xref: /freebsd/sys/dev/dc/if_dc.c (revision 807a5caa14df5ff04b331e24b45893f6a2f6bc1b)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ee.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD$
33  */
34 
35 /*
36  * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
37  * series chips and several workalikes including the following:
38  *
39  * Macronix 98713/98715/98725 PMAC (www.macronix.com)
40  * Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
41  * Lite-On 82c168/82c169 PNIC (www.litecom.com)
42  * ASIX Electronics AX88140A (www.asix.com.tw)
43  * ASIX Electronics AX88141 (www.asix.com.tw)
44  * ADMtek AL981 (www.admtek.com.tw)
45  * ADMtek AN985 (www.admtek.com.tw)
46  * Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
47  *
48  * Datasheets for the 21143 are available at developer.intel.com.
49  * Datasheets for the clone parts can be found at their respective sites.
50  * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
51  * The PNIC II is essentially a Macronix 98715A chip; the only difference
52  * worth noting is that its multicast hash table is only 128 bits wide
53  * instead of 512.
54  *
55  * Written by Bill Paul <wpaul@ee.columbia.edu>
56  * Electrical Engineering Department
57  * Columbia University, New York City
58  */
59 
60 /*
61  * The Intel 21143 is the successor to the DEC 21140. It is basically
62  * the same as the 21140 but with a few new features. The 21143 supports
63  * three kinds of media attachments:
64  *
65  * o MII port, for 10Mbps and 100Mbps support and NWAY
66  *   autonegotiation provided by an external PHY.
67  * o SYM port, for symbol mode 100Mbps support.
68  * o 10baseT port.
69  * o AUI/BNC port.
70  *
71  * The 100Mbps SYM port and 10baseT port can be used together in
72  * combination with the internal NWAY support to create a 10/100
73  * autosensing configuration.
74  *
75  * Knowing which media is available on a given card is tough: you're
76  * supposed to go slogging through the EEPROM looking for media
77  * description structures. Unfortunately, some card vendors that use
78  * the 21143 don't obey the DEC SROM spec correctly, which means that
79  * what you find in the EEPROM may not agree with reality. Fortunately,
80  * the 21143 provides us a way to get around this issue: lurking in
81  * PCI configuration space is the Configuration Wake-Up Command Register.
82  * This register is loaded with a value from the EEPROM when wake on LAN
83  * mode is enabled; this value tells us quite clearly what kind of media
84  * is attached to the NIC. The main purpose of this register is to tell
85  * the NIC what media to scan when in wake on LAN mode, however by
86  * forcibly enabling wake on LAN mode, we can use to learn what kind of
87  * media a given NIC has available and adapt ourselves accordingly.
88  *
89  * Of course, if the media description blocks in the EEPROM are bogus.
90  * what are the odds that the CWUC aren't bogus as well, right? Well,
91  * the CWUC value is more likely to be correct since wake on LAN mode
92  * won't work correctly without it, and wake on LAN is a big selling
93  * point these days. It's also harder to screw up a single byte than
94  * a whole media descriptor block.
95  *
96  * Note that not all tulip workalikes are handled in this driver: we only
97  * deal with those which are relatively well behaved. The Winbond is
98  * handled separately due to its different register offsets and the
99  * special handling needed for its various bugs. The PNIC is handled
100  * here, but I'm not thrilled about it.
101  *
102  * All of the workalike chips use some form of MII transceiver support
103  * with the exception of the Macronix chips, which also have a SYM port.
104  * The ASIX AX88140A is also documented to have a SYM port, but all
105  * the cards I've seen use an MII transceiver, probably because the
106  * AX88140A doesn't support internal NWAY.
107  */
108 
109 #include <sys/param.h>
110 #include <sys/systm.h>
111 #include <sys/sockio.h>
112 #include <sys/mbuf.h>
113 #include <sys/malloc.h>
114 #include <sys/kernel.h>
115 #include <sys/socket.h>
116 
117 #include <net/if.h>
118 #include <net/if_arp.h>
119 #include <net/ethernet.h>
120 #include <net/if_dl.h>
121 #include <net/if_media.h>
122 
123 #include <net/bpf.h>
124 
125 #include "opt_bdg.h"
126 #ifdef BRIDGE
127 #include <net/bridge.h>
128 #endif
129 
130 #include <vm/vm.h>              /* for vtophys */
131 #include <vm/pmap.h>            /* for vtophys */
132 #include <machine/clock.h>      /* for DELAY */
133 #include <machine/bus_pio.h>
134 #include <machine/bus_memio.h>
135 #include <machine/bus.h>
136 #include <machine/resource.h>
137 #include <sys/bus.h>
138 #include <sys/rman.h>
139 
140 #include <dev/mii/mii.h>
141 #include <dev/mii/miivar.h>
142 
143 #include <pci/pcireg.h>
144 #include <pci/pcivar.h>
145 
146 #define DC_USEIOSPACE
147 
148 #include <pci/if_dcreg.h>
149 
150 /* "controller miibus0" required.  See GENERIC if you get errors here. */
151 #include "miibus_if.h"
152 
153 #ifndef lint
154 static const char rcsid[] =
155   "$FreeBSD$";
156 #endif
157 
158 /*
159  * Various supported device vendors/types and their names.
160  */
161 static struct dc_type dc_devs[] = {
162 	{ DC_VENDORID_DEC, DC_DEVICEID_21143,
163 		"Intel 21143 10/100BaseTX" },
164 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100,
165 		"Davicom DM9100 10/100BaseTX" },
166 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
167 		"Davicom DM9102 10/100BaseTX" },
168 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
169 		"Davicom DM9102A 10/100BaseTX" },
170 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AL981,
171 		"ADMtek AL981 10/100BaseTX" },
172 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AN985,
173 		"ADMtek AN985 10/100BaseTX" },
174 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
175 		"ASIX AX88140A 10/100BaseTX" },
176 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
177 		"ASIX AX88141 10/100BaseTX" },
178 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
179 		"Macronix 98713 10/100BaseTX" },
180 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
181 		"Macronix 98713A 10/100BaseTX" },
182 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
183 		"Compex RL100-TX 10/100BaseTX" },
184 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
185 		"Compex RL100-TX 10/100BaseTX" },
186 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
187 		"Macronix 98715/98715A 10/100BaseTX" },
188 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
189 		"Macronix 98725 10/100BaseTX" },
190 	{ DC_VENDORID_LO, DC_DEVICEID_82C115,
191 		"LC82C115 PNIC II 10/100BaseTX" },
192 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
193 		"82c168 PNIC 10/100BaseTX" },
194 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
195 		"82c169 PNIC 10/100BaseTX" },
196 	{ 0, 0, NULL }
197 };
198 
199 static int dc_probe		__P((device_t));
200 static int dc_attach		__P((device_t));
201 static int dc_detach		__P((device_t));
202 static void dc_acpi		__P((device_t));
203 static struct dc_type *dc_devtype	__P((device_t));
204 static int dc_newbuf		__P((struct dc_softc *, int, struct mbuf *));
205 static int dc_encap		__P((struct dc_softc *, struct mbuf *,
206 					u_int32_t *));
207 static int dc_coal		__P((struct dc_softc *, struct mbuf **));
208 static void dc_pnic_rx_bug_war	__P((struct dc_softc *, int));
209 static int dc_rx_resync		__P((struct dc_softc *));
210 static void dc_rxeof		__P((struct dc_softc *));
211 static void dc_txeof		__P((struct dc_softc *));
212 static void dc_tick		__P((void *));
213 static void dc_intr		__P((void *));
214 static void dc_start		__P((struct ifnet *));
215 static int dc_ioctl		__P((struct ifnet *, u_long, caddr_t));
216 static void dc_init		__P((void *));
217 static void dc_stop		__P((struct dc_softc *));
218 static void dc_watchdog		__P((struct ifnet *));
219 static void dc_shutdown		__P((device_t));
220 static int dc_ifmedia_upd	__P((struct ifnet *));
221 static void dc_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
222 
223 static void dc_delay		__P((struct dc_softc *));
224 static void dc_eeprom_idle	__P((struct dc_softc *));
225 static void dc_eeprom_putbyte	__P((struct dc_softc *, int));
226 static void dc_eeprom_getword	__P((struct dc_softc *, int, u_int16_t *));
227 static void dc_eeprom_getword_pnic
228 				__P((struct dc_softc *, int, u_int16_t *));
229 static void dc_read_eeprom	__P((struct dc_softc *, caddr_t, int,
230 							int, int));
231 
232 static void dc_mii_writebit	__P((struct dc_softc *, int));
233 static int dc_mii_readbit	__P((struct dc_softc *));
234 static void dc_mii_sync		__P((struct dc_softc *));
235 static void dc_mii_send		__P((struct dc_softc *, u_int32_t, int));
236 static int dc_mii_readreg	__P((struct dc_softc *, struct dc_mii_frame *));
237 static int dc_mii_writereg	__P((struct dc_softc *, struct dc_mii_frame *));
238 static int dc_miibus_readreg	__P((device_t, int, int));
239 static int dc_miibus_writereg	__P((device_t, int, int, int));
240 static void dc_miibus_statchg	__P((device_t));
241 static void dc_miibus_mediainit	__P((device_t));
242 
243 static void dc_setcfg		__P((struct dc_softc *, int));
244 static u_int32_t dc_crc_le	__P((struct dc_softc *, caddr_t));
245 static u_int32_t dc_crc_be	__P((caddr_t));
246 static void dc_setfilt_21143	__P((struct dc_softc *));
247 static void dc_setfilt_asix	__P((struct dc_softc *));
248 static void dc_setfilt_admtek	__P((struct dc_softc *));
249 
250 static void dc_setfilt		__P((struct dc_softc *));
251 
252 static void dc_reset		__P((struct dc_softc *));
253 static int dc_list_rx_init	__P((struct dc_softc *));
254 static int dc_list_tx_init	__P((struct dc_softc *));
255 
256 #ifdef DC_USEIOSPACE
257 #define DC_RES			SYS_RES_IOPORT
258 #define DC_RID			DC_PCI_CFBIO
259 #else
260 #define DC_RES			SYS_RES_MEMORY
261 #define DC_RID			DC_PCI_CFBMA
262 #endif
263 
264 static device_method_t dc_methods[] = {
265 	/* Device interface */
266 	DEVMETHOD(device_probe,		dc_probe),
267 	DEVMETHOD(device_attach,	dc_attach),
268 	DEVMETHOD(device_detach,	dc_detach),
269 	DEVMETHOD(device_shutdown,	dc_shutdown),
270 
271 	/* bus interface */
272 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
273 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
274 
275 	/* MII interface */
276 	DEVMETHOD(miibus_readreg,	dc_miibus_readreg),
277 	DEVMETHOD(miibus_writereg,	dc_miibus_writereg),
278 	DEVMETHOD(miibus_statchg,	dc_miibus_statchg),
279 	DEVMETHOD(miibus_mediainit,	dc_miibus_mediainit),
280 
281 	{ 0, 0 }
282 };
283 
284 static driver_t dc_driver = {
285 	"dc",
286 	dc_methods,
287 	sizeof(struct dc_softc)
288 };
289 
290 static devclass_t dc_devclass;
291 
292 DRIVER_MODULE(if_dc, pci, dc_driver, dc_devclass, 0, 0);
293 DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, 0, 0);
294 
295 #define DC_SETBIT(sc, reg, x)				\
296 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
297 
298 #define DC_CLRBIT(sc, reg, x)				\
299 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
300 
301 #define SIO_SET(x)	DC_SETBIT(sc, DC_SIO, (x))
302 #define SIO_CLR(x)	DC_CLRBIT(sc, DC_SIO, (x))
303 
304 static void dc_delay(sc)
305 	struct dc_softc		*sc;
306 {
307 	int			idx;
308 
309 	for (idx = (300 / 33) + 1; idx > 0; idx--)
310 		CSR_READ_4(sc, DC_BUSCTL);
311 }
312 
313 static void dc_eeprom_idle(sc)
314 	struct dc_softc		*sc;
315 {
316 	register int		i;
317 
318 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
319 	dc_delay(sc);
320 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
321 	dc_delay(sc);
322 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
323 	dc_delay(sc);
324 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
325 	dc_delay(sc);
326 
327 	for (i = 0; i < 25; i++) {
328 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
329 		dc_delay(sc);
330 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
331 		dc_delay(sc);
332 	}
333 
334 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
335 	dc_delay(sc);
336 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
337 	dc_delay(sc);
338 	CSR_WRITE_4(sc, DC_SIO, 0x00000000);
339 
340 	return;
341 }
342 
343 /*
344  * Send a read command and address to the EEPROM, check for ACK.
345  */
346 static void dc_eeprom_putbyte(sc, addr)
347 	struct dc_softc		*sc;
348 	int			addr;
349 {
350 	register int		d, i;
351 
352 	/*
353 	 * The AN985 has a 93C66 EEPROM on it instead of
354 	 * a 93C46. It uses a different bit sequence for
355 	 * specifying the "read" opcode.
