1 /* 2 * Copyright (c) 1997, 1998, 1999 3 * Bill Paul <wpaul@ee.columbia.edu>. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by Bill Paul. 16 * 4. Neither the name of the author nor the names of any co-contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 30 * THE POSSIBILITY OF SUCH DAMAGE. 31 * 32 * $FreeBSD$ 33 */ 34 35 /* 36 * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143 37 * series chips and several workalikes including the following: 38 * 39 * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com) 40 * Macronix/Lite-On 82c115 PNIC II (www.macronix.com) 41 * Lite-On 82c168/82c169 PNIC (www.litecom.com) 42 * ASIX Electronics AX88140A (www.asix.com.tw) 43 * ASIX Electronics AX88141 (www.asix.com.tw) 44 * ADMtek AL981 (www.admtek.com.tw) 45 * ADMtek AN985 (www.admtek.com.tw) 46 * Davicom DM9100, DM9102, DM9102A (www.davicom8.com) 47 * Accton EN1217 (www.accton.com) 48 * Xircom X3201 (www.xircom.com) 49 * Abocom FE2500 50 * Conexant LANfinity (www.conexant.com) 51 * 52 * Datasheets for the 21143 are available at developer.intel.com. 53 * Datasheets for the clone parts can be found at their respective sites. 54 * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.) 55 * The PNIC II is essentially a Macronix 98715A chip; the only difference 56 * worth noting is that its multicast hash table is only 128 bits wide 57 * instead of 512. 58 * 59 * Written by Bill Paul <wpaul@ee.columbia.edu> 60 * Electrical Engineering Department 61 * Columbia University, New York City 62 */ 63 64 /* 65 * The Intel 21143 is the successor to the DEC 21140. It is basically 66 * the same as the 21140 but with a few new features. The 21143 supports 67 * three kinds of media attachments: 68 * 69 * o MII port, for 10Mbps and 100Mbps support and NWAY 70 * autonegotiation provided by an external PHY. 71 * o SYM port, for symbol mode 100Mbps support. 72 * o 10baseT port. 73 * o AUI/BNC port. 74 * 75 * The 100Mbps SYM port and 10baseT port can be used together in 76 * combination with the internal NWAY support to create a 10/100 77 * autosensing configuration. 78 * 79 * Note that not all tulip workalikes are handled in this driver: we only 80 * deal with those which are relatively well behaved. The Winbond is 81 * handled separately due to its different register offsets and the 82 * special handling needed for its various bugs. The PNIC is handled 83 * here, but I'm not thrilled about it. 84 * 85 * All of the workalike chips use some form of MII transceiver support 86 * with the exception of the Macronix chips, which also have a SYM port. 87 * The ASIX AX88140A is also documented to have a SYM port, but all 88 * the cards I've seen use an MII transceiver, probably because the 89 * AX88140A doesn't support internal NWAY. 90 */ 91 92 #include <sys/param.h> 93 #include <sys/systm.h> 94 #include <sys/sockio.h> 95 #include <sys/mbuf.h> 96 #include <sys/malloc.h> 97 #include <sys/kernel.h> 98 #include <sys/socket.h> 99 #include <sys/sysctl.h> 100 101 #include <net/if.h> 102 #include <net/if_arp.h> 103 #include <net/ethernet.h> 104 #include <net/if_dl.h> 105 #include <net/if_media.h> 106 #include <net/if_types.h> 107 #include <net/if_vlan_var.h> 108 109 #include <net/bpf.h> 110 111 #include <vm/vm.h> /* for vtophys */ 112 #include <vm/pmap.h> /* for vtophys */ 113 #include <machine/bus_pio.h> 114 #include <machine/bus_memio.h> 115 #include <machine/bus.h> 116 #include <machine/resource.h> 117 #include <sys/bus.h> 118 #include <sys/rman.h> 119 120 #include <dev/mii/mii.h> 121 #include <dev/mii/miivar.h> 122 123 #include <pci/pcireg.h> 124 #include <pci/pcivar.h> 125 126 #define DC_USEIOSPACE 127 #ifdef __alpha__ 128 #define SRM_MEDIA 129 #endif 130 131 #include <pci/if_dcreg.h> 132 133 MODULE_DEPEND(dc, miibus, 1, 1, 1); 134 135 /* "controller miibus0" required. See GENERIC if you get errors here. */ 136 #include "miibus_if.h" 137 138 #ifndef lint 139 static const char rcsid[] = 140 "$FreeBSD$"; 141 #endif 142 143 /* 144 * Various supported device vendors/types and their names. 145 */ 146 static struct dc_type dc_devs[] = { 147 { DC_VENDORID_DEC, DC_DEVICEID_21143, 148 "Intel 21143 10/100BaseTX" }, 149 { DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100, 150 "Davicom DM9100 10/100BaseTX" }, 151 { DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102, 152 "Davicom DM9102 10/100BaseTX" }, 153 { DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102, 154 "Davicom DM9102A 10/100BaseTX" }, 155 { DC_VENDORID_ADMTEK, DC_DEVICEID_AL981, 156 "ADMtek AL981 10/100BaseTX" }, 157 { DC_VENDORID_ADMTEK, DC_DEVICEID_AN985, 158 "ADMtek AN985 10/100BaseTX" }, 159 { DC_VENDORID_ASIX, DC_DEVICEID_AX88140A, 160 "ASIX AX88140A 10/100BaseTX" }, 161 { DC_VENDORID_ASIX, DC_DEVICEID_AX88140A, 162 "ASIX AX88141 10/100BaseTX" }, 163 { DC_VENDORID_MX, DC_DEVICEID_98713, 164 "Macronix 98713 10/100BaseTX" }, 165 { DC_VENDORID_MX, DC_DEVICEID_98713, 166 "Macronix 98713A 10/100BaseTX" }, 167 { DC_VENDORID_CP, DC_DEVICEID_98713_CP, 168 "Compex RL100-TX 10/100BaseTX" }, 169 { DC_VENDORID_CP, DC_DEVICEID_98713_CP, 170 "Compex RL100-TX 10/100BaseTX" }, 171 { DC_VENDORID_MX, DC_DEVICEID_987x5, 172 "Macronix 98715/98715A 10/100BaseTX" }, 173 { DC_VENDORID_MX, DC_DEVICEID_987x5, 174 "Macronix 98715AEC-C 10/100BaseTX" }, 175 { DC_VENDORID_MX, DC_DEVICEID_987x5, 176 "Macronix 98725 10/100BaseTX" }, 177 { DC_VENDORID_MX, DC_DEVICEID_98727, 178 "Macronix 98727/98732 10/100BaseTX" }, 179 { DC_VENDORID_LO, DC_DEVICEID_82C115, 180 "LC82C115 PNIC II 10/100BaseTX" }, 181 { DC_VENDORID_LO, DC_DEVICEID_82C168, 182 "82c168 PNIC 10/100BaseTX" }, 183 { DC_VENDORID_LO, DC_DEVICEID_82C168, 184 "82c169 PNIC 10/100BaseTX" }, 185 { DC_VENDORID_ACCTON, DC_DEVICEID_EN1217, 186 "Accton EN1217 10/100BaseTX" }, 187 { DC_VENDORID_ACCTON, DC_DEVICEID_EN2242, 188 "Accton EN2242 MiniPCI 10/100BaseTX" }, 189 { DC_VENDORID_XIRCOM, DC_DEVICEID_X3201, 190 "Xircom X3201 10/100BaseTX" }, 191 { DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500, 192 "Abocom FE2500 10/100BaseTX" }, 193 { DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112, 194 "Conexant LANfinity MiniPCI 10/100BaseTX" }, 195 { 0, 0, NULL } 196 }; 197 198 static int dc_probe (device_t); 199 static int dc_attach (device_t); 200 static int dc_detach (device_t); 201 static int dc_suspend (device_t); 202 static int dc_resume (device_t); 203 static void dc_acpi (device_t); 204 static struct dc_type *dc_devtype (device_t); 205 static int dc_newbuf (struct dc_softc *, int, struct mbuf *); 206 static int dc_encap (struct dc_softc *, struct mbuf *, u_int32_t *); 207 static int dc_coal (struct dc_softc *, struct mbuf **); 208 static void dc_pnic_rx_bug_war (struct dc_softc *, int); 209 static int dc_rx_resync (struct dc_softc *); 210 static void dc_rxeof (struct dc_softc *); 211 static void dc_txeof (struct dc_softc *); 212 static void dc_tick (void *); 213 static void dc_tx_underrun (struct dc_softc *); 214 static void dc_intr (void *); 215 static void dc_start (struct ifnet *); 216 static int dc_ioctl (struct ifnet *, u_long, caddr_t); 217 static void dc_init (void *); 218 static void dc_stop (struct dc_softc *); 219 static void dc_watchdog (struct ifnet *); 220 static void dc_shutdown (device_t); 221 static int dc_ifmedia_upd (struct ifnet *); 222 static void dc_ifmedia_sts (struct ifnet *, struct ifmediareq *); 223 224 static void dc_delay (struct dc_softc *); 225 static void dc_eeprom_idle (struct dc_softc *); 226 static void dc_eeprom_putbyte (struct dc_softc *, int); 227 static void dc_eeprom_getword (struct dc_softc *, int, u_int16_t *); 228 static void dc_eeprom_getword_pnic 229 (struct dc_softc *, int, u_int16_t *); 230 static void dc_eeprom_getword_xircom 231 (struct dc_softc *, int, u_int16_t *); 232 static void dc_eeprom_width (struct dc_softc *); 233 static void dc_read_eeprom (struct dc_softc *, caddr_t, int, int, int); 234 235 static void dc_mii_writebit (struct dc_softc *, int); 236 static int dc_mii_readbit (struct dc_softc *); 237 static void dc_mii_sync (struct dc_softc *); 238 static void dc_mii_send (struct dc_softc *, u_int32_t, int); 239 static int dc_mii_readreg (struct dc_softc *, struct dc_mii_frame *); 240 static int dc_mii_writereg (struct dc_softc *, struct dc_mii_frame *); 241 static int dc_miibus_readreg (device_t, int, int); 242 static int dc_miibus_writereg (device_t, int, int, int); 243 static void dc_miibus_statchg (device_t); 244 static void dc_miibus_mediainit (device_t); 245 246 static void dc_setcfg (struct dc_softc *, int); 247 static u_int32_t dc_crc_le (struct dc_softc *, caddr_t); 248 static u_int32_t dc_crc_be (caddr_t); 249 static void dc_setfilt_21143 (struct dc_softc *); 250 static void dc_setfilt_asix (struct dc_softc *); 251 static void dc_setfilt_admtek (struct dc_softc *); 252 static void dc_setfilt_xircom (struct dc_softc *); 253 254 static void dc_setfilt (struct dc_softc *); 255 256 static void dc_reset (struct dc_softc *); 257 static int dc_list_rx_init (struct dc_softc *); 258 static int dc_list_tx_init (struct dc_softc *); 259 260 static void dc_read_srom (struct dc_softc *, int); 261 static void dc_parse_21143_srom (struct dc_softc *); 262 static void dc_decode_leaf_sia (struct dc_softc *, struct dc_eblock_sia *); 263 static void dc_decode_leaf_mii (struct dc_softc *, struct dc_eblock_mii *); 264 static void dc_decode_leaf_sym (struct dc_softc *, struct dc_eblock_sym *); 265 static void dc_apply_fixup (struct dc_softc *, int); 266 267 #ifdef DC_USEIOSPACE 268 #define DC_RES SYS_RES_IOPORT 269 #define DC_RID DC_PCI_CFBIO 270 #else 271 #define DC_RES SYS_RES_MEMORY 272 #define DC_RID DC_PCI_CFBMA 273 #endif 274 275 static device_method_t dc_methods[] = { 276 /* Device interface */ 277 DEVMETHOD(device_probe, dc_probe), 278 DEVMETHOD(device_attach, dc_attach), 279 DEVMETHOD(device_detach, dc_detach), 280 DEVMETHOD(device_suspend, dc_suspend), 281 DEVMETHOD(device_resume, dc_resume), 282 DEVMETHOD(device_shutdown, dc_shutdown), 283 284 /* bus interface */ 285 DEVMETHOD(bus_print_child, bus_generic_print_child), 286 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 287 288 /* MII interface */ 289 DEVMETHOD(miibus_readreg, dc_miibus_readreg), 290 DEVMETHOD(miibus_writereg, dc_miibus_writereg), 291 DEVMETHOD(miibus_statchg, dc_miibus_statchg), 292 DEVMETHOD(miibus_mediainit, dc_miibus_mediainit), 293 294 { 0, 0 } 295 }; 296 297 static driver_t dc_driver = { 298 "dc", 299 dc_methods, 300 sizeof(struct dc_softc) 301 }; 302 303 static devclass_t dc_devclass; 304 #ifdef __i386__ 305 static int dc_quick=1; 306 SYSCTL_INT(_hw, OID_AUTO, dc_quick, CTLFLAG_RW, 307 &dc_quick,0,"do not mdevget in dc driver"); 308 #endif 309 310 DRIVER_MODULE(if_dc, cardbus, dc_driver, dc_devclass, 0, 0); 311 DRIVER_MODULE(if_dc, pci, dc_driver, dc_devclass, 0, 0); 312 DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, 0, 0); 313 314 #define DC_SETBIT(sc, reg, x) \ 315 CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x)) 316 317 #define DC_CLRBIT(sc, reg, x) \ 318 CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x)) 319 320 #define SIO_SET(x) DC_SETBIT(sc, DC_SIO, (x)) 321 #define SIO_CLR(x) DC_CLRBIT(sc, DC_SIO, (x)) 322 323 #define IS_MPSAFE 0 324 325 static void 326 dc_delay(sc) 327 struct dc_softc *sc; 328 { 329 int idx; 330 331 for (idx = (300 / 33) + 1; idx > 0; idx--) 332 CSR_READ_4(sc, DC_BUSCTL); 333 } 334 335 static void 336 dc_eeprom_width(sc) 337 struct dc_softc *sc; 338 { 339 int i; 340 341 /* Force EEPROM to idle state. */ 342 dc_eeprom_idle(sc); 343 344 /* Enter EEPROM access mode. */ 345 CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL); 346 dc_delay(sc); 347 DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ); 348 dc_delay(sc); 349 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); 350 dc_delay(sc); 351 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS); 352 dc_delay(sc); 353 354 for (i = 3; i--;) { 355 if (6 & (1 << i)) 356 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN); 357 else 358 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN); 359 dc_delay(sc); 360 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK); 361 dc_delay(sc); 362 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); 363 dc_delay(sc); 364 } 365 366 for (i = 1; i <= 12; i++) { 367 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK); 368 dc_delay(sc); 369 if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) { 370 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); 371 dc_delay(sc); 372 break; 373 } 374 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); 375 dc_delay(sc); 376 } 377 378 /* Turn off EEPROM access mode. */ 379 dc_eeprom_idle(sc); 380 381 if (i < 4 || i > 12) 382 sc->dc_romwidth = 6; 383 else 384 sc->dc_romwidth = i; 385 386 /* Enter EEPROM access mode. */ 387 CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL); 388 dc_delay(sc); 389 DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ); 390 dc_delay(sc); 391 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); 392 dc_delay(sc); 393 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS); 394 dc_delay(sc); 395 396 /* Turn off EEPROM access mode. */ 397 dc_eeprom_idle(sc); 398 } 399 400 static void 401 dc_eeprom_idle(sc) 402 struct dc_softc *sc; 403 { 404 register int i; 405 406 CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL); 407 dc_delay(sc); 408 DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ); 409 dc_delay(sc); 410 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); 411 dc_delay(sc); 412 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS); 413 dc_delay(sc); 414 415 for (i = 0; i < 25; i++) { 416 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); 417 dc_delay(sc); 418 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK); 419 dc_delay(sc); 420 } 421 422 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); 423 dc_delay(sc); 424 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS); 425 dc_delay(sc); 426 CSR_WRITE_4(sc, DC_SIO, 0x00000000); 427 428 return; 429 } 430 431 /* 432 * Send a read command and address to the EEPROM, check for ACK. 433 */ 434 static void 435 dc_eeprom_putbyte(sc, addr) 436 struct dc_softc *sc; 437 int addr; 438 { 439 register int d, i; 440 441 d = DC_EECMD_READ >> 6; 442 for (i = 3; i--; ) { 443 if (d & (1 << i)) 444 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN); 445 else 446 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN); 447 dc_delay(sc); 448 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK); 449 dc_delay(sc); 450 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); 451 dc_delay(sc); 452 } 453 454 /* 455 * Feed in each bit and strobe the clock. 