xref: /freebsd/sys/dev/dc/if_dc.c (revision 7afc53b8dfcc7d5897920ce6cc7e842fbb4ab813)
1 /*-
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ee.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /*
37  * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
38  * series chips and several workalikes including the following:
39  *
40  * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com)
41  * Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
42  * Lite-On 82c168/82c169 PNIC (www.litecom.com)
43  * ASIX Electronics AX88140A (www.asix.com.tw)
44  * ASIX Electronics AX88141 (www.asix.com.tw)
45  * ADMtek AL981 (www.admtek.com.tw)
46  * ADMtek AN985 (www.admtek.com.tw)
47  * Netgear FA511 (www.netgear.com) Appears to be rebadged ADMTek AN985
48  * Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
49  * Accton EN1217 (www.accton.com)
50  * Xircom X3201 (www.xircom.com)
51  * Abocom FE2500
52  * Conexant LANfinity (www.conexant.com)
53  * 3Com OfficeConnect 10/100B 3CSOHO100B (www.3com.com)
54  *
55  * Datasheets for the 21143 are available at developer.intel.com.
56  * Datasheets for the clone parts can be found at their respective sites.
57  * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
58  * The PNIC II is essentially a Macronix 98715A chip; the only difference
59  * worth noting is that its multicast hash table is only 128 bits wide
60  * instead of 512.
61  *
62  * Written by Bill Paul <wpaul@ee.columbia.edu>
63  * Electrical Engineering Department
64  * Columbia University, New York City
65  */
66 /*
67  * The Intel 21143 is the successor to the DEC 21140. It is basically
68  * the same as the 21140 but with a few new features. The 21143 supports
69  * three kinds of media attachments:
70  *
71  * o MII port, for 10Mbps and 100Mbps support and NWAY
72  *   autonegotiation provided by an external PHY.
73  * o SYM port, for symbol mode 100Mbps support.
74  * o 10baseT port.
75  * o AUI/BNC port.
76  *
77  * The 100Mbps SYM port and 10baseT port can be used together in
78  * combination with the internal NWAY support to create a 10/100
79  * autosensing configuration.
80  *
81  * Note that not all tulip workalikes are handled in this driver: we only
82  * deal with those which are relatively well behaved. The Winbond is
83  * handled separately due to its different register offsets and the
84  * special handling needed for its various bugs. The PNIC is handled
85  * here, but I'm not thrilled about it.
86  *
87  * All of the workalike chips use some form of MII transceiver support
88  * with the exception of the Macronix chips, which also have a SYM port.
89  * The ASIX AX88140A is also documented to have a SYM port, but all
90  * the cards I've seen use an MII transceiver, probably because the
91  * AX88140A doesn't support internal NWAY.
92  */
93 
94 #include <sys/param.h>
95 #include <sys/endian.h>
96 #include <sys/systm.h>
97 #include <sys/sockio.h>
98 #include <sys/mbuf.h>
99 #include <sys/malloc.h>
100 #include <sys/kernel.h>
101 #include <sys/module.h>
102 #include <sys/socket.h>
103 #include <sys/sysctl.h>
104 
105 #include <net/if.h>
106 #include <net/if_arp.h>
107 #include <net/ethernet.h>
108 #include <net/if_dl.h>
109 #include <net/if_media.h>
110 #include <net/if_types.h>
111 #include <net/if_vlan_var.h>
112 
113 #include <net/bpf.h>
114 
115 #include <machine/bus.h>
116 #include <machine/resource.h>
117 #include <sys/bus.h>
118 #include <sys/rman.h>
119 
120 #include <dev/mii/mii.h>
121 #include <dev/mii/miivar.h>
122 
123 #include <dev/pci/pcireg.h>
124 #include <dev/pci/pcivar.h>
125 
126 #define DC_USEIOSPACE
127 #ifdef __alpha__
128 #define SRM_MEDIA
129 #endif
130 
131 #include <pci/if_dcreg.h>
132 
133 #ifdef __sparc64__
134 #include <dev/ofw/openfirm.h>
135 #include <machine/ofw_machdep.h>
136 #endif
137 
138 MODULE_DEPEND(dc, pci, 1, 1, 1);
139 MODULE_DEPEND(dc, ether, 1, 1, 1);
140 MODULE_DEPEND(dc, miibus, 1, 1, 1);
141 
142 /* "controller miibus0" required.  See GENERIC if you get errors here. */
143 #include "miibus_if.h"
144 
145 /*
146  * Various supported device vendors/types and their names.
