNIC(sc))
473 			dc_eeprom_getword_pnic(sc, off + i, &word);
474 		else
475 			dc_eeprom_getword(sc, off + i, &word);
476 		ptr = (u_int16_t *)(dest + (i * 2));
477 		if (swap)
478 			*ptr = ntohs(word);
479 		else
480 			*ptr = word;
481 	}
482 
483 	return;
484 }
485 
486 /*
487  * The following two routines are taken from the Macronix 98713
488  * Application Notes pp.19-21.
489  */
490 /*
491  * Write a bit to the MII bus.
492  */
493 static void dc_mii_writebit(sc, bit)
494 	struct dc_softc		*sc;
495 	int			bit;
496 {
497 	if (bit)
498 		CSR_WRITE_4(sc, DC_SIO,
499 		    DC_SIO_ROMCTL_WRITE|DC_SIO_MII_DATAOUT);
500 	else
501 		CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
502 
503 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
504 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
505 
506 	return;
507 }
508 
509 /*
510  * Read a bit from the MII bus.
511  */
512 static int dc_mii_readbit(sc)
513 	struct dc_softc		*sc;
514 {
515 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_READ|DC_SIO_MII_DIR);
516 	CSR_READ_4(sc, DC_SIO);
517 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
518 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
519 	if (CSR_READ_4(sc, DC_SIO) & DC_SIO_MII_DATAIN)
520 		return(1);
521 
522 	return(0);
523 }
524 
525 /*
526  * Sync the PHYs by setting data bit and strobing the clock 32 times.
527  */
528 static void dc_mii_sync(sc)
529 	struct dc_softc		*sc;
530 {
531 	register int		i;
532 
533 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
534 
535 	for (i = 0; i < 32; i++)
536 		dc_mii_writebit(sc, 1);
537 
538 	return;
539 }
540 
541 /*
542  * Clock a series of bits through the MII.
543  */
544 static void dc_mii_send(sc, bits, cnt)
545 	struct dc_softc		*sc;
546 	u_int32_t		bits;
547 	int			cnt;
548 {
549 	int			i;
550 
551 	for (i = (0x1 << (cnt - 1)); i; i >>= 1)
552 		dc_mii_writebit(sc, bits & i);
553 }
554 
555 /*
556  * Read an PHY register through the MII.
557  */
558 static int dc_mii_readreg(sc, frame)
559 	struct dc_softc		*sc;
560 	struct dc_mii_frame	*frame;
561 
562 {
563 	int			i, ack, s;
564 
565 	s = splimp();
566 
567 	/*
568 	 * Set up frame for RX.
569 	 */
570 	frame->mii_stdelim = DC_MII_STARTDELIM;
571 	frame->mii_opcode = DC_MII_READOP;
572 	frame->mii_turnaround = 0;
573 	frame->mii_data = 0;
574 
575 	/*
576 	 * Sync the PHYs.
577 	 */
578 	dc_mii_sync(sc);
579 
580 	/*
581 	 * Send command/address info.
582 	 */
583 	dc_mii_send(sc, frame->mii_stdelim, 2);
584 	dc_mii_send(sc, frame->mii_opcode, 2);
585 	dc_mii_send(sc, frame->mii_phyaddr, 5);
586 	dc_mii_send(sc, frame->mii_regaddr, 5);
587 
588 #ifdef notdef
589 	/* Idle bit */
590 	dc_mii_writebit(sc, 1);
591 	dc_mii_writebit(sc, 0);
592 #endif
593 
594 	/* Check for ack */
595 	ack = dc_mii_readbit(sc);
596 
597 	/*
598 	 * Now try reading data bits. If the ack failed, we still
599 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
600 	 */
601 	if (ack) {
602 		for(i = 0; i < 16; i++) {
603 			dc_mii_readbit(sc);
604 		}
605 		goto fail;
606 	}
607 
608 	for (i = 0x8000; i; i >>= 1) {
609 		if (!ack) {
610 			if (dc_mii_readbit(sc))
611 				frame->mii_data |= i;
612 		}
613 	}
614 
615 fail:
616 
617 	dc_mii_writebit(sc, 0);
618 	dc_mii_writebit(sc, 0);
619 
620 	splx(s);
621 
622 	if (ack)
623 		return(1);
624 	return(0);
625 }
626 
627 /*
628  * Write to a PHY register through the MII.
629  */
630 static int dc_mii_writereg(sc, frame)
631 	struct dc_softc		*sc;
632 	struct dc_mii_frame	*frame;
633 
634 {
635 	int			s;
636 
637 	s = splimp();
638 	/*
639 	 * Set up frame for TX.
640 	 */
641 
642 	frame->mii_stdelim = DC_MII_STARTDELIM;
643 	frame->mii_opcode = DC_MII_WRITEOP;
644 	frame->mii_turnaround = DC_MII_TURNAROUND;
645 
646 	/*
647 	 * Sync the PHYs.
648 	 */
649 	dc_mii_sync(sc);
650 
651 	dc_mii_send(sc, frame->mii_stdelim, 2);
652 	dc_mii_send(sc, frame->mii_opcode, 2);
653 	dc_mii_send(sc, frame->mii_phyaddr, 5);
654 	dc_mii_send(sc, frame->mii_regaddr, 5);
655 	dc_mii_send(sc, frame->mii_turnaround, 2);
656 	dc_mii_send(sc, frame->mii_data, 16);
657 
658 	/* Idle bit. */
659 	dc_mii_writebit(sc, 0);
660 	dc_mii_writebit(sc, 0);
661 
662 	splx(s);
663 
664 	return(0);
665 }
666 
667 static int dc_miibus_readreg(dev, phy, reg)
668 	device_t		dev;
669 	int			phy, reg;
670 {
671 	struct dc_mii_frame	frame;
672 	struct dc_softc		*sc;
673 	int			i, rval, phy_reg;
674 
675 	sc = device_get_softc(dev);
676 	bzero((char *)&frame, sizeof(frame));
677 
678 	/*
679 	 * Note: both the AL981 and AN985 have internal PHYs,
680 	 * however the AL981 provides direct access to the PHY
681 	 * registers while the AN985 uses a serial MII interface.
682 	 * The AN985's MII interface is also buggy in that you
683 	 * can read from any MII address (0 to 31), but only address 1
684 	 * behaves normally. To deal with both cases, we pretend
685 	 * that the PHY is at MII address 1.
686 	 */
687 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
688 		return(0);
689 
690 	if (sc->dc_pmode == DC_PMODE_SYM) {
691 		if (phy == (MII_NPHY - 1)) {
692 			switch(reg) {
693 			case MII_BMSR:
694 			/*
695 			 * Fake something to make the probe
696 			 * code think there's a PHY here.
697 			 */
698 				return(BMSR_MEDIAMASK);
699 				break;
700 			case MII_PHYIDR1:
701 				if (DC_IS_PNIC(sc))
702 					return(DC_VENDORID_LO);
703 				return(DC_VENDORID_DEC);
704 				break;
705 			case MII_PHYIDR2:
706 				if (DC_IS_PNIC(sc))
707 					return(DC_DEVICEID_82C168);
708 				return(DC_DEVICEID_21143);
709 				break;
710 			default:
711 				return(0);
712 				break;
713 			}
714 		} else
715 			return(0);
716 	}
717 
718 	if (DC_IS_PNIC(sc)) {
719 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
720 		    (phy << 23) | (reg << 18));
721 		for (i = 0; i < DC_TIMEOUT; i++) {
722 			DELAY(1);
723 			rval = CSR_READ_4(sc, DC_PN_MII);
724 			if (!(rval & DC_PN_MII_BUSY)) {
725 				rval &= 0xFFFF;
726 				return(rval == 0xFFFF ? 0 : rval);
727 			}
728 		}
729 		return(0);
730 	}
731 
732 	if (DC_IS_COMET(sc)) {
733 		switch(reg) {
734 		case MII_BMCR:
735 			phy_reg = DC_AL_BMCR;
736 			break;
737 		case MII_BMSR:
738 			phy_reg = DC_AL_BMSR;
739 			break;
740 		case MII_PHYIDR1:
741 			phy_reg = DC_AL_VENID;
742 			break;
743 		case MII_PHYIDR2:
744 			phy_reg = DC_AL_DEVID;
745 			break;
746 		case MII_ANAR:
747 			phy_reg = DC_AL_ANAR;
748 			break;
749 		case MII_ANLPAR:
750 			phy_reg = DC_AL_LPAR;
751 			break;
752 		case MII_ANER:
753 			phy_reg = DC_AL_ANER;
754 			break;
755 		default:
756 			printf("dc%d: phy_read: bad phy register %x\n",
757 			    sc->dc_unit, reg);
758 			return(0);
759 			break;
760 		}
761 
762 		rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
763 
764 		if (rval == 0xFFFF)
765 			return(0);
766 		return(rval);
767 	}
768 
769 	frame.mii_phyaddr = phy;
770 	frame.mii_regaddr = reg;
771 	phy_reg = CSR_READ_4(sc, DC_NETCFG);
772 	CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
773 	dc_mii_readreg(sc, &frame);
774 	CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
775 
776 	return(frame.mii_data);
777 }
778 
779 static int dc_miibus_writereg(dev, phy, reg, data)
780 	device_t		dev;
781 	int			phy, reg, data;
782 {
783 	struct dc_softc		*sc;
784 	struct dc_mii_frame	frame;
785 	int			i, phy_reg;
786 
787 	sc = device_get_softc(dev);
788 	bzero((char *)&frame, sizeof(frame));
789 
790 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
791 		return(0);
792 
793 	if (DC_IS_PNIC(sc)) {
794 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
795 		    (phy << 23) | (reg << 10) | data);
796 		for (i = 0; i < DC_TIMEOUT; i++) {
797 			if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
798 				break;
799 		}
800 		return(0);
801 	}
802 
803 	if (DC_IS_COMET(sc)) {
804 		switch(reg) {
805 		case MII_BMCR:
806 			phy_reg = DC_AL_BMCR;
807 			break;
808 		case MII_BMSR:
809 			phy_reg = DC_AL_BMSR;
810 			break;
811 		case MII_PHYIDR1:
812 			phy_reg = DC_AL_VENID;
813 			break;
814 		case MII_PHYIDR2:
815 			phy_reg = DC_AL_DEVID;
816 			break;
817 		case MII_ANAR:
818 			phy_reg = DC_AL_ANAR;
819 			break;
820 		case MII_ANLPAR:
821 			phy_reg = DC_AL_LPAR;
822 			break;
823 		case MII_ANER:
824 			phy_reg = DC_AL_ANER;
825 			break;
826 		default:
827 			printf("dc%d: phy_write: bad phy register %x\n",
828 			    sc->dc_unit, reg);
829 			return(0);
830 			break;
831 		}
832 
833 		CSR_WRITE_4(sc, phy_reg, data);
834 		return(0);
835 	}
836 
837 	frame.mii_phyaddr = phy;
838 	frame.mii_regaddr = reg;
839 	frame.mii_data = data;
840 
841 	phy_reg = CSR_READ_4(sc, DC_NETCFG);
842 	CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
843 	dc_mii_writereg(sc, &frame);
844 	CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
845 
846 	return(0);
847 }
848 
849 static void dc_miibus_statchg(dev)
850 	device_t		dev;
851 {
852 	struct dc_softc		*sc;
853 	struct mii_data		*mii;
854 	struct ifmedia		*ifm;
