xref: /freebsd/sys/dev/dc/if_dc.c (revision 82431678fce5c893ef9c7418ad6d998ad4187de6)
1 /*-
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ee.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /*
37  * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
38  * series chips and several workalikes including the following:
39  *
40  * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com)
41  * Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
42  * Lite-On 82c168/82c169 PNIC (www.litecom.com)
43  * ASIX Electronics AX88140A (www.asix.com.tw)
44  * ASIX Electronics AX88141 (www.asix.com.tw)
45  * ADMtek AL981 (www.admtek.com.tw)
46  * ADMtek AN985 (www.admtek.com.tw)
47  * Netgear FA511 (www.netgear.com) Appears to be rebadged ADMTek AN985
48  * Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
49  * Accton EN1217 (www.accton.com)
50  * Xircom X3201 (www.xircom.com)
51  * Abocom FE2500
52  * Conexant LANfinity (www.conexant.com)
53  * 3Com OfficeConnect 10/100B 3CSOHO100B (www.3com.com)
54  *
55  * Datasheets for the 21143 are available at developer.intel.com.
56  * Datasheets for the clone parts can be found at their respective sites.
57  * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
58  * The PNIC II is essentially a Macronix 98715A chip; the only difference
59  * worth noting is that its multicast hash table is only 128 bits wide
60  * instead of 512.
61  *
62  * Written by Bill Paul <wpaul@ee.columbia.edu>
63  * Electrical Engineering Department
64  * Columbia University, New York City
65  */
66 /*
67  * The Intel 21143 is the successor to the DEC 21140. It is basically
68  * the same as the 21140 but with a few new features. The 21143 supports
69  * three kinds of media attachments:
70  *
71  * o MII port, for 10Mbps and 100Mbps support and NWAY
72  *   autonegotiation provided by an external PHY.
73  * o SYM port, for symbol mode 100Mbps support.
74  * o 10baseT port.
75  * o AUI/BNC port.
76  *
77  * The 100Mbps SYM port and 10baseT port can be used together in
78  * combination with the internal NWAY support to create a 10/100
79  * autosensing configuration.
80  *
81  * Note that not all tulip workalikes are handled in this driver: we only
82  * deal with those which are relatively well behaved. The Winbond is
83  * handled separately due to its different register offsets and the
84  * special handling needed for its various bugs. The PNIC is handled
85  * here, but I'm not thrilled about it.
86  *
87  * All of the workalike chips use some form of MII transceiver support
88  * with the exception of the Macronix chips, which also have a SYM port.
89  * The ASIX AX88140A is also documented to have a SYM port, but all
90  * the cards I've seen use an MII transceiver, probably because the
91  * AX88140A doesn't support internal NWAY.
92  */
93 
94 #ifdef HAVE_KERNEL_OPTION_HEADERS
95 #include "opt_device_polling.h"
96 #endif
97 
98 #include <sys/param.h>
99 #include <sys/endian.h>
100 #include <sys/systm.h>
101 #include <sys/sockio.h>
102 #include <sys/mbuf.h>
103 #include <sys/malloc.h>
104 #include <sys/kernel.h>
105 #include <sys/module.h>
106 #include <sys/socket.h>
107 
108 #include <net/if.h>
109 #include <net/if_arp.h>
110 #include <net/ethernet.h>
111 #include <net/if_dl.h>
112 #include <net/if_media.h>
113 #include <net/if_types.h>
114 #include <net/if_vlan_var.h>
115 
116 #include <net/bpf.h>
117 
118 #include <machine/bus.h>
119 #include <machine/resource.h>
120 #include <sys/bus.h>
121 #include <sys/rman.h>
122 
123 #include <dev/mii/mii.h>
124 #include <dev/mii/miivar.h>
125 
126 #include <dev/pci/pcireg.h>
127 #include <dev/pci/pcivar.h>
128 
129 #define DC_USEIOSPACE
130 
131 #include <dev/dc/if_dcreg.h>
132 
133 #ifdef __sparc64__
134 #include <dev/ofw/openfirm.h>
135 #include <machine/ofw_machdep.h>
136 #endif
137 
138 MODULE_DEPEND(dc, pci, 1, 1, 1);
139 MODULE_DEPEND(dc, ether, 1, 1, 1);
140 MODULE_DEPEND(dc, miibus, 1, 1, 1);
141 
142 /*
143  * "device miibus" is required in kernel config.  See GENERIC if you get
144  * errors here.
145  */
146 #include "miibus_if.h"
147 
148 /*
149  * Various supported device vendors/types and their names.
150  */
151 static const struct dc_type dc_devs[] = {
152 	{ DC_DEVID(DC_VENDORID_DEC, DC_DEVICEID_21143), 0,
153 		"Intel 21143 10/100BaseTX" },
154 	{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009), 0,
155 		"Davicom DM9009 10/100BaseTX" },
156 	{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100), 0,
157 		"Davicom DM9100 10/100BaseTX" },
158 	{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102), DC_REVISION_DM9102A,
159 		"Davicom DM9102A 10/100BaseTX" },
160 	{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102), 0,
161 		"Davicom DM9102 10/100BaseTX" },
162 	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AL981), 0,
163 		"ADMtek AL981 10/100BaseTX" },
164 	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN985), 0,
165 		"ADMtek AN985 10/100BaseTX" },
166 	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511), 0,
167 		"ADMtek ADM9511 10/100BaseTX" },
168 	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513), 0,
169 		"ADMtek ADM9513 10/100BaseTX" },
170 	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_FA511), 0,
171 		"Netgear FA511 10/100BaseTX" },
172 	{ DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A), DC_REVISION_88141,
173 		"ASIX AX88141 10/100BaseTX" },
174 	{ DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A), 0,
175 		"ASIX AX88140A 10/100BaseTX" },
176 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713), DC_REVISION_98713A,
177 		"Macronix 98713A 10/100BaseTX" },
178 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713), 0,
179 		"Macronix 98713 10/100BaseTX" },
180 	{ DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP), DC_REVISION_98713A,
181 		"Compex RL100-TX 10/100BaseTX" },
182 	{ DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP), 0,
183 		"Compex RL100-TX 10/100BaseTX" },
184 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), DC_REVISION_98725,
185 		"Macronix 98725 10/100BaseTX" },
186 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), DC_REVISION_98715AEC_C,
187 		"Macronix 98715AEC-C 10/100BaseTX" },
188 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), 0,
189 		"Macronix 98715/98715A 10/100BaseTX" },
190 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98727), 0,
191 		"Macronix 98727/98732 10/100BaseTX" },
192 	{ DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C115), 0,
193 		"LC82C115 PNIC II 10/100BaseTX" },
194 	{ DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168), DC_REVISION_82C169,
195 		"82c169 PNIC 10/100BaseTX" },
196 	{ DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168), 0,
197 		"82c168 PNIC 10/100BaseTX" },
198 	{ DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN1217), 0,
199 		"Accton EN1217 10/100BaseTX" },
200 	{ DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN2242), 0,
201 		"Accton EN2242 MiniPCI 10/100BaseTX" },
202 	{ DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201), 0,
203 		"Xircom X3201 10/100BaseTX" },
204 	{ DC_DEVID(DC_VENDORID_DLINK, DC_DEVICEID_DRP32TXD), 0,
205 		"Neteasy DRP-32TXD Cardbus 10/100" },
206 	{ DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500), 0,
207 		"Abocom FE2500 10/100BaseTX" },
208 	{ DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500MX), 0,
209 		"Abocom FE2500MX 10/100BaseTX" },
210 	{ DC_DEVID(DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112), 0,
211 		"Conexant LANfinity MiniPCI 10/100BaseTX" },
212 	{ DC_DEVID(DC_VENDORID_HAWKING, DC_DEVICEID_HAWKING_PN672TX), 0,
213 		"Hawking CB102 CardBus 10/100" },
214 	{ DC_DEVID(DC_VENDORID_PLANEX, DC_DEVICEID_FNW3602T), 0,
215 		"PlaneX FNW-3602-T CardBus 10/100" },
216 	{ DC_DEVID(DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB), 0,
217 		"3Com OfficeConnect 10/100B" },
218 	{ DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN120), 0,
219 		"Microsoft MN-120 CardBus 10/100" },
220 	{ DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130), 0,
221 		"Microsoft MN-130 10/100" },
222 	{ DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB08), 0,
223 		"Linksys PCMPC200 CardBus 10/100" },
224 	{ DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB09), 0,
225 		"Linksys PCMPC200 CardBus 10/100" },
226 	{ 0, 0, NULL }
227 };
228 
229 static int dc_probe(device_t);
230 static int dc_attach(device_t);
231 static int dc_detach(device_t);
232 static int dc_suspend(device_t);
233 static int dc_resume(device_t);
234 static const struct dc_type *dc_devtype(device_t);
235 static int dc_newbuf(struct dc_softc *, int, int);
236 static int dc_encap(struct dc_softc *, struct mbuf **);
237 static void dc_pnic_rx_bug_war(struct dc_softc *, int);
238 static int dc_rx_resync(struct dc_softc *);
239 static void dc_rxeof(struct dc_softc *);
240 static void dc_txeof(struct dc_softc *);
241 static void dc_tick(void *);
242 static void dc_tx_underrun(struct dc_softc *);
243 static void dc_intr(void *);
244 static void dc_start(struct ifnet *);
245 static void dc_start_locked(struct ifnet *);
246 static int dc_ioctl(struct ifnet *, u_long, caddr_t);
247 static void dc_init(void *);
248 static void dc_init_locked(struct dc_softc *);
249 static void dc_stop(struct dc_softc *);
250 static void dc_watchdog(void *);
251 static int dc_shutdown(device_t);
252 static int dc_ifmedia_upd(struct ifnet *);
253 static void dc_ifmedia_sts(struct ifnet *, struct ifmediareq *);
254 
255 static void dc_delay(struct dc_softc *);
256 static void dc_eeprom_idle(struct dc_softc *);
257 static void dc_eeprom_putbyte(struct dc_softc *, int);
258 static void dc_eeprom_getword(struct dc_softc *, int, u_int16_t *);
259 static void dc_eeprom_getword_pnic(struct dc_softc *, int, u_int16_t *);
260 static void dc_eeprom_getword_xircom(struct dc_softc *, int, u_int16_t *);
261 static void dc_eeprom_width(struct dc_softc *);
262 static void dc_read_eeprom(struct dc_softc *, caddr_t, int, int, int);
263 
264 static void dc_mii_writebit(struct dc_softc *, int);
265 static int dc_mii_readbit(struct dc_softc *);
266 static void dc_mii_sync(struct dc_softc *);
267 static void dc_mii_send(struct dc_softc *, u_int32_t, int);
268 static int dc_mii_readreg(struct dc_softc *, struct dc_mii_frame *);
269 static int dc_mii_writereg(struct dc_softc *, struct dc_mii_frame *);
270 static int dc_miibus_readreg(device_t, int, int);
271 static int dc_miibus_writereg(device_t, int, int, int);
272 static void dc_miibus_statchg(device_t);
273 static void dc_miibus_mediainit(device_t);
274 
275 static void dc_setcfg(struct dc_softc *, int);
276 static uint32_t dc_mchash_le(struct dc_softc *, const uint8_t *);
277 static uint32_t dc_mchash_be(const uint8_t *);
278 static void dc_setfilt_21143(struct dc_softc *);
279 static void dc_setfilt_asix(struct dc_softc *);
280 static void dc_setfilt_admtek(struct dc_softc *);
281 static void dc_setfilt_xircom(struct dc_softc *);
282 
283 static void dc_setfilt(struct dc_softc *);
284 
285 static void dc_reset(struct dc_softc *);
286 static int dc_list_rx_init(struct dc_softc *);
287 static int dc_list_tx_init(struct dc_softc *);
288 
289 static void dc_read_srom(struct dc_softc *, int);
290 static void dc_parse_21143_srom(struct dc_softc *);
291 static void dc_decode_leaf_sia(struct dc_softc *, struct dc_eblock_sia *);
292 static void dc_decode_leaf_mii(struct dc_softc *, struct dc_eblock_mii *);
293 static void dc_decode_leaf_sym(struct dc_softc *, struct dc_eblock_sym *);
294 static void dc_apply_fixup(struct dc_softc *, int);
295 
296 #ifdef DC_USEIOSPACE
297 #define DC_RES			SYS_RES_IOPORT
298 #define DC_RID			DC_PCI_CFBIO
299 #else
300 #define DC_RES			SYS_RES_MEMORY
301 #define DC_RID			DC_PCI_CFBMA
302 #endif
303 
304 static device_method_t dc_methods[] = {
305 	/* Device interface */
306 	DEVMETHOD(device_probe,		dc_probe),
307 	DEVMETHOD(device_attach,	dc_attach),
308 	DEVMETHOD(device_detach,	dc_detach),
309 	DEVMETHOD(device_suspend,	dc_suspend),
310 	DEVMETHOD(device_resume,	dc_resume),
311 	DEVMETHOD(device_shutdown,	dc_shutdown),
312 
313 	/* bus interface */
314 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
315 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
316 
317 	/* MII interface */
318 	DEVMETHOD(miibus_readreg,	dc_miibus_readreg),
319 	DEVMETHOD(miibus_writereg,	dc_miibus_writereg),
320 	DEVMETHOD(miibus_statchg,	dc_miibus_statchg),
321 	DEVMETHOD(miibus_mediainit,	dc_miibus_mediainit),
322 
323 	{ 0, 0 }
324 };
325 
326 static driver_t dc_driver = {
327 	"dc",
328 	dc_methods,
329 	sizeof(struct dc_softc)
330 };
331 
332 static devclass_t dc_devclass;
333 
334 DRIVER_MODULE(dc, pci, dc_driver, dc_devclass, 0, 0);
335 DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, 0, 0);
336 
337 #define DC_SETBIT(sc, reg, x)				\
338 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
339 
340 #define DC_CLRBIT(sc, reg, x)				\
341 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
342 
343 #define SIO_SET(x)	DC_SETBIT(sc, DC_SIO, (x))
344 #define SIO_CLR(x)	DC_CLRBIT(sc, DC_SIO, (x))
345 
346 static void
347 dc_delay(struct dc_softc *sc)
348 {
349 	int idx;
350 
351 	for (idx = (300 / 33) + 1; idx > 0; idx--)
352 		CSR_READ_4(sc, DC_BUSCTL);
353 }
354 
355 static void
356 dc_eeprom_width(struct dc_softc *sc)
357 {
358 	int i;
359 
360 	/* Force EEPROM to idle state. */
361 	dc_eeprom_idle(sc);
362 
363 	/* Enter EEPROM access mode. */
364 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
365 	dc_delay(sc);
366 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
367 	dc_delay(sc);
368 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
369 	dc_delay(sc);
370 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
371 	dc_delay(sc);
372 
373 	for (i = 3; i--;) {
374 		if (6 & (1 << i))
375 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
376 		else
377 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
378 		dc_delay(sc);
379 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
380 		dc_delay(sc);
381 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
382 		dc_delay(sc);
383 	}
384 
385 	for (i = 1; i <= 12; i++) {
386 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
387 		dc_delay(sc);
388 		if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) {
389 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
390 			dc_delay(sc);
391 			break;
392 		}
393 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
394 		dc_delay(sc);
395 	}
396 
397 	/* Turn off EEPROM access mode. */
398 	dc_eeprom_idle(sc);
399 
400 	if (i < 4 || i > 12)
401 		sc->dc_romwidth = 6;
402 	else
403 		sc->dc_romwidth = i;
404 
405 	/* Enter EEPROM access mode. */
406 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
407 	dc_delay(sc);
408 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
409 	dc_delay(sc);
410 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
411 	dc_delay(sc);
412 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
413 	dc_delay(sc);
414 
415 	/* Turn off EEPROM access mode. */
416 	dc_eeprom_idle(sc);
417 }
418 
419 static void
420 dc_eeprom_idle(struct dc_softc *sc)
421 {
422 	int i;
423 
424 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
425 	dc_delay(sc);
426 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
427 	dc_delay(sc);
428 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
429 	dc_delay(sc);
430 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
431 	dc_delay(sc);
432 
433 	for (i = 0; i < 25; i++) {
434 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
435 		dc_delay(sc);
436 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
437 		dc_delay(sc);
438 	}
439 
440 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
441 	dc_delay(sc);
442 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
443 	dc_delay(sc);
444 	CSR_WRITE_4(sc, DC_SIO, 0x00000000);
445 }
446 
447 /*
448  * Send a read command and address to the EEPROM, check for ACK.
449  */
450 static void
451 dc_eeprom_putbyte(struct dc_softc *sc, int addr)
452 {
453 	int d, i;
454 
455 	d = DC_EECMD_READ >> 6;
456 	for (i = 3; i--; ) {
457 		if (d & (1 << i))
458 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
459 		else
460 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
461 		dc_delay(sc);
462 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
463 		dc_delay(sc);
464 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
465 		dc_delay(sc);
466 	}
467 
468 	/*
469 	 * Feed in each bit and strobe the clock.