356 	 */
357 	if (DC_IS_CENTAUR(sc))
358 		d = addr | (DC_EECMD_READ << 2);
359 	else
360 		d = addr | DC_EECMD_READ;
361 
362 	/*
363 	 * Feed in each bit and strobe the clock.
364 	 */
365 	for (i = 0x400; i; i >>= 1) {
366 		if (d & i) {
367 			SIO_SET(DC_SIO_EE_DATAIN);
368 		} else {
369 			SIO_CLR(DC_SIO_EE_DATAIN);
370 		}
371 		dc_delay(sc);
372 		SIO_SET(DC_SIO_EE_CLK);
373 		dc_delay(sc);
374 		SIO_CLR(DC_SIO_EE_CLK);
375 		dc_delay(sc);
376 	}
377 
378 	return;
379 }
380 
381 /*
382  * Read a word of data stored in the EEPROM at address 'addr.'
383  * The PNIC 82c168/82c169 has its own non-standard way to read
384  * the EEPROM.
385  */
386 static void dc_eeprom_getword_pnic(sc, addr, dest)
387 	struct dc_softc		*sc;
388 	int			addr;
389 	u_int16_t		*dest;
390 {
391 	register int		i;
392 	u_int32_t		r;
393 
394 	CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ|addr);
395 
396 	for (i = 0; i < DC_TIMEOUT; i++) {
397 		DELAY(1);
398 		r = CSR_READ_4(sc, DC_SIO);
399 		if (!(r & DC_PN_SIOCTL_BUSY)) {
400 			*dest = (u_int16_t)(r & 0xFFFF);
401 			return;
402 		}
403 	}
404 
405 	return;
406 }
407 
408 /*
409  * Read a word of data stored in the EEPROM at address 'addr.'
410  */
411 static void dc_eeprom_getword(sc, addr, dest)
412 	struct dc_softc		*sc;
413 	int			addr;
414 	u_int16_t		*dest;
415 {
416 	register int		i;
417 	u_int16_t		word = 0;
418 
419 	/* Force EEPROM to idle state. */
420 	dc_eeprom_idle(sc);
421 
422 	/* Enter EEPROM access mode. */
423 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
424 	dc_delay(sc);
425 	DC_SETBIT(sc, DC_SIO,  DC_SIO_ROMCTL_READ);
426 	dc_delay(sc);
427 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
428 	dc_delay(sc);
429 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
430 	dc_delay(sc);
431 
432 	/*
433 	 * Send address of word we want to read.
434 	 */
435 	dc_eeprom_putbyte(sc, addr);
436 
437 	/*
438 	 * Start reading bits from EEPROM.
439 	 */
440 	for (i = 0x8000; i; i >>= 1) {
441 		SIO_SET(DC_SIO_EE_CLK);
442 		dc_delay(sc);
443 		if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
444 			word |= i;
445 		dc_delay(sc);
446 		SIO_CLR(DC_SIO_EE_CLK);
447 		dc_delay(sc);
448 	}
449 
450 	/* Turn off EEPROM access mode. */
451 	dc_eeprom_idle(sc);
452 
453 	*dest = word;
454 
455 	return;
456 }
457 
458 /*
459  * Read a sequence of words from the EEPROM.
460  */
461 static void dc_read_eeprom(sc, dest, off, cnt, swap)
462 	struct dc_softc		*sc;
463 	caddr_t			dest;
464 	int			off;
465 	int			cnt;
466 	int			swap;
467 {
468 	int			i;
469 	u_int16_t		word = 0, *ptr;
470 
471 	for (i = 0; i < cnt; i++) {
472 		if (DC_IS_PNIC(sc))
473 			dc_eeprom_getword_pnic(sc, off + i, &word);
474 		else
475 			dc_eeprom_getword(sc, off + i, &word);
476 		ptr = (u_int16_t *)(dest + (i * 2));
477 		if (swap)
478 			*ptr = ntohs(word);
479 		else
480 			*ptr = word;
481 	}
482 
483 	return;
484 }
485 
486 /*
487  * The following two routines are taken from the Macronix 98713
488  * Application Notes pp.19-21.
489  */
490 /*
491  * Write a bit to the MII bus.
492  */
493 static void dc_mii_writebit(sc, bit)
494 	struct dc_softc		*sc;
495 	int			bit;
496 {
497 	if (bit)
498 		CSR_WRITE_4(sc, DC_SIO,
499 		    DC_SIO_ROMCTL_WRITE|DC_SIO_MII_DATAOUT);
500 	else
501 		CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
502 
503 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
504 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
505 
506 	return;
507 }
508 
509 /*
510  * Read a bit from the MII bus.
511  */
512 static int dc_mii_readbit(sc)
513 	struct dc_softc		*sc;
514 {
515 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_READ|DC_SIO_MII_DIR);
516 	CSR_READ_4(sc, DC_SIO);
517 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
518 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
519 	if (CSR_READ_4(sc, DC_SIO) & DC_SIO_MII_DATAIN)
520 		return(1);
521 
522 	return(0);
523 }
524 
525 /*
526  * Sync the PHYs by setting data bit and strobing the clock 32 times.
527  */
528 static void dc_mii_sync(sc)
529 	struct dc_softc		*sc;
530 {
531 	register int		i;
532 
533 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
534 
535 	for (i = 0; i < 32; i++)
536 		dc_mii_writebit(sc, 1);
537 
538 	return;
539 }
540 
541 /*
542  * Clock a series of bits through the MII.
543  */
544 static void dc_mii_send(sc, bits, cnt)
545 	struct dc_softc		*sc;
546 	u_int32_t		bits;
547 	int			cnt;
548 {
549 	int			i;
550 
551 	for (i = (0x1 << (cnt - 1)); i; i >>= 1)
552 		dc_mii_writebit(sc, bits & i);
553 }
554 
555 /*
556  * Read an PHY register through the MII.
557  */
558 static int dc_mii_readreg(sc, frame)
559 	struct dc_softc		*sc;
560 	struct dc_mii_frame	*frame;
561 
562 {
563 	int			i, ack, s;
564 
565 	s = splimp();
566 
567 	/*
568 	 * Set up frame for RX.
569 	 */
570 	frame->mii_stdelim = DC_MII_STARTDELIM;
571 	frame->mii_opcode = DC_MII_READOP;
572 	frame->mii_turnaround = 0;
573 	frame->mii_data = 0;
574 
575 	/*
576 	 * Sync the PHYs.
577 	 */
578 	dc_mii_sync(sc);
579 
580 	/*
581 	 * Send command/address info.
582 	 */
583 	dc_mii_send(sc, frame->mii_stdelim, 2);
584 	dc_mii_send(sc, frame->mii_opcode, 2);
585 	dc_mii_send(sc, frame->mii_phyaddr, 5);
586 	dc_mii_send(sc, frame->mii_regaddr, 5);
587 
588 #ifdef notdef
589 	/* Idle bit */
590 	dc_mii_writebit(sc, 1);
591 	dc_mii_writebit(sc, 0);
592 #endif
593 
594 	/* Check for ack */
595 	ack = dc_mii_readbit(sc);
596 
597 	/*
598 	 * Now try reading data bits. If the ack failed, we still
599 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
600 	 */
601 	if (ack) {
602 		for(i = 0; i < 16; i++) {
603 			dc_mii_readbit(sc);
604 		}
605 		goto fail;
606 	}
607 
608 	for (i = 0x8000; i; i >>= 1) {
609 		if (!ack) {
610 			if (dc_mii_readbit(sc))
611 				frame->mii_data |= i;
612 		}
613 	}
614 
615 fail:
616 
617 	dc_mii_writebit(sc, 0);
618 	dc_mii_writebit(sc, 0);
619 
620 	splx(s);
621 
622 	if (ack)
623 		return(1);
624 	return(0);
625 }
626 
627 /*
628  * Write to a PHY register through the MII.
629  */
630 static int dc_mii_writereg(sc, frame)
631 	struct dc_softc		*sc;
632 	struct dc_mii_frame	*frame;
633 
634 {
635 	int			s;
636 
637 	s = splimp();
638 	/*
639 	 * Set up frame for TX.
640 	 */
641 
642 	frame->mii_stdelim = DC_MII_STARTDELIM;
643 	frame->mii_opcode = DC_MII_WRITEOP;
644 	frame->mii_turnaround = DC_MII_TURNAROUND;
645 
646 	/*
647 	 * Sync the PHYs.
648 	 */
649 	dc_mii_sync(sc);
650 
651 	dc_mii_send(sc, frame->mii_stdelim, 2);
652 	dc_mii_send(sc, frame->mii_opcode, 2);
653 	dc_mii_send(sc, frame->mii_phyaddr, 5);
654 	dc_mii_send(sc, frame->mii_regaddr, 5);
655 	dc_mii_send(sc, frame->mii_turnaround, 2);
656 	dc_mii_send(sc, frame->mii_data, 16);
657 
658 	/* Idle bit. */
659 	dc_mii_writebit(sc, 0);
660 	dc_mii_writebit(sc, 0);
661 
662 	splx(s);
663 
664 	return(0);
665 }
666 
667 static int dc_miibus_readreg(dev, phy, reg)
668 	device_t		dev;
669 	int			phy, reg;
670 {
671 	struct dc_mii_frame	frame;
672 	struct dc_softc		*sc;
673 	int			i, rval, phy_reg;
674 
675 	sc = device_get_softc(dev);
676 	bzero((char *)&frame, sizeof(frame));
677 
678 	/*
679 	 * Note: both the AL981 and AN985 have internal PHYs,
680 	 * however the AL981 provides direct access to the PHY
681 	 * registers while the AN985 uses a serial MII interface.
682 	 * The AN985's MII interface is also buggy in that you
683 	 * can read from any MII address (0 to 31), but only address 1
684 	 * behaves normally. To deal with both cases, we pretend
685 	 * that the PHY is at MII address 1.
686 	 */
687 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
688 		return(0);
689 
690 	if (sc->dc_pmode == DC_PMODE_SYM) {
691 		if (phy == (MII_NPHY - 1)) {
692 			switch(reg) {
693 			case MII_BMSR:
694 			/*
695 			 * Fake something to make the probe
696 			 * code think there's a PHY here.