855 
856 	sc = device_get_softc(dev);
857 	if (DC_IS_ADMTEK(sc))
858 		return;
859 	mii = device_get_softc(sc->dc_miibus);
860 	ifm = &mii->mii_media;
861 	if (DC_IS_DAVICOM(sc) &&
862 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_homePNA) {
863 		dc_setcfg(sc, ifm->ifm_media);
864 		sc->dc_if_media = ifm->ifm_media;
865 	} else {
866 		dc_setcfg(sc, mii->mii_media_active);
867 		sc->dc_if_media = mii->mii_media_active;
868 	}
869 
870 	return;
871 }
872 
873 /*
874  * Special support for DM9102A cards with HomePNA PHYs. Note:
875  * with the Davicom DM9102A/DM9801 eval board that I have, it seems
876  * to be impossible to talk to the management interface of the DM9801
877  * PHY (its MDIO pin is not connected to anything). Consequently,
878  * the driver has to just 'know' about the additional mode and deal
879  * with it itself. *sigh*
880  */
881 static void dc_miibus_mediainit(dev)
882 	device_t		dev;
883 {
884 	struct dc_softc		*sc;
885 	struct mii_data		*mii;
886 	struct ifmedia		*ifm;
887 	int			rev;
888 
889 	rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF;
890 
891 	sc = device_get_softc(dev);
892 	mii = device_get_softc(sc->dc_miibus);
893 	ifm = &mii->mii_media;
894 
895 	if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A)
896 		ifmedia_add(ifm, IFM_ETHER|IFM_homePNA, 0, NULL);
897 
898 	return;
899 }
900 
901 #define DC_POLY		0xEDB88320
902 #define DC_BITS		9
903 #define DC_BITS_PNIC_II	7
904 
905 static u_int32_t dc_crc_le(sc, addr)
906 	struct dc_softc		*sc;
907 	caddr_t			addr;
908 {
909 	u_int32_t		idx, bit, data, crc;
910 
911 	/* Compute CRC for the address value. */
912 	crc = 0xFFFFFFFF; /* initial value */
913 
914 	for (idx = 0; idx < 6; idx++) {
915 		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1)
916 			crc = (crc >> 1) ^ (((crc ^ data) & 1) ? DC_POLY : 0);
917 	}
918 
919 	/* The hash table on the PNIC II is only 128 bits wide. */
920 	if (DC_IS_PNICII(sc))
921 		return (crc & ((1 << DC_BITS_PNIC_II) - 1));
922 
923 	return (crc & ((1 << DC_BITS) - 1));
924 }
925 
926 /*
927  * Calculate CRC of a multicast group address, return the lower 6 bits.
928  */
929 static u_int32_t dc_crc_be(addr)
930 	caddr_t			addr;
931 {
932 	u_int32_t		crc, carry;
933 	int			i, j;
934 	u_int8_t		c;
935 
936 	/* Compute CRC for the address value. */
937 	crc = 0xFFFFFFFF; /* initial value */
938 
939 	for (i = 0; i < 6; i++) {
940 		c = *(addr + i);
941 		for (j = 0; j < 8; j++) {
942 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
943 			crc <<= 1;
944 			c >>= 1;
945 			if (carry)
946 				crc = (crc ^ 0x04c11db6) | carry;
947 		}
948 	}
949 
950 	/* return the filter bit position */
951 	return((crc >> 26) & 0x0000003F);
952 }
953 
954 /*
955  * 21143-style RX filter setup routine. Filter programming is done by
956  * downloading a special setup frame into the TX engine. 21143, Macronix,
957  * PNIC, PNIC II and Davicom chips are programmed this way.
958  *
959  * We always program the chip using 'hash perfect' mode, i.e. one perfect
960  * address (our node address) and a 512-bit hash filter for multicast
961  * frames. We also sneak the broadcast address into the hash filter since
962  * we need that too.
963  */
964 void dc_setfilt_21143(sc)
965 	struct dc_softc		*sc;
966 {
967 	struct dc_desc		*sframe;
968 	u_int32_t		h, *sp;
969 	struct ifmultiaddr	*ifma;
970 	struct ifnet		*ifp;
971 	int			i;
972 
973 	ifp = &sc->arpcom.ac_if;
974 
975 	i = sc->dc_cdata.dc_tx_prod;
976 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
977 	sc->dc_cdata.dc_tx_cnt++;
978 	sframe = &sc->dc_ldata->dc_tx_list[i];
979 	sp = (u_int32_t *)&sc->dc_cdata.dc_sbuf;
980 	bzero((char *)sp, DC_SFRAME_LEN);
981 
982 	sframe->dc_data = vtophys(&sc->dc_cdata.dc_sbuf);
983 	sframe->dc_ctl = DC_SFRAME_LEN | DC_TXCTL_SETUP | DC_TXCTL_TLINK |
984 	    DC_FILTER_HASHPERF | DC_TXCTL_FINT;
985 
986 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)&sc->dc_cdata.dc_sbuf;
987 
988 	/* If we want promiscuous mode, set the allframes bit. */
989 	if (ifp->if_flags & IFF_PROMISC)
990 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
991 	else
992 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
993 
994 	if (ifp->if_flags & IFF_ALLMULTI)
995 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
996 	else
997 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
998 
999 	for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
1000 	    ifma = ifma->ifma_link.le_next) {
1001 		if (ifma->ifma_addr->sa_family != AF_LINK)
1002 			continue;
1003 		h = dc_crc_le(sc,
1004 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1005 		sp[h >> 4] |= 1 << (h & 0xF);
1006 	}
1007 
1008 	if (ifp->if_flags & IFF_BROADCAST) {
1009 		h = dc_crc_le(sc, (caddr_t)&etherbroadcastaddr);
1010 		sp[h >> 4] |= 1 << (h & 0xF);
1011 	}
1012 
1013 	/* Set our MAC address */
1014 	sp[39] = ((u_int16_t *)sc->arpcom.ac_enaddr)[0];
1015 	sp[40] = ((u_int16_t *)sc->arpcom.ac_enaddr)[1];
1016 	sp[41] = ((u_int16_t *)sc->arpcom.ac_enaddr)[2];
1017 
1018 	sframe->dc_status = DC_TXSTAT_OWN;
1019 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1020 
1021 	/*
1022 	 * The PNIC takes an exceedingly long time to process its
1023 	 * setup frame; wait 10ms after posting the setup frame
1024 	 * before proceeding, just so it has time to swallow its
1025 	 * medicine.
1026 	 */
1027 	DELAY(10000);
1028 
1029 	ifp->if_timer = 5;
1030 
1031 	return;
1032 }
1033 
1034 void dc_setfilt_admtek(sc)
1035 	struct dc_softc		*sc;
1036 {
1037 	struct ifnet		*ifp;
1038 	int			h = 0;
1039 	u_int32_t		hashes[2] = { 0, 0 };
1040 	struct ifmultiaddr	*ifma;
1041 
1042 	ifp = &sc->arpcom.ac_if;
1043 
1044 	/* Init our MAC address */
1045 	CSR_WRITE_4(sc, DC_AL_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1046 	CSR_WRITE_4(sc, DC_AL_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1047 
1048 	/* If we want promiscuous mode, set the allframes bit. */
1049 	if (ifp->if_flags & IFF_PROMISC)
1050 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1051 	else
1052 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1053 
1054 	if (ifp->if_flags & IFF_ALLMULTI)
1055 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1056 	else
1057 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1058 
1059 	/* first, zot all the existing hash bits */
1060 	CSR_WRITE_4(sc, DC_AL_MAR0, 0);
1061 	CSR_WRITE_4(sc, DC_AL_MAR1, 0);
1062 
1063 	/*
1064 	 * If we're already in promisc or allmulti mode, we
1065 	 * don't have to bother programming the multicast filter.
1066 	 */
1067 	if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI))
1068 		return;
1069 
1070 	/* now program new ones */
1071 	for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
1072 	    ifma = ifma->ifma_link.le_next) {
1073 		if (ifma->ifma_addr->sa_family != AF_LINK)
1074 			continue;
1075 		h = dc_crc_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1076 		if (h < 32)
1077 			hashes[0] |= (1 << h);
1078 		else
1079 			hashes[1] |= (1 << (h - 32));
1080 	}
1081 
1082 	CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]);
1083 	CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]);
1084 
1085 	return;
1086 }
1087 
1088 void dc_setfilt_asix(sc)
1089 	struct dc_softc		*sc;
1090 {
1091 	struct ifnet		*ifp;
1092 	int			h = 0;
1093 	u_int32_t		hashes[2] = { 0, 0 };
1094 	struct ifmultiaddr	*ifma;
1095 
1096 	ifp = &sc->arpcom.ac_if;
1097 
1098         /* Init our MAC address */
1099         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
1100         CSR_WRITE_4(sc, DC_AX_FILTDATA,
1101 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1102         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
1103         CSR_WRITE_4(sc, DC_AX_FILTDATA,
1104 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1105 
1106 	/* If we want promiscuous mode, set the allframes bit. */
1107 	if (ifp->if_flags & IFF_PROMISC)
1108 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1109 	else
1110 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1111 
1112 	if (ifp->if_flags & IFF_ALLMULTI)
1113 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1114 	else
1115 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1116 
1117 	/*
1118 	 * The ASIX chip has a special bit to enable reception
1119 	 * of broadcast frames.
1120 	 */
1121 	if (ifp->if_flags & IFF_BROADCAST)
1122 		DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1123 	else
1124 		DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1125 
1126 	/* first, zot all the existing hash bits */
1127 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1128 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1129 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1130 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1131 
1132 	/*
1133 	 * If we're already in promisc or allmulti mode, we
1134 	 * don't have to bother programming the multicast filter.