456 */ 457 for (i = sc->dc_romwidth; i--;) { 458 if (addr & (1 << i)) { 459 SIO_SET(DC_SIO_EE_DATAIN); 460 } else { 461 SIO_CLR(DC_SIO_EE_DATAIN); 462 } 463 dc_delay(sc); 464 SIO_SET(DC_SIO_EE_CLK); 465 dc_delay(sc); 466 SIO_CLR(DC_SIO_EE_CLK); 467 dc_delay(sc); 468 } 469 470 return; 471 } 472 473 /* 474 * Read a word of data stored in the EEPROM at address 'addr.' 475 * The PNIC 82c168/82c169 has its own non-standard way to read 476 * the EEPROM. 477 */ 478 static void 479 dc_eeprom_getword_pnic(sc, addr, dest) 480 struct dc_softc *sc; 481 int addr; 482 u_int16_t *dest; 483 { 484 register int i; 485 u_int32_t r; 486 487 CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ|addr); 488 489 for (i = 0; i < DC_TIMEOUT; i++) { 490 DELAY(1); 491 r = CSR_READ_4(sc, DC_SIO); 492 if (!(r & DC_PN_SIOCTL_BUSY)) { 493 *dest = (u_int16_t)(r & 0xFFFF); 494 return; 495 } 496 } 497 498 return; 499 } 500 501 /* 502 * Read a word of data stored in the EEPROM at address 'addr.' 503 * The Xircom X3201 has its own non-standard way to read 504 * the EEPROM, too. 505 */ 506 static void 507 dc_eeprom_getword_xircom(sc, addr, dest) 508 struct dc_softc *sc; 509 int addr; 510 u_int16_t *dest; 511 { 512 SIO_SET(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ); 513 514 addr *= 2; 515 CSR_WRITE_4(sc, DC_ROM, addr | 0x160); 516 *dest = (u_int16_t)CSR_READ_4(sc, DC_SIO)&0xff; 517 addr += 1; 518 CSR_WRITE_4(sc, DC_ROM, addr | 0x160); 519 *dest |= ((u_int16_t)CSR_READ_4(sc, DC_SIO)&0xff) << 8; 520 521 SIO_CLR(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ); 522 return; 523 } 524 525 /* 526 * Read a word of data stored in the EEPROM at address 'addr.' 527 */ 528 static void 529 dc_eeprom_getword(sc, addr, dest) 530 struct dc_softc *sc; 531 int addr; 532 u_int16_t *dest; 533 { 534 register int i; 535 u_int16_t word = 0; 536 537 /* Force EEPROM to idle state. */ 538 dc_eeprom_idle(sc); 539 540 /* Enter EEPROM access mode. */ 541 CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL); 542 dc_delay(sc); 543 DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ); 544 dc_delay(sc); 545 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); 546 dc_delay(sc); 547 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS); 548 dc_delay(sc); 549 550 /* 551 * Send address of word we want to read. 552 */ 553 dc_eeprom_putbyte(sc, addr); 554 555 /* 556 * Start reading bits from EEPROM. 557 */ 558 for (i = 0x8000; i; i >>= 1) { 559 SIO_SET(DC_SIO_EE_CLK); 560 dc_delay(sc); 561 if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT) 562 word |= i; 563 dc_delay(sc); 564 SIO_CLR(DC_SIO_EE_CLK); 565 dc_delay(sc); 566 } 567 568 /* Turn off EEPROM access mode. */ 569 dc_eeprom_idle(sc); 570 571 *dest = word; 572 573 return; 574 } 575 576 /* 577 * Read a sequence of words from the EEPROM. 578 */ 579 static void 580 dc_read_eeprom(sc, dest, off, cnt, swap) 581 struct dc_softc *sc; 582 caddr_t dest; 583 int off; 584 int cnt; 585 int swap; 586 { 587 int i; 588 u_int16_t word = 0, *ptr; 589 590 for (i = 0; i < cnt; i++) { 591 if (DC_IS_PNIC(sc)) 592 dc_eeprom_getword_pnic(sc, off + i, &word); 593 else if (DC_IS_XIRCOM(sc)) 594 dc_eeprom_getword_xircom(sc, off + i, &word); 595 else 596 dc_eeprom_getword(sc, off + i, &word); 597 ptr = (u_int16_t *)(dest + (i * 2)); 598 if (swap) 599 *ptr = ntohs(word); 600 else 601 *ptr = word; 602 } 603 604 return; 605 } 606 607 /* 608 * The following two routines are taken from the Macronix 98713 609 * Application Notes pp.19-21. 610 */ 611 /* 612 * Write a bit to the MII bus. 613 */ 614 static void 615 dc_mii_writebit(sc, bit) 616 struct dc_softc *sc; 617 int bit; 618 { 619 if (bit) 620 CSR_WRITE_4(sc, DC_SIO, 621 DC_SIO_ROMCTL_WRITE|DC_SIO_MII_DATAOUT); 622 else 623 CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE); 624 625 DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK); 626 DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK); 627 628 return; 629 } 630 631 /* 632 * Read a bit from the MII bus. 633 */ 634 static int 635 dc_mii_readbit(sc) 636 struct dc_softc *sc; 637 { 638 CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_READ|DC_SIO_MII_DIR); 639 CSR_READ_4(sc, DC_SIO); 640 DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK); 641 DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK); 642 if (CSR_READ_4(sc, DC_SIO) & DC_SIO_MII_DATAIN) 643 return(1); 644 645 return(0); 646 } 647 648 /* 649 * Sync the PHYs by setting data bit and strobing the clock 32 times. 650 */ 651 static void 652 dc_mii_sync(sc) 653 struct dc_softc *sc; 654 { 655 register int i; 656 657 CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE); 658 659 for (i = 0; i < 32; i++) 660 dc_mii_writebit(sc, 1); 661 662 return; 663 } 664 665 /* 666 * Clock a series of bits through the MII. 667 */ 668 static void 669 dc_mii_send(sc, bits, cnt) 670 struct dc_softc *sc; 671 u_int32_t bits; 672 int cnt; 673 { 674 int i; 675 676 for (i = (0x1 << (cnt - 1)); i; i >>= 1) 677 dc_mii_writebit(sc, bits & i); 678 } 679 680 /* 681 * Read an PHY register through the MII. 682 */ 683 static int 684 dc_mii_readreg(sc, frame) 685 struct dc_softc *sc; 686 struct dc_mii_frame *frame; 687 688 { 689 int i, ack; 690 691 DC_LOCK(sc); 692 693 /* 694 * Set up frame for RX. 695 */ 696 frame->mii_stdelim = DC_MII_STARTDELIM; 697 frame->mii_opcode = DC_MII_READOP; 698 frame->mii_turnaround = 0; 699 frame->mii_data = 0; 700 701 /* 702 * Sync the PHYs. 703 */ 704 dc_mii_sync(sc); 705 706 /* 707 * Send command/address info. 708 */ 709 dc_mii_send(sc, frame->mii_stdelim, 2); 710 dc_mii_send(sc, frame->mii_opcode, 2); 711 dc_mii_send(sc, frame->mii_phyaddr, 5); 712 dc_mii_send(sc, frame->mii_regaddr, 5); 713 714 #ifdef notdef 715 /* Idle bit */ 716 dc_mii_writebit(sc, 1); 717 dc_mii_writebit(sc, 0); 718 #endif 719 720 /* Check for ack */ 721 ack = dc_mii_readbit(sc); 722 723 /* 724 * Now try reading data bits. If the ack failed, we still 725 * need to clock through 16 cycles to keep the PHY(s) in sync. 726 */ 727 if (ack) { 728 for(i = 0; i < 16; i++) { 729 dc_mii_readbit(sc); 730 } 731 goto fail; 732 } 733 734 for (i = 0x8000; i; i >>= 1) { 735 if (!ack) { 736 if (dc_mii_readbit(sc)) 737 frame->mii_data |= i; 738 } 739 } 740 741 fail: 742 743 dc_mii_writebit(sc, 0); 744 dc_mii_writebit(sc, 0); 745 746 DC_UNLOCK(sc); 747 748 if (ack) 749 return(1); 750 return(0); 751 } 752 753 /* 754 * Write to a PHY register through the MII. 755 */ 756 static int 757 dc_mii_writereg(sc, frame) 758 struct dc_softc *sc; 759 struct dc_mii_frame *frame; 760 761 { 762 DC_LOCK(sc); 763 /* 764 * Set up frame for TX. 765 */ 766 767 frame->mii_stdelim = DC_MII_STARTDELIM; 768 frame->mii_opcode = DC_MII_WRITEOP; 769 frame->mii_turnaround = DC_MII_TURNAROUND; 770 771 /* 772 * Sync the PHYs. 773 */ 774 dc_mii_sync(sc); 775 776 dc_mii_send(sc, frame->mii_stdelim, 2); 777 dc_mii_send(sc, frame->mii_opcode, 2); 778 dc_mii_send(sc, frame->mii_phyaddr, 5); 779 dc_mii_send(sc, frame->mii_regaddr, 5); 780 dc_mii_send(sc, frame->mii_turnaround, 2); 781 dc_mii_send(sc, frame->mii_data, 16); 782 783 /* Idle bit. */ 784 dc_mii_writebit(sc, 0); 785 dc_mii_writebit(sc, 0); 786 787 DC_UNLOCK(sc); 788 789 return(0); 790 } 791 792 static int 793 dc_miibus_readreg(dev, phy, reg) 794 device_t dev; 795 int phy, reg; 796 { 797 struct dc_mii_frame frame; 798 struct dc_softc *sc; 799 int i, rval, phy_reg = 0; 800 801 sc = device_get_softc(dev); 802 bzero((char *)&frame, sizeof(frame)); 803 804 /* 805 * Note: both the AL981 and AN985 have internal PHYs, 806 * however the AL981 provides direct access to the PHY 807 * registers while the AN985 uses a serial MII interface. 808 * The AN985's MII interface is also buggy in that you 809 * can read from any MII address (0 to 31), but only address 1 810 * behaves normally. To deal with both cases, we pretend 811 * that the PHY is at MII address 1. 812 */ 813 if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR) 814 return(0); 815 816 /* 817 * Note: the ukphy probes of the RS7112 report a PHY at 818 * MII address 0 (possibly HomePNA?) and 1 (ethernet) 819 * so we only respond to correct one. 820 */ 821 if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR) 822 return(0); 823 824 if (sc->dc_pmode != DC_PMODE_MII) { 825 if (phy == (MII_NPHY - 1)) { 826 switch(reg) { 827 case MII_BMSR: 828 /* 829 * Fake something to make the probe 830 * code think there's a PHY here. 831 */ 832 return(BMSR_MEDIAMASK); 833 break; 834 case MII_PHYIDR1: 835 if (DC_IS_PNIC(sc)) 836 return(DC_VENDORID_LO); 837 return(DC_VENDORID_DEC); 838 break; 839 case MII_PHYIDR2: 840 if (DC_IS_PNIC(sc)) 841 return(DC_DEVICEID_82C168); 842 return(DC_DEVICEID_21143); 843 break; 844 default: 845 return(0); 846 break; 847 } 848 } else 849 return(0); 850 } 851 852 if (DC_IS_PNIC(sc)) { 853 CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ | 854 (phy << 23) | (reg << 18)); 855 for (i = 0; i < DC_TIMEOUT; i++) { 856 DELAY(1); 857 rval = CSR_READ_4(sc, DC_PN_MII); 858 if (!(rval & DC_PN_MII_BUSY)) { 859 rval &= 0xFFFF; 860 return(rval == 0xFFFF ? 0 : rval); 861 } 862 } 863 return(0); 864 } 865 866 if (DC_IS_COMET(sc)) { 867 switch(reg) { 868 case MII_BMCR: 869 phy_reg = DC_AL_BMCR; 870 break; 871 case MII_BMSR: 872 phy_reg = DC_AL_BMSR; 873 break; 874 case MII_PHYIDR1: 875 phy_reg = DC_AL_VENID; 876 break; 877 case MII_PHYIDR2: 878 phy_reg = DC_AL_DEVID; 879 break; 880 case MII_ANAR: 881 phy_reg = DC_AL_ANAR; 882 break; 883 case MII_ANLPAR: 884 phy_reg = DC_AL_LPAR; 885 break; 886 case MII_ANER: 887 phy_reg = DC_AL_ANER; 888 break; 889 default: 890 printf("dc%d: phy_read: bad phy register %x\n", 891 sc->dc_unit, reg); 892 return(0); 893 break; 894 } 895 896 rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF; 897 898 if (rval == 0xFFFF) 899 return(0); 900 return(rval); 901 } 902 903 frame.mii_phyaddr = phy; 904 frame.mii_regaddr = reg; 905 if (sc->dc_type == DC_TYPE_98713) { 906 phy_reg = CSR_READ_4(sc, DC_NETCFG); 907 CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL); 908 } 909 dc_mii_readreg(sc, &frame); 910 if (sc->dc_type == DC_TYPE_98713) 911 CSR_WRITE_4(sc, DC_NETCFG, phy_reg); 912 913 return(frame.mii_data); 914 } 915 916 static int 917 dc_miibus_writereg(dev, phy, reg, data) 918 device_t dev; 919 int phy, reg, data; 920 { 921 struct dc_softc *sc; 922 struct dc_mii_frame frame; 923 int i, phy_reg = 0; 924 925 sc = device_get_softc(dev); 926 bzero((char *)&frame, sizeof(frame)); 927 928 if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR) 929 return(0); 930 931 if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR) 932 return(0); 933 934 if (DC_IS_PNIC(sc)) { 935 CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE | 936 (phy << 23) | (reg << 10) | data); 937 for (i = 0; i < DC_TIMEOUT; i++) { 938 if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY)) 939 break; 940 } 941 return(0); 942 } 943 944 if (DC_IS_COMET(sc)) { 945 switch(reg) { 946 case MII_BMCR: 947 phy_reg = DC_AL_BMCR; 948 break; 949 case MII_BMSR: 950 phy_reg = DC_AL_BMSR; 951 break; 952 case MII_PHYIDR1: 953 phy_reg = DC_AL_VENID; 954 break; 955 case MII_PHYIDR2: 956 phy_reg = DC_AL_DEVID; 957 break; 958 case MII_ANAR: 959 phy_reg = DC_AL_ANAR; 960 break; 961 case MII_ANLPAR: 962 phy_reg = DC_AL_LPAR; 963 break; 964 case MII_ANER: 965 phy_reg = DC_AL_ANER; 966 break; 967 default: 968 printf("dc%d: phy_write: bad phy register %x\n", 969 sc->dc_unit, reg); 970 return(0); 971 break; 972 } 973 974 CSR_WRITE_4(sc, phy_reg, data); 975 return(0); 976 } 977 978 frame.mii_phyaddr = phy; 979 frame.mii_regaddr = reg; 980 frame.mii_data = data; 981 982 if (sc->dc_type == DC_TYPE_98713) { 983 phy_reg = CSR_READ_4(sc, DC_NETCFG); 984 CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL); 985 } 986 dc_mii_writereg(sc, &frame); 987 if (sc->dc_type == DC_TYPE_98713) 988 CSR_WRITE_4(sc, DC_NETCFG, phy_reg); 989 