147  */
148 static struct dc_type dc_devs[] = {
149 	{ DC_VENDORID_DEC, DC_DEVICEID_21143,
150 		"Intel 21143 10/100BaseTX" },
151 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009,
152 		"Davicom DM9009 10/100BaseTX" },
153 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100,
154 		"Davicom DM9100 10/100BaseTX" },
155 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
156 		"Davicom DM9102 10/100BaseTX" },
157 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
158 		"Davicom DM9102A 10/100BaseTX" },
159 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AL981,
160 		"ADMtek AL981 10/100BaseTX" },
161 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AN985,
162 		"ADMtek AN985 10/100BaseTX" },
163 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511,
164 		"ADMtek ADM9511 10/100BaseTX" },
165 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513,
166 		"ADMtek ADM9513 10/100BaseTX" },
167 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_FA511,
168 		"Netgear FA511 10/100BaseTX" },
169 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
170 		"ASIX AX88140A 10/100BaseTX" },
171 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
172 		"ASIX AX88141 10/100BaseTX" },
173 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
174 		"Macronix 98713 10/100BaseTX" },
175 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
176 		"Macronix 98713A 10/100BaseTX" },
177 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
178 		"Compex RL100-TX 10/100BaseTX" },
179 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
180 		"Compex RL100-TX 10/100BaseTX" },
181 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
182 		"Macronix 98715/98715A 10/100BaseTX" },
183 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
184 		"Macronix 98715AEC-C 10/100BaseTX" },
185 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
186 		"Macronix 98725 10/100BaseTX" },
187 	{ DC_VENDORID_MX, DC_DEVICEID_98727,
188 		"Macronix 98727/98732 10/100BaseTX" },
189 	{ DC_VENDORID_LO, DC_DEVICEID_82C115,
190 		"LC82C115 PNIC II 10/100BaseTX" },
191 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
192 		"82c168 PNIC 10/100BaseTX" },
193 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
194 		"82c169 PNIC 10/100BaseTX" },
195 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN1217,
196 		"Accton EN1217 10/100BaseTX" },
197 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN2242,
198 		"Accton EN2242 MiniPCI 10/100BaseTX" },
199 	{ DC_VENDORID_XIRCOM, DC_DEVICEID_X3201,
200 	  	"Xircom X3201 10/100BaseTX" },
201 	{ DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500,
202 		"Abocom FE2500 10/100BaseTX" },
203 	{ DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500MX,
204 		"Abocom FE2500MX 10/100BaseTX" },
205 	{ DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112,
206 		"Conexant LANfinity MiniPCI 10/100BaseTX" },
207 	{ DC_VENDORID_HAWKING, DC_DEVICEID_HAWKING_PN672TX,
208 		"Hawking CB102 CardBus 10/100" },
209 	{ DC_VENDORID_PLANEX, DC_DEVICEID_FNW3602T,
210 		"PlaneX FNW-3602-T CardBus 10/100" },
211 	{ DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB,
212 		"3Com OfficeConnect 10/100B" },
213 	{ DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN120,
214 		"Microsoft MN-120 CardBus 10/100" },
215 	{ DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130,
216 		"Microsoft MN-130 10/100" },
217 	{ DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130_FAKE,
218 		"Microsoft MN-130 10/100" },
219 	{ 0, 0, NULL }
220 };
221 
222 static int dc_probe(device_t);
223 static int dc_attach(device_t);
224 static int dc_detach(device_t);
225 static int dc_suspend(device_t);
226 static int dc_resume(device_t);
227 static struct dc_type *dc_devtype(device_t);
228 static int dc_newbuf(struct dc_softc *, int, int);
229 static int dc_encap(struct dc_softc *, struct mbuf **);
230 static void dc_pnic_rx_bug_war(struct dc_softc *, int);
231 static int dc_rx_resync(struct dc_softc *);
232 static void dc_rxeof(struct dc_softc *);
233 static void dc_txeof(struct dc_softc *);
234 static void dc_tick(void *);
235 static void dc_tx_underrun(struct dc_softc *);
236 static void dc_intr(void *);
237 static void dc_start(struct ifnet *);
238 static int dc_ioctl(struct ifnet *, u_long, caddr_t);
239 static void dc_init(void *);
240 static void dc_stop(struct dc_softc *);
241 static void dc_watchdog(struct ifnet *);
242 static void dc_shutdown(device_t);
243 static int dc_ifmedia_upd(struct ifnet *);
244 static void dc_ifmedia_sts(struct ifnet *, struct ifmediareq *);
245 
246 static void dc_delay(struct dc_softc *);
247 static void dc_eeprom_idle(struct dc_softc *);
248 static void dc_eeprom_putbyte(struct dc_softc *, int);
249 static void dc_eeprom_getword(struct dc_softc *, int, u_int16_t *);
250 static void dc_eeprom_getword_pnic(struct dc_softc *, int, u_int16_t *);
251 static void dc_eeprom_getword_xircom(struct dc_softc *, int, u_int16_t *);
252 static void dc_eeprom_width(struct dc_softc *);
253 static void dc_read_eeprom(struct dc_softc *, caddr_t, int, int, int);
254 
255 static void dc_mii_writebit(struct dc_softc *, int);
256 static int dc_mii_readbit(struct dc_softc *);
257 static void dc_mii_sync(struct dc_softc *);
258 static void dc_mii_send(struct dc_softc *, u_int32_t, int);
259 static int dc_mii_readreg(struct dc_softc *, struct dc_mii_frame *);
260 static int dc_mii_writereg(struct dc_softc *, struct dc_mii_frame *);
261 static int dc_miibus_readreg(device_t, int, int);
262 static int dc_miibus_writereg(device_t, int, int, int);
263 static void dc_miibus_statchg(device_t);
264 static void dc_miibus_mediainit(device_t);
265 
266 static void dc_setcfg(struct dc_softc *, int);
267 static uint32_t dc_mchash_le(struct dc_softc *, const uint8_t *);
268 static uint32_t dc_mchash_be(const uint8_t *);
269 static void dc_setfilt_21143(struct dc_softc *);
270 static void dc_setfilt_asix(struct dc_softc *);
271 static void dc_setfilt_admtek(struct dc_softc *);
272 static void dc_setfilt_xircom(struct dc_softc *);
273 
274 static void dc_setfilt(struct dc_softc *);
275 
276 static void dc_reset(struct dc_softc *);
277 static int dc_list_rx_init(struct dc_softc *);
278 static int dc_list_tx_init(struct dc_softc *);
279 
280 static void dc_read_srom(struct dc_softc *, int);
281 static void dc_parse_21143_srom(struct dc_softc *);
282 static void dc_decode_leaf_sia(struct dc_softc *, struct dc_eblock_sia *);
283 static void dc_decode_leaf_mii(struct dc_softc *, struct dc_eblock_mii *);