1135 	 */
1136 	if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI))
1137 		return;
1138 
1139 	/* now program new ones */
1140 	for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
1141 	    ifma = ifma->ifma_link.le_next) {
1142 		if (ifma->ifma_addr->sa_family != AF_LINK)
1143 			continue;
1144 		h = dc_crc_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1145 		if (h < 32)
1146 			hashes[0] |= (1 << h);
1147 		else
1148 			hashes[1] |= (1 << (h - 32));
1149 	}
1150 
1151 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1152 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
1153 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1154 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
1155 
1156 	return;
1157 }
1158 
1159 static void dc_setfilt(sc)
1160 	struct dc_softc		*sc;
1161 {
1162 	if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
1163 	    DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc))
1164 		dc_setfilt_21143(sc);
1165 
1166 	if (DC_IS_ASIX(sc))
1167 		dc_setfilt_asix(sc);
1168 
1169 	if (DC_IS_ADMTEK(sc))
1170 		dc_setfilt_admtek(sc);
1171 
1172 	return;
1173 }
1174 
1175 /*
1176  * In order to fiddle with the
1177  * 'full-duplex' and '100Mbps' bits in the netconfig register, we
1178  * first have to put the transmit and/or receive logic in the idle state.
1179  */
1180 static void dc_setcfg(sc, media)
1181 	struct dc_softc		*sc;
1182 	int			media;
1183 {
1184 	int			i, restart = 0;
1185 	u_int32_t		isr;
1186 
1187 	if (IFM_SUBTYPE(media) == IFM_NONE)
1188 		return;
1189 
1190 	if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON)) {
1191 		restart = 1;
1192 		DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON));
1193 
1194 		for (i = 0; i < DC_TIMEOUT; i++) {
1195 			DELAY(10);
1196 			isr = CSR_READ_4(sc, DC_ISR);
1197 			if (isr & DC_ISR_TX_IDLE ||
1198 			    (isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED)
1199 				break;
1200 		}
1201 
1202 		if (i == DC_TIMEOUT)
1203 			printf("dc%d: failed to force tx and "
1204 				"rx to idle state\n", sc->dc_unit);
1205 
1206 	}
1207 
1208 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
1209 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1210 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1211 		if (sc->dc_pmode == DC_PMODE_MII) {
1212 			DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1213 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1214 			    DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER));
1215 			if (sc->dc_type == DC_TYPE_98713)
1216 				DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1217 				    DC_NETCFG_SCRAMBLER));
1218 			if (!DC_IS_DAVICOM(sc))
1219 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1220 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1221 		} else {
1222 			if (DC_IS_PNIC(sc)) {
1223 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
1224 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1225 				DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1226 			}
1227 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1228 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1229 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1230 		}
1231 	}
1232 
1233 	if (IFM_SUBTYPE(media) == IFM_10_T) {
1234 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1235 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1236 		if (sc->dc_pmode == DC_PMODE_MII) {
1237 			DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1238 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1239 			    DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER));
1240 			if (sc->dc_type == DC_TYPE_98713)
1241 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1242 			if (!DC_IS_DAVICOM(sc))
1243 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1244 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1245 		} else {
1246 			if (DC_IS_PNIC(sc)) {
1247 				DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
1248 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1249 				DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1250 			}
1251 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1252 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1253 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1254 		}
1255 	}
1256 
1257 	/*
1258 	 * If this is a Davicom DM9102A card with a DM9801 HomePNA
1259 	 * PHY and we want HomePNA mode, set the portsel bit to turn
1260 	 * on the external MII port.
1261 	 */
1262 	if (DC_IS_DAVICOM(sc)) {
1263 		if (IFM_SUBTYPE(media) == IFM_homePNA) {
1264 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1265 			sc->dc_link = 1;
1266 		} else {
1267 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1268 		}
1269 	}
1270 
1271 	if ((media & IFM_GMASK) == IFM_FDX) {
1272 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1273 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1274 			DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1275 	} else {
1276 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1277 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1278 			DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1279 	}
1280 
1281 	if (restart)
1282 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON|DC_NETCFG_RX_ON);
1283 
1284 	return;
1285 }
1286 
1287 static void dc_reset(sc)
1288 	struct dc_softc		*sc;
1289 {
1290 	register int		i;
1291 
1292 	DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1293 
1294 	for (i = 0; i < DC_TIMEOUT; i++) {
1295 		DELAY(10);
1296 		if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
1297 			break;
1298 	}
1299 
1300 	if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc)) {
1301 		DELAY(10000);
1302 		DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1303 		i = 0;
1304 	}
1305 
1306 	if (i == DC_TIMEOUT)
1307 		printf("dc%d: reset never completed!\n", sc->dc_unit);
1308 
1309 	/* Wait a little while for the chip to get its brains in order. */
1310 	DELAY(1000);
1311 
1312 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
1313 	CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
1314 	CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
1315 
1316 	/*
1317 	 * Bring the SIA out of reset. In some cases, it looks
1318 	 * like failing to unreset the SIA soon enough gets it
1319 	 * into a state where it will never come out of reset
1320 	 * until we reset the whole chip again.
1321 	 */
1322 	if (DC_IS_INTEL(sc))
1323 		DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1324 
1325         return;
1326 }
1327 
1328 static struct dc_type *dc_devtype(dev)
1329 	device_t		dev;
1330 {
1331 	struct dc_type		*t;
1332 	u_int32_t		rev;
1333 
1334 	t = dc_devs;
1335 
1336 	while(t->dc_name != NULL) {
1337 		if ((pci_get_vendor(dev) == t->dc_vid) &&
1338 		    (pci_get_device(dev) == t->dc_did)) {
1339 			/* Check the PCI revision */
1340 			rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF;
1341 			if (t->dc_did == DC_DEVICEID_98713 &&
1342 			    rev >= DC_REVISION_98713A)
1343 				t++;
1344 			if (t->dc_did == DC_DEVICEID_98713_CP &&
1345 			    rev >= DC_REVISION_98713A)
1346 				t++;
1347 			if (t->dc_did == DC_DEVICEID_987x5 &&
1348 			    rev >= DC_REVISION_98725)
1349 				t++;
1350 			if (t->dc_did == DC_DEVICEID_AX88140A &&
1351 			    rev >= DC_REVISION_88141)
1352 				t++;
1353 			if (t->dc_did == DC_DEVICEID_82C168 &&
1354 			    rev >= DC_REVISION_82C169)
1355 				t++;
1356 			if (t->dc_did == DC_DEVICEID_DM9102 &&
1357 			    rev >= DC_REVISION_DM9102A)
1358 				t++;
1359 			return(t);
1360 		}
1361 		t++;
1362 	}
1363 
1364 	return(NULL);
1365 }
1366 
1367 /*
1368  * Probe for a 21143 or clone chip. Check the PCI vendor and device
1369  * IDs against our list and return a device name if we find a match.
1370  * We do a little bit of extra work to identify the exact type of
1371  * chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
1372  * but different revision IDs. The same is true for 98715/98715A
1373  * chips and the 98725, as well as the ASIX and ADMtek chips. In some
1374  * cases, the exact chip revision affects driver behavior.
1375  */
1376 static int dc_probe(dev)
1377 	device_t		dev;
1378 {
1379 	struct dc_type		*t;
1380 
1381 	t = dc_devtype(dev);
1382 
1383 	if (t != NULL) {
1384 		device_set_desc(dev, t->dc_name);
1385 		return(0);
1386 	}
1387 
1388 	return(ENXIO);
1389 }
1390 
1391 static void dc_acpi(dev)
1392 	device_t		dev;
1393 {
1394 	u_int32_t		r, cptr;
1395 	int			unit;
1396 
1397 	unit = device_get_unit(dev);
1398 
1399 	/* Find the location of the capabilities block */
1400 	cptr = pci_read_config(dev, DC_PCI_CCAP, 4) & 0xFF;
1401 
1402 	r = pci_read_config(dev, cptr, 4) & 0xFF;
1403 	if (r == 0x01) {
1404 
1405 		r = pci_read_config(dev, cptr + 4, 4);
1406 		if (r & DC_PSTATE_D3) {
1407 			u_int32_t		iobase, membase, irq;
1408 
1409 			/* Save important PCI config data. */
1410 			iobase = pci_read_config(dev, DC_PCI_CFBIO, 4);
1411 			membase = pci_read_config(dev, DC_PCI_CFBMA, 4);
1412 			irq = pci_read_config(dev, DC_PCI_CFIT, 4);
1413 
1414 			/* Reset the power state. */
1415 			printf("dc%d: chip is in D%d power mode "
1416 			    "-- setting to D0\n", unit, r & DC_PSTATE_D3);
1417 			r &= 0xFFFFFFFC;
1418 			pci_write_config(dev, cptr + 4, r, 4);
1419 
1420 			/* Restore PCI config data. */
1421 			pci_write_config(dev, DC_PCI_CFBIO, iobase, 4);
1422 			pci_write_config(dev, DC_PCI_CFBMA, membase, 4);
1423 			pci_write_config(dev, DC_PCI_CFIT, irq, 4);
1424 		}
1425 	}
1426 	return;
1427 }
1428 
1429 /*
1430  * Attach the interface. Allocate softc structures, do ifmedia
1431  * setup and ethernet/BPF attach.
1432  */
1433 static int dc_attach(dev)
1434 	device_t		dev;
1435 {
1436 	int			s;
1437 	u_char			eaddr[ETHER_ADDR_LEN];
1438 	u_int32_t		command;
1439 	struct dc_softc		*sc;
1440 	struct ifnet		*ifp;
1441 	u_int32_t		revision;
1442 	int			unit, error = 0, rid, mac_offset;
1443 
1444 	s = splimp();
1445 
1446 	sc = device_get_softc(dev);
1447 	unit = device_get_unit(dev);
1448 	bzero(sc, sizeof(struct dc_softc));
1449 
1450 	/*
1451 	 * Handle power management nonsense.
1452 	 */
1453 	dc_acpi(dev);
1454 
1455 	/*
1456 	 * Map control/status registers.