697 			 */
698 				return(BMSR_MEDIAMASK);
699 				break;
700 			case MII_PHYIDR1:
701 				if (DC_IS_PNIC(sc))
702 					return(DC_VENDORID_LO);
703 				return(DC_VENDORID_DEC);
704 				break;
705 			case MII_PHYIDR2:
706 				if (DC_IS_PNIC(sc))
707 					return(DC_DEVICEID_82C168);
708 				return(DC_DEVICEID_21143);
709 				break;
710 			default:
711 				return(0);
712 				break;
713 			}
714 		} else
715 			return(0);
716 	}
717 
718 	if (DC_IS_PNIC(sc)) {
719 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
720 		    (phy << 23) | (reg << 18));
721 		for (i = 0; i < DC_TIMEOUT; i++) {
722 			DELAY(1);
723 			rval = CSR_READ_4(sc, DC_PN_MII);
724 			if (!(rval & DC_PN_MII_BUSY)) {
725 				rval &= 0xFFFF;
726 				return(rval == 0xFFFF ? 0 : rval);
727 			}
728 		}
729 		return(0);
730 	}
731 
732 	if (DC_IS_COMET(sc)) {
733 		switch(reg) {
734 		case MII_BMCR:
735 			phy_reg = DC_AL_BMCR;
736 			break;
737 		case MII_BMSR:
738 			phy_reg = DC_AL_BMSR;
739 			break;
740 		case MII_PHYIDR1:
741 			phy_reg = DC_AL_VENID;
742 			break;
743 		case MII_PHYIDR2:
744 			phy_reg = DC_AL_DEVID;
745 			break;
746 		case MII_ANAR:
747 			phy_reg = DC_AL_ANAR;
748 			break;
749 		case MII_ANLPAR:
750 			phy_reg = DC_AL_LPAR;
751 			break;
752 		case MII_ANER:
753 			phy_reg = DC_AL_ANER;
754 			break;
755 		default:
756 			printf("dc%d: phy_read: bad phy register %x\n",
757 			    sc->dc_unit, reg);
758 			return(0);
759 			break;
760 		}
761 
762 		rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
763 
764 		if (rval == 0xFFFF)
765 			return(0);
766 		return(rval);
767 	}
768 
769 	frame.mii_phyaddr = phy;
770 	frame.mii_regaddr = reg;
771 	phy_reg = CSR_READ_4(sc, DC_NETCFG);
772 	CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
773 	dc_mii_readreg(sc, &frame);
774 	CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
775 
776 	return(frame.mii_data);
777 }
778 
779 static int dc_miibus_writereg(dev, phy, reg, data)
780 	device_t		dev;
781 	int			phy, reg, data;
782 {
783 	struct dc_softc		*sc;
784 	struct dc_mii_frame	frame;
785 	int			i, phy_reg;
786 
787 	sc = device_get_softc(dev);
788 	bzero((char *)&frame, sizeof(frame));
789 
790 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
791 		return(0);
792 
793 	if (DC_IS_PNIC(sc)) {
794 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
795 		    (phy << 23) | (reg << 10) | data);
796 		for (i = 0; i < DC_TIMEOUT; i++) {
797 			if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
798 				break;
799 		}
800 		return(0);
801 	}
802 
803 	if (DC_IS_COMET(sc)) {
804 		switch(reg) {
805 		case MII_BMCR:
806 			phy_reg = DC_AL_BMCR;
807 			break;
808 		case MII_BMSR:
809 			phy_reg = DC_AL_BMSR;
810 			break;
811 		case MII_PHYIDR1:
812 			phy_reg = DC_AL_VENID;
813 			break;
814 		case MII_PHYIDR2:
815 			phy_reg = DC_AL_DEVID;
816 			break;
817 		case MII_ANAR:
818 			phy_reg = DC_AL_ANAR;
819 			break;
820 		case MII_ANLPAR:
821 			phy_reg = DC_AL_LPAR;
822 			break;
823 		case MII_ANER:
824 			phy_reg = DC_AL_ANER;
825 			break;
826 		default:
827 			printf("dc%d: phy_write: bad phy register %x\n",
828 			    sc->dc_unit, reg);
829 			return(0);
830 			break;
831 		}
832 
833 		CSR_WRITE_4(sc, phy_reg, data);
834 		return(0);
835 	}
836 
837 	frame.mii_phyaddr = phy;
838 	frame.mii_regaddr = reg;
839 	frame.mii_data = data;
840 
841 	phy_reg = CSR_READ_4(sc, DC_NETCFG);
842 	CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
843 	dc_mii_writereg(sc, &frame);
844 	CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
845 
846 	return(0);
847 }
848 
849 static void dc_miibus_statchg(dev)
850 	device_t		dev;
851 {
852 	struct dc_softc		*sc;
853 	struct mii_data		*mii;
854 	struct ifmedia		*ifm;
855 
856 	sc = device_get_softc(dev);
857 	if (DC_IS_ADMTEK(sc))
858 		return;
859 	mii = device_get_softc(sc->dc_miibus);
860 	ifm = &mii->mii_media;
861 	if (DC_IS_DAVICOM(sc) &&
862 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_homePNA) {
863 		dc_setcfg(sc, ifm->ifm_media);
864 		sc->dc_if_media = ifm->ifm_media;
865 	} else {
866 		dc_setcfg(sc, mii->mii_media_active);
867 		sc->dc_if_media = mii->mii_media_active;
868 	}
869 
870 	return;
871 }
872 
873 /*
874  * Special support for DM9102A cards with HomePNA PHYs. Note:
875  * with the Davicom DM9102A/DM9801 eval board that I have, it seems
876  * to be impossible to talk to the management interface of the DM9801
877  * PHY (its MDIO pin is not connected to anything). Consequently,
878  * the driver has to just 'know' about the additional mode and deal
879  * with it itself. *sigh*
880  */
881 static void dc_miibus_mediainit(dev)
882 	device_t		dev;
883 {
884 	struct dc_softc		*sc;
885 	struct mii_data		*mii;
886 	struct ifmedia		*ifm;
887 	int			rev;
888 
889 	rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF;
890 
891 	sc = device_get_softc(dev);
892 	mii = device_get_softc(sc->dc_miibus);
893 	ifm = &mii->mii_media;
894 
895 	if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A)
896 		ifmedia_add(ifm, IFM_ETHER|IFM_homePNA, 0, NULL);
897 
898 	return;
899 }
900 
901 #define DC_POLY		0xEDB88320
902 #define DC_BITS		9
903 #define DC_BITS_PNIC_II	7
904 
905 static u_int32_t dc_crc_le(sc, addr)
906 	struct dc_softc		*sc;
907 	caddr_t			addr;
908 {
909 	u_int32_t		idx, bit, data, crc;
910 
911 	/* Compute CRC for the address value. */
912 	crc = 0xFFFFFFFF; /* initial value */
913 
914 	for (idx = 0; idx < 6; idx++) {
915 		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1)
916 			crc = (crc >> 1) ^ (((crc ^ data) & 1) ? DC_POLY : 0);
917 	}
918 
919 	/* The hash table on the PNIC II is only 128 bits wide. */
920 	if (DC_IS_PNICII(sc))
921 		return (crc & ((1 << DC_BITS_PNIC_II) - 1));
922 
923 	return (crc & ((1 << DC_BITS) - 1));
924 }
925 
926 /*
927  * Calculate CRC of a multicast group address, return the lower 6 bits.
928  */
929 static u_int32_t dc_crc_be(addr)
930 	caddr_t			addr;
931 {
932 	u_int32_t		crc, carry;
933 	int			i, j;
934 	u_int8_t		c;
935 
936 	/* Compute CRC for the address value. */
937 	crc = 0xFFFFFFFF; /* initial value */
938 
939 	for (i = 0; i < 6; i++) {
940 		c = *(addr + i);
941 		for (j = 0; j < 8; j++) {
942 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
943 			crc <<= 1;
944 			c >>= 1;
945 			if (carry)
946 				crc = (crc ^ 0x04c11db6) | carry;
947 		}
948 	}
949 
950 	/* return the filter bit position */
951 	return((crc >> 26) & 0x0000003F);
952 }
953 
954 /*
955  * 21143-style RX filter setup routine. Filter programming is done by
956  * downloading a special setup frame into the TX engine. 21143, Macronix,
957  * PNIC, PNIC II and Davicom chips are programmed this way.
958  *
959  * We always program the chip using 'hash perfect' mode, i.e. one perfect
960  * address (our node address) and a 512-bit hash filter for multicast
961  * frames. We also sneak the broadcast address into the hash filter since
962  * we need that too.
963  */
964 void dc_setfilt_21143(sc)
965 	struct dc_softc		*sc;
966 {
967 	struct dc_desc		*sframe;
968 	u_int32_t		h, *sp;
969 	struct ifmultiaddr	*ifma;
970 	struct ifnet		*ifp;
971 	int			i;
972 
973 	ifp = &sc->arpcom.ac_if;
974 
975 	i = sc->dc_cdata.dc_tx_prod;
976 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
977 	sc->dc_cdata.dc_tx_cnt++;
978 	sframe = &sc->dc_ldata->dc_tx_list[i];
979 	sp = (u_int32_t *)&sc->dc_cdata.dc_sbuf;
980 	bzero((char *)sp, DC_SFRAME_LEN);
981 
982 	sframe->dc_data = vtophys(&sc->dc_cdata.dc_sbuf);
983 	sframe->dc_ctl = DC_SFRAME_LEN | DC_TXCTL_SETUP | DC_TXCTL_TLINK |
984 	    DC_FILTER_HASHPERF | DC_TXCTL_FINT;
985 
986 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)&sc->dc_cdata.dc_sbuf;
987 
988 	/* If we want promiscuous mode, set the allframes bit. */
989 	if (ifp->if_flags & IFF_PROMISC)
990 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
991 	else
992 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
993 
994 	if (ifp->if_flags & IFF_ALLMULTI)
995 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
996 	else
997 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
998 
999 	for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
1000 	    ifma = ifma->ifma_link.le_next) {
1001 		if (ifma->ifma_addr->sa_family != AF_LINK)
1002 			continue;
1003 		h = dc_crc_le(sc,
1004 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1005 		sp[h >> 4] |= 1 << (h & 0xF);
1006 	}
1007 
1008 	if (ifp->if_flags & IFF_BROADCAST) {
1009 		h = dc_crc_le(sc, (caddr_t)&etherbroadcastaddr);
1010 		sp[h >> 4] |= 1 << (h & 0xF);
1011 	}
1012 
1013 	/* Set our MAC address */
1014 	sp[39] = ((u_int16_t *)sc->arpcom.ac_enaddr)[0];
1015 	sp[40] = ((u_int16_t *)sc->arpcom.ac_enaddr)[1];
1016 	sp[41] = ((u_int16_t *)sc->arpcom.ac_enaddr)[2];
1017 
1018 	sframe->dc_status = DC_TXSTAT_OWN;
1019 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1020 
1021 	/*
1022 	 * The PNIC takes an exceedingly long time to process its
1023 	 * setup frame; wait 10ms after posting the setup frame
1024 	 * before proceeding, just so it has time to swallow its
1025 	 * medicine.
1026 	 */
1027 	DELAY(10000);
1028 
1029 	ifp->if_timer = 5;
1030 
1031 	return;
1032 }
1033 
1034 void dc_setfilt_admtek(sc)
1035 	struct dc_softc		*sc;
1036 {
1037 	struct ifnet		*ifp;
1038 	int			h = 0;
1039 	u_int32_t		hashes[2] = { 0, 0 };
1040 	struct ifmultiaddr	*ifma;
1041 
1042 	ifp = &sc->arpcom.ac_if;
1043 
1044 	/* Init our MAC address */
1045 	CSR_WRITE_4(sc, DC_AL_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1046 	CSR_WRITE_4(sc, DC_AL_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1047 
1048 	/* If we want promiscuous mode, set the allframes bit. */
1049 	if (ifp->if_flags & IFF_PROMISC)
1050 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1051 	else
1052 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1053 
1054 	if (ifp->if_flags & IFF_ALLMULTI)
1055 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1056 	else
1057 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1058 
1059 	/* first, zot all the existing hash bits */
1060 	CSR_WRITE_4(sc, DC_AL_MAR0, 0);
1061 	CSR_WRITE_4(sc, DC_AL_MAR1, 0);
1062 
1063 	/*
1064 	 * If we're already in promisc or allmulti mode, we
1065 	 * don't have to bother programming the multicast filter.
1066 	 */
1067 	if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI))
1068 		return;
1069 
1070 	/* now program new ones */
1071 	for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
1072 	    ifma = ifma->ifma_link.le_next) {
1073 		if (ifma->ifma_addr->sa_family != AF_LINK)
1074 			continue;
1075 		h = dc_crc_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1076 		if (h < 32)
1077 			hashes[0] |= (1 << h);
1078 		else
1079 			hashes[1] |= (1 << (h - 32));
1080 	}
1081 
1082 	CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]);
1083 	CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]);
1084 
1085 	return;
1086 }
1087 
1088 void dc_setfilt_asix(sc)
1089 	struct dc_softc		*sc;
1090 {
1091 	struct ifnet		*ifp;
1092 	int			h = 0;
1093 	u_int32_t		hashes[2] = { 0, 0 };
1094 	struct ifmultiaddr	*ifma;
1095 
1096 	ifp = &sc->arpcom.ac_if;
1097 
1098         /* Init our MAC address */
1099         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
1100         CSR_WRITE_4(sc, DC_AX_FILTDATA,
1101 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1102         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
1103         CSR_WRITE_4(sc, DC_AX_FILTDATA,
1104 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1105 
1106 	/* If we want promiscuous mode, set the allframes bit. */
1107 	if (ifp->if_flags & IFF_PROMISC)
1108 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1109 	else
1110 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1111 
1112 	if (ifp->if_flags & IFF_ALLMULTI)
1113 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1114 	else
1115 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1116 
1117 	/*
1118 	 * The ASIX chip has a special bit to enable reception
1119 	 * of broadcast frames.
1120 	 */
1121 	if (ifp->if_flags & IFF_BROADCAST)
1122 		DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1123 	else
1124 		DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1125 
1126 	/* first, zot all the existing hash bits */
1127 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1128 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1129 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1130 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1131 
1132 	/*
1133 	 * If we're already in promisc or allmulti mode, we
1134 	 * don't have to bother programming the multicast filter.
1135 	 */
1136 	if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI))
1137 		return;
1138 
1139 	/* now program new ones */
1140 	for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
1141 	    ifma = ifma->ifma_link.le_next) {
1142 		if (ifma->ifma_addr->sa_family != AF_LINK)
1143 			continue;
1144 		h = dc_crc_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1145 		if (h < 32)
1146 			hashes[0] |= (1 << h);
1147 		else
1148 			hashes[1] |= (1 << (h - 32));
1149 	}
1150 
1151 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1152 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
1153 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1154 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
1155 
1156 	return;
1157 }
1158 
1159 static void dc_setfilt(sc)
1160 	struct dc_softc		*sc;
1161 {
1162 	if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
1163 	    DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc))
1164 		dc_setfilt_21143(sc);
1165 
1166 	if (DC_IS_ASIX(sc))
1167 		dc_setfilt_asix(sc);
1168 
1169 	if (DC_IS_ADMTEK(sc))
1170 		dc_setfilt_admtek(sc);
1171 
1172 	return;
1173 }
1174 
1175 /*
1176  * In order to fiddle with the
1177  * 'full-duplex' and '100Mbps' bits in the netconfig register, we
1178  * first have to put the transmit and/or receive logic in the idle state.
