xref: /freebsd/sys/dev/dc/if_dc.c (revision 87569f75a91f298c52a71823c04d41cf53c88889)
1 /*-
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ee.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /*
37  * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
38  * series chips and several workalikes including the following:
39  *
40  * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com)
41  * Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
42  * Lite-On 82c168/82c169 PNIC (www.litecom.com)
43  * ASIX Electronics AX88140A (www.asix.com.tw)
44  * ASIX Electronics AX88141 (www.asix.com.tw)
45  * ADMtek AL981 (www.admtek.com.tw)
46  * ADMtek AN985 (www.admtek.com.tw)
47  * Netgear FA511 (www.netgear.com) Appears to be rebadged ADMTek AN985
48  * Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
49  * Accton EN1217 (www.accton.com)
50  * Xircom X3201 (www.xircom.com)
51  * Abocom FE2500
52  * Conexant LANfinity (www.conexant.com)
53  * 3Com OfficeConnect 10/100B 3CSOHO100B (www.3com.com)
54  *
55  * Datasheets for the 21143 are available at developer.intel.com.
56  * Datasheets for the clone parts can be found at their respective sites.
57  * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
58  * The PNIC II is essentially a Macronix 98715A chip; the only difference
59  * worth noting is that its multicast hash table is only 128 bits wide
60  * instead of 512.
61  *
62  * Written by Bill Paul <wpaul@ee.columbia.edu>
63  * Electrical Engineering Department
64  * Columbia University, New York City
65  */
66 /*
67  * The Intel 21143 is the successor to the DEC 21140. It is basically
68  * the same as the 21140 but with a few new features. The 21143 supports
69  * three kinds of media attachments:
70  *
71  * o MII port, for 10Mbps and 100Mbps support and NWAY
72  *   autonegotiation provided by an external PHY.
73  * o SYM port, for symbol mode 100Mbps support.
74  * o 10baseT port.
75  * o AUI/BNC port.
76  *
77  * The 100Mbps SYM port and 10baseT port can be used together in
78  * combination with the internal NWAY support to create a 10/100
79  * autosensing configuration.
80  *
81  * Note that not all tulip workalikes are handled in this driver: we only
82  * deal with those which are relatively well behaved. The Winbond is
83  * handled separately due to its different register offsets and the
84  * special handling needed for its various bugs. The PNIC is handled
85  * here, but I'm not thrilled about it.
86  *
87  * All of the workalike chips use some form of MII transceiver support
88  * with the exception of the Macronix chips, which also have a SYM port.
89  * The ASIX AX88140A is also documented to have a SYM port, but all
90  * the cards I've seen use an MII transceiver, probably because the
91  * AX88140A doesn't support internal NWAY.
92  */
93 
94 #ifdef HAVE_KERNEL_OPTION_HEADERS
95 #include "opt_device_polling.h"
96 #endif
97 
98 #include <sys/param.h>
99 #include <sys/endian.h>
100 #include <sys/systm.h>
101 #include <sys/sockio.h>
102 #include <sys/mbuf.h>
103 #include <sys/malloc.h>
104 #include <sys/kernel.h>
105 #include <sys/module.h>
106 #include <sys/socket.h>
107 #include <sys/sysctl.h>
108 
109 #include <net/if.h>
110 #include <net/if_arp.h>
111 #include <net/ethernet.h>
112 #include <net/if_dl.h>
113 #include <net/if_media.h>
114 #include <net/if_types.h>
115 #include <net/if_vlan_var.h>
116 
117 #include <net/bpf.h>
118 
119 #include <machine/bus.h>
120 #include <machine/resource.h>
121 #include <sys/bus.h>
122 #include <sys/rman.h>
123 
124 #include <dev/mii/mii.h>
125 #include <dev/mii/miivar.h>
126 
127 #include <dev/pci/pcireg.h>
128 #include <dev/pci/pcivar.h>
129 
130 #define DC_USEIOSPACE
131 #ifdef __alpha__
132 #define SRM_MEDIA
133 #endif
134 
135 #include <dev/dc/if_dcreg.h>
136 
137 #ifdef __sparc64__
138 #include <dev/ofw/openfirm.h>
139 #include <machine/ofw_machdep.h>
140 #endif
141 
142 MODULE_DEPEND(dc, pci, 1, 1, 1);
143 MODULE_DEPEND(dc, ether, 1, 1, 1);
144 MODULE_DEPEND(dc, miibus, 1, 1, 1);
145 
146 /*
147  * "device miibus" is required in kernel config.  See GENERIC if you get
148  * errors here.
149  */
150 #include "miibus_if.h"
151 
152 /*
153  * Various supported device vendors/types and their names.
154  */
155 static struct dc_type dc_devs[] = {
156 	{ DC_VENDORID_DEC, DC_DEVICEID_21143,
157 		"Intel 21143 10/100BaseTX" },
158 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009,
159 		"Davicom DM9009 10/100BaseTX" },
160 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100,
161 		"Davicom DM9100 10/100BaseTX" },
162 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
163 		"Davicom DM9102 10/100BaseTX" },
164 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
165 		"Davicom DM9102A 10/100BaseTX" },
166 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AL981,
167 		"ADMtek AL981 10/100BaseTX" },
168 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AN985,
169 		"ADMtek AN985 10/100BaseTX" },
170 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511,
171 		"ADMtek ADM9511 10/100BaseTX" },
172 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513,
173 		"ADMtek ADM9513 10/100BaseTX" },
174 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_FA511,
175 		"Netgear FA511 10/100BaseTX" },
176 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
177 		"ASIX AX88140A 10/100BaseTX" },
178 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
179 		"ASIX AX88141 10/100BaseTX" },
180 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
181 		"Macronix 98713 10/100BaseTX" },
182 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
183 		"Macronix 98713A 10/100BaseTX" },
184 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
185 		"Compex RL100-TX 10/100BaseTX" },
186 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
187 		"Compex RL100-TX 10/100BaseTX" },
188 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
189 		"Macronix 98715/98715A 10/100BaseTX" },
190 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
191 		"Macronix 98715AEC-C 10/100BaseTX" },
192 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
193 		"Macronix 98725 10/100BaseTX" },
194 	{ DC_VENDORID_MX, DC_DEVICEID_98727,
195 		"Macronix 98727/98732 10/100BaseTX" },
196 	{ DC_VENDORID_LO, DC_DEVICEID_82C115,
197 		"LC82C115 PNIC II 10/100BaseTX" },
198 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
199 		"82c168 PNIC 10/100BaseTX" },
200 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
201 		"82c169 PNIC 10/100BaseTX" },
202 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN1217,
203 		"Accton EN1217 10/100BaseTX" },
204 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN2242,
205 		"Accton EN2242 MiniPCI 10/100BaseTX" },
206 	{ DC_VENDORID_XIRCOM, DC_DEVICEID_X3201,
207 	  	"Xircom X3201 10/100BaseTX" },
208 	{ DC_VENDORID_DLINK, DC_DEVICEID_DRP32TXD,
209 		"Neteasy DRP-32TXD Cardbus 10/100" },
210 	{ DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500,
211 		"Abocom FE2500 10/100BaseTX" },
212 	{ DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500MX,
213 		"Abocom FE2500MX 10/100BaseTX" },
214 	{ DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112,
215 		"Conexant LANfinity MiniPCI 10/100BaseTX" },
216 	{ DC_VENDORID_HAWKING, DC_DEVICEID_HAWKING_PN672TX,
217 		"Hawking CB102 CardBus 10/100" },
218 	{ DC_VENDORID_PLANEX, DC_DEVICEID_FNW3602T,
219 		"PlaneX FNW-3602-T CardBus 10/100" },
220 	{ DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB,
221 		"3Com OfficeConnect 10/100B" },
222 	{ DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN120,
223 		"Microsoft MN-120 CardBus 10/100" },
224 	{ DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130,
225 		"Microsoft MN-130 10/100" },
226 	{ DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130_FAKE,
227 		"Microsoft MN-130 10/100" },
228 	{ 0, 0, NULL }
229 };
230 
231 static int dc_probe(device_t);
232 static int dc_attach(device_t);
233 static int dc_detach(device_t);
234 static int dc_suspend(device_t);
235 static int dc_resume(device_t);
236 static struct dc_type *dc_devtype(device_t);
237 static int dc_newbuf(struct dc_softc *, int, int);
238 static int dc_encap(struct dc_softc *, struct mbuf **);
239 static void dc_pnic_rx_bug_war(struct dc_softc *, int);
240 static int dc_rx_resync(struct dc_softc *);
241 static void dc_rxeof(struct dc_softc *);
242 static void dc_txeof(struct dc_softc *);
243 static void dc_tick(void *);
244 static void dc_tx_underrun(struct dc_softc *);
245 static void dc_intr(void *);
246 static void dc_start(struct ifnet *);
247 static void dc_start_locked(struct ifnet *);
248 static int dc_ioctl(struct ifnet *, u_long, caddr_t);
249 static void dc_init(void *);
250 static void dc_init_locked(struct dc_softc *);
251 static void dc_stop(struct dc_softc *);
252 static void dc_watchdog(struct ifnet *);
253 static void dc_shutdown(device_t);
254 static int dc_ifmedia_upd(struct ifnet *);
255 static void dc_ifmedia_sts(struct ifnet *, struct ifmediareq *);
256 
257 static void dc_delay(struct dc_softc *);
258 static void dc_eeprom_idle(struct dc_softc *);
259 static void dc_eeprom_putbyte(struct dc_softc *, int);
260 static void dc_eeprom_getword(struct dc_softc *, int, u_int16_t *);
261 static void dc_eeprom_getword_pnic(struct dc_softc *, int, u_int16_t *);
262 static void dc_eeprom_getword_xircom(struct dc_softc *, int, u_int16_t *);
263 static void dc_eeprom_width(struct dc_softc *);
264 static void dc_read_eeprom(struct dc_softc *, caddr_t, int, int, int);
265 
266 static void dc_mii_writebit(struct dc_softc *, int);
267 static int dc_mii_readbit(struct dc_softc *);
268 static void dc_mii_sync(struct dc_softc *);
269 static void dc_mii_send(struct dc_softc *, u_int32_t, int);
270 static int dc_mii_readreg(struct dc_softc *, struct dc_mii_frame *);
271 static int dc_mii_writereg(struct dc_softc *, struct dc_mii_frame *);
272 static int dc_miibus_readreg(device_t, int, int);
273 static int dc_miibus_writereg(device_t, int, int, int);
274 static void dc_miibus_statchg(device_t);
275 static void dc_miibus_mediainit(device_t);
276 
277 static void dc_setcfg(struct dc_softc *, int);
278 static uint32_t dc_mchash_le(struct dc_softc *, const uint8_t *);
279 static uint32_t dc_mchash_be(const uint8_t *);
280 static void dc_setfilt_21143(struct dc_softc *);
281 static void dc_setfilt_asix(struct dc_softc *);
282 static void dc_setfilt_admtek(struct dc_softc *);
283 static void dc_setfilt_xircom(struct dc_softc *);
284 
285 static void dc_setfilt(struct dc_softc *);
286 
287 static void dc_reset(struct dc_softc *);
288 static int dc_list_rx_init(struct dc_softc *);
289 static int dc_list_tx_init(struct dc_softc *);
290 
291 static void dc_read_srom(struct dc_softc *, int);
292 static void dc_parse_21143_srom(struct dc_softc *);
293 static void dc_decode_leaf_sia(struct dc_softc *, struct dc_eblock_sia *);
294 static void dc_decode_leaf_mii(struct dc_softc *, struct dc_eblock_mii *);
295 static void dc_decode_leaf_sym(struct dc_softc *, struct dc_eblock_sym *);
296 static void dc_apply_fixup(struct dc_softc *, int);
297 
298 static void dc_dma_map_txbuf(void *, bus_dma_segment_t *, int, bus_size_t, int);
299 static void dc_dma_map_rxbuf(void *, bus_dma_segment_t *, int, bus_size_t, int);
300 
301 #ifdef DC_USEIOSPACE
302 #define DC_RES			SYS_RES_IOPORT
303 #define DC_RID			DC_PCI_CFBIO
304 #else
305 #define DC_RES			SYS_RES_MEMORY
306 #define DC_RID			DC_PCI_CFBMA
307 #endif
308 
309 static device_method_t dc_methods[] = {
310 	/* Device interface */
311 	DEVMETHOD(device_probe,		dc_probe),
312 	DEVMETHOD(device_attach,	dc_attach),
313 	DEVMETHOD(device_detach,	dc_detach),
314 	DEVMETHOD(device_suspend,	dc_suspend),
315 	DEVMETHOD(device_resume,	dc_resume),
316 	DEVMETHOD(device_shutdown,	dc_shutdown),
317 
318 	/* bus interface */
319 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
320 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
321 
322 	/* MII interface */
323 	DEVMETHOD(miibus_readreg,	dc_miibus_readreg),
324 	DEVMETHOD(miibus_writereg,	dc_miibus_writereg),
325 	DEVMETHOD(miibus_statchg,	dc_miibus_statchg),
326 	DEVMETHOD(miibus_mediainit,	dc_miibus_mediainit),
327 
328 	{ 0, 0 }
329 };
330 
331 static driver_t dc_driver = {
332 	"dc",
333 	dc_methods,
334 	sizeof(struct dc_softc)
335 };
336 
337 static devclass_t dc_devclass;
338 #ifdef __i386__
339 static int dc_quick = 1;
340 SYSCTL_INT(_hw, OID_AUTO, dc_quick, CTLFLAG_RW, &dc_quick, 0,
341     "do not m_devget() in dc driver");
342 #endif
343 
344 DRIVER_MODULE(dc, cardbus, dc_driver, dc_devclass, 0, 0);
345 DRIVER_MODULE(dc, pci, dc_driver, dc_devclass, 0, 0);
346 DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, 0, 0);
347 
348 #define DC_SETBIT(sc, reg, x)				\
349 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
350 
351 #define DC_CLRBIT(sc, reg, x)				\
352 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
353 
354 #define SIO_SET(x)	DC_SETBIT(sc, DC_SIO, (x))
355 #define SIO_CLR(x)	DC_CLRBIT(sc, DC_SIO, (x))
356 
357 static void
358 dc_delay(struct dc_softc *sc)
359 {
360 	int idx;
361 
362 	for (idx = (300 / 33) + 1; idx > 0; idx--)
363 		CSR_READ_4(sc, DC_BUSCTL);
364 }
365 
366 static void
367 dc_eeprom_width(struct dc_softc *sc)
368 {
369 	int i;
370 
371 	/* Force EEPROM to idle state. */
372 	dc_eeprom_idle(sc);
373 
374 	/* Enter EEPROM access mode. */
375 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
376 	dc_delay(sc);
377 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
378 	dc_delay(sc);
379 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
380 	dc_delay(sc);
381 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
382 	dc_delay(sc);
383 
384 	for (i = 3; i--;) {
385 		if (6 & (1 << i))
386 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
387 		else
388 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
389 		dc_delay(sc);
390 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
391 		dc_delay(sc);
392 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
393 		dc_delay(sc);
394 	}
395 
396 	for (i = 1; i <= 12; i++) {
397 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
398 		dc_delay(sc);
399 		if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) {
400 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
401 			dc_delay(sc);
402 			break;
403 		}
404 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
405 		dc_delay(sc);
406 	}
407 
408 	/* Turn off EEPROM access mode. */
409 	dc_eeprom_idle(sc);
410 
411 	if (i < 4 || i > 12)
412 		sc->dc_romwidth = 6;
413 	else
414 		sc->dc_romwidth = i;
415 
416 	/* Enter EEPROM access mode. */
417 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
418 	dc_delay(sc);
419 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
420 	dc_delay(sc);
421 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
422 	dc_delay(sc);
423 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
424 	dc_delay(sc);
425 
426 	/* Turn off EEPROM access mode. */
427 	dc_eeprom_idle(sc);
428 }
429 
430 static void
431 dc_eeprom_idle(struct dc_softc *sc)
432 {
433 	int i;
434 
435 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
436 	dc_delay(sc);
437 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
438 	dc_delay(sc);
439 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
440 	dc_delay(sc);
441 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
442 	dc_delay(sc);
443 
444 	for (i = 0; i < 25; i++) {
445 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
446 		dc_delay(sc);
447 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
448 		dc_delay(sc);
449 	}
450 
451 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
452 	dc_delay(sc);
453 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
454 	dc_delay(sc);
455 	CSR_WRITE_4(sc, DC_SIO, 0x00000000);
456 }
457 
458 /*
459  * Send a read command and address to the EEPROM, check for ACK.
460  */
461 static void
462 dc_eeprom_putbyte(struct dc_softc *sc, int addr)
463 {
464 	int d, i;
465 
466 	d = DC_EECMD_READ >> 6;
467 	for (i = 3; i--; ) {
468 		if (d & (1 << i))
469 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
470 		else
471 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
472 		dc_delay(sc);
473 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
474 		dc_delay(sc);
475 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
476 		dc_delay(sc);
477 	}
478 
479 	/*
480 	 * Feed in each bit and strobe the clock.