470 	 */
471 	for (i = sc->dc_romwidth; i--;) {
472 		if (addr & (1 << i)) {
473 			SIO_SET(DC_SIO_EE_DATAIN);
474 		} else {
475 			SIO_CLR(DC_SIO_EE_DATAIN);
476 		}
477 		dc_delay(sc);
478 		SIO_SET(DC_SIO_EE_CLK);
479 		dc_delay(sc);
480 		SIO_CLR(DC_SIO_EE_CLK);
481 		dc_delay(sc);
482 	}
483 }
484 
485 /*
486  * Read a word of data stored in the EEPROM at address 'addr.'
487  * The PNIC 82c168/82c169 has its own non-standard way to read
488  * the EEPROM.
489  */
490 static void
491 dc_eeprom_getword_pnic(struct dc_softc *sc, int addr, u_int16_t *dest)
492 {
493 	int i;
494 	u_int32_t r;
495 
496 	CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ | addr);
497 
498 	for (i = 0; i < DC_TIMEOUT; i++) {
499 		DELAY(1);
500 		r = CSR_READ_4(sc, DC_SIO);
501 		if (!(r & DC_PN_SIOCTL_BUSY)) {
502 			*dest = (u_int16_t)(r & 0xFFFF);
503 			return;
504 		}
505 	}
506 }
507 
508 /*
509  * Read a word of data stored in the EEPROM at address 'addr.'
510  * The Xircom X3201 has its own non-standard way to read
511  * the EEPROM, too.
512  */
513 static void
514 dc_eeprom_getword_xircom(struct dc_softc *sc, int addr, u_int16_t *dest)
515 {
516 
517 	SIO_SET(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
518 
519 	addr *= 2;
520 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
521 	*dest = (u_int16_t)CSR_READ_4(sc, DC_SIO) & 0xff;
522 	addr += 1;
523 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
524 	*dest |= ((u_int16_t)CSR_READ_4(sc, DC_SIO) & 0xff) << 8;
525 
526 	SIO_CLR(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
527 }
528 
529 /*
530  * Read a word of data stored in the EEPROM at address 'addr.'
531  */
532 static void
533 dc_eeprom_getword(struct dc_softc *sc, int addr, u_int16_t *dest)
534 {
535 	int i;
536 	u_int16_t word = 0;
537 
538 	/* Force EEPROM to idle state. */
539 	dc_eeprom_idle(sc);
540 
541 	/* Enter EEPROM access mode. */
542 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
543 	dc_delay(sc);
544 	DC_SETBIT(sc, DC_SIO,  DC_SIO_ROMCTL_READ);
545 	dc_delay(sc);
546 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
547 	dc_delay(sc);
548 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
549 	dc_delay(sc);
550 
551 	/*
552 	 * Send address of word we want to read.
553 	 */
554 	dc_eeprom_putbyte(sc, addr);
555 
556 	/*
557 	 * Start reading bits from EEPROM.
558 	 */
559 	for (i = 0x8000; i; i >>= 1) {
560 		SIO_SET(DC_SIO_EE_CLK);
561 		dc_delay(sc);
562 		if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
563 			word |= i;
564 		dc_delay(sc);
565 		SIO_CLR(DC_SIO_EE_CLK);
566 		dc_delay(sc);
567 	}
568 
569 	/* Turn off EEPROM access mode. */
570 	dc_eeprom_idle(sc);
571 
572 	*dest = word;
573 }
574 
575 /*
576  * Read a sequence of words from the EEPROM.
577  */
578 static void
579 dc_read_eeprom(struct dc_softc *sc, caddr_t dest, int off, int cnt, int be)
580 {
581 	int i;
582 	u_int16_t word = 0, *ptr;
583 
584 	for (i = 0; i < cnt; i++) {
585 		if (DC_IS_PNIC(sc))
586 			dc_eeprom_getword_pnic(sc, off + i, &word);
587 		else if (DC_IS_XIRCOM(sc))
588 			dc_eeprom_getword_xircom(sc, off + i, &word);
589 		else
590 			dc_eeprom_getword(sc, off + i, &word);
591 		ptr = (u_int16_t *)(dest + (i * 2));
592 		if (be)
593 			*ptr = be16toh(word);
594 		else
595 			*ptr = le16toh(word);
596 	}
597 }
598 
599 /*
600  * The following two routines are taken from the Macronix 98713
601  * Application Notes pp.19-21.
602  */
603 /*
604  * Write a bit to the MII bus.
605  */
606 static void
607 dc_mii_writebit(struct dc_softc *sc, int bit)
608 {
609 	uint32_t reg;
610 
611 	reg = DC_SIO_ROMCTL_WRITE | (bit != 0 ? DC_SIO_MII_DATAOUT : 0);
612 	CSR_WRITE_4(sc, DC_SIO, reg);
613 	CSR_BARRIER_4(sc, DC_SIO,
614 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
615 	DELAY(1);
616 
617 	CSR_WRITE_4(sc, DC_SIO, reg | DC_SIO_MII_CLK);
618 	CSR_BARRIER_4(sc, DC_SIO,
619 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
620 	DELAY(1);
621 	CSR_WRITE_4(sc, DC_SIO, reg);
622 	CSR_BARRIER_4(sc, DC_SIO,
623 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
624 	DELAY(1);
625 }
626 
627 /*
628  * Read a bit from the MII bus.
629  */
630 static int
631 dc_mii_readbit(struct dc_softc *sc)
632 {
633 	uint32_t reg;
634 
635 	reg = DC_SIO_ROMCTL_READ | DC_SIO_MII_DIR;
636 	CSR_WRITE_4(sc, DC_SIO, reg);
637 	CSR_BARRIER_4(sc, DC_SIO,
638 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
639 	DELAY(1);
640 	(void)CSR_READ_4(sc, DC_SIO);
641 	CSR_WRITE_4(sc, DC_SIO, reg | DC_SIO_MII_CLK);
642 	CSR_BARRIER_4(sc, DC_SIO,
643 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
644 	DELAY(1);
645 	CSR_WRITE_4(sc, DC_SIO, reg);
646 	CSR_BARRIER_4(sc, DC_SIO,
647 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
648 	DELAY(1);
649 	if (CSR_READ_4(sc, DC_SIO) & DC_SIO_MII_DATAIN)
650 		return (1);
651 
652 	return (0);
653 }
654 
655 /*
656  * Sync the PHYs by setting data bit and strobing the clock 32 times.
657  */
658 static void
659 dc_mii_sync(struct dc_softc *sc)
660 {
661 	int i;
662 
663 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
664 	CSR_BARRIER_4(sc, DC_SIO,
665 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
666 	DELAY(1);
667 
668 	for (i = 0; i < 32; i++)
669 		dc_mii_writebit(sc, 1);
670 }
671 
672 /*
673  * Clock a series of bits through the MII.
674  */
675 static void
676 dc_mii_send(struct dc_softc *sc, u_int32_t bits, int cnt)
677 {
678 	int i;
679 
680 	for (i = (0x1 << (cnt - 1)); i; i >>= 1)
681 		dc_mii_writebit(sc, bits & i);
682 }
683 
684 /*
685  * Read an PHY register through the MII.
686  */
687 static int
688 dc_mii_readreg(struct dc_softc *sc, struct dc_mii_frame *frame)
689 {
690 	int i;
691 
692 	/*
693 	 * Set up frame for RX.
694 	 */
695 	frame->mii_stdelim = DC_MII_STARTDELIM;
696 	frame->mii_opcode = DC_MII_READOP;
697 
698 	/*
699 	 * Sync the PHYs.
700 	 */
701 	dc_mii_sync(sc);
702 
703 	/*
704 	 * Send command/address info.
705 	 */
706 	dc_mii_send(sc, frame->mii_stdelim, 2);
707 	dc_mii_send(sc, frame->mii_opcode, 2);
708 	dc_mii_send(sc, frame->mii_phyaddr, 5);
709 	dc_mii_send(sc, frame->mii_regaddr, 5);
710 
711 	/*
712 	 * Now try reading data bits.  If the turnaround failed, we still
713 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
714 	 */
715 	frame->mii_turnaround = dc_mii_readbit(sc);
716 	if (frame->mii_turnaround != 0) {
717 		for (i = 0; i < 16; i++)
718 			dc_mii_readbit(sc);
719 		goto fail;
720 	}
721 	for (i = 0x8000; i; i >>= 1) {
722 		if (dc_mii_readbit(sc))
723 			frame->mii_data |= i;
724 	}
725 
726 fail:
727 
728 	/* Clock the idle bits. */
729 	dc_mii_writebit(sc, 0);
730 	dc_mii_writebit(sc, 0);
731 
732 	if (frame->mii_turnaround != 0)
733 		return (1);
734 	return (0);
735 }
736 
737 /*
738  * Write to a PHY register through the MII.
739  */
740 static int
741 dc_mii_writereg(struct dc_softc *sc, struct dc_mii_frame *frame)
742 {
743 
744 	/*
745 	 * Set up frame for TX.
746 	 */
747 	frame->mii_stdelim = DC_MII_STARTDELIM;
748 	frame->mii_opcode = DC_MII_WRITEOP;
749 	frame->mii_turnaround = DC_MII_TURNAROUND;
750 
751 	/*
752 	 * Sync the PHYs.
753 	 */
754 	dc_mii_sync(sc);
755 
756 	dc_mii_send(sc, frame->mii_stdelim, 2);
757 	dc_mii_send(sc, frame->mii_opcode, 2);
758 	dc_mii_send(sc, frame->mii_phyaddr, 5);
759 	dc_mii_send(sc, frame->mii_regaddr, 5);
760 	dc_mii_send(sc, frame->mii_turnaround, 2);
761 	dc_mii_send(sc, frame->mii_data, 16);
762 
763 	/* Clock the idle bits. */
764 	dc_mii_writebit(sc, 0);
765 	dc_mii_writebit(sc, 0);
766 
767 	return (0);
768 }
769 
770 static int
771 dc_miibus_readreg(device_t dev, int phy, int reg)
772 {
773 	struct dc_mii_frame frame;
774 	struct dc_softc	 *sc;
775 	int i, rval, phy_reg = 0;
776 
777 	sc = device_get_softc(dev);
778 	bzero(&frame, sizeof(frame));
779 
780 	/*
781 	 * Note: both the AL981 and AN985 have internal PHYs,
782 	 * however the AL981 provides direct access to the PHY
783 	 * registers while the AN985 uses a serial MII interface.
784 	 * The AN985's MII interface is also buggy in that you
785 	 * can read from any MII address (0 to 31), but only address 1
786 	 * behaves normally. To deal with both cases, we pretend
787 	 * that the PHY is at MII address 1.
788 	 */
789 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
790 		return (0);
791 
792 	/*
793 	 * Note: the ukphy probes of the RS7112 report a PHY at
794 	 * MII address 0 (possibly HomePNA?) and 1 (ethernet)
795 	 * so we only respond to correct one.
796 	 */
797 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
798 		return (0);
799 
800 	if (sc->dc_pmode != DC_PMODE_MII) {
801 		if (phy == (MII_NPHY - 1)) {
802 			switch (reg) {
803 			case MII_BMSR:
804 			/*
805 			 * Fake something to make the probe
806 			 * code think there's a PHY here.
807 			 */
808 				return (BMSR_MEDIAMASK);
809 				break;
810 			case MII_PHYIDR1:
811 				if (DC_IS_PNIC(sc))
812 					return (DC_VENDORID_LO);
813 				return (DC_VENDORID_DEC);
814 				break;
815 			case MII_PHYIDR2:
816 				if (DC_IS_PNIC(sc))
817 					return (DC_DEVICEID_82C168);
818 				return (DC_DEVICEID_21143);
819 				break;
820 			default:
821 				return (0);
822 				break;
823 			}
824 		} else
825 			return (0);
826 	}
827 
828 	if (DC_IS_PNIC(sc)) {
829 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
830 		    (phy << 23) | (reg << 18));
831 		for (i = 0; i < DC_TIMEOUT; i++) {
832 			DELAY(1);
833 			rval = CSR_READ_4(sc, DC_PN_MII);
834 			if (!(rval & DC_PN_MII_BUSY)) {
835 				rval &= 0xFFFF;
836 				return (rval == 0xFFFF ? 0 : rval);
837 			}
838 		}
839 		return (0);
840 	}
841 
842 	if (DC_IS_COMET(sc)) {
843 		switch (reg) {
844 		case MII_BMCR:
845 			phy_reg = DC_AL_BMCR;
846 			break;
847 		case MII_BMSR:
848 			phy_reg = DC_AL_BMSR;
849 			break;
850 		case MII_PHYIDR1:
851 			phy_reg = DC_AL_VENID;
852 			break;
853 		case MII_PHYIDR2:
854 			phy_reg = DC_AL_DEVID;
855 			break;
856 		case MII_ANAR:
857 			phy_reg = DC_AL_ANAR;
858 			break;
859 		case MII_ANLPAR:
860 			phy_reg = DC_AL_LPAR;
861 			break;
862 		case MII_ANER:
863 			phy_reg = DC_AL_ANER;
864 			break;
865 		default:
866 			device_printf(dev, "phy_read: bad phy register %x\n",
867 			    reg);
868 			return (0);
869 			break;
870 		}
871 
872 		rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
873 
874 		if (rval == 0xFFFF)
875 			return (0);
876 		return (rval);
877 	}
878 
879 	frame.mii_phyaddr = phy;
880 	frame.mii_regaddr = reg;
881 	if (sc->dc_type == DC_TYPE_98713) {
882 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
883 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
884 	}
885 	dc_mii_readreg(sc, &frame);
886 	if (sc->dc_type == DC_TYPE_98713)
887 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
888 
889 	return (frame.mii_data);
890 }
891 
892 static int
893 dc_miibus_writereg(device_t dev, int phy, int reg, int data)
894 {
895 	struct dc_softc *sc;
896 	struct dc_mii_frame frame;
897 	int i, phy_reg = 0;
898 
899 	sc = device_get_softc(dev);
900 	bzero(&frame, sizeof(frame));
901 
902 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
903 		return (0);
904 
905 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
906 		return (0);
907 
908 	if (DC_IS_PNIC(sc)) {
909 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
910 		    (phy << 23) | (reg << 10) | data);
911 		for (i = 0; i < DC_TIMEOUT; i++) {
912 			if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
913 				break;
914 		}
915 		return (0);
916 	}
917 
918 	if (DC_IS_COMET(sc)) {
919 		switch (reg) {
920 		case MII_BMCR:
921 			phy_reg = DC_AL_BMCR;
922 			break;
923 		case MII_BMSR:
924 			phy_reg = DC_AL_BMSR;
925 			break;
926 		case MII_PHYIDR1:
927 			phy_reg = DC_AL_VENID;
928 			break;
929 		case MII_PHYIDR2:
930 			phy_reg = DC_AL_DEVID;
931 			break;
932 		case MII_ANAR:
933 			phy_reg = DC_AL_ANAR;
934 			break;
935 		case MII_ANLPAR:
936 			phy_reg = DC_AL_LPAR;
937 			break;
938 		case MII_ANER:
939 			phy_reg = DC_AL_ANER;
940 			break;
941 		default:
942 			device_printf(dev, "phy_write: bad phy register %x\n",
943 			    reg);
944 			return (0);
945 			break;
946 		}
947 
948 		CSR_WRITE_4(sc, phy_reg, data);
949 		return (0);
950 	}
951 
952 	frame.mii_phyaddr = phy;
953 	frame.mii_regaddr = reg;
954 	frame.mii_data = data;
955 
956 	if (sc->dc_type == DC_TYPE_98713) {
957 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
958 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
959 	}
960 	dc_mii_writereg(sc, &frame);
961 	if (sc->dc_type == DC_TYPE_98713)
962 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
963 
964 	return (0);
965 }
966 
967 static void
968 dc_miibus_statchg(device_t dev)
969 {
970 	struct dc_softc *sc;
971 	struct mii_data *mii;
972 	struct ifmedia *ifm;
973 
974 	sc = device_get_softc(dev);
975 	if (DC_IS_ADMTEK(sc))
976 		return;
977 
978 	mii = device_get_softc(sc->dc_miibus);
979 	ifm = &mii->mii_media;
980 	if (DC_IS_DAVICOM(sc) &&
981 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
982 		dc_setcfg(sc, ifm->ifm_media);
983 		sc->dc_if_media = ifm->ifm_media;
984 	} else {
985 		dc_setcfg(sc, mii->mii_media_active);
986 		sc->dc_if_media = mii->mii_media_active;
987 	}
988 }
989 
990 /*
991  * Special support for DM9102A cards with HomePNA PHYs. Note:
992  * with the Davicom DM9102A/DM9801 eval board that I have, it seems
993  * to be impossible to talk to the management interface of the DM9801
994  * PHY (its MDIO pin is not connected to anything). Consequently,
995  * the driver has to just 'know' about the additional mode and deal
996  * with it itself. *sigh*
997  */
998 static void
999 dc_miibus_mediainit(device_t dev)
1000 {
1001 	struct dc_softc *sc;
1002 	struct mii_data *mii;
1003 	struct ifmedia *ifm;
1004 	int rev;
1005 
1006 	rev = pci_get_revid(dev);
1007 
1008 	sc = device_get_softc(dev);
1009 	mii = device_get_softc(sc->dc_miibus);
1010 	ifm = &mii->mii_media;
1011 
1012 	if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A)
1013 		ifmedia_add(ifm, IFM_ETHER | IFM_HPNA_1, 0, NULL);
1014 }
1015 
1016 #define DC_BITS_512	9
1017 #define DC_BITS_128	7
1018 #define DC_BITS_64	6
1019 
1020 static uint32_t
1021 dc_mchash_le(struct dc_softc *sc, const uint8_t *addr)
1022 {
1023 	uint32_t crc;
1024 
1025 	/* Compute CRC for the address value. */
1026 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
1027 
1028 	/*
1029 	 * The hash table on the PNIC II and the MX98715AEC-C/D/E
1030 	 * chips is only 128 bits wide.