1179  */
1180 static void dc_setcfg(sc, media)
1181 	struct dc_softc		*sc;
1182 	int			media;
1183 {
1184 	int			i, restart = 0;
1185 	u_int32_t		isr;
1186 
1187 	if (IFM_SUBTYPE(media) == IFM_NONE)
1188 		return;
1189 
1190 	if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON)) {
1191 		restart = 1;
1192 		DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON));
1193 
1194 		for (i = 0; i < DC_TIMEOUT; i++) {
1195 			DELAY(10);
1196 			isr = CSR_READ_4(sc, DC_ISR);
1197 			if (isr & DC_ISR_TX_IDLE ||
1198 			    (isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED)
1199 				break;
1200 		}
1201 
1202 		if (i == DC_TIMEOUT)
1203 			printf("dc%d: failed to force tx and "
1204 				"rx to idle state\n", sc->dc_unit);
1205 
1206 	}
1207 
1208 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
1209 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1210 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1211 		if (sc->dc_pmode == DC_PMODE_MII) {
1212 			DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1213 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1214 			    DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER));
1215 			if (sc->dc_type == DC_TYPE_98713)
1216 				DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1217 				    DC_NETCFG_SCRAMBLER));
1218 			if (!DC_IS_DAVICOM(sc))
1219 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1220 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1221 		} else {
1222 			if (DC_IS_PNIC(sc)) {
1223 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
1224 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1225 				DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1226 			}
1227 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL|
1228 			    DC_NETCFG_PCS|DC_NETCFG_SCRAMBLER);
1229 		}
1230 	}
1231 
1232 	if (IFM_SUBTYPE(media) == IFM_10_T) {
1233 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1234 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1235 		if (sc->dc_pmode == DC_PMODE_MII) {
1236 			DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1237 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1238 			    DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER));
1239 			if (sc->dc_type == DC_TYPE_98713)
1240 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1241 			if (!DC_IS_DAVICOM(sc))
1242 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1243 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1244 		} else {
1245 			if (DC_IS_PNIC(sc)) {
1246 				DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
1247 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1248 				DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1249 			}
1250 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1251 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1252 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1253 		}
1254 	}
1255 
1256 	/*
1257 	 * If this is a Davicom DM9102A card with a DM9801 HomePNA
1258 	 * PHY and we want HomePNA mode, set the portsel bit to turn
1259 	 * on the external MII port.
1260 	 */
1261 	if (DC_IS_DAVICOM(sc)) {
1262 		if (IFM_SUBTYPE(media) == IFM_homePNA) {
1263 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1264 			sc->dc_link = 1;
1265 		} else {
1266 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1267 		}
1268 	}
1269 
1270 	if ((media & IFM_GMASK) == IFM_FDX) {
1271 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1272 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1273 			DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1274 	} else {
1275 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1276 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1277 			DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1278 	}
1279 
1280 	if (restart)
1281 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON|DC_NETCFG_RX_ON);
1282 
1283 	return;
1284 }
1285 
1286 static void dc_reset(sc)
1287 	struct dc_softc		*sc;
1288 {
1289 	register int		i;
1290 
1291 	DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1292 
1293 	for (i = 0; i < DC_TIMEOUT; i++) {
1294 		DELAY(10);
1295 		if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
1296 			break;
1297 	}
1298 
1299 	if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc)) {
1300 		DELAY(10000);
1301 		DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1302 		i = 0;
1303 	}
1304 
1305 	if (i == DC_TIMEOUT)
1306 		printf("dc%d: reset never completed!\n", sc->dc_unit);
1307 
1308 	/* Wait a little while for the chip to get its brains in order. */
1309 	DELAY(1000);
1310 
1311 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
1312 	CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
1313 	CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
1314 
1315 	/*
1316 	 * Bring the SIA out of reset. In some cases, it looks
1317 	 * like failing to unreset the SIA soon enough gets it
1318 	 * into a state where it will never come out of reset
1319 	 * until we reset the whole chip again.
1320 	 */
1321 	if (DC_IS_INTEL(sc))
1322 		DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1323 
1324         return;
1325 }
1326 
1327 static struct dc_type *dc_devtype(dev)
1328 	device_t		dev;
1329 {
1330 	struct dc_type		*t;
1331 	u_int32_t		rev;
1332 
1333 	t = dc_devs;
1334 
1335 	while(t->dc_name != NULL) {
1336 		if ((pci_get_vendor(dev) == t->dc_vid) &&
1337 		    (pci_get_device(dev) == t->dc_did)) {
1338 			/* Check the PCI revision */
1339 			rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF;
1340 			if (t->dc_did == DC_DEVICEID_98713 &&
1341 			    rev >= DC_REVISION_98713A)
1342 				t++;
1343 			if (t->dc_did == DC_DEVICEID_98713_CP &&
1344 			    rev >= DC_REVISION_98713A)
1345 				t++;
1346 			if (t->dc_did == DC_DEVICEID_987x5 &&
1347 			    rev >= DC_REVISION_98725)
1348 				t++;
1349 			if (t->dc_did == DC_DEVICEID_AX88140A &&
1350 			    rev >= DC_REVISION_88141)
1351 				t++;
1352 			if (t->dc_did == DC_DEVICEID_82C168 &&
1353 			    rev >= DC_REVISION_82C169)
1354 				t++;
1355 			if (t->dc_did == DC_DEVICEID_DM9102 &&
1356 			    rev >= DC_REVISION_DM9102A)
1357 				t++;
1358 			return(t);
1359 		}
1360 		t++;
1361 	}
1362 
1363 	return(NULL);
1364 }
1365 
1366 /*
1367  * Probe for a 21143 or clone chip. Check the PCI vendor and device
1368  * IDs against our list and return a device name if we find a match.
1369  * We do a little bit of extra work to identify the exact type of
1370  * chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
1371  * but different revision IDs. The same is true for 98715/98715A
1372  * chips and the 98725, as well as the ASIX and ADMtek chips. In some
1373  * cases, the exact chip revision affects driver behavior.
1374  */
1375 static int dc_probe(dev)
1376 	device_t		dev;
1377 {
1378 	struct dc_type		*t;
1379 
1380 	t = dc_devtype(dev);
1381 
1382 	if (t != NULL) {
1383 		device_set_desc(dev, t->dc_name);
1384 		return(0);
1385 	}
1386 
1387 	return(ENXIO);
1388 }
1389 
1390 static void dc_acpi(dev)
1391 	device_t		dev;
1392 {
1393 	u_int32_t		r, cptr;
1394 	int			unit;
1395 
1396 	unit = device_get_unit(dev);
1397 
1398 	/* Find the location of the capabilities block */
1399 	cptr = pci_read_config(dev, DC_PCI_CCAP, 4) & 0xFF;
1400 
1401 	r = pci_read_config(dev, cptr, 4) & 0xFF;
1402 	if (r == 0x01) {
1403 
1404 		r = pci_read_config(dev, cptr + 4, 4);
1405 		if (r & DC_PSTATE_D3) {
1406 			u_int32_t		iobase, membase, irq;
1407 
1408 			/* Save important PCI config data. */
1409 			iobase = pci_read_config(dev, DC_PCI_CFBIO, 4);
1410 			membase = pci_read_config(dev, DC_PCI_CFBMA, 4);
1411 			irq = pci_read_config(dev, DC_PCI_CFIT, 4);
1412 
1413 			/* Reset the power state. */
1414 			printf("dc%d: chip is in D%d power mode "
1415 			    "-- setting to D0\n", unit, r & DC_PSTATE_D3);
1416 			r &= 0xFFFFFFFC;
1417 			pci_write_config(dev, cptr + 4, r, 4);
1418 
1419 			/* Restore PCI config data. */
1420 			pci_write_config(dev, DC_PCI_CFBIO, iobase, 4);
1421 			pci_write_config(dev, DC_PCI_CFBMA, membase, 4);
1422 			pci_write_config(dev, DC_PCI_CFIT, irq, 4);
1423 		}
1424 	}
1425 	return;
1426 }
1427 
1428 /*
1429  * Attach the interface. Allocate softc structures, do ifmedia
1430  * setup and ethernet/BPF attach.
1431  */
1432 static int dc_attach(dev)
1433 	device_t		dev;
1434 {
1435 	int			s;
1436 	u_char			eaddr[ETHER_ADDR_LEN];
1437 	u_int32_t		command;
1438 	struct dc_softc		*sc;
1439 	struct ifnet		*ifp;
1440 	u_int32_t		revision;
1441 	int			unit, error = 0, rid, mac_offset;
1442 
1443 	s = splimp();
1444 
1445 	sc = device_get_softc(dev);
1446 	unit = device_get_unit(dev);
1447 	bzero(sc, sizeof(struct dc_softc));
1448 
1449 	/*
1450 	 * Handle power management nonsense.
1451 	 */
1452 	dc_acpi(dev);
1453 
1454 	/*
1455 	 * Map control/status registers.
1456 	 */
1457 	command = pci_read_config(dev, PCI_COMMAND_STATUS_REG, 4);
1458 	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
1459 	pci_write_config(dev, PCI_COMMAND_STATUS_REG, command, 4);
1460 	command = pci_read_config(dev, PCI_COMMAND_STATUS_REG, 4);
1461 
1462 #ifdef DC_USEIOSPACE
1463 	if (!(command & PCIM_CMD_PORTEN)) {
1464 		printf("dc%d: failed to enable I/O ports!\n", unit);
1465 		error = ENXIO;
1466 		goto fail;
1467 	}
1468 #else
1469 	if (!(command & PCIM_CMD_MEMEN)) {
1470 		printf("dc%d: failed to enable memory mapping!\n", unit);
1471 		error = ENXIO;
1472 		goto fail;
1473 	}
1474 #endif
1475 
1476 	rid = DC_RID;
1477 	sc->dc_res = bus_alloc_resource(dev, DC_RES, &rid,
1478 	    0, ~0, 1, RF_ACTIVE);
1479 
1480 	if (sc->dc_res == NULL) {
1481 		printf("dc%d: couldn't map ports/memory\n", unit);
1482 		error = ENXIO;
1483 		goto fail;
1484 	}
1485 
1486 	sc->dc_btag = rman_get_bustag(sc->dc_res);
1487 	sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
1488 
1489 	/* Allocate interrupt */
1490 	rid = 0;
1491 	sc->dc_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1492 	    RF_SHAREABLE | RF_ACTIVE);
1493 
1494 	if (sc->dc_irq == NULL) {
1495 		printf("dc%d: couldn't map interrupt\n", unit);
1496 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
1497 		error = ENXIO;
1498 		goto fail;
1499 	}
1500 
1501 	error = bus_setup_intr(dev, sc->dc_irq, INTR_TYPE_NET,
1502 	    dc_intr, sc, &sc->dc_intrhand);
1503 
1504 	if (error) {
1505 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
1506 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
1507 		printf("dc%d: couldn't set up irq\n", unit);
1508 		goto fail;
1509 	}
1510 
1511 	/* Need this info to decide on a chip type. */
1512 	sc->dc_info = dc_devtype(dev);
1513 	revision = pci_read_config(dev, DC_PCI_CFRV, 4) & 0x000000FF;
1514 
1515 	switch(sc->dc_info->dc_did) {
1516 	case DC_DEVICEID_21143:
1517 		sc->dc_type = DC_TYPE_21143;
1518 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1519 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1520 		break;
1521 	case DC_DEVICEID_DM9100:
1522 	case DC_DEVICEID_DM9102:
1523 		sc->dc_type = DC_TYPE_DM9102;
1524 		sc->dc_flags |= DC_TX_COALESCE|DC_TX_USE_TX_INTR;
1525 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1526 		sc->dc_pmode = DC_PMODE_MII;
1527 		break;
1528 	case DC_DEVICEID_AL981:
1529 		sc->dc_type = DC_TYPE_AL981;
1530 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1531 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1532 		sc->dc_pmode = DC_PMODE_MII;
1533 		break;
1534 	case DC_DEVICEID_AN985:
1535 		sc->dc_type = DC_TYPE_AN985;
1536 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1537 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1538 		sc->dc_pmode = DC_PMODE_MII;
1539 		break;
1540 	case DC_DEVICEID_98713:
1541 	case DC_DEVICEID_98713_CP:
1542 		if (revision < DC_REVISION_98713A) {
1543 			sc->dc_type = DC_TYPE_98713;
1544 			sc->dc_flags |= DC_REDUCED_MII_POLL;
1545 		}
1546 		if (revision >= DC_REVISION_98713A)
1547 			sc->dc_type = DC_TYPE_98713A;
1548 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1549 		break;
1550 	case DC_DEVICEID_987x5:
1551 		sc->dc_type = DC_TYPE_987x5;
1552 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1553 		break;
1554 	case DC_DEVICEID_82C115:
1555 		sc->dc_type = DC_TYPE_PNICII;
1556 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1557 		break;
1558 	case DC_DEVICEID_82C168:
1559 		sc->dc_type = DC_TYPE_PNIC;
1560 		sc->dc_flags |= DC_TX_STORENFWD|DC_TX_INTR_ALWAYS;
1561 		sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
1562 		sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_NOWAIT);
1563 		if (revision < DC_REVISION_82C169)
1564 			sc->dc_pmode = DC_PMODE_SYM;
1565 		break;
1566 	case DC_DEVICEID_AX88140A:
1567 		sc->dc_type = DC_TYPE_ASIX;
1568 		sc->dc_flags |= DC_TX_USE_TX_INTR|DC_TX_INTR_FIRSTFRAG;
1569 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1570 		sc->dc_pmode = DC_PMODE_MII;
1571 		break;
1572 	default:
1573 		printf("dc%d: unknown device: %x\n", sc->dc_unit,
1574 		    sc->dc_info->dc_did);
1575 		break;
1576 	}
1577 
1578 	/* Save the cache line size. */
1579 	if (DC_IS_DAVICOM(sc))
1580 		sc->dc_cachesize = 0;
1581 	else
1582 		sc->dc_cachesize = pci_read_config(dev,
1583 		    DC_PCI_CFLT, 4) & 0xFF;
1584 
1585 	/* Reset the adapter. */
1586 	dc_reset(sc);
1587 
1588 	/* Take 21143 out of snooze mode */
1589 	if (DC_IS_INTEL(sc)) {
1590 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
1591 		command &= ~(DC_CFDD_SNOOZE_MODE|DC_CFDD_SLEEP_MODE);
1592 		pci_write_config(dev, DC_PCI_CFDD, command, 4);
1593 	}
1594 
1595 	/*
1596 	 * Try to learn something about the supported media.