481 	 */
482 	for (i = sc->dc_romwidth; i--;) {
483 		if (addr & (1 << i)) {
484 			SIO_SET(DC_SIO_EE_DATAIN);
485 		} else {
486 			SIO_CLR(DC_SIO_EE_DATAIN);
487 		}
488 		dc_delay(sc);
489 		SIO_SET(DC_SIO_EE_CLK);
490 		dc_delay(sc);
491 		SIO_CLR(DC_SIO_EE_CLK);
492 		dc_delay(sc);
493 	}
494 }
495 
496 /*
497  * Read a word of data stored in the EEPROM at address 'addr.'
498  * The PNIC 82c168/82c169 has its own non-standard way to read
499  * the EEPROM.
500  */
501 static void
502 dc_eeprom_getword_pnic(struct dc_softc *sc, int addr, u_int16_t *dest)
503 {
504 	int i;
505 	u_int32_t r;
506 
507 	CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ | addr);
508 
509 	for (i = 0; i < DC_TIMEOUT; i++) {
510 		DELAY(1);
511 		r = CSR_READ_4(sc, DC_SIO);
512 		if (!(r & DC_PN_SIOCTL_BUSY)) {
513 			*dest = (u_int16_t)(r & 0xFFFF);
514 			return;
515 		}
516 	}
517 }
518 
519 /*
520  * Read a word of data stored in the EEPROM at address 'addr.'
521  * The Xircom X3201 has its own non-standard way to read
522  * the EEPROM, too.
523  */
524 static void
525 dc_eeprom_getword_xircom(struct dc_softc *sc, int addr, u_int16_t *dest)
526 {
527 
528 	SIO_SET(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
529 
530 	addr *= 2;
531 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
532 	*dest = (u_int16_t)CSR_READ_4(sc, DC_SIO) & 0xff;
533 	addr += 1;
534 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
535 	*dest |= ((u_int16_t)CSR_READ_4(sc, DC_SIO) & 0xff) << 8;
536 
537 	SIO_CLR(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
538 }
539 
540 /*
541  * Read a word of data stored in the EEPROM at address 'addr.'
542  */
543 static void
544 dc_eeprom_getword(struct dc_softc *sc, int addr, u_int16_t *dest)
545 {
546 	int i;
547 	u_int16_t word = 0;
548 
549 	/* Force EEPROM to idle state. */
550 	dc_eeprom_idle(sc);
551 
552 	/* Enter EEPROM access mode. */
553 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
554 	dc_delay(sc);
555 	DC_SETBIT(sc, DC_SIO,  DC_SIO_ROMCTL_READ);
556 	dc_delay(sc);
557 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
558 	dc_delay(sc);
559 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
560 	dc_delay(sc);
561 
562 	/*
563 	 * Send address of word we want to read.
564 	 */
565 	dc_eeprom_putbyte(sc, addr);
566 
567 	/*
568 	 * Start reading bits from EEPROM.
569 	 */
570 	for (i = 0x8000; i; i >>= 1) {
571 		SIO_SET(DC_SIO_EE_CLK);
572 		dc_delay(sc);
573 		if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
574 			word |= i;
575 		dc_delay(sc);
576 		SIO_CLR(DC_SIO_EE_CLK);
577 		dc_delay(sc);
578 	}
579 
580 	/* Turn off EEPROM access mode. */
581 	dc_eeprom_idle(sc);
582 
583 	*dest = word;
584 }
585 
586 /*
587  * Read a sequence of words from the EEPROM.
588  */
589 static void
590 dc_read_eeprom(struct dc_softc *sc, caddr_t dest, int off, int cnt, int be)
591 {
592 	int i;
593 	u_int16_t word = 0, *ptr;
594 
595 	for (i = 0; i < cnt; i++) {
596 		if (DC_IS_PNIC(sc))
597 			dc_eeprom_getword_pnic(sc, off + i, &word);
598 		else if (DC_IS_XIRCOM(sc))
599 			dc_eeprom_getword_xircom(sc, off + i, &word);
600 		else
601 			dc_eeprom_getword(sc, off + i, &word);
602 		ptr = (u_int16_t *)(dest + (i * 2));
603 		if (be)
604 			*ptr = be16toh(word);
605 		else
606 			*ptr = le16toh(word);
607 	}
608 }
609 
610 /*
611  * The following two routines are taken from the Macronix 98713
612  * Application Notes pp.19-21.
613  */
614 /*
615  * Write a bit to the MII bus.
616  */
617 static void
618 dc_mii_writebit(struct dc_softc *sc, int bit)
619 {
620 
621 	if (bit)
622 		CSR_WRITE_4(sc, DC_SIO,
623 		    DC_SIO_ROMCTL_WRITE | DC_SIO_MII_DATAOUT);
624 	else
625 		CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
626 
627 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
628 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
629 }
630 
631 /*
632  * Read a bit from the MII bus.
633  */
634 static int
635 dc_mii_readbit(struct dc_softc *sc)
636 {
637 
638 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_READ | DC_SIO_MII_DIR);
639 	CSR_READ_4(sc, DC_SIO);
640 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
641 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
642 	if (CSR_READ_4(sc, DC_SIO) & DC_SIO_MII_DATAIN)
643 		return (1);
644 
645 	return (0);
646 }
647 
648 /*
649  * Sync the PHYs by setting data bit and strobing the clock 32 times.
650  */
651 static void
652 dc_mii_sync(struct dc_softc *sc)
653 {
654 	int i;
655 
656 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
657 
658 	for (i = 0; i < 32; i++)
659 		dc_mii_writebit(sc, 1);
660 }
661 
662 /*
663  * Clock a series of bits through the MII.
664  */
665 static void
666 dc_mii_send(struct dc_softc *sc, u_int32_t bits, int cnt)
667 {
668 	int i;
669 
670 	for (i = (0x1 << (cnt - 1)); i; i >>= 1)
671 		dc_mii_writebit(sc, bits & i);
672 }
673 
674 /*
675  * Read an PHY register through the MII.
676  */
677 static int
678 dc_mii_readreg(struct dc_softc *sc, struct dc_mii_frame *frame)
679 {
680 	int i, ack;
681 
682 	/*
683 	 * Set up frame for RX.
684 	 */
685 	frame->mii_stdelim = DC_MII_STARTDELIM;
686 	frame->mii_opcode = DC_MII_READOP;
687 	frame->mii_turnaround = 0;
688 	frame->mii_data = 0;
689 
690 	/*
691 	 * Sync the PHYs.
692 	 */
693 	dc_mii_sync(sc);
694 
695 	/*
696 	 * Send command/address info.
697 	 */
698 	dc_mii_send(sc, frame->mii_stdelim, 2);
699 	dc_mii_send(sc, frame->mii_opcode, 2);
700 	dc_mii_send(sc, frame->mii_phyaddr, 5);
701 	dc_mii_send(sc, frame->mii_regaddr, 5);
702 
703 #ifdef notdef
704 	/* Idle bit */
705 	dc_mii_writebit(sc, 1);
706 	dc_mii_writebit(sc, 0);
707 #endif
708 
709 	/* Check for ack. */
710 	ack = dc_mii_readbit(sc);
711 
712 	/*
713 	 * Now try reading data bits. If the ack failed, we still
714 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
715 	 */
716 	if (ack) {
717 		for (i = 0; i < 16; i++)
718 			dc_mii_readbit(sc);
719 		goto fail;
720 	}
721 
722 	for (i = 0x8000; i; i >>= 1) {
723 		if (!ack) {
724 			if (dc_mii_readbit(sc))
725 				frame->mii_data |= i;
726 		}
727 	}
728 
729 fail:
730 
731 	dc_mii_writebit(sc, 0);
732 	dc_mii_writebit(sc, 0);
733 
734 	if (ack)
735 		return (1);
736 	return (0);
737 }
738 
739 /*
740  * Write to a PHY register through the MII.
741  */
742 static int
743 dc_mii_writereg(struct dc_softc *sc, struct dc_mii_frame *frame)
744 {
745 
746 	/*
747 	 * Set up frame for TX.
748 	 */
749 
750 	frame->mii_stdelim = DC_MII_STARTDELIM;
751 	frame->mii_opcode = DC_MII_WRITEOP;
752 	frame->mii_turnaround = DC_MII_TURNAROUND;
753 
754 	/*
755 	 * Sync the PHYs.
756 	 */
757 	dc_mii_sync(sc);
758 
759 	dc_mii_send(sc, frame->mii_stdelim, 2);
760 	dc_mii_send(sc, frame->mii_opcode, 2);
761 	dc_mii_send(sc, frame->mii_phyaddr, 5);
762 	dc_mii_send(sc, frame->mii_regaddr, 5);
763 	dc_mii_send(sc, frame->mii_turnaround, 2);
764 	dc_mii_send(sc, frame->mii_data, 16);
765 
766 	/* Idle bit. */
767 	dc_mii_writebit(sc, 0);
768 	dc_mii_writebit(sc, 0);
769 
770 	return (0);
771 }
772 
773 static int
774 dc_miibus_readreg(device_t dev, int phy, int reg)
775 {
776 	struct dc_mii_frame frame;
777 	struct dc_softc	 *sc;
778 	int i, rval, phy_reg = 0;
779 
780 	sc = device_get_softc(dev);
781 	bzero(&frame, sizeof(frame));
782 
783 	/*
784 	 * Note: both the AL981 and AN985 have internal PHYs,
785 	 * however the AL981 provides direct access to the PHY
786 	 * registers while the AN985 uses a serial MII interface.
787 	 * The AN985's MII interface is also buggy in that you
788 	 * can read from any MII address (0 to 31), but only address 1
789 	 * behaves normally. To deal with both cases, we pretend
790 	 * that the PHY is at MII address 1.
791 	 */
792 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
793 		return (0);
794 
795 	/*
796 	 * Note: the ukphy probes of the RS7112 report a PHY at
797 	 * MII address 0 (possibly HomePNA?) and 1 (ethernet)
798 	 * so we only respond to correct one.
799 	 */
800 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
801 		return (0);
802 
803 	if (sc->dc_pmode != DC_PMODE_MII) {
804 		if (phy == (MII_NPHY - 1)) {
805 			switch (reg) {
806 			case MII_BMSR:
807 			/*
808 			 * Fake something to make the probe
809 			 * code think there's a PHY here.
810 			 */
811 				return (BMSR_MEDIAMASK);
812 				break;
813 			case MII_PHYIDR1:
814 				if (DC_IS_PNIC(sc))
815 					return (DC_VENDORID_LO);
816 				return (DC_VENDORID_DEC);
817 				break;
818 			case MII_PHYIDR2:
819 				if (DC_IS_PNIC(sc))
820 					return (DC_DEVICEID_82C168);
821 				return (DC_DEVICEID_21143);
822 				break;
823 			default:
824 				return (0);
825 				break;
826 			}
827 		} else
828 			return (0);
829 	}
830 
831 	if (DC_IS_PNIC(sc)) {
832 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
833 		    (phy << 23) | (reg << 18));
834 		for (i = 0; i < DC_TIMEOUT; i++) {
835 			DELAY(1);
836 			rval = CSR_READ_4(sc, DC_PN_MII);
837 			if (!(rval & DC_PN_MII_BUSY)) {
838 				rval &= 0xFFFF;
839 				return (rval == 0xFFFF ? 0 : rval);
840 			}
841 		}
842 		return (0);
843 	}
844 
845 	if (DC_IS_COMET(sc)) {
846 		switch (reg) {
847 		case MII_BMCR:
848 			phy_reg = DC_AL_BMCR;
849 			break;
850 		case MII_BMSR:
851 			phy_reg = DC_AL_BMSR;
852 			break;
853 		case MII_PHYIDR1:
854 			phy_reg = DC_AL_VENID;
855 			break;
856 		case MII_PHYIDR2:
857 			phy_reg = DC_AL_DEVID;
858 			break;
859 		case MII_ANAR:
860 			phy_reg = DC_AL_ANAR;
861 			break;
862 		case MII_ANLPAR:
863 			phy_reg = DC_AL_LPAR;
864 			break;
865 		case MII_ANER:
866 			phy_reg = DC_AL_ANER;
867 			break;
868 		default:
869 			device_printf(dev, "phy_read: bad phy register %x\n",
870 			    reg);
871 			return (0);
872 			break;
873 		}
874 
875 		rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
876 
877 		if (rval == 0xFFFF)
878 			return (0);
879 		return (rval);
880 	}
881 
882 	frame.mii_phyaddr = phy;
883 	frame.mii_regaddr = reg;
884 	if (sc->dc_type == DC_TYPE_98713) {
885 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
886 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
887 	}
888 	dc_mii_readreg(sc, &frame);
889 	if (sc->dc_type == DC_TYPE_98713)
890 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
891 
892 	return (frame.mii_data);
893 }
894 
895 static int
896 dc_miibus_writereg(device_t dev, int phy, int reg, int data)
897 {
898 	struct dc_softc *sc;
899 	struct dc_mii_frame frame;
900 	int i, phy_reg = 0;
901 
902 	sc = device_get_softc(dev);
903 	bzero(&frame, sizeof(frame));
904 
905 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
906 		return (0);
907 
908 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
909 		return (0);
910 
911 	if (DC_IS_PNIC(sc)) {
912 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
913 		    (phy << 23) | (reg << 10) | data);
914 		for (i = 0; i < DC_TIMEOUT; i++) {
915 			if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
916 				break;
917 		}
918 		return (0);
919 	}
920 
921 	if (DC_IS_COMET(sc)) {
922 		switch (reg) {
923 		case MII_BMCR:
924 			phy_reg = DC_AL_BMCR;
925 			break;
926 		case MII_BMSR:
927 			phy_reg = DC_AL_BMSR;
928 			break;
929 		case MII_PHYIDR1:
930 			phy_reg = DC_AL_VENID;
931 			break;
932 		case MII_PHYIDR2:
933 			phy_reg = DC_AL_DEVID;
934 			break;
935 		case MII_ANAR:
936 			phy_reg = DC_AL_ANAR;
937 			break;
938 		case MII_ANLPAR:
939 			phy_reg = DC_AL_LPAR;
940 			break;
941 		case MII_ANER:
942 			phy_reg = DC_AL_ANER;
943 			break;
944 		default:
945 			device_printf(dev, "phy_write: bad phy register %x\n",
946 			    reg);
947 			return (0);
948 			break;
949 		}
950 
951 		CSR_WRITE_4(sc, phy_reg, data);
952 		return (0);
953 	}
954 
955 	frame.mii_phyaddr = phy;
956 	frame.mii_regaddr = reg;
957 	frame.mii_data = data;
958 
959 	if (sc->dc_type == DC_TYPE_98713) {
960 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
961 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
962 	}
963 	dc_mii_writereg(sc, &frame);
964 	if (sc->dc_type == DC_TYPE_98713)
965 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
966 
967 	return (0);
968 }
969 
970 static void
971 dc_miibus_statchg(device_t dev)
972 {
973 	struct dc_softc *sc;
974 	struct mii_data *mii;
975 	struct ifmedia *ifm;
976 
977 	sc = device_get_softc(dev);
978 	if (DC_IS_ADMTEK(sc))
979 		return;
980 
981 	mii = device_get_softc(sc->dc_miibus);
982 	ifm = &mii->mii_media;
983 	if (DC_IS_DAVICOM(sc) &&
984 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
985 		dc_setcfg(sc, ifm->ifm_media);
986 		sc->dc_if_media = ifm->ifm_media;
987 	} else {
988 		dc_setcfg(sc, mii->mii_media_active);
989 		sc->dc_if_media = mii->mii_media_active;
990 	}
991 }
992 
993 /*
994  * Special support for DM9102A cards with HomePNA PHYs. Note:
995  * with the Davicom DM9102A/DM9801 eval board that I have, it seems
996  * to be impossible to talk to the management interface of the DM9801
997  * PHY (its MDIO pin is not connected to anything). Consequently,
998  * the driver has to just 'know' about the additional mode and deal
999  * with it itself. *sigh*
1000  */
1001 static void
1002 dc_miibus_mediainit(device_t dev)
1003 {
1004 	struct dc_softc *sc;
1005 	struct mii_data *mii;
1006 	struct ifmedia *ifm;
1007 	int rev;
1008 
1009 	rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF;
1010 
1011 	sc = device_get_softc(dev);
1012 	mii = device_get_softc(sc->dc_miibus);
1013 	ifm = &mii->mii_media;
1014 
1015 	if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A)
1016 		ifmedia_add(ifm, IFM_ETHER | IFM_HPNA_1, 0, NULL);
1017 }
1018 
1019 #define DC_BITS_512	9
1020 #define DC_BITS_128	7
1021 #define DC_BITS_64	6
1022 
1023 static uint32_t
1024 dc_mchash_le(struct dc_softc *sc, const uint8_t *addr)
1025 {
1026 	uint32_t crc;
1027 
1028 	/* Compute CRC for the address value. */
1029 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
1030 
1031 	/*
1032 	 * The hash table on the PNIC II and the MX98715AEC-C/D/E
1033 	 * chips is only 128 bits wide.