1457 	 */
1458 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1459 	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
1460 	pci_write_config(dev, PCIR_COMMAND, command, 4);
1461 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1462 
1463 #ifdef DC_USEIOSPACE
1464 	if (!(command & PCIM_CMD_PORTEN)) {
1465 		printf("dc%d: failed to enable I/O ports!\n", unit);
1466 		error = ENXIO;
1467 		goto fail;
1468 	}
1469 #else
1470 	if (!(command & PCIM_CMD_MEMEN)) {
1471 		printf("dc%d: failed to enable memory mapping!\n", unit);
1472 		error = ENXIO;
1473 		goto fail;
1474 	}
1475 #endif
1476 
1477 	rid = DC_RID;
1478 	sc->dc_res = bus_alloc_resource(dev, DC_RES, &rid,
1479 	    0, ~0, 1, RF_ACTIVE);
1480 
1481 	if (sc->dc_res == NULL) {
1482 		printf("dc%d: couldn't map ports/memory\n", unit);
1483 		error = ENXIO;
1484 		goto fail;
1485 	}
1486 
1487 	sc->dc_btag = rman_get_bustag(sc->dc_res);
1488 	sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
1489 
1490 	/* Allocate interrupt */
1491 	rid = 0;
1492 	sc->dc_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1493 	    RF_SHAREABLE | RF_ACTIVE);
1494 
1495 	if (sc->dc_irq == NULL) {
1496 		printf("dc%d: couldn't map interrupt\n", unit);
1497 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
1498 		error = ENXIO;
1499 		goto fail;
1500 	}
1501 
1502 	error = bus_setup_intr(dev, sc->dc_irq, INTR_TYPE_NET,
1503 	    dc_intr, sc, &sc->dc_intrhand);
1504 
1505 	if (error) {
1506 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
1507 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
1508 		printf("dc%d: couldn't set up irq\n", unit);
1509 		goto fail;
1510 	}
1511 
1512 	/* Need this info to decide on a chip type. */
1513 	sc->dc_info = dc_devtype(dev);
1514 	revision = pci_read_config(dev, DC_PCI_CFRV, 4) & 0x000000FF;
1515 
1516 	switch(sc->dc_info->dc_did) {
1517 	case DC_DEVICEID_21143:
1518 		sc->dc_type = DC_TYPE_21143;
1519 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1520 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1521 		break;
1522 	case DC_DEVICEID_DM9100:
1523 	case DC_DEVICEID_DM9102:
1524 		sc->dc_type = DC_TYPE_DM9102;
1525 		sc->dc_flags |= DC_TX_COALESCE|DC_TX_USE_TX_INTR;
1526 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1527 		sc->dc_pmode = DC_PMODE_MII;
1528 		break;
1529 	case DC_DEVICEID_AL981:
1530 		sc->dc_type = DC_TYPE_AL981;
1531 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1532 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1533 		sc->dc_pmode = DC_PMODE_MII;
1534 		break;
1535 	case DC_DEVICEID_AN985:
1536 		sc->dc_type = DC_TYPE_AN985;
1537 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1538 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1539 		sc->dc_pmode = DC_PMODE_MII;
1540 		break;
1541 	case DC_DEVICEID_98713:
1542 	case DC_DEVICEID_98713_CP:
1543 		if (revision < DC_REVISION_98713A) {
1544 			sc->dc_type = DC_TYPE_98713;
1545 		}
1546 		if (revision >= DC_REVISION_98713A) {
1547 			sc->dc_type = DC_TYPE_98713A;
1548 			sc->dc_flags |= DC_21143_NWAY;
1549 		}
1550 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1551 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1552 		break;
1553 	case DC_DEVICEID_987x5:
1554 	case DC_DEVICEID_EN1217:
1555 		sc->dc_type = DC_TYPE_987x5;
1556 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1557 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1558 		break;
1559 	case DC_DEVICEID_82C115:
1560 		sc->dc_type = DC_TYPE_PNICII;
1561 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1562 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1563 		break;
1564 	case DC_DEVICEID_82C168:
1565 		sc->dc_type = DC_TYPE_PNIC;
1566 		sc->dc_flags |= DC_TX_STORENFWD|DC_TX_INTR_ALWAYS;
1567 		sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
1568 		sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_NOWAIT);
1569 		if (revision < DC_REVISION_82C169)
1570 			sc->dc_pmode = DC_PMODE_SYM;
1571 		break;
1572 	case DC_DEVICEID_AX88140A:
1573 		sc->dc_type = DC_TYPE_ASIX;
1574 		sc->dc_flags |= DC_TX_USE_TX_INTR|DC_TX_INTR_FIRSTFRAG;
1575 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1576 		sc->dc_pmode = DC_PMODE_MII;
1577 		break;
1578 	default:
1579 		printf("dc%d: unknown device: %x\n", sc->dc_unit,
1580 		    sc->dc_info->dc_did);
1581 		break;
1582 	}
1583 
1584 	/* Save the cache line size. */
1585 	if (DC_IS_DAVICOM(sc))
1586 		sc->dc_cachesize = 0;
1587 	else
1588 		sc->dc_cachesize = pci_read_config(dev,
1589 		    DC_PCI_CFLT, 4) & 0xFF;
1590 
1591 	/* Reset the adapter. */
1592 	dc_reset(sc);
1593 
1594 	/* Take 21143 out of snooze mode */
1595 	if (DC_IS_INTEL(sc)) {
1596 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
1597 		command &= ~(DC_CFDD_SNOOZE_MODE|DC_CFDD_SLEEP_MODE);
1598 		pci_write_config(dev, DC_PCI_CFDD, command, 4);
1599 	}
1600 
1601 	/*
1602 	 * Try to learn something about the supported media.
1603 	 * We know that ASIX and ADMtek and Davicom devices
1604 	 * will *always* be using MII media, so that's a no-brainer.
1605 	 * The tricky ones are the Macronix/PNIC II and the
1606 	 * Intel 21143.
1607 	 */
1608 	if (DC_IS_INTEL(sc)) {
1609 		u_int32_t		media, cwuc;
1610 		cwuc = pci_read_config(dev, DC_PCI_CWUC, 4);
1611 		cwuc |= DC_CWUC_FORCE_WUL;
1612 		pci_write_config(dev, DC_PCI_CWUC, cwuc, 4);
1613 		DELAY(10000);
1614 		media = pci_read_config(dev, DC_PCI_CWUC, 4);
1615 		cwuc &= ~DC_CWUC_FORCE_WUL;
1616 		pci_write_config(dev, DC_PCI_CWUC, cwuc, 4);
1617 		DELAY(10000);
1618 		if (media & DC_CWUC_MII_ABILITY)
1619 			sc->dc_pmode = DC_PMODE_MII;
1620 		if (media & DC_CWUC_SYM_ABILITY) {
1621 			sc->dc_pmode = DC_PMODE_SYM;
1622 			sc->dc_flags |= DC_21143_NWAY;
1623 		}
1624 		/*
1625 		 * If none of the bits are set, then this NIC
1626 		 * isn't meant to support 'wake up LAN' mode.
1627 		 * This is usually only the case on multiport
1628 		 * cards, and these cards almost always have
1629 		 * MII transceivers.
1630 		 */
1631 		if (media == 0)
1632 			sc->dc_pmode = DC_PMODE_MII;
1633 	} else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
1634 		if (sc->dc_type == DC_TYPE_98713)
1635 			sc->dc_pmode = DC_PMODE_MII;
1636 		else
1637 			sc->dc_pmode = DC_PMODE_SYM;
1638 	} else if (!sc->dc_pmode)
1639 		sc->dc_pmode = DC_PMODE_MII;
1640 
1641 	/*
1642 	 * Get station address from the EEPROM.
1643 	 */
1644 	switch(sc->dc_type) {
1645 	case DC_TYPE_98713:
1646 	case DC_TYPE_98713A:
1647 	case DC_TYPE_987x5:
1648 	case DC_TYPE_PNICII:
1649 		dc_read_eeprom(sc, (caddr_t)&mac_offset,
1650 		    (DC_EE_NODEADDR_OFFSET / 2), 1, 0);
1651 		dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
1652 		break;
1653 	case DC_TYPE_PNIC:
1654 		dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
1655 		break;
1656 	case DC_TYPE_DM9102:
1657 	case DC_TYPE_21143:
1658 	case DC_TYPE_ASIX:
1659 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
1660 		break;
1661 	case DC_TYPE_AL981:
1662 	case DC_TYPE_AN985:
1663 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_AL_EE_NODEADDR, 3, 0);
1664 		break;
1665 	default:
1666 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
1667 		break;
1668 	}
1669 
1670 	/*
1671 	 * A 21143 or clone chip was detected. Inform the world.
1672 	 */
1673 	printf("dc%d: Ethernet address: %6D\n", unit, eaddr, ":");
1674 
1675 	sc->dc_unit = unit;
1676 	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
1677 
1678 	sc->dc_ldata = contigmalloc(sizeof(struct dc_list_data), M_DEVBUF,
1679 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1680 
1681 	if (sc->dc_ldata == NULL) {
1682 		printf("dc%d: no memory for list buffers!\n", unit);
1683 		bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
1684 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
1685 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
1686 		error = ENXIO;
1687 		goto fail;
1688 	}
1689 
1690 	bzero(sc->dc_ldata, sizeof(struct dc_list_data));
1691 
1692 	ifp = &sc->arpcom.ac_if;
1693 	ifp->if_softc = sc;
1694 	ifp->if_unit = unit;
1695 	ifp->if_name = "dc";
1696 	ifp->if_mtu = ETHERMTU;
1697 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1698 	ifp->if_ioctl = dc_ioctl;
1699 	ifp->if_output = ether_output;
1700 	ifp->if_start = dc_start;
1701 	ifp->if_watchdog = dc_watchdog;
1702 	ifp->if_init = dc_init;
1703 	ifp->if_baudrate = 10000000;
1704 	ifp->if_snd.ifq_maxlen = DC_TX_LIST_CNT - 1;
1705 
1706 	/*
1707 	 * Do MII setup.
1708 	 */
1709 	error = mii_phy_probe(dev, &sc->dc_miibus,
1710 	    dc_ifmedia_upd, dc_ifmedia_sts);
1711 
1712 	if (error && DC_IS_INTEL(sc)) {
1713 		sc->dc_pmode = DC_PMODE_SYM;
1714 		sc->dc_flags |= DC_21143_NWAY;
1715 		mii_phy_probe(dev, &sc->dc_miibus,
1716 		    dc_ifmedia_upd, dc_ifmedia_sts);
1717 		error = 0;
1718 	}
1719 
1720 	if (error) {
1721 		printf("dc%d: MII without any PHY!\n", sc->dc_unit);
1722 		bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
1723 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
1724 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
1725 		error = ENXIO;
1726 		goto fail;
1727 	}
1728 
1729 	/*
1730 	 * Call MI attach routines.