1597 	 * We know that ASIX and ADMtek and Davicom devices
1598 	 * will *always* be using MII media, so that's a no-brainer.
1599 	 * The tricky ones are the Macronix/PNIC II and the
1600 	 * Intel 21143.
1601 	 */
1602 	if (DC_IS_INTEL(sc)) {
1603 		u_int32_t		media, cwuc;
1604 		cwuc = pci_read_config(dev, DC_PCI_CWUC, 4);
1605 		cwuc |= DC_CWUC_FORCE_WUL;
1606 		pci_write_config(dev, DC_PCI_CWUC, cwuc, 4);
1607 		DELAY(10000);
1608 		media = pci_read_config(dev, DC_PCI_CWUC, 4);
1609 		cwuc &= ~DC_CWUC_FORCE_WUL;
1610 		pci_write_config(dev, DC_PCI_CWUC, cwuc, 4);
1611 		DELAY(10000);
1612 		if (media & DC_CWUC_MII_ABILITY)
1613 			sc->dc_pmode = DC_PMODE_MII;
1614 		if (media & DC_CWUC_SYM_ABILITY)
1615 			sc->dc_pmode = DC_PMODE_SYM;
1616 		/*
1617 		 * If none of the bits are set, then this NIC
1618 		 * isn't meant to support 'wake up LAN' mode.
1619 		 * This is usually only the case on multiport
1620 		 * cards, and these cards almost always have
1621 		 * MII transceivers.
1622 		 */
1623 		if (media == 0)
1624 			sc->dc_pmode = DC_PMODE_MII;
1625 	} else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
1626 		if (sc->dc_type == DC_TYPE_98713)
1627 			sc->dc_pmode = DC_PMODE_MII;
1628 		else
1629 			sc->dc_pmode = DC_PMODE_SYM;
1630 	} else if (!sc->dc_pmode)
1631 		sc->dc_pmode = DC_PMODE_MII;
1632 
1633 	/*
1634 	 * Get station address from the EEPROM.
1635 	 */
1636 	switch(sc->dc_type) {
1637 	case DC_TYPE_98713:
1638 	case DC_TYPE_98713A:
1639 	case DC_TYPE_987x5:
1640 	case DC_TYPE_PNICII:
1641 		dc_read_eeprom(sc, (caddr_t)&mac_offset,
1642 		    (DC_EE_NODEADDR_OFFSET / 2), 1, 0);
1643 		dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
1644 		break;
1645 	case DC_TYPE_PNIC:
1646 		dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
1647 		break;
1648 	case DC_TYPE_DM9102:
1649 	case DC_TYPE_21143:
1650 	case DC_TYPE_ASIX:
1651 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
1652 		break;
1653 	case DC_TYPE_AL981:
1654 	case DC_TYPE_AN985:
1655 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_AL_EE_NODEADDR, 3, 0);
1656 		break;
1657 	default:
1658 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
1659 		break;
1660 	}
1661 
1662 	/*
1663 	 * A 21143 or clone chip was detected. Inform the world.
1664 	 */
1665 	printf("dc%d: Ethernet address: %6D\n", unit, eaddr, ":");
1666 
1667 	sc->dc_unit = unit;
1668 	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
1669 
1670 	sc->dc_ldata = contigmalloc(sizeof(struct dc_list_data), M_DEVBUF,
1671 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1672 
1673 	if (sc->dc_ldata == NULL) {
1674 		printf("dc%d: no memory for list buffers!\n", unit);
1675 		bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
1676 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
1677 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
1678 		error = ENXIO;
1679 		goto fail;
1680 	}
1681 
1682 	bzero(sc->dc_ldata, sizeof(struct dc_list_data));
1683 
1684 	ifp = &sc->arpcom.ac_if;
1685 	ifp->if_softc = sc;
1686 	ifp->if_unit = unit;
1687 	ifp->if_name = "dc";
1688 	ifp->if_mtu = ETHERMTU;
1689 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1690 	ifp->if_ioctl = dc_ioctl;
1691 	ifp->if_output = ether_output;
1692 	ifp->if_start = dc_start;
1693 	ifp->if_watchdog = dc_watchdog;
1694 	ifp->if_init = dc_init;
1695 	ifp->if_baudrate = 10000000;
1696 	ifp->if_snd.ifq_maxlen = DC_TX_LIST_CNT - 1;
1697 
1698 	/*
1699 	 * Do MII setup.
1700 	 */
1701 	error = mii_phy_probe(dev, &sc->dc_miibus,
1702 	    dc_ifmedia_upd, dc_ifmedia_sts);
1703 
1704 	if (error && DC_IS_INTEL(sc)) {
1705 		sc->dc_pmode = DC_PMODE_SYM;
1706 		mii_phy_probe(dev, &sc->dc_miibus,
1707 		    dc_ifmedia_upd, dc_ifmedia_sts);
1708 		error = 0;
1709 	}
1710 
1711 	if (error) {
1712 		printf("dc%d: MII without any PHY!\n", sc->dc_unit);
1713 		bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
1714 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
1715 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
1716 		error = ENXIO;
1717 		goto fail;
1718 	}
1719 
1720 	/*
1721 	 * Call MI attach routines.
1722 	 */
1723 	if_attach(ifp);
1724 	ether_ifattach(ifp);
1725 	callout_handle_init(&sc->dc_stat_ch);
1726 
1727 	bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header));
1728 
1729 #ifdef __alpha__
1730         sc->dc_srm_media = 0;
1731 
1732 	/* Remember the SRM console media setting */
1733 	if (DC_IS_INTEL(sc)) {
1734 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
1735 		command &= ~(DC_CFDD_SNOOZE_MODE|DC_CFDD_SLEEP_MODE);
1736 		switch ((command >> 8) & 0xff) {
1737 		case 3:
1738 			sc->dc_srm_media = IFM_10_T;
1739 			break;
1740 		case 4:
1741 			sc->dc_srm_media = IFM_10_T | IFM_FDX;
1742 			break;
1743 		case 5:
1744 			sc->dc_srm_media = IFM_100_TX;
1745 			break;
1746 		case 6:
1747 			sc->dc_srm_media = IFM_100_TX | IFM_FDX;
1748 			break;
1749 		}
1750 		if (sc->dc_srm_media)
1751 			sc->dc_srm_media |= IFM_ACTIVE | IFM_ETHER;
1752 	}
1753 #endif
1754 
1755 
1756 fail:
1757 	splx(s);
1758 
1759 	return(error);
1760 }
1761 
1762 static int dc_detach(dev)
1763 	device_t		dev;
1764 {
1765 	struct dc_softc		*sc;
1766 	struct ifnet		*ifp;
1767 	int			s;
1768 
1769 	s = splimp();
1770 
1771 	sc = device_get_softc(dev);
1772 	ifp = &sc->arpcom.ac_if;
1773 
1774 	dc_stop(sc);
1775 	if_detach(ifp);
1776 
1777 	bus_generic_detach(dev);
1778 	device_delete_child(dev, sc->dc_miibus);
1779 
1780 	bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
1781 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
1782 	bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
1783 
1784 	contigfree(sc->dc_ldata, sizeof(struct dc_list_data), M_DEVBUF);
1785 	if (sc->dc_pnic_rx_buf != NULL)
1786 		free(sc->dc_pnic_rx_buf, M_DEVBUF);
1787 
1788 	splx(s);
1789 
1790 	return(0);
1791 }
1792 
1793 /*
1794  * Initialize the transmit descriptors.
1795  */
1796 static int dc_list_tx_init(sc)
1797 	struct dc_softc		*sc;
1798 {
1799 	struct dc_chain_data	*cd;
1800 	struct dc_list_data	*ld;
1801 	int			i;
1802 
1803 	cd = &sc->dc_cdata;
1804 	ld = sc->dc_ldata;
1805 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
1806 		if (i == (DC_TX_LIST_CNT - 1)) {
1807 			ld->dc_tx_list[i].dc_next =
1808 			    vtophys(&ld->dc_tx_list[0]);
1809 		} else {
1810 			ld->dc_tx_list[i].dc_next =
1811 			    vtophys(&ld->dc_tx_list[i + 1]);
1812 		}
1813 		cd->dc_tx_chain[i] = NULL;
1814 		ld->dc_tx_list[i].dc_data = 0;
1815 		ld->dc_tx_list[i].dc_ctl = 0;
1816 	}
1817 
1818 	cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
1819 
1820 	return(0);
1821 }
1822 
1823 
1824 /*
1825  * Initialize the RX descriptors and allocate mbufs for them. Note that
1826  * we arrange the descriptors in a closed ring, so that the last descriptor
1827  * points back to the first.
1828  */
1829 static int dc_list_rx_init(sc)
1830 	struct dc_softc		*sc;
1831 {
1832 	struct dc_chain_data	*cd;
1833 	struct dc_list_data	*ld;
1834 	int			i;
1835 
1836 	cd = &sc->dc_cdata;
1837 	ld = sc->dc_ldata;
1838 
1839 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
1840 		if (dc_newbuf(sc, i, NULL) == ENOBUFS)
1841 			return(ENOBUFS);
1842 		if (i == (DC_RX_LIST_CNT - 1)) {
1843 			ld->dc_rx_list[i].dc_next =
1844 			    vtophys(&ld->dc_rx_list[0]);
1845 		} else {
1846 			ld->dc_rx_list[i].dc_next =
1847 			    vtophys(&ld->dc_rx_list[i + 1]);
1848 		}
1849 	}
1850 
1851 	cd->dc_rx_prod = 0;
1852 
1853 	return(0);
1854 }
1855 
1856 /*
1857  * Initialize an RX descriptor and attach an MBUF cluster.
1858  */
1859 static int dc_newbuf(sc, i, m)
1860 	struct dc_softc		*sc;
1861 	int			i;
1862 	struct mbuf		*m;
1863 {
1864 	struct mbuf		*m_new = NULL;
1865 	struct dc_desc		*c;
1866 
1867 	c = &sc->dc_ldata->dc_rx_list[i];
1868 
1869 	if (m == NULL) {
1870 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1871 		if (m_new == NULL) {
1872 			printf("dc%d: no memory for rx list "
1873 			    "-- packet dropped!\n", sc->dc_unit);
1874 			return(ENOBUFS);
1875 		}
1876 
1877 		MCLGET(m_new, M_DONTWAIT);
1878 		if (!(m_new->m_flags & M_EXT)) {
1879 			printf("dc%d: no memory for rx list "
1880 			    "-- packet dropped!\n", sc->dc_unit);
1881 			m_freem(m_new);
1882 			return(ENOBUFS);
1883 		}
1884 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1885 	} else {
1886 		m_new = m;
1887 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1888 		m_new->m_data = m_new->m_ext.ext_buf;
1889 	}
1890 
1891 	m_adj(m_new, sizeof(u_int64_t));
1892 
1893 	/*
1894 	 * If this is a PNIC chip, zero the buffer. This is part
1895 	 * of the workaround for the receive bug in the 82c168 and
1896 	 * 82c169 chips.