284 static void dc_decode_leaf_sym(struct dc_softc *, struct dc_eblock_sym *);
285 static void dc_apply_fixup(struct dc_softc *, int);
286 
287 static void dc_dma_map_txbuf(void *, bus_dma_segment_t *, int, bus_size_t, int);
288 static void dc_dma_map_rxbuf(void *, bus_dma_segment_t *, int, bus_size_t, int);
289 
290 #ifdef DC_USEIOSPACE
291 #define DC_RES			SYS_RES_IOPORT
292 #define DC_RID			DC_PCI_CFBIO
293 #else
294 #define DC_RES			SYS_RES_MEMORY
295 #define DC_RID			DC_PCI_CFBMA
296 #endif
297 
298 static device_method_t dc_methods[] = {
299 	/* Device interface */
300 	DEVMETHOD(device_probe,		dc_probe),
301 	DEVMETHOD(device_attach,	dc_attach),
302 	DEVMETHOD(device_detach,	dc_detach),
303 	DEVMETHOD(device_suspend,	dc_suspend),
304 	DEVMETHOD(device_resume,	dc_resume),
305 	DEVMETHOD(device_shutdown,	dc_shutdown),
306 
307 	/* bus interface */
308 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
309 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
310 
311 	/* MII interface */
312 	DEVMETHOD(miibus_readreg,	dc_miibus_readreg),
313 	DEVMETHOD(miibus_writereg,	dc_miibus_writereg),
314 	DEVMETHOD(miibus_statchg,	dc_miibus_statchg),
315 	DEVMETHOD(miibus_mediainit,	dc_miibus_mediainit),
316 
317 	{ 0, 0 }
318 };
319 
320 static driver_t dc_driver = {
321 	"dc",
322 	dc_methods,
323 	sizeof(struct dc_softc)
324 };
325 
326 static devclass_t dc_devclass;
327 #ifdef __i386__
328 static int dc_quick = 1;
329 SYSCTL_INT(_hw, OID_AUTO, dc_quick, CTLFLAG_RW, &dc_quick, 0,
330     "do not m_devget() in dc driver");
331 #endif
332 
333 DRIVER_MODULE(dc, cardbus, dc_driver, dc_devclass, 0, 0);
334 DRIVER_MODULE(dc, pci, dc_driver, dc_devclass, 0, 0);
335 DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, 0, 0);
336 
337 #define DC_SETBIT(sc, reg, x)				\
338 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
339 
340 #define DC_CLRBIT(sc, reg, x)				\
341 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
342 
343 #define SIO_SET(x)	DC_SETBIT(sc, DC_SIO, (x))
344 #define SIO_CLR(x)	DC_CLRBIT(sc, DC_SIO, (x))
345 
346 #define IS_MPSAFE 	0
347 
348 static void
349 dc_delay(struct dc_softc *sc)
350 {
351 	int idx;
352 
353 	for (idx = (300 / 33) + 1; idx > 0; idx--)
354 		CSR_READ_4(sc, DC_BUSCTL);
355 }
356 
357 static void
358 dc_eeprom_width(struct dc_softc *sc)
359 {
360 	int i;
361 
362 	/* Force EEPROM to idle state. */
363 	dc_eeprom_idle(sc);
364 
365 	/* Enter EEPROM access mode. */
366 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
367 	dc_delay(sc);
368 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
369 	dc_delay(sc);
370 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
371 	dc_delay(sc);
372 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
373 	dc_delay(sc);
374 
375 	for (i = 3; i--;) {
376 		if (6 & (1 << i))
377 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
378 		else
379 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
380 		dc_delay(sc);
381 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
382 		dc_delay(sc);
383 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
384 		dc_delay(sc);
385 	}
386 
387 	for (i = 1; i <= 12; i++) {
388 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
389 		dc_delay(sc);
390 		if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) {
391 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
392 			dc_delay(sc);
393 			break;
394 		}
395 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
396 		dc_delay(sc);
397 	}
398 
399 	/* Turn off EEPROM access mode. */
400 	dc_eeprom_idle(sc);
401 
402 	if (i < 4 || i > 12)
403 		sc->dc_romwidth = 6;
404 	else
405 		sc->dc_romwidth = i;
406 
407 	/* Enter EEPROM access mode. */
408 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
409 	dc_delay(sc);
410 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
411 	dc_delay(sc);
412 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
413 	dc_delay(sc);
414 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
415 	dc_delay(sc);
416 
417 	/* Turn off EEPROM access mode. */
418 	dc_eeprom_idle(sc);
419 }
420 
421 static void
422 dc_eeprom_idle(struct dc_softc *sc)
423 {
424 	int i;
425 
426 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
427 	dc_delay(sc);
428 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
429 	dc_delay(sc);
430 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
431 	dc_delay(sc);
432 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
433 	dc_delay(sc);
434 
435 	for (i = 0; i < 25; i++) {
436 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
437 		dc_delay(sc);
438 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
439 		dc_delay(sc);
440 	}
441 
442 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
443 	dc_delay(sc);
444 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
445 	dc_delay(sc);
446 	CSR_WRITE_4(sc, DC_SIO, 0x00000000);
447 }
448 
449 /*
450  * Send a read command and address to the EEPROM, check for ACK.
451  */
452 static void
453 dc_eeprom_putbyte(struct dc_softc *sc, int addr)
454 {
455 	int d, i;
456 
457 	d = DC_EECMD_READ >> 6;
458 	for (i = 3; i--; ) {
459 		if (d & (1 << i))
460 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
461 		else
462 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
463 		dc_delay(sc);
464 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
465 		dc_delay(sc);
466 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
467 		dc_delay(sc);
468 	}
469 
470 	/*
471 	 * Feed in each bit and strobe the clock.
472 	 */
473 	for (i = sc->dc_romwidth; i--;) {
474 		if (addr & (1 << i)) {
475 			SIO_SET(DC_SIO_EE_DATAIN);
476 		} else {
477 			SIO_CLR(DC_SIO_EE_DATAIN);
478 		}
479 		dc_delay(sc);
480 		SIO_SET(DC_SIO_EE_CLK);
481 		dc_delay(sc);
482 		SIO_CLR(DC_SIO_EE_CLK);
483 		dc_delay(sc);
484 	}
485 }
486 
487 /*
488  * Read a word of data stored in the EEPROM at address 'addr.'
489  * The PNIC 82c168/82c169 has its own non-standard way to read
490  * the EEPROM.
491  */
492 static void
493 dc_eeprom_getword_pnic(struct dc_softc *sc, int addr, u_int16_t *dest)
494 {
495 	int i;
496 	u_int32_t r;
497 
498 	CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ | addr);
499 
500 	for (i = 0; i < DC_TIMEOUT; i++) {
501 		DELAY(1);
502 		r = CSR_READ_4(sc, DC_SIO);
503 		if (!(r & DC_PN_SIOCTL_BUSY)) {
504 			*dest = (u_int16_t)(r & 0xFFFF);
505 			return;
506 		}
507 	}
508 }
509 
510 /*
511  * Read a word of data stored in the EEPROM at address 'addr.'