1731 	 */
1732 	if_attach(ifp);
1733 	ether_ifattach(ifp);
1734 	callout_handle_init(&sc->dc_stat_ch);
1735 
1736 	bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header));
1737 
1738 #ifdef __alpha__
1739         sc->dc_srm_media = 0;
1740 
1741 	/* Remember the SRM console media setting */
1742 	if (DC_IS_INTEL(sc)) {
1743 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
1744 		command &= ~(DC_CFDD_SNOOZE_MODE|DC_CFDD_SLEEP_MODE);
1745 		switch ((command >> 8) & 0xff) {
1746 		case 3:
1747 			sc->dc_srm_media = IFM_10_T;
1748 			break;
1749 		case 4:
1750 			sc->dc_srm_media = IFM_10_T | IFM_FDX;
1751 			break;
1752 		case 5:
1753 			sc->dc_srm_media = IFM_100_TX;
1754 			break;
1755 		case 6:
1756 			sc->dc_srm_media = IFM_100_TX | IFM_FDX;
1757 			break;
1758 		}
1759 		if (sc->dc_srm_media)
1760 			sc->dc_srm_media |= IFM_ACTIVE | IFM_ETHER;
1761 	}
1762 #endif
1763 
1764 
1765 fail:
1766 	splx(s);
1767 
1768 	return(error);
1769 }
1770 
1771 static int dc_detach(dev)
1772 	device_t		dev;
1773 {
1774 	struct dc_softc		*sc;
1775 	struct ifnet		*ifp;
1776 	int			s;
1777 
1778 	s = splimp();
1779 
1780 	sc = device_get_softc(dev);
1781 	ifp = &sc->arpcom.ac_if;
1782 
1783 	dc_stop(sc);
1784 	if_detach(ifp);
1785 
1786 	bus_generic_detach(dev);
1787 	device_delete_child(dev, sc->dc_miibus);
1788 
1789 	bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
1790 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
1791 	bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
1792 
1793 	contigfree(sc->dc_ldata, sizeof(struct dc_list_data), M_DEVBUF);
1794 	if (sc->dc_pnic_rx_buf != NULL)
1795 		free(sc->dc_pnic_rx_buf, M_DEVBUF);
1796 
1797 	splx(s);
1798 
1799 	return(0);
1800 }
1801 
1802 /*
1803  * Initialize the transmit descriptors.
1804  */
1805 static int dc_list_tx_init(sc)
1806 	struct dc_softc		*sc;
1807 {
1808 	struct dc_chain_data	*cd;
1809 	struct dc_list_data	*ld;
1810 	int			i;
1811 
1812 	cd = &sc->dc_cdata;
1813 	ld = sc->dc_ldata;
1814 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
1815 		if (i == (DC_TX_LIST_CNT - 1)) {
1816 			ld->dc_tx_list[i].dc_next =
1817 			    vtophys(&ld->dc_tx_list[0]);
1818 		} else {
1819 			ld->dc_tx_list[i].dc_next =
1820 			    vtophys(&ld->dc_tx_list[i + 1]);
1821 		}
1822 		cd->dc_tx_chain[i] = NULL;
1823 		ld->dc_tx_list[i].dc_data = 0;
1824 		ld->dc_tx_list[i].dc_ctl = 0;
1825 	}
1826 
1827 	cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
1828 
1829 	return(0);
1830 }
1831 
1832 
1833 /*
1834  * Initialize the RX descriptors and allocate mbufs for them. Note that
1835  * we arrange the descriptors in a closed ring, so that the last descriptor
1836  * points back to the first.
1837  */
1838 static int dc_list_rx_init(sc)
1839 	struct dc_softc		*sc;
1840 {
1841 	struct dc_chain_data	*cd;
1842 	struct dc_list_data	*ld;
1843 	int			i;
1844 
1845 	cd = &sc->dc_cdata;
1846 	ld = sc->dc_ldata;
1847 
1848 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
1849 		if (dc_newbuf(sc, i, NULL) == ENOBUFS)
1850 			return(ENOBUFS);
1851 		if (i == (DC_RX_LIST_CNT - 1)) {
1852 			ld->dc_rx_list[i].dc_next =
1853 			    vtophys(&ld->dc_rx_list[0]);
1854 		} else {
1855 			ld->dc_rx_list[i].dc_next =
1856 			    vtophys(&ld->dc_rx_list[i + 1]);
1857 		}
1858 	}
1859 
1860 	cd->dc_rx_prod = 0;
1861 
1862 	return(0);
1863 }
1864 
1865 /*
1866  * Initialize an RX descriptor and attach an MBUF cluster.
1867  */
1868 static int dc_newbuf(sc, i, m)
1869 	struct dc_softc		*sc;
1870 	int			i;
1871 	struct mbuf		*m;
1872 {
1873 	struct mbuf		*m_new = NULL;
1874 	struct dc_desc		*c;
1875 
1876 	c = &sc->dc_ldata->dc_rx_list[i];
1877 
1878 	if (m == NULL) {
1879 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1880 		if (m_new == NULL) {
1881 			printf("dc%d: no memory for rx list "
1882 			    "-- packet dropped!\n", sc->dc_unit);
1883 			return(ENOBUFS);
1884 		}
1885 
1886 		MCLGET(m_new, M_DONTWAIT);
1887 		if (!(m_new->m_flags & M_EXT)) {
1888 			printf("dc%d: no memory for rx list "
1889 			    "-- packet dropped!\n", sc->dc_unit);
1890 			m_freem(m_new);
1891 			return(ENOBUFS);
1892 		}
1893 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1894 	} else {
1895 		m_new = m;
1896 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1897 		m_new->m_data = m_new->m_ext.ext_buf;
1898 	}
1899 
1900 	m_adj(m_new, sizeof(u_int64_t));
1901 
1902 	/*
1903 	 * If this is a PNIC chip, zero the buffer. This is part
1904 	 * of the workaround for the receive bug in the 82c168 and
1905 	 * 82c169 chips.
1906 	 */
1907 	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
1908 		bzero((char *)mtod(m_new, char *), m_new->m_len);
1909 
1910 	sc->dc_cdata.dc_rx_chain[i] = m_new;
1911 	c->dc_data = vtophys(mtod(m_new, caddr_t));
1912 	c->dc_ctl = DC_RXCTL_RLINK | DC_RXLEN;
1913 	c->dc_status = DC_RXSTAT_OWN;
1914 
1915 	return(0);
1916 }
1917 
1918 /*
1919  * Grrrrr.
1920  * The PNIC chip has a terrible bug in it that manifests itself during
1921  * periods of heavy activity. The exact mode of failure if difficult to
1922  * pinpoint: sometimes it only happens in promiscuous mode, sometimes it
1923  * will happen on slow machines. The bug is that sometimes instead of
1924  * uploading one complete frame during reception, it uploads what looks
1925  * like the entire contents of its FIFO memory. The frame we want is at
1926  * the end of the whole mess, but we never know exactly how much data has
1927  * been uploaded, so salvaging the frame is hard.
1928  *
1929  * There is only one way to do it reliably, and it's disgusting.
1930  * Here's what we know:
1931  *
1932  * - We know there will always be somewhere between one and three extra
1933  *   descriptors uploaded.
1934  *
1935  * - We know the desired received frame will always be at the end of the
1936  *   total data upload.
1937  *
1938  * - We know the size of the desired received frame because it will be
1939  *   provided in the length field of the status word in the last descriptor.
1940  *
1941  * Here's what we do:
1942  *
1943  * - When we allocate buffers for the receive ring, we bzero() them.
1944  *   This means that we know that the buffer contents should be all
1945  *   zeros, except for data uploaded by the chip.
1946  *
1947  * - We also force the PNIC chip to upload frames that include the
1948  *   ethernet CRC at the end.
1949  *
1950  * - We gather all of the bogus frame data into a single buffer.
1951  *
1952  * - We then position a pointer at the end of this buffer and scan
1953  *   backwards until we encounter the first non-zero byte of data.
1954  *   This is the end of the received frame. We know we will encounter
1955  *   some data at the end of the frame because the CRC will always be
1956  *   there, so even if the sender transmits a packet of all zeros,
1957  *   we won't be fooled.
1958  *
1959  * - We know the size of the actual received frame, so we subtract
1960  *   that value from the current pointer location. This brings us
1961  *   to the start of the actual received packet.
1962  *
1963  * - We copy this into an mbuf and pass it on, along with the actual
1964  *   frame length.
1965  *
1966  * The performance hit is tremendous, but it beats dropping frames all
1967  * the time.
1968  */
1969 
1970 #define DC_WHOLEFRAME	(DC_RXSTAT_FIRSTFRAG|DC_RXSTAT_LASTFRAG)
1971 static void dc_pnic_rx_bug_war(sc, idx)
1972 	struct dc_softc		*sc;
1973 	int			idx;
1974 {
1975 	struct dc_desc		*cur_rx;
1976 	struct dc_desc		*c = NULL;
1977 	struct mbuf		*m = NULL;
1978 	unsigned char		*ptr;
1979 	int			i, total_len;
1980 	u_int32_t		rxstat = 0;
1981 
1982 	i = sc->dc_pnic_rx_bug_save;
1983 	cur_rx = &sc->dc_ldata->dc_rx_list[idx];
1984 	ptr = sc->dc_pnic_rx_buf;
1985 	bzero(ptr, sizeof(DC_RXLEN * 5));
1986 
1987 	/* Copy all the bytes from the bogus buffers. */
1988 	while (1) {
1989 		c = &sc->dc_ldata->dc_rx_list[i];
1990 		rxstat = c->dc_status;
1991 		m = sc->dc_cdata.dc_rx_chain[i];
1992 		bcopy(mtod(m, char *), ptr, DC_RXLEN);
1993 		ptr += DC_RXLEN;
1994 		/* If this is the last buffer, break out. */
1995 		if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
1996 			break;
1997 		dc_newbuf(sc, i, m);
1998 		DC_INC(i, DC_RX_LIST_CNT);
1999 	}
2000 
2001 	/* Find the length of the actual receive frame. */
2002 	total_len = DC_RXBYTES(rxstat);
2003 
2004 	/* Scan backwards until we hit a non-zero byte. */
2005 	while(*ptr == 0x00)
2006 		ptr--;
2007 
2008 	/* Round off. */
2009 	if ((uintptr_t)(ptr) & 0x3)
2010 		ptr -= 1;
2011 
2012 	/* Now find the start of the frame. */
2013 	ptr -= total_len;
2014 	if (ptr < sc->dc_pnic_rx_buf)
2015 		ptr = sc->dc_pnic_rx_buf;
2016 
2017 	/*
2018 	 * Now copy the salvaged frame to the last mbuf and fake up
2019 	 * the status word to make it look like a successful
2020  	 * frame reception.
2021 	 */
2022 	dc_newbuf(sc, i, m);
2023 	bcopy(ptr, mtod(m, char *), total_len);
2024 	cur_rx->dc_status = rxstat | DC_RXSTAT_FIRSTFRAG;
2025 
2026 	return;
2027 }
2028 
2029 /*
2030  * This routine searches the RX ring for dirty descriptors in the
2031  * event that the rxeof routine falls out of sync with the chip's
2032  * current descriptor pointer. This may happen sometimes as a result
2033  * of a "no RX buffer available" condition that happens when the chip
2034  * consumes all of the RX buffers before the driver has a chance to
2035  * process the RX ring. This routine may need to be called more than
2036  * once to bring the driver back in sync with the chip, however we
2037  * should still be getting RX DONE interrupts to drive the search
2038  * for new packets in the RX ring, so we should catch up eventually.