1034 	 */
1035 	if (sc->dc_flags & DC_128BIT_HASH)
1036 		return (crc & ((1 << DC_BITS_128) - 1));
1037 
1038 	/* The hash table on the MX98715BEC is only 64 bits wide. */
1039 	if (sc->dc_flags & DC_64BIT_HASH)
1040 		return (crc & ((1 << DC_BITS_64) - 1));
1041 
1042 	/* Xircom's hash filtering table is different (read: weird) */
1043 	/* Xircom uses the LEAST significant bits */
1044 	if (DC_IS_XIRCOM(sc)) {
1045 		if ((crc & 0x180) == 0x180)
1046 			return ((crc & 0x0F) + (crc & 0x70) * 3 + (14 << 4));
1047 		else
1048 			return ((crc & 0x1F) + ((crc >> 1) & 0xF0) * 3 +
1049 			    (12 << 4));
1050 	}
1051 
1052 	return (crc & ((1 << DC_BITS_512) - 1));
1053 }
1054 
1055 /*
1056  * Calculate CRC of a multicast group address, return the lower 6 bits.
1057  */
1058 static uint32_t
1059 dc_mchash_be(const uint8_t *addr)
1060 {
1061 	uint32_t crc;
1062 
1063 	/* Compute CRC for the address value. */
1064 	crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
1065 
1066 	/* Return the filter bit position. */
1067 	return ((crc >> 26) & 0x0000003F);
1068 }
1069 
1070 /*
1071  * 21143-style RX filter setup routine. Filter programming is done by
1072  * downloading a special setup frame into the TX engine. 21143, Macronix,
1073  * PNIC, PNIC II and Davicom chips are programmed this way.
1074  *
1075  * We always program the chip using 'hash perfect' mode, i.e. one perfect
1076  * address (our node address) and a 512-bit hash filter for multicast
1077  * frames. We also sneak the broadcast address into the hash filter since
1078  * we need that too.
1079  */
1080 static void
1081 dc_setfilt_21143(struct dc_softc *sc)
1082 {
1083 	uint16_t eaddr[(ETHER_ADDR_LEN+1)/2];
1084 	struct dc_desc *sframe;
1085 	u_int32_t h, *sp;
1086 	struct ifmultiaddr *ifma;
1087 	struct ifnet *ifp;
1088 	int i;
1089 
1090 	ifp = sc->dc_ifp;
1091 
1092 	i = sc->dc_cdata.dc_tx_prod;
1093 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1094 	sc->dc_cdata.dc_tx_cnt++;
1095 	sframe = &sc->dc_ldata->dc_tx_list[i];
1096 	sp = sc->dc_cdata.dc_sbuf;
1097 	bzero(sp, DC_SFRAME_LEN);
1098 
1099 	sframe->dc_data = htole32(sc->dc_saddr);
1100 	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
1101 	    DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
1102 
1103 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
1104 
1105 	/* If we want promiscuous mode, set the allframes bit. */
1106 	if (ifp->if_flags & IFF_PROMISC)
1107 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1108 	else
1109 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1110 
1111 	if (ifp->if_flags & IFF_ALLMULTI)
1112 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1113 	else
1114 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1115 
1116 	IF_ADDR_LOCK(ifp);
1117 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1118 		if (ifma->ifma_addr->sa_family != AF_LINK)
1119 			continue;
1120 		h = dc_mchash_le(sc,
1121 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1122 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1123 	}
1124 	IF_ADDR_UNLOCK(ifp);
1125 
1126 	if (ifp->if_flags & IFF_BROADCAST) {
1127 		h = dc_mchash_le(sc, ifp->if_broadcastaddr);
1128 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1129 	}
1130 
1131 	/* Set our MAC address. */
1132 	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1133 	sp[39] = DC_SP_MAC(eaddr[0]);
1134 	sp[40] = DC_SP_MAC(eaddr[1]);
1135 	sp[41] = DC_SP_MAC(eaddr[2]);
1136 
1137 	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1138 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1139 
1140 	/*
1141 	 * The PNIC takes an exceedingly long time to process its
1142 	 * setup frame; wait 10ms after posting the setup frame
1143 	 * before proceeding, just so it has time to swallow its
1144 	 * medicine.
1145 	 */
1146 	DELAY(10000);
1147 
1148 	ifp->if_timer = 5;
1149 }
1150 
1151 static void
1152 dc_setfilt_admtek(struct dc_softc *sc)
1153 {
1154 	uint32_t eaddr[(ETHER_ADDR_LEN+3)/4];
1155 	struct ifnet *ifp;
1156 	struct ifmultiaddr *ifma;
1157 	int h = 0;
1158 	u_int32_t hashes[2] = { 0, 0 };
1159 
1160 	ifp = sc->dc_ifp;
1161 
1162 	/* Init our MAC address. */
1163 	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1164 	CSR_WRITE_4(sc, DC_AL_PAR0, eaddr[0]);
1165 	CSR_WRITE_4(sc, DC_AL_PAR1, eaddr[1]);
1166 
1167 	/* If we want promiscuous mode, set the allframes bit. */
1168 	if (ifp->if_flags & IFF_PROMISC)
1169 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1170 	else
1171 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1172 
1173 	if (ifp->if_flags & IFF_ALLMULTI)
1174 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1175 	else
1176 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1177 
1178 	/* First, zot all the existing hash bits. */
1179 	CSR_WRITE_4(sc, DC_AL_MAR0, 0);
1180 	CSR_WRITE_4(sc, DC_AL_MAR1, 0);
1181 
1182 	/*
1183 	 * If we're already in promisc or allmulti mode, we
1184 	 * don't have to bother programming the multicast filter.
1185 	 */
1186 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
1187 		return;
1188 
1189 	/* Now program new ones. */
1190 	IF_ADDR_LOCK(ifp);
1191 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1192 		if (ifma->ifma_addr->sa_family != AF_LINK)
1193 			continue;
1194 		if (DC_IS_CENTAUR(sc))
1195 			h = dc_mchash_le(sc,
1196 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1197 		else
1198 			h = dc_mchash_be(
1199 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1200 		if (h < 32)
1201 			hashes[0] |= (1 << h);
1202 		else
1203 			hashes[1] |= (1 << (h - 32));
1204 	}
1205 	IF_ADDR_UNLOCK(ifp);
1206 
1207 	CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]);
1208 	CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]);
1209 }
1210 
1211 static void
1212 dc_setfilt_asix(struct dc_softc *sc)
1213 {
1214 	uint32_t eaddr[(ETHER_ADDR_LEN+3)/4];
1215 	struct ifnet *ifp;
1216 	struct ifmultiaddr *ifma;
1217 	int h = 0;
1218 	u_int32_t hashes[2] = { 0, 0 };
1219 
1220 	ifp = sc->dc_ifp;
1221 
1222 	/* Init our MAC address. */
1223 	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1224 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
1225 	CSR_WRITE_4(sc, DC_AX_FILTDATA, eaddr[0]);
1226 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
1227 	CSR_WRITE_4(sc, DC_AX_FILTDATA, eaddr[1]);
1228 
1229 	/* If we want promiscuous mode, set the allframes bit. */
1230 	if (ifp->if_flags & IFF_PROMISC)
1231 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1232 	else
1233 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1234 
1235 	if (ifp->if_flags & IFF_ALLMULTI)
1236 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1237 	else
1238 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1239 
1240 	/*
1241 	 * The ASIX chip has a special bit to enable reception
1242 	 * of broadcast frames.
1243 	 */
1244 	if (ifp->if_flags & IFF_BROADCAST)
1245 		DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1246 	else
1247 		DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1248 
1249 	/* first, zot all the existing hash bits */
1250 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1251 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1252 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1253 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1254 
1255 	/*
1256 	 * If we're already in promisc or allmulti mode, we
1257 	 * don't have to bother programming the multicast filter.
1258 	 */
1259 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
1260 		return;
1261 
1262 	/* now program new ones */
1263 	IF_ADDR_LOCK(ifp);
1264 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1265 		if (ifma->ifma_addr->sa_family != AF_LINK)
1266 			continue;
1267 		h = dc_mchash_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1268 		if (h < 32)
1269 			hashes[0] |= (1 << h);
1270 		else
1271 			hashes[1] |= (1 << (h - 32));
1272 	}
1273 	IF_ADDR_UNLOCK(ifp);
1274 
1275 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1276 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
1277 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1278 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
1279 }
1280 
1281 static void
1282 dc_setfilt_xircom(struct dc_softc *sc)
1283 {
1284 	uint16_t eaddr[(ETHER_ADDR_LEN+1)/2];
1285 	struct ifnet *ifp;
1286 	struct ifmultiaddr *ifma;
1287 	struct dc_desc *sframe;
1288 	u_int32_t h, *sp;
1289 	int i;
1290 
1291 	ifp = sc->dc_ifp;
1292 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1293 
1294 	i = sc->dc_cdata.dc_tx_prod;
1295 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1296 	sc->dc_cdata.dc_tx_cnt++;
1297 	sframe = &sc->dc_ldata->dc_tx_list[i];
1298 	sp = sc->dc_cdata.dc_sbuf;
1299 	bzero(sp, DC_SFRAME_LEN);
1300 
1301 	sframe->dc_data = htole32(sc->dc_saddr);
1302 	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
1303 	    DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
1304 
1305 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
1306 
1307 	/* If we want promiscuous mode, set the allframes bit. */
1308 	if (ifp->if_flags & IFF_PROMISC)
1309 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1310 	else
1311 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1312 
1313 	if (ifp->if_flags & IFF_ALLMULTI)
1314 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1315 	else
1316 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1317 
1318 	IF_ADDR_LOCK(ifp);
1319 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1320 		if (ifma->ifma_addr->sa_family != AF_LINK)
1321 			continue;
1322 		h = dc_mchash_le(sc,
1323 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1324 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1325 	}
1326 	IF_ADDR_UNLOCK(ifp);
1327 
1328 	if (ifp->if_flags & IFF_BROADCAST) {
1329 		h = dc_mchash_le(sc, ifp->if_broadcastaddr);
1330 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1331 	}
1332 
1333 	/* Set our MAC address. */
1334 	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1335 	sp[0] = DC_SP_MAC(eaddr[0]);
1336 	sp[1] = DC_SP_MAC(eaddr[1]);
1337 	sp[2] = DC_SP_MAC(eaddr[2]);
1338 
1339 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
1340 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
1341 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1342 	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1343 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1344 
1345 	/*
1346 	 * Wait some time...
1347 	 */
1348 	DELAY(1000);
1349 
1350 	ifp->if_timer = 5;
1351 }
1352 
1353 static void
1354 dc_setfilt(struct dc_softc *sc)
1355 {
1356 
1357 	if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
1358 	    DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc))
1359 		dc_setfilt_21143(sc);
1360 
1361 	if (DC_IS_ASIX(sc))
1362 		dc_setfilt_asix(sc);
1363 
1364 	if (DC_IS_ADMTEK(sc))
1365 		dc_setfilt_admtek(sc);
1366 
1367 	if (DC_IS_XIRCOM(sc))
1368 		dc_setfilt_xircom(sc);
1369 }
1370 
1371 /*
1372  * In order to fiddle with the 'full-duplex' and '100Mbps' bits in
1373  * the netconfig register, we first have to put the transmit and/or
1374  * receive logic in the idle state.
1375  */
1376 static void
1377 dc_setcfg(struct dc_softc *sc, int media)
1378 {
1379 	int i, restart = 0, watchdogreg;
1380 	u_int32_t isr;
1381 
1382 	if (IFM_SUBTYPE(media) == IFM_NONE)
1383 		return;
1384 
1385 	if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON)) {
1386 		restart = 1;
1387 		DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1388 
1389 		for (i = 0; i < DC_TIMEOUT; i++) {
1390 			isr = CSR_READ_4(sc, DC_ISR);
1391 			if (isr & DC_ISR_TX_IDLE &&
1392 			    ((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
1393 			    (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT))
1394 				break;
1395 			DELAY(10);
1396 		}
1397 
1398 		if (i == DC_TIMEOUT)
1399 			if_printf(sc->dc_ifp,
1400 			    "failed to force tx and rx to idle state\n");
1401 	}
1402 
1403 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
1404 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1405 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1406 		if (sc->dc_pmode == DC_PMODE_MII) {
1407 			if (DC_IS_INTEL(sc)) {
1408 			/* There's a write enable bit here that reads as 1. */
1409 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1410 				watchdogreg &= ~DC_WDOG_CTLWREN;
1411 				watchdogreg |= DC_WDOG_JABBERDIS;
1412 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1413 			} else {
1414 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1415 			}
1416 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1417 			    DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
1418 			if (sc->dc_type == DC_TYPE_98713)
1419 				DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1420 				    DC_NETCFG_SCRAMBLER));
1421 			if (!DC_IS_DAVICOM(sc))
1422 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1423 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1424 			if (DC_IS_INTEL(sc))
1425 				dc_apply_fixup(sc, IFM_AUTO);
1426 		} else {
1427 			if (DC_IS_PNIC(sc)) {
1428 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
1429 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1430 				DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1431 			}
1432 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1433 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1434 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1435 			if (DC_IS_INTEL(sc))
1436 				dc_apply_fixup(sc,
1437 				    (media & IFM_GMASK) == IFM_FDX ?
1438 				    IFM_100_TX | IFM_FDX : IFM_100_TX);
1439 		}
1440 	}
1441 
1442 	if (IFM_SUBTYPE(media) == IFM_10_T) {
1443 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1444 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1445 		if (sc->dc_pmode == DC_PMODE_MII) {
1446 			/* There's a write enable bit here that reads as 1. */
1447 			if (DC_IS_INTEL(sc)) {
1448 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1449 				watchdogreg &= ~DC_WDOG_CTLWREN;
1450 				watchdogreg |= DC_WDOG_JABBERDIS;
1451 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1452 			} else {
1453 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1454 			}
1455 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1456 			    DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
1457 			if (sc->dc_type == DC_TYPE_98713)
1458 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1459 			if (!DC_IS_DAVICOM(sc))
1460 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1461 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1462 			if (DC_IS_INTEL(sc))
1463 				dc_apply_fixup(sc, IFM_AUTO);
1464 		} else {
1465 			if (DC_IS_PNIC(sc)) {
1466 				DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
1467 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1468 				DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1469 			}
1470 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1471 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1472 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1473 			if (DC_IS_INTEL(sc)) {
1474 				DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET);
1475 				DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1476 				if ((media & IFM_GMASK) == IFM_FDX)
1477 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D);
1478 				else
1479 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F);
1480 				DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1481 				DC_CLRBIT(sc, DC_10BTCTRL,
1482 				    DC_TCTL_AUTONEGENBL);
1483 				dc_apply_fixup(sc,
1484 				    (media & IFM_GMASK) == IFM_FDX ?
1485 				    IFM_10_T | IFM_FDX : IFM_10_T);
1486 				DELAY(20000);
1487 			}
1488 		}
1489 	}
1490 
1491 	/*
1492 	 * If this is a Davicom DM9102A card with a DM9801 HomePNA
1493 	 * PHY and we want HomePNA mode, set the portsel bit to turn
1494 	 * on the external MII port.
1495 	 */
1496 	if (DC_IS_DAVICOM(sc)) {
1497 		if (IFM_SUBTYPE(media) == IFM_HPNA_1) {
1498 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1499 			sc->dc_link = 1;
1500 		} else {
1501 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1502 		}
1503 	}
1504 
1505 	if ((media & IFM_GMASK) == IFM_FDX) {
1506 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1507 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1508 			DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1509 	} else {
1510 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1511 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1512 			DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1513 	}
1514 
1515 	if (restart)
1516 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON | DC_NETCFG_RX_ON);
1517 }
1518 
1519 static void
1520 dc_reset(struct dc_softc *sc)
1521 {
1522 	int i;
1523 
1524 	DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1525 
1526 	for (i = 0; i < DC_TIMEOUT; i++) {
1527 		DELAY(10);
1528 		if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
1529 			break;
1530 	}
1531 
1532 	if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_CONEXANT(sc) ||
1533 	    DC_IS_XIRCOM(sc) || DC_IS_INTEL(sc)) {
1534 		DELAY(10000);
1535 		DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1536 		i = 0;
1537 	}
1538 
1539 	if (i == DC_TIMEOUT)
1540 		if_printf(sc->dc_ifp, "reset never completed!\n");
1541 
1542 	/* Wait a little while for the chip to get its brains in order. */
1543 	DELAY(1000);
1544 
1545 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
1546 	CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
1547 	CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
1548 
1549 	/*
1550 	 * Bring the SIA out of reset. In some cases, it looks
1551 	 * like failing to unreset the SIA soon enough gets it
1552 	 * into a state where it will never come out of reset
1553 	 * until we reset the whole chip again.
1554 	 */
1555 	if (DC_IS_INTEL(sc)) {
1556 		DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1557 		CSR_WRITE_4(sc, DC_10BTCTRL, 0);
1558 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
1559 	}
1560 }
1561 
1562 static struct dc_type *
1563 dc_devtype(device_t dev)
1564 {
1565 	struct dc_type *t;
1566 	u_int32_t rev;
1567 
1568 	t = dc_devs;
1569 
1570 	while (t->dc_name != NULL) {
1571 		if ((pci_get_vendor(dev) == t->dc_vid) &&
1572 		    (pci_get_device(dev) == t->dc_did)) {
1573 			/* Check the PCI revision */
1574 			rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF;
1575 			if (t->dc_did == DC_DEVICEID_98713 &&
1576 			    rev >= DC_REVISION_98713A)
1577 				t++;
1578 			if (t->dc_did == DC_DEVICEID_98713_CP &&
1579 			    rev >= DC_REVISION_98713A)
1580 				t++;
1581 			if (t->dc_did == DC_DEVICEID_987x5 &&
1582 			    rev >= DC_REVISION_98715AEC_C)
1583 				t++;
1584 			if (t->dc_did == DC_DEVICEID_987x5 &&
1585 			    rev >= DC_REVISION_98725)
1586 				t++;
1587 			if (t->dc_did == DC_DEVICEID_AX88140A &&
1588 			    rev >= DC_REVISION_88141)
1589 				t++;
1590 			if (t->dc_did == DC_DEVICEID_82C168 &&
1591 			    rev >= DC_REVISION_82C169)
1592 				t++;
1593 			if (t->dc_did == DC_DEVICEID_DM9102 &&
1594 			    rev >= DC_REVISION_DM9102A)
1595 				t++;
1596 			/*
1597 			 * The Microsoft MN-130 has a device ID of 0x0002,
1598 			 * which happens to be the same as the PNIC 82c168.