990 return(0); 991 } 992 993 static void 994 dc_miibus_statchg(dev) 995 device_t dev; 996 { 997 struct dc_softc *sc; 998 struct mii_data *mii; 999 struct ifmedia *ifm; 1000 1001 sc = device_get_softc(dev); 1002 if (DC_IS_ADMTEK(sc)) 1003 return; 1004 1005 mii = device_get_softc(sc->dc_miibus); 1006 ifm = &mii->mii_media; 1007 if (DC_IS_DAVICOM(sc) && 1008 IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) { 1009 dc_setcfg(sc, ifm->ifm_media); 1010 sc->dc_if_media = ifm->ifm_media; 1011 } else { 1012 dc_setcfg(sc, mii->mii_media_active); 1013 sc->dc_if_media = mii->mii_media_active; 1014 } 1015 1016 return; 1017 } 1018 1019 /* 1020 * Special support for DM9102A cards with HomePNA PHYs. Note: 1021 * with the Davicom DM9102A/DM9801 eval board that I have, it seems 1022 * to be impossible to talk to the management interface of the DM9801 1023 * PHY (its MDIO pin is not connected to anything). Consequently, 1024 * the driver has to just 'know' about the additional mode and deal 1025 * with it itself. *sigh* 1026 */ 1027 static void 1028 dc_miibus_mediainit(dev) 1029 device_t dev; 1030 { 1031 struct dc_softc *sc; 1032 struct mii_data *mii; 1033 struct ifmedia *ifm; 1034 int rev; 1035 1036 rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF; 1037 1038 sc = device_get_softc(dev); 1039 mii = device_get_softc(sc->dc_miibus); 1040 ifm = &mii->mii_media; 1041 1042 if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A) 1043 ifmedia_add(ifm, IFM_ETHER|IFM_HPNA_1, 0, NULL); 1044 1045 return; 1046 } 1047 1048 #define DC_POLY 0xEDB88320 1049 #define DC_BITS_512 9 1050 #define DC_BITS_128 7 1051 #define DC_BITS_64 6 1052 1053 static u_int32_t 1054 dc_crc_le(sc, addr) 1055 struct dc_softc *sc; 1056 caddr_t addr; 1057 { 1058 u_int32_t idx, bit, data, crc; 1059 1060 /* Compute CRC for the address value. */ 1061 crc = 0xFFFFFFFF; /* initial value */ 1062 1063 for (idx = 0; idx < 6; idx++) { 1064 for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1) 1065 crc = (crc >> 1) ^ (((crc ^ data) & 1) ? DC_POLY : 0); 1066 } 1067 1068 /* 1069 * The hash table on the PNIC II and the MX98715AEC-C/D/E 1070 * chips is only 128 bits wide. 1071 */ 1072 if (sc->dc_flags & DC_128BIT_HASH) 1073 return (crc & ((1 << DC_BITS_128) - 1)); 1074 1075 /* The hash table on the MX98715BEC is only 64 bits wide. */ 1076 if (sc->dc_flags & DC_64BIT_HASH) 1077 return (crc & ((1 << DC_BITS_64) - 1)); 1078 1079 /* Xircom's hash filtering table is different (read: weird) */ 1080 /* Xircom uses the LEAST significant bits */ 1081 if (DC_IS_XIRCOM(sc)) { 1082 if ((crc & 0x180) == 0x180) 1083 return (crc & 0x0F) + (crc & 0x70)*3 + (14 << 4); 1084 else 1085 return (crc & 0x1F) + ((crc>>1) & 0xF0)*3 + (12 << 4); 1086 } 1087 1088 return (crc & ((1 << DC_BITS_512) - 1)); 1089 } 1090 1091 /* 1092 * Calculate CRC of a multicast group address, return the lower 6 bits. 1093 */ 1094 static u_int32_t 1095 dc_crc_be(addr) 1096 caddr_t addr; 1097 { 1098 u_int32_t crc, carry; 1099 int i, j; 1100 u_int8_t c; 1101 1102 /* Compute CRC for the address value. */ 1103 crc = 0xFFFFFFFF; /* initial value */ 1104 1105 for (i = 0; i < 6; i++) { 1106 c = *(addr + i); 1107 for (j = 0; j < 8; j++) { 1108 carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01); 1109 crc <<= 1; 1110 c >>= 1; 1111 if (carry) 1112 crc = (crc ^ 0x04c11db6) | carry; 1113 } 1114 } 1115 1116 /* return the filter bit position */ 1117 return((crc >> 26) & 0x0000003F); 1118 } 1119 1120 /* 1121 * 21143-style RX filter setup routine. Filter programming is done by 1122 * downloading a special setup frame into the TX engine. 21143, Macronix, 1123 * PNIC, PNIC II and Davicom chips are programmed this way. 1124 * 1125 * We always program the chip using 'hash perfect' mode, i.e. one perfect 1126 * address (our node address) and a 512-bit hash filter for multicast 1127 * frames. We also sneak the broadcast address into the hash filter since 1128 * we need that too. 1129 */ 1130 static void 1131 dc_setfilt_21143(sc) 1132 struct dc_softc *sc; 1133 { 1134 struct dc_desc *sframe; 1135 u_int32_t h, *sp; 1136 struct ifmultiaddr *ifma; 1137 struct ifnet *ifp; 1138 int i; 1139 1140 ifp = &sc->arpcom.ac_if; 1141 1142 i = sc->dc_cdata.dc_tx_prod; 1143 DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT); 1144 sc->dc_cdata.dc_tx_cnt++; 1145 sframe = &sc->dc_ldata->dc_tx_list[i]; 1146 sp = (u_int32_t *)&sc->dc_cdata.dc_sbuf; 1147 bzero((char *)sp, DC_SFRAME_LEN); 1148 1149 sframe->dc_data = vtophys(&sc->dc_cdata.dc_sbuf); 1150 sframe->dc_ctl = DC_SFRAME_LEN | DC_TXCTL_SETUP | DC_TXCTL_TLINK | 1151 DC_FILTER_HASHPERF | DC_TXCTL_FINT; 1152 1153 sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)&sc->dc_cdata.dc_sbuf; 1154 1155 /* If we want promiscuous mode, set the allframes bit. */ 1156 if (ifp->if_flags & IFF_PROMISC) 1157 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC); 1158 else 1159 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC); 1160 1161 if (ifp->if_flags & IFF_ALLMULTI) 1162 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI); 1163 else 1164 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI); 1165 1166 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1167 if (ifma->ifma_addr->sa_family != AF_LINK) 1168 continue; 1169 h = dc_crc_le(sc, 1170 LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); 1171 sp[h >> 4] |= 1 << (h & 0xF); 1172 } 1173 1174 if (ifp->if_flags & IFF_BROADCAST) { 1175 h = dc_crc_le(sc, (caddr_t)ðerbroadcastaddr); 1176 sp[h >> 4] |= 1 << (h & 0xF); 1177 } 1178 1179 /* Set our MAC address */ 1180 sp[39] = ((u_int16_t *)sc->arpcom.ac_enaddr)[0]; 1181 sp[40] = ((u_int16_t *)sc->arpcom.ac_enaddr)[1]; 1182 sp[41] = ((u_int16_t *)sc->arpcom.ac_enaddr)[2]; 1183 1184 sframe->dc_status = DC_TXSTAT_OWN; 1185 CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF); 1186 1187 /* 1188 * The PNIC takes an exceedingly long time to process its 1189 * setup frame; wait 10ms after posting the setup frame 1190 * before proceeding, just so it has time to swallow its 1191 * medicine. 1192 */ 1193 DELAY(10000); 1194 1195 ifp->if_timer = 5; 1196 1197 return; 1198 } 1199 1200 static void 1201 dc_setfilt_admtek(sc) 1202 struct dc_softc *sc; 1203 { 1204 struct ifnet *ifp; 1205 int h = 0; 1206 u_int32_t hashes[2] = { 0, 0 }; 1207 struct ifmultiaddr *ifma; 1208 1209 ifp = &sc->arpcom.ac_if; 1210 1211 /* Init our MAC address */ 1212 CSR_WRITE_4(sc, DC_AL_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0])); 1213 CSR_WRITE_4(sc, DC_AL_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4])); 1214 1215 /* If we want promiscuous mode, set the allframes bit. */ 1216 if (ifp->if_flags & IFF_PROMISC) 1217 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC); 1218 else 1219 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC); 1220 1221 if (ifp->if_flags & IFF_ALLMULTI) 1222 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI); 1223 else 1224 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI); 1225 1226 /* first, zot all the existing hash bits */ 1227 CSR_WRITE_4(sc, DC_AL_MAR0, 0); 1228 CSR_WRITE_4(sc, DC_AL_MAR1, 0); 1229 1230 /* 1231 * If we're already in promisc or allmulti mode, we 1232 * don't have to bother programming the multicast filter. 1233 */ 1234 if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI)) 1235 return; 1236 1237 /* now program new ones */ 1238 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1239 if (ifma->ifma_addr->sa_family != AF_LINK) 1240 continue; 1241 h = dc_crc_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); 1242 if (h < 32) 1243 hashes[0] |= (1 << h); 1244 else 1245 hashes[1] |= (1 << (h - 32)); 1246 } 1247 1248 CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]); 1249 CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]); 1250 1251 return; 1252 } 1253 1254 static void 1255 dc_setfilt_asix(sc) 1256 struct dc_softc *sc; 1257 { 1258 struct ifnet *ifp; 1259 int h = 0; 1260 u_int32_t hashes[2] = { 0, 0 }; 1261 struct ifmultiaddr *ifma; 1262 1263 ifp = &sc->arpcom.ac_if; 1264 1265 /* Init our MAC address */ 1266 CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0); 1267 CSR_WRITE_4(sc, DC_AX_FILTDATA, 1268 *(u_int32_t *)(&sc->arpcom.ac_enaddr[0])); 1269 CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1); 1270 CSR_WRITE_4(sc, DC_AX_FILTDATA, 1271 *(u_int32_t *)(&sc->arpcom.ac_enaddr[4])); 1272 1273 /* If we want promiscuous mode, set the allframes bit. */ 1274 if (ifp->if_flags & IFF_PROMISC) 1275 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC); 1276 else 1277 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC); 1278 1279 if (ifp->if_flags & IFF_ALLMULTI) 1280 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI); 1281 else 1282 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI); 1283 1284 /* 1285 * The ASIX chip has a special bit to enable reception 1286 * of broadcast frames. 1287 */ 1288 if (ifp->if_flags & IFF_BROADCAST) 1289 DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD); 1290 else 1291 DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD); 1292 1293 /* first, zot all the existing hash bits */ 1294 CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0); 1295 CSR_WRITE_4(sc, DC_AX_FILTDATA, 0); 1296 CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1); 1297 CSR_WRITE_4(sc, DC_AX_FILTDATA, 0); 1298 1299 /* 1300 * If we're already in promisc or allmulti mode, we 1301 * don't have to bother programming the multicast filter. 1302 */ 1303 if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI)) 1304 return; 1305 1306 /* now program new ones */ 1307 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1308 if (ifma->ifma_addr->sa_family != AF_LINK) 1309 continue; 1310 h = dc_crc_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); 1311 if (h < 32) 1312 hashes[0] |= (1 << h); 1313 else 1314 hashes[1] |= (1 << (h - 32)); 1315 } 1316 1317 CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0); 1318 CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]); 1319 CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1); 1320 CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]); 1321 1322 return; 1323 } 1324 1325 static void 1326 dc_setfilt_xircom(sc) 1327 struct dc_softc *sc; 1328 { 1329 struct dc_desc *sframe; 1330 u_int32_t h, *sp; 1331 struct ifmultiaddr *ifma; 1332 struct ifnet *ifp; 1333 int i; 1334 1335 ifp = &sc->arpcom.ac_if; 1336 DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON)); 1337 1338 i = sc->dc_cdata.dc_tx_prod; 1339 DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT); 1340 sc->dc_cdata.dc_tx_cnt++; 1341 sframe = &sc->dc_ldata->dc_tx_list[i]; 1342 sp = (u_int32_t *)&sc->dc_cdata.dc_sbuf; 1343 bzero((char *)sp, DC_SFRAME_LEN); 1344 1345 sframe->dc_data = vtophys(&sc->dc_cdata.dc_sbuf); 1346 sframe->dc_ctl = DC_SFRAME_LEN | DC_TXCTL_SETUP | DC_TXCTL_TLINK | 1347 DC_FILTER_HASHPERF | DC_TXCTL_FINT; 1348 1349 sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)&sc->dc_cdata.dc_sbuf; 1350 1351 /* If we want promiscuous mode, set the allframes bit. */ 1352 if (ifp->if_flags & IFF_PROMISC) 1353 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC); 1354 else 1355 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC); 1356 1357 if (ifp->if_flags & IFF_ALLMULTI) 1358 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI); 1359 else 1360 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI); 1361 1362 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1363 if (ifma->ifma_addr->sa_family != AF_LINK) 1364 continue; 1365 h = dc_crc_le(sc, 1366 LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); 1367 sp[h >> 4] |= 1 << (h & 0xF); 1368 } 1369 1370 if (ifp->if_flags & IFF_BROADCAST) { 1371 h = dc_crc_le(sc, (caddr_t)ðerbroadcastaddr); 1372 sp[h >> 4] |= 1 << (h & 0xF); 1373 } 1374 1375 /* Set our MAC address */ 1376 sp[0] = ((u_int16_t *)sc->arpcom.ac_enaddr)[0]; 1377 sp[1] = ((u_int16_t *)sc->arpcom.ac_enaddr)[1]; 1378 sp[2] = ((u_int16_t *)sc->arpcom.ac_enaddr)[2]; 1379 1380 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON); 1381 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON); 1382 ifp->if_flags |= IFF_RUNNING; 1383 sframe->dc_status = DC_TXSTAT_OWN; 1384 CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF); 1385 1386 /* 1387 * wait some time... 1388 */ 1389 DELAY(1000); 1390 1391 ifp->if_timer = 5; 1392 1393 return; 1394 } 1395 1396 static void 1397 dc_setfilt(sc) 1398 struct dc_softc *sc; 1399 { 1400 if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) || 1401 DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc)) 1402 dc_setfilt_21143(sc); 1403 1404 if (DC_IS_ASIX(sc)) 1405 dc_setfilt_asix(sc); 1406 1407 if (DC_IS_ADMTEK(sc)) 1408 dc_setfilt_admtek(sc); 1409 1410 if (DC_IS_XIRCOM(sc)) 1411 dc_setfilt_xircom(sc); 1412 1413 return; 1414 } 1415 1416 /* 1417 * In order to fiddle with the 1418 * 'full-duplex' and '100Mbps' bits in the netconfig register, we 1419 * first have to put the transmit and/or receive logic in the idle state. 