2039  */
2040 static int dc_rx_resync(sc)
2041 	struct dc_softc		*sc;
2042 {
2043 	int			i, pos;
2044 	struct dc_desc		*cur_rx;
2045 
2046 	pos = sc->dc_cdata.dc_rx_prod;
2047 
2048 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2049 		cur_rx = &sc->dc_ldata->dc_rx_list[pos];
2050 		if (!(cur_rx->dc_status & DC_RXSTAT_OWN))
2051 			break;
2052 		DC_INC(pos, DC_RX_LIST_CNT);
2053 	}
2054 
2055 	/* If the ring really is empty, then just return. */
2056 	if (i == DC_RX_LIST_CNT)
2057 		return(0);
2058 
2059 	/* We've fallen behing the chip: catch it. */
2060 	sc->dc_cdata.dc_rx_prod = pos;
2061 
2062 	return(EAGAIN);
2063 }
2064 
2065 /*
2066  * A frame has been uploaded: pass the resulting mbuf chain up to
2067  * the higher level protocols.
2068  */
2069 static void dc_rxeof(sc)
2070 	struct dc_softc		*sc;
2071 {
2072         struct ether_header	*eh;
2073         struct mbuf		*m;
2074         struct ifnet		*ifp;
2075 	struct dc_desc		*cur_rx;
2076 	int			i, total_len = 0;
2077 	u_int32_t		rxstat;
2078 
2079 	ifp = &sc->arpcom.ac_if;
2080 	i = sc->dc_cdata.dc_rx_prod;
2081 
2082 	while(!(sc->dc_ldata->dc_rx_list[i].dc_status & DC_RXSTAT_OWN)) {
2083 		struct mbuf		*m0 = NULL;
2084 
2085 		cur_rx = &sc->dc_ldata->dc_rx_list[i];
2086 		rxstat = cur_rx->dc_status;
2087 		m = sc->dc_cdata.dc_rx_chain[i];
2088 		total_len = DC_RXBYTES(rxstat);
2089 
2090 		if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2091 			if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
2092 				if (rxstat & DC_RXSTAT_FIRSTFRAG)
2093 					sc->dc_pnic_rx_bug_save = i;
2094 				if ((rxstat & DC_RXSTAT_LASTFRAG) == 0) {
2095 					DC_INC(i, DC_RX_LIST_CNT);
2096 					continue;
2097 				}
2098 				dc_pnic_rx_bug_war(sc, i);
2099 				rxstat = cur_rx->dc_status;
2100 				total_len = DC_RXBYTES(rxstat);
2101 			}
2102 		}
2103 
2104 		sc->dc_cdata.dc_rx_chain[i] = NULL;
2105 
2106 		/*
2107 		 * If an error occurs, update stats, clear the
2108 		 * status word and leave the mbuf cluster in place:
2109 		 * it should simply get re-used next time this descriptor
2110 	 	 * comes up in the ring.
2111 		 */
2112 		if (rxstat & DC_RXSTAT_RXERR) {
2113 			ifp->if_ierrors++;
2114 			if (rxstat & DC_RXSTAT_COLLSEEN)
2115 				ifp->if_collisions++;
2116 			dc_newbuf(sc, i, m);
2117 			if (rxstat & DC_RXSTAT_CRCERR) {
2118 				DC_INC(i, DC_RX_LIST_CNT);
2119 				continue;
2120 			} else {
2121 				dc_init(sc);
2122 				return;
2123 			}
2124 		}
2125 
2126 		/* No errors; receive the packet. */
2127 		total_len -= ETHER_CRC_LEN;
2128 
2129 		m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2130 		    total_len + ETHER_ALIGN, 0, ifp, NULL);
2131 		dc_newbuf(sc, i, m);
2132 		DC_INC(i, DC_RX_LIST_CNT);
2133 		if (m0 == NULL) {
2134 			ifp->if_ierrors++;
2135 			continue;
2136 		}
2137 		m_adj(m0, ETHER_ALIGN);
2138 		m = m0;
2139 
2140 		ifp->if_ipackets++;
2141 		eh = mtod(m, struct ether_header *);
2142 
2143 		/* Remove header from mbuf and pass it on. */
2144 		m_adj(m, sizeof(struct ether_header));
2145 		ether_input(ifp, eh, m);
2146 	}
2147 
2148 	sc->dc_cdata.dc_rx_prod = i;
2149 }
2150 
2151 /*
2152  * A frame was downloaded to the chip. It's safe for us to clean up
2153  * the list buffers.
2154  */
2155 
2156 static void dc_txeof(sc)
2157 	struct dc_softc		*sc;
2158 {
2159 	struct dc_desc		*cur_tx = NULL;
2160 	struct ifnet		*ifp;
2161 	int			idx;
2162 
2163 	ifp = &sc->arpcom.ac_if;
2164 
2165 	/* Clear the timeout timer. */
2166 	ifp->if_timer = 0;
2167 
2168 	/*
2169 	 * Go through our tx list and free mbufs for those
2170 	 * frames that have been transmitted.
2171 	 */
2172 	idx = sc->dc_cdata.dc_tx_cons;
2173 	while(idx != sc->dc_cdata.dc_tx_prod) {
2174 		u_int32_t		txstat;
2175 
2176 		cur_tx = &sc->dc_ldata->dc_tx_list[idx];
2177 		txstat = cur_tx->dc_status;
2178 
2179 		if (txstat & DC_TXSTAT_OWN)
2180 			break;
2181 
2182 		if (!(cur_tx->dc_ctl & DC_TXCTL_LASTFRAG) ||
2183 		    cur_tx->dc_ctl & DC_TXCTL_SETUP) {
2184 			sc->dc_cdata.dc_tx_cnt--;
2185 			if (cur_tx->dc_ctl & DC_TXCTL_SETUP) {
2186 				/*
2187 				 * Yes, the PNIC is so brain damaged
2188 				 * that it will sometimes generate a TX
2189 				 * underrun error while DMAing the RX
2190 				 * filter setup frame. If we detect this,
2191 				 * we have to send the setup frame again,
2192 				 * or else the filter won't be programmed
2193 				 * correctly.
2194 				 */
2195 				if (DC_IS_PNIC(sc)) {
2196 					if (txstat & DC_TXSTAT_ERRSUM)
2197 						dc_setfilt(sc);
2198 				}
2199 				sc->dc_cdata.dc_tx_chain[idx] = NULL;
2200 			}
2201 			DC_INC(idx, DC_TX_LIST_CNT);
2202 			continue;
2203 		}
2204 
2205 		if (/*sc->dc_type == DC_TYPE_21143 &&*/
2206 		    sc->dc_pmode == DC_PMODE_MII &&
2207 		    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM|
2208 		    DC_TXSTAT_NOCARRIER|DC_TXSTAT_CARRLOST)))
2209 			txstat &= ~DC_TXSTAT_ERRSUM;
2210 
2211 		if (txstat & DC_TXSTAT_ERRSUM) {
2212 			ifp->if_oerrors++;
2213 			if (txstat & DC_TXSTAT_EXCESSCOLL)
2214 				ifp->if_collisions++;
2215 			if (txstat & DC_TXSTAT_LATECOLL)
2216 				ifp->if_collisions++;
2217 			if (!(txstat & DC_TXSTAT_UNDERRUN)) {
2218 				dc_init(sc);
2219 				return;
2220 			}
2221 		}
2222 
2223 		ifp->if_collisions += (txstat & DC_TXSTAT_COLLCNT) >> 3;
2224 
2225 		ifp->if_opackets++;
2226 		if (sc->dc_cdata.dc_tx_chain[idx] != NULL) {
2227 			m_freem(sc->dc_cdata.dc_tx_chain[idx]);
2228 			sc->dc_cdata.dc_tx_chain[idx] = NULL;
2229 		}
2230 
2231 		sc->dc_cdata.dc_tx_cnt--;
2232 		DC_INC(idx, DC_TX_LIST_CNT);
2233 	}
2234 
2235 	sc->dc_cdata.dc_tx_cons = idx;
2236 	if (cur_tx != NULL)
2237 		ifp->if_flags &= ~IFF_OACTIVE;
2238 
2239 	return;
2240 }
2241 
2242 static void dc_tick(xsc)
2243 	void			*xsc;
2244 {
2245 	struct dc_softc		*sc;
2246 	struct mii_data		*mii;
2247 	struct ifnet		*ifp;
2248 	int			s;
2249 	u_int32_t		r;
2250 
2251 	s = splimp();
2252 
2253 	sc = xsc;
2254 	ifp = &sc->arpcom.ac_if;
2255 	mii = device_get_softc(sc->dc_miibus);
2256 
2257 	if (sc->dc_flags & DC_REDUCED_MII_POLL) {
2258 		if (sc->dc_flags & DC_21143_NWAY) {
2259 			r = CSR_READ_4(sc, DC_10BTSTAT);
2260 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2261 			    IFM_100_TX && (r & DC_TSTAT_LS100)) {
2262 				sc->dc_link = 0;
2263 				mii_mediachg(mii);
2264 			}
2265 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2266 			    IFM_10_T && (r & DC_TSTAT_LS10)) {
2267 				sc->dc_link = 0;
2268 				mii_mediachg(mii);
2269 			}
2270 			if (sc->dc_link == 0)
2271 				mii_tick(mii);
2272 		} else {
2273 			r = CSR_READ_4(sc, DC_ISR);
2274 			if ((r & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT &&
2275 			    sc->dc_cdata.dc_tx_cnt == 0)
2276 				mii_tick(mii);
2277 				if (!(mii->mii_media_status & IFM_ACTIVE))
2278 					sc->dc_link = 0;
2279 		}
2280 	} else
2281 		mii_tick(mii);
2282 
2283 	/*
2284 	 * When the init routine completes, we expect to be able to send
2285 	 * packets right away, and in fact the network code will send a
2286 	 * gratuitous ARP the moment the init routine marks the interface
2287 	 * as running. However, even though the MAC may have been initialized,
2288 	 * there may be a delay of a few seconds before the PHY completes
2289 	 * autonegotiation and the link is brought up. Any transmissions
2290 	 * made during that delay will be lost. Dealing with this is tricky:
2291 	 * we can't just pause in the init routine while waiting for the
2292 	 * PHY to come ready since that would bring the whole system to
2293 	 * a screeching halt for several seconds.
2294 	 *
2295 	 * What we do here is prevent the TX start routine from sending
2296 	 * any packets until a link has been established. After the
2297 	 * interface has been initialized, the tick routine will poll
2298 	 * the state of the PHY until the IFM_ACTIVE flag is set. Until
2299 	 * that time, packets will stay in the send queue, and once the
2300 	 * link comes up, they will be flushed out to the wire.