1599 			 * To keep dc_attach() from getting confused, we
1600 			 * pretend its ID is something different.
1601 			 * XXX: ideally, dc_attach() should be checking
1602 			 * vendorid+deviceid together to avoid such
1603 			 * collisions.
1604 			 */
1605 			if (t->dc_vid == DC_VENDORID_MICROSOFT &&
1606 			    t->dc_did == DC_DEVICEID_MSMN130)
1607 				t++;
1608 			return (t);
1609 		}
1610 		t++;
1611 	}
1612 
1613 	return (NULL);
1614 }
1615 
1616 /*
1617  * Probe for a 21143 or clone chip. Check the PCI vendor and device
1618  * IDs against our list and return a device name if we find a match.
1619  * We do a little bit of extra work to identify the exact type of
1620  * chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
1621  * but different revision IDs. The same is true for 98715/98715A
1622  * chips and the 98725, as well as the ASIX and ADMtek chips. In some
1623  * cases, the exact chip revision affects driver behavior.
1624  */
1625 static int
1626 dc_probe(device_t dev)
1627 {
1628 	struct dc_type *t;
1629 
1630 	t = dc_devtype(dev);
1631 
1632 	if (t != NULL) {
1633 		device_set_desc(dev, t->dc_name);
1634 		return (BUS_PROBE_DEFAULT);
1635 	}
1636 
1637 	return (ENXIO);
1638 }
1639 
1640 static void
1641 dc_apply_fixup(struct dc_softc *sc, int media)
1642 {
1643 	struct dc_mediainfo *m;
1644 	u_int8_t *p;
1645 	int i;
1646 	u_int32_t reg;
1647 
1648 	m = sc->dc_mi;
1649 
1650 	while (m != NULL) {
1651 		if (m->dc_media == media)
1652 			break;
1653 		m = m->dc_next;
1654 	}
1655 
1656 	if (m == NULL)
1657 		return;
1658 
1659 	for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) {
1660 		reg = (p[0] | (p[1] << 8)) << 16;
1661 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1662 	}
1663 
1664 	for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) {
1665 		reg = (p[0] | (p[1] << 8)) << 16;
1666 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1667 	}
1668 }
1669 
1670 static void
1671 dc_decode_leaf_sia(struct dc_softc *sc, struct dc_eblock_sia *l)
1672 {
1673 	struct dc_mediainfo *m;
1674 
1675 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1676 	switch (l->dc_sia_code & ~DC_SIA_CODE_EXT) {
1677 	case DC_SIA_CODE_10BT:
1678 		m->dc_media = IFM_10_T;
1679 		break;
1680 	case DC_SIA_CODE_10BT_FDX:
1681 		m->dc_media = IFM_10_T | IFM_FDX;
1682 		break;
1683 	case DC_SIA_CODE_10B2:
1684 		m->dc_media = IFM_10_2;
1685 		break;
1686 	case DC_SIA_CODE_10B5:
1687 		m->dc_media = IFM_10_5;
1688 		break;
1689 	default:
1690 		break;
1691 	}
1692 
1693 	/*
1694 	 * We need to ignore CSR13, CSR14, CSR15 for SIA mode.
1695 	 * Things apparently already work for cards that do
1696 	 * supply Media Specific Data.
1697 	 */
1698 	if (l->dc_sia_code & DC_SIA_CODE_EXT) {
1699 		m->dc_gp_len = 2;
1700 		m->dc_gp_ptr =
1701 		(u_int8_t *)&l->dc_un.dc_sia_ext.dc_sia_gpio_ctl;
1702 	} else {
1703 		m->dc_gp_len = 2;
1704 		m->dc_gp_ptr =
1705 		(u_int8_t *)&l->dc_un.dc_sia_noext.dc_sia_gpio_ctl;
1706 	}
1707 
1708 	m->dc_next = sc->dc_mi;
1709 	sc->dc_mi = m;
1710 
1711 	sc->dc_pmode = DC_PMODE_SIA;
1712 }
1713 
1714 static void
1715 dc_decode_leaf_sym(struct dc_softc *sc, struct dc_eblock_sym *l)
1716 {
1717 	struct dc_mediainfo *m;
1718 
1719 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1720 	if (l->dc_sym_code == DC_SYM_CODE_100BT)
1721 		m->dc_media = IFM_100_TX;
1722 
1723 	if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX)
1724 		m->dc_media = IFM_100_TX | IFM_FDX;
1725 
1726 	m->dc_gp_len = 2;
1727 	m->dc_gp_ptr = (u_int8_t *)&l->dc_sym_gpio_ctl;
1728 
1729 	m->dc_next = sc->dc_mi;
1730 	sc->dc_mi = m;
1731 
1732 	sc->dc_pmode = DC_PMODE_SYM;
1733 }
1734 
1735 static void
1736 dc_decode_leaf_mii(struct dc_softc *sc, struct dc_eblock_mii *l)
1737 {
1738 	struct dc_mediainfo *m;
1739 	u_int8_t *p;
1740 
1741 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1742 	/* We abuse IFM_AUTO to represent MII. */
1743 	m->dc_media = IFM_AUTO;
1744 	m->dc_gp_len = l->dc_gpr_len;
1745 
1746 	p = (u_int8_t *)l;
1747 	p += sizeof(struct dc_eblock_mii);
1748 	m->dc_gp_ptr = p;
1749 	p += 2 * l->dc_gpr_len;
1750 	m->dc_reset_len = *p;
1751 	p++;
1752 	m->dc_reset_ptr = p;
1753 
1754 	m->dc_next = sc->dc_mi;
1755 	sc->dc_mi = m;
1756 }
1757 
1758 static void
1759 dc_read_srom(struct dc_softc *sc, int bits)
1760 {
1761 	int size;
1762 
1763 	size = 2 << bits;
1764 	sc->dc_srom = malloc(size, M_DEVBUF, M_NOWAIT);
1765 	dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (size / 2), 0);
1766 }
1767 
1768 static void
1769 dc_parse_21143_srom(struct dc_softc *sc)
1770 {
1771 	struct dc_leaf_hdr *lhdr;
1772 	struct dc_eblock_hdr *hdr;
1773 	int have_mii, i, loff;
1774 	char *ptr;
1775 
1776 	have_mii = 0;
1777 	loff = sc->dc_srom[27];
1778 	lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]);
1779 
1780 	ptr = (char *)lhdr;
1781 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1782 	/*
1783 	 * Look if we got a MII media block.
1784 	 */
1785 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1786 		hdr = (struct dc_eblock_hdr *)ptr;
1787 		if (hdr->dc_type == DC_EBLOCK_MII)
1788 		    have_mii++;
1789 
1790 		ptr += (hdr->dc_len & 0x7F);
1791 		ptr++;
1792 	}
1793 
1794 	/*
1795 	 * Do the same thing again. Only use SIA and SYM media
1796 	 * blocks if no MII media block is available.
1797 	 */
1798 	ptr = (char *)lhdr;
1799 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1800 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1801 		hdr = (struct dc_eblock_hdr *)ptr;
1802 		switch (hdr->dc_type) {
1803 		case DC_EBLOCK_MII:
1804 			dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr);
1805 			break;
1806 		case DC_EBLOCK_SIA:
1807 			if (! have_mii)
1808 				dc_decode_leaf_sia(sc,
1809 				    (struct dc_eblock_sia *)hdr);
1810 			break;
1811 		case DC_EBLOCK_SYM:
1812 			if (! have_mii)
1813 				dc_decode_leaf_sym(sc,
1814 				    (struct dc_eblock_sym *)hdr);
1815 			break;
1816 		default:
1817 			/* Don't care. Yet. */
1818 			break;
1819 		}
1820 		ptr += (hdr->dc_len & 0x7F);
1821 		ptr++;
1822 	}
1823 }
1824 
1825 static void
1826 dc_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1827 {
1828 	u_int32_t *paddr;
1829 
1830 	KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
1831 	paddr = arg;
1832 	*paddr = segs->ds_addr;
1833 }
1834 
1835 /*
1836  * Attach the interface. Allocate softc structures, do ifmedia
1837  * setup and ethernet/BPF attach.
1838  */
1839 static int
1840 dc_attach(device_t dev)
1841 {
1842 	int tmp = 0;
1843 	uint32_t eaddr[(ETHER_ADDR_LEN+3)/4];
1844 	u_int32_t command;
1845 	struct dc_softc *sc;
1846 	struct ifnet *ifp;
1847 	u_int32_t revision;
1848 	int error = 0, rid, mac_offset;
1849 	int i;
1850 	u_int8_t *mac;
1851 
1852 	sc = device_get_softc(dev);
1853 
1854 	mtx_init(&sc->dc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1855 	    MTX_DEF);
1856 
1857 	/*
1858 	 * Map control/status registers.
1859 	 */
1860 	pci_enable_busmaster(dev);
1861 
1862 	rid = DC_RID;
1863 	sc->dc_res = bus_alloc_resource_any(dev, DC_RES, &rid, RF_ACTIVE);
1864 
1865 	if (sc->dc_res == NULL) {
1866 		device_printf(dev, "couldn't map ports/memory\n");
1867 		error = ENXIO;
1868 		goto fail;
1869 	}
1870 
1871 	sc->dc_btag = rman_get_bustag(sc->dc_res);
1872 	sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
1873 
1874 	/* Allocate interrupt. */
1875 	rid = 0;
1876 	sc->dc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1877 	    RF_SHAREABLE | RF_ACTIVE);
1878 
1879 	if (sc->dc_irq == NULL) {
1880 		device_printf(dev, "couldn't map interrupt\n");
1881 		error = ENXIO;
1882 		goto fail;
1883 	}
1884 
1885 	/* Need this info to decide on a chip type. */
1886 	sc->dc_info = dc_devtype(dev);
1887 	revision = pci_read_config(dev, DC_PCI_CFRV, 4) & 0x000000FF;
1888 
1889 	/* Get the eeprom width, but PNIC and XIRCOM have diff eeprom */
1890 	if (sc->dc_info->dc_did != DC_DEVICEID_82C168 &&
1891 	   sc->dc_info->dc_did != DC_DEVICEID_X3201)
1892 		dc_eeprom_width(sc);
1893 
1894 	switch (sc->dc_info->dc_did) {
1895 	case DC_DEVICEID_21143:
1896 		sc->dc_type = DC_TYPE_21143;
1897 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1898 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1899 		/* Save EEPROM contents so we can parse them later. */
1900 		dc_read_srom(sc, sc->dc_romwidth);
1901 		break;
1902 	case DC_DEVICEID_DM9009:
1903 	case DC_DEVICEID_DM9100:
1904 	case DC_DEVICEID_DM9102:
1905 		sc->dc_type = DC_TYPE_DM9102;
1906 		sc->dc_flags |= DC_TX_COALESCE | DC_TX_INTR_ALWAYS;
1907 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_TX_STORENFWD;
1908 		sc->dc_flags |= DC_TX_ALIGN;
1909 		sc->dc_pmode = DC_PMODE_MII;
1910 		/* Increase the latency timer value. */
1911 		command = pci_read_config(dev, DC_PCI_CFLT, 4);
1912 		command &= 0xFFFF00FF;
1913 		command |= 0x00008000;
1914 		pci_write_config(dev, DC_PCI_CFLT, command, 4);
1915 		break;
1916 	case DC_DEVICEID_AL981:
1917 		sc->dc_type = DC_TYPE_AL981;
1918 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1919 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1920 		sc->dc_pmode = DC_PMODE_MII;
1921 		dc_read_srom(sc, sc->dc_romwidth);
1922 		break;
1923 	case DC_DEVICEID_AN985:
1924 	case DC_DEVICEID_ADM9511:
1925 	case DC_DEVICEID_ADM9513:
1926 	case DC_DEVICEID_DRP32TXD:
1927 	case DC_DEVICEID_FA511:
1928 	case DC_DEVICEID_FE2500:
1929 	case DC_DEVICEID_EN2242:
1930 	case DC_DEVICEID_HAWKING_PN672TX:
1931 	case DC_DEVICEID_3CSOHOB:
1932 	case DC_DEVICEID_MSMN120:
1933 	case DC_DEVICEID_MSMN130_FAKE: /* XXX avoid collision with PNIC*/
1934 		sc->dc_type = DC_TYPE_AN985;
1935 		sc->dc_flags |= DC_64BIT_HASH;
1936 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1937 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1938 		sc->dc_pmode = DC_PMODE_MII;
1939 		/* Don't read SROM for - auto-loaded on reset */
1940 		break;
1941 	case DC_DEVICEID_98713:
1942 	case DC_DEVICEID_98713_CP:
1943 		if (revision < DC_REVISION_98713A) {
1944 			sc->dc_type = DC_TYPE_98713;
1945 		}
1946 		if (revision >= DC_REVISION_98713A) {
1947 			sc->dc_type = DC_TYPE_98713A;
1948 			sc->dc_flags |= DC_21143_NWAY;
1949 		}
1950 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1951 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1952 		break;
1953 	case DC_DEVICEID_987x5:
1954 	case DC_DEVICEID_EN1217:
1955 		/*
1956 		 * Macronix MX98715AEC-C/D/E parts have only a
1957 		 * 128-bit hash table. We need to deal with these
1958 		 * in the same manner as the PNIC II so that we
1959 		 * get the right number of bits out of the
1960 		 * CRC routine.
1961 		 */
1962 		if (revision >= DC_REVISION_98715AEC_C &&
1963 		    revision < DC_REVISION_98725)
1964 			sc->dc_flags |= DC_128BIT_HASH;
1965 		sc->dc_type = DC_TYPE_987x5;
1966 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1967 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
1968 		break;
1969 	case DC_DEVICEID_98727:
1970 		sc->dc_type = DC_TYPE_987x5;
1971 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1972 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
1973 		break;
1974 	case DC_DEVICEID_82C115:
1975 		sc->dc_type = DC_TYPE_PNICII;
1976 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR | DC_128BIT_HASH;
1977 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
1978 		break;
1979 	case DC_DEVICEID_82C168:
1980 		sc->dc_type = DC_TYPE_PNIC;
1981 		sc->dc_flags |= DC_TX_STORENFWD | DC_TX_INTR_ALWAYS;
1982 		sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
1983 		sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_NOWAIT);
1984 		if (revision < DC_REVISION_82C169)
1985 			sc->dc_pmode = DC_PMODE_SYM;
1986 		break;
1987 	case DC_DEVICEID_AX88140A:
1988 		sc->dc_type = DC_TYPE_ASIX;
1989 		sc->dc_flags |= DC_TX_USE_TX_INTR | DC_TX_INTR_FIRSTFRAG;
1990 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1991 		sc->dc_pmode = DC_PMODE_MII;
1992 		break;
1993 	case DC_DEVICEID_X3201:
1994 		sc->dc_type = DC_TYPE_XIRCOM;
1995 		sc->dc_flags |= DC_TX_INTR_ALWAYS | DC_TX_COALESCE |
1996 				DC_TX_ALIGN;
1997 		/*
1998 		 * We don't actually need to coalesce, but we're doing
1999 		 * it to obtain a double word aligned buffer.
2000 		 * The DC_TX_COALESCE flag is required.
2001 		 */
2002 		sc->dc_pmode = DC_PMODE_MII;
2003 		break;
2004 	case DC_DEVICEID_RS7112:
2005 		sc->dc_type = DC_TYPE_CONEXANT;
2006 		sc->dc_flags |= DC_TX_INTR_ALWAYS;
2007 		sc->dc_flags |= DC_REDUCED_MII_POLL;
2008 		sc->dc_pmode = DC_PMODE_MII;
2009 		dc_read_srom(sc, sc->dc_romwidth);
2010 		break;
2011 	default:
2012 		device_printf(dev, "unknown device: %x\n", sc->dc_info->dc_did);
2013 		break;
2014 	}
2015 
2016 	/* Save the cache line size. */
2017 	if (DC_IS_DAVICOM(sc))
2018 		sc->dc_cachesize = 0;
2019 	else
2020 		sc->dc_cachesize = pci_read_config(dev,
2021 		    DC_PCI_CFLT, 4) & 0xFF;
2022 
2023 	/* Reset the adapter. */
2024 	dc_reset(sc);
2025 
2026 	/* Take 21143 out of snooze mode */
2027 	if (DC_IS_INTEL(sc) || DC_IS_XIRCOM(sc)) {
2028 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
2029 		command &= ~(DC_CFDD_SNOOZE_MODE | DC_CFDD_SLEEP_MODE);
2030 		pci_write_config(dev, DC_PCI_CFDD, command, 4);
2031 	}
2032 
2033 	/*
2034 	 * Try to learn something about the supported media.