1420 */ 1421 static void 1422 dc_setcfg(sc, media) 1423 struct dc_softc *sc; 1424 int media; 1425 { 1426 int i, restart = 0; 1427 u_int32_t isr; 1428 1429 if (IFM_SUBTYPE(media) == IFM_NONE) 1430 return; 1431 1432 if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON)) { 1433 restart = 1; 1434 DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON)); 1435 1436 for (i = 0; i < DC_TIMEOUT; i++) { 1437 isr = CSR_READ_4(sc, DC_ISR); 1438 if (isr & DC_ISR_TX_IDLE && 1439 ((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED || 1440 (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT)) 1441 break; 1442 DELAY(10); 1443 } 1444 1445 if (i == DC_TIMEOUT) 1446 printf("dc%d: failed to force tx and " 1447 "rx to idle state\n", sc->dc_unit); 1448 } 1449 1450 if (IFM_SUBTYPE(media) == IFM_100_TX) { 1451 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL); 1452 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT); 1453 if (sc->dc_pmode == DC_PMODE_MII) { 1454 int watchdogreg; 1455 1456 if (DC_IS_INTEL(sc)) { 1457 /* there's a write enable bit here that reads as 1 */ 1458 watchdogreg = CSR_READ_4(sc, DC_WATCHDOG); 1459 watchdogreg &= ~DC_WDOG_CTLWREN; 1460 watchdogreg |= DC_WDOG_JABBERDIS; 1461 CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg); 1462 } else { 1463 DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS); 1464 } 1465 DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS| 1466 DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER)); 1467 if (sc->dc_type == DC_TYPE_98713) 1468 DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS| 1469 DC_NETCFG_SCRAMBLER)); 1470 if (!DC_IS_DAVICOM(sc)) 1471 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL); 1472 DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF); 1473 if (DC_IS_INTEL(sc)) 1474 dc_apply_fixup(sc, IFM_AUTO); 1475 } else { 1476 if (DC_IS_PNIC(sc)) { 1477 DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL); 1478 DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP); 1479 DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL); 1480 } 1481 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL); 1482 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS); 1483 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER); 1484 if (DC_IS_INTEL(sc)) 1485 dc_apply_fixup(sc, 1486 (media & IFM_GMASK) == IFM_FDX ? 1487 IFM_100_TX|IFM_FDX : IFM_100_TX); 1488 } 1489 } 1490 1491 if (IFM_SUBTYPE(media) == IFM_10_T) { 1492 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL); 1493 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT); 1494 if (sc->dc_pmode == DC_PMODE_MII) { 1495 int watchdogreg; 1496 1497 /* there's a write enable bit here that reads as 1 */ 1498 if (DC_IS_INTEL(sc)) { 1499 watchdogreg = CSR_READ_4(sc, DC_WATCHDOG); 1500 watchdogreg &= ~DC_WDOG_CTLWREN; 1501 watchdogreg |= DC_WDOG_JABBERDIS; 1502 CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg); 1503 } else { 1504 DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS); 1505 } 1506 DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS| 1507 DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER)); 1508 if (sc->dc_type == DC_TYPE_98713) 1509 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS); 1510 if (!DC_IS_DAVICOM(sc)) 1511 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL); 1512 DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF); 1513 if (DC_IS_INTEL(sc)) 1514 dc_apply_fixup(sc, IFM_AUTO); 1515 } else { 1516 if (DC_IS_PNIC(sc)) { 1517 DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL); 1518 DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP); 1519 DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL); 1520 } 1521 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL); 1522 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS); 1523 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER); 1524 if (DC_IS_INTEL(sc)) { 1525 DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET); 1526 DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF); 1527 if ((media & IFM_GMASK) == IFM_FDX) 1528 DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D); 1529 else 1530 DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F); 1531 DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET); 1532 DC_CLRBIT(sc, DC_10BTCTRL, 1533 DC_TCTL_AUTONEGENBL); 1534 dc_apply_fixup(sc, 1535 (media & IFM_GMASK) == IFM_FDX ? 1536 IFM_10_T|IFM_FDX : IFM_10_T); 1537 DELAY(20000); 1538 } 1539 } 1540 } 1541 1542 /* 1543 * If this is a Davicom DM9102A card with a DM9801 HomePNA 1544 * PHY and we want HomePNA mode, set the portsel bit to turn 1545 * on the external MII port. 1546 */ 1547 if (DC_IS_DAVICOM(sc)) { 1548 if (IFM_SUBTYPE(media) == IFM_HPNA_1) { 1549 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL); 1550 sc->dc_link = 1; 1551 } else { 1552 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL); 1553 } 1554 } 1555 1556 if (DC_IS_ADMTEK(sc)) 1557 DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR); 1558 1559 if ((media & IFM_GMASK) == IFM_FDX) { 1560 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX); 1561 if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc)) 1562 DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX); 1563 } else { 1564 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX); 1565 if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc)) 1566 DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX); 1567 } 1568 1569 if (restart) 1570 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON|DC_NETCFG_RX_ON); 1571 1572 return; 1573 } 1574 1575 static void 1576 dc_reset(sc) 1577 struct dc_softc *sc; 1578 { 1579 register int i; 1580 1581 DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET); 1582 1583 for (i = 0; i < DC_TIMEOUT; i++) { 1584 DELAY(10); 1585 if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET)) 1586 break; 1587 } 1588 1589 if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_CONEXANT(sc) || 1590 DC_IS_XIRCOM(sc) || DC_IS_INTEL(sc)) { 1591 DELAY(10000); 1592 DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET); 1593 i = 0; 1594 } 1595 1596 if (i == DC_TIMEOUT) 1597 printf("dc%d: reset never completed!\n", sc->dc_unit); 1598 1599 /* Wait a little while for the chip to get its brains in order. */ 1600 DELAY(1000); 1601 1602 CSR_WRITE_4(sc, DC_IMR, 0x00000000); 1603 CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000); 1604 CSR_WRITE_4(sc, DC_NETCFG, 0x00000000); 1605 1606 /* 1607 * Bring the SIA out of reset. In some cases, it looks 1608 * like failing to unreset the SIA soon enough gets it 1609 * into a state where it will never come out of reset 1610 * until we reset the whole chip again. 1611 */ 1612 if (DC_IS_INTEL(sc)) { 1613 DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET); 1614 CSR_WRITE_4(sc, DC_10BTCTRL, 0); 1615 CSR_WRITE_4(sc, DC_WATCHDOG, 0); 1616 } 1617 1618 return; 1619 } 1620 1621 static struct dc_type * 1622 dc_devtype(dev) 1623 device_t dev; 1624 { 1625 struct dc_type *t; 1626 u_int32_t rev; 1627 1628 t = dc_devs; 1629 1630 while(t->dc_name != NULL) { 1631 if ((pci_get_vendor(dev) == t->dc_vid) && 1632 (pci_get_device(dev) == t->dc_did)) { 1633 /* Check the PCI revision */ 1634 rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF; 1635 if (t->dc_did == DC_DEVICEID_98713 && 1636 rev >= DC_REVISION_98713A) 1637 t++; 1638 if (t->dc_did == DC_DEVICEID_98713_CP && 1639 rev >= DC_REVISION_98713A) 1640 t++; 1641 if (t->dc_did == DC_DEVICEID_987x5 && 1642 rev >= DC_REVISION_98715AEC_C) 1643 t++; 1644 if (t->dc_did == DC_DEVICEID_987x5 && 1645 rev >= DC_REVISION_98725) 1646 t++; 1647 if (t->dc_did == DC_DEVICEID_AX88140A && 1648 rev >= DC_REVISION_88141) 1649 t++; 1650 if (t->dc_did == DC_DEVICEID_82C168 && 1651 rev >= DC_REVISION_82C169) 1652 t++; 1653 if (t->dc_did == DC_DEVICEID_DM9102 && 1654 rev >= DC_REVISION_DM9102A) 1655 t++; 1656 return(t); 1657 } 1658 t++; 1659 } 1660 1661 return(NULL); 1662 } 1663 1664 /* 1665 * Probe for a 21143 or clone chip. Check the PCI vendor and device 1666 * IDs against our list and return a device name if we find a match. 1667 * We do a little bit of extra work to identify the exact type of 1668 * chip. The MX98713 and MX98713A have the same PCI vendor/device ID, 1669 * but different revision IDs. The same is true for 98715/98715A 1670 * chips and the 98725, as well as the ASIX and ADMtek chips. In some 1671 * cases, the exact chip revision affects driver behavior. 1672 */ 1673 static int 1674 dc_probe(dev) 1675 device_t dev; 1676 { 1677 struct dc_type *t; 1678 1679 t = dc_devtype(dev); 1680 1681 if (t != NULL) { 1682 device_set_desc(dev, t->dc_name); 1683 return(0); 1684 } 1685 1686 return(ENXIO); 1687 } 1688 1689 static void 1690 dc_acpi(dev) 1691 device_t dev; 1692 { 1693 int unit; 1694 1695 unit = device_get_unit(dev); 1696 1697 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) { 1698 u_int32_t iobase, membase, irq; 1699 1700 /* Save important PCI config data. */ 1701 iobase = pci_read_config(dev, DC_PCI_CFBIO, 4); 1702 membase = pci_read_config(dev, DC_PCI_CFBMA, 4); 1703 irq = pci_read_config(dev, DC_PCI_CFIT, 4); 1704 1705 /* Reset the power state. */ 1706 printf("dc%d: chip is in D%d power mode " 1707 "-- setting to D0\n", unit, 1708 pci_get_powerstate(dev)); 1709 pci_set_powerstate(dev, PCI_POWERSTATE_D0); 1710 1711 /* Restore PCI config data. */ 1712 pci_write_config(dev, DC_PCI_CFBIO, iobase, 4); 1713 pci_write_config(dev, DC_PCI_CFBMA, membase, 4); 1714 pci_write_config(dev, DC_PCI_CFIT, irq, 4); 1715 } 1716 1717 return; 1718 } 1719 1720 static void 1721 dc_apply_fixup(sc, media) 1722 struct dc_softc *sc; 1723 int media; 1724 { 1725 struct dc_mediainfo *m; 1726 u_int8_t *p; 1727 int i; 1728 u_int32_t reg; 1729 1730 m = sc->dc_mi; 1731 1732 while (m != NULL) { 1733 if (m->dc_media == media) 1734 break; 1735 m = m->dc_next; 1736 } 1737 1738 if (m == NULL) 1739 return; 1740 1741 for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) { 1742 reg = (p[0] | (p[1] << 8)) << 16; 1743 CSR_WRITE_4(sc, DC_WATCHDOG, reg); 1744 } 1745 1746 for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) { 1747 reg = (p[0] | (p[1] << 8)) << 16; 1748 CSR_WRITE_4(sc, DC_WATCHDOG, reg); 1749 } 1750 1751 return; 1752 } 1753 1754 static void 1755 dc_decode_leaf_sia(sc, l) 1756 struct dc_softc *sc; 1757 struct dc_eblock_sia *l; 1758 { 1759 struct dc_mediainfo *m; 1760 1761 m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT); 1762 bzero(m, sizeof(struct dc_mediainfo)); 1763 if (l->dc_sia_code == DC_SIA_CODE_10BT) 1764 m->dc_media = IFM_10_T; 1765 1766 if (l->dc_sia_code == DC_SIA_CODE_10BT_FDX) 1767 m->dc_media = IFM_10_T|IFM_FDX; 1768 1769 if (l->dc_sia_code == DC_SIA_CODE_10B2) 1770 m->dc_media = IFM_10_2; 1771 1772 if (l->dc_sia_code == DC_SIA_CODE_10B5) 1773 m->dc_media = IFM_10_5; 1774 1775 m->dc_gp_len = 2; 1776 m->dc_gp_ptr = (u_int8_t *)&l->dc_sia_gpio_ctl; 1777 1778 m->dc_next = sc->dc_mi; 1779 sc->dc_mi = m; 1780 1781 sc->dc_pmode = DC_PMODE_SIA; 1782 1783 return; 1784 } 1785 1786 static void 1787 dc_decode_leaf_sym(sc, l) 1788 struct dc_softc *sc; 1789 struct dc_eblock_sym *l; 1790 { 1791 struct dc_mediainfo *m; 1792 1793 m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT); 1794 bzero(m, sizeof(struct dc_mediainfo)); 1795 if (l->dc_sym_code == DC_SYM_CODE_100BT) 1796 m->dc_media = IFM_100_TX; 1797 1798 if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX) 1799 m->dc_media = IFM_100_TX|IFM_FDX; 1800 1801 m->dc_gp_len = 2; 1802 m->dc_gp_ptr = (u_int8_t *)&l->dc_sym_gpio_ctl; 1803 1804 m->dc_next = sc->dc_mi; 1805 sc->dc_mi = m; 1806 1807 sc->dc_pmode = DC_PMODE_SYM; 1808 1809 return; 1810 } 1811 1812 static void 1813 dc_decode_leaf_mii(sc, l) 1814 struct dc_softc *sc; 1815 struct dc_eblock_mii *l; 1816 { 1817 u_int8_t *p; 1818 struct dc_mediainfo *m; 1819 1820 m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT); 1821 bzero(m, sizeof(struct dc_mediainfo)); 1822 /* We abuse IFM_AUTO to represent MII. */ 1823 m->dc_media = IFM_AUTO; 1824 m->dc_gp_len = l->dc_gpr_len; 1825 1826 p = (u_int8_t *)l; 1827 p += sizeof(struct dc_eblock_mii); 1828 m->dc_gp_ptr = p; 1829 p += 2 * l->dc_gpr_len; 1830 m->dc_reset_len = *p; 1831 p++; 1832 m->dc_reset_ptr = p; 1833 1834 m->dc_next = sc->dc_mi; 1835 sc->dc_mi = m; 1836 1837 return; 1838 } 1839 1840 static void 1841 dc_read_srom(sc, bits) 1842 struct dc_softc *sc; 1843 int bits; 1844 { 1845 int size; 1846 1847 size = 2 << bits; 1848 sc->dc_srom = malloc(size, M_DEVBUF, M_NOWAIT); 1849 dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (size / 2), 0); 1850 } 1851 1852 static void 1853 dc_parse_21143_srom(sc) 1854 struct dc_softc *sc; 1855 { 1856 struct dc_leaf_hdr *lhdr; 1857 struct dc_eblock_hdr *hdr; 1858 int i, loff; 1859 char *ptr; 1860 1861 loff = sc->dc_srom[27]; 1862 lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]); 1863 1864 ptr = (char *)lhdr; 1865 ptr += sizeof(struct dc_leaf_hdr) - 1; 1866 for (i = 0; i < lhdr->dc_mcnt; i++) { 1867 hdr = (struct dc_eblock_hdr *)ptr; 1868 switch(hdr->dc_type) { 1869 case DC_EBLOCK_MII: 1870 dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr); 1871 break; 1872 case DC_EBLOCK_SIA: 1873 dc_decode_leaf_sia(sc, (struct dc_eblock_sia *)hdr); 1874 break; 1875 case DC_EBLOCK_SYM: 1876 dc_decode_leaf_sym(sc, (struct dc_eblock_sym *)hdr); 1877 break; 1878 default: 1879 /* Don't care. Yet. */ 1880 break; 1881 } 1882 ptr += (hdr->dc_len & 0x7F); 1883 ptr++; 1884 } 1885 1886 return; 1887 } 1888 1889 /* 1890 * Attach the interface. Allocate softc structures, do ifmedia 1891 * setup and ethernet/BPF attach. 