512  * The Xircom X3201 has its own non-standard way to read
513  * the EEPROM, too.
514  */
515 static void
516 dc_eeprom_getword_xircom(struct dc_softc *sc, int addr, u_int16_t *dest)
517 {
518 
519 	SIO_SET(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
520 
521 	addr *= 2;
522 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
523 	*dest = (u_int16_t)CSR_READ_4(sc, DC_SIO) & 0xff;
524 	addr += 1;
525 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
526 	*dest |= ((u_int16_t)CSR_READ_4(sc, DC_SIO) & 0xff) << 8;
527 
528 	SIO_CLR(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
529 }
530 
531 /*
532  * Read a word of data stored in the EEPROM at address 'addr.'
533  */
534 static void
535 dc_eeprom_getword(struct dc_softc *sc, int addr, u_int16_t *dest)
536 {
537 	int i;
538 	u_int16_t word = 0;
539 
540 	/* Force EEPROM to idle state. */
541 	dc_eeprom_idle(sc);
542 
543 	/* Enter EEPROM access mode. */
544 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
545 	dc_delay(sc);
546 	DC_SETBIT(sc, DC_SIO,  DC_SIO_ROMCTL_READ);
547 	dc_delay(sc);
548 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
549 	dc_delay(sc);
550 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
551 	dc_delay(sc);
552 
553 	/*
554 	 * Send address of word we want to read.
555 	 */
556 	dc_eeprom_putbyte(sc, addr);
557 
558 	/*
559 	 * Start reading bits from EEPROM.
560 	 */
561 	for (i = 0x8000; i; i >>= 1) {
562 		SIO_SET(DC_SIO_EE_CLK);
563 		dc_delay(sc);
564 		if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
565 			word |= i;
566 		dc_delay(sc);
567 		SIO_CLR(DC_SIO_EE_CLK);
568 		dc_delay(sc);
569 	}
570 
571 	/* Turn off EEPROM access mode. */
572 	dc_eeprom_idle(sc);
573 
574 	*dest = word;
575 }
576 
577 /*
578  * Read a sequence of words from the EEPROM.
579  */
580 static void
581 dc_read_eeprom(struct dc_softc *sc, caddr_t dest, int off, int cnt, int be)
582 {
583 	int i;
584 	u_int16_t word = 0, *ptr;
585 
586 	for (i = 0; i < cnt; i++) {
587 		if (DC_IS_PNIC(sc))
588 			dc_eeprom_getword_pnic(sc, off + i, &word);
589 		else if (DC_IS_XIRCOM(sc))
590 			dc_eeprom_getword_xircom(sc, off + i, &word);
591 		else
592 			dc_eeprom_getword(sc, off + i, &word);
593 		ptr = (u_int16_t *)(dest + (i * 2));
594 		if (be)
595 			*ptr = be16toh(word);
596 		else
597 			*ptr = le16toh(word);
598 	}
599 }
600 
601 /*
602  * The following two routines are taken from the Macronix 98713
603  * Application Notes pp.19-21.
604  */
605 /*
606  * Write a bit to the MII bus.
607  */
608 static void
609 dc_mii_writebit(struct dc_softc *sc, int bit)
610 {
611 
612 	if (bit)
613 		CSR_WRITE_4(sc, DC_SIO,
614 		    DC_SIO_ROMCTL_WRITE | DC_SIO_MII_DATAOUT);
615 	else
616 		CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
617 
618 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
619 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
620 }
621 
622 /*
623  * Read a bit from the MII bus.
624  */
625 static int
626 dc_mii_readbit(struct dc_softc *sc)
627 {
628 
629 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_READ | DC_SIO_MII_DIR);
630 	CSR_READ_4(sc, DC_SIO);
631 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
632 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
633 	if (CSR_READ_4(sc, DC_SIO) & DC_SIO_MII_DATAIN)
634 		return (1);
635 
636 	return (0);
637 }
638 
639 /*
640  * Sync the PHYs by setting data bit and strobing the clock 32 times.
641  */
642 static void
643 dc_mii_sync(struct dc_softc *sc)
644 {
645 	int i;
646 
647 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
648 
649 	for (i = 0; i < 32; i++)
650 		dc_mii_writebit(sc, 1);
651 }
652 
653 /*
654  * Clock a series of bits through the MII.
655  */
656 static void
657 dc_mii_send(struct dc_softc *sc, u_int32_t bits, int cnt)
658 {
659 	int i;
660 
661 	for (i = (0x1 << (cnt - 1)); i; i >>= 1)
662 		dc_mii_writebit(sc, bits & i);
663 }
664 
665 /*
666  * Read an PHY register through the MII.
667  */
668 static int
669 dc_mii_readreg(struct dc_softc *sc, struct dc_mii_frame *frame)
670 {
671 	int i, ack;
672 
673 	DC_LOCK(sc);
674 
675 	/*
676 	 * Set up frame for RX.
677 	 */
678 	frame->mii_stdelim = DC_MII_STARTDELIM;
679 	frame->mii_opcode = DC_MII_READOP;
680 	frame->mii_turnaround = 0;
681 	frame->mii_data = 0;
682 
683 	/*
684 	 * Sync the PHYs.
685 	 */
686 	dc_mii_sync(sc);
687 
688 	/*
689 	 * Send command/address info.
690 	 */
691 	dc_mii_send(sc, frame->mii_stdelim, 2);
692 	dc_mii_send(sc, frame->mii_opcode, 2);
693 	dc_mii_send(sc, frame->mii_phyaddr, 5);
694 	dc_mii_send(sc, frame->mii_regaddr, 5);
695 
696 #ifdef notdef
697 	/* Idle bit */
698 	dc_mii_writebit(sc, 1);
699 	dc_mii_writebit(sc, 0);
700 #endif
701 
702 	/* Check for ack. */
703 	ack = dc_mii_readbit(sc);
704 
705 	/*
706 	 * Now try reading data bits. If the ack failed, we still
707 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
708 	 */
709 	if (ack) {
710 		for (i = 0; i < 16; i++)
711 			dc_mii_readbit(sc);
712 		goto fail;
713 	}
714 
715 	for (i = 0x8000; i; i >>= 1) {
716 		if (!ack) {
717 			if (dc_mii_readbit(sc))
718 				frame->mii_data |= i;
719 		}
720 	}
721 
722 fail:
723 
724 	dc_mii_writebit(sc, 0);
725 	dc_mii_writebit(sc, 0);
726 
727 	DC_UNLOCK(sc);
728 
729 	if (ack)
730 		return (1);
731 	return (0);
732 }
733 
734 /*
735  * Write to a PHY register through the MII.