2035 	 * We know that ASIX and ADMtek and Davicom devices
2036 	 * will *always* be using MII media, so that's a no-brainer.
2037 	 * The tricky ones are the Macronix/PNIC II and the
2038 	 * Intel 21143.
2039 	 */
2040 	if (DC_IS_INTEL(sc))
2041 		dc_parse_21143_srom(sc);
2042 	else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
2043 		if (sc->dc_type == DC_TYPE_98713)
2044 			sc->dc_pmode = DC_PMODE_MII;
2045 		else
2046 			sc->dc_pmode = DC_PMODE_SYM;
2047 	} else if (!sc->dc_pmode)
2048 		sc->dc_pmode = DC_PMODE_MII;
2049 
2050 	/*
2051 	 * Get station address from the EEPROM.
2052 	 */
2053 	switch(sc->dc_type) {
2054 	case DC_TYPE_98713:
2055 	case DC_TYPE_98713A:
2056 	case DC_TYPE_987x5:
2057 	case DC_TYPE_PNICII:
2058 		dc_read_eeprom(sc, (caddr_t)&mac_offset,
2059 		    (DC_EE_NODEADDR_OFFSET / 2), 1, 0);
2060 		dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
2061 		break;
2062 	case DC_TYPE_PNIC:
2063 		dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
2064 		break;
2065 	case DC_TYPE_DM9102:
2066 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2067 #ifdef __sparc64__
2068 		/*
2069 		 * If this is an onboard dc(4) the station address read from
2070 		 * the EEPROM is all zero and we have to get it from the FCode.
2071 		 */
2072 		if (eaddr[0] == 0 && (eaddr[1] & ~0xffff) == 0)
2073 			OF_getetheraddr(dev, (caddr_t)&eaddr);
2074 #endif
2075 		break;
2076 	case DC_TYPE_21143:
2077 	case DC_TYPE_ASIX:
2078 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2079 		break;
2080 	case DC_TYPE_AL981:
2081 	case DC_TYPE_AN985:
2082 		eaddr[0] = CSR_READ_4(sc, DC_AL_PAR0);
2083 		eaddr[1] = CSR_READ_4(sc, DC_AL_PAR1);
2084 		break;
2085 	case DC_TYPE_CONEXANT:
2086 		bcopy(sc->dc_srom + DC_CONEXANT_EE_NODEADDR, &eaddr,
2087 		    ETHER_ADDR_LEN);
2088 		break;
2089 	case DC_TYPE_XIRCOM:
2090 		/* The MAC comes from the CIS. */
2091 		mac = pci_get_ether(dev);
2092 		if (!mac) {
2093 			device_printf(dev, "No station address in CIS!\n");
2094 			error = ENXIO;
2095 			goto fail;
2096 		}
2097 		bcopy(mac, eaddr, ETHER_ADDR_LEN);
2098 		break;
2099 	default:
2100 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2101 		break;
2102 	}
2103 
2104 	/* Allocate a busdma tag and DMA safe memory for TX/RX descriptors. */
2105 	error = bus_dma_tag_create(NULL, PAGE_SIZE, 0, BUS_SPACE_MAXADDR_32BIT,
2106 	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct dc_list_data), 1,
2107 	    sizeof(struct dc_list_data), 0, NULL, NULL, &sc->dc_ltag);
2108 	if (error) {
2109 		device_printf(dev, "failed to allocate busdma tag\n");
2110 		error = ENXIO;
2111 		goto fail;
2112 	}
2113 	error = bus_dmamem_alloc(sc->dc_ltag, (void **)&sc->dc_ldata,
2114 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->dc_lmap);
2115 	if (error) {
2116 		device_printf(dev, "failed to allocate DMA safe memory\n");
2117 		error = ENXIO;
2118 		goto fail;
2119 	}
2120 	error = bus_dmamap_load(sc->dc_ltag, sc->dc_lmap, sc->dc_ldata,
2121 	    sizeof(struct dc_list_data), dc_dma_map_addr, &sc->dc_laddr,
2122 	    BUS_DMA_NOWAIT);
2123 	if (error) {
2124 		device_printf(dev, "cannot get address of the descriptors\n");
2125 		error = ENXIO;
2126 		goto fail;
2127 	}
2128 
2129 	/*
2130 	 * Allocate a busdma tag and DMA safe memory for the multicast
2131 	 * setup frame.
2132 	 */
2133 	error = bus_dma_tag_create(NULL, PAGE_SIZE, 0, BUS_SPACE_MAXADDR_32BIT,
2134 	    BUS_SPACE_MAXADDR, NULL, NULL, DC_SFRAME_LEN + DC_MIN_FRAMELEN, 1,
2135 	    DC_SFRAME_LEN + DC_MIN_FRAMELEN, 0, NULL, NULL, &sc->dc_stag);
2136 	if (error) {
2137 		device_printf(dev, "failed to allocate busdma tag\n");
2138 		error = ENXIO;
2139 		goto fail;
2140 	}
2141 	error = bus_dmamem_alloc(sc->dc_stag, (void **)&sc->dc_cdata.dc_sbuf,
2142 	    BUS_DMA_NOWAIT, &sc->dc_smap);
2143 	if (error) {
2144 		device_printf(dev, "failed to allocate DMA safe memory\n");
2145 		error = ENXIO;
2146 		goto fail;
2147 	}
2148 	error = bus_dmamap_load(sc->dc_stag, sc->dc_smap, sc->dc_cdata.dc_sbuf,
2149 	    DC_SFRAME_LEN, dc_dma_map_addr, &sc->dc_saddr, BUS_DMA_NOWAIT);
2150 	if (error) {
2151 		device_printf(dev, "cannot get address of the descriptors\n");
2152 		error = ENXIO;
2153 		goto fail;
2154 	}
2155 
2156 	/* Allocate a busdma tag for mbufs. */
2157 	error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
2158 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, DC_TX_LIST_CNT, MCLBYTES,
2159 	    0, NULL, NULL, &sc->dc_mtag);
2160 	if (error) {
2161 		device_printf(dev, "failed to allocate busdma tag\n");
2162 		error = ENXIO;
2163 		goto fail;
2164 	}
2165 
2166 	/* Create the TX/RX busdma maps. */
2167 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2168 		error = bus_dmamap_create(sc->dc_mtag, 0,
2169 		    &sc->dc_cdata.dc_tx_map[i]);
2170 		if (error) {
2171 			device_printf(dev, "failed to init TX ring\n");
2172 			error = ENXIO;
2173 			goto fail;
2174 		}
2175 	}
2176 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2177 		error = bus_dmamap_create(sc->dc_mtag, 0,
2178 		    &sc->dc_cdata.dc_rx_map[i]);
2179 		if (error) {
2180 			device_printf(dev, "failed to init RX ring\n");
2181 			error = ENXIO;
2182 			goto fail;
2183 		}
2184 	}
2185 	error = bus_dmamap_create(sc->dc_mtag, 0, &sc->dc_sparemap);
2186 	if (error) {
2187 		device_printf(dev, "failed to init RX ring\n");
2188 		error = ENXIO;
2189 		goto fail;
2190 	}
2191 
2192 	ifp = sc->dc_ifp = if_alloc(IFT_ETHER);
2193 	if (ifp == NULL) {
2194 		device_printf(dev, "can not if_alloc()\n");
2195 		error = ENOSPC;
2196 		goto fail;
2197 	}
2198 	ifp->if_softc = sc;
2199 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2200 	/* XXX: bleah, MTU gets overwritten in ether_ifattach() */
2201 	ifp->if_mtu = ETHERMTU;
2202 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2203 	ifp->if_ioctl = dc_ioctl;
2204 	ifp->if_start = dc_start;
2205 	ifp->if_watchdog = dc_watchdog;
2206 	ifp->if_init = dc_init;
2207 	IFQ_SET_MAXLEN(&ifp->if_snd, DC_TX_LIST_CNT - 1);
2208 	ifp->if_snd.ifq_drv_maxlen = DC_TX_LIST_CNT - 1;
2209 	IFQ_SET_READY(&ifp->if_snd);
2210 
2211 	/*
2212 	 * Do MII setup. If this is a 21143, check for a PHY on the
2213 	 * MII bus after applying any necessary fixups to twiddle the
2214 	 * GPIO bits. If we don't end up finding a PHY, restore the
2215 	 * old selection (SIA only or SIA/SYM) and attach the dcphy
2216 	 * driver instead.
2217 	 */
2218 	if (DC_IS_INTEL(sc)) {
2219 		dc_apply_fixup(sc, IFM_AUTO);
2220 		tmp = sc->dc_pmode;
2221 		sc->dc_pmode = DC_PMODE_MII;
2222 	}
2223 
2224 	/*
2225 	 * Setup General Purpose port mode and data so the tulip can talk
2226 	 * to the MII.  This needs to be done before mii_phy_probe so that
2227 	 * we can actually see them.
2228 	 */
2229 	if (DC_IS_XIRCOM(sc)) {
2230 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
2231 		    DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2232 		DELAY(10);
2233 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
2234 		    DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2235 		DELAY(10);
2236 	}
2237 
2238 	error = mii_phy_probe(dev, &sc->dc_miibus,
2239 	    dc_ifmedia_upd, dc_ifmedia_sts);
2240 
2241 	if (error && DC_IS_INTEL(sc)) {
2242 		sc->dc_pmode = tmp;
2243 		if (sc->dc_pmode != DC_PMODE_SIA)
2244 			sc->dc_pmode = DC_PMODE_SYM;
2245 		sc->dc_flags |= DC_21143_NWAY;
2246 		mii_phy_probe(dev, &sc->dc_miibus,
2247 		    dc_ifmedia_upd, dc_ifmedia_sts);
2248 		/*
2249 		 * For non-MII cards, we need to have the 21143
2250 		 * drive the LEDs. Except there are some systems
2251 		 * like the NEC VersaPro NoteBook PC which have no
2252 		 * LEDs, and twiddling these bits has adverse effects
2253 		 * on them. (I.e. you suddenly can't get a link.)
2254 		 */
2255 		if (pci_read_config(dev, DC_PCI_CSID, 4) != 0x80281033)
2256 			sc->dc_flags |= DC_TULIP_LEDS;
2257 		error = 0;
2258 	}
2259 
2260 	if (error) {
2261 		device_printf(dev, "MII without any PHY!\n");
2262 		goto fail;
2263 	}
2264 
2265 	if (DC_IS_ADMTEK(sc)) {
2266 		/*
2267 		 * Set automatic TX underrun recovery for the ADMtek chips
2268 		 */
2269 		DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR);
2270 	}
2271 
2272 	/*
2273 	 * Tell the upper layer(s) we support long frames.
2274 	 */
2275 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2276 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
2277 	ifp->if_capenable = ifp->if_capabilities;
2278 #ifdef DEVICE_POLLING
2279 	ifp->if_capabilities |= IFCAP_POLLING;
2280 #endif
2281 
2282 	callout_init_mtx(&sc->dc_stat_ch, &sc->dc_mtx, 0);
2283 
2284 #ifdef SRM_MEDIA
2285 	sc->dc_srm_media = 0;
2286 
2287 	/* Remember the SRM console media setting */
2288 	if (DC_IS_INTEL(sc)) {
2289 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
2290 		command &= ~(DC_CFDD_SNOOZE_MODE | DC_CFDD_SLEEP_MODE);
2291 		switch ((command >> 8) & 0xff) {
2292 		case 3:
2293 			sc->dc_srm_media = IFM_10_T;
2294 			break;
2295 		case 4:
2296 			sc->dc_srm_media = IFM_10_T | IFM_FDX;
2297 			break;
2298 		case 5:
2299 			sc->dc_srm_media = IFM_100_TX;
2300 			break;
2301 		case 6:
2302 			sc->dc_srm_media = IFM_100_TX | IFM_FDX;
2303 			break;
2304 		}
2305 		if (sc->dc_srm_media)
2306 			sc->dc_srm_media |= IFM_ACTIVE | IFM_ETHER;
2307 	}
2308 #endif
2309 
2310 	/*
2311 	 * Call MI attach routine.
2312 	 */
2313 	ether_ifattach(ifp, (caddr_t)eaddr);
2314 
2315 	/* Hook interrupt last to avoid having to lock softc */
2316 	error = bus_setup_intr(dev, sc->dc_irq, INTR_TYPE_NET | INTR_MPSAFE,
2317 	    dc_intr, sc, &sc->dc_intrhand);
2318 
2319 	if (error) {
2320 		device_printf(dev, "couldn't set up irq\n");
2321 		ether_ifdetach(ifp);
2322 		goto fail;
2323 	}
2324 
2325 fail:
2326 	if (error)
2327 		dc_detach(dev);
2328 	return (error);
2329 }
2330 
2331 /*
2332  * Shutdown hardware and free up resources. This can be called any
2333  * time after the mutex has been initialized. It is called in both
2334  * the error case in attach and the normal detach case so it needs
2335  * to be careful about only freeing resources that have actually been
2336  * allocated.
2337  */
2338 static int
2339 dc_detach(device_t dev)
2340 {
2341 	struct dc_softc *sc;
2342 	struct ifnet *ifp;
2343 	struct dc_mediainfo *m;
2344 	int i;
2345 
2346 	sc = device_get_softc(dev);
2347 	KASSERT(mtx_initialized(&sc->dc_mtx), ("dc mutex not initialized"));
2348 
2349 	ifp = sc->dc_ifp;
2350 
2351 #ifdef DEVICE_POLLING
2352 	if (ifp->if_capenable & IFCAP_POLLING)
2353 		ether_poll_deregister(ifp);
2354 #endif
2355 
2356 	/* These should only be active if attach succeeded */
2357 	if (device_is_attached(dev)) {
2358 		DC_LOCK(sc);
2359 		dc_stop(sc);
2360 		DC_UNLOCK(sc);
2361 		callout_drain(&sc->dc_stat_ch);
2362 		ether_ifdetach(ifp);
2363 	}
2364 	if (sc->dc_miibus)
2365 		device_delete_child(dev, sc->dc_miibus);
2366 	bus_generic_detach(dev);
2367 
2368 	if (sc->dc_intrhand)
2369 		bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2370 	if (sc->dc_irq)
2371 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2372 	if (sc->dc_res)
2373 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2374 
2375 	if (ifp)
2376 		if_free(ifp);
2377 
2378 	if (sc->dc_cdata.dc_sbuf != NULL)
2379 		bus_dmamem_free(sc->dc_stag, sc->dc_cdata.dc_sbuf, sc->dc_smap);
2380 	if (sc->dc_ldata != NULL)
2381 		bus_dmamem_free(sc->dc_ltag, sc->dc_ldata, sc->dc_lmap);
2382 	if (sc->dc_mtag) {
2383 		for (i = 0; i < DC_TX_LIST_CNT; i++)
2384 			if (sc->dc_cdata.dc_tx_map[i] != NULL)
2385 				bus_dmamap_destroy(sc->dc_mtag,
2386 				    sc->dc_cdata.dc_tx_map[i]);
2387 		for (i = 0; i < DC_RX_LIST_CNT; i++)
2388 			if (sc->dc_cdata.dc_rx_map[i] != NULL)
2389 				bus_dmamap_destroy(sc->dc_mtag,
2390 				    sc->dc_cdata.dc_rx_map[i]);
2391 		bus_dmamap_destroy(sc->dc_mtag, sc->dc_sparemap);
2392 	}
2393 	if (sc->dc_stag)
2394 		bus_dma_tag_destroy(sc->dc_stag);
2395 	if (sc->dc_mtag)
2396 		bus_dma_tag_destroy(sc->dc_mtag);
2397 	if (sc->dc_ltag)
2398 		bus_dma_tag_destroy(sc->dc_ltag);
2399 
2400 	free(sc->dc_pnic_rx_buf, M_DEVBUF);
2401 
2402 	while (sc->dc_mi != NULL) {
2403 		m = sc->dc_mi->dc_next;
2404 		free(sc->dc_mi, M_DEVBUF);
2405 		sc->dc_mi = m;
2406 	}
2407 	free(sc->dc_srom, M_DEVBUF);
2408 
2409 	mtx_destroy(&sc->dc_mtx);
2410 
2411 	return (0);
2412 }
2413 
2414 /*
2415  * Initialize the transmit descriptors.
2416  */
2417 static int
2418 dc_list_tx_init(struct dc_softc *sc)
2419 {
2420 	struct dc_chain_data *cd;
2421 	struct dc_list_data *ld;
2422 	int i, nexti;
2423 
2424 	cd = &sc->dc_cdata;
2425 	ld = sc->dc_ldata;
2426 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2427 		if (i == DC_TX_LIST_CNT - 1)
2428 			nexti = 0;
2429 		else
2430 			nexti = i + 1;
2431 		ld->dc_tx_list[i].dc_next = htole32(DC_TXDESC(sc, nexti));
2432 		cd->dc_tx_chain[i] = NULL;
2433 		ld->dc_tx_list[i].dc_data = 0;
2434 		ld->dc_tx_list[i].dc_ctl = 0;
2435 	}
2436 
2437 	cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
2438 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
2439 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2440 	return (0);
2441 }
2442 
2443 
2444 /*
2445  * Initialize the RX descriptors and allocate mbufs for them. Note that
2446  * we arrange the descriptors in a closed ring, so that the last descriptor
2447  * points back to the first.