1031 	 */
1032 	if (sc->dc_flags & DC_128BIT_HASH)
1033 		return (crc & ((1 << DC_BITS_128) - 1));
1034 
1035 	/* The hash table on the MX98715BEC is only 64 bits wide. */
1036 	if (sc->dc_flags & DC_64BIT_HASH)
1037 		return (crc & ((1 << DC_BITS_64) - 1));
1038 
1039 	/* Xircom's hash filtering table is different (read: weird) */
1040 	/* Xircom uses the LEAST significant bits */
1041 	if (DC_IS_XIRCOM(sc)) {
1042 		if ((crc & 0x180) == 0x180)
1043 			return ((crc & 0x0F) + (crc & 0x70) * 3 + (14 << 4));
1044 		else
1045 			return ((crc & 0x1F) + ((crc >> 1) & 0xF0) * 3 +
1046 			    (12 << 4));
1047 	}
1048 
1049 	return (crc & ((1 << DC_BITS_512) - 1));
1050 }
1051 
1052 /*
1053  * Calculate CRC of a multicast group address, return the lower 6 bits.
1054  */
1055 static uint32_t
1056 dc_mchash_be(const uint8_t *addr)
1057 {
1058 	uint32_t crc;
1059 
1060 	/* Compute CRC for the address value. */
1061 	crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
1062 
1063 	/* Return the filter bit position. */
1064 	return ((crc >> 26) & 0x0000003F);
1065 }
1066 
1067 /*
1068  * 21143-style RX filter setup routine. Filter programming is done by
1069  * downloading a special setup frame into the TX engine. 21143, Macronix,
1070  * PNIC, PNIC II and Davicom chips are programmed this way.
1071  *
1072  * We always program the chip using 'hash perfect' mode, i.e. one perfect
1073  * address (our node address) and a 512-bit hash filter for multicast
1074  * frames. We also sneak the broadcast address into the hash filter since
1075  * we need that too.
1076  */
1077 static void
1078 dc_setfilt_21143(struct dc_softc *sc)
1079 {
1080 	uint16_t eaddr[(ETHER_ADDR_LEN+1)/2];
1081 	struct dc_desc *sframe;
1082 	u_int32_t h, *sp;
1083 	struct ifmultiaddr *ifma;
1084 	struct ifnet *ifp;
1085 	int i;
1086 
1087 	ifp = sc->dc_ifp;
1088 
1089 	i = sc->dc_cdata.dc_tx_prod;
1090 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1091 	sc->dc_cdata.dc_tx_cnt++;
1092 	sframe = &sc->dc_ldata->dc_tx_list[i];
1093 	sp = sc->dc_cdata.dc_sbuf;
1094 	bzero(sp, DC_SFRAME_LEN);
1095 
1096 	sframe->dc_data = htole32(sc->dc_saddr);
1097 	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
1098 	    DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
1099 
1100 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
1101 
1102 	/* If we want promiscuous mode, set the allframes bit. */
1103 	if (ifp->if_flags & IFF_PROMISC)
1104 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1105 	else
1106 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1107 
1108 	if (ifp->if_flags & IFF_ALLMULTI)
1109 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1110 	else
1111 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1112 
1113 	IF_ADDR_LOCK(ifp);
1114 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1115 		if (ifma->ifma_addr->sa_family != AF_LINK)
1116 			continue;
1117 		h = dc_mchash_le(sc,
1118 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1119 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1120 	}
1121 	IF_ADDR_UNLOCK(ifp);
1122 
1123 	if (ifp->if_flags & IFF_BROADCAST) {
1124 		h = dc_mchash_le(sc, ifp->if_broadcastaddr);
1125 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1126 	}
1127 
1128 	/* Set our MAC address. */
1129 	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1130 	sp[39] = DC_SP_MAC(eaddr[0]);
1131 	sp[40] = DC_SP_MAC(eaddr[1]);
1132 	sp[41] = DC_SP_MAC(eaddr[2]);
1133 
1134 	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1135 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1136 
1137 	/*
1138 	 * The PNIC takes an exceedingly long time to process its
1139 	 * setup frame; wait 10ms after posting the setup frame
1140 	 * before proceeding, just so it has time to swallow its
1141 	 * medicine.
1142 	 */
1143 	DELAY(10000);
1144 
1145 	sc->dc_wdog_timer = 5;
1146 }
1147 
1148 static void
1149 dc_setfilt_admtek(struct dc_softc *sc)
1150 {
1151 	uint8_t eaddr[ETHER_ADDR_LEN];
1152 	struct ifnet *ifp;
1153 	struct ifmultiaddr *ifma;
1154 	int h = 0;
1155 	u_int32_t hashes[2] = { 0, 0 };
1156 
1157 	ifp = sc->dc_ifp;
1158 
1159 	/* Init our MAC address. */
1160 	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1161 	CSR_WRITE_4(sc, DC_AL_PAR0, eaddr[3] << 24 | eaddr[2] << 16 |
1162 	    eaddr[1] << 8 | eaddr[0]);
1163 	CSR_WRITE_4(sc, DC_AL_PAR1, eaddr[5] << 8 | eaddr[4]);
1164 
1165 	/* If we want promiscuous mode, set the allframes bit. */
1166 	if (ifp->if_flags & IFF_PROMISC)
1167 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1168 	else
1169 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1170 
1171 	if (ifp->if_flags & IFF_ALLMULTI)
1172 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1173 	else
1174 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1175 
1176 	/* First, zot all the existing hash bits. */
1177 	CSR_WRITE_4(sc, DC_AL_MAR0, 0);
1178 	CSR_WRITE_4(sc, DC_AL_MAR1, 0);
1179 
1180 	/*
1181 	 * If we're already in promisc or allmulti mode, we
1182 	 * don't have to bother programming the multicast filter.
1183 	 */
1184 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
1185 		return;
1186 
1187 	/* Now program new ones. */
1188 	IF_ADDR_LOCK(ifp);
1189 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1190 		if (ifma->ifma_addr->sa_family != AF_LINK)
1191 			continue;
1192 		if (DC_IS_CENTAUR(sc))
1193 			h = dc_mchash_le(sc,
1194 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1195 		else
1196 			h = dc_mchash_be(
1197 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1198 		if (h < 32)
1199 			hashes[0] |= (1 << h);
1200 		else
1201 			hashes[1] |= (1 << (h - 32));
1202 	}
1203 	IF_ADDR_UNLOCK(ifp);
1204 
1205 	CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]);
1206 	CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]);
1207 }
1208 
1209 static void
1210 dc_setfilt_asix(struct dc_softc *sc)
1211 {
1212 	uint32_t eaddr[(ETHER_ADDR_LEN+3)/4];
1213 	struct ifnet *ifp;
1214 	struct ifmultiaddr *ifma;
1215 	int h = 0;
1216 	u_int32_t hashes[2] = { 0, 0 };
1217 
1218 	ifp = sc->dc_ifp;
1219 
1220 	/* Init our MAC address. */
1221 	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1222 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
1223 	CSR_WRITE_4(sc, DC_AX_FILTDATA, eaddr[0]);
1224 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
1225 	CSR_WRITE_4(sc, DC_AX_FILTDATA, eaddr[1]);
1226 
1227 	/* If we want promiscuous mode, set the allframes bit. */
1228 	if (ifp->if_flags & IFF_PROMISC)
1229 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1230 	else
1231 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1232 
1233 	if (ifp->if_flags & IFF_ALLMULTI)
1234 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1235 	else
1236 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1237 
1238 	/*
1239 	 * The ASIX chip has a special bit to enable reception
1240 	 * of broadcast frames.
1241 	 */
1242 	if (ifp->if_flags & IFF_BROADCAST)
1243 		DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1244 	else
1245 		DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1246 
1247 	/* first, zot all the existing hash bits */
1248 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1249 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1250 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1251 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1252 
1253 	/*
1254 	 * If we're already in promisc or allmulti mode, we
1255 	 * don't have to bother programming the multicast filter.
1256 	 */
1257 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
1258 		return;
1259 
1260 	/* now program new ones */
1261 	IF_ADDR_LOCK(ifp);
1262 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1263 		if (ifma->ifma_addr->sa_family != AF_LINK)
1264 			continue;
1265 		h = dc_mchash_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1266 		if (h < 32)
1267 			hashes[0] |= (1 << h);
1268 		else
1269 			hashes[1] |= (1 << (h - 32));
1270 	}
1271 	IF_ADDR_UNLOCK(ifp);
1272 
1273 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1274 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
1275 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1276 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
1277 }
1278 
1279 static void
1280 dc_setfilt_xircom(struct dc_softc *sc)
1281 {
1282 	uint16_t eaddr[(ETHER_ADDR_LEN+1)/2];
1283 	struct ifnet *ifp;
1284 	struct ifmultiaddr *ifma;
1285 	struct dc_desc *sframe;
1286 	u_int32_t h, *sp;
1287 	int i;
1288 
1289 	ifp = sc->dc_ifp;
1290 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1291 
1292 	i = sc->dc_cdata.dc_tx_prod;
1293 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1294 	sc->dc_cdata.dc_tx_cnt++;
1295 	sframe = &sc->dc_ldata->dc_tx_list[i];
1296 	sp = sc->dc_cdata.dc_sbuf;
1297 	bzero(sp, DC_SFRAME_LEN);
1298 
1299 	sframe->dc_data = htole32(sc->dc_saddr);
1300 	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
1301 	    DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
1302 
1303 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
1304 
1305 	/* If we want promiscuous mode, set the allframes bit. */
1306 	if (ifp->if_flags & IFF_PROMISC)
1307 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1308 	else
1309 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1310 
1311 	if (ifp->if_flags & IFF_ALLMULTI)
1312 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1313 	else
1314 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1315 
1316 	IF_ADDR_LOCK(ifp);
1317 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1318 		if (ifma->ifma_addr->sa_family != AF_LINK)
1319 			continue;
1320 		h = dc_mchash_le(sc,
1321 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1322 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1323 	}
1324 	IF_ADDR_UNLOCK(ifp);
1325 
1326 	if (ifp->if_flags & IFF_BROADCAST) {
1327 		h = dc_mchash_le(sc, ifp->if_broadcastaddr);
1328 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1329 	}
1330 
1331 	/* Set our MAC address. */
1332 	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1333 	sp[0] = DC_SP_MAC(eaddr[0]);
1334 	sp[1] = DC_SP_MAC(eaddr[1]);
1335 	sp[2] = DC_SP_MAC(eaddr[2]);
1336 
1337 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
1338 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
1339 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1340 	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1341 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1342 
1343 	/*
1344 	 * Wait some time...
1345 	 */
1346 	DELAY(1000);
1347 
1348 	sc->dc_wdog_timer = 5;
1349 }
1350 
1351 static void
1352 dc_setfilt(struct dc_softc *sc)
1353 {
1354 
1355 	if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
1356 	    DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc))
1357 		dc_setfilt_21143(sc);
1358 
1359 	if (DC_IS_ASIX(sc))
1360 		dc_setfilt_asix(sc);
1361 
1362 	if (DC_IS_ADMTEK(sc))
1363 		dc_setfilt_admtek(sc);
1364 
1365 	if (DC_IS_XIRCOM(sc))
1366 		dc_setfilt_xircom(sc);
1367 }
1368 
1369 /*
1370  * In order to fiddle with the 'full-duplex' and '100Mbps' bits in
1371  * the netconfig register, we first have to put the transmit and/or
1372  * receive logic in the idle state.
1373  */
1374 static void
1375 dc_setcfg(struct dc_softc *sc, int media)
1376 {
1377 	int i, restart = 0, watchdogreg;
1378 	u_int32_t isr;
1379 
1380 	if (IFM_SUBTYPE(media) == IFM_NONE)
1381 		return;
1382 
1383 	if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON)) {
1384 		restart = 1;
1385 		DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1386 
1387 		for (i = 0; i < DC_TIMEOUT; i++) {
1388 			isr = CSR_READ_4(sc, DC_ISR);
1389 			if (isr & DC_ISR_TX_IDLE &&
1390 			    ((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
1391 			    (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT))
1392 				break;
1393 			DELAY(10);
1394 		}
1395 
1396 		if (i == DC_TIMEOUT) {
1397 			if (!(isr & DC_ISR_TX_IDLE) && !DC_IS_ASIX(sc))
1398 				device_printf(sc->dc_dev,
1399 				    "%s: failed to force tx to idle state\n",
1400 				    __func__);
1401 			if (!((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
1402 			    (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT) &&
1403 			    !DC_HAS_BROKEN_RXSTATE(sc))
1404 				device_printf(sc->dc_dev,
1405 				    "%s: failed to force rx to idle state\n",
1406 				    __func__);
1407 		}
1408 	}
1409 
1410 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
1411 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1412 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1413 		if (sc->dc_pmode == DC_PMODE_MII) {
1414 			if (DC_IS_INTEL(sc)) {
1415 			/* There's a write enable bit here that reads as 1. */
1416 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1417 				watchdogreg &= ~DC_WDOG_CTLWREN;
1418 				watchdogreg |= DC_WDOG_JABBERDIS;
1419 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1420 			} else {
1421 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1422 			}
1423 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1424 			    DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
1425 			if (sc->dc_type == DC_TYPE_98713)
1426 				DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1427 				    DC_NETCFG_SCRAMBLER));
1428 			if (!DC_IS_DAVICOM(sc))
1429 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1430 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1431 			if (DC_IS_INTEL(sc))
1432 				dc_apply_fixup(sc, IFM_AUTO);
1433 		} else {
1434 			if (DC_IS_PNIC(sc)) {
1435 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
1436 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1437 				DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1438 			}
1439 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1440 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1441 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1442 			if (DC_IS_INTEL(sc))
1443 				dc_apply_fixup(sc,
1444 				    (media & IFM_GMASK) == IFM_FDX ?
1445 				    IFM_100_TX | IFM_FDX : IFM_100_TX);
1446 		}
1447 	}
1448 
1449 	if (IFM_SUBTYPE(media) == IFM_10_T) {
1450 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1451 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1452 		if (sc->dc_pmode == DC_PMODE_MII) {
1453 			/* There's a write enable bit here that reads as 1. */
1454 			if (DC_IS_INTEL(sc)) {
1455 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1456 				watchdogreg &= ~DC_WDOG_CTLWREN;
1457 				watchdogreg |= DC_WDOG_JABBERDIS;
1458 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1459 			} else {
1460 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1461 			}
1462 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1463 			    DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
1464 			if (sc->dc_type == DC_TYPE_98713)
1465 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1466 			if (!DC_IS_DAVICOM(sc))
1467 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1468 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1469 			if (DC_IS_INTEL(sc))
1470 				dc_apply_fixup(sc, IFM_AUTO);
1471 		} else {
1472 			if (DC_IS_PNIC(sc)) {
1473 				DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
1474 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1475 				DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1476 			}
1477 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1478 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1479 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1480 			if (DC_IS_INTEL(sc)) {
1481 				DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET);
1482 				DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1483 				if ((media & IFM_GMASK) == IFM_FDX)
1484 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D);
1485 				else
1486 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F);
1487 				DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1488 				DC_CLRBIT(sc, DC_10BTCTRL,
1489 				    DC_TCTL_AUTONEGENBL);
1490 				dc_apply_fixup(sc,
1491 				    (media & IFM_GMASK) == IFM_FDX ?
1492 				    IFM_10_T | IFM_FDX : IFM_10_T);
1493 				DELAY(20000);
1494 			}
1495 		}
1496 	}
1497 
1498 	/*
1499 	 * If this is a Davicom DM9102A card with a DM9801 HomePNA
1500 	 * PHY and we want HomePNA mode, set the portsel bit to turn
1501 	 * on the external MII port.