736  */
737 static int
738 dc_mii_writereg(struct dc_softc *sc, struct dc_mii_frame *frame)
739 {
740 
741 	DC_LOCK(sc);
742 	/*
743 	 * Set up frame for TX.
744 	 */
745 
746 	frame->mii_stdelim = DC_MII_STARTDELIM;
747 	frame->mii_opcode = DC_MII_WRITEOP;
748 	frame->mii_turnaround = DC_MII_TURNAROUND;
749 
750 	/*
751 	 * Sync the PHYs.
752 	 */
753 	dc_mii_sync(sc);
754 
755 	dc_mii_send(sc, frame->mii_stdelim, 2);
756 	dc_mii_send(sc, frame->mii_opcode, 2);
757 	dc_mii_send(sc, frame->mii_phyaddr, 5);
758 	dc_mii_send(sc, frame->mii_regaddr, 5);
759 	dc_mii_send(sc, frame->mii_turnaround, 2);
760 	dc_mii_send(sc, frame->mii_data, 16);
761 
762 	/* Idle bit. */
763 	dc_mii_writebit(sc, 0);
764 	dc_mii_writebit(sc, 0);
765 
766 	DC_UNLOCK(sc);
767 
768 	return (0);
769 }
770 
771 static int
772 dc_miibus_readreg(device_t dev, int phy, int reg)
773 {
774 	struct dc_mii_frame frame;
775 	struct dc_softc	 *sc;
776 	int i, rval, phy_reg = 0;
777 
778 	sc = device_get_softc(dev);
779 	bzero(&frame, sizeof(frame));
780 
781 	/*
782 	 * Note: both the AL981 and AN985 have internal PHYs,
783 	 * however the AL981 provides direct access to the PHY
784 	 * registers while the AN985 uses a serial MII interface.
785 	 * The AN985's MII interface is also buggy in that you
786 	 * can read from any MII address (0 to 31), but only address 1
787 	 * behaves normally. To deal with both cases, we pretend
788 	 * that the PHY is at MII address 1.
789 	 */
790 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
791 		return (0);
792 
793 	/*
794 	 * Note: the ukphy probes of the RS7112 report a PHY at
795 	 * MII address 0 (possibly HomePNA?) and 1 (ethernet)
796 	 * so we only respond to correct one.
797 	 */
798 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
799 		return (0);
800 
801 	if (sc->dc_pmode != DC_PMODE_MII) {
802 		if (phy == (MII_NPHY - 1)) {
803 			switch (reg) {
804 			case MII_BMSR:
805 			/*
806 			 * Fake something to make the probe
807 			 * code think there's a PHY here.
808 			 */
809 				return (BMSR_MEDIAMASK);
810 				break;
811 			case MII_PHYIDR1:
812 				if (DC_IS_PNIC(sc))
813 					return (DC_VENDORID_LO);
814 				return (DC_VENDORID_DEC);
815 				break;
816 			case MII_PHYIDR2:
817 				if (DC_IS_PNIC(sc))
818 					return (DC_DEVICEID_82C168);
819 				return (DC_DEVICEID_21143);
820 				break;
821 			default:
822 				return (0);
823 				break;
824 			}
825 		} else
826 			return (0);
827 	}
828 
829 	if (DC_IS_PNIC(sc)) {
830 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
831 		    (phy << 23) | (reg << 18));
832 		for (i = 0; i < DC_TIMEOUT; i++) {
833 			DELAY(1);
834 			rval = CSR_READ_4(sc, DC_PN_MII);
835 			if (!(rval & DC_PN_MII_BUSY)) {
836 				rval &= 0xFFFF;
837 				return (rval == 0xFFFF ? 0 : rval);
838 			}
839 		}
840 		return (0);
841 	}
842 
843 	if (DC_IS_COMET(sc)) {
844 		switch (reg) {
845 		case MII_BMCR:
846 			phy_reg = DC_AL_BMCR;
847 			break;
848 		case MII_BMSR:
849 			phy_reg = DC_AL_BMSR;
850 			break;
851 		case MII_PHYIDR1:
852 			phy_reg = DC_AL_VENID;
853 			break;
854 		case MII_PHYIDR2:
855 			phy_reg = DC_AL_DEVID;
856 			break;
857 		case MII_ANAR:
858 			phy_reg = DC_AL_ANAR;
859 			break;
860 		case MII_ANLPAR:
861 			phy_reg = DC_AL_LPAR;
862 			break;
863 		case MII_ANER:
864 			phy_reg = DC_AL_ANER;
865 			break;
866 		default:
867 			printf("dc%d: phy_read: bad phy register %x\n",
868 			    sc->dc_unit, reg);
869 			return (0);
870 			break;
871 		}
872 
873 		rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
874 
875 		if (rval == 0xFFFF)
876 			return (0);
877 		return (rval);
878 	}
879 
880 	frame.mii_phyaddr = phy;
881 	frame.mii_regaddr = reg;
882 	if (sc->dc_type == DC_TYPE_98713) {
883 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
884 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
885 	}
886 	dc_mii_readreg(sc, &frame);
887 	if (sc->dc_type == DC_TYPE_98713)
888 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
889 
890 	return (frame.mii_data);
891 }
892 
893 static int
894 dc_miibus_writereg(device_t dev, int phy, int reg, int data)
895 {
896 	struct dc_softc *sc;
897 	struct dc_mii_frame frame;
898 	int i, phy_reg = 0;
899 
900 	sc = device_get_softc(dev);
901 	bzero(&frame, sizeof(frame));
902 
903 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
904 		return (0);
905 
906 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
907 		return (0);
908 
909 	if (DC_IS_PNIC(sc)) {
910 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
911 		    (phy << 23) | (reg << 10) | data);
912 		for (i = 0; i < DC_TIMEOUT; i++) {
913 			if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