2448  */
2449 static int
2450 dc_list_rx_init(struct dc_softc *sc)
2451 {
2452 	struct dc_chain_data *cd;
2453 	struct dc_list_data *ld;
2454 	int i, nexti;
2455 
2456 	cd = &sc->dc_cdata;
2457 	ld = sc->dc_ldata;
2458 
2459 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2460 		if (dc_newbuf(sc, i, 1) != 0)
2461 			return (ENOBUFS);
2462 		if (i == DC_RX_LIST_CNT - 1)
2463 			nexti = 0;
2464 		else
2465 			nexti = i + 1;
2466 		ld->dc_rx_list[i].dc_next = htole32(DC_RXDESC(sc, nexti));
2467 	}
2468 
2469 	cd->dc_rx_prod = 0;
2470 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
2471 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2472 	return (0);
2473 }
2474 
2475 static void
2476 dc_dma_map_rxbuf(arg, segs, nseg, mapsize, error)
2477 	void *arg;
2478 	bus_dma_segment_t *segs;
2479 	int nseg;
2480 	bus_size_t mapsize;
2481 	int error;
2482 {
2483 	struct dc_softc *sc;
2484 	struct dc_desc *c;
2485 
2486 	sc = arg;
2487 	c = &sc->dc_ldata->dc_rx_list[sc->dc_cdata.dc_rx_cur];
2488 	if (error) {
2489 		sc->dc_cdata.dc_rx_err = error;
2490 		return;
2491 	}
2492 
2493 	KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
2494 	sc->dc_cdata.dc_rx_err = 0;
2495 	c->dc_data = htole32(segs->ds_addr);
2496 }
2497 
2498 /*
2499  * Initialize an RX descriptor and attach an MBUF cluster.
2500  */
2501 static int
2502 dc_newbuf(struct dc_softc *sc, int i, int alloc)
2503 {
2504 	struct mbuf *m_new;
2505 	bus_dmamap_t tmp;
2506 	int error;
2507 
2508 	if (alloc) {
2509 		m_new = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2510 		if (m_new == NULL)
2511 			return (ENOBUFS);
2512 	} else {
2513 		m_new = sc->dc_cdata.dc_rx_chain[i];
2514 		m_new->m_data = m_new->m_ext.ext_buf;
2515 	}
2516 	m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2517 	m_adj(m_new, sizeof(u_int64_t));
2518 
2519 	/*
2520 	 * If this is a PNIC chip, zero the buffer. This is part
2521 	 * of the workaround for the receive bug in the 82c168 and
2522 	 * 82c169 chips.
2523 	 */
2524 	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
2525 		bzero(mtod(m_new, char *), m_new->m_len);
2526 
2527 	/* No need to remap the mbuf if we're reusing it. */
2528 	if (alloc) {
2529 		sc->dc_cdata.dc_rx_cur = i;
2530 		error = bus_dmamap_load_mbuf(sc->dc_mtag, sc->dc_sparemap,
2531 		    m_new, dc_dma_map_rxbuf, sc, 0);
2532 		if (error) {
2533 			m_freem(m_new);
2534 			return (error);
2535 		}
2536 		if (sc->dc_cdata.dc_rx_err != 0) {
2537 			m_freem(m_new);
2538 			return (sc->dc_cdata.dc_rx_err);
2539 		}
2540 		bus_dmamap_unload(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i]);
2541 		tmp = sc->dc_cdata.dc_rx_map[i];
2542 		sc->dc_cdata.dc_rx_map[i] = sc->dc_sparemap;
2543 		sc->dc_sparemap = tmp;
2544 		sc->dc_cdata.dc_rx_chain[i] = m_new;
2545 	}
2546 
2547 	sc->dc_ldata->dc_rx_list[i].dc_ctl = htole32(DC_RXCTL_RLINK | DC_RXLEN);
2548 	sc->dc_ldata->dc_rx_list[i].dc_status = htole32(DC_RXSTAT_OWN);
2549 	bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i],
2550 	    BUS_DMASYNC_PREREAD);
2551 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
2552 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2553 	return (0);
2554 }
2555 
2556 /*
2557  * Grrrrr.
2558  * The PNIC chip has a terrible bug in it that manifests itself during
2559  * periods of heavy activity. The exact mode of failure if difficult to
2560  * pinpoint: sometimes it only happens in promiscuous mode, sometimes it
2561  * will happen on slow machines. The bug is that sometimes instead of
2562  * uploading one complete frame during reception, it uploads what looks
2563  * like the entire contents of its FIFO memory. The frame we want is at
2564  * the end of the whole mess, but we never know exactly how much data has
2565  * been uploaded, so salvaging the frame is hard.
2566  *
2567  * There is only one way to do it reliably, and it's disgusting.
2568  * Here's what we know:
2569  *
2570  * - We know there will always be somewhere between one and three extra
2571  *   descriptors uploaded.
2572  *
2573  * - We know the desired received frame will always be at the end of the
2574  *   total data upload.
2575  *
2576  * - We know the size of the desired received frame because it will be
2577  *   provided in the length field of the status word in the last descriptor.
2578  *
2579  * Here's what we do:
2580  *
2581  * - When we allocate buffers for the receive ring, we bzero() them.
2582  *   This means that we know that the buffer contents should be all
2583  *   zeros, except for data uploaded by the chip.
2584  *
2585  * - We also force the PNIC chip to upload frames that include the
2586  *   ethernet CRC at the end.
2587  *
2588  * - We gather all of the bogus frame data into a single buffer.
2589  *
2590  * - We then position a pointer at the end of this buffer and scan
2591  *   backwards until we encounter the first non-zero byte of data.
2592  *   This is the end of the received frame. We know we will encounter
2593  *   some data at the end of the frame because the CRC will always be
2594  *   there, so even if the sender transmits a packet of all zeros,
2595  *   we won't be fooled.
2596  *
2597  * - We know the size of the actual received frame, so we subtract
2598  *   that value from the current pointer location. This brings us
2599  *   to the start of the actual received packet.
2600  *
2601  * - We copy this into an mbuf and pass it on, along with the actual
2602  *   frame length.
2603  *
2604  * The performance hit is tremendous, but it beats dropping frames all
2605  * the time.
2606  */
2607 
2608 #define DC_WHOLEFRAME	(DC_RXSTAT_FIRSTFRAG | DC_RXSTAT_LASTFRAG)
2609 static void
2610 dc_pnic_rx_bug_war(struct dc_softc *sc, int idx)
2611 {
2612 	struct dc_desc *cur_rx;
2613 	struct dc_desc *c = NULL;
2614 	struct mbuf *m = NULL;
2615 	unsigned char *ptr;
2616 	int i, total_len;
2617 	u_int32_t rxstat = 0;
2618 
2619 	i = sc->dc_pnic_rx_bug_save;
2620 	cur_rx = &sc->dc_ldata->dc_rx_list[idx];
2621 	ptr = sc->dc_pnic_rx_buf;
2622 	bzero(ptr, DC_RXLEN * 5);
2623 
2624 	/* Copy all the bytes from the bogus buffers. */
2625 	while (1) {
2626 		c = &sc->dc_ldata->dc_rx_list[i];
2627 		rxstat = le32toh(c->dc_status);
2628 		m = sc->dc_cdata.dc_rx_chain[i];
2629 		bcopy(mtod(m, char *), ptr, DC_RXLEN);
2630 		ptr += DC_RXLEN;
2631 		/* If this is the last buffer, break out. */
2632 		if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
2633 			break;
2634 		dc_newbuf(sc, i, 0);
2635 		DC_INC(i, DC_RX_LIST_CNT);
2636 	}
2637 
2638 	/* Find the length of the actual receive frame. */
2639 	total_len = DC_RXBYTES(rxstat);
2640 
2641 	/* Scan backwards until we hit a non-zero byte. */
2642 	while (*ptr == 0x00)
2643 		ptr--;
2644 
2645 	/* Round off. */
2646 	if ((uintptr_t)(ptr) & 0x3)
2647 		ptr -= 1;
2648 
2649 	/* Now find the start of the frame. */
2650 	ptr -= total_len;
2651 	if (ptr < sc->dc_pnic_rx_buf)
2652 		ptr = sc->dc_pnic_rx_buf;
2653 
2654 	/*
2655 	 * Now copy the salvaged frame to the last mbuf and fake up
2656 	 * the status word to make it look like a successful
2657 	 * frame reception.
2658 	 */
2659 	dc_newbuf(sc, i, 0);
2660 	bcopy(ptr, mtod(m, char *), total_len);
2661 	cur_rx->dc_status = htole32(rxstat | DC_RXSTAT_FIRSTFRAG);
2662 }
2663 
2664 /*
2665  * This routine searches the RX ring for dirty descriptors in the
2666  * event that the rxeof routine falls out of sync with the chip's
2667  * current descriptor pointer. This may happen sometimes as a result
2668  * of a "no RX buffer available" condition that happens when the chip
2669  * consumes all of the RX buffers before the driver has a chance to
2670  * process the RX ring. This routine may need to be called more than
2671  * once to bring the driver back in sync with the chip, however we
2672  * should still be getting RX DONE interrupts to drive the search
2673  * for new packets in the RX ring, so we should catch up eventually.
2674  */
2675 static int
2676 dc_rx_resync(struct dc_softc *sc)
2677 {
2678 	struct dc_desc *cur_rx;
2679 	int i, pos;
2680 
2681 	pos = sc->dc_cdata.dc_rx_prod;
2682 
2683 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2684 		cur_rx = &sc->dc_ldata->dc_rx_list[pos];
2685 		if (!(le32toh(cur_rx->dc_status) & DC_RXSTAT_OWN))
2686 			break;
2687 		DC_INC(pos, DC_RX_LIST_CNT);
2688 	}
2689 
2690 	/* If the ring really is empty, then just return. */
2691 	if (i == DC_RX_LIST_CNT)
2692 		return (0);
2693 
2694 	/* We've fallen behing the chip: catch it. */
2695 	sc->dc_cdata.dc_rx_prod = pos;
2696 
2697 	return (EAGAIN);
2698 }
2699 
2700 /*
2701  * A frame has been uploaded: pass the resulting mbuf chain up to
2702  * the higher level protocols.
2703  */
2704 static void
2705 dc_rxeof(struct dc_softc *sc)
2706 {
2707 	struct mbuf *m;
2708 	struct ifnet *ifp;
2709 	struct dc_desc *cur_rx;
2710 	int i, total_len = 0;
2711 	u_int32_t rxstat;
2712 
2713 	DC_LOCK_ASSERT(sc);
2714 
2715 	ifp = sc->dc_ifp;
2716 	i = sc->dc_cdata.dc_rx_prod;
2717 
2718 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap, BUS_DMASYNC_POSTREAD);
2719 	while (!(le32toh(sc->dc_ldata->dc_rx_list[i].dc_status) &
2720 	    DC_RXSTAT_OWN)) {
2721 #ifdef DEVICE_POLLING
2722 		if (ifp->if_capenable & IFCAP_POLLING) {
2723 			if (sc->rxcycles <= 0)
2724 				break;
2725 			sc->rxcycles--;
2726 		}
2727 #endif
2728 		cur_rx = &sc->dc_ldata->dc_rx_list[i];
2729 		rxstat = le32toh(cur_rx->dc_status);
2730 		m = sc->dc_cdata.dc_rx_chain[i];
2731 		bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i],
2732 		    BUS_DMASYNC_POSTREAD);
2733 		total_len = DC_RXBYTES(rxstat);
2734 
2735 		if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2736 			if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
2737 				if (rxstat & DC_RXSTAT_FIRSTFRAG)
2738 					sc->dc_pnic_rx_bug_save = i;
2739 				if ((rxstat & DC_RXSTAT_LASTFRAG) == 0) {
2740 					DC_INC(i, DC_RX_LIST_CNT);
2741 					continue;
2742 				}
2743 				dc_pnic_rx_bug_war(sc, i);
2744 				rxstat = le32toh(cur_rx->dc_status);
2745 				total_len = DC_RXBYTES(rxstat);
2746 			}
2747 		}
2748 
2749 		/*
2750 		 * If an error occurs, update stats, clear the
2751 		 * status word and leave the mbuf cluster in place:
2752 		 * it should simply get re-used next time this descriptor
2753 		 * comes up in the ring.  However, don't report long
2754 		 * frames as errors since they could be vlans.
2755 		 */
2756 		if ((rxstat & DC_RXSTAT_RXERR)) {
2757 			if (!(rxstat & DC_RXSTAT_GIANT) ||
2758 			    (rxstat & (DC_RXSTAT_CRCERR | DC_RXSTAT_DRIBBLE |
2759 				       DC_RXSTAT_MIIERE | DC_RXSTAT_COLLSEEN |
2760 				       DC_RXSTAT_RUNT   | DC_RXSTAT_DE))) {
2761 				ifp->if_ierrors++;
2762 				if (rxstat & DC_RXSTAT_COLLSEEN)
2763 					ifp->if_collisions++;
2764 				dc_newbuf(sc, i, 0);
2765 				if (rxstat & DC_RXSTAT_CRCERR) {
2766 					DC_INC(i, DC_RX_LIST_CNT);
2767 					continue;
2768 				} else {
2769 					dc_init_locked(sc);
2770 					return;
2771 				}
2772 			}
2773 		}
2774 
2775 		/* No errors; receive the packet. */
2776 		total_len -= ETHER_CRC_LEN;
2777 #ifdef __i386__
2778 		/*
2779 		 * On the x86 we do not have alignment problems, so try to
2780 		 * allocate a new buffer for the receive ring, and pass up
2781 		 * the one where the packet is already, saving the expensive
2782 		 * copy done in m_devget().
2783 		 * If we are on an architecture with alignment problems, or
2784 		 * if the allocation fails, then use m_devget and leave the
2785 		 * existing buffer in the receive ring.
2786 		 */
2787 		if (dc_quick && dc_newbuf(sc, i, 1) == 0) {
2788 			m->m_pkthdr.rcvif = ifp;
2789 			m->m_pkthdr.len = m->m_len = total_len;
2790 			DC_INC(i, DC_RX_LIST_CNT);
2791 		} else
2792 #endif
2793 		{
2794 			struct mbuf *m0;
2795 
2796 			m0 = m_devget(mtod(m, char *), total_len,
2797 				ETHER_ALIGN, ifp, NULL);
2798 			dc_newbuf(sc, i, 0);
2799 			DC_INC(i, DC_RX_LIST_CNT);
2800 			if (m0 == NULL) {
2801 				ifp->if_ierrors++;
2802 				continue;
2803 			}
2804 			m = m0;
2805 		}
2806 
2807 		ifp->if_ipackets++;
2808 		DC_UNLOCK(sc);
2809 		(*ifp->if_input)(ifp, m);
2810 		DC_LOCK(sc);
2811 	}
2812 
2813 	sc->dc_cdata.dc_rx_prod = i;
2814 }
2815 
2816 /*
2817  * A frame was downloaded to the chip. It's safe for us to clean up
2818  * the list buffers.
2819  */
2820 
2821 static void
2822 dc_txeof(struct dc_softc *sc)
2823 {
2824 	struct dc_desc *cur_tx = NULL;
2825 	struct ifnet *ifp;
2826 	int idx;
2827 	u_int32_t ctl, txstat;
2828 
2829 	ifp = sc->dc_ifp;
2830 
2831 	/*
2832 	 * Go through our tx list and free mbufs for those
2833 	 * frames that have been transmitted.
2834 	 */
2835 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap, BUS_DMASYNC_POSTREAD);
2836 	idx = sc->dc_cdata.dc_tx_cons;
2837 	while (idx != sc->dc_cdata.dc_tx_prod) {
2838 
2839 		cur_tx = &sc->dc_ldata->dc_tx_list[idx];
2840 		txstat = le32toh(cur_tx->dc_status);
2841 		ctl = le32toh(cur_tx->dc_ctl);
2842 
2843 		if (txstat & DC_TXSTAT_OWN)
2844 			break;
2845 
2846 		if (!(ctl & DC_TXCTL_LASTFRAG) || ctl & DC_TXCTL_SETUP) {
2847 			if (ctl & DC_TXCTL_SETUP) {
2848 				/*
2849 				 * Yes, the PNIC is so brain damaged
2850 				 * that it will sometimes generate a TX
2851 				 * underrun error while DMAing the RX
2852 				 * filter setup frame. If we detect this,
2853 				 * we have to send the setup frame again,
2854 				 * or else the filter won't be programmed
2855 				 * correctly.
2856 				 */
2857 				if (DC_IS_PNIC(sc)) {
2858 					if (txstat & DC_TXSTAT_ERRSUM)
2859 						dc_setfilt(sc);
2860 				}
2861 				sc->dc_cdata.dc_tx_chain[idx] = NULL;
2862 			}
2863 			sc->dc_cdata.dc_tx_cnt--;
2864 			DC_INC(idx, DC_TX_LIST_CNT);
2865 			continue;
2866 		}
2867 
2868 		if (DC_IS_XIRCOM(sc) || DC_IS_CONEXANT(sc)) {
2869 			/*
2870 			 * XXX: Why does my Xircom taunt me so?