2301 	 */
2302 	if (!sc->dc_link) {
2303 		mii_pollstat(mii);
2304 		if (mii->mii_media_status & IFM_ACTIVE &&
2305 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2306 			sc->dc_link++;
2307 			if (ifp->if_snd.ifq_head != NULL)
2308 				dc_start(ifp);
2309 		}
2310 	}
2311 
2312 	if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link)
2313 		sc->dc_stat_ch = timeout(dc_tick, sc, hz/10);
2314 	else
2315 		sc->dc_stat_ch = timeout(dc_tick, sc, hz);
2316 
2317 	splx(s);
2318 
2319 	return;
2320 }
2321 
2322 static void dc_intr(arg)
2323 	void			*arg;
2324 {
2325 	struct dc_softc		*sc;
2326 	struct ifnet		*ifp;
2327 	u_int32_t		status;
2328 
2329 	sc = arg;
2330 	ifp = &sc->arpcom.ac_if;
2331 
2332 	/* Supress unwanted interrupts */
2333 	if (!(ifp->if_flags & IFF_UP)) {
2334 		if (CSR_READ_4(sc, DC_ISR) & DC_INTRS)
2335 			dc_stop(sc);
2336 		return;
2337 	}
2338 
2339 	/* Disable interrupts. */
2340 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
2341 
2342 	while((status = CSR_READ_4(sc, DC_ISR)) & DC_INTRS) {
2343 
2344 		CSR_WRITE_4(sc, DC_ISR, status);
2345 
2346 		if (status & DC_ISR_RX_OK) {
2347 			int		curpkts;
2348 			curpkts = ifp->if_ipackets;
2349 			dc_rxeof(sc);
2350 			if (curpkts == ifp->if_ipackets) {
2351 				while(dc_rx_resync(sc))
2352 					dc_rxeof(sc);
2353 			}
2354 		}
2355 
2356 		if (status & (DC_ISR_TX_OK|DC_ISR_TX_NOBUF))
2357 			dc_txeof(sc);
2358 
2359 		if (status & DC_ISR_TX_IDLE) {
2360 			dc_txeof(sc);
2361 			if (sc->dc_cdata.dc_tx_cnt) {
2362 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2363 				CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
2364 			}
2365 		}
2366 
2367 		if (status & DC_ISR_TX_UNDERRUN) {
2368 			u_int32_t		cfg;
2369 
2370 			printf("dc%d: TX underrun -- ", sc->dc_unit);
2371 			if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc))
2372 				dc_init(sc);
2373 			cfg = CSR_READ_4(sc, DC_NETCFG);
2374 			cfg &= ~DC_NETCFG_TX_THRESH;
2375 			if (sc->dc_txthresh == DC_TXTHRESH_160BYTES) {
2376 				printf("using store and forward mode\n");
2377 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
2378 			} else if (sc->dc_flags & DC_TX_STORENFWD) {
2379 				printf("resetting\n");
2380 			} else {
2381 				sc->dc_txthresh += 0x4000;
2382 				printf("increasing TX threshold\n");
2383 				CSR_WRITE_4(sc, DC_NETCFG, cfg);
2384 				DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
2385 				DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
2386 			}
2387 		}
2388 
2389 		if ((status & DC_ISR_RX_WATDOGTIMEO)
2390 		    || (status & DC_ISR_RX_NOBUF)) {
2391 			int		curpkts;
2392 			curpkts = ifp->if_ipackets;
2393 			dc_rxeof(sc);
2394 			if (curpkts == ifp->if_ipackets) {
2395 				while(dc_rx_resync(sc))
2396 					dc_rxeof(sc);
2397 			}
2398 		}
2399 
2400 		if (status & DC_ISR_BUS_ERR) {
2401 			dc_reset(sc);
2402 			dc_init(sc);
2403 		}
2404 	}
2405 
2406 	/* Re-enable interrupts. */
2407 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
2408 
2409 	if (ifp->if_snd.ifq_head != NULL)
2410 		dc_start(ifp);
2411 
2412 	return;
2413 }
2414 
2415 /*
2416  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
2417  * pointers to the fragment pointers.
2418  */
2419 static int dc_encap(sc, m_head, txidx)
2420 	struct dc_softc		*sc;
2421 	struct mbuf		*m_head;
2422 	u_int32_t		*txidx;
2423 {
2424 	struct dc_desc		*f = NULL;
2425 	struct mbuf		*m;
2426 	int			frag, cur, cnt = 0;
2427 
2428 	/*
2429  	 * Start packing the mbufs in this chain into
2430 	 * the fragment pointers. Stop when we run out
2431  	 * of fragments or hit the end of the mbuf chain.
2432 	 */
2433 	m = m_head;
2434 	cur = frag = *txidx;
2435 
2436 	for (m = m_head; m != NULL; m = m->m_next) {
2437 		if (m->m_len != 0) {
2438 			if (sc->dc_flags & DC_TX_ADMTEK_WAR) {
2439 				if (*txidx != sc->dc_cdata.dc_tx_prod &&
2440 				    frag == (DC_TX_LIST_CNT - 1))
2441 					return(ENOBUFS);
2442 			}
2443 			if ((DC_TX_LIST_CNT -
2444 			    (sc->dc_cdata.dc_tx_cnt + cnt)) < 5)
2445 				return(ENOBUFS);
2446 
2447 			f = &sc->dc_ldata->dc_tx_list[frag];
2448 			f->dc_ctl = DC_TXCTL_TLINK | m->m_len;
2449 			if (cnt == 0) {
2450 				f->dc_status = 0;
2451 				f->dc_ctl |= DC_TXCTL_FIRSTFRAG;
2452 			} else
2453 				f->dc_status = DC_TXSTAT_OWN;
2454 			f->dc_data = vtophys(mtod(m, vm_offset_t));
2455 			cur = frag;
2456 			DC_INC(frag, DC_TX_LIST_CNT);
2457 			cnt++;
2458 		}
2459 	}
2460 
2461 	if (m != NULL)
2462 		return(ENOBUFS);
2463 
2464 	sc->dc_cdata.dc_tx_cnt += cnt;
2465 	sc->dc_cdata.dc_tx_chain[cur] = m_head;
2466 	sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_LASTFRAG;
2467 	if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
2468 		sc->dc_ldata->dc_tx_list[*txidx].dc_ctl |= DC_TXCTL_FINT;
2469 	if (sc->dc_flags & DC_TX_INTR_ALWAYS)
2470 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT;
2471 	if (sc->dc_flags & DC_TX_USE_TX_INTR && sc->dc_cdata.dc_tx_cnt > 64)
2472 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT;
2473 	sc->dc_ldata->dc_tx_list[*txidx].dc_status = DC_TXSTAT_OWN;
2474 	*txidx = frag;
2475 
2476 	return(0);
2477 }
2478 
2479 /*
2480  * Coalesce an mbuf chain into a single mbuf cluster buffer.
2481  * Needed for some really badly behaved chips that just can't
2482  * do scatter/gather correctly.
2483  */
2484 static int dc_coal(sc, m_head)
2485 	struct dc_softc		*sc;
2486 	struct mbuf		**m_head;
2487 {
2488         struct mbuf		*m_new, *m;
2489 
2490 	m = *m_head;
2491 	MGETHDR(m_new, M_DONTWAIT, MT_DATA);
2492 	if (m_new == NULL) {
2493 		printf("dc%d: no memory for tx list", sc->dc_unit);
2494 		return(ENOBUFS);
2495 	}
2496 	if (m->m_pkthdr.len > MHLEN) {
2497 		MCLGET(m_new, M_DONTWAIT);
2498 		if (!(m_new->m_flags & M_EXT)) {
2499 			m_freem(m_new);
2500 			printf("dc%d: no memory for tx list", sc->dc_unit);
2501 			return(ENOBUFS);
2502 		}
2503 	}
2504 	m_copydata(m, 0, m->m_pkthdr.len, mtod(m_new, caddr_t));
2505 	m_new->m_pkthdr.len = m_new->m_len = m->m_pkthdr.len;
2506 	m_freem(m);
2507 	*m_head = m_new;
2508 
2509 	return(0);
2510 }
2511 
2512 /*
2513  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2514  * to the mbuf data regions directly in the transmit lists. We also save a
2515  * copy of the pointers since the transmit list fragment pointers are
2516  * physical addresses.
2517  */
2518 
2519 static void dc_start(ifp)
2520 	struct ifnet		*ifp;
2521 {
2522 	struct dc_softc		*sc;
2523 	struct mbuf		*m_head = NULL;
2524 	int			idx;
2525 
2526 	sc = ifp->if_softc;
2527 
2528 	if (!sc->dc_link)
2529 		return;
2530 
2531 	if (ifp->if_flags & IFF_OACTIVE)
2532 		return;
2533 
2534 	idx = sc->dc_cdata.dc_tx_prod;
2535 
2536 	while(sc->dc_cdata.dc_tx_chain[idx] == NULL) {
2537 		IF_DEQUEUE(&ifp->if_snd, m_head);
2538 		if (m_head == NULL)
2539 			break;
2540 
2541 		if (sc->dc_flags & DC_TX_COALESCE) {
2542 			if (dc_coal(sc, &m_head)) {
2543 				IF_PREPEND(&ifp->if_snd, m_head);
2544 				ifp->if_flags |= IFF_OACTIVE;
2545 				break;
2546 			}
2547 		}
2548 
2549 		if (dc_encap(sc, m_head, &idx)) {
2550 			IF_PREPEND(&ifp->if_snd, m_head);
2551 			ifp->if_flags |= IFF_OACTIVE;
2552 			break;
2553 		}
2554 
2555 		/*
2556 		 * If there's a BPF listener, bounce a copy of this frame
2557 		 * to him.
2558 		 */
2559 		if (ifp->if_bpf)
2560 			bpf_mtap(ifp, m_head);
2561 	}
2562 
2563 	/* Transmit */
2564 	sc->dc_cdata.dc_tx_prod = idx;
2565 	if (!(sc->dc_flags & DC_TX_POLL))
2566 		CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
2567 
2568 	/*
2569 	 * Set a timeout in case the chip goes out to lunch.
2570 	 */
2571 	ifp->if_timer = 5;
2572 
2573 	return;
2574 }
2575 
2576 static void dc_init(xsc)
2577 	void			*xsc;
2578 {
2579 	struct dc_softc		*sc = xsc;
2580 	struct ifnet		*ifp = &sc->arpcom.ac_if;
2581 	struct mii_data		*mii;
2582 	int			s;
2583 
2584 	s = splimp();
2585 
2586 	mii = device_get_softc(sc->dc_miibus);
2587 
2588 	/*
2589 	 * Cancel pending I/O and free all RX/TX buffers.
2590 	 */
2591 	dc_stop(sc);
2592 	dc_reset(sc);
2593 
2594 	/*
2595 	 * Set cache alignment and burst length.