1892 */ 1893 static int 1894 dc_attach(dev) 1895 device_t dev; 1896 { 1897 int tmp = 0; 1898 u_char eaddr[ETHER_ADDR_LEN]; 1899 u_int32_t command; 1900 struct dc_softc *sc; 1901 struct ifnet *ifp; 1902 u_int32_t revision; 1903 int unit, error = 0, rid, mac_offset; 1904 1905 sc = device_get_softc(dev); 1906 unit = device_get_unit(dev); 1907 bzero(sc, sizeof(struct dc_softc)); 1908 1909 mtx_init(&sc->dc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 1910 MTX_DEF | MTX_RECURSE); 1911 1912 /* 1913 * Handle power management nonsense. 1914 */ 1915 dc_acpi(dev); 1916 1917 /* 1918 * Map control/status registers. 1919 */ 1920 pci_enable_busmaster(dev); 1921 pci_enable_io(dev, SYS_RES_IOPORT); 1922 pci_enable_io(dev, SYS_RES_MEMORY); 1923 command = pci_read_config(dev, PCIR_COMMAND, 4); 1924 1925 #ifdef DC_USEIOSPACE 1926 if (!(command & PCIM_CMD_PORTEN)) { 1927 printf("dc%d: failed to enable I/O ports!\n", unit); 1928 error = ENXIO; 1929 goto fail_nolock; 1930 } 1931 #else 1932 if (!(command & PCIM_CMD_MEMEN)) { 1933 printf("dc%d: failed to enable memory mapping!\n", unit); 1934 error = ENXIO; 1935 goto fail_nolock; 1936 } 1937 #endif 1938 1939 rid = DC_RID; 1940 sc->dc_res = bus_alloc_resource(dev, DC_RES, &rid, 1941 0, ~0, 1, RF_ACTIVE); 1942 1943 if (sc->dc_res == NULL) { 1944 printf("dc%d: couldn't map ports/memory\n", unit); 1945 error = ENXIO; 1946 goto fail_nolock; 1947 } 1948 1949 sc->dc_btag = rman_get_bustag(sc->dc_res); 1950 sc->dc_bhandle = rman_get_bushandle(sc->dc_res); 1951 1952 /* Allocate interrupt */ 1953 rid = 0; 1954 sc->dc_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1, 1955 RF_SHAREABLE | RF_ACTIVE); 1956 1957 if (sc->dc_irq == NULL) { 1958 printf("dc%d: couldn't map interrupt\n", unit); 1959 bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res); 1960 error = ENXIO; 1961 goto fail_nolock; 1962 } 1963 1964 error = bus_setup_intr(dev, sc->dc_irq, INTR_TYPE_NET | 1965 (IS_MPSAFE ? INTR_MPSAFE : 0), 1966 dc_intr, sc, &sc->dc_intrhand); 1967 1968 if (error) { 1969 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq); 1970 bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res); 1971 printf("dc%d: couldn't set up irq\n", unit); 1972 goto fail_nolock; 1973 } 1974 DC_LOCK(sc); 1975 1976 /* Need this info to decide on a chip type. */ 1977 sc->dc_info = dc_devtype(dev); 1978 revision = pci_read_config(dev, DC_PCI_CFRV, 4) & 0x000000FF; 1979 1980 switch(sc->dc_info->dc_did) { 1981 case DC_DEVICEID_21143: 1982 sc->dc_type = DC_TYPE_21143; 1983 sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR; 1984 sc->dc_flags |= DC_REDUCED_MII_POLL; 1985 /* Save EEPROM contents so we can parse them later. */ 1986 dc_eeprom_width(sc); 1987 dc_read_srom(sc, sc->dc_romwidth); 1988 break; 1989 case DC_DEVICEID_DM9100: 1990 case DC_DEVICEID_DM9102: 1991 sc->dc_type = DC_TYPE_DM9102; 1992 sc->dc_flags |= DC_TX_COALESCE|DC_TX_INTR_ALWAYS; 1993 sc->dc_flags |= DC_REDUCED_MII_POLL|DC_TX_STORENFWD; 1994 sc->dc_pmode = DC_PMODE_MII; 1995 /* Increase the latency timer value. */ 1996 command = pci_read_config(dev, DC_PCI_CFLT, 4); 1997 command &= 0xFFFF00FF; 1998 command |= 0x00008000; 1999 pci_write_config(dev, DC_PCI_CFLT, command, 4); 2000 break; 2001 case DC_DEVICEID_AL981: 2002 sc->dc_type = DC_TYPE_AL981; 2003 sc->dc_flags |= DC_TX_USE_TX_INTR; 2004 sc->dc_flags |= DC_TX_ADMTEK_WAR; 2005 sc->dc_pmode = DC_PMODE_MII; 2006 dc_eeprom_width(sc); 2007 dc_read_srom(sc, sc->dc_romwidth); 2008 break; 2009 case DC_DEVICEID_AN985: 2010 case DC_DEVICEID_FE2500: 2011 case DC_DEVICEID_EN2242: 2012 sc->dc_type = DC_TYPE_AN985; 2013 sc->dc_flags |= DC_TX_USE_TX_INTR; 2014 sc->dc_flags |= DC_TX_ADMTEK_WAR; 2015 sc->dc_pmode = DC_PMODE_MII; 2016 dc_eeprom_width(sc); 2017 dc_read_srom(sc, sc->dc_romwidth); 2018 break; 2019 case DC_DEVICEID_98713: 2020 case DC_DEVICEID_98713_CP: 2021 if (revision < DC_REVISION_98713A) { 2022 sc->dc_type = DC_TYPE_98713; 2023 } 2024 if (revision >= DC_REVISION_98713A) { 2025 sc->dc_type = DC_TYPE_98713A; 2026 sc->dc_flags |= DC_21143_NWAY; 2027 } 2028 sc->dc_flags |= DC_REDUCED_MII_POLL; 2029 sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR; 2030 break; 2031 case DC_DEVICEID_987x5: 2032 case DC_DEVICEID_EN1217: 2033 /* 2034 * Macronix MX98715AEC-C/D/E parts have only a 2035 * 128-bit hash table. We need to deal with these 2036 * in the same manner as the PNIC II so that we 2037 * get the right number of bits out of the 2038 * CRC routine. 2039 */ 2040 if (revision >= DC_REVISION_98715AEC_C && 2041 revision < DC_REVISION_98725) 2042 sc->dc_flags |= DC_128BIT_HASH; 2043 sc->dc_type = DC_TYPE_987x5; 2044 sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR; 2045 sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY; 2046 break; 2047 case DC_DEVICEID_98727: 2048 sc->dc_type = DC_TYPE_987x5; 2049 sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR; 2050 sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY; 2051 break; 2052 case DC_DEVICEID_82C115: 2053 sc->dc_type = DC_TYPE_PNICII; 2054 sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR|DC_128BIT_HASH; 2055 sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY; 2056 break; 2057 case DC_DEVICEID_82C168: 2058 sc->dc_type = DC_TYPE_PNIC; 2059 sc->dc_flags |= DC_TX_STORENFWD|DC_TX_INTR_ALWAYS; 2060 sc->dc_flags |= DC_PNIC_RX_BUG_WAR; 2061 sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_NOWAIT); 2062 if (revision < DC_REVISION_82C169) 2063 sc->dc_pmode = DC_PMODE_SYM; 2064 break; 2065 case DC_DEVICEID_AX88140A: 2066 sc->dc_type = DC_TYPE_ASIX; 2067 sc->dc_flags |= DC_TX_USE_TX_INTR|DC_TX_INTR_FIRSTFRAG; 2068 sc->dc_flags |= DC_REDUCED_MII_POLL; 2069 sc->dc_pmode = DC_PMODE_MII; 2070 break; 2071 case DC_DEVICEID_X3201: 2072 sc->dc_type = DC_TYPE_XIRCOM; 2073 sc->dc_flags |= DC_TX_INTR_ALWAYS | DC_TX_COALESCE | 2074 DC_TX_ALIGN; 2075 /* 2076 * We don't actually need to coalesce, but we're doing 2077 * it to obtain a double word aligned buffer. 2078 * The DC_TX_COALESCE flag is required. 2079 */ 2080 sc->dc_pmode = DC_PMODE_MII; 2081 /* XXX Call the cardbus function to get nic from the CIS */ 2082 break; 2083 case DC_DEVICEID_RS7112: 2084 sc->dc_type = DC_TYPE_CONEXANT; 2085 sc->dc_flags |= DC_TX_INTR_ALWAYS; 2086 sc->dc_flags |= DC_REDUCED_MII_POLL; 2087 sc->dc_pmode = DC_PMODE_MII; 2088 dc_eeprom_width(sc); 2089 dc_read_srom(sc, sc->dc_romwidth); 2090 break; 2091 default: 2092 printf("dc%d: unknown device: %x\n", sc->dc_unit, 2093 sc->dc_info->dc_did); 2094 break; 2095 } 2096 2097 /* Save the cache line size. */ 2098 if (DC_IS_DAVICOM(sc)) 2099 sc->dc_cachesize = 0; 2100 else 2101 sc->dc_cachesize = pci_read_config(dev, 2102 DC_PCI_CFLT, 4) & 0xFF; 2103 2104 /* Reset the adapter. */ 2105 dc_reset(sc); 2106 2107 /* Take 21143 out of snooze mode */ 2108 if (DC_IS_INTEL(sc) || DC_IS_XIRCOM(sc)) { 2109 command = pci_read_config(dev, DC_PCI_CFDD, 4); 2110 command &= ~(DC_CFDD_SNOOZE_MODE|DC_CFDD_SLEEP_MODE); 2111 pci_write_config(dev, DC_PCI_CFDD, command, 4); 2112 } 2113 2114 /* 2115 * Try to learn something about the supported media. 2116 * We know that ASIX and ADMtek and Davicom devices 2117 * will *always* be using MII media, so that's a no-brainer. 2118 * The tricky ones are the Macronix/PNIC II and the 2119 * Intel 21143. 2120 */ 2121 if (DC_IS_INTEL(sc)) 2122 dc_parse_21143_srom(sc); 2123 else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) { 2124 if (sc->dc_type == DC_TYPE_98713) 2125 sc->dc_pmode = DC_PMODE_MII; 2126 else 2127 sc->dc_pmode = DC_PMODE_SYM; 2128 } else if (!sc->dc_pmode) 2129 sc->dc_pmode = DC_PMODE_MII; 2130 2131 /* 2132 * Get station address from the EEPROM. 2133 */ 2134 switch(sc->dc_type) { 2135 case DC_TYPE_98713: 2136 case DC_TYPE_98713A: 2137 case DC_TYPE_987x5: 2138 case DC_TYPE_PNICII: 2139 dc_read_eeprom(sc, (caddr_t)&mac_offset, 2140 (DC_EE_NODEADDR_OFFSET / 2), 1, 0); 2141 dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0); 2142 break; 2143 case DC_TYPE_PNIC: 2144 dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1); 2145 break; 2146 case DC_TYPE_DM9102: 2147 case DC_TYPE_21143: 2148 case DC_TYPE_ASIX: 2149 dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0); 2150 break; 2151 case DC_TYPE_AL981: 2152 case DC_TYPE_AN985: 2153 bcopy(&sc->dc_srom[DC_AL_EE_NODEADDR], (caddr_t)&eaddr, 2154 ETHER_ADDR_LEN); 2155 dc_read_eeprom(sc, (caddr_t)&eaddr, DC_AL_EE_NODEADDR, 3, 0); 2156 break; 2157 case DC_TYPE_CONEXANT: 2158 bcopy(sc->dc_srom + DC_CONEXANT_EE_NODEADDR, &eaddr, 6); 2159 break; 2160 case DC_TYPE_XIRCOM: 2161 2162 break; 2163 default: 2164 dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0); 2165 break; 2166 } 2167 2168 /* 2169 * A 21143 or clone chip was detected. Inform the world. 2170 */ 2171 printf("dc%d: Ethernet address: %6D\n", unit, eaddr, ":"); 2172 2173 sc->dc_unit = unit; 2174 bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN); 2175 2176 sc->dc_ldata = contigmalloc(sizeof(struct dc_list_data), M_DEVBUF, 2177 M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0); 2178 2179 if (sc->dc_ldata == NULL) { 2180 printf("dc%d: no memory for list buffers!\n", unit); 2181 bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand); 2182 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq); 2183 bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res); 2184 error = ENXIO; 2185 goto fail; 2186 } 2187 2188 bzero(sc->dc_ldata, sizeof(struct dc_list_data)); 2189 2190 ifp = &sc->arpcom.ac_if; 2191 ifp->if_softc = sc; 2192 ifp->if_unit = unit; 2193 ifp->if_name = "dc"; 2194 /* XXX: bleah, MTU gets overwritten in ether_ifattach() */ 2195 ifp->if_mtu = ETHERMTU; 2196 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 2197 ifp->if_ioctl = dc_ioctl; 2198 ifp->if_output = ether_output; 2199 ifp->if_start = dc_start; 2200 ifp->if_watchdog = dc_watchdog; 2201 ifp->if_init = dc_init; 2202 ifp->if_baudrate = 10000000; 2203 ifp->if_snd.ifq_maxlen = DC_TX_LIST_CNT - 1; 2204 2205 /* 2206 * Do MII setup. If this is a 21143, check for a PHY on the 2207 * MII bus after applying any necessary fixups to twiddle the 2208 * GPIO bits. If we don't end up finding a PHY, restore the 2209 * old selection (SIA only or SIA/SYM) and attach the dcphy 2210 * driver instead. 2211 */ 2212 if (DC_IS_INTEL(sc)) { 2213 dc_apply_fixup(sc, IFM_AUTO); 2214 tmp = sc->dc_pmode; 2215 sc->dc_pmode = DC_PMODE_MII; 2216 } 2217 2218 error = mii_phy_probe(dev, &sc->dc_miibus, 2219 dc_ifmedia_upd, dc_ifmedia_sts); 2220 2221 if (error && DC_IS_INTEL(sc)) { 2222 sc->dc_pmode = tmp; 2223 if (sc->dc_pmode != DC_PMODE_SIA) 2224 sc->dc_pmode = DC_PMODE_SYM; 2225 sc->dc_flags |= DC_21143_NWAY; 2226 mii_phy_probe(dev, &sc->dc_miibus, 2227 dc_ifmedia_upd, dc_ifmedia_sts); 2228 /* 2229 * For non-MII cards, we need to have the 21143 2230 * drive the LEDs. Except there are some systems 2231 * like the NEC VersaPro NoteBook PC which have no 2232 * LEDs, and twiddling these bits has adverse effects 2233 * on them. (I.e. you suddenly can't get a link.) 2234 */ 2235 if (pci_read_config(dev, DC_PCI_CSID, 4) != 0x80281033) 2236 sc->dc_flags |= DC_TULIP_LEDS; 2237 error = 0; 2238 } 2239 2240 if (error) { 2241 printf("dc%d: MII without any PHY!\n", sc->dc_unit); 2242 bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand); 2243 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq); 2244 bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res); 2245 error = ENXIO; 2246 goto fail; 2247 } 2248 2249 if (DC_IS_XIRCOM(sc)) { 2250 /* 2251 * setup General Purpose Port mode and data so the tulip 2252 * can talk to the MII. 2253 */ 2254 CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN | 2255 DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT); 2256 DELAY(10); 2257 CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN | 2258 DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT); 2259 DELAY(10); 2260 } 2261 2262 /* 2263 * Call MI attach routine. 2264 */ 2265 ether_ifattach(ifp, ETHER_BPF_SUPPORTED); 2266 2267 /* 2268 * Tell the upper layer(s) we support long frames. 2269 */ 2270 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); 2271 2272 callout_init(&sc->dc_stat_ch, IS_MPSAFE); 2273 2274 #ifdef SRM_MEDIA 2275 sc->dc_srm_media = 0; 2276 2277 /* Remember the SRM console media setting */ 2278 if (DC_IS_INTEL(sc)) { 2279 command = pci_read_config(dev, DC_PCI_CFDD, 4); 2280 command &= ~(DC_CFDD_SNOOZE_MODE|DC_CFDD_SLEEP_MODE); 2281 switch ((command >> 8) & 0xff) { 2282 case 3: 2283 sc->dc_srm_media = IFM_10_T; 2284 break; 2285 case 4: 2286 sc->dc_srm_media = IFM_10_T | IFM_FDX; 2287 break; 2288 case 5: 2289 sc->dc_srm_media = IFM_100_TX; 2290 break; 2291 case 6: 2292 sc->dc_srm_media = IFM_100_TX | IFM_FDX; 2293 break; 2294 } 2295 if (sc->dc_srm_media) 2296 sc->dc_srm_media |= IFM_ACTIVE | IFM_ETHER; 2297 } 2298 #endif 2299 2300 DC_UNLOCK(sc); 2301 return(0); 2302 2303 fail: 2304 DC_UNLOCK(sc); 2305 fail_nolock: 2306 mtx_destroy(&sc->dc_mtx); 2307 return(error); 2308 } 2309 2310 static int 2311 dc_detach(dev) 2312 device_t dev; 2313 { 2314 struct dc_softc *sc; 2315 struct ifnet *ifp; 2316 struct dc_mediainfo *m; 2317 2318 sc = device_get_softc(dev); 2319 2320 DC_LOCK(sc); 2321 2322 ifp = &sc->arpcom.ac_if; 2323 2324 dc_stop(sc); 2325 ether_ifdetach(ifp, ETHER_BPF_SUPPORTED); 2326 2327 bus_generic_detach(dev); 2328 device_delete_child(dev, sc->dc_miibus); 2329 2330 bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand); 2331 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq); 2332 bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res); 2333 2334 contigfree(sc->dc_ldata, sizeof(struct dc_list_data), M_DEVBUF); 2335 if (sc->dc_pnic_rx_buf != NULL) 2336 free(sc->dc_pnic_rx_buf, M_DEVBUF); 2337 2338 while(sc->dc_mi != NULL) { 2339 m = sc->dc_mi->dc_next; 2340 free(sc->dc_mi, M_DEVBUF); 2341 sc->dc_mi = m; 2342 } 2343 free(sc->dc_srom, M_DEVBUF); 2344 2345 DC_UNLOCK(sc); 2346 mtx_destroy(&sc->dc_mtx); 2347 2348 return(0); 2349 } 2350 2351 /* 2352 * Initialize the transmit descriptors. 