2871 			 * For some reason it likes setting the CARRLOST flag
2872 			 * even when the carrier is there. wtf?!?
2873 			 * Who knows, but Conexant chips have the
2874 			 * same problem. Maybe they took lessons
2875 			 * from Xircom.
2876 			 */
2877 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2878 			    sc->dc_pmode == DC_PMODE_MII &&
2879 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
2880 			    DC_TXSTAT_NOCARRIER)))
2881 				txstat &= ~DC_TXSTAT_ERRSUM;
2882 		} else {
2883 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2884 			    sc->dc_pmode == DC_PMODE_MII &&
2885 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
2886 			    DC_TXSTAT_NOCARRIER | DC_TXSTAT_CARRLOST)))
2887 				txstat &= ~DC_TXSTAT_ERRSUM;
2888 		}
2889 
2890 		if (txstat & DC_TXSTAT_ERRSUM) {
2891 			ifp->if_oerrors++;
2892 			if (txstat & DC_TXSTAT_EXCESSCOLL)
2893 				ifp->if_collisions++;
2894 			if (txstat & DC_TXSTAT_LATECOLL)
2895 				ifp->if_collisions++;
2896 			if (!(txstat & DC_TXSTAT_UNDERRUN)) {
2897 				dc_init_locked(sc);
2898 				return;
2899 			}
2900 		}
2901 
2902 		ifp->if_collisions += (txstat & DC_TXSTAT_COLLCNT) >> 3;
2903 
2904 		ifp->if_opackets++;
2905 		if (sc->dc_cdata.dc_tx_chain[idx] != NULL) {
2906 			bus_dmamap_sync(sc->dc_mtag,
2907 			    sc->dc_cdata.dc_tx_map[idx],
2908 			    BUS_DMASYNC_POSTWRITE);
2909 			bus_dmamap_unload(sc->dc_mtag,
2910 			    sc->dc_cdata.dc_tx_map[idx]);
2911 			m_freem(sc->dc_cdata.dc_tx_chain[idx]);
2912 			sc->dc_cdata.dc_tx_chain[idx] = NULL;
2913 		}
2914 
2915 		sc->dc_cdata.dc_tx_cnt--;
2916 		DC_INC(idx, DC_TX_LIST_CNT);
2917 	}
2918 
2919 	if (idx != sc->dc_cdata.dc_tx_cons) {
2920 	    	/* Some buffers have been freed. */
2921 		sc->dc_cdata.dc_tx_cons = idx;
2922 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2923 	}
2924 	ifp->if_timer = (sc->dc_cdata.dc_tx_cnt == 0) ? 0 : 5;
2925 }
2926 
2927 static void
2928 dc_tick(void *xsc)
2929 {
2930 	struct dc_softc *sc;
2931 	struct mii_data *mii;
2932 	struct ifnet *ifp;
2933 	u_int32_t r;
2934 
2935 	sc = xsc;
2936 	DC_LOCK_ASSERT(sc);
2937 	ifp = sc->dc_ifp;
2938 	mii = device_get_softc(sc->dc_miibus);
2939 
2940 	if (sc->dc_flags & DC_REDUCED_MII_POLL) {
2941 		if (sc->dc_flags & DC_21143_NWAY) {
2942 			r = CSR_READ_4(sc, DC_10BTSTAT);
2943 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2944 			    IFM_100_TX && (r & DC_TSTAT_LS100)) {
2945 				sc->dc_link = 0;
2946 				mii_mediachg(mii);
2947 			}
2948 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2949 			    IFM_10_T && (r & DC_TSTAT_LS10)) {
2950 				sc->dc_link = 0;
2951 				mii_mediachg(mii);
2952 			}
2953 			if (sc->dc_link == 0)
2954 				mii_tick(mii);
2955 		} else {
2956 			r = CSR_READ_4(sc, DC_ISR);
2957 			if ((r & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT &&
2958 			    sc->dc_cdata.dc_tx_cnt == 0) {
2959 				mii_tick(mii);
2960 				if (!(mii->mii_media_status & IFM_ACTIVE))
2961 					sc->dc_link = 0;
2962 			}
2963 		}
2964 	} else
2965 		mii_tick(mii);
2966 
2967 	/*
2968 	 * When the init routine completes, we expect to be able to send
2969 	 * packets right away, and in fact the network code will send a
2970 	 * gratuitous ARP the moment the init routine marks the interface
2971 	 * as running. However, even though the MAC may have been initialized,
2972 	 * there may be a delay of a few seconds before the PHY completes
2973 	 * autonegotiation and the link is brought up. Any transmissions
2974 	 * made during that delay will be lost. Dealing with this is tricky:
2975 	 * we can't just pause in the init routine while waiting for the
2976 	 * PHY to come ready since that would bring the whole system to
2977 	 * a screeching halt for several seconds.
2978 	 *
2979 	 * What we do here is prevent the TX start routine from sending
2980 	 * any packets until a link has been established. After the
2981 	 * interface has been initialized, the tick routine will poll
2982 	 * the state of the PHY until the IFM_ACTIVE flag is set. Until
2983 	 * that time, packets will stay in the send queue, and once the
2984 	 * link comes up, they will be flushed out to the wire.
2985 	 */
2986 	if (!sc->dc_link && mii->mii_media_status & IFM_ACTIVE &&
2987 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2988 		sc->dc_link++;
2989 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2990 			dc_start_locked(ifp);
2991 	}
2992 
2993 	if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link)
2994 		callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
2995 	else
2996 		callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
2997 }
2998 
2999 /*
3000  * A transmit underrun has occurred.  Back off the transmit threshold,
3001  * or switch to store and forward mode if we have to.
3002  */
3003 static void
3004 dc_tx_underrun(struct dc_softc *sc)
3005 {
3006 	u_int32_t isr;
3007 	int i;
3008 
3009 	if (DC_IS_DAVICOM(sc))
3010 		dc_init_locked(sc);
3011 
3012 	if (DC_IS_INTEL(sc)) {
3013 		/*
3014 		 * The real 21143 requires that the transmitter be idle
3015 		 * in order to change the transmit threshold or store
3016 		 * and forward state.
3017 		 */
3018 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3019 
3020 		for (i = 0; i < DC_TIMEOUT; i++) {
3021 			isr = CSR_READ_4(sc, DC_ISR);
3022 			if (isr & DC_ISR_TX_IDLE)
3023 				break;
3024 			DELAY(10);
3025 		}
3026 		if (i == DC_TIMEOUT) {
3027 			if_printf(sc->dc_ifp,
3028 			    "failed to force tx to idle state\n");
3029 			dc_init_locked(sc);
3030 		}
3031 	}
3032 
3033 	if_printf(sc->dc_ifp, "TX underrun -- ");
3034 	sc->dc_txthresh += DC_TXTHRESH_INC;
3035 	if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3036 		printf("using store and forward mode\n");
3037 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3038 	} else {
3039 		printf("increasing TX threshold\n");
3040 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3041 		DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3042 	}
3043 
3044 	if (DC_IS_INTEL(sc))
3045 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3046 }
3047 
3048 #ifdef DEVICE_POLLING
3049 static poll_handler_t dc_poll;
3050 
3051 static void
3052 dc_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
3053 {
3054 	struct dc_softc *sc = ifp->if_softc;
3055 
3056 	DC_LOCK(sc);
3057 
3058 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3059 		DC_UNLOCK(sc);
3060 		return;
3061 	}
3062 
3063 	sc->rxcycles = count;
3064 	dc_rxeof(sc);
3065 	dc_txeof(sc);
3066 	if (!IFQ_IS_EMPTY(&ifp->if_snd) &&
3067 	    !(ifp->if_drv_flags & IFF_DRV_OACTIVE))
3068 		dc_start_locked(ifp);
3069 
3070 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
3071 		u_int32_t	status;
3072 
3073 		status = CSR_READ_4(sc, DC_ISR);
3074 		status &= (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF |
3075 			DC_ISR_TX_NOBUF | DC_ISR_TX_IDLE | DC_ISR_TX_UNDERRUN |
3076 			DC_ISR_BUS_ERR);
3077 		if (!status) {
3078 			DC_UNLOCK(sc);
3079 			return;
3080 		}
3081 		/* ack what we have */
3082 		CSR_WRITE_4(sc, DC_ISR, status);
3083 
3084 		if (status & (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF)) {
3085 			u_int32_t r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
3086 			ifp->if_ierrors += (r & 0xffff) + ((r >> 17) & 0x7ff);
3087 
3088 			if (dc_rx_resync(sc))
3089 				dc_rxeof(sc);
3090 		}
3091 		/* restart transmit unit if necessary */
3092 		if (status & DC_ISR_TX_IDLE && sc->dc_cdata.dc_tx_cnt)
3093 			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3094 
3095 		if (status & DC_ISR_TX_UNDERRUN)
3096 			dc_tx_underrun(sc);
3097 
3098 		if (status & DC_ISR_BUS_ERR) {
3099 			if_printf(ifp, "dc_poll: bus error\n");
3100 			dc_reset(sc);
3101 			dc_init_locked(sc);
3102 		}
3103 	}
3104 	DC_UNLOCK(sc);
3105 }
3106 #endif /* DEVICE_POLLING */
3107 
3108 static void
3109 dc_intr(void *arg)
3110 {
3111 	struct dc_softc *sc;
3112 	struct ifnet *ifp;
3113 	u_int32_t status;
3114 
3115 	sc = arg;
3116 
3117 	if (sc->suspended)
3118 		return;
3119 
3120 	if ((CSR_READ_4(sc, DC_ISR) & DC_INTRS) == 0)
3121 		return;
3122 
3123 	DC_LOCK(sc);
3124 	ifp = sc->dc_ifp;
3125 #ifdef DEVICE_POLLING
3126 	if (ifp->if_capenable & IFCAP_POLLING) {
3127 		DC_UNLOCK(sc);
3128 		return;
3129 	}
3130 #endif
3131 
3132 	/* Suppress unwanted interrupts */
3133 	if (!(ifp->if_flags & IFF_UP)) {
3134 		if (CSR_READ_4(sc, DC_ISR) & DC_INTRS)
3135 			dc_stop(sc);
3136 		DC_UNLOCK(sc);
3137 		return;
3138 	}
3139 
3140 	/* Disable interrupts. */
3141 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3142 
3143 	while (((status = CSR_READ_4(sc, DC_ISR)) & DC_INTRS) &&
3144 	    status != 0xFFFFFFFF &&
3145 	    (ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3146 
3147 		CSR_WRITE_4(sc, DC_ISR, status);
3148 
3149 		if (status & DC_ISR_RX_OK) {
3150 			int		curpkts;
3151 			curpkts = ifp->if_ipackets;
3152 			dc_rxeof(sc);
3153 			if (curpkts == ifp->if_ipackets) {
3154 				while (dc_rx_resync(sc))
3155 					dc_rxeof(sc);
3156 			}
3157 		}
3158 
3159 		if (status & (DC_ISR_TX_OK | DC_ISR_TX_NOBUF))
3160 			dc_txeof(sc);
3161 
3162 		if (status & DC_ISR_TX_IDLE) {
3163 			dc_txeof(sc);
3164 			if (sc->dc_cdata.dc_tx_cnt) {
3165 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3166 				CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3167 			}
3168 		}
3169 
3170 		if (status & DC_ISR_TX_UNDERRUN)
3171 			dc_tx_underrun(sc);
3172 
3173 		if ((status & DC_ISR_RX_WATDOGTIMEO)
3174 		    || (status & DC_ISR_RX_NOBUF)) {
3175 			int		curpkts;
3176 			curpkts = ifp->if_ipackets;
3177 			dc_rxeof(sc);
3178 			if (curpkts == ifp->if_ipackets) {
3179 				while (dc_rx_resync(sc))
3180 					dc_rxeof(sc);
3181 			}
3182 		}
3183 
3184 		if (status & DC_ISR_BUS_ERR) {
3185 			dc_reset(sc);
3186 			dc_init_locked(sc);
3187 		}
3188 	}
3189 
3190 	/* Re-enable interrupts. */
3191 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3192 
3193 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3194 		dc_start_locked(ifp);
3195 
3196 	DC_UNLOCK(sc);
3197 }
3198 
3199 static void
3200 dc_dma_map_txbuf(arg, segs, nseg, mapsize, error)
3201 	void *arg;
3202 	bus_dma_segment_t *segs;
3203 	int nseg;
3204 	bus_size_t mapsize;
3205 	int error;
3206 {
3207 	struct dc_softc *sc;
3208 	struct dc_desc *f;
3209 	int cur, first, frag, i;
3210 
3211 	sc = arg;
3212 	if (error) {
3213 		sc->dc_cdata.dc_tx_err = error;
3214 		return;
3215 	}
3216 
3217 	first = cur = frag = sc->dc_cdata.dc_tx_prod;
3218 	for (i = 0; i < nseg; i++) {
3219 		if ((sc->dc_flags & DC_TX_ADMTEK_WAR) &&
3220 		    (frag == (DC_TX_LIST_CNT - 1)) &&
3221 		    (first != sc->dc_cdata.dc_tx_first)) {
3222 			bus_dmamap_unload(sc->dc_mtag,
3223 			    sc->dc_cdata.dc_tx_map[first]);
3224 			sc->dc_cdata.dc_tx_err = ENOBUFS;
3225 			return;
3226 		}
3227 
3228 		f = &sc->dc_ldata->dc_tx_list[frag];
3229 		f->dc_ctl = htole32(DC_TXCTL_TLINK | segs[i].ds_len);
3230 		if (i == 0) {
3231 			f->dc_status = 0;
3232 			f->dc_ctl |= htole32(DC_TXCTL_FIRSTFRAG);
3233 		} else
3234 			f->dc_status = htole32(DC_TXSTAT_OWN);
3235 		f->dc_data = htole32(segs[i].ds_addr);
3236 		cur = frag;
3237 		DC_INC(frag, DC_TX_LIST_CNT);
3238 	}
3239 
3240 	sc->dc_cdata.dc_tx_err = 0;
3241 	sc->dc_cdata.dc_tx_prod = frag;
3242 	sc->dc_cdata.dc_tx_cnt += nseg;
3243 	sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_LASTFRAG);
3244 	sc->dc_cdata.dc_tx_chain[cur] = sc->dc_cdata.dc_tx_mapping;
3245 	if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
3246 		sc->dc_ldata->dc_tx_list[first].dc_ctl |=
3247 		    htole32(DC_TXCTL_FINT);
3248 	if (sc->dc_flags & DC_TX_INTR_ALWAYS)
3249 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
3250 	if (sc->dc_flags & DC_TX_USE_TX_INTR && sc->dc_cdata.dc_tx_cnt > 64)
3251 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
3252 	sc->dc_ldata->dc_tx_list[first].dc_status = htole32(DC_TXSTAT_OWN);
3253 }
3254 
3255 /*
3256  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
3257  * pointers to the fragment pointers.
3258  */
3259 static int
3260 dc_encap(struct dc_softc *sc, struct mbuf **m_head)
3261 {
3262 	struct mbuf *m;
3263 	int error, idx, chainlen = 0;
3264 
3265 	/*
3266 	 * If there's no way we can send any packets, return now.
3267 	 */
3268 	if (DC_TX_LIST_CNT - sc->dc_cdata.dc_tx_cnt < 6)
3269 		return (ENOBUFS);
3270 
3271 	/*
3272 	 * Count the number of frags in this chain to see if
3273 	 * we need to m_defrag.  Since the descriptor list is shared
3274 	 * by all packets, we'll m_defrag long chains so that they
3275 	 * do not use up the entire list, even if they would fit.
3276 	 */
3277 	for (m = *m_head; m != NULL; m = m->m_next)
3278 		chainlen++;
3279 
3280 	if ((chainlen > DC_TX_LIST_CNT / 4) ||
3281 	    ((DC_TX_LIST_CNT - (chainlen + sc->dc_cdata.dc_tx_cnt)) < 6)) {
3282 		m = m_defrag(*m_head, M_DONTWAIT);
3283 		if (m == NULL)
3284 			return (ENOBUFS);
3285 		*m_head = m;
3286 	}
3287 
3288 	/*
3289 	 * Start packing the mbufs in this chain into
3290 	 * the fragment pointers. Stop when we run out
3291 	 * of fragments or hit the end of the mbuf chain.
3292 	 */
3293 	idx = sc->dc_cdata.dc_tx_prod;
3294 	sc->dc_cdata.dc_tx_mapping = *m_head;
3295 	error = bus_dmamap_load_mbuf(sc->dc_mtag, sc->dc_cdata.dc_tx_map[idx],
3296 	    *m_head, dc_dma_map_txbuf, sc, 0);
3297 	if (error)
3298 		return (error);
3299 	if (sc->dc_cdata.dc_tx_err != 0)
3300 		return (sc->dc_cdata.dc_tx_err);
3301 	bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_tx_map[idx],
3302 	    BUS_DMASYNC_PREWRITE);
3303 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
3304 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
3305 	return (0);
3306 }
3307 
3308 /*
3309  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3310  * to the mbuf data regions directly in the transmit lists. We also save a
3311  * copy of the pointers since the transmit list fragment pointers are
3312  * physical addresses.