1502 	 */
1503 	if (DC_IS_DAVICOM(sc)) {
1504 		if (IFM_SUBTYPE(media) == IFM_HPNA_1) {
1505 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1506 			sc->dc_link = 1;
1507 		} else {
1508 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1509 		}
1510 	}
1511 
1512 	if ((media & IFM_GMASK) == IFM_FDX) {
1513 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1514 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1515 			DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1516 	} else {
1517 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1518 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1519 			DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1520 	}
1521 
1522 	if (restart)
1523 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON | DC_NETCFG_RX_ON);
1524 }
1525 
1526 static void
1527 dc_reset(struct dc_softc *sc)
1528 {
1529 	int i;
1530 
1531 	DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1532 
1533 	for (i = 0; i < DC_TIMEOUT; i++) {
1534 		DELAY(10);
1535 		if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
1536 			break;
1537 	}
1538 
1539 	if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_CONEXANT(sc) ||
1540 	    DC_IS_XIRCOM(sc) || DC_IS_INTEL(sc)) {
1541 		DELAY(10000);
1542 		DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1543 		i = 0;
1544 	}
1545 
1546 	if (i == DC_TIMEOUT)
1547 		device_printf(sc->dc_dev, "reset never completed!\n");
1548 
1549 	/* Wait a little while for the chip to get its brains in order. */
1550 	DELAY(1000);
1551 
1552 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
1553 	CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
1554 	CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
1555 
1556 	/*
1557 	 * Bring the SIA out of reset. In some cases, it looks
1558 	 * like failing to unreset the SIA soon enough gets it
1559 	 * into a state where it will never come out of reset
1560 	 * until we reset the whole chip again.
1561 	 */
1562 	if (DC_IS_INTEL(sc)) {
1563 		DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1564 		CSR_WRITE_4(sc, DC_10BTCTRL, 0);
1565 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
1566 	}
1567 }
1568 
1569 static const struct dc_type *
1570 dc_devtype(device_t dev)
1571 {
1572 	const struct dc_type *t;
1573 	u_int32_t devid;
1574 	u_int8_t rev;
1575 
1576 	t = dc_devs;
1577 	devid = pci_get_devid(dev);
1578 	rev = pci_get_revid(dev);
1579 
1580 	while (t->dc_name != NULL) {
1581 		if (devid == t->dc_devid && rev >= t->dc_minrev)
1582 			return (t);
1583 		t++;
1584 	}
1585 
1586 	return (NULL);
1587 }
1588 
1589 /*
1590  * Probe for a 21143 or clone chip. Check the PCI vendor and device
1591  * IDs against our list and return a device name if we find a match.
1592  * We do a little bit of extra work to identify the exact type of
1593  * chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
1594  * but different revision IDs. The same is true for 98715/98715A
1595  * chips and the 98725, as well as the ASIX and ADMtek chips. In some
1596  * cases, the exact chip revision affects driver behavior.
1597  */
1598 static int
1599 dc_probe(device_t dev)
1600 {
1601 	const struct dc_type *t;
1602 
1603 	t = dc_devtype(dev);
1604 
1605 	if (t != NULL) {
1606 		device_set_desc(dev, t->dc_name);
1607 		return (BUS_PROBE_DEFAULT);
1608 	}
1609 
1610 	return (ENXIO);
1611 }
1612 
1613 static void
1614 dc_apply_fixup(struct dc_softc *sc, int media)
1615 {
1616 	struct dc_mediainfo *m;
1617 	u_int8_t *p;
1618 	int i;
1619 	u_int32_t reg;
1620 
1621 	m = sc->dc_mi;
1622 
1623 	while (m != NULL) {
1624 		if (m->dc_media == media)
1625 			break;
1626 		m = m->dc_next;
1627 	}
1628 
1629 	if (m == NULL)
1630 		return;
1631 
1632 	for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) {
1633 		reg = (p[0] | (p[1] << 8)) << 16;
1634 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1635 	}
1636 
1637 	for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) {
1638 		reg = (p[0] | (p[1] << 8)) << 16;
1639 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1640 	}
1641 }
1642 
1643 static void
1644 dc_decode_leaf_sia(struct dc_softc *sc, struct dc_eblock_sia *l)
1645 {
1646 	struct dc_mediainfo *m;
1647 
1648 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1649 	switch (l->dc_sia_code & ~DC_SIA_CODE_EXT) {
1650 	case DC_SIA_CODE_10BT:
1651 		m->dc_media = IFM_10_T;
1652 		break;
1653 	case DC_SIA_CODE_10BT_FDX:
1654 		m->dc_media = IFM_10_T | IFM_FDX;
1655 		break;
1656 	case DC_SIA_CODE_10B2:
1657 		m->dc_media = IFM_10_2;
1658 		break;
1659 	case DC_SIA_CODE_10B5:
1660 		m->dc_media = IFM_10_5;
1661 		break;
1662 	default:
1663 		break;
1664 	}
1665 
1666 	/*
1667 	 * We need to ignore CSR13, CSR14, CSR15 for SIA mode.
1668 	 * Things apparently already work for cards that do
1669 	 * supply Media Specific Data.
1670 	 */
1671 	if (l->dc_sia_code & DC_SIA_CODE_EXT) {
1672 		m->dc_gp_len = 2;
1673 		m->dc_gp_ptr =
1674 		(u_int8_t *)&l->dc_un.dc_sia_ext.dc_sia_gpio_ctl;
1675 	} else {
1676 		m->dc_gp_len = 2;
1677 		m->dc_gp_ptr =
1678 		(u_int8_t *)&l->dc_un.dc_sia_noext.dc_sia_gpio_ctl;
1679 	}
1680 
1681 	m->dc_next = sc->dc_mi;
1682 	sc->dc_mi = m;
1683 
1684 	sc->dc_pmode = DC_PMODE_SIA;
1685 }
1686 
1687 static void
1688 dc_decode_leaf_sym(struct dc_softc *sc, struct dc_eblock_sym *l)
1689 {
1690 	struct dc_mediainfo *m;
1691 
1692 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1693 	if (l->dc_sym_code == DC_SYM_CODE_100BT)
1694 		m->dc_media = IFM_100_TX;
1695 
1696 	if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX)
1697 		m->dc_media = IFM_100_TX | IFM_FDX;
1698 
1699 	m->dc_gp_len = 2;
1700 	m->dc_gp_ptr = (u_int8_t *)&l->dc_sym_gpio_ctl;
1701 
1702 	m->dc_next = sc->dc_mi;
1703 	sc->dc_mi = m;
1704 
1705 	sc->dc_pmode = DC_PMODE_SYM;
1706 }
1707 
1708 static void
1709 dc_decode_leaf_mii(struct dc_softc *sc, struct dc_eblock_mii *l)
1710 {
1711 	struct dc_mediainfo *m;
1712 	u_int8_t *p;
1713 
1714 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1715 	/* We abuse IFM_AUTO to represent MII. */
1716 	m->dc_media = IFM_AUTO;
1717 	m->dc_gp_len = l->dc_gpr_len;
1718 
1719 	p = (u_int8_t *)l;
1720 	p += sizeof(struct dc_eblock_mii);
1721 	m->dc_gp_ptr = p;
1722 	p += 2 * l->dc_gpr_len;
1723 	m->dc_reset_len = *p;
1724 	p++;
1725 	m->dc_reset_ptr = p;
1726 
1727 	m->dc_next = sc->dc_mi;
1728 	sc->dc_mi = m;
1729 }
1730 
1731 static void
1732 dc_read_srom(struct dc_softc *sc, int bits)
1733 {
1734 	int size;
1735 
1736 	size = 2 << bits;
1737 	sc->dc_srom = malloc(size, M_DEVBUF, M_NOWAIT);
1738 	dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (size / 2), 0);
1739 }
1740 
1741 static void
1742 dc_parse_21143_srom(struct dc_softc *sc)
1743 {
1744 	struct dc_leaf_hdr *lhdr;
1745 	struct dc_eblock_hdr *hdr;
1746 	int have_mii, i, loff;
1747 	char *ptr;
1748 
1749 	have_mii = 0;
1750 	loff = sc->dc_srom[27];
1751 	lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]);
1752 
1753 	ptr = (char *)lhdr;
1754 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1755 	/*
1756 	 * Look if we got a MII media block.
1757 	 */
1758 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1759 		hdr = (struct dc_eblock_hdr *)ptr;
1760 		if (hdr->dc_type == DC_EBLOCK_MII)
1761 		    have_mii++;
1762 
1763 		ptr += (hdr->dc_len & 0x7F);
1764 		ptr++;
1765 	}
1766 
1767 	/*
1768 	 * Do the same thing again. Only use SIA and SYM media
1769 	 * blocks if no MII media block is available.
1770 	 */
1771 	ptr = (char *)lhdr;
1772 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1773 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1774 		hdr = (struct dc_eblock_hdr *)ptr;
1775 		switch (hdr->dc_type) {
1776 		case DC_EBLOCK_MII:
1777 			dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr);
1778 			break;
1779 		case DC_EBLOCK_SIA:
1780 			if (! have_mii)
1781 				dc_decode_leaf_sia(sc,
1782 				    (struct dc_eblock_sia *)hdr);
1783 			break;
1784 		case DC_EBLOCK_SYM:
1785 			if (! have_mii)
1786 				dc_decode_leaf_sym(sc,
1787 				    (struct dc_eblock_sym *)hdr);
1788 			break;
1789 		default:
1790 			/* Don't care. Yet. */
1791 			break;
1792 		}
1793 		ptr += (hdr->dc_len & 0x7F);
1794 		ptr++;
1795 	}
1796 }
1797 
1798 static void
1799 dc_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1800 {
1801 	u_int32_t *paddr;
1802 
1803 	KASSERT(nseg == 1,
1804 	    ("%s: wrong number of segments (%d)", __func__, nseg));
1805 	paddr = arg;
1806 	*paddr = segs->ds_addr;
1807 }
1808 
1809 /*
1810  * Attach the interface. Allocate softc structures, do ifmedia
1811  * setup and ethernet/BPF attach.
1812  */
1813 static int
1814 dc_attach(device_t dev)
1815 {
1816 	int tmp = 0;
1817 	uint32_t eaddr[(ETHER_ADDR_LEN+3)/4];
1818 	u_int32_t command;
1819 	struct dc_softc *sc;
1820 	struct ifnet *ifp;
1821 	u_int32_t reg, revision;
1822 	int error = 0, rid, mac_offset;
1823 	int i;
1824 	u_int8_t *mac;
1825 
1826 	sc = device_get_softc(dev);
1827 	sc->dc_dev = dev;
1828 
1829 	mtx_init(&sc->dc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1830 	    MTX_DEF);
1831 
1832 	/*
1833 	 * Map control/status registers.
1834 	 */
1835 	pci_enable_busmaster(dev);
1836 
1837 	rid = DC_RID;
1838 	sc->dc_res = bus_alloc_resource_any(dev, DC_RES, &rid, RF_ACTIVE);
1839 
1840 	if (sc->dc_res == NULL) {
1841 		device_printf(dev, "couldn't map ports/memory\n");
1842 		error = ENXIO;
1843 		goto fail;
1844 	}
1845 
1846 	sc->dc_btag = rman_get_bustag(sc->dc_res);
1847 	sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
1848 
1849 	/* Allocate interrupt. */
1850 	rid = 0;
1851 	sc->dc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1852 	    RF_SHAREABLE | RF_ACTIVE);
1853 
1854 	if (sc->dc_irq == NULL) {
1855 		device_printf(dev, "couldn't map interrupt\n");
1856 		error = ENXIO;
1857 		goto fail;
1858 	}
1859 
1860 	/* Need this info to decide on a chip type. */
1861 	sc->dc_info = dc_devtype(dev);
1862 	revision = pci_get_revid(dev);
1863 
1864 	/* Get the eeprom width, but PNIC and XIRCOM have diff eeprom */
1865 	if (sc->dc_info->dc_devid !=
1866 	    DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168) &&
1867 	    sc->dc_info->dc_devid !=
1868 	    DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201))
1869 		dc_eeprom_width(sc);
1870 
1871 	switch (sc->dc_info->dc_devid) {
1872 	case DC_DEVID(DC_VENDORID_DEC, DC_DEVICEID_21143):
1873 		sc->dc_type = DC_TYPE_21143;
1874 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1875 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1876 		/* Save EEPROM contents so we can parse them later. */
1877 		dc_read_srom(sc, sc->dc_romwidth);
1878 		break;
1879 	case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009):
1880 	case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100):
1881 	case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102):
1882 		sc->dc_type = DC_TYPE_DM9102;
1883 		sc->dc_flags |= DC_TX_COALESCE | DC_TX_INTR_ALWAYS;
1884 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_TX_STORENFWD;
1885 		sc->dc_flags |= DC_TX_ALIGN;
1886 		sc->dc_pmode = DC_PMODE_MII;
1887 
1888 		/* Increase the latency timer value. */
1889 		pci_write_config(dev, PCIR_LATTIMER, 0x80, 1);
1890 		break;
1891 	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AL981):
1892 		sc->dc_type = DC_TYPE_AL981;
1893 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1894 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1895 		sc->dc_pmode = DC_PMODE_MII;
1896 		dc_read_srom(sc, sc->dc_romwidth);
1897 		break;
1898 	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN985):
1899 	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511):
1900 	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513):
1901 	case DC_DEVID(DC_VENDORID_DLINK, DC_DEVICEID_DRP32TXD):
1902 	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_FA511):
1903 	case DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500):
1904 	case DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500MX):
1905 	case DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN2242):
1906 	case DC_DEVID(DC_VENDORID_HAWKING, DC_DEVICEID_HAWKING_PN672TX):
1907 	case DC_DEVID(DC_VENDORID_PLANEX, DC_DEVICEID_FNW3602T):
1908 	case DC_DEVID(DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB):
1909 	case DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN120):
1910 	case DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130):
1911 	case DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB08):
1912 	case DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB09):
1913 		sc->dc_type = DC_TYPE_AN985;
1914 		sc->dc_flags |= DC_64BIT_HASH;
1915 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1916 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1917 		sc->dc_pmode = DC_PMODE_MII;
1918 		/* Don't read SROM for - auto-loaded on reset */
1919 		break;
1920 	case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713):
1921 	case DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP):
1922 		if (revision < DC_REVISION_98713A) {
1923 			sc->dc_type = DC_TYPE_98713;
1924 		}
1925 		if (revision >= DC_REVISION_98713A) {
1926 			sc->dc_type = DC_TYPE_98713A;
1927 			sc->dc_flags |= DC_21143_NWAY;
1928 		}
1929 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1930 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1931 		break;
1932 	case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5):
1933 	case DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN1217):
1934 		/*
1935 		 * Macronix MX98715AEC-C/D/E parts have only a
1936 		 * 128-bit hash table. We need to deal with these
1937 		 * in the same manner as the PNIC II so that we
1938 		 * get the right number of bits out of the
1939 		 * CRC routine.
1940 		 */
1941 		if (revision >= DC_REVISION_98715AEC_C &&
1942 		    revision < DC_REVISION_98725)
1943 			sc->dc_flags |= DC_128BIT_HASH;
1944 		sc->dc_type = DC_TYPE_987x5;
1945 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1946 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
1947 		break;
1948 	case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98727):
1949 		sc->dc_type = DC_TYPE_987x5;
1950 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1951 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
1952 		break;
1953 	case DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C115):
1954 		sc->dc_type = DC_TYPE_PNICII;
1955 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR | DC_128BIT_HASH;
1956 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
1957 		break;
1958 	case DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168):
1959 		sc->dc_type = DC_TYPE_PNIC;
1960 		sc->dc_flags |= DC_TX_STORENFWD | DC_TX_INTR_ALWAYS;
1961 		sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
1962 		sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_NOWAIT);
1963 		if (revision < DC_REVISION_82C169)
1964 			sc->dc_pmode = DC_PMODE_SYM;
1965 		break;
1966 	case DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A):
1967 		sc->dc_type = DC_TYPE_ASIX;
1968 		sc->dc_flags |= DC_TX_USE_TX_INTR | DC_TX_INTR_FIRSTFRAG;
1969 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1970 		sc->dc_pmode = DC_PMODE_MII;
1971 		break;
1972 	case DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201):
1973 		sc->dc_type = DC_TYPE_XIRCOM;
1974 		sc->dc_flags |= DC_TX_INTR_ALWAYS | DC_TX_COALESCE |
1975 				DC_TX_ALIGN;
1976 		/*
1977 		 * We don't actually need to coalesce, but we're doing
1978 		 * it to obtain a double word aligned buffer.
1979 		 * The DC_TX_COALESCE flag is required.
1980 		 */
1981 		sc->dc_pmode = DC_PMODE_MII;
1982 		break;
1983 	case DC_DEVID(DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112):
1984 		sc->dc_type = DC_TYPE_CONEXANT;
1985 		sc->dc_flags |= DC_TX_INTR_ALWAYS;
1986 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1987 		sc->dc_pmode = DC_PMODE_MII;
1988 		dc_read_srom(sc, sc->dc_romwidth);
1989 		break;
1990 	default:
1991 		device_printf(dev, "unknown device: %x\n",
1992 		    sc->dc_info->dc_devid);
1993 		break;
1994 	}
1995 
1996 	/* Save the cache line size. */
1997 	if (DC_IS_DAVICOM(sc))
1998 		sc->dc_cachesize = 0;
1999 	else
2000 		sc->dc_cachesize = pci_get_cachelnsz(dev);
2001 
2002 	/* Reset the adapter. */
2003 	dc_reset(sc);
2004 
2005 	/* Take 21143 out of snooze mode */
2006 	if (DC_IS_INTEL(sc) || DC_IS_XIRCOM(sc)) {
2007 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
2008 		command &= ~(DC_CFDD_SNOOZE_MODE | DC_CFDD_SLEEP_MODE);
2009 		pci_write_config(dev, DC_PCI_CFDD, command, 4);
2010 	}
2011 
2012 	/*
2013 	 * Try to learn something about the supported media.