1897 	 */
1898 	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
1899 		bzero((char *)mtod(m_new, char *), m_new->m_len);
1900 
1901 	sc->dc_cdata.dc_rx_chain[i] = m_new;
1902 	c->dc_data = vtophys(mtod(m_new, caddr_t));
1903 	c->dc_ctl = DC_RXCTL_RLINK | DC_RXLEN;
1904 	c->dc_status = DC_RXSTAT_OWN;
1905 
1906 	return(0);
1907 }
1908 
1909 /*
1910  * Grrrrr.
1911  * The PNIC chip has a terrible bug in it that manifests itself during
1912  * periods of heavy activity. The exact mode of failure if difficult to
1913  * pinpoint: sometimes it only happens in promiscuous mode, sometimes it
1914  * will happen on slow machines. The bug is that sometimes instead of
1915  * uploading one complete frame during reception, it uploads what looks
1916  * like the entire contents of its FIFO memory. The frame we want is at
1917  * the end of the whole mess, but we never know exactly how much data has
1918  * been uploaded, so salvaging the frame is hard.
1919  *
1920  * There is only one way to do it reliably, and it's disgusting.
1921  * Here's what we know:
1922  *
1923  * - We know there will always be somewhere between one and three extra
1924  *   descriptors uploaded.
1925  *
1926  * - We know the desired received frame will always be at the end of the
1927  *   total data upload.
1928  *
1929  * - We know the size of the desired received frame because it will be
1930  *   provided in the length field of the status word in the last descriptor.
1931  *
1932  * Here's what we do:
1933  *
1934  * - When we allocate buffers for the receive ring, we bzero() them.
1935  *   This means that we know that the buffer contents should be all
1936  *   zeros, except for data uploaded by the chip.
1937  *
1938  * - We also force the PNIC chip to upload frames that include the
1939  *   ethernet CRC at the end.
1940  *
1941  * - We gather all of the bogus frame data into a single buffer.
1942  *
1943  * - We then position a pointer at the end of this buffer and scan
1944  *   backwards until we encounter the first non-zero byte of data.
1945  *   This is the end of the received frame. We know we will encounter
1946  *   some data at the end of the frame because the CRC will always be
1947  *   there, so even if the sender transmits a packet of all zeros,
1948  *   we won't be fooled.
1949  *
1950  * - We know the size of the actual received frame, so we subtract
1951  *   that value from the current pointer location. This brings us
1952  *   to the start of the actual received packet.
1953  *
1954  * - We copy this into an mbuf and pass it on, along with the actual
1955  *   frame length.
1956  *
1957  * The performance hit is tremendous, but it beats dropping frames all
1958  * the time.
1959  */
1960 
1961 #define DC_WHOLEFRAME	(DC_RXSTAT_FIRSTFRAG|DC_RXSTAT_LASTFRAG)
1962 static void dc_pnic_rx_bug_war(sc, idx)
1963 	struct dc_softc		*sc;
1964 	int			idx;
1965 {
1966 	struct dc_desc		*cur_rx;
1967 	struct dc_desc		*c = NULL;
1968 	struct mbuf		*m = NULL;
1969 	unsigned char		*ptr;
1970 	int			i, total_len;
1971 	u_int32_t		rxstat = 0;
1972 
1973 	i = sc->dc_pnic_rx_bug_save;
1974 	cur_rx = &sc->dc_ldata->dc_rx_list[idx];
1975 	ptr = sc->dc_pnic_rx_buf;
1976 	bzero(ptr, sizeof(DC_RXLEN * 5));
1977 
1978 	/* Copy all the bytes from the bogus buffers. */
1979 	while (1) {
1980 		c = &sc->dc_ldata->dc_rx_list[i];
1981 		rxstat = c->dc_status;
1982 		m = sc->dc_cdata.dc_rx_chain[i];
1983 		bcopy(mtod(m, char *), ptr, DC_RXLEN);
1984 		ptr += DC_RXLEN;
1985 		/* If this is the last buffer, break out. */
1986 		if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
1987 			break;
1988 		dc_newbuf(sc, i, m);
1989 		DC_INC(i, DC_RX_LIST_CNT);
1990 	}
1991 
1992 	/* Find the length of the actual receive frame. */
1993 	total_len = DC_RXBYTES(rxstat);
1994 
1995 	/* Scan backwards until we hit a non-zero byte. */
1996 	while(*ptr == 0x00)
1997 		ptr--;
1998 
1999 	/* Round off. */
2000 	if ((uintptr_t)(ptr) & 0x3)
2001 		ptr -= 1;
2002 
2003 	/* Now find the start of the frame. */
2004 	ptr -= total_len;
2005 	if (ptr < sc->dc_pnic_rx_buf)
2006 		ptr = sc->dc_pnic_rx_buf;
2007 
2008 	/*
2009 	 * Now copy the salvaged frame to the last mbuf and fake up
2010 	 * the status word to make it look like a successful
2011  	 * frame reception.
2012 	 */
2013 	dc_newbuf(sc, i, m);
2014 	bcopy(ptr, mtod(m, char *), total_len);
2015 	cur_rx->dc_status = rxstat | DC_RXSTAT_FIRSTFRAG;
2016 
2017 	return;
2018 }
2019 
2020 /*
2021  * This routine searches the RX ring for dirty descriptors in the
2022  * event that the rxeof routine falls out of sync with the chip's
2023  * current descriptor pointer. This may happen sometimes as a result
2024  * of a "no RX buffer available" condition that happens when the chip
2025  * consumes all of the RX buffers before the driver has a chance to
2026  * process the RX ring. This routine may need to be called more than
2027  * once to bring the driver back in sync with the chip, however we
2028  * should still be getting RX DONE interrupts to drive the search
2029  * for new packets in the RX ring, so we should catch up eventually.
2030  */
2031 static int dc_rx_resync(sc)
2032 	struct dc_softc		*sc;
2033 {
2034 	int			i, pos;
2035 	struct dc_desc		*cur_rx;
2036 
2037 	pos = sc->dc_cdata.dc_rx_prod;
2038 
2039 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2040 		cur_rx = &sc->dc_ldata->dc_rx_list[pos];
2041 		if (!(cur_rx->dc_status & DC_RXSTAT_OWN))
2042 			break;
2043 		DC_INC(pos, DC_RX_LIST_CNT);
2044 	}
2045 
2046 	/* If the ring really is empty, then just return. */
2047 	if (i == DC_RX_LIST_CNT)
2048 		return(0);
2049 
2050 	/* We've fallen behing the chip: catch it. */
2051 	sc->dc_cdata.dc_rx_prod = pos;
2052 
2053 	return(EAGAIN);
2054 }
2055 
2056 /*
2057  * A frame has been uploaded: pass the resulting mbuf chain up to
2058  * the higher level protocols.
2059  */
2060 static void dc_rxeof(sc)
2061 	struct dc_softc		*sc;
2062 {
2063         struct ether_header	*eh;
2064         struct mbuf		*m;
2065         struct ifnet		*ifp;
2066 	struct dc_desc		*cur_rx;
2067 	int			i, total_len = 0;
2068 	u_int32_t		rxstat;
2069 
2070 	ifp = &sc->arpcom.ac_if;
2071 	i = sc->dc_cdata.dc_rx_prod;
2072 
2073 	while(!(sc->dc_ldata->dc_rx_list[i].dc_status & DC_RXSTAT_OWN)) {
2074 		struct mbuf		*m0 = NULL;
2075 
2076 		cur_rx = &sc->dc_ldata->dc_rx_list[i];
2077 		rxstat = cur_rx->dc_status;
2078 		m = sc->dc_cdata.dc_rx_chain[i];
2079 		total_len = DC_RXBYTES(rxstat);
2080 
2081 		if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2082 			if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
2083 				if (rxstat & DC_RXSTAT_FIRSTFRAG)
2084 					sc->dc_pnic_rx_bug_save = i;
2085 				if ((rxstat & DC_RXSTAT_LASTFRAG) == 0) {
2086 					DC_INC(i, DC_RX_LIST_CNT);
2087 					continue;
2088 				}
2089 				dc_pnic_rx_bug_war(sc, i);
2090 				rxstat = cur_rx->dc_status;
2091 				total_len = DC_RXBYTES(rxstat);
2092 			}
2093 		}
2094 
2095 		sc->dc_cdata.dc_rx_chain[i] = NULL;
2096 
2097 		/*
2098 		 * If an error occurs, update stats, clear the
2099 		 * status word and leave the mbuf cluster in place:
2100 		 * it should simply get re-used next time this descriptor
2101 	 	 * comes up in the ring.
2102 		 */
2103 		if (rxstat & DC_RXSTAT_RXERR) {
2104 			ifp->if_ierrors++;
2105 			if (rxstat & DC_RXSTAT_COLLSEEN)
2106 				ifp->if_collisions++;
2107 			dc_newbuf(sc, i, m);
2108 			if (rxstat & DC_RXSTAT_CRCERR) {
2109 				DC_INC(i, DC_RX_LIST_CNT);
2110 				continue;
2111 			} else {
2112 				dc_init(sc);
2113 				return;
2114 			}
2115 		}
2116 
2117 		/* No errors; receive the packet. */
2118 		total_len -= ETHER_CRC_LEN;
2119 
2120 		m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2121 		    total_len + ETHER_ALIGN, 0, ifp, NULL);
2122 		dc_newbuf(sc, i, m);
2123 		DC_INC(i, DC_RX_LIST_CNT);
2124 		if (m0 == NULL) {
2125 			ifp->if_ierrors++;
2126 			continue;
2127 		}
2128 		m_adj(m0, ETHER_ALIGN);
2129 		m = m0;
2130 
2131 		ifp->if_ipackets++;
2132 		eh = mtod(m, struct ether_header *);
2133 
2134 		/* Handle BPF listeners. Let the BPF user see the packet */
2135 		if (ifp->if_bpf)
2136 			bpf_mtap(ifp, m);
2137 
2138 #ifdef BRIDGE
2139 		if (do_bridge) {
2140 			struct ifnet *bdg_ifp ;
2141 			bdg_ifp = bridge_in(m);
2142 			if (bdg_ifp != BDG_LOCAL && bdg_ifp != BDG_DROP)
2143 				bdg_forward(&m, bdg_ifp);
2144 			if (((bdg_ifp != BDG_LOCAL) && (bdg_ifp != BDG_BCAST) &&			    (bdg_ifp != BDG_MCAST)) || bdg_ifp == BDG_DROP) {
2145 				m_freem(m);
2146 				continue;
2147 			}
2148 		}
2149 
2150 	eh = mtod(m, struct ether_header *);
2151 #endif
2152 
2153 		/* Don't pass it up to the ether_input() layer unless it's
2154 		 * a broadcast packet, multicast packet, matches our ethernet
2155 		 * address or the interface is in promiscuous mode.
2156 		 */
2157 		if (ifp->if_bpf) {
2158 			if (ifp->if_flags & IFF_PROMISC &&
2159 				(bcmp(eh->ether_dhost, sc->arpcom.ac_enaddr,
2160 				    ETHER_ADDR_LEN) &&
2161 				    (eh->ether_dhost[0] & 1) == 0)) {
2162 				m_freem(m);
2163 				continue;
2164 			}
2165 		}
2166 
2167 		/* Remove header from mbuf and pass it on. */
2168 		m_adj(m, sizeof(struct ether_header));
2169 		ether_input(ifp, eh, m);
2170 	}
2171 
2172 	sc->dc_cdata.dc_rx_prod = i;
2173 
2174 	return;
2175 }
2176 
2177 /*
2178  * A frame was downloaded to the chip. It's safe for us to clean up
2179  * the list buffers.
2180  */
2181 
2182 static void dc_txeof(sc)
2183 	struct dc_softc		*sc;
2184 {
2185 	struct dc_desc		*cur_tx = NULL;
2186 	struct ifnet		*ifp;
2187 	int			idx;
2188 
2189 	ifp = &sc->arpcom.ac_if;
2190 
2191 	/* Clear the timeout timer. */
2192 	ifp->if_timer = 0;
2193 
2194 	/*
2195 	 * Go through our tx list and free mbufs for those
2196 	 * frames that have been transmitted.
2197 	 */
2198 	idx = sc->dc_cdata.dc_tx_cons;
2199 	while(idx != sc->dc_cdata.dc_tx_prod) {
2200 		u_int32_t		txstat;
2201 
2202 		cur_tx = &sc->dc_ldata->dc_tx_list[idx];
2203 		txstat = cur_tx->dc_status;
2204 
2205 		if (txstat & DC_TXSTAT_OWN)
2206 			break;
2207 
2208 		if (!(cur_tx->dc_ctl & DC_TXCTL_LASTFRAG) ||
2209 		    cur_tx->dc_ctl & DC_TXCTL_SETUP) {
2210 			sc->dc_cdata.dc_tx_cnt--;
2211 			if (cur_tx->dc_ctl & DC_TXCTL_SETUP) {
2212 				/*
2213 				 * Yes, the PNIC is so brain damaged
2214 				 * that it will sometimes generate a TX
2215 				 * underrun error while DMAing the RX
2216 				 * filter setup frame. If we detect this,
2217 				 * we have to send the setup frame again,
2218 				 * or else the filter won't be programmed
2219 				 * correctly.