2353 */ 2354 static int 2355 dc_list_tx_init(sc) 2356 struct dc_softc *sc; 2357 { 2358 struct dc_chain_data *cd; 2359 struct dc_list_data *ld; 2360 int i, nexti; 2361 2362 cd = &sc->dc_cdata; 2363 ld = sc->dc_ldata; 2364 for (i = 0; i < DC_TX_LIST_CNT; i++) { 2365 nexti = (i == (DC_TX_LIST_CNT - 1)) ? 0 : i+1; 2366 ld->dc_tx_list[i].dc_next = vtophys(&ld->dc_tx_list[nexti]); 2367 cd->dc_tx_chain[i] = NULL; 2368 ld->dc_tx_list[i].dc_data = 0; 2369 ld->dc_tx_list[i].dc_ctl = 0; 2370 } 2371 2372 cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0; 2373 2374 return(0); 2375 } 2376 2377 2378 /* 2379 * Initialize the RX descriptors and allocate mbufs for them. Note that 2380 * we arrange the descriptors in a closed ring, so that the last descriptor 2381 * points back to the first. 2382 */ 2383 static int 2384 dc_list_rx_init(sc) 2385 struct dc_softc *sc; 2386 { 2387 struct dc_chain_data *cd; 2388 struct dc_list_data *ld; 2389 int i, nexti; 2390 2391 cd = &sc->dc_cdata; 2392 ld = sc->dc_ldata; 2393 2394 for (i = 0; i < DC_RX_LIST_CNT; i++) { 2395 if (dc_newbuf(sc, i, NULL) == ENOBUFS) 2396 return(ENOBUFS); 2397 nexti = (i == (DC_RX_LIST_CNT - 1)) ? 0 : i+1; 2398 ld->dc_rx_list[i].dc_next = vtophys(&ld->dc_rx_list[nexti]); 2399 } 2400 2401 cd->dc_rx_prod = 0; 2402 2403 return(0); 2404 } 2405 2406 /* 2407 * Initialize an RX descriptor and attach an MBUF cluster. 2408 */ 2409 static int 2410 dc_newbuf(sc, i, m) 2411 struct dc_softc *sc; 2412 int i; 2413 struct mbuf *m; 2414 { 2415 struct mbuf *m_new = NULL; 2416 struct dc_desc *c; 2417 2418 c = &sc->dc_ldata->dc_rx_list[i]; 2419 2420 if (m == NULL) { 2421 MGETHDR(m_new, M_DONTWAIT, MT_DATA); 2422 if (m_new == NULL) 2423 return(ENOBUFS); 2424 2425 MCLGET(m_new, M_DONTWAIT); 2426 if (!(m_new->m_flags & M_EXT)) { 2427 m_freem(m_new); 2428 return(ENOBUFS); 2429 } 2430 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; 2431 } else { 2432 m_new = m; 2433 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; 2434 m_new->m_data = m_new->m_ext.ext_buf; 2435 } 2436 2437 m_adj(m_new, sizeof(u_int64_t)); 2438 2439 /* 2440 * If this is a PNIC chip, zero the buffer. This is part 2441 * of the workaround for the receive bug in the 82c168 and 2442 * 82c169 chips. 2443 */ 2444 if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) 2445 bzero((char *)mtod(m_new, char *), m_new->m_len); 2446 2447 sc->dc_cdata.dc_rx_chain[i] = m_new; 2448 c->dc_data = vtophys(mtod(m_new, caddr_t)); 2449 c->dc_ctl = DC_RXCTL_RLINK | DC_RXLEN; 2450 c->dc_status = DC_RXSTAT_OWN; 2451 2452 return(0); 2453 } 2454 2455 /* 2456 * Grrrrr. 2457 * The PNIC chip has a terrible bug in it that manifests itself during 2458 * periods of heavy activity. The exact mode of failure if difficult to 2459 * pinpoint: sometimes it only happens in promiscuous mode, sometimes it 2460 * will happen on slow machines. The bug is that sometimes instead of 2461 * uploading one complete frame during reception, it uploads what looks 2462 * like the entire contents of its FIFO memory. The frame we want is at 2463 * the end of the whole mess, but we never know exactly how much data has 2464 * been uploaded, so salvaging the frame is hard. 2465 * 2466 * There is only one way to do it reliably, and it's disgusting. 2467 * Here's what we know: 2468 * 2469 * - We know there will always be somewhere between one and three extra 2470 * descriptors uploaded. 2471 * 2472 * - We know the desired received frame will always be at the end of the 2473 * total data upload. 2474 * 2475 * - We know the size of the desired received frame because it will be 2476 * provided in the length field of the status word in the last descriptor. 2477 * 2478 * Here's what we do: 2479 * 2480 * - When we allocate buffers for the receive ring, we bzero() them. 2481 * This means that we know that the buffer contents should be all 2482 * zeros, except for data uploaded by the chip. 2483 * 2484 * - We also force the PNIC chip to upload frames that include the 2485 * ethernet CRC at the end. 2486 * 2487 * - We gather all of the bogus frame data into a single buffer. 2488 * 2489 * - We then position a pointer at the end of this buffer and scan 2490 * backwards until we encounter the first non-zero byte of data. 2491 * This is the end of the received frame. We know we will encounter 2492 * some data at the end of the frame because the CRC will always be 2493 * there, so even if the sender transmits a packet of all zeros, 2494 * we won't be fooled. 2495 * 2496 * - We know the size of the actual received frame, so we subtract 2497 * that value from the current pointer location. This brings us 2498 * to the start of the actual received packet. 2499 * 2500 * - We copy this into an mbuf and pass it on, along with the actual 2501 * frame length. 2502 * 2503 * The performance hit is tremendous, but it beats dropping frames all 2504 * the time. 2505 */ 2506 2507 #define DC_WHOLEFRAME (DC_RXSTAT_FIRSTFRAG|DC_RXSTAT_LASTFRAG) 2508 static void 2509 dc_pnic_rx_bug_war(sc, idx) 2510 struct dc_softc *sc; 2511 int idx; 2512 { 2513 struct dc_desc *cur_rx; 2514 struct dc_desc *c = NULL; 2515 struct mbuf *m = NULL; 2516 unsigned char *ptr; 2517 int i, total_len; 2518 u_int32_t rxstat = 0; 2519 2520 i = sc->dc_pnic_rx_bug_save; 2521 cur_rx = &sc->dc_ldata->dc_rx_list[idx]; 2522 ptr = sc->dc_pnic_rx_buf; 2523 bzero(ptr, sizeof(DC_RXLEN * 5)); 2524 2525 /* Copy all the bytes from the bogus buffers. */ 2526 while (1) { 2527 c = &sc->dc_ldata->dc_rx_list[i]; 2528 rxstat = c->dc_status; 2529 m = sc->dc_cdata.dc_rx_chain[i]; 2530 bcopy(mtod(m, char *), ptr, DC_RXLEN); 2531 ptr += DC_RXLEN; 2532 /* If this is the last buffer, break out. */ 2533 if (i == idx || rxstat & DC_RXSTAT_LASTFRAG) 2534 break; 2535 dc_newbuf(sc, i, m); 2536 DC_INC(i, DC_RX_LIST_CNT); 2537 } 2538 2539 /* Find the length of the actual receive frame. */ 2540 total_len = DC_RXBYTES(rxstat); 2541 2542 /* Scan backwards until we hit a non-zero byte. */ 2543 while(*ptr == 0x00) 2544 ptr--; 2545 2546 /* Round off. */ 2547 if ((uintptr_t)(ptr) & 0x3) 2548 ptr -= 1; 2549 2550 /* Now find the start of the frame. */ 2551 ptr -= total_len; 2552 if (ptr < sc->dc_pnic_rx_buf) 2553 ptr = sc->dc_pnic_rx_buf; 2554 2555 /* 2556 * Now copy the salvaged frame to the last mbuf and fake up 2557 * the status word to make it look like a successful 2558 * frame reception. 2559 */ 2560 dc_newbuf(sc, i, m); 2561 bcopy(ptr, mtod(m, char *), total_len); 2562 cur_rx->dc_status = rxstat | DC_RXSTAT_FIRSTFRAG; 2563 2564 return; 2565 } 2566 2567 /* 2568 * This routine searches the RX ring for dirty descriptors in the 2569 * event that the rxeof routine falls out of sync with the chip's 2570 * current descriptor pointer. This may happen sometimes as a result 2571 * of a "no RX buffer available" condition that happens when the chip 2572 * consumes all of the RX buffers before the driver has a chance to 2573 * process the RX ring. This routine may need to be called more than 2574 * once to bring the driver back in sync with the chip, however we 2575 * should still be getting RX DONE interrupts to drive the search 2576 * for new packets in the RX ring, so we should catch up eventually. 2577 */ 2578 static int 2579 dc_rx_resync(sc) 2580 struct dc_softc *sc; 2581 { 2582 int i, pos; 2583 struct dc_desc *cur_rx; 2584 2585 pos = sc->dc_cdata.dc_rx_prod; 2586 2587 for (i = 0; i < DC_RX_LIST_CNT; i++) { 2588 cur_rx = &sc->dc_ldata->dc_rx_list[pos]; 2589 if (!(cur_rx->dc_status & DC_RXSTAT_OWN)) 2590 break; 2591 DC_INC(pos, DC_RX_LIST_CNT); 2592 } 2593 2594 /* If the ring really is empty, then just return. */ 2595 if (i == DC_RX_LIST_CNT) 2596 return(0); 2597 2598 /* We've fallen behing the chip: catch it. */ 2599 sc->dc_cdata.dc_rx_prod = pos; 2600 2601 return(EAGAIN); 2602 } 2603 2604 /* 2605 * A frame has been uploaded: pass the resulting mbuf chain up to 2606 * the higher level protocols. 2607 */ 2608 static void 2609 dc_rxeof(sc) 2610 struct dc_softc *sc; 2611 { 2612 struct ether_header *eh; 2613 struct mbuf *m; 2614 struct ifnet *ifp; 2615 struct dc_desc *cur_rx; 2616 int i, total_len = 0; 2617 u_int32_t rxstat; 2618 2619 ifp = &sc->arpcom.ac_if; 2620 i = sc->dc_cdata.dc_rx_prod; 2621 2622 while(!(sc->dc_ldata->dc_rx_list[i].dc_status & DC_RXSTAT_OWN)) { 2623 2624 #ifdef DEVICE_POLLING 2625 if (ifp->if_flags & IFF_POLLING) { 2626 if (sc->rxcycles <= 0) 2627 break; 2628 sc->rxcycles--; 2629 } 2630 #endif /* DEVICE_POLLING */ 2631 cur_rx = &sc->dc_ldata->dc_rx_list[i]; 2632 rxstat = cur_rx->dc_status; 2633 m = sc->dc_cdata.dc_rx_chain[i]; 2634 total_len = DC_RXBYTES(rxstat); 2635 2636 if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) { 2637 if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) { 2638 if (rxstat & DC_RXSTAT_FIRSTFRAG) 2639 sc->dc_pnic_rx_bug_save = i; 2640 if ((rxstat & DC_RXSTAT_LASTFRAG) == 0) { 2641 DC_INC(i, DC_RX_LIST_CNT); 2642 continue; 2643 } 2644 dc_pnic_rx_bug_war(sc, i); 2645 rxstat = cur_rx->dc_status; 2646 total_len = DC_RXBYTES(rxstat); 2647 } 2648 } 2649 2650 sc->dc_cdata.dc_rx_chain[i] = NULL; 2651 2652 /* 2653 * If an error occurs, update stats, clear the 2654 * status word and leave the mbuf cluster in place: 2655 * it should simply get re-used next time this descriptor 2656 * comes up in the ring. However, don't report long 2657 * frames as errors since they could be vlans 2658 */ 2659 if ((rxstat & DC_RXSTAT_RXERR)){ 2660 if (!(rxstat & DC_RXSTAT_GIANT) || 2661 (rxstat & (DC_RXSTAT_CRCERR | DC_RXSTAT_DRIBBLE | 2662 DC_RXSTAT_MIIERE | DC_RXSTAT_COLLSEEN | 2663 DC_RXSTAT_RUNT | DC_RXSTAT_DE))) { 2664 ifp->if_ierrors++; 2665 if (rxstat & DC_RXSTAT_COLLSEEN) 2666 ifp->if_collisions++; 2667 dc_newbuf(sc, i, m); 2668 if (rxstat & DC_RXSTAT_CRCERR) { 2669 DC_INC(i, DC_RX_LIST_CNT); 2670 continue; 2671 } else { 2672 dc_init(sc); 2673 return; 2674 } 2675 } 2676 } 2677 2678 /* No errors; receive the packet. */ 2679 total_len -= ETHER_CRC_LEN; 2680 #ifdef __i386__ 2681 /* 2682 * On the x86 we do not have alignment problems, so try to 2683 * allocate a new buffer for the receive ring, and pass up 2684 * the one where the packet is already, saving the expensive 2685 * copy done in m_devget(). 2686 * If we are on an architecture with alignment problems, or 2687 * if the allocation fails, then use m_devget and leave the 2688 * existing buffer in the receive ring. 2689 */ 2690 if (dc_quick && dc_newbuf(sc, i, NULL) == 0) { 2691 m->m_pkthdr.rcvif = ifp; 2692 m->m_pkthdr.len = m->m_len = total_len; 2693 DC_INC(i, DC_RX_LIST_CNT); 2694 } else 2695 #endif 2696 { 2697 struct mbuf *m0; 2698 2699 m0 = m_devget(mtod(m, char *), total_len, 2700 ETHER_ALIGN, ifp, NULL); 2701 dc_newbuf(sc, i, m); 2702 DC_INC(i, DC_RX_LIST_CNT); 2703 if (m0 == NULL) { 2704 ifp->if_ierrors++; 2705 continue; 2706 } 2707 m = m0; 2708 } 2709 2710 ifp->if_ipackets++; 2711 eh = mtod(m, struct ether_header *); 2712 2713 /* Remove header from mbuf and pass it on. */ 2714 m_adj(m, sizeof(struct ether_header)); 2715 ether_input(ifp, eh, m); 2716 } 2717 2718 sc->dc_cdata.dc_rx_prod = i; 2719 } 2720 2721 /* 2722 * A frame was downloaded to the chip. It's safe for us to clean up 2723 * the list buffers. 2724 */ 2725 2726 static void 2727 dc_txeof(sc) 2728 struct dc_softc *sc; 2729 { 2730 struct dc_desc *cur_tx = NULL; 2731 struct ifnet *ifp; 2732 int idx; 2733 2734 ifp = &sc->arpcom.ac_if; 2735 2736 /* 2737 * Go through our tx list and free mbufs for those 2738 * frames that have been transmitted. 2739 */ 2740 idx = sc->dc_cdata.dc_tx_cons; 2741 while(idx != sc->dc_cdata.dc_tx_prod) { 2742 u_int32_t txstat; 2743 2744 cur_tx = &sc->dc_ldata->dc_tx_list[idx]; 2745 txstat = cur_tx->dc_status; 2746 2747 if (txstat & DC_TXSTAT_OWN) 2748 break; 2749 2750 if (!(cur_tx->dc_ctl & DC_TXCTL_LASTFRAG) || 2751 cur_tx->dc_ctl & DC_TXCTL_SETUP) { 2752 if (cur_tx->dc_ctl & DC_TXCTL_SETUP) { 2753 /* 2754 * Yes, the PNIC is so brain damaged 2755 * that it will sometimes generate a TX 2756 * underrun error while DMAing the RX 2757 * filter setup frame. If we detect this, 2758 * we have to send the setup frame again, 2759 * or else the filter won't be programmed 2760 * correctly. 2761 */ 2762 if (DC_IS_PNIC(sc)) { 2763 if (txstat & DC_TXSTAT_ERRSUM) 2764 dc_setfilt(sc); 2765 } 2766 sc->dc_cdata.dc_tx_chain[idx] = NULL; 2767 } 2768 sc->dc_cdata.dc_tx_cnt--; 2769 DC_INC(idx, DC_TX_LIST_CNT); 2770 continue; 2771 } 2772 2773 if (DC_IS_XIRCOM(sc) || DC_IS_CONEXANT(sc)) { 2774 /* 2775 * XXX: Why does my Xircom taunt me so? 2776 * For some reason it likes setting the CARRLOST flag 2777 * even when the carrier is there. wtf?!? 2778 * Who knows, but Conexant chips have the 2779 * same problem. Maybe they took lessons 2780 * from Xircom. 