914 				break;
915 		}
916 		return (0);
917 	}
918 
919 	if (DC_IS_COMET(sc)) {
920 		switch (reg) {
921 		case MII_BMCR:
922 			phy_reg = DC_AL_BMCR;
923 			break;
924 		case MII_BMSR:
925 			phy_reg = DC_AL_BMSR;
926 			break;
927 		case MII_PHYIDR1:
928 			phy_reg = DC_AL_VENID;
929 			break;
930 		case MII_PHYIDR2:
931 			phy_reg = DC_AL_DEVID;
932 			break;
933 		case MII_ANAR:
934 			phy_reg = DC_AL_ANAR;
935 			break;
936 		case MII_ANLPAR:
937 			phy_reg = DC_AL_LPAR;
938 			break;
939 		case MII_ANER:
940 			phy_reg = DC_AL_ANER;
941 			break;
942 		default:
943 			printf("dc%d: phy_write: bad phy register %x\n",
944 			    sc->dc_unit, reg);
945 			return (0);
946 			break;
947 		}
948 
949 		CSR_WRITE_4(sc, phy_reg, data);
950 		return (0);
951 	}
952 
953 	frame.mii_phyaddr = phy;
954 	frame.mii_regaddr = reg;
955 	frame.mii_data = data;
956 
957 	if (sc->dc_type == DC_TYPE_98713) {
958 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
959 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
960 	}
961 	dc_mii_writereg(sc, &frame);
962 	if (sc->dc_type == DC_TYPE_98713)
963 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
964 
965 	return (0);
966 }
967 
968 static void
969 dc_miibus_statchg(device_t dev)
970 {
971 	struct dc_softc *sc;
972 	struct mii_data *mii;
973 	struct ifmedia *ifm;
974 
975 	sc = device_get_softc(dev);
976 	if (DC_IS_ADMTEK(sc))
977 		return;
978 
979 	mii = device_get_softc(sc->dc_miibus);
980 	ifm = &mii->mii_media;
981 	if (DC_IS_DAVICOM(sc) &&
982 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
983 		dc_setcfg(sc, ifm->ifm_media);
984 		sc->dc_if_media = ifm->ifm_media;
985 	} else {
986 		dc_setcfg(sc, mii->mii_media_active);
987 		sc->dc_if_media = mii->mii_media_active;
988 	}
989 }
990 
991 /*
992  * Special support for DM9102A cards with HomePNA PHYs. Note:
993  * with the Davicom DM9102A/DM9801 eval board that I have, it seems
994  * to be impossible to talk to the management interface of the DM9801
995  * PHY (its MDIO pin is not connected to anything). Consequently,
996  * the driver has to just 'know' about the additional mode and deal
997  * with it itself. *sigh*
998  */
999 static void
1000 dc_miibus_mediainit(device_t dev)
1001 {
1002 	struct dc_softc *sc;
1003 	struct mii_data *mii;
1004 	struct ifmedia *ifm;
1005 	int rev;
1006 
1007 	rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF;
1008 
1009 	sc = device_get_softc(dev);
1010 	mii = device_get_softc(sc->dc_miibus);
1011 	ifm = &mii->mii_media;
1012 
1013 	if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A)
1014 		ifmedia_add(ifm, IFM_ETHER | IFM_HPNA_1, 0, NULL);
1015 }
1016 
1017 #define DC_BITS_512	9
1018 #define DC_BITS_128	7
1019 #define DC_BITS_64	6
1020 
1021 static uint32_t
1022 dc_mchash_le(struct dc_softc *sc, const uint8_t *addr)
1023 {
1024 	uint32_t crc;
1025 
1026 	/* Compute CRC for the address value. */
1027 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
1028 
1029 	/*
1030 	 * The hash table on the PNIC II and the MX98715AEC-C/D/E
1031 	 * chips is only 128 bits wide.
1032 	 */
1033 	if (sc->dc_flags & DC_128BIT_HASH)
1034 		return (crc & ((1 << DC_BITS_128) - 1));
1035 
1036 	/* The hash table on the MX98715BEC is only 64 bits wide. */
1037 	if (sc->dc_flags & DC_64BIT_HASH)
1038 		return (crc & ((1 << DC_BITS_64) - 1));
1039 
1040 	/* Xircom's hash filtering table is different (read: weird) */
1041 	/* Xircom uses the LEAST significant bits */
1042 	if (DC_IS_XIRCOM(sc)) {
1043 		if ((crc & 0x180) == 0x180)
1044 			return ((crc & 0x0F) + (crc & 0x70) * 3 + (14 << 4));
1045 		else
1046 			return ((crc & 0x1F) + ((crc >> 1) & 0xF0) * 3 +
1047 			    (12 << 4));
1048 	}
1049 
1050 	return (crc & ((1 << DC_BITS_512) - 1));
1051 }
1052 
1053 /*
1054  * Calculate CRC of a multicast group address, return the lower 6 bits.
1055  */
1056 static uint32_t
1057 dc_mchash_be(const uint8_t *addr)
1058 {
1059 	uint32_t crc;
1060 
1061 	/* Compute CRC for the address value. */
1062 	crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
1063 
1064 	/* Return the filter bit position. */
1065 	return ((crc >> 26) & 0x0000003F);
1066 }
1067 
1068 /*
1069  * 21143-style RX filter setup routine. Filter programming is done by
1070  * downloading a special setup frame into the TX engine. 21143, Macronix,
1071  * PNIC, PNIC II and Davicom chips are programmed this way.
1072  *
1073  * We always program the chip using 'hash perfect' mode, i.e. one perfect
1074  * address (our node address) and a 512-bit hash filter for multicast
1075  * frames. We also sneak the broadcast address into the hash filter since
1076  * we need that too.