2220 				 */
2221 				if (DC_IS_PNIC(sc)) {
2222 					if (txstat & DC_TXSTAT_ERRSUM)
2223 						dc_setfilt(sc);
2224 				}
2225 				sc->dc_cdata.dc_tx_chain[idx] = NULL;
2226 			}
2227 			DC_INC(idx, DC_TX_LIST_CNT);
2228 			continue;
2229 		}
2230 
2231 		if (/*sc->dc_type == DC_TYPE_21143 &&*/
2232 		    sc->dc_pmode == DC_PMODE_MII &&
2233 		    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM|
2234 		    DC_TXSTAT_NOCARRIER|DC_TXSTAT_CARRLOST)))
2235 			txstat &= ~DC_TXSTAT_ERRSUM;
2236 
2237 		if (txstat & DC_TXSTAT_ERRSUM) {
2238 			ifp->if_oerrors++;
2239 			if (txstat & DC_TXSTAT_EXCESSCOLL)
2240 				ifp->if_collisions++;
2241 			if (txstat & DC_TXSTAT_LATECOLL)
2242 				ifp->if_collisions++;
2243 			if (!(txstat & DC_TXSTAT_UNDERRUN)) {
2244 				dc_init(sc);
2245 				return;
2246 			}
2247 		}
2248 
2249 		ifp->if_collisions += (txstat & DC_TXSTAT_COLLCNT) >> 3;
2250 
2251 		ifp->if_opackets++;
2252 		if (sc->dc_cdata.dc_tx_chain[idx] != NULL) {
2253 			m_freem(sc->dc_cdata.dc_tx_chain[idx]);
2254 			sc->dc_cdata.dc_tx_chain[idx] = NULL;
2255 		}
2256 
2257 		sc->dc_cdata.dc_tx_cnt--;
2258 		DC_INC(idx, DC_TX_LIST_CNT);
2259 	}
2260 
2261 	sc->dc_cdata.dc_tx_cons = idx;
2262 	if (cur_tx != NULL)
2263 		ifp->if_flags &= ~IFF_OACTIVE;
2264 
2265 	return;
2266 }
2267 
2268 static void dc_tick(xsc)
2269 	void			*xsc;
2270 {
2271 	struct dc_softc		*sc;
2272 	struct mii_data		*mii;
2273 	struct ifnet		*ifp;
2274 	int			s;
2275 	u_int32_t		r;
2276 
2277 	s = splimp();
2278 
2279 	sc = xsc;
2280 	ifp = &sc->arpcom.ac_if;
2281 	mii = device_get_softc(sc->dc_miibus);
2282 
2283 	if (sc->dc_flags & DC_REDUCED_MII_POLL) {
2284 		r = CSR_READ_4(sc, DC_ISR);
2285 		if (DC_IS_INTEL(sc)) {
2286 			if (r & DC_ISR_LINKFAIL)
2287 				sc->dc_link = 0;
2288 			if (sc->dc_link == 0)
2289 				mii_tick(mii);
2290 		} else {
2291 			if ((r & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT &&
2292 			    sc->dc_cdata.dc_tx_prod == 0)
2293 				mii_tick(mii);
2294 		}
2295 	} else
2296 		mii_tick(mii);
2297 
2298 	/*
2299 	 * When the init routine completes, we expect to be able to send
2300 	 * packets right away, and in fact the network code will send a
2301 	 * gratuitous ARP the moment the init routine marks the interface
2302 	 * as running. However, even though the MAC may have been initialized,
2303 	 * there may be a delay of a few seconds before the PHY completes
2304 	 * autonegotiation and the link is brought up. Any transmissions
2305 	 * made during that delay will be lost. Dealing with this is tricky:
2306 	 * we can't just pause in the init routine while waiting for the
2307 	 * PHY to come ready since that would bring the whole system to
2308 	 * a screeching halt for several seconds.
2309 	 *
2310 	 * What we do here is prevent the TX start routine from sending
2311 	 * any packets until a link has been established. After the
2312 	 * interface has been initialized, the tick routine will poll
2313 	 * the state of the PHY until the IFM_ACTIVE flag is set. Until
2314 	 * that time, packets will stay in the send queue, and once the
2315 	 * link comes up, they will be flushed out to the wire.
2316 	 */
2317 	if (!sc->dc_link) {
2318 		mii_pollstat(mii);
2319 		if (mii->mii_media_status & IFM_ACTIVE &&
2320 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2321 			sc->dc_link++;
2322 			if (ifp->if_snd.ifq_head != NULL)
2323 				dc_start(ifp);
2324 		}
2325 	}
2326 
2327 	sc->dc_stat_ch = timeout(dc_tick, sc, hz);
2328 
2329 	splx(s);
2330 
2331 	return;
2332 }
2333 
2334 static void dc_intr(arg)
2335 	void			*arg;
2336 {
2337 	struct dc_softc		*sc;
2338 	struct ifnet		*ifp;
2339 	u_int32_t		status;
2340 
2341 	sc = arg;
2342 	ifp = &sc->arpcom.ac_if;
2343 
2344 	/* Supress unwanted interrupts */
2345 	if (!(ifp->if_flags & IFF_UP)) {
2346 		if (CSR_READ_4(sc, DC_ISR) & DC_INTRS)
2347 			dc_stop(sc);
2348 		return;
2349 	}
2350 
2351 	/* Disable interrupts. */
2352 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
2353 
2354 	while((status = CSR_READ_4(sc, DC_ISR)) & DC_INTRS) {
2355 
2356 		CSR_WRITE_4(sc, DC_ISR, status);
2357 
2358 		if (status & DC_ISR_RX_OK) {
2359 			int		curpkts;
2360 			curpkts = ifp->if_ipackets;
2361 			dc_rxeof(sc);
2362 			if (curpkts == ifp->if_ipackets) {
2363 				while(dc_rx_resync(sc))
2364 					dc_rxeof(sc);
2365 			}
2366 		}
2367 
2368 		if (status & (DC_ISR_TX_OK|DC_ISR_TX_NOBUF))
2369 			dc_txeof(sc);
2370 
2371 		if (status & DC_ISR_TX_IDLE) {
2372 			dc_txeof(sc);
2373 			if (sc->dc_cdata.dc_tx_cnt) {
2374 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2375 				CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
2376 			}
2377 		}
2378 
2379 		if (status & DC_ISR_TX_UNDERRUN) {
2380 			u_int32_t		cfg;
2381 
2382 			printf("dc%d: TX underrun -- ", sc->dc_unit);
2383 			if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc))
2384 				dc_init(sc);
2385 			cfg = CSR_READ_4(sc, DC_NETCFG);
2386 			cfg &= ~DC_NETCFG_TX_THRESH;
2387 			if (sc->dc_txthresh == DC_TXTHRESH_160BYTES) {
2388 				printf("using store and forward mode\n");
2389 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
2390 			} else if (sc->dc_flags & DC_TX_STORENFWD) {
2391 				printf("resetting\n");
2392 			} else {
2393 				sc->dc_txthresh += 0x4000;
2394 				printf("increasing TX threshold\n");
2395 				CSR_WRITE_4(sc, DC_NETCFG, cfg);
2396 				DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
2397 				DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
2398 			}
2399 		}
2400 
2401 		if ((status & DC_ISR_RX_WATDOGTIMEO)
2402 		    || (status & DC_ISR_RX_NOBUF)) {
2403 			int		curpkts;
2404 			curpkts = ifp->if_ipackets;
2405 			dc_rxeof(sc);
2406 			if (curpkts == ifp->if_ipackets) {
2407 				while(dc_rx_resync(sc))
2408 					dc_rxeof(sc);
2409 			}
2410 		}
2411 
2412 		if (status & DC_ISR_BUS_ERR) {
2413 			dc_reset(sc);
2414 			dc_init(sc);
2415 		}
2416 	}
2417 
2418 	/* Re-enable interrupts. */
2419 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
2420 
2421 	if (ifp->if_snd.ifq_head != NULL)
2422 		dc_start(ifp);
2423 
2424 	return;
2425 }
2426 
2427 /*
2428  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
2429  * pointers to the fragment pointers.
2430  */
2431 static int dc_encap(sc, m_head, txidx)
2432 	struct dc_softc		*sc;
2433 	struct mbuf		*m_head;
2434 	u_int32_t		*txidx;
2435 {
2436 	struct dc_desc		*f = NULL;
2437 	struct mbuf		*m;
2438 	int			frag, cur, cnt = 0;
2439 
2440 	/*
2441  	 * Start packing the mbufs in this chain into
2442 	 * the fragment pointers. Stop when we run out
2443  	 * of fragments or hit the end of the mbuf chain.
2444 	 */
2445 	m = m_head;
2446 	cur = frag = *txidx;
2447 
2448 	for (m = m_head; m != NULL; m = m->m_next) {
2449 		if (m->m_len != 0) {
2450 			if (sc->dc_flags & DC_TX_ADMTEK_WAR) {
2451 				if (*txidx != sc->dc_cdata.dc_tx_prod &&
2452 				    frag == (DC_TX_LIST_CNT - 1))
2453 					return(ENOBUFS);
2454 			}
2455 			if ((DC_TX_LIST_CNT -
2456 			    (sc->dc_cdata.dc_tx_cnt + cnt)) < 5)
2457 				return(ENOBUFS);
2458 
2459 			f = &sc->dc_ldata->dc_tx_list[frag];
2460 			f->dc_ctl = DC_TXCTL_TLINK | m->m_len;
2461 			if (cnt == 0) {
2462 				f->dc_status = 0;
2463 				f->dc_ctl |= DC_TXCTL_FIRSTFRAG;
2464 			} else
2465 				f->dc_status = DC_TXSTAT_OWN;
2466 			f->dc_data = vtophys(mtod(m, vm_offset_t));
2467 			cur = frag;
2468 			DC_INC(frag, DC_TX_LIST_CNT);
2469 			cnt++;
2470 		}
2471 	}
2472 
2473 	if (m != NULL)
2474 		return(ENOBUFS);
2475 
2476 	sc->dc_cdata.dc_tx_cnt += cnt;
2477 	sc->dc_cdata.dc_tx_chain[cur] = m_head;
2478 	sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_LASTFRAG;
2479 	if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
2480 		sc->dc_ldata->dc_tx_list[*txidx].dc_ctl |= DC_TXCTL_FINT;
2481 	if (sc->dc_flags & DC_TX_INTR_ALWAYS)
2482 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT;
2483 	if (sc->dc_flags & DC_TX_USE_TX_INTR && sc->dc_cdata.dc_tx_cnt > 64)
2484 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT;
2485 	sc->dc_ldata->dc_tx_list[*txidx].dc_status = DC_TXSTAT_OWN;
2486 	*txidx = frag;
2487 
2488 	return(0);
2489 }
2490 
2491 /*
2492  * Coalesce an mbuf chain into a single mbuf cluster buffer.
2493  * Needed for some really badly behaved chips that just can't
2494  * do scatter/gather correctly.
2495  */
2496 static int dc_coal(sc, m_head)
2497 	struct dc_softc		*sc;
2498 	struct mbuf		**m_head;
2499 {
2500         struct mbuf		*m_new, *m;
2501 
2502 	m = *m_head;
2503 	MGETHDR(m_new, M_DONTWAIT, MT_DATA);
2504 	if (m_new == NULL) {
2505 		printf("dc%d: no memory for tx list", sc->dc_unit);
2506 		return(ENOBUFS);
2507 	}
2508 	if (m->m_pkthdr.len > MHLEN) {
2509 		MCLGET(m_new, M_DONTWAIT);
2510 		if (!(m_new->m_flags & M_EXT)) {
2511 			m_freem(m_new);
2512 			printf("dc%d: no memory for tx list", sc->dc_unit);
2513 			return(ENOBUFS);
2514 		}
2515 	}
2516 	m_copydata(m, 0, m->m_pkthdr.len, mtod(m_new, caddr_t));
2517 	m_new->m_pkthdr.len = m_new->m_len = m->m_pkthdr.len;
2518 	m_freem(m);
2519 	*m_head = m_new;
2520 
2521 	return(0);
2522 }
2523 
2524 /*
2525  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2526  * to the mbuf data regions directly in the transmit lists. We also save a
2527  * copy of the pointers since the transmit list fragment pointers are
2528  * physical addresses.