2781 */ 2782 if (/*sc->dc_type == DC_TYPE_21143 &&*/ 2783 sc->dc_pmode == DC_PMODE_MII && 2784 ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM| 2785 DC_TXSTAT_NOCARRIER))) 2786 txstat &= ~DC_TXSTAT_ERRSUM; 2787 } else { 2788 if (/*sc->dc_type == DC_TYPE_21143 &&*/ 2789 sc->dc_pmode == DC_PMODE_MII && 2790 ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM| 2791 DC_TXSTAT_NOCARRIER|DC_TXSTAT_CARRLOST))) 2792 txstat &= ~DC_TXSTAT_ERRSUM; 2793 } 2794 2795 if (txstat & DC_TXSTAT_ERRSUM) { 2796 ifp->if_oerrors++; 2797 if (txstat & DC_TXSTAT_EXCESSCOLL) 2798 ifp->if_collisions++; 2799 if (txstat & DC_TXSTAT_LATECOLL) 2800 ifp->if_collisions++; 2801 if (!(txstat & DC_TXSTAT_UNDERRUN)) { 2802 dc_init(sc); 2803 return; 2804 } 2805 } 2806 2807 ifp->if_collisions += (txstat & DC_TXSTAT_COLLCNT) >> 3; 2808 2809 ifp->if_opackets++; 2810 if (sc->dc_cdata.dc_tx_chain[idx] != NULL) { 2811 m_freem(sc->dc_cdata.dc_tx_chain[idx]); 2812 sc->dc_cdata.dc_tx_chain[idx] = NULL; 2813 } 2814 2815 sc->dc_cdata.dc_tx_cnt--; 2816 DC_INC(idx, DC_TX_LIST_CNT); 2817 } 2818 2819 if (idx != sc->dc_cdata.dc_tx_cons) { 2820 /* some buffers have been freed */ 2821 sc->dc_cdata.dc_tx_cons = idx; 2822 ifp->if_flags &= ~IFF_OACTIVE; 2823 } 2824 ifp->if_timer = (sc->dc_cdata.dc_tx_cnt == 0) ? 0 : 5; 2825 2826 return; 2827 } 2828 2829 static void 2830 dc_tick(xsc) 2831 void *xsc; 2832 { 2833 struct dc_softc *sc; 2834 struct mii_data *mii; 2835 struct ifnet *ifp; 2836 u_int32_t r; 2837 2838 sc = xsc; 2839 DC_LOCK(sc); 2840 ifp = &sc->arpcom.ac_if; 2841 mii = device_get_softc(sc->dc_miibus); 2842 2843 if (sc->dc_flags & DC_REDUCED_MII_POLL) { 2844 if (sc->dc_flags & DC_21143_NWAY) { 2845 r = CSR_READ_4(sc, DC_10BTSTAT); 2846 if (IFM_SUBTYPE(mii->mii_media_active) == 2847 IFM_100_TX && (r & DC_TSTAT_LS100)) { 2848 sc->dc_link = 0; 2849 mii_mediachg(mii); 2850 } 2851 if (IFM_SUBTYPE(mii->mii_media_active) == 2852 IFM_10_T && (r & DC_TSTAT_LS10)) { 2853 sc->dc_link = 0; 2854 mii_mediachg(mii); 2855 } 2856 if (sc->dc_link == 0) 2857 mii_tick(mii); 2858 } else { 2859 r = CSR_READ_4(sc, DC_ISR); 2860 if ((r & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT && 2861 sc->dc_cdata.dc_tx_cnt == 0) 2862 mii_tick(mii); 2863 if (!(mii->mii_media_status & IFM_ACTIVE)) 2864 sc->dc_link = 0; 2865 } 2866 } else 2867 mii_tick(mii); 2868 2869 /* 2870 * When the init routine completes, we expect to be able to send 2871 * packets right away, and in fact the network code will send a 2872 * gratuitous ARP the moment the init routine marks the interface 2873 * as running. However, even though the MAC may have been initialized, 2874 * there may be a delay of a few seconds before the PHY completes 2875 * autonegotiation and the link is brought up. Any transmissions 2876 * made during that delay will be lost. Dealing with this is tricky: 2877 * we can't just pause in the init routine while waiting for the 2878 * PHY to come ready since that would bring the whole system to 2879 * a screeching halt for several seconds. 2880 * 2881 * What we do here is prevent the TX start routine from sending 2882 * any packets until a link has been established. After the 2883 * interface has been initialized, the tick routine will poll 2884 * the state of the PHY until the IFM_ACTIVE flag is set. Until 2885 * that time, packets will stay in the send queue, and once the 2886 * link comes up, they will be flushed out to the wire. 2887 */ 2888 if (!sc->dc_link && mii->mii_media_status & IFM_ACTIVE && 2889 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { 2890 sc->dc_link++; 2891 if (ifp->if_snd.ifq_head != NULL) 2892 dc_start(ifp); 2893 } 2894 2895 if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link) 2896 callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc); 2897 else 2898 callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc); 2899 2900 DC_UNLOCK(sc); 2901 2902 return; 2903 } 2904 2905 /* 2906 * A transmit underrun has occurred. Back off the transmit threshold, 2907 * or switch to store and forward mode if we have to. 2908 */ 2909 static void 2910 dc_tx_underrun(sc) 2911 struct dc_softc *sc; 2912 { 2913 u_int32_t isr; 2914 int i; 2915 2916 if (DC_IS_DAVICOM(sc)) 2917 dc_init(sc); 2918 2919 if (DC_IS_INTEL(sc)) { 2920 /* 2921 * The real 21143 requires that the transmitter be idle 2922 * in order to change the transmit threshold or store 2923 * and forward state. 2924 */ 2925 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON); 2926 2927 for (i = 0; i < DC_TIMEOUT; i++) { 2928 isr = CSR_READ_4(sc, DC_ISR); 2929 if (isr & DC_ISR_TX_IDLE) 2930 break; 2931 DELAY(10); 2932 } 2933 if (i == DC_TIMEOUT) { 2934 printf("dc%d: failed to force tx to idle state\n", 2935 sc->dc_unit); 2936 dc_init(sc); 2937 } 2938 } 2939 2940 printf("dc%d: TX underrun -- ", sc->dc_unit); 2941 sc->dc_txthresh += DC_TXTHRESH_INC; 2942 if (sc->dc_txthresh > DC_TXTHRESH_MAX) { 2943 printf("using store and forward mode\n"); 2944 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD); 2945 } else { 2946 printf("increasing TX threshold\n"); 2947 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH); 2948 DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh); 2949 } 2950 2951 if (DC_IS_INTEL(sc)) 2952 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON); 2953 2954 return; 2955 } 2956 2957 #ifdef DEVICE_POLLING 2958 static poll_handler_t dc_poll; 2959 2960 static void 2961 dc_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) 2962 { 2963 struct dc_softc *sc = ifp->if_softc; 2964 2965 if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */ 2966 /* Re-enable interrupts. */ 2967 CSR_WRITE_4(sc, DC_IMR, DC_INTRS); 2968 return; 2969 } 2970 sc->rxcycles = count; 2971 dc_rxeof(sc); 2972 dc_txeof(sc); 2973 if (ifp->if_snd.ifq_head != NULL && !(ifp->if_flags & IFF_OACTIVE)) 2974 dc_start(ifp); 2975 2976 if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */ 2977 u_int32_t status; 2978 2979 status = CSR_READ_4(sc, DC_ISR); 2980 status &= (DC_ISR_RX_WATDOGTIMEO|DC_ISR_RX_NOBUF| 2981 DC_ISR_TX_NOBUF|DC_ISR_TX_IDLE|DC_ISR_TX_UNDERRUN| 2982 DC_ISR_BUS_ERR); 2983 if (!status) 2984 return; 2985 /* ack what we have */ 2986 CSR_WRITE_4(sc, DC_ISR, status); 2987 2988 if (status & (DC_ISR_RX_WATDOGTIMEO|DC_ISR_RX_NOBUF)) { 2989 u_int32_t r = CSR_READ_4(sc, DC_FRAMESDISCARDED); 2990 ifp->if_ierrors += (r & 0xffff) + ((r >> 17) & 0x7ff); 2991 2992 if (dc_rx_resync(sc)) 2993 dc_rxeof(sc); 2994 } 2995 /* restart transmit unit if necessary */ 2996 if (status & DC_ISR_TX_IDLE && sc->dc_cdata.dc_tx_cnt) 2997 CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF); 2998 2999 if (status & DC_ISR_TX_UNDERRUN) 3000 dc_tx_underrun(sc); 3001 3002 if (status & DC_ISR_BUS_ERR) { 3003 printf("dc_poll: dc%d bus error\n", sc->dc_unit); 3004 dc_reset(sc); 3005 dc_init(sc); 3006 } 3007 } 3008 } 3009 #endif /* DEVICE_POLLING */ 3010 3011 static void 3012 dc_intr(arg) 3013 void *arg; 3014 { 3015 struct dc_softc *sc; 3016 struct ifnet *ifp; 3017 u_int32_t status; 3018 3019 sc = arg; 3020 3021 if (sc->suspended) { 3022 return; 3023 } 3024 3025 if ((CSR_READ_4(sc, DC_ISR) & DC_INTRS) == 0) 3026 return; 3027 3028 DC_LOCK(sc); 3029 ifp = &sc->arpcom.ac_if; 3030 #ifdef DEVICE_POLLING 3031 if (ifp->if_flags & IFF_POLLING) 3032 goto done; 3033 if (ether_poll_register(dc_poll, ifp)) { /* ok, disable interrupts */ 3034 CSR_WRITE_4(sc, DC_IMR, 0x00000000); 3035 goto done; 3036 } 3037 #endif /* DEVICE_POLLING */ 3038 3039 /* Suppress unwanted interrupts */ 3040 if (!(ifp->if_flags & IFF_UP)) { 3041 if (CSR_READ_4(sc, DC_ISR) & DC_INTRS) 3042 dc_stop(sc); 3043 DC_UNLOCK(sc); 3044 return; 3045 } 3046 3047 /* Disable interrupts. */ 3048 CSR_WRITE_4(sc, DC_IMR, 0x00000000); 3049 3050 while(((status = CSR_READ_4(sc, DC_ISR)) & DC_INTRS) 3051 && status != 0xFFFFFFFF) { 3052 3053 CSR_WRITE_4(sc, DC_ISR, status); 3054 3055 if (status & DC_ISR_RX_OK) { 3056 int curpkts; 3057 curpkts = ifp->if_ipackets; 3058 dc_rxeof(sc); 3059 if (curpkts == ifp->if_ipackets) { 3060 while(dc_rx_resync(sc)) 3061 dc_rxeof(sc); 3062 } 3063 } 3064 3065 if (status & (DC_ISR_TX_OK|DC_ISR_TX_NOBUF)) 3066 dc_txeof(sc); 3067 3068 if (status & DC_ISR_TX_IDLE) { 3069 dc_txeof(sc); 3070 if (sc->dc_cdata.dc_tx_cnt) { 3071 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON); 3072 CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF); 3073 } 3074 } 3075 3076 if (status & DC_ISR_TX_UNDERRUN) 3077 dc_tx_underrun(sc); 3078 3079 if ((status & DC_ISR_RX_WATDOGTIMEO) 3080 || (status & DC_ISR_RX_NOBUF)) { 3081 int curpkts; 3082 curpkts = ifp->if_ipackets; 3083 dc_rxeof(sc); 3084 if (curpkts == ifp->if_ipackets) { 3085 while(dc_rx_resync(sc)) 3086 dc_rxeof(sc); 3087 } 3088 } 3089 3090 if (status & DC_ISR_BUS_ERR) { 3091 dc_reset(sc); 3092 dc_init(sc); 3093 } 3094 } 3095 3096 /* Re-enable interrupts. */ 3097 CSR_WRITE_4(sc, DC_IMR, DC_INTRS); 3098 3099 if (ifp->if_snd.ifq_head != NULL) 3100 dc_start(ifp); 3101 3102 #ifdef DEVICE_POLLING 3103 done: 3104 #endif /* DEVICE_POLLING */ 3105 3106 DC_UNLOCK(sc); 3107 3108 return; 3109 } 3110 3111 /* 3112 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data 3113 * pointers to the fragment pointers. 3114 */ 3115 static int 3116 dc_encap(sc, m_head, txidx) 3117 struct dc_softc *sc; 3118 struct mbuf *m_head; 3119 u_int32_t *txidx; 3120 { 3121 struct dc_desc *f = NULL; 3122 struct mbuf *m; 3123 int frag, cur, cnt = 0; 3124 3125 /* 3126 * Start packing the mbufs in this chain into 3127 * the fragment pointers. Stop when we run out 3128 * of fragments or hit the end of the mbuf chain. 3129 */ 3130 m = m_head; 3131 cur = frag = *txidx; 3132 3133 for (m = m_head; m != NULL; m = m->m_next) { 3134 if (m->m_len != 0) { 3135 if (sc->dc_flags & DC_TX_ADMTEK_WAR) { 3136 if (*txidx != sc->dc_cdata.dc_tx_prod && 3137 frag == (DC_TX_LIST_CNT - 1)) 3138 return(ENOBUFS); 3139 } 3140 if ((DC_TX_LIST_CNT - 3141 (sc->dc_cdata.dc_tx_cnt + cnt)) < 5) 3142 return(ENOBUFS); 3143 3144 f = &sc->dc_ldata->dc_tx_list[frag]; 3145 f->dc_ctl = DC_TXCTL_TLINK | m->m_len; 3146 if (cnt == 0) { 3147 f->dc_status = 0; 3148 f->dc_ctl |= DC_TXCTL_FIRSTFRAG; 3149 } else 3150 f->dc_status = DC_TXSTAT_OWN; 3151 f->dc_data = vtophys(mtod(m, vm_offset_t)); 3152 cur = frag; 3153 DC_INC(frag, DC_TX_LIST_CNT); 3154 cnt++; 3155 } 3156 } 3157 3158 if (m != NULL) 3159 return(ENOBUFS); 3160 3161 sc->dc_cdata.dc_tx_cnt += cnt; 3162 sc->dc_cdata.dc_tx_chain[cur] = m_head; 3163 sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_LASTFRAG; 3164 if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG) 3165 sc->dc_ldata->dc_tx_list[*txidx].dc_ctl |= DC_TXCTL_FINT; 3166 if (sc->dc_flags & DC_TX_INTR_ALWAYS) 3167 sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT; 3168 if (sc->dc_flags & DC_TX_USE_TX_INTR && sc->dc_cdata.dc_tx_cnt > 64) 3169 sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT; 3170 sc->dc_ldata->dc_tx_list[*txidx].dc_status = DC_TXSTAT_OWN; 3171 *txidx = frag; 3172 3173 return(0); 3174 } 3175 3176 /* 3177 * Coalesce an mbuf chain into a single mbuf cluster buffer. 3178 * Needed for some really badly behaved chips that just can't 3179 * do scatter/gather correctly. 3180 */ 3181 static int 3182 dc_coal(sc, m_head) 3183 struct dc_softc *sc; 3184 struct mbuf **m_head; 3185 { 3186 struct mbuf *m_new, *m; 3187 3188 m = *m_head; 3189 MGETHDR(m_new, M_DONTWAIT, MT_DATA); 3190 if (m_new == NULL) 3191 return(ENOBUFS); 3192 if (m->m_pkthdr.len > MHLEN) { 3193 MCLGET(m_new, M_DONTWAIT); 3194 if (!(m_new->m_flags & M_EXT)) { 3195 m_freem(m_new); 3196 return(ENOBUFS); 3197 } 3198 } 3199 m_copydata(m, 0, m->m_pkthdr.len, mtod(m_new, caddr_t)); 3200 m_new->m_pkthdr.len = m_new->m_len = m->m_pkthdr.len; 3201 m_freem(m); 3202 *m_head = m_new; 3203 3204 return(0); 3205 } 3206 3207 /* 3208 * Main transmit routine. To avoid having to do mbuf copies, we put pointers 3209 * to the mbuf data regions directly in the transmit lists. We also save a 3210 * copy of the pointers since the transmit list fragment pointers are 3211 * physical addresses. 3212 */ 3213 3214 static void 3215 dc_start(ifp) 3216 struct ifnet *ifp; 3217 { 3218 struct dc_softc *sc; 3219 struct mbuf *m_head = NULL; 3220 int idx; 3221 3222 sc = ifp->if_softc; 3223 3224 DC_LOCK(sc); 3225 3226 if (!sc->dc_link && ifp->if_snd.ifq_len < 10) { 3227 DC_UNLOCK(sc); 3228 return; 3229 } 3230 3231 if (ifp->if_flags & IFF_OACTIVE) { 3232 DC_UNLOCK(sc); 3233 return; 3234 } 3235 3236 idx = sc->dc_cdata.dc_tx_prod; 3237 3238 while(sc->dc_cdata.dc_tx_chain[idx] == NULL) { 3239 IF_DEQUEUE(&ifp->if_snd, m_head); 3240 if (m_head == NULL) 3241 break; 3242 3243 if (sc->dc_flags & DC_TX_COALESCE && 3244 (m_head->m_next != NULL || 3245 sc->dc_flags & DC_TX_ALIGN)) { 3246 if (dc_coal(sc, &m_head)) { 3247 IF_PREPEND(&ifp->if_snd, m_head); 3248 ifp->if_flags |= IFF_OACTIVE; 3249 break; 3250 } 3251 } 3252 3253 if (dc_encap(sc, m_head, &idx)) { 3254 IF_PREPEND(&ifp->if_snd, m_head); 3255 ifp->if_flags |= IFF_OACTIVE; 3256 break; 3257 } 3258 3259 /* 3260 * If there's a BPF listener, bounce a copy of this frame 3261 * to him. 3262 */ 3263 if (ifp->if_bpf) 3264 bpf_mtap(ifp, m_head); 3265 3266 if (sc->dc_flags & DC_TX_ONE) { 3267 ifp->if_flags |= IFF_OACTIVE; 3268 break; 3269 } 3270 } 3271 3272 /* Transmit */ 3273 sc->dc_cdata.dc_tx_prod = idx; 3274 if (!