2014 	 * We know that ASIX and ADMtek and Davicom devices
2015 	 * will *always* be using MII media, so that's a no-brainer.
2016 	 * The tricky ones are the Macronix/PNIC II and the
2017 	 * Intel 21143.
2018 	 */
2019 	if (DC_IS_INTEL(sc))
2020 		dc_parse_21143_srom(sc);
2021 	else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
2022 		if (sc->dc_type == DC_TYPE_98713)
2023 			sc->dc_pmode = DC_PMODE_MII;
2024 		else
2025 			sc->dc_pmode = DC_PMODE_SYM;
2026 	} else if (!sc->dc_pmode)
2027 		sc->dc_pmode = DC_PMODE_MII;
2028 
2029 	/*
2030 	 * Get station address from the EEPROM.
2031 	 */
2032 	switch(sc->dc_type) {
2033 	case DC_TYPE_98713:
2034 	case DC_TYPE_98713A:
2035 	case DC_TYPE_987x5:
2036 	case DC_TYPE_PNICII:
2037 		dc_read_eeprom(sc, (caddr_t)&mac_offset,
2038 		    (DC_EE_NODEADDR_OFFSET / 2), 1, 0);
2039 		dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
2040 		break;
2041 	case DC_TYPE_PNIC:
2042 		dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
2043 		break;
2044 	case DC_TYPE_DM9102:
2045 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2046 #ifdef __sparc64__
2047 		/*
2048 		 * If this is an onboard dc(4) the station address read from
2049 		 * the EEPROM is all zero and we have to get it from the FCode.
2050 		 */
2051 		if (eaddr[0] == 0 && (eaddr[1] & ~0xffff) == 0)
2052 			OF_getetheraddr(dev, (caddr_t)&eaddr);
2053 #endif
2054 		break;
2055 	case DC_TYPE_21143:
2056 	case DC_TYPE_ASIX:
2057 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2058 		break;
2059 	case DC_TYPE_AL981:
2060 	case DC_TYPE_AN985:
2061 		reg = CSR_READ_4(sc, DC_AL_PAR0);
2062 		mac = (uint8_t *)&eaddr[0];
2063 		mac[0] = (reg >> 0) & 0xff;
2064 		mac[1] = (reg >> 8) & 0xff;
2065 		mac[2] = (reg >> 16) & 0xff;
2066 		mac[3] = (reg >> 24) & 0xff;
2067 		reg = CSR_READ_4(sc, DC_AL_PAR1);
2068 		mac[4] = (reg >> 0) & 0xff;
2069 		mac[5] = (reg >> 8) & 0xff;
2070 		break;
2071 	case DC_TYPE_CONEXANT:
2072 		bcopy(sc->dc_srom + DC_CONEXANT_EE_NODEADDR, &eaddr,
2073 		    ETHER_ADDR_LEN);
2074 		break;
2075 	case DC_TYPE_XIRCOM:
2076 		/* The MAC comes from the CIS. */
2077 		mac = pci_get_ether(dev);
2078 		if (!mac) {
2079 			device_printf(dev, "No station address in CIS!\n");
2080 			error = ENXIO;
2081 			goto fail;
2082 		}
2083 		bcopy(mac, eaddr, ETHER_ADDR_LEN);
2084 		break;
2085 	default:
2086 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2087 		break;
2088 	}
2089 
2090 	/* Allocate a busdma tag and DMA safe memory for TX/RX descriptors. */
2091 	error = bus_dma_tag_create(bus_get_dma_tag(dev), PAGE_SIZE, 0,
2092 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
2093 	    sizeof(struct dc_list_data), 1, sizeof(struct dc_list_data),
2094 	    0, NULL, NULL, &sc->dc_ltag);
2095 	if (error) {
2096 		device_printf(dev, "failed to allocate busdma tag\n");
2097 		error = ENXIO;
2098 		goto fail;
2099 	}
2100 	error = bus_dmamem_alloc(sc->dc_ltag, (void **)&sc->dc_ldata,
2101 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->dc_lmap);
2102 	if (error) {
2103 		device_printf(dev, "failed to allocate DMA safe memory\n");
2104 		error = ENXIO;
2105 		goto fail;
2106 	}
2107 	error = bus_dmamap_load(sc->dc_ltag, sc->dc_lmap, sc->dc_ldata,
2108 	    sizeof(struct dc_list_data), dc_dma_map_addr, &sc->dc_laddr,
2109 	    BUS_DMA_NOWAIT);
2110 	if (error) {
2111 		device_printf(dev, "cannot get address of the descriptors\n");
2112 		error = ENXIO;
2113 		goto fail;
2114 	}
2115 
2116 	/*
2117 	 * Allocate a busdma tag and DMA safe memory for the multicast
2118 	 * setup frame.
2119 	 */
2120 	error = bus_dma_tag_create(bus_get_dma_tag(dev), PAGE_SIZE, 0,
2121 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
2122 	    DC_SFRAME_LEN + DC_MIN_FRAMELEN, 1, DC_SFRAME_LEN + DC_MIN_FRAMELEN,
2123 	    0, NULL, NULL, &sc->dc_stag);
2124 	if (error) {
2125 		device_printf(dev, "failed to allocate busdma tag\n");
2126 		error = ENXIO;
2127 		goto fail;
2128 	}
2129 	error = bus_dmamem_alloc(sc->dc_stag, (void **)&sc->dc_cdata.dc_sbuf,
2130 	    BUS_DMA_NOWAIT, &sc->dc_smap);
2131 	if (error) {
2132 		device_printf(dev, "failed to allocate DMA safe memory\n");
2133 		error = ENXIO;
2134 		goto fail;
2135 	}
2136 	error = bus_dmamap_load(sc->dc_stag, sc->dc_smap, sc->dc_cdata.dc_sbuf,
2137 	    DC_SFRAME_LEN, dc_dma_map_addr, &sc->dc_saddr, BUS_DMA_NOWAIT);
2138 	if (error) {
2139 		device_printf(dev, "cannot get address of the descriptors\n");
2140 		error = ENXIO;
2141 		goto fail;
2142 	}
2143 
2144 	/* Allocate a busdma tag for mbufs. */
2145 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0,
2146 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
2147 	    MCLBYTES * DC_MAXFRAGS, DC_MAXFRAGS, MCLBYTES,
2148 	    0, NULL, NULL, &sc->dc_mtag);
2149 	if (error) {
2150 		device_printf(dev, "failed to allocate busdma tag\n");
2151 		error = ENXIO;
2152 		goto fail;
2153 	}
2154 
2155 	/* Create the TX/RX busdma maps. */
2156 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2157 		error = bus_dmamap_create(sc->dc_mtag, 0,
2158 		    &sc->dc_cdata.dc_tx_map[i]);
2159 		if (error) {
2160 			device_printf(dev, "failed to init TX ring\n");
2161 			error = ENXIO;
2162 			goto fail;
2163 		}
2164 	}
2165 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2166 		error = bus_dmamap_create(sc->dc_mtag, 0,
2167 		    &sc->dc_cdata.dc_rx_map[i]);
2168 		if (error) {
2169 			device_printf(dev, "failed to init RX ring\n");
2170 			error = ENXIO;
2171 			goto fail;
2172 		}
2173 	}
2174 	error = bus_dmamap_create(sc->dc_mtag, 0, &sc->dc_sparemap);
2175 	if (error) {
2176 		device_printf(dev, "failed to init RX ring\n");
2177 		error = ENXIO;
2178 		goto fail;
2179 	}
2180 
2181 	ifp = sc->dc_ifp = if_alloc(IFT_ETHER);
2182 	if (ifp == NULL) {
2183 		device_printf(dev, "can not if_alloc()\n");
2184 		error = ENOSPC;
2185 		goto fail;
2186 	}
2187 	ifp->if_softc = sc;
2188 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2189 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2190 	ifp->if_ioctl = dc_ioctl;
2191 	ifp->if_start = dc_start;
2192 	ifp->if_init = dc_init;
2193 	IFQ_SET_MAXLEN(&ifp->if_snd, DC_TX_LIST_CNT - 1);
2194 	ifp->if_snd.ifq_drv_maxlen = DC_TX_LIST_CNT - 1;
2195 	IFQ_SET_READY(&ifp->if_snd);
2196 
2197 	/*
2198 	 * Do MII setup. If this is a 21143, check for a PHY on the
2199 	 * MII bus after applying any necessary fixups to twiddle the
2200 	 * GPIO bits. If we don't end up finding a PHY, restore the
2201 	 * old selection (SIA only or SIA/SYM) and attach the dcphy
2202 	 * driver instead.
2203 	 */
2204 	if (DC_IS_INTEL(sc)) {
2205 		dc_apply_fixup(sc, IFM_AUTO);
2206 		tmp = sc->dc_pmode;
2207 		sc->dc_pmode = DC_PMODE_MII;
2208 	}
2209 
2210 	/*
2211 	 * Setup General Purpose port mode and data so the tulip can talk
2212 	 * to the MII.  This needs to be done before mii_phy_probe so that
2213 	 * we can actually see them.
2214 	 */
2215 	if (DC_IS_XIRCOM(sc)) {
2216 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
2217 		    DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2218 		DELAY(10);
2219 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
2220 		    DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2221 		DELAY(10);
2222 	}
2223 
2224 	error = mii_phy_probe(dev, &sc->dc_miibus,
2225 	    dc_ifmedia_upd, dc_ifmedia_sts);
2226 
2227 	if (error && DC_IS_INTEL(sc)) {
2228 		sc->dc_pmode = tmp;
2229 		if (sc->dc_pmode != DC_PMODE_SIA)
2230 			sc->dc_pmode = DC_PMODE_SYM;
2231 		sc->dc_flags |= DC_21143_NWAY;
2232 		mii_phy_probe(dev, &sc->dc_miibus,
2233 		    dc_ifmedia_upd, dc_ifmedia_sts);
2234 		/*
2235 		 * For non-MII cards, we need to have the 21143
2236 		 * drive the LEDs. Except there are some systems
2237 		 * like the NEC VersaPro NoteBook PC which have no
2238 		 * LEDs, and twiddling these bits has adverse effects
2239 		 * on them. (I.e. you suddenly can't get a link.)
2240 		 */
2241 		if (!(pci_get_subvendor(dev) == 0x1033 &&
2242 		    pci_get_subdevice(dev) == 0x8028))
2243 			sc->dc_flags |= DC_TULIP_LEDS;
2244 		error = 0;
2245 	}
2246 
2247 	if (error) {
2248 		device_printf(dev, "MII without any PHY!\n");
2249 		goto fail;
2250 	}
2251 
2252 	if (DC_IS_ADMTEK(sc)) {
2253 		/*
2254 		 * Set automatic TX underrun recovery for the ADMtek chips
2255 		 */
2256 		DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR);
2257 	}
2258 
2259 	/*
2260 	 * Tell the upper layer(s) we support long frames.
2261 	 */
2262 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2263 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
2264 	ifp->if_capenable = ifp->if_capabilities;
2265 #ifdef DEVICE_POLLING
2266 	ifp->if_capabilities |= IFCAP_POLLING;
2267 #endif
2268 
2269 	callout_init_mtx(&sc->dc_stat_ch, &sc->dc_mtx, 0);
2270 	callout_init_mtx(&sc->dc_wdog_ch, &sc->dc_mtx, 0);
2271 
2272 	/*
2273 	 * Call MI attach routine.
2274 	 */
2275 	ether_ifattach(ifp, (caddr_t)eaddr);
2276 
2277 	/* Hook interrupt last to avoid having to lock softc */
2278 	error = bus_setup_intr(dev, sc->dc_irq, INTR_TYPE_NET | INTR_MPSAFE,
2279 	    NULL, dc_intr, sc, &sc->dc_intrhand);
2280 
2281 	if (error) {
2282 		device_printf(dev, "couldn't set up irq\n");
2283 		ether_ifdetach(ifp);
2284 		goto fail;
2285 	}
2286 
2287 fail:
2288 	if (error)
2289 		dc_detach(dev);
2290 	return (error);
2291 }
2292 
2293 /*
2294  * Shutdown hardware and free up resources. This can be called any
2295  * time after the mutex has been initialized. It is called in both
2296  * the error case in attach and the normal detach case so it needs
2297  * to be careful about only freeing resources that have actually been
2298  * allocated.
2299  */
2300 static int
2301 dc_detach(device_t dev)
2302 {
2303 	struct dc_softc *sc;
2304 	struct ifnet *ifp;
2305 	struct dc_mediainfo *m;
2306 	int i;
2307 
2308 	sc = device_get_softc(dev);
2309 	KASSERT(mtx_initialized(&sc->dc_mtx), ("dc mutex not initialized"));
2310 
2311 	ifp = sc->dc_ifp;
2312 
2313 #ifdef DEVICE_POLLING
2314 	if (ifp->if_capenable & IFCAP_POLLING)
2315 		ether_poll_deregister(ifp);
2316 #endif
2317 
2318 	/* These should only be active if attach succeeded */
2319 	if (device_is_attached(dev)) {
2320 		DC_LOCK(sc);
2321 		dc_stop(sc);
2322 		DC_UNLOCK(sc);
2323 		callout_drain(&sc->dc_stat_ch);
2324 		callout_drain(&sc->dc_wdog_ch);
2325 		ether_ifdetach(ifp);
2326 	}
2327 	if (sc->dc_miibus)
2328 		device_delete_child(dev, sc->dc_miibus);
2329 	bus_generic_detach(dev);
2330 
2331 	if (sc->dc_intrhand)
2332 		bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2333 	if (sc->dc_irq)
2334 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2335 	if (sc->dc_res)
2336 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2337 
2338 	if (ifp)
2339 		if_free(ifp);
2340 
2341 	if (sc->dc_cdata.dc_sbuf != NULL)
2342 		bus_dmamem_free(sc->dc_stag, sc->dc_cdata.dc_sbuf, sc->dc_smap);
2343 	if (sc->dc_ldata != NULL)
2344 		bus_dmamem_free(sc->dc_ltag, sc->dc_ldata, sc->dc_lmap);
2345 	if (sc->dc_mtag) {
2346 		for (i = 0; i < DC_TX_LIST_CNT; i++)
2347 			if (sc->dc_cdata.dc_tx_map[i] != NULL)
2348 				bus_dmamap_destroy(sc->dc_mtag,
2349 				    sc->dc_cdata.dc_tx_map[i]);
2350 		for (i = 0; i < DC_RX_LIST_CNT; i++)
2351 			if (sc->dc_cdata.dc_rx_map[i] != NULL)
2352 				bus_dmamap_destroy(sc->dc_mtag,
2353 				    sc->dc_cdata.dc_rx_map[i]);
2354 		bus_dmamap_destroy(sc->dc_mtag, sc->dc_sparemap);
2355 	}
2356 	if (sc->dc_stag)
2357 		bus_dma_tag_destroy(sc->dc_stag);
2358 	if (sc->dc_mtag)
2359 		bus_dma_tag_destroy(sc->dc_mtag);
2360 	if (sc->dc_ltag)
2361 		bus_dma_tag_destroy(sc->dc_ltag);
2362 
2363 	free(sc->dc_pnic_rx_buf, M_DEVBUF);
2364 
2365 	while (sc->dc_mi != NULL) {
2366 		m = sc->dc_mi->dc_next;
2367 		free(sc->dc_mi, M_DEVBUF);
2368 		sc->dc_mi = m;
2369 	}
2370 	free(sc->dc_srom, M_DEVBUF);
2371 
2372 	mtx_destroy(&sc->dc_mtx);
2373 
2374 	return (0);
2375 }
2376 
2377 /*
2378  * Initialize the transmit descriptors.
2379  */
2380 static int
2381 dc_list_tx_init(struct dc_softc *sc)
2382 {
2383 	struct dc_chain_data *cd;
2384 	struct dc_list_data *ld;
2385 	int i, nexti;
2386 
2387 	cd = &sc->dc_cdata;
2388 	ld = sc->dc_ldata;
2389 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2390 		if (i == DC_TX_LIST_CNT - 1)
2391 			nexti = 0;
2392 		else
2393 			nexti = i + 1;
2394 		ld->dc_tx_list[i].dc_next = htole32(DC_TXDESC(sc, nexti));
2395 		cd->dc_tx_chain[i] = NULL;
2396 		ld->dc_tx_list[i].dc_data = 0;
2397 		ld->dc_tx_list[i].dc_ctl = 0;
2398 	}
2399 
2400 	cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
2401 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
2402 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2403 	return (0);
2404 }
2405 
2406 
2407 /*
2408  * Initialize the RX descriptors and allocate mbufs for them. Note that
2409  * we arrange the descriptors in a closed ring, so that the last descriptor
2410  * points back to the first.