2529  */
2530 
2531 static void dc_start(ifp)
2532 	struct ifnet		*ifp;
2533 {
2534 	struct dc_softc		*sc;
2535 	struct mbuf		*m_head = NULL;
2536 	int			idx;
2537 
2538 	sc = ifp->if_softc;
2539 
2540 	if (!sc->dc_link)
2541 		return;
2542 
2543 	if (ifp->if_flags & IFF_OACTIVE)
2544 		return;
2545 
2546 	idx = sc->dc_cdata.dc_tx_prod;
2547 
2548 	while(sc->dc_cdata.dc_tx_chain[idx] == NULL) {
2549 		IF_DEQUEUE(&ifp->if_snd, m_head);
2550 		if (m_head == NULL)
2551 			break;
2552 
2553 		if (sc->dc_flags & DC_TX_COALESCE) {
2554 			if (dc_coal(sc, &m_head)) {
2555 				IF_PREPEND(&ifp->if_snd, m_head);
2556 				ifp->if_flags |= IFF_OACTIVE;
2557 				break;
2558 			}
2559 		}
2560 
2561 		if (dc_encap(sc, m_head, &idx)) {
2562 			IF_PREPEND(&ifp->if_snd, m_head);
2563 			ifp->if_flags |= IFF_OACTIVE;
2564 			break;
2565 		}
2566 
2567 		/*
2568 		 * If there's a BPF listener, bounce a copy of this frame
2569 		 * to him.
2570 		 */
2571 		if (ifp->if_bpf)
2572 			bpf_mtap(ifp, m_head);
2573 	}
2574 
2575 	/* Transmit */
2576 	sc->dc_cdata.dc_tx_prod = idx;
2577 	if (!(sc->dc_flags & DC_TX_POLL))
2578 		CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
2579 
2580 	/*
2581 	 * Set a timeout in case the chip goes out to lunch.
2582 	 */
2583 	ifp->if_timer = 5;
2584 
2585 	return;
2586 }
2587 
2588 static void dc_init(xsc)
2589 	void			*xsc;
2590 {
2591 	struct dc_softc		*sc = xsc;
2592 	struct ifnet		*ifp = &sc->arpcom.ac_if;
2593 	struct mii_data		*mii;
2594 	int			s;
2595 
2596 	s = splimp();
2597 
2598 	mii = device_get_softc(sc->dc_miibus);
2599 
2600 	/*
2601 	 * Cancel pending I/O and free all RX/TX buffers.
2602 	 */
2603 	dc_stop(sc);
2604 	dc_reset(sc);
2605 
2606 	/*
2607 	 * Set cache alignment and burst length.
2608 	 */
2609 	if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc))
2610 		CSR_WRITE_4(sc, DC_BUSCTL, 0);
2611 	else
2612 		CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME|DC_BUSCTL_MRLE);
2613 	if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
2614 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
2615 	} else {
2616 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
2617 	}
2618 	if (sc->dc_flags & DC_TX_POLL)
2619 		DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
2620 	switch(sc->dc_cachesize) {
2621 	case 32:
2622 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
2623 		break;
2624 	case 16:
2625 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
2626 		break;
2627 	case 8:
2628 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
2629 		break;
2630 	case 0:
2631 	default:
2632 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
2633 		break;
2634 	}
2635 
2636 	if (sc->dc_flags & DC_TX_STORENFWD)
2637 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
2638 	else {
2639 		if (sc->dc_txthresh == DC_TXTHRESH_160BYTES) {
2640 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
2641 		} else {
2642 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
2643 			DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
2644 		}
2645 	}
2646 
2647 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
2648 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
2649 
2650 	if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
2651 		/*
2652 		 * The app notes for the 98713 and 98715A say that
2653 		 * in order to have the chips operate properly, a magic
2654 		 * number must be written to CSR16. Macronix does not
2655 		 * document the meaning of these bits so there's no way
2656 		 * to know exactly what they do. The 98713 has a magic
2657 		 * number all its own; the rest all use a different one.
2658 		 */
2659 		DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
2660 		if (sc->dc_type == DC_TYPE_98713)
2661 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
2662 		else
2663 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
2664 	}
2665 
2666 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
2667 	DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_72BYTES);
2668 
2669 	/* Init circular RX list. */
2670 	if (dc_list_rx_init(sc) == ENOBUFS) {
2671 		printf("dc%d: initialization failed: no "
2672 		    "memory for rx buffers\n", sc->dc_unit);
2673 		dc_stop(sc);
2674 		(void)splx(s);
2675 		return;
2676 	}
2677 
2678 	/*
2679 	 * Init tx descriptors.
2680 	 */
2681 	dc_list_tx_init(sc);
2682 
2683 	/*
2684 	 * Load the address of the RX list.
2685 	 */
2686 	CSR_WRITE_4(sc, DC_RXADDR, vtophys(&sc->dc_ldata->dc_rx_list[0]));
2687 	CSR_WRITE_4(sc, DC_TXADDR, vtophys(&sc->dc_ldata->dc_tx_list[0]));
2688 
2689 	/*
2690 	 * Enable interrupts.
2691 	 */
2692 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
2693 	CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
2694 
2695 	/* Enable transmitter. */
2696 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2697 
2698 	/*
2699 	 * Load the RX/multicast filter. We do this sort of late
2700 	 * because the filter programming scheme on the 21143 and
2701 	 * some clones requires DMAing a setup frame via the TX
2702 	 * engine, and we need the transmitter enabled for that.
2703 	 */
2704 	dc_setfilt(sc);
2705 
2706 	/* Enable receiver. */
2707 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
2708 	CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
2709 
2710 	mii_mediachg(mii);
2711 	dc_setcfg(sc, sc->dc_if_media);
2712 
2713 	ifp->if_flags |= IFF_RUNNING;
2714 	ifp->if_flags &= ~IFF_OACTIVE;
2715 
2716 	(void)splx(s);
2717 
2718 	sc->dc_stat_ch = timeout(dc_tick, sc, hz);
2719 
2720 #ifdef __alpha__
2721         if(sc->dc_srm_media) {
2722 		struct ifreq ifr;
2723 
2724 		ifr.ifr_media = sc->dc_srm_media;
2725 		ifmedia_ioctl(ifp, &ifr, &mii->mii_media, SIOCSIFMEDIA);
2726 		sc->dc_srm_media = 0;
2727 	}
2728 #endif
2729 	return;
2730 }
2731 
2732 /*
2733  * Set media options.
2734  */
2735 static int dc_ifmedia_upd(ifp)
2736 	struct ifnet		*ifp;
2737 {
2738 	struct dc_softc		*sc;
2739 	struct mii_data		*mii;
2740 	struct ifmedia		*ifm;
2741 
2742 	sc = ifp->if_softc;
2743 	mii = device_get_softc(sc->dc_miibus);
2744 	mii_mediachg(mii);
2745 	ifm = &mii->mii_media;
2746 
2747 	if (DC_IS_DAVICOM(sc) &&
2748 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_homePNA)
2749 		dc_setcfg(sc, ifm->ifm_media);
2750 	else
2751 		sc->dc_link = 0;
2752 
2753 	return(0);
2754 }
2755 
2756 /*
2757  * Report current media status.
2758  */
2759 static void dc_ifmedia_sts(ifp, ifmr)
2760 	struct ifnet		*ifp;
2761 	struct ifmediareq	*ifmr;
2762 {
2763 	struct dc_softc		*sc;
2764 	struct mii_data		*mii;
2765 	struct ifmedia		*ifm;
2766 
2767 	sc = ifp->if_softc;
2768 	mii = device_get_softc(sc->dc_miibus);
2769 	mii_pollstat(mii);
2770 	ifm = &mii->mii_media;
2771 	if (DC_IS_DAVICOM(sc)) {
2772 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_homePNA) {
2773 			ifmr->ifm_active = ifm->ifm_media;
2774 			ifmr->ifm_status = 0;
2775 			return;
2776 		}
2777 	}
2778 	ifmr->ifm_active = mii->mii_media_active;
2779 	ifmr->ifm_status = mii->mii_media_status;
2780 
2781 	return;
2782 }
2783 
2784 static int dc_ioctl(ifp, command, data)
2785 	struct ifnet		*ifp;
2786 	u_long			command;
2787 	caddr_t			data;
2788 {
2789 	struct dc_softc		*sc = ifp->if_softc;
2790 	struct ifreq		*ifr = (struct ifreq *) data;
2791 	struct mii_data		*mii;
2792 	int			s, error = 0;
2793 
2794 	s = splimp();
2795 
2796 	switch(command) {
2797 	case SIOCSIFADDR:
2798 	case SIOCGIFADDR:
2799 	case SIOCSIFMTU:
2800 		error = ether_ioctl(ifp, command, data);
2801 		break;
2802 	case SIOCSIFFLAGS:
2803 		if (ifp->if_flags & IFF_UP) {
2804 			if (ifp->if_flags & IFF_RUNNING &&
2805 			    ifp->if_flags & IFF_PROMISC &&
2806 			    !(sc->dc_if_flags & IFF_PROMISC)) {
2807 				dc_setfilt(sc);
2808 			} else if (ifp->if_flags & IFF_RUNNING &&
2809 			    !(ifp->if_flags & IFF_PROMISC) &&
2810 			    sc->dc_if_flags & IFF_PROMISC) {
2811 				dc_setfilt(sc);
2812 			} else if (!(ifp->if_flags & IFF_RUNNING)) {
2813 				sc->dc_txthresh = 0;
2814 				dc_init(sc);
2815 			}
2816 		} else {
2817 			if (ifp->if_flags & IFF_RUNNING)
2818 				dc_stop(sc);
2819 		}
2820 		sc->dc_if_flags = ifp->if_flags;
2821 		error = 0;
2822 		break;
2823 	case SIOCADDMULTI:
2824 	case SIOCDELMULTI:
2825 		dc_setfilt(sc);
2826 		error = 0;
2827 		break;
2828 	case SIOCGIFMEDIA:
2829 	case SIOCSIFMEDIA:
2830 		mii = device_get_softc(sc->dc_miibus);
2831 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2832 #ifdef __alpha__
2833 		if (sc->dc_srm_media)
2834 			sc->dc_srm_media = 0;
2835 #endif
2836 		break;
2837 	default:
2838 		error = EINVAL;
2839 		break;
2840 	}
2841 
2842 	(void)splx(s);
2843 
2844 	return(error);
2845 }
2846 
2847 static void dc_watchdog(ifp)
2848 	struct ifnet		*ifp;
2849 {
2850 	struct dc_softc		*sc;
2851 
2852 	sc = ifp->if_softc;
2853 
2854 	ifp->if_oerrors++;
2855 	printf("dc%d: watchdog timeout\n", sc->dc_unit);
2856 
2857 	dc_stop(sc);
2858 	dc_reset(sc);
2859 	dc_init(sc);
2860 
2861 	if (ifp->if_snd.ifq_head != NULL)
2862 		dc_start(ifp);
2863 
2864 	return;
2865 }
2866 
2867 /*
2868  * Stop the adapter and free any mbufs allocated to the
2869  * RX and TX lists.
2870  */
2871 static void dc_stop(sc)
2872 	struct dc_softc		*sc;
2873 {
2874 	register int		i;
2875 	struct ifnet		*ifp;
2876 
2877 	ifp = &sc->arpcom.ac_if;
2878 	ifp->if_timer = 0;
2879 
2880 	untimeout(dc_tick, sc, sc->dc_stat_ch);
2881 
2882 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ON|DC_NETCFG_TX_ON));
2883 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
2884 	CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
2885 	CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
2886 	sc->dc_link = 0;
2887 
2888 	/*
2889 	 * Free data in the RX lists.
2890 	 */
2891 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2892 		if (sc->dc_cdata.dc_rx_chain[i] != NULL) {
2893 			m_freem(sc->dc_cdata.dc_rx_chain[i]);
2894 			sc->dc_cdata.dc_rx_chain[i] = NULL;
2895 		}
2896 	}
2897 	bzero((char *)&sc->dc_ldata->dc_rx_list,
2898 		sizeof(sc->dc_ldata->dc_rx_list));
2899 
2900 	/*
2901 	 * Free the TX list buffers.
2902 	 */
2903 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2904 		if (sc->dc_cdata.dc_tx_chain[i] != NULL) {
2905 			if (sc->dc_ldata->dc_tx_list[i].dc_ctl &
2906 			    DC_TXCTL_SETUP) {
2907 				sc->dc_cdata.dc_tx_chain[i] = NULL;
2908 				continue;
2909 			}
2910 			m_freem(sc->dc_cdata.dc_tx_chain[i]);
2911 			sc->dc_cdata.dc_tx_chain[i] = NULL;
2912 		}
2913 	}
2914 
2915 	bzero((char *)&sc->dc_ldata->dc_tx_list,
2916 		sizeof(sc->dc_ldata->dc_tx_list));
2917 
2918 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2919 
2920 	return;
2921 }
2922 
2923 /*
2924  * Stop all chip I/O so that the kernel's probe routines don't
2925  * get confused by errant DMAs when rebooting.
2926  */
2927 static void dc_shutdown(dev)
2928 	device_t		dev;
2929 {
2930 	struct dc_softc		*sc;
2931 
2932 	sc = device_get_softc(dev);
2933 
2934 	dc_stop(sc);
2935 
2936 	return;
2937 }
2938