1077  */
1078 static void
1079 dc_setfilt_21143(struct dc_softc *sc)
1080 {
1081 	struct dc_desc *sframe;
1082 	u_int32_t h, *sp;
1083 	struct ifmultiaddr *ifma;
1084 	struct ifnet *ifp;
1085 	int i;
1086 
1087 	ifp = &sc->arpcom.ac_if;
1088 
1089 	i = sc->dc_cdata.dc_tx_prod;
1090 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1091 	sc->dc_cdata.dc_tx_cnt++;
1092 	sframe = &sc->dc_ldata->dc_tx_list[i];
1093 	sp = sc->dc_cdata.dc_sbuf;
1094 	bzero(sp, DC_SFRAME_LEN);
1095 
1096 	sframe->dc_data = htole32(sc->dc_saddr);
1097 	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
1098 	    DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
1099 
1100 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
1101 
1102 	/* If we want promiscuous mode, set the allframes bit. */
1103 	if (ifp->if_flags & IFF_PROMISC)
1104 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1105 	else
1106 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1107 
1108 	if (ifp->if_flags & IFF_ALLMULTI)
1109 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1110 	else
1111 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1112 
1113 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1114 		if (ifma->ifma_addr->sa_family != AF_LINK)
1115 			continue;
1116 		h = dc_mchash_le(sc,
1117 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1118 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1119 	}
1120 
1121 	if (ifp->if_flags & IFF_BROADCAST) {
1122 		h = dc_mchash_le(sc, ifp->if_broadcastaddr);
1123 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1124 	}
1125 
1126 	/* Set our MAC address */
1127 	sp[39] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
1128 	sp[40] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
1129 	sp[41] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
1130 
1131 	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1132 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1133 
1134 	/*
1135 	 * The PNIC takes an exceedingly long time to process its
1136 	 * setup frame; wait 10ms after posting the setup frame
1137 	 * before proceeding, just so it has time to swallow its
1138 	 * medicine.
1139 	 */
1140 	DELAY(10000);
1141 
1142 	ifp->if_timer = 5;
1143 }
1144 
1145 static void
1146 dc_setfilt_admtek(struct dc_softc *sc)
1147 {
1148 	struct ifnet *ifp;
1149 	struct ifmultiaddr *ifma;
1150 	int h = 0;
1151 	u_int32_t hashes[2] = { 0, 0 };
1152 
1153 	ifp = &sc->arpcom.ac_if;
1154 
1155 	/* Init our MAC address. */
1156 	CSR_WRITE_4(sc, DC_AL_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1157 	CSR_WRITE_4(sc, DC_AL_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1158 
1159 	/* If we want promiscuous mode, set the allframes bit. */
1160 	if (ifp->if_flags & IFF_PROMISC)
1161 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1162 	else
1163 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1164 
1165 	if (ifp->if_flags & IFF_ALLMULTI)
1166 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1167 	else
1168 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1169 
1170 	/* First, zot all the existing hash bits. */
1171 	CSR_WRITE_4(sc, DC_AL_MAR0, 0);
1172 	CSR_WRITE_4(sc, DC_AL_MAR1, 0);
1173 
1174 	/*
1175 	 * If we're already in promisc or allmulti mode, we
1176 	 * don't have to bother programming the multicast filter.
1177 	 */
1178 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
1179 		return;
1180 
1181 	/* Now program new ones. */
1182 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1183 		if (ifma->ifma_addr->sa_family != AF_LINK)
1184 			continue;
1185 		if (DC_IS_CENTAUR(sc))
1186 			h = dc_mchash_le(sc,
1187 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1188 		else
1189 			h = dc_mchash_be(
1190 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1191 		if (h < 32)
1192 			hashes[0] |= (1 << h);
1193 		else
1194 			hashes[1] |= (1 << (h - 32));
1195 	}
1196 
1197 	CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]);
1198 	CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]);
1199 }
1200 
1201 static void
1202 dc_setfilt_asix(struct dc_softc *sc)
1203 {
1204 	struct ifnet *ifp;
1205 	struct ifmultiaddr *ifma;
1206 	int h = 0;
1207 	u_int32_t hashes[2] = { 0, 0 };
1208 
1209 	ifp = &sc->arpcom.ac_if;
1210 
1211 	/* Init our MAC address */
1212 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
1213 	CSR_WRITE_4(sc, DC_AX_FILTDATA,
1214 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1215 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
1216 	CSR_WRITE_4(sc, DC_AX_FILTDATA,
1217 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1218 
1219 	/* If we want promiscuous mode, set the allframes bit. */
1220 	if (ifp->if_flags & IFF_PROMISC)
1221 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1222 	else
1223 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1224 
1225 	if (ifp->if_flags & IFF_ALLMULTI)
1226 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1227 	else
1228 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1229 
1230 	/*
1231 	 * The ASIX chip has a special bit to enable reception
1232 	 * of broadcast frames.
1233 	 */
1234 	if (ifp->if_flags & IFF_BROADCAST)
1235 		DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1236 	else
1237 		DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1238 
1239 	/* first, zot all the existing hash bits */
1240 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1241 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1242 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1243 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1244 
1245 	/*
1246 	 * If we're already in promisc or allmulti mode, we
1247 	 * don't have to bother programming the multicast filter.
1248 	 */
1249 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
1250 		return;
1251 
1252 	/* now program new ones */
1253 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1254 		if (ifma->ifma_addr->sa_family != AF_LINK)
1255 			continue;
1256 		h = dc_mchash_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1257 		if (h < 32)
1258 			hashes[0] |= (1 << h);
1259 		else
1260 			hashes[1] |= (1 << (h - 32));
1261 	}
1262 
1263 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1264 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
1265 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1266 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
1267 }
1268 
1269 static void
1270 dc_setfilt_xircom(struct dc_softc *sc)
1271 {
1272 	struct ifnet *ifp;
1273 	struct ifmultiaddr *ifma;
1274 	struct dc_desc *sframe;
1275 	u_int32_t h, *sp;
1276 	int i;
1277 
1278 	ifp = &sc->arpcom.ac_if;
1279 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1280 
1281 	i = sc->dc_cdata.dc_tx_prod;
1282 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1283 	sc->dc_cdata.dc_tx_cnt++;
1284 	sframe = &sc->dc_ldata->dc_tx_list[i];
1285 	sp = sc->dc_cdata.dc_sbuf;
1286 	bzero(sp, DC_SFRAME_LEN);
1287 
1288 	sframe->dc_data = htole32(sc->dc_saddr);
1289 	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
1290 	    DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
1291 
1292 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
1293 
1294 	/* If we want promiscuous mode, set the allframes bit. */
1295 	if (ifp->if_flags & IFF_PROMISC)
1296 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1297 	else
1298 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1299 
1300 	if (ifp->if_flags & IFF_ALLMULTI)
1301 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1302 	else
1303 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1304 
1305 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1306 		if (ifma->ifma_addr->sa_family != AF_LINK)
1307 			continue;
1308 		h = dc_mchash_le(sc,
1309 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1310 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1311 	}
1312 
1313 	if (ifp->if_flags & IFF_BROADCAST) {
1314 		h = dc_mchash_le(sc, ifp->if_broadcastaddr);
1315 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1316 	}
1317 
1318 	/* Set our MAC address */
1319 	sp[0] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
1320 	sp[1] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
1321 	sp[2] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
1322 
1323 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
1324 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
1325 	ifp->if_flags |= IFF_RUNNING;
1326 	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1327 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1328 
1329 	/*
1330 	 * Wait some time...