2411  */
2412 static int
2413 dc_list_rx_init(struct dc_softc *sc)
2414 {
2415 	struct dc_chain_data *cd;
2416 	struct dc_list_data *ld;
2417 	int i, nexti;
2418 
2419 	cd = &sc->dc_cdata;
2420 	ld = sc->dc_ldata;
2421 
2422 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2423 		if (dc_newbuf(sc, i, 1) != 0)
2424 			return (ENOBUFS);
2425 		if (i == DC_RX_LIST_CNT - 1)
2426 			nexti = 0;
2427 		else
2428 			nexti = i + 1;
2429 		ld->dc_rx_list[i].dc_next = htole32(DC_RXDESC(sc, nexti));
2430 	}
2431 
2432 	cd->dc_rx_prod = 0;
2433 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
2434 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2435 	return (0);
2436 }
2437 
2438 /*
2439  * Initialize an RX descriptor and attach an MBUF cluster.
2440  */
2441 static int
2442 dc_newbuf(struct dc_softc *sc, int i, int alloc)
2443 {
2444 	struct mbuf *m_new;
2445 	bus_dmamap_t tmp;
2446 	bus_dma_segment_t segs[1];
2447 	int error, nseg;
2448 
2449 	if (alloc) {
2450 		m_new = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2451 		if (m_new == NULL)
2452 			return (ENOBUFS);
2453 	} else {
2454 		m_new = sc->dc_cdata.dc_rx_chain[i];
2455 		m_new->m_data = m_new->m_ext.ext_buf;
2456 	}
2457 	m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2458 	m_adj(m_new, sizeof(u_int64_t));
2459 
2460 	/*
2461 	 * If this is a PNIC chip, zero the buffer. This is part
2462 	 * of the workaround for the receive bug in the 82c168 and
2463 	 * 82c169 chips.
2464 	 */
2465 	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
2466 		bzero(mtod(m_new, char *), m_new->m_len);
2467 
2468 	/* No need to remap the mbuf if we're reusing it. */
2469 	if (alloc) {
2470 		error = bus_dmamap_load_mbuf_sg(sc->dc_mtag, sc->dc_sparemap,
2471 		    m_new, segs, &nseg, 0);
2472 		if (error) {
2473 			m_freem(m_new);
2474 			return (error);
2475 		}
2476 		KASSERT(nseg == 1,
2477 		    ("%s: wrong number of segments (%d)", __func__, nseg));
2478 		sc->dc_ldata->dc_rx_list[i].dc_data = htole32(segs->ds_addr);
2479 		bus_dmamap_unload(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i]);
2480 		tmp = sc->dc_cdata.dc_rx_map[i];
2481 		sc->dc_cdata.dc_rx_map[i] = sc->dc_sparemap;
2482 		sc->dc_sparemap = tmp;
2483 		sc->dc_cdata.dc_rx_chain[i] = m_new;
2484 	}
2485 
2486 	sc->dc_ldata->dc_rx_list[i].dc_ctl = htole32(DC_RXCTL_RLINK | DC_RXLEN);
2487 	sc->dc_ldata->dc_rx_list[i].dc_status = htole32(DC_RXSTAT_OWN);
2488 	bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i],
2489 	    BUS_DMASYNC_PREREAD);
2490 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
2491 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2492 	return (0);
2493 }
2494 
2495 /*
2496  * Grrrrr.
2497  * The PNIC chip has a terrible bug in it that manifests itself during
2498  * periods of heavy activity. The exact mode of failure if difficult to
2499  * pinpoint: sometimes it only happens in promiscuous mode, sometimes it
2500  * will happen on slow machines. The bug is that sometimes instead of
2501  * uploading one complete frame during reception, it uploads what looks
2502  * like the entire contents of its FIFO memory. The frame we want is at
2503  * the end of the whole mess, but we never know exactly how much data has
2504  * been uploaded, so salvaging the frame is hard.
2505  *
2506  * There is only one way to do it reliably, and it's disgusting.
2507  * Here's what we know:
2508  *
2509  * - We know there will always be somewhere between one and three extra
2510  *   descriptors uploaded.
2511  *
2512  * - We know the desired received frame will always be at the end of the
2513  *   total data upload.
2514  *
2515  * - We know the size of the desired received frame because it will be
2516  *   provided in the length field of the status word in the last descriptor.
2517  *
2518  * Here's what we do:
2519  *
2520  * - When we allocate buffers for the receive ring, we bzero() them.
2521  *   This means that we know that the buffer contents should be all
2522  *   zeros, except for data uploaded by the chip.
2523  *
2524  * - We also force the PNIC chip to upload frames that include the
2525  *   ethernet CRC at the end.
2526  *
2527  * - We gather all of the bogus frame data into a single buffer.
2528  *
2529  * - We then position a pointer at the end of this buffer and scan
2530  *   backwards until we encounter the first non-zero byte of data.
2531  *   This is the end of the received frame. We know we will encounter
2532  *   some data at the end of the frame because the CRC will always be
2533  *   there, so even if the sender transmits a packet of all zeros,
2534  *   we won't be fooled.
2535  *
2536  * - We know the size of the actual received frame, so we subtract
2537  *   that value from the current pointer location. This brings us
2538  *   to the start of the actual received packet.
2539  *
2540  * - We copy this into an mbuf and pass it on, along with the actual
2541  *   frame length.
2542  *
2543  * The performance hit is tremendous, but it beats dropping frames all
2544  * the time.
2545  */
2546 
2547 #define DC_WHOLEFRAME	(DC_RXSTAT_FIRSTFRAG | DC_RXSTAT_LASTFRAG)
2548 static void
2549 dc_pnic_rx_bug_war(struct dc_softc *sc, int idx)
2550 {
2551 	struct dc_desc *cur_rx;
2552 	struct dc_desc *c = NULL;
2553 	struct mbuf *m = NULL;
2554 	unsigned char *ptr;
2555 	int i, total_len;
2556 	u_int32_t rxstat = 0;
2557 
2558 	i = sc->dc_pnic_rx_bug_save;
2559 	cur_rx = &sc->dc_ldata->dc_rx_list[idx];
2560 	ptr = sc->dc_pnic_rx_buf;
2561 	bzero(ptr, DC_RXLEN * 5);
2562 
2563 	/* Copy all the bytes from the bogus buffers. */
2564 	while (1) {
2565 		c = &sc->dc_ldata->dc_rx_list[i];
2566 		rxstat = le32toh(c->dc_status);
2567 		m = sc->dc_cdata.dc_rx_chain[i];
2568 		bcopy(mtod(m, char *), ptr, DC_RXLEN);
2569 		ptr += DC_RXLEN;
2570 		/* If this is the last buffer, break out. */
2571 		if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
2572 			break;
2573 		dc_newbuf(sc, i, 0);
2574 		DC_INC(i, DC_RX_LIST_CNT);
2575 	}
2576 
2577 	/* Find the length of the actual receive frame. */
2578 	total_len = DC_RXBYTES(rxstat);
2579 
2580 	/* Scan backwards until we hit a non-zero byte. */
2581 	while (*ptr == 0x00)
2582 		ptr--;
2583 
2584 	/* Round off. */
2585 	if ((uintptr_t)(ptr) & 0x3)
2586 		ptr -= 1;
2587 
2588 	/* Now find the start of the frame. */
2589 	ptr -= total_len;
2590 	if (ptr < sc->dc_pnic_rx_buf)
2591 		ptr = sc->dc_pnic_rx_buf;
2592 
2593 	/*
2594 	 * Now copy the salvaged frame to the last mbuf and fake up
2595 	 * the status word to make it look like a successful
2596 	 * frame reception.
2597 	 */
2598 	dc_newbuf(sc, i, 0);
2599 	bcopy(ptr, mtod(m, char *), total_len);
2600 	cur_rx->dc_status = htole32(rxstat | DC_RXSTAT_FIRSTFRAG);
2601 }
2602 
2603 /*
2604  * This routine searches the RX ring for dirty descriptors in the
2605  * event that the rxeof routine falls out of sync with the chip's
2606  * current descriptor pointer. This may happen sometimes as a result
2607  * of a "no RX buffer available" condition that happens when the chip
2608  * consumes all of the RX buffers before the driver has a chance to
2609  * process the RX ring. This routine may need to be called more than
2610  * once to bring the driver back in sync with the chip, however we
2611  * should still be getting RX DONE interrupts to drive the search
2612  * for new packets in the RX ring, so we should catch up eventually.
2613  */
2614 static int
2615 dc_rx_resync(struct dc_softc *sc)
2616 {
2617 	struct dc_desc *cur_rx;
2618 	int i, pos;
2619 
2620 	pos = sc->dc_cdata.dc_rx_prod;
2621 
2622 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2623 		cur_rx = &sc->dc_ldata->dc_rx_list[pos];
2624 		if (!(le32toh(cur_rx->dc_status) & DC_RXSTAT_OWN))
2625 			break;
2626 		DC_INC(pos, DC_RX_LIST_CNT);
2627 	}
2628 
2629 	/* If the ring really is empty, then just return. */
2630 	if (i == DC_RX_LIST_CNT)
2631 		return (0);
2632 
2633 	/* We've fallen behing the chip: catch it. */
2634 	sc->dc_cdata.dc_rx_prod = pos;
2635 
2636 	return (EAGAIN);
2637 }
2638 
2639 /*
2640  * A frame has been uploaded: pass the resulting mbuf chain up to
2641  * the higher level protocols.
2642  */
2643 static void
2644 dc_rxeof(struct dc_softc *sc)
2645 {
2646 	struct mbuf *m, *m0;
2647 	struct ifnet *ifp;
2648 	struct dc_desc *cur_rx;
2649 	int i, total_len = 0;
2650 	u_int32_t rxstat;
2651 
2652 	DC_LOCK_ASSERT(sc);
2653 
2654 	ifp = sc->dc_ifp;
2655 	i = sc->dc_cdata.dc_rx_prod;
2656 
2657 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap, BUS_DMASYNC_POSTREAD);
2658 	while (!(le32toh(sc->dc_ldata->dc_rx_list[i].dc_status) &
2659 	    DC_RXSTAT_OWN)) {
2660 #ifdef DEVICE_POLLING
2661 		if (ifp->if_capenable & IFCAP_POLLING) {
2662 			if (sc->rxcycles <= 0)
2663 				break;
2664 			sc->rxcycles--;
2665 		}
2666 #endif
2667 		cur_rx = &sc->dc_ldata->dc_rx_list[i];
2668 		rxstat = le32toh(cur_rx->dc_status);
2669 		m = sc->dc_cdata.dc_rx_chain[i];
2670 		bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i],
2671 		    BUS_DMASYNC_POSTREAD);
2672 		total_len = DC_RXBYTES(rxstat);
2673 
2674 		if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2675 			if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
2676 				if (rxstat & DC_RXSTAT_FIRSTFRAG)
2677 					sc->dc_pnic_rx_bug_save = i;
2678 				if ((rxstat & DC_RXSTAT_LASTFRAG) == 0) {
2679 					DC_INC(i, DC_RX_LIST_CNT);
2680 					continue;
2681 				}
2682 				dc_pnic_rx_bug_war(sc, i);
2683 				rxstat = le32toh(cur_rx->dc_status);
2684 				total_len = DC_RXBYTES(rxstat);
2685 			}
2686 		}
2687 
2688 		/*
2689 		 * If an error occurs, update stats, clear the
2690 		 * status word and leave the mbuf cluster in place:
2691 		 * it should simply get re-used next time this descriptor
2692 		 * comes up in the ring.  However, don't report long
2693 		 * frames as errors since they could be vlans.
2694 		 */
2695 		if ((rxstat & DC_RXSTAT_RXERR)) {
2696 			if (!(rxstat & DC_RXSTAT_GIANT) ||
2697 			    (rxstat & (DC_RXSTAT_CRCERR | DC_RXSTAT_DRIBBLE |
2698 				       DC_RXSTAT_MIIERE | DC_RXSTAT_COLLSEEN |
2699 				       DC_RXSTAT_RUNT   | DC_RXSTAT_DE))) {
2700 				ifp->if_ierrors++;
2701 				if (rxstat & DC_RXSTAT_COLLSEEN)
2702 					ifp->if_collisions++;
2703 				dc_newbuf(sc, i, 0);
2704 				if (rxstat & DC_RXSTAT_CRCERR) {
2705 					DC_INC(i, DC_RX_LIST_CNT);
2706 					continue;
2707 				} else {
2708 					dc_init_locked(sc);
2709 					return;
2710 				}
2711 			}
2712 		}
2713 
2714 		/* No errors; receive the packet. */
2715 		total_len -= ETHER_CRC_LEN;
2716 #ifdef __NO_STRICT_ALIGNMENT
2717 		/*
2718 		 * On architectures without alignment problems we try to
2719 		 * allocate a new buffer for the receive ring, and pass up
2720 		 * the one where the packet is already, saving the expensive
2721 		 * copy done in m_devget().
2722 		 * If we are on an architecture with alignment problems, or
2723 		 * if the allocation fails, then use m_devget and leave the
2724 		 * existing buffer in the receive ring.
2725 		 */
2726 		if (dc_newbuf(sc, i, 1) == 0) {
2727 			m->m_pkthdr.rcvif = ifp;
2728 			m->m_pkthdr.len = m->m_len = total_len;
2729 			DC_INC(i, DC_RX_LIST_CNT);
2730 		} else
2731 #endif
2732 		{
2733 			m0 = m_devget(mtod(m, char *), total_len,
2734 				ETHER_ALIGN, ifp, NULL);
2735 			dc_newbuf(sc, i, 0);
2736 			DC_INC(i, DC_RX_LIST_CNT);
2737 			if (m0 == NULL) {
2738 				ifp->if_ierrors++;
2739 				continue;
2740 			}
2741 			m = m0;
2742 		}
2743 
2744 		ifp->if_ipackets++;
2745 		DC_UNLOCK(sc);
2746 		(*ifp->if_input)(ifp, m);
2747 		DC_LOCK(sc);
2748 	}
2749 
2750 	sc->dc_cdata.dc_rx_prod = i;
2751 }
2752 
2753 /*
2754  * A frame was downloaded to the chip. It's safe for us to clean up
2755  * the list buffers.
2756  */
2757 static void
2758 dc_txeof(struct dc_softc *sc)
2759 {
2760 	struct dc_desc *cur_tx = NULL;
2761 	struct ifnet *ifp;
2762 	int idx;
2763 	u_int32_t ctl, txstat;
2764 
2765 	ifp = sc->dc_ifp;
2766 
2767 	/*
2768 	 * Go through our tx list and free mbufs for those
2769 	 * frames that have been transmitted.
2770 	 */
2771 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap, BUS_DMASYNC_POSTREAD);
2772 	idx = sc->dc_cdata.dc_tx_cons;
2773 	while (idx != sc->dc_cdata.dc_tx_prod) {
2774 
2775 		cur_tx = &sc->dc_ldata->dc_tx_list[idx];
2776 		txstat = le32toh(cur_tx->dc_status);
2777 		ctl = le32toh(cur_tx->dc_ctl);
2778 
2779 		if (txstat & DC_TXSTAT_OWN)
2780 			break;
2781 
2782 		if (!(ctl & DC_TXCTL_LASTFRAG) || ctl & DC_TXCTL_SETUP) {
2783 			if (ctl & DC_TXCTL_SETUP) {
2784 				/*
2785 				 * Yes, the PNIC is so brain damaged
2786 				 * that it will sometimes generate a TX
2787 				 * underrun error while DMAing the RX
2788 				 * filter setup frame. If we detect this,
2789 				 * we have to send the setup frame again,
2790 				 * or else the filter won't be programmed
2791 				 * correctly.
2792 				 */
2793 				if (DC_IS_PNIC(sc)) {
2794 					if (txstat & DC_TXSTAT_ERRSUM)
2795 						dc_setfilt(sc);
2796 				}
2797 				sc->dc_cdata.dc_tx_chain[idx] = NULL;
2798 			}
2799 			sc->dc_cdata.dc_tx_cnt--;
2800 			DC_INC(idx, DC_TX_LIST_CNT);
2801 			continue;
2802 		}
2803 
2804 		if (DC_IS_XIRCOM(sc) || DC_IS_CONEXANT(sc)) {
2805 			/*
2806 			 * XXX: Why does my Xircom taunt me so?
2807 			 * For some reason it likes setting the CARRLOST flag
2808 			 * even when the carrier is there. wtf?!?
2809 			 * Who knows, but Conexant chips have the
2810 			 * same problem. Maybe they took lessons
2811 			 * from Xircom.