3313  */
3314 
3315 static void
3316 dc_start(struct ifnet *ifp)
3317 {
3318 	struct dc_softc *sc;
3319 
3320 	sc = ifp->if_softc;
3321 	DC_LOCK(sc);
3322 	dc_start_locked(ifp);
3323 	DC_UNLOCK(sc);
3324 }
3325 
3326 static void
3327 dc_start_locked(struct ifnet *ifp)
3328 {
3329 	struct dc_softc *sc;
3330 	struct mbuf *m_head = NULL, *m;
3331 	unsigned int queued = 0;
3332 	int idx;
3333 
3334 	sc = ifp->if_softc;
3335 
3336 	DC_LOCK_ASSERT(sc);
3337 
3338 	if (!sc->dc_link && ifp->if_snd.ifq_len < 10)
3339 		return;
3340 
3341 	if (ifp->if_drv_flags & IFF_DRV_OACTIVE)
3342 		return;
3343 
3344 	idx = sc->dc_cdata.dc_tx_first = sc->dc_cdata.dc_tx_prod;
3345 
3346 	while (sc->dc_cdata.dc_tx_chain[idx] == NULL) {
3347 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
3348 		if (m_head == NULL)
3349 			break;
3350 
3351 		if (sc->dc_flags & DC_TX_COALESCE &&
3352 		    (m_head->m_next != NULL ||
3353 		     sc->dc_flags & DC_TX_ALIGN)) {
3354 			m = m_defrag(m_head, M_DONTWAIT);
3355 			if (m == NULL) {
3356 				IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
3357 				ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3358 				break;
3359 			} else {
3360 				m_head = m;
3361 			}
3362 		}
3363 
3364 		if (dc_encap(sc, &m_head)) {
3365 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
3366 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3367 			break;
3368 		}
3369 		idx = sc->dc_cdata.dc_tx_prod;
3370 
3371 		queued++;
3372 		/*
3373 		 * If there's a BPF listener, bounce a copy of this frame
3374 		 * to him.
3375 		 */
3376 		BPF_MTAP(ifp, m_head);
3377 
3378 		if (sc->dc_flags & DC_TX_ONE) {
3379 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3380 			break;
3381 		}
3382 	}
3383 
3384 	if (queued > 0) {
3385 		/* Transmit */
3386 		if (!(sc->dc_flags & DC_TX_POLL))
3387 			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3388 
3389 		/*
3390 		 * Set a timeout in case the chip goes out to lunch.
3391 		 */
3392 		ifp->if_timer = 5;
3393 	}
3394 }
3395 
3396 static void
3397 dc_init(void *xsc)
3398 {
3399 	struct dc_softc *sc = xsc;
3400 
3401 	DC_LOCK(sc);
3402 	dc_init_locked(sc);
3403 #ifdef SRM_MEDIA
3404 	if(sc->dc_srm_media) {
3405 		struct ifreq ifr;
3406 		struct mii_data *mii;
3407 
3408 		ifr.ifr_media = sc->dc_srm_media;
3409 		sc->dc_srm_media = 0;
3410 		DC_UNLOCK(sc);
3411 		mii = device_get_softc(sc->dc_miibus);
3412 		ifmedia_ioctl(sc->dc_ifp, &ifr, &mii->mii_media, SIOCSIFMEDIA);
3413 	} else
3414 #endif
3415 		DC_UNLOCK(sc);
3416 }
3417 
3418 static void
3419 dc_init_locked(struct dc_softc *sc)
3420 {
3421 	struct ifnet *ifp = sc->dc_ifp;
3422 	struct mii_data *mii;
3423 
3424 	DC_LOCK_ASSERT(sc);
3425 
3426 	mii = device_get_softc(sc->dc_miibus);
3427 
3428 	/*
3429 	 * Cancel pending I/O and free all RX/TX buffers.
3430 	 */
3431 	dc_stop(sc);
3432 	dc_reset(sc);
3433 
3434 	/*
3435 	 * Set cache alignment and burst length.
3436 	 */
3437 	if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc))
3438 		CSR_WRITE_4(sc, DC_BUSCTL, 0);
3439 	else
3440 		CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME | DC_BUSCTL_MRLE);
3441 	/*
3442 	 * Evenly share the bus between receive and transmit process.
3443 	 */
3444 	if (DC_IS_INTEL(sc))
3445 		DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION);
3446 	if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
3447 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
3448 	} else {
3449 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
3450 	}
3451 	if (sc->dc_flags & DC_TX_POLL)
3452 		DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
3453 	switch(sc->dc_cachesize) {
3454 	case 32:
3455 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
3456 		break;
3457 	case 16:
3458 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
3459 		break;
3460 	case 8:
3461 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
3462 		break;
3463 	case 0:
3464 	default:
3465 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
3466 		break;
3467 	}
3468 
3469 	if (sc->dc_flags & DC_TX_STORENFWD)
3470 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3471 	else {
3472 		if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3473 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3474 		} else {
3475 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3476 			DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3477 		}
3478 	}
3479 
3480 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
3481 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
3482 
3483 	if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
3484 		/*
3485 		 * The app notes for the 98713 and 98715A say that
3486 		 * in order to have the chips operate properly, a magic
3487 		 * number must be written to CSR16. Macronix does not
3488 		 * document the meaning of these bits so there's no way
3489 		 * to know exactly what they do. The 98713 has a magic
3490 		 * number all its own; the rest all use a different one.
3491 		 */
3492 		DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
3493 		if (sc->dc_type == DC_TYPE_98713)
3494 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
3495 		else
3496 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
3497 	}
3498 
3499 	if (DC_IS_XIRCOM(sc)) {
3500 		/*
3501 		 * setup General Purpose Port mode and data so the tulip
3502 		 * can talk to the MII.
3503 		 */
3504 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
3505 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3506 		DELAY(10);
3507 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
3508 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3509 		DELAY(10);
3510 	}
3511 
3512 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3513 	DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN);
3514 
3515 	/* Init circular RX list. */
3516 	if (dc_list_rx_init(sc) == ENOBUFS) {
3517 		if_printf(ifp,
3518 		    "initialization failed: no memory for rx buffers\n");
3519 		dc_stop(sc);
3520 		return;
3521 	}
3522 
3523 	/*
3524 	 * Init TX descriptors.
3525 	 */
3526 	dc_list_tx_init(sc);
3527 
3528 	/*
3529 	 * Load the address of the RX list.
3530 	 */
3531 	CSR_WRITE_4(sc, DC_RXADDR, DC_RXDESC(sc, 0));
3532 	CSR_WRITE_4(sc, DC_TXADDR, DC_TXDESC(sc, 0));
3533 
3534 	/*
3535 	 * Enable interrupts.
3536 	 */
3537 #ifdef DEVICE_POLLING
3538 	/*
3539 	 * ... but only if we are not polling, and make sure they are off in
3540 	 * the case of polling. Some cards (e.g. fxp) turn interrupts on
3541 	 * after a reset.
3542 	 */
3543 	if (ifp->if_capenable & IFCAP_POLLING)
3544 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3545 	else
3546 #endif
3547 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3548 	CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
3549 
3550 	/* Enable transmitter. */
3551 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3552 
3553 	/*
3554 	 * If this is an Intel 21143 and we're not using the
3555 	 * MII port, program the LED control pins so we get
3556 	 * link and activity indications.
3557 	 */
3558 	if (sc->dc_flags & DC_TULIP_LEDS) {
3559 		CSR_WRITE_4(sc, DC_WATCHDOG,
3560 		    DC_WDOG_CTLWREN | DC_WDOG_LINK | DC_WDOG_ACTIVITY);
3561 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
3562 	}
3563 
3564 	/*
3565 	 * Load the RX/multicast filter. We do this sort of late
3566 	 * because the filter programming scheme on the 21143 and
3567 	 * some clones requires DMAing a setup frame via the TX
3568 	 * engine, and we need the transmitter enabled for that.
3569 	 */
3570 	dc_setfilt(sc);
3571 
3572 	/* Enable receiver. */
3573 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
3574 	CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
3575 
3576 	mii_mediachg(mii);
3577 	dc_setcfg(sc, sc->dc_if_media);
3578 
3579 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3580 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3581 
3582 	/* Don't start the ticker if this is a homePNA link. */
3583 	if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_HPNA_1)
3584 		sc->dc_link = 1;
3585 	else {
3586 		if (sc->dc_flags & DC_21143_NWAY)
3587 			callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
3588 		else
3589 			callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
3590 	}
3591 }
3592 
3593 /*
3594  * Set media options.
3595  */
3596 static int
3597 dc_ifmedia_upd(struct ifnet *ifp)
3598 {
3599 	struct dc_softc *sc;
3600 	struct mii_data *mii;
3601 	struct ifmedia *ifm;
3602 
3603 	sc = ifp->if_softc;
3604 	mii = device_get_softc(sc->dc_miibus);
3605 	DC_LOCK(sc);
3606 	mii_mediachg(mii);
3607 	ifm = &mii->mii_media;
3608 
3609 	if (DC_IS_DAVICOM(sc) &&
3610 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1)
3611 		dc_setcfg(sc, ifm->ifm_media);
3612 	else
3613 		sc->dc_link = 0;
3614 	DC_UNLOCK(sc);
3615 
3616 	return (0);
3617 }
3618 
3619 /*
3620  * Report current media status.
3621  */
3622 static void
3623 dc_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3624 {
3625 	struct dc_softc *sc;
3626 	struct mii_data *mii;
3627 	struct ifmedia *ifm;
3628 
3629 	sc = ifp->if_softc;
3630 	mii = device_get_softc(sc->dc_miibus);
3631 	DC_LOCK(sc);
3632 	mii_pollstat(mii);
3633 	ifm = &mii->mii_media;
3634 	if (DC_IS_DAVICOM(sc)) {
3635 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
3636 			ifmr->ifm_active = ifm->ifm_media;
3637 			ifmr->ifm_status = 0;
3638 			return;
3639 		}
3640 	}
3641 	ifmr->ifm_active = mii->mii_media_active;
3642 	ifmr->ifm_status = mii->mii_media_status;
3643 	DC_UNLOCK(sc);
3644 }
3645 
3646 static int
3647 dc_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
3648 {
3649 	struct dc_softc *sc = ifp->if_softc;
3650 	struct ifreq *ifr = (struct ifreq *)data;
3651 	struct mii_data *mii;
3652 	int error = 0;
3653 
3654 	switch (command) {
3655 	case SIOCSIFFLAGS:
3656 		DC_LOCK(sc);
3657 		if (ifp->if_flags & IFF_UP) {
3658 			int need_setfilt = (ifp->if_flags ^ sc->dc_if_flags) &
3659 				(IFF_PROMISC | IFF_ALLMULTI);
3660 
3661 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3662 				if (need_setfilt)
3663 					dc_setfilt(sc);
3664 			} else {
3665 				sc->dc_txthresh = 0;
3666 				dc_init_locked(sc);
3667 			}
3668 		} else {
3669 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3670 				dc_stop(sc);
3671 		}
3672 		sc->dc_if_flags = ifp->if_flags;
3673 		DC_UNLOCK(sc);
3674 		error = 0;
3675 		break;
3676 	case SIOCADDMULTI:
3677 	case SIOCDELMULTI:
3678 		DC_LOCK(sc);
3679 		dc_setfilt(sc);
3680 		DC_UNLOCK(sc);
3681 		error = 0;
3682 		break;
3683 	case SIOCGIFMEDIA:
3684 	case SIOCSIFMEDIA:
3685 		mii = device_get_softc(sc->dc_miibus);
3686 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
3687 #ifdef SRM_MEDIA
3688 		DC_LOCK(sc);
3689 		if (sc->dc_srm_media)
3690 			sc->dc_srm_media = 0;
3691 		DC_UNLOCK(sc);
3692 #endif
3693 		break;
3694 	case SIOCSIFCAP:
3695 #ifdef DEVICE_POLLING
3696 		if (ifr->ifr_reqcap & IFCAP_POLLING &&
3697 		    !(ifp->if_capenable & IFCAP_POLLING)) {
3698 			error = ether_poll_register(dc_poll, ifp);
3699 			if (error)
3700 				return(error);
3701 			DC_LOCK(sc);
3702 			/* Disable interrupts */
3703 			CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3704 			ifp->if_capenable |= IFCAP_POLLING;
3705 			DC_UNLOCK(sc);
3706 			return (error);
3707 
3708 		}
3709 		if (!(ifr->ifr_reqcap & IFCAP_POLLING) &&
3710 		    ifp->if_capenable & IFCAP_POLLING) {
3711 			error = ether_poll_deregister(ifp);
3712 			/* Enable interrupts. */
3713 			DC_LOCK(sc);
3714 			CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3715 			ifp->if_capenable &= ~IFCAP_POLLING;
3716 			DC_UNLOCK(sc);
3717 			return (error);
3718 		}
3719 #endif /* DEVICE_POLLING */
3720 		break;
3721 	default:
3722 		error = ether_ioctl(ifp, command, data);
3723 		break;
3724 	}
3725 
3726 	return (error);
3727 }
3728 
3729 static void
3730 dc_watchdog(struct ifnet *ifp)
3731 {
3732 	struct dc_softc *sc;
3733 
3734 	sc = ifp->if_softc;
3735 
3736 	DC_LOCK(sc);
3737 
3738 	ifp->if_oerrors++;
3739 	if_printf(ifp, "watchdog timeout\n");
3740 
3741 	dc_stop(sc);
3742 	dc_reset(sc);
3743 	dc_init_locked(sc);
3744 
3745 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3746 		dc_start_locked(ifp);
3747 
3748 	DC_UNLOCK(sc);
3749 }
3750 
3751 /*
3752  * Stop the adapter and free any mbufs allocated to the
3753  * RX and TX lists.
3754  */
3755 static void
3756 dc_stop(struct dc_softc *sc)
3757 {
3758 	struct ifnet *ifp;
3759 	struct dc_list_data *ld;
3760 	struct dc_chain_data *cd;
3761 	int i;
3762 	u_int32_t ctl;
3763 
3764 	DC_LOCK_ASSERT(sc);
3765 
3766 	ifp = sc->dc_ifp;
3767 	ifp->if_timer = 0;
3768 	ld = sc->dc_ldata;
3769 	cd = &sc->dc_cdata;
3770 
3771 	callout_stop(&sc->dc_stat_ch);
3772 
3773 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3774 
3775 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ON | DC_NETCFG_TX_ON));
3776 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3777 	CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
3778 	CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
3779 	sc->dc_link = 0;
3780 
3781 	/*
3782 	 * Free data in the RX lists.
3783 	 */
3784 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
3785 		if (cd->dc_rx_chain[i] != NULL) {
3786 			m_freem(cd->dc_rx_chain[i]);
3787 			cd->dc_rx_chain[i] = NULL;
3788 		}
3789 	}
3790 	bzero(&ld->dc_rx_list, sizeof(ld->dc_rx_list));
3791 
3792 	/*
3793 	 * Free the TX list buffers.
3794 	 */
3795 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
3796 		if (cd->dc_tx_chain[i] != NULL) {
3797 			ctl = le32toh(ld->dc_tx_list[i].dc_ctl);
3798 			if ((ctl & DC_TXCTL_SETUP) ||
3799 			    !(ctl & DC_TXCTL_LASTFRAG)) {
3800 				cd->dc_tx_chain[i] = NULL;
3801 				continue;
3802 			}
3803 			bus_dmamap_unload(sc->dc_mtag, cd->dc_tx_map[i]);
3804 			m_freem(cd->dc_tx_chain[i]);
3805 			cd->dc_tx_chain[i] = NULL;
3806 		}
3807 	}
3808 	bzero(&ld->dc_tx_list, sizeof(ld->dc_tx_list));
3809 }
3810 
3811 /*
3812  * Device suspend routine.  Stop the interface and save some PCI
3813  * settings in case the BIOS doesn't restore them properly on
3814  * resume.
3815  */
3816 static int
3817 dc_suspend(device_t dev)
3818 {
3819 	struct dc_softc *sc;
3820 
3821 	sc = device_get_softc(dev);
3822 	DC_LOCK(sc);
3823 	dc_stop(sc);
3824 	sc->suspended = 1;
3825 	DC_UNLOCK(sc);
3826 
3827 	return (0);
3828 }
3829 
3830 /*
3831  * Device resume routine.  Restore some PCI settings in case the BIOS
3832  * doesn't, re-enable busmastering, and restart the interface if
3833  * appropriate.
3834  */
3835 static int
3836 dc_resume(device_t dev)
3837 {
3838 	struct dc_softc *sc;
3839 	struct ifnet *ifp;
3840 
3841 	sc = device_get_softc(dev);
3842 	ifp = sc->dc_ifp;
3843 
3844 	/* reinitialize interface if necessary */
3845 	DC_LOCK(sc);
3846 	if (ifp->if_flags & IFF_UP)
3847 		dc_init_locked(sc);
3848 
3849 	sc->suspended = 0;
3850 	DC_UNLOCK(sc);
3851 
3852 	return (0);
3853 }
3854 
3855 /*
3856  * Stop all chip I/O so that the kernel's probe routines don't
3857  * get confused by errant DMAs when rebooting.
3858  */
3859 static void
3860 dc_shutdown(device_t dev)
3861 {
3862 	struct dc_softc *sc;
3863 
3864 	sc = device_get_softc(dev);
3865 
3866 	DC_LOCK(sc);
3867 	dc_stop(sc);
3868 	DC_UNLOCK(sc);
3869 }
3870