(sc->dc_flags & DC_TX_POLL)) 3275 CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF); 3276 3277 /* 3278 * Set a timeout in case the chip goes out to lunch. 3279 */ 3280 ifp->if_timer = 5; 3281 3282 DC_UNLOCK(sc); 3283 3284 return; 3285 } 3286 3287 static void 3288 dc_init(xsc) 3289 void *xsc; 3290 { 3291 struct dc_softc *sc = xsc; 3292 struct ifnet *ifp = &sc->arpcom.ac_if; 3293 struct mii_data *mii; 3294 3295 DC_LOCK(sc); 3296 3297 mii = device_get_softc(sc->dc_miibus); 3298 3299 /* 3300 * Cancel pending I/O and free all RX/TX buffers. 3301 */ 3302 dc_stop(sc); 3303 dc_reset(sc); 3304 3305 /* 3306 * Set cache alignment and burst length. 3307 */ 3308 if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc)) 3309 CSR_WRITE_4(sc, DC_BUSCTL, 0); 3310 else 3311 CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME|DC_BUSCTL_MRLE); 3312 /* 3313 * Evenly share the bus between receive and transmit process. 3314 */ 3315 if (DC_IS_INTEL(sc)) 3316 DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION); 3317 if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) { 3318 DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA); 3319 } else { 3320 DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG); 3321 } 3322 if (sc->dc_flags & DC_TX_POLL) 3323 DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1); 3324 switch(sc->dc_cachesize) { 3325 case 32: 3326 DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG); 3327 break; 3328 case 16: 3329 DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG); 3330 break; 3331 case 8: 3332 DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG); 3333 break; 3334 case 0: 3335 default: 3336 DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE); 3337 break; 3338 } 3339 3340 if (sc->dc_flags & DC_TX_STORENFWD) 3341 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD); 3342 else { 3343 if (sc->dc_txthresh > DC_TXTHRESH_MAX) { 3344 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD); 3345 } else { 3346 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD); 3347 DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh); 3348 } 3349 } 3350 3351 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC); 3352 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF); 3353 3354 if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) { 3355 /* 3356 * The app notes for the 98713 and 98715A say that 3357 * in order to have the chips operate properly, a magic 3358 * number must be written to CSR16. Macronix does not 3359 * document the meaning of these bits so there's no way 3360 * to know exactly what they do. The 98713 has a magic 3361 * number all its own; the rest all use a different one. 3362 */ 3363 DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000); 3364 if (sc->dc_type == DC_TYPE_98713) 3365 DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713); 3366 else 3367 DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715); 3368 } 3369 3370 if (DC_IS_XIRCOM(sc)) { 3371 /* 3372 * setup General Purpose Port mode and data so the tulip 3373 * can talk to the MII. 3374 */ 3375 CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN | 3376 DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT); 3377 DELAY(10); 3378 CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN | 3379 DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT); 3380 DELAY(10); 3381 } 3382 3383 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH); 3384 DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN); 3385 3386 /* Init circular RX list. */ 3387 if (dc_list_rx_init(sc) == ENOBUFS) { 3388 printf("dc%d: initialization failed: no " 3389 "memory for rx buffers\n", sc->dc_unit); 3390 dc_stop(sc); 3391 DC_UNLOCK(sc); 3392 return; 3393 } 3394 3395 /* 3396 * Init tx descriptors. 3397 */ 3398 dc_list_tx_init(sc); 3399 3400 /* 3401 * Load the address of the RX list. 3402 */ 3403 CSR_WRITE_4(sc, DC_RXADDR, vtophys(&sc->dc_ldata->dc_rx_list[0])); 3404 CSR_WRITE_4(sc, DC_TXADDR, vtophys(&sc->dc_ldata->dc_tx_list[0])); 3405 3406 /* 3407 * Enable interrupts. 3408 */ 3409 #ifdef DEVICE_POLLING 3410 /* 3411 * ... but only if we are not polling, and make sure they are off in 3412 * the case of polling. Some cards (e.g. fxp) turn interrupts on 3413 * after a reset. 3414 */ 3415 if (ifp->if_flags & IFF_POLLING) 3416 CSR_WRITE_4(sc, DC_IMR, 0x00000000); 3417 else 3418 #endif 3419 CSR_WRITE_4(sc, DC_IMR, DC_INTRS); 3420 CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF); 3421 3422 /* Enable transmitter. */ 3423 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON); 3424 3425 /* 3426 * If this is an Intel 21143 and we're not using the 3427 * MII port, program the LED control pins so we get 3428 * link and activity indications. 3429 */ 3430 if (sc->dc_flags & DC_TULIP_LEDS) { 3431 CSR_WRITE_4(sc, DC_WATCHDOG, 3432 DC_WDOG_CTLWREN|DC_WDOG_LINK|DC_WDOG_ACTIVITY); 3433 CSR_WRITE_4(sc, DC_WATCHDOG, 0); 3434 } 3435 3436 /* 3437 * Load the RX/multicast filter. We do this sort of late 3438 * because the filter programming scheme on the 21143 and 3439 * some clones requires DMAing a setup frame via the TX 3440 * engine, and we need the transmitter enabled for that. 3441 */ 3442 dc_setfilt(sc); 3443 3444 /* Enable receiver. */ 3445 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON); 3446 CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF); 3447 3448 mii_mediachg(mii); 3449 dc_setcfg(sc, sc->dc_if_media); 3450 3451 ifp->if_flags |= IFF_RUNNING; 3452 ifp->if_flags &= ~IFF_OACTIVE; 3453 3454 /* Don't start the ticker if this is a homePNA link. */ 3455 if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_HPNA_1) 3456 sc->dc_link = 1; 3457 else { 3458 if (sc->dc_flags & DC_21143_NWAY) 3459 callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc); 3460 else 3461 callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc); 3462 } 3463 3464 #ifdef SRM_MEDIA 3465 if(sc->dc_srm_media) { 3466 struct ifreq ifr; 3467 3468 ifr.ifr_media = sc->dc_srm_media; 3469 ifmedia_ioctl(ifp, &ifr, &mii->mii_media, SIOCSIFMEDIA); 3470 sc->dc_srm_media = 0; 3471 } 3472 #endif 3473 DC_UNLOCK(sc); 3474 return; 3475 } 3476 3477 /* 3478 * Set media options. 3479 */ 3480 static int 3481 dc_ifmedia_upd(ifp) 3482 struct ifnet *ifp; 3483 { 3484 struct dc_softc *sc; 3485 struct mii_data *mii; 3486 struct ifmedia *ifm; 3487 3488 sc = ifp->if_softc; 3489 mii = device_get_softc(sc->dc_miibus); 3490 mii_mediachg(mii); 3491 ifm = &mii->mii_media; 3492 3493 if (DC_IS_DAVICOM(sc) && 3494 IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) 3495 dc_setcfg(sc, ifm->ifm_media); 3496 else 3497 sc->dc_link = 0; 3498 3499 return(0); 3500 } 3501 3502 /* 3503 * Report current media status. 3504 */ 3505 static void 3506 dc_ifmedia_sts(ifp, ifmr) 3507 struct ifnet *ifp; 3508 struct ifmediareq *ifmr; 3509 { 3510 struct dc_softc *sc; 3511 struct mii_data *mii; 3512 struct ifmedia *ifm; 3513 3514 sc = ifp->if_softc; 3515 mii = device_get_softc(sc->dc_miibus); 3516 mii_pollstat(mii); 3517 ifm = &mii->mii_media; 3518 if (DC_IS_DAVICOM(sc)) { 3519 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) { 3520 ifmr->ifm_active = ifm->ifm_media; 3521 ifmr->ifm_status = 0; 3522 return; 3523 } 3524 } 3525 ifmr->ifm_active = mii->mii_media_active; 3526 ifmr->ifm_status = mii->mii_media_status; 3527 3528 return; 3529 } 3530 3531 static int 3532 dc_ioctl(ifp, command, data) 3533 struct ifnet *ifp; 3534 u_long command; 3535 caddr_t data; 3536 { 3537 struct dc_softc *sc = ifp->if_softc; 3538 struct ifreq *ifr = (struct ifreq *) data; 3539 struct mii_data *mii; 3540 int error = 0; 3541 3542 DC_LOCK(sc); 3543 3544 switch(command) { 3545 case SIOCSIFADDR: 3546 case SIOCGIFADDR: 3547 case SIOCSIFMTU: 3548 error = ether_ioctl(ifp, command, data); 3549 break; 3550 case SIOCSIFFLAGS: 3551 if (ifp->if_flags & IFF_UP) { 3552 if (ifp->if_flags & IFF_RUNNING && 3553 ifp->if_flags & IFF_PROMISC && 3554 !(sc->dc_if_flags & IFF_PROMISC)) { 3555 dc_setfilt(sc); 3556 } else if (ifp->if_flags & IFF_RUNNING && 3557 !(ifp->if_flags & IFF_PROMISC) && 3558 sc->dc_if_flags & IFF_PROMISC) { 3559 dc_setfilt(sc); 3560 } else if (!(ifp->if_flags & IFF_RUNNING)) { 3561 sc->dc_txthresh = 0; 3562 dc_init(sc); 3563 } 3564 } else { 3565 if (ifp->if_flags & IFF_RUNNING) 3566 dc_stop(sc); 3567 } 3568 sc->dc_if_flags = ifp->if_flags; 3569 error = 0; 3570 break; 3571 case SIOCADDMULTI: 3572 case SIOCDELMULTI: 3573 dc_setfilt(sc); 3574 error = 0; 3575 break; 3576 case SIOCGIFMEDIA: 3577 case SIOCSIFMEDIA: 3578 mii = device_get_softc(sc->dc_miibus); 3579 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); 3580 #ifdef SRM_MEDIA 3581 if (sc->dc_srm_media) 3582 sc->dc_srm_media = 0; 3583 #endif 3584 break; 3585 default: 3586 error = EINVAL; 3587 break; 3588 } 3589 3590 DC_UNLOCK(sc); 3591 3592 return(error); 3593 } 3594 3595 static void 3596 dc_watchdog(ifp) 3597 struct ifnet *ifp; 3598 { 3599 struct dc_softc *sc; 3600 3601 sc = ifp->if_softc; 3602 3603 DC_LOCK(sc); 3604 3605 ifp->if_oerrors++; 3606 printf("dc%d: watchdog timeout\n", sc->dc_unit); 3607 3608 dc_stop(sc); 3609 dc_reset(sc); 3610 dc_init(sc); 3611 3612 if (ifp->if_snd.ifq_head != NULL) 3613 dc_start(ifp); 3614 3615 DC_UNLOCK(sc); 3616 3617 return; 3618 } 3619 3620 /* 3621 * Stop the adapter and free any mbufs allocated to the 3622 * RX and TX lists. 3623 */ 3624 static void 3625 dc_stop(sc) 3626 struct dc_softc *sc; 3627 { 3628 register int i; 3629 struct ifnet *ifp; 3630 3631 DC_LOCK(sc); 3632 3633 ifp = &sc->arpcom.ac_if; 3634 ifp->if_timer = 0; 3635 3636 callout_stop(&sc->dc_stat_ch); 3637 3638 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 3639 #ifdef DEVICE_POLLING 3640 ether_poll_deregister(ifp); 3641 #endif 3642 3643 DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ON|DC_NETCFG_TX_ON)); 3644 CSR_WRITE_4(sc, DC_IMR, 0x00000000); 3645 CSR_WRITE_4(sc, DC_TXADDR, 0x00000000); 3646 CSR_WRITE_4(sc, DC_RXADDR, 0x00000000); 3647 sc->dc_link = 0; 3648 3649 /* 3650 * Free data in the RX lists. 3651 */ 3652 for (i = 0; i < DC_RX_LIST_CNT; i++) { 3653 if (sc->dc_cdata.dc_rx_chain[i] != NULL) { 3654 m_freem(sc->dc_cdata.dc_rx_chain[i]); 3655 sc->dc_cdata.dc_rx_chain[i] = NULL; 3656 } 3657 } 3658 bzero((char *)&sc->dc_ldata->dc_rx_list, 3659 sizeof(sc->dc_ldata->dc_rx_list)); 3660 3661 /* 3662 * Free the TX list buffers. 3663 */ 3664 for (i = 0; i < DC_TX_LIST_CNT; i++) { 3665 if (sc->dc_cdata.dc_tx_chain[i] != NULL) { 3666 if (sc->dc_ldata->dc_tx_list[i].dc_ctl & 3667 DC_TXCTL_SETUP) { 3668 sc->dc_cdata.dc_tx_chain[i] = NULL; 3669 continue; 3670 } 3671 m_freem(sc->dc_cdata.dc_tx_chain[i]); 3672 sc->dc_cdata.dc_tx_chain[i] = NULL; 3673 } 3674 } 3675 3676 bzero((char *)&sc->dc_ldata->dc_tx_list, 3677 sizeof(sc->dc_ldata->dc_tx_list)); 3678 3679 DC_UNLOCK(sc); 3680 3681 return; 3682 } 3683 3684 /* 3685 * Device suspend routine. Stop the interface and save some PCI 3686 * settings in case the BIOS doesn't restore them properly on 3687 * resume. 3688 */ 3689 static int 3690 dc_suspend(dev) 3691 device_t dev; 3692 { 3693 register int i; 3694 int s; 3695 struct dc_softc *sc; 3696 3697 s = splimp(); 3698 3699 sc = device_get_softc(dev); 3700 3701 dc_stop(sc); 3702 3703 for (i = 0; i < 5; i++) 3704 sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4); 3705 sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4); 3706 sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1); 3707 sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1); 3708 sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1); 3709 3710 sc->suspended = 1; 3711 3712 splx(s); 3713 return (0); 3714 } 3715 3716 /* 3717 * Device resume routine. Restore some PCI settings in case the BIOS 3718 * doesn't, re-enable busmastering, and restart the interface if 3719 * appropriate. 3720 */ 3721 static int 3722 dc_resume(dev) 3723 device_t dev; 3724 { 3725 register int i; 3726 int s; 3727 struct dc_softc *sc; 3728 struct ifnet *ifp; 3729 3730 s = splimp(); 3731 3732 sc = device_get_softc(dev); 3733 ifp = &sc->arpcom.ac_if; 3734 3735 dc_acpi(dev); 3736 3737 /* better way to do this? */ 3738 for (i = 0; i < 5; i++) 3739 pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4); 3740 pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4); 3741 pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1); 3742 pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1); 3743 pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1); 3744 3745 /* reenable busmastering */ 3746 pci_enable_busmaster(dev); 3747 pci_enable_io(dev, DC_RES); 3748 3749 /* reinitialize interface if necessary */ 3750 if (ifp->if_flags & IFF_UP) 3751 dc_init(sc); 3752 3753 sc->suspended = 0; 3754 3755 splx(s); 3756 return (0); 3757 } 3758 3759 /* 3760 * Stop all chip I/O so that the kernel's probe routines don't 3761 * get confused by errant DMAs when rebooting. 3762 */ 3763 static void 3764 dc_shutdown(dev) 3765 device_t dev; 3766 { 3767 struct dc_softc *sc; 3768 3769 sc = device_get_softc(dev); 3770 3771 dc_stop(sc); 3772 3773 return; 3774 } 3775