2596 	 */
2597 	if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc))
2598 		CSR_WRITE_4(sc, DC_BUSCTL, 0);
2599 	else
2600 		CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME|DC_BUSCTL_MRLE);
2601 	if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
2602 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
2603 	} else {
2604 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
2605 	}
2606 	if (sc->dc_flags & DC_TX_POLL)
2607 		DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
2608 	switch(sc->dc_cachesize) {
2609 	case 32:
2610 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
2611 		break;
2612 	case 16:
2613 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
2614 		break;
2615 	case 8:
2616 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
2617 		break;
2618 	case 0:
2619 	default:
2620 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
2621 		break;
2622 	}
2623 
2624 	if (sc->dc_flags & DC_TX_STORENFWD)
2625 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
2626 	else {
2627 		if (sc->dc_txthresh == DC_TXTHRESH_160BYTES) {
2628 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
2629 		} else {
2630 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
2631 			DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
2632 		}
2633 	}
2634 
2635 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
2636 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
2637 
2638 	if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
2639 		/*
2640 		 * The app notes for the 98713 and 98715A say that
2641 		 * in order to have the chips operate properly, a magic
2642 		 * number must be written to CSR16. Macronix does not
2643 		 * document the meaning of these bits so there's no way
2644 		 * to know exactly what they do. The 98713 has a magic
2645 		 * number all its own; the rest all use a different one.
2646 		 */
2647 		DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
2648 		if (sc->dc_type == DC_TYPE_98713)
2649 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
2650 		else
2651 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
2652 	}
2653 
2654 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
2655 	DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_72BYTES);
2656 
2657 	/* Init circular RX list. */
2658 	if (dc_list_rx_init(sc) == ENOBUFS) {
2659 		printf("dc%d: initialization failed: no "
2660 		    "memory for rx buffers\n", sc->dc_unit);
2661 		dc_stop(sc);
2662 		(void)splx(s);
2663 		return;
2664 	}
2665 
2666 	/*
2667 	 * Init tx descriptors.
2668 	 */
2669 	dc_list_tx_init(sc);
2670 
2671 	/*
2672 	 * Load the address of the RX list.
2673 	 */
2674 	CSR_WRITE_4(sc, DC_RXADDR, vtophys(&sc->dc_ldata->dc_rx_list[0]));
2675 	CSR_WRITE_4(sc, DC_TXADDR, vtophys(&sc->dc_ldata->dc_tx_list[0]));
2676 
2677 	/*
2678 	 * Enable interrupts.
2679 	 */
2680 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
2681 	CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
2682 
2683 	/* Enable transmitter. */
2684 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2685 
2686 	/*
2687 	 * Load the RX/multicast filter. We do this sort of late
2688 	 * because the filter programming scheme on the 21143 and
2689 	 * some clones requires DMAing a setup frame via the TX
2690 	 * engine, and we need the transmitter enabled for that.
2691 	 */
2692 	dc_setfilt(sc);
2693 
2694 	/* Enable receiver. */
2695 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
2696 	CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
2697 
2698 	mii_mediachg(mii);
2699 	dc_setcfg(sc, sc->dc_if_media);
2700 
2701 	ifp->if_flags |= IFF_RUNNING;
2702 	ifp->if_flags &= ~IFF_OACTIVE;
2703 
2704 	(void)splx(s);
2705 
2706 	if (sc->dc_flags & DC_21143_NWAY)
2707 		sc->dc_stat_ch = timeout(dc_tick, sc, hz/10);
2708 	else
2709 		sc->dc_stat_ch = timeout(dc_tick, sc, hz);
2710 
2711 #ifdef __alpha__
2712         if(sc->dc_srm_media) {
2713 		struct ifreq ifr;
2714 
2715 		ifr.ifr_media = sc->dc_srm_media;
2716 		ifmedia_ioctl(ifp, &ifr, &mii->mii_media, SIOCSIFMEDIA);
2717 		sc->dc_srm_media = 0;
2718 	}
2719 #endif
2720 	return;
2721 }
2722 
2723 /*
2724  * Set media options.
2725  */
2726 static int dc_ifmedia_upd(ifp)
2727 	struct ifnet		*ifp;
2728 {
2729 	struct dc_softc		*sc;
2730 	struct mii_data		*mii;
2731 	struct ifmedia		*ifm;
2732 
2733 	sc = ifp->if_softc;
2734 	mii = device_get_softc(sc->dc_miibus);
2735 	mii_mediachg(mii);
2736 	ifm = &mii->mii_media;
2737 
2738 	if (DC_IS_DAVICOM(sc) &&
2739 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_homePNA)
2740 		dc_setcfg(sc, ifm->ifm_media);
2741 	else
2742 		sc->dc_link = 0;
2743 
2744 	return(0);
2745 }
2746 
2747 /*
2748  * Report current media status.
2749  */
2750 static void dc_ifmedia_sts(ifp, ifmr)
2751 	struct ifnet		*ifp;
2752 	struct ifmediareq	*ifmr;
2753 {
2754 	struct dc_softc		*sc;
2755 	struct mii_data		*mii;
2756 	struct ifmedia		*ifm;
2757 
2758 	sc = ifp->if_softc;
2759 	mii = device_get_softc(sc->dc_miibus);
2760 	mii_pollstat(mii);
2761 	ifm = &mii->mii_media;
2762 	if (DC_IS_DAVICOM(sc)) {
2763 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_homePNA) {
2764 			ifmr->ifm_active = ifm->ifm_media;
2765 			ifmr->ifm_status = 0;
2766 			return;
2767 		}
2768 	}
2769 	ifmr->ifm_active = mii->mii_media_active;
2770 	ifmr->ifm_status = mii->mii_media_status;
2771 
2772 	return;
2773 }
2774 
2775 static int dc_ioctl(ifp, command, data)
2776 	struct ifnet		*ifp;
2777 	u_long			command;
2778 	caddr_t			data;
2779 {
2780 	struct dc_softc		*sc = ifp->if_softc;
2781 	struct ifreq		*ifr = (struct ifreq *) data;
2782 	struct mii_data		*mii;
2783 	int			s, error = 0;
2784 
2785 	s = splimp();
2786 
2787 	switch(command) {
2788 	case SIOCSIFADDR:
2789 	case SIOCGIFADDR:
2790 	case SIOCSIFMTU:
2791 		error = ether_ioctl(ifp, command, data);
2792 		break;
2793 	case SIOCSIFFLAGS:
2794 		if (ifp->if_flags & IFF_UP) {
2795 			if (ifp->if_flags & IFF_RUNNING &&
2796 			    ifp->if_flags & IFF_PROMISC &&
2797 			    !(sc->dc_if_flags & IFF_PROMISC)) {
2798 				dc_setfilt(sc);
2799 			} else if (ifp->if_flags & IFF_RUNNING &&
2800 			    !(ifp->if_flags & IFF_PROMISC) &&
2801 			    sc->dc_if_flags & IFF_PROMISC) {
2802 				dc_setfilt(sc);
2803 			} else if (!(ifp->if_flags & IFF_RUNNING)) {
2804 				sc->dc_txthresh = 0;
2805 				dc_init(sc);
2806 			}
2807 		} else {
2808 			if (ifp->if_flags & IFF_RUNNING)
2809 				dc_stop(sc);
2810 		}
2811 		sc->dc_if_flags = ifp->if_flags;
2812 		error = 0;
2813 		break;
2814 	case SIOCADDMULTI:
2815 	case SIOCDELMULTI:
2816 		dc_setfilt(sc);
2817 		error = 0;
2818 		break;
2819 	case SIOCGIFMEDIA:
2820 	case SIOCSIFMEDIA:
2821 		mii = device_get_softc(sc->dc_miibus);
2822 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2823 #ifdef __alpha__
2824 		if (sc->dc_srm_media)
2825 			sc->dc_srm_media = 0;
2826 #endif
2827 		break;
2828 	default:
2829 		error = EINVAL;
2830 		break;
2831 	}
2832 
2833 	(void)splx(s);
2834 
2835 	return(error);
2836 }
2837 
2838 static void dc_watchdog(ifp)
2839 	struct ifnet		*ifp;
2840 {
2841 	struct dc_softc		*sc;
2842 
2843 	sc = ifp->if_softc;
2844 
2845 	ifp->if_oerrors++;
2846 	printf("dc%d: watchdog timeout\n", sc->dc_unit);
2847 
2848 	dc_stop(sc);
2849 	dc_reset(sc);
2850 	dc_init(sc);
2851 
2852 	if (ifp->if_snd.ifq_head != NULL)
2853 		dc_start(ifp);
2854 
2855 	return;
2856 }
2857 
2858 /*
2859  * Stop the adapter and free any mbufs allocated to the
2860  * RX and TX lists.
2861  */
2862 static void dc_stop(sc)
2863 	struct dc_softc		*sc;
2864 {
2865 	register int		i;
2866 	struct ifnet		*ifp;
2867 
2868 	ifp = &sc->arpcom.ac_if;
2869 	ifp->if_timer = 0;
2870 
2871 	untimeout(dc_tick, sc, sc->dc_stat_ch);
2872 
2873 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ON|DC_NETCFG_TX_ON));
2874 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
2875 	CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
2876 	CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
2877 	sc->dc_link = 0;
2878 
2879 	/*
2880 	 * Free data in the RX lists.
2881 	 */
2882 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2883 		if (sc->dc_cdata.dc_rx_chain[i] != NULL) {
2884 			m_freem(sc->dc_cdata.dc_rx_chain[i]);
2885 			sc->dc_cdata.dc_rx_chain[i] = NULL;
2886 		}
2887 	}
2888 	bzero((char *)&sc->dc_ldata->dc_rx_list,
2889 		sizeof(sc->dc_ldata->dc_rx_list));
2890 
2891 	/*
2892 	 * Free the TX list buffers.
2893 	 */
2894 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2895 		if (sc->dc_cdata.dc_tx_chain[i] != NULL) {
2896 			if (sc->dc_ldata->dc_tx_list[i].dc_ctl &
2897 			    DC_TXCTL_SETUP) {
2898 				sc->dc_cdata.dc_tx_chain[i] = NULL;
2899 				continue;
2900 			}
2901 			m_freem(sc->dc_cdata.dc_tx_chain[i]);
2902 			sc->dc_cdata.dc_tx_chain[i] = NULL;
2903 		}
2904 	}
2905 
2906 	bzero((char *)&sc->dc_ldata->dc_tx_list,
2907 		sizeof(sc->dc_ldata->dc_tx_list));
2908 
2909 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2910 
2911 	return;
2912 }
2913 
2914 /*
2915  * Stop all chip I/O so that the kernel's probe routines don't
2916  * get confused by errant DMAs when rebooting.
2917  */
2918 static void dc_shutdown(dev)
2919 	device_t		dev;
2920 {
2921 	struct dc_softc		*sc;
2922 
2923 	sc = device_get_softc(dev);
2924 
2925 	dc_stop(sc);
2926 
2927 	return;
2928 }
2929