2812 			 */
2813 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2814 			    sc->dc_pmode == DC_PMODE_MII &&
2815 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
2816 			    DC_TXSTAT_NOCARRIER)))
2817 				txstat &= ~DC_TXSTAT_ERRSUM;
2818 		} else {
2819 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2820 			    sc->dc_pmode == DC_PMODE_MII &&
2821 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
2822 			    DC_TXSTAT_NOCARRIER | DC_TXSTAT_CARRLOST)))
2823 				txstat &= ~DC_TXSTAT_ERRSUM;
2824 		}
2825 
2826 		if (txstat & DC_TXSTAT_ERRSUM) {
2827 			ifp->if_oerrors++;
2828 			if (txstat & DC_TXSTAT_EXCESSCOLL)
2829 				ifp->if_collisions++;
2830 			if (txstat & DC_TXSTAT_LATECOLL)
2831 				ifp->if_collisions++;
2832 			if (!(txstat & DC_TXSTAT_UNDERRUN)) {
2833 				dc_init_locked(sc);
2834 				return;
2835 			}
2836 		}
2837 
2838 		ifp->if_collisions += (txstat & DC_TXSTAT_COLLCNT) >> 3;
2839 
2840 		ifp->if_opackets++;
2841 		if (sc->dc_cdata.dc_tx_chain[idx] != NULL) {
2842 			bus_dmamap_sync(sc->dc_mtag,
2843 			    sc->dc_cdata.dc_tx_map[idx],
2844 			    BUS_DMASYNC_POSTWRITE);
2845 			bus_dmamap_unload(sc->dc_mtag,
2846 			    sc->dc_cdata.dc_tx_map[idx]);
2847 			m_freem(sc->dc_cdata.dc_tx_chain[idx]);
2848 			sc->dc_cdata.dc_tx_chain[idx] = NULL;
2849 		}
2850 
2851 		sc->dc_cdata.dc_tx_cnt--;
2852 		DC_INC(idx, DC_TX_LIST_CNT);
2853 	}
2854 	sc->dc_cdata.dc_tx_cons = idx;
2855 
2856 	if (DC_TX_LIST_CNT - sc->dc_cdata.dc_tx_cnt > DC_TX_LIST_RSVD)
2857 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2858 
2859 	if (sc->dc_cdata.dc_tx_cnt == 0)
2860 		sc->dc_wdog_timer = 0;
2861 }
2862 
2863 static void
2864 dc_tick(void *xsc)
2865 {
2866 	struct dc_softc *sc;
2867 	struct mii_data *mii;
2868 	struct ifnet *ifp;
2869 	u_int32_t r;
2870 
2871 	sc = xsc;
2872 	DC_LOCK_ASSERT(sc);
2873 	ifp = sc->dc_ifp;
2874 	mii = device_get_softc(sc->dc_miibus);
2875 
2876 	if (sc->dc_flags & DC_REDUCED_MII_POLL) {
2877 		if (sc->dc_flags & DC_21143_NWAY) {
2878 			r = CSR_READ_4(sc, DC_10BTSTAT);
2879 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2880 			    IFM_100_TX && (r & DC_TSTAT_LS100)) {
2881 				sc->dc_link = 0;
2882 				mii_mediachg(mii);
2883 			}
2884 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2885 			    IFM_10_T && (r & DC_TSTAT_LS10)) {
2886 				sc->dc_link = 0;
2887 				mii_mediachg(mii);
2888 			}
2889 			if (sc->dc_link == 0)
2890 				mii_tick(mii);
2891 		} else {
2892 			/*
2893 			 * For NICs which never report DC_RXSTATE_WAIT, we
2894 			 * have to bite the bullet...
2895 			 */
2896 			if ((DC_HAS_BROKEN_RXSTATE(sc) || (CSR_READ_4(sc,
2897 			    DC_ISR) & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT) &&
2898 			    sc->dc_cdata.dc_tx_cnt == 0) {
2899 				mii_tick(mii);
2900 				if (!(mii->mii_media_status & IFM_ACTIVE))
2901 					sc->dc_link = 0;
2902 			}
2903 		}
2904 	} else
2905 		mii_tick(mii);
2906 
2907 	/*
2908 	 * When the init routine completes, we expect to be able to send
2909 	 * packets right away, and in fact the network code will send a
2910 	 * gratuitous ARP the moment the init routine marks the interface
2911 	 * as running. However, even though the MAC may have been initialized,
2912 	 * there may be a delay of a few seconds before the PHY completes
2913 	 * autonegotiation and the link is brought up. Any transmissions
2914 	 * made during that delay will be lost. Dealing with this is tricky:
2915 	 * we can't just pause in the init routine while waiting for the
2916 	 * PHY to come ready since that would bring the whole system to
2917 	 * a screeching halt for several seconds.
2918 	 *
2919 	 * What we do here is prevent the TX start routine from sending
2920 	 * any packets until a link has been established. After the
2921 	 * interface has been initialized, the tick routine will poll
2922 	 * the state of the PHY until the IFM_ACTIVE flag is set. Until
2923 	 * that time, packets will stay in the send queue, and once the
2924 	 * link comes up, they will be flushed out to the wire.
2925 	 */
2926 	if (!sc->dc_link && mii->mii_media_status & IFM_ACTIVE &&
2927 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2928 		sc->dc_link++;
2929 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2930 			dc_start_locked(ifp);
2931 	}
2932 
2933 	if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link)
2934 		callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
2935 	else
2936 		callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
2937 }
2938 
2939 /*
2940  * A transmit underrun has occurred.  Back off the transmit threshold,
2941  * or switch to store and forward mode if we have to.
2942  */
2943 static void
2944 dc_tx_underrun(struct dc_softc *sc)
2945 {
2946 	u_int32_t isr;
2947 	int i;
2948 
2949 	if (DC_IS_DAVICOM(sc))
2950 		dc_init_locked(sc);
2951 
2952 	if (DC_IS_INTEL(sc)) {
2953 		/*
2954 		 * The real 21143 requires that the transmitter be idle
2955 		 * in order to change the transmit threshold or store
2956 		 * and forward state.
2957 		 */
2958 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2959 
2960 		for (i = 0; i < DC_TIMEOUT; i++) {
2961 			isr = CSR_READ_4(sc, DC_ISR);
2962 			if (isr & DC_ISR_TX_IDLE)
2963 				break;
2964 			DELAY(10);
2965 		}
2966 		if (i == DC_TIMEOUT) {
2967 			device_printf(sc->dc_dev,
2968 			    "%s: failed to force tx to idle state\n",
2969 			    __func__);
2970 			dc_init_locked(sc);
2971 		}
2972 	}
2973 
2974 	device_printf(sc->dc_dev, "TX underrun -- ");
2975 	sc->dc_txthresh += DC_TXTHRESH_INC;
2976 	if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
2977 		printf("using store and forward mode\n");
2978 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
2979 	} else {
2980 		printf("increasing TX threshold\n");
2981 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
2982 		DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
2983 	}
2984 
2985 	if (DC_IS_INTEL(sc))
2986 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2987 }
2988 
2989 #ifdef DEVICE_POLLING
2990 static poll_handler_t dc_poll;
2991 
2992 static void
2993 dc_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2994 {
2995 	struct dc_softc *sc = ifp->if_softc;
2996 
2997 	DC_LOCK(sc);
2998 
2999 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3000 		DC_UNLOCK(sc);
3001 		return;
3002 	}
3003 
3004 	sc->rxcycles = count;
3005 	dc_rxeof(sc);
3006 	dc_txeof(sc);
3007 	if (!IFQ_IS_EMPTY(&ifp->if_snd) &&
3008 	    !(ifp->if_drv_flags & IFF_DRV_OACTIVE))
3009 		dc_start_locked(ifp);
3010 
3011 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
3012 		u_int32_t	status;
3013 
3014 		status = CSR_READ_4(sc, DC_ISR);
3015 		status &= (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF |
3016 			DC_ISR_TX_NOBUF | DC_ISR_TX_IDLE | DC_ISR_TX_UNDERRUN |
3017 			DC_ISR_BUS_ERR);
3018 		if (!status) {
3019 			DC_UNLOCK(sc);
3020 			return;
3021 		}
3022 		/* ack what we have */
3023 		CSR_WRITE_4(sc, DC_ISR, status);
3024 
3025 		if (status & (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF)) {
3026 			u_int32_t r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
3027 			ifp->if_ierrors += (r & 0xffff) + ((r >> 17) & 0x7ff);
3028 
3029 			if (dc_rx_resync(sc))
3030 				dc_rxeof(sc);
3031 		}
3032 		/* restart transmit unit if necessary */
3033 		if (status & DC_ISR_TX_IDLE && sc->dc_cdata.dc_tx_cnt)
3034 			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3035 
3036 		if (status & DC_ISR_TX_UNDERRUN)
3037 			dc_tx_underrun(sc);
3038 
3039 		if (status & DC_ISR_BUS_ERR) {
3040 			if_printf(ifp, "%s: bus error\n", __func__);
3041 			dc_reset(sc);
3042 			dc_init_locked(sc);
3043 		}
3044 	}
3045 	DC_UNLOCK(sc);
3046 }
3047 #endif /* DEVICE_POLLING */
3048 
3049 static void
3050 dc_intr(void *arg)
3051 {
3052 	struct dc_softc *sc;
3053 	struct ifnet *ifp;
3054 	u_int32_t status;
3055 
3056 	sc = arg;
3057 
3058 	if (sc->suspended)
3059 		return;
3060 
3061 	if ((CSR_READ_4(sc, DC_ISR) & DC_INTRS) == 0)
3062 		return;
3063 
3064 	DC_LOCK(sc);
3065 	ifp = sc->dc_ifp;
3066 #ifdef DEVICE_POLLING
3067 	if (ifp->if_capenable & IFCAP_POLLING) {
3068 		DC_UNLOCK(sc);
3069 		return;
3070 	}
3071 #endif
3072 
3073 	/* Suppress unwanted interrupts */
3074 	if (!(ifp->if_flags & IFF_UP)) {
3075 		if (CSR_READ_4(sc, DC_ISR) & DC_INTRS)
3076 			dc_stop(sc);
3077 		DC_UNLOCK(sc);
3078 		return;
3079 	}
3080 
3081 	/* Disable interrupts. */
3082 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3083 
3084 	while (((status = CSR_READ_4(sc, DC_ISR)) & DC_INTRS) &&
3085 	    status != 0xFFFFFFFF &&
3086 	    (ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3087 
3088 		CSR_WRITE_4(sc, DC_ISR, status);
3089 
3090 		if (status & DC_ISR_RX_OK) {
3091 			int		curpkts;
3092 			curpkts = ifp->if_ipackets;
3093 			dc_rxeof(sc);
3094 			if (curpkts == ifp->if_ipackets) {
3095 				while (dc_rx_resync(sc))
3096 					dc_rxeof(sc);
3097 			}
3098 		}
3099 
3100 		if (status & (DC_ISR_TX_OK | DC_ISR_TX_NOBUF))
3101 			dc_txeof(sc);
3102 
3103 		if (status & DC_ISR_TX_IDLE) {
3104 			dc_txeof(sc);
3105 			if (sc->dc_cdata.dc_tx_cnt) {
3106 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3107 				CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3108 			}
3109 		}
3110 
3111 		if (status & DC_ISR_TX_UNDERRUN)
3112 			dc_tx_underrun(sc);
3113 
3114 		if ((status & DC_ISR_RX_WATDOGTIMEO)
3115 		    || (status & DC_ISR_RX_NOBUF)) {
3116 			int		curpkts;
3117 			curpkts = ifp->if_ipackets;
3118 			dc_rxeof(sc);
3119 			if (curpkts == ifp->if_ipackets) {
3120 				while (dc_rx_resync(sc))
3121 					dc_rxeof(sc);
3122 			}
3123 		}
3124 
3125 		if (status & DC_ISR_BUS_ERR) {
3126 			dc_reset(sc);
3127 			dc_init_locked(sc);
3128 		}
3129 	}
3130 
3131 	/* Re-enable interrupts. */
3132 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3133 
3134 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3135 		dc_start_locked(ifp);
3136 
3137 	DC_UNLOCK(sc);
3138 }
3139 
3140 /*
3141  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
3142  * pointers to the fragment pointers.
3143  */
3144 static int
3145 dc_encap(struct dc_softc *sc, struct mbuf **m_head)
3146 {
3147 	bus_dma_segment_t segs[DC_MAXFRAGS];
3148 	struct dc_desc *f;
3149 	struct mbuf *m;
3150 	int cur, defragged, error, first, frag, i, idx, nseg;
3151 
3152 	/*
3153 	 * If there's no way we can send any packets, return now.
3154 	 */
3155 	if (DC_TX_LIST_CNT - sc->dc_cdata.dc_tx_cnt <= DC_TX_LIST_RSVD)
3156 		return (ENOBUFS);
3157 
3158 	m = NULL;
3159 	defragged = 0;
3160 	if (sc->dc_flags & DC_TX_COALESCE &&
3161 	    ((*m_head)->m_next != NULL || sc->dc_flags & DC_TX_ALIGN)) {
3162 		m = m_defrag(*m_head, M_DONTWAIT);
3163 		defragged = 1;
3164 	} else {
3165 		/*
3166 		 * Count the number of frags in this chain to see if we
3167 		 * need to m_collapse.  Since the descriptor list is shared
3168 		 * by all packets, we'll m_collapse long chains so that they
3169 		 * do not use up the entire list, even if they would fit.
3170 		 */
3171 		i = 0;
3172 		for (m = *m_head; m != NULL; m = m->m_next)
3173 			i++;
3174 		if (i > DC_TX_LIST_CNT / 4 ||
3175 		    DC_TX_LIST_CNT - i + sc->dc_cdata.dc_tx_cnt <=
3176 		    DC_TX_LIST_RSVD) {
3177 			m = m_collapse(*m_head, M_DONTWAIT, DC_MAXFRAGS);
3178 			defragged = 1;
3179 		}
3180 	}
3181 	if (defragged != 0) {
3182 		if (m == NULL) {
3183 			m_freem(*m_head);
3184 			*m_head = NULL;
3185 			return (ENOBUFS);
3186 		}
3187 		*m_head = m;
3188 	}
3189 
3190 	idx = sc->dc_cdata.dc_tx_prod;
3191 	error = bus_dmamap_load_mbuf_sg(sc->dc_mtag,
3192 	    sc->dc_cdata.dc_tx_map[idx], *m_head, segs, &nseg, 0);
3193 	if (error == EFBIG) {
3194 		if (defragged != 0 || (m = m_collapse(*m_head, M_DONTWAIT,
3195 		    DC_MAXFRAGS)) == NULL) {
3196 			m_freem(*m_head);
3197 			*m_head = NULL;
3198 			return (defragged != 0 ? error : ENOBUFS);
3199 		}
3200 		*m_head = m;
3201 		error = bus_dmamap_load_mbuf_sg(sc->dc_mtag,
3202 		    sc->dc_cdata.dc_tx_map[idx], *m_head, segs, &nseg, 0);
3203 		if (error != 0) {
3204 			m_freem(*m_head);
3205 			*m_head = NULL;
3206 			return (error);
3207 		}
3208 	} else if (error != 0)
3209 		return (error);
3210 	KASSERT(nseg <= DC_MAXFRAGS,
3211 	    ("%s: wrong number of segments (%d)", __func__, nseg));
3212 	if (nseg == 0) {
3213 		m_freem(*m_head);
3214 		*m_head = NULL;
3215 		return (EIO);
3216 	}
3217 
3218 	first = cur = frag = sc->dc_cdata.dc_tx_prod;
3219 	for (i = 0; i < nseg; i++) {
3220 		if ((sc->dc_flags & DC_TX_ADMTEK_WAR) &&
3221 		    (frag == (DC_TX_LIST_CNT - 1)) &&
3222 		    (first != sc->dc_cdata.dc_tx_first)) {
3223 			bus_dmamap_unload(sc->dc_mtag,
3224 			    sc->dc_cdata.dc_tx_map[first]);
3225 			m_freem(*m_head);
3226 			*m_head = NULL;
3227 			return (ENOBUFS);
3228 		}
3229 
3230 		f = &sc->dc_ldata->dc_tx_list[frag];
3231 		f->dc_ctl = htole32(DC_TXCTL_TLINK | segs[i].ds_len);
3232 		if (i == 0) {
3233 			f->dc_status = 0;
3234 			f->dc_ctl |= htole32(DC_TXCTL_FIRSTFRAG);
3235 		} else
3236 			f->dc_status = htole32(DC_TXSTAT_OWN);
3237 		f->dc_data = htole32(segs[i].ds_addr);
3238 		cur = frag;
3239 		DC_INC(frag, DC_TX_LIST_CNT);
3240 	}
3241 
3242 	sc->dc_cdata.dc_tx_prod = frag;
3243 	sc->dc_cdata.dc_tx_cnt += nseg;
3244 	sc->dc_cdata.dc_tx_chain[cur] = *m_head;
3245 	sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_LASTFRAG);
3246 	if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
3247 		sc->dc_ldata->dc_tx_list[first].dc_ctl |=
3248 		    htole32(DC_TXCTL_FINT);
3249 	if (sc->dc_flags & DC_TX_INTR_ALWAYS)
3250 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
3251 	if (sc->dc_flags & DC_TX_USE_TX_INTR && sc->dc_cdata.dc_tx_cnt > 64)
3252 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
3253 	sc->dc_ldata->dc_tx_list[first].dc_status = htole32(DC_TXSTAT_OWN);
3254 
3255 	bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_tx_map[idx],
3256 	    BUS_DMASYNC_PREWRITE);
3257 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
3258 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
3259 	return (0);
3260 }
3261 
3262 static void
3263 dc_start(struct ifnet *ifp)
3264 {
3265 	struct dc_softc *sc;
3266 
3267 	sc = ifp->if_softc;
3268 	DC_LOCK(sc);
3269 	dc_start_locked(ifp);
3270 	DC_UNLOCK(sc);
3271 }
3272 
3273 /*
3274  * Main transmit routine
3275  * To avoid having to do mbuf copies, we put pointers to the mbuf data
3276  * regions directly in the transmit lists.  We also save a copy of the
3277  * pointers since the transmit list fragment pointers are physical
3278  * addresses.
3279  */
3280 static void
3281 dc_start_locked(struct ifnet *ifp)
3282 {
3283 	struct dc_softc *sc;
3284 	struct mbuf *m_head = NULL;
3285 	unsigned int queued = 0;
3286 	int idx;
3287 
3288 	sc = ifp->if_softc;
3289 
3290 	DC_LOCK_ASSERT(sc);
3291 
3292 	if (!sc->dc_link && ifp->if_snd.ifq_len < 10)
3293 		return;
3294 
3295 	if (ifp->if_drv_flags & IFF_DRV_OACTIVE)
3296 		return;
3297 
3298 	idx = sc->dc_cdata.dc_tx_first = sc->dc_cdata.dc_tx_prod;
3299 
3300 	while (sc->dc_cdata.dc_tx_chain[idx] == NULL) {
3301 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
3302 		if (m_head == NULL)
3303 			break;
3304 
3305 		if (dc_encap(sc, &m_head)) {
3306 			if (m_head == NULL)
3307 				break;
3308 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
3309 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3310 			break;
3311 		}
3312 		idx = sc->dc_cdata.dc_tx_prod;
3313 
3314 		queued++;
3315 		/*
3316 		 * If there's a BPF listener, bounce a copy of this frame
3317 		 * to him.
3318 		 */
3319 		BPF_MTAP(ifp, m_head);
3320 
3321 		if (sc->dc_flags & DC_TX_ONE) {
3322 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3323 			break;
3324 		}
3325 	}
3326 
3327 	if (queued > 0) {
3328 		/* Transmit */
3329 		if (!(sc->dc_flags & DC_TX_POLL))
3330 			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3331 
3332 		/*
3333 		 * Set a timeout in case the chip goes out to lunch.
3334 		 */
3335 		sc->dc_wdog_timer = 5;
3336 	}
3337 }
3338 
3339 static void
3340 dc_init(void *xsc)
3341 {
3342 	struct dc_softc *sc = xsc;
3343 
3344 	DC_LOCK(sc);
3345 	dc_init_locked(sc);
3346 	DC_UNLOCK(sc);
3347 }
3348 
3349 static void
3350 dc_init_locked(struct dc_softc *sc)
3351 {
3352 	struct ifnet *ifp = sc->dc_ifp;
3353 	struct mii_data *mii;
3354 
3355 	DC_LOCK_ASSERT(sc);
3356 
3357 	mii = device_get_softc(sc->dc_miibus);
3358 
3359 	/*
3360 	 * Cancel pending I/O and free all RX/TX buffers.
3361 	 */
3362 	dc_stop(sc);
3363 	dc_reset(sc);
3364 
3365 	/*
3366 	 * Set cache alignment and burst length.
3367 	 */
3368 	if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc))
3369 		CSR_WRITE_4(sc, DC_BUSCTL, 0);
3370 	else
3371 		CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME | DC_BUSCTL_MRLE);
3372 	/*
3373 	 * Evenly share the bus between receive and transmit process.
3374 	 */
3375 	if (DC_IS_INTEL(sc))
3376 		DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION);
3377 	if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
3378 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
3379 	} else {
3380 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
3381 	}
3382 	if (sc->dc_flags & DC_TX_POLL)
3383 		DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
3384 	switch(sc->dc_cachesize) {
3385 	case 32:
3386 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
3387 		break;
3388 	case 16:
3389 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
3390 		break;
3391 	case 8:
3392 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
3393 		break;
3394 	case 0:
3395 	default:
3396 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
3397 		break;
3398 	}
3399 
3400 	if (sc->dc_flags & DC_TX_STORENFWD)
3401 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3402 	else {
3403 		if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3404 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3405 		} else {
3406 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3407 			DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3408 		}
3409 	}
3410 
3411 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
3412 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
3413 
3414 	if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
3415 		/*
3416 		 * The app notes for the 98713 and 98715A say that
3417 		 * in order to have the chips operate properly, a magic
3418 		 * number must be written to CSR16. Macronix does not
3419 		 * document the meaning of these bits so there's no way
3420 		 * to know exactly what they do. The 98713 has a magic
3421 		 * number all its own; the rest all use a different one.
3422 		 */
3423 		DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
3424 		if (sc->dc_type == DC_TYPE_98713)
3425 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
3426 		else
3427 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
3428 	}
3429 
3430 	if (DC_IS_XIRCOM(sc)) {
3431 		/*
3432 		 * setup General Purpose Port mode and data so the tulip
3433 		 * can talk to the MII.
3434 		 */
3435 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
3436 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3437 		DELAY(10);
3438 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
3439 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3440 		DELAY(10);
3441 	}
3442 
3443 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3444 	DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN);
3445 
3446 	/* Init circular RX list. */
3447 	if (dc_list_rx_init(sc) == ENOBUFS) {
3448 		device_printf(sc->dc_dev,
3449 		    "initialization failed: no memory for rx buffers\n");
3450 		dc_stop(sc);
3451 		return;
3452 	}
3453 
3454 	/*
3455 	 * Init TX descriptors.
3456 	 */
3457 	dc_list_tx_init(sc);
3458 
3459 	/*
3460 	 * Load the address of the RX list.
3461 	 */
3462 	CSR_WRITE_4(sc, DC_RXADDR, DC_RXDESC(sc, 0));
3463 	CSR_WRITE_4(sc, DC_TXADDR, DC_TXDESC(sc, 0));
3464 
3465 	/*
3466 	 * Enable interrupts.
3467 	 */
3468 #ifdef DEVICE_POLLING
3469 	/*
3470 	 * ... but only if we are not polling, and make sure they are off in
3471 	 * the case of polling. Some cards (e.g. fxp) turn interrupts on
3472 	 * after a reset.
3473 	 */
3474 	if (ifp->if_capenable & IFCAP_POLLING)
3475 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3476 	else
3477 #endif
3478 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3479 	CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
3480 
3481 	/* Enable transmitter. */
3482 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3483 
3484 	/*
3485 	 * If this is an Intel 21143 and we're not using the
3486 	 * MII port, program the LED control pins so we get
3487 	 * link and activity indications.
3488 	 */
3489 	if (sc->dc_flags & DC_TULIP_LEDS) {
3490 		CSR_WRITE_4(sc, DC_WATCHDOG,
3491 		    DC_WDOG_CTLWREN | DC_WDOG_LINK | DC_WDOG_ACTIVITY);
3492 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
3493 	}
3494 
3495 	/*
3496 	 * Load the RX/multicast filter. We do this sort of late
3497 	 * because the filter programming scheme on the 21143 and
3498 	 * some clones requires DMAing a setup frame via the TX
3499 	 * engine, and we need the transmitter enabled for that.
3500 	 */
3501 	dc_setfilt(sc);
3502 
3503 	/* Enable receiver. */
3504 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
3505 	CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
3506 
3507 	mii_mediachg(mii);
3508 	dc_setcfg(sc, sc->dc_if_media);
3509 
3510 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3511 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3512 
3513 	/* Don't start the ticker if this is a homePNA link. */
3514 	if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_HPNA_1)
3515 		sc->dc_link = 1;
3516 	else {
3517 		if (sc->dc_flags & DC_21143_NWAY)
3518 			callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
3519 		else
3520 			callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
3521 	}
3522 
3523 	sc->dc_wdog_timer = 0;
3524 	callout_reset(&sc->dc_wdog_ch, hz, dc_watchdog, sc);
3525 }
3526 
3527 /*
3528  * Set media options.
3529  */
3530 static int
3531 dc_ifmedia_upd(struct ifnet *ifp)
3532 {
3533 	struct dc_softc *sc;
3534 	struct mii_data *mii;
3535 	struct ifmedia *ifm;
3536 
3537 	sc = ifp->if_softc;
3538 	mii = device_get_softc(sc->dc_miibus);
3539 	DC_LOCK(sc);
3540 	mii_mediachg(mii);
3541 	ifm = &mii->mii_media;
3542 
3543 	if (DC_IS_DAVICOM(sc) &&
3544 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1)
3545 		dc_setcfg(sc, ifm->ifm_media);
3546 	else
3547 		sc->dc_link = 0;
3548 	DC_UNLOCK(sc);
3549 
3550 	return (0);
3551 }
3552 
3553 /*
3554  * Report current media status.
3555  */
3556 static void
3557 dc_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3558 {
3559 	struct dc_softc *sc;
3560 	struct mii_data *mii;
3561 	struct ifmedia *ifm;
3562 
3563 	sc = ifp->if_softc;
3564 	mii = device_get_softc(sc->dc_miibus);
3565 	DC_LOCK(sc);
3566 	mii_pollstat(mii);
3567 	ifm = &mii->mii_media;
3568 	if (DC_IS_DAVICOM(sc)) {
3569 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
3570 			ifmr->ifm_active = ifm->ifm_media;
3571 			ifmr->ifm_status = 0;
3572 			DC_UNLOCK(sc);
3573 			return;
3574 		}
3575 	}
3576 	ifmr->ifm_active = mii->mii_media_active;
3577 	ifmr->ifm_status = mii->mii_media_status;
3578 	DC_UNLOCK(sc);
3579 }
3580 
3581 static int
3582 dc_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
3583 {
3584 	struct dc_softc *sc = ifp->if_softc;
3585 	struct ifreq *ifr = (struct ifreq *)data;
3586 	struct mii_data *mii;
3587 	int error = 0;
3588 
3589 	switch (command) {
3590 	case SIOCSIFFLAGS:
3591 		DC_LOCK(sc);
3592 		if (ifp->if_flags & IFF_UP) {
3593 			int need_setfilt = (ifp->if_flags ^ sc->dc_if_flags) &
3594 				(IFF_PROMISC | IFF_ALLMULTI);
3595 
3596 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3597 				if (need_setfilt)
3598 					dc_setfilt(sc);
3599 			} else {
3600 				sc->dc_txthresh = 0;
3601 				dc_init_locked(sc);
3602 			}
3603 		} else {
3604 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3605 				dc_stop(sc);
3606 		}
3607 		sc->dc_if_flags = ifp->if_flags;
3608 		DC_UNLOCK(sc);
3609 		error = 0;
3610 		break;
3611 	case SIOCADDMULTI:
3612 	case SIOCDELMULTI:
3613 		DC_LOCK(sc);
3614 		dc_setfilt(sc);
3615 		DC_UNLOCK(sc);
3616 		error = 0;
3617 		break;
3618 	case SIOCGIFMEDIA:
3619 	case SIOCSIFMEDIA:
3620 		mii = device_get_softc(sc->dc_miibus);
3621 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
3622 		break;
3623 	case SIOCSIFCAP:
3624 #ifdef DEVICE_POLLING
3625 		if (ifr->ifr_reqcap & IFCAP_POLLING &&
3626 		    !(ifp->if_capenable & IFCAP_POLLING)) {
3627 			error = ether_poll_register(dc_poll, ifp);
3628 			if (error)
3629 				return(error);
3630 			DC_LOCK(sc);
3631 			/* Disable interrupts */
3632 			CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3633 			ifp->if_capenable |= IFCAP_POLLING;
3634 			DC_UNLOCK(sc);
3635 			return (error);
3636 		}
3637 		if (!(ifr->ifr_reqcap & IFCAP_POLLING) &&
3638 		    ifp->if_capenable & IFCAP_POLLING) {
3639 			error = ether_poll_deregister(ifp);
3640 			/* Enable interrupts. */
3641 			DC_LOCK(sc);
3642 			CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3643 			ifp->if_capenable &= ~IFCAP_POLLING;
3644 			DC_UNLOCK(sc);
3645 			return (error);
3646 		}
3647 #endif /* DEVICE_POLLING */
3648 		break;
3649 	default:
3650 		error = ether_ioctl(ifp, command, data);
3651 		break;
3652 	}
3653 
3654 	return (error);
3655 }
3656 
3657 static void
3658 dc_watchdog(void *xsc)
3659 {
3660 	struct dc_softc *sc = xsc;
3661 	struct ifnet *ifp;
3662 
3663 	DC_LOCK_ASSERT(sc);
3664 
3665 	if (sc->dc_wdog_timer == 0 || --sc->dc_wdog_timer != 0) {
3666 		callout_reset(&sc->dc_wdog_ch, hz, dc_watchdog, sc);
3667 		return;
3668 	}
3669 
3670 	ifp = sc->dc_ifp;
3671 	ifp->if_oerrors++;
3672 	device_printf(sc->dc_dev, "watchdog timeout\n");
3673 
3674 	dc_stop(sc);
3675 	dc_reset(sc);
3676 	dc_init_locked(sc);
3677 
3678 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3679 		dc_start_locked(ifp);
3680 }
3681 
3682 /*
3683  * Stop the adapter and free any mbufs allocated to the
3684  * RX and TX lists.
3685  */
3686 static void
3687 dc_stop(struct dc_softc *sc)
3688 {
3689 	struct ifnet *ifp;
3690 	struct dc_list_data *ld;
3691 	struct dc_chain_data *cd;
3692 	int i;
3693 	u_int32_t ctl;
3694 
3695 	DC_LOCK_ASSERT(sc);
3696 
3697 	ifp = sc->dc_ifp;
3698 	ld = sc->dc_ldata;
3699 	cd = &sc->dc_cdata;
3700 
3701 	callout_stop(&sc->dc_stat_ch);
3702 	callout_stop(&sc->dc_wdog_ch);
3703 	sc->dc_wdog_timer = 0;
3704 
3705 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3706 
3707 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ON | DC_NETCFG_TX_ON));
3708 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3709 	CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
3710 	CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
3711 	sc->dc_link = 0;
3712 
3713 	/*
3714 	 * Free data in the RX lists.
3715 	 */
3716 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
3717 		if (cd->dc_rx_chain[i] != NULL) {
3718 			m_freem(cd->dc_rx_chain[i]);
3719 			cd->dc_rx_chain[i] = NULL;
3720 		}
3721 	}
3722 	bzero(&ld->dc_rx_list, sizeof(ld->dc_rx_list));
3723 
3724 	/*
3725 	 * Free the TX list buffers.
3726 	 */
3727 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
3728 		if (cd->dc_tx_chain[i] != NULL) {
3729 			ctl = le32toh(ld->dc_tx_list[i].dc_ctl);
3730 			if ((ctl & DC_TXCTL_SETUP) ||
3731 			    !(ctl & DC_TXCTL_LASTFRAG)) {
3732 				cd->dc_tx_chain[i] = NULL;
3733 				continue;
3734 			}
3735 			bus_dmamap_unload(sc->dc_mtag, cd->dc_tx_map[i]);
3736 			m_freem(cd->dc_tx_chain[i]);
3737 			cd->dc_tx_chain[i] = NULL;
3738 		}
3739 	}
3740 	bzero(&ld->dc_tx_list, sizeof(ld->dc_tx_list));
3741 }
3742 
3743 /*
3744  * Device suspend routine.  Stop the interface and save some PCI
3745  * settings in case the BIOS doesn't restore them properly on
3746  * resume.
3747  */
3748 static int
3749 dc_suspend(device_t dev)
3750 {
3751 	struct dc_softc *sc;
3752 
3753 	sc = device_get_softc(dev);
3754 	DC_LOCK(sc);
3755 	dc_stop(sc);
3756 	sc->suspended = 1;
3757 	DC_UNLOCK(sc);
3758 
3759 	return (0);
3760 }
3761 
3762 /*
3763  * Device resume routine.  Restore some PCI settings in case the BIOS
3764  * doesn't, re-enable busmastering, and restart the interface if
3765  * appropriate.
3766  */
3767 static int
3768 dc_resume(device_t dev)
3769 {
3770 	struct dc_softc *sc;
3771 	struct ifnet *ifp;
3772 
3773 	sc = device_get_softc(dev);
3774 	ifp = sc->dc_ifp;
3775 
3776 	/* reinitialize interface if necessary */
3777 	DC_LOCK(sc);
3778 	if (ifp->if_flags & IFF_UP)
3779 		dc_init_locked(sc);
3780 
3781 	sc->suspended = 0;
3782 	DC_UNLOCK(sc);
3783 
3784 	return (0);
3785 }
3786 
3787 /*
3788  * Stop all chip I/O so that the kernel's probe routines don't
3789  * get confused by errant DMAs when rebooting.
3790  */
3791 static int
3792 dc_shutdown(device_t dev)
3793 {
3794 	struct dc_softc *sc;
3795 
3796 	sc = device_get_softc(dev);
3797 
3798 	DC_LOCK(sc);
3799 	dc_stop(sc);
3800 	DC_UNLOCK(sc);
3801 
3802 	return (0);
3803 }
3804