1331 	 */
1332 	DELAY(1000);
1333 
1334 	ifp->if_timer = 5;
1335 }
1336 
1337 static void
1338 dc_setfilt(struct dc_softc *sc)
1339 {
1340 
1341 	if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
1342 	    DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc))
1343 		dc_setfilt_21143(sc);
1344 
1345 	if (DC_IS_ASIX(sc))
1346 		dc_setfilt_asix(sc);
1347 
1348 	if (DC_IS_ADMTEK(sc))
1349 		dc_setfilt_admtek(sc);
1350 
1351 	if (DC_IS_XIRCOM(sc))
1352 		dc_setfilt_xircom(sc);
1353 }
1354 
1355 /*
1356  * In order to fiddle with the 'full-duplex' and '100Mbps' bits in
1357  * the netconfig register, we first have to put the transmit and/or
1358  * receive logic in the idle state.
1359  */
1360 static void
1361 dc_setcfg(struct dc_softc *sc, int media)
1362 {
1363 	int i, restart = 0, watchdogreg;
1364 	u_int32_t isr;
1365 
1366 	if (IFM_SUBTYPE(media) == IFM_NONE)
1367 		return;
1368 
1369 	if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON)) {
1370 		restart = 1;
1371 		DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1372 
1373 		for (i = 0; i < DC_TIMEOUT; i++) {
1374 			isr = CSR_READ_4(sc, DC_ISR);
1375 			if (isr & DC_ISR_TX_IDLE &&
1376 			    ((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
1377 			    (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT))
1378 				break;
1379 			DELAY(10);
1380 		}
1381 
1382 		if (i == DC_TIMEOUT)
1383 			printf("dc%d: failed to force tx and "
1384 				"rx to idle state\n", sc->dc_unit);
1385 	}
1386 
1387 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
1388 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1389 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1390 		if (sc->dc_pmode == DC_PMODE_MII) {
1391 			if (DC_IS_INTEL(sc)) {
1392 			/* There's a write enable bit here that reads as 1. */
1393 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1394 				watchdogreg &= ~DC_WDOG_CTLWREN;
1395 				watchdogreg |= DC_WDOG_JABBERDIS;
1396 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1397 			} else {
1398 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1399 			}
1400 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1401 			    DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
1402 			if (sc->dc_type == DC_TYPE_98713)
1403 				DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1404 				    DC_NETCFG_SCRAMBLER));
1405 			if (!DC_IS_DAVICOM(sc))
1406 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1407 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1408 			if (DC_IS_INTEL(sc))
1409 				dc_apply_fixup(sc, IFM_AUTO);
1410 		} else {
1411 			if (DC_IS_PNIC(sc)) {
1412 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
1413 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1414 				DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1415 			}
1416 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1417 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1418 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1419 			if (DC_IS_INTEL(sc))
1420 				dc_apply_fixup(sc,
1421 				    (media & IFM_GMASK) == IFM_FDX ?
1422 				    IFM_100_TX | IFM_FDX : IFM_100_TX);
1423 		}
1424 	}
1425 
1426 	if (IFM_SUBTYPE(media) == IFM_10_T) {
1427 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1428 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1429 		if (sc->dc_pmode == DC_PMODE_MII) {
1430 			/* There's a write enable bit here that reads as 1. */
1431 			if (DC_IS_INTEL(sc)) {
1432 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1433 				watchdogreg &= ~DC_WDOG_CTLWREN;
1434 				watchdogreg |= DC_WDOG_JABBERDIS;
1435 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1436 			} else {
1437 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1438 			}
1439 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1440 			    DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
1441 			if (sc->dc_type == DC_TYPE_98713)
1442 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1443 			if (!DC_IS_DAVICOM(sc))
1444 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1445 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1446 			if (DC_IS_INTEL(sc))
1447 				dc_apply_fixup(sc, IFM_AUTO);
1448 		} else {
1449 			if (DC_IS_PNIC(sc)) {
1450 				DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
1451 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1452 				DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1453 			}
1454 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1455 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1456 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1457 			if (DC_IS_INTEL(sc)) {
1458 				DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET);
1459 				DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1460 				if ((media & IFM_GMASK) == IFM_FDX)
1461 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D);
1462 				else
1463 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F);
1464 				DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1465 				DC_CLRBIT(sc, DC_10BTCTRL,
1466 				    DC_TCTL_AUTONEGENBL);
1467 				dc_apply_fixup(sc,
1468 				    (media & IFM_GMASK) == IFM_FDX ?
1469 				    IFM_10_T | IFM_FDX : IFM_10_T);
1470 				DELAY(20000);
1471 			}
1472 		}
1473 	}
1474 
1475 	/*
1476 	 * If this is a Davicom DM9102A card with a DM9801 HomePNA
1477 	 * PHY and we want HomePNA mode, set the portsel bit to turn
1478 	 * on the external MII port.
1479 	 */
1480 	if (DC_IS_DAVICOM(sc)) {
1481 		if (IFM_SUBTYPE(media) == IFM_HPNA_1) {
1482 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1483 			sc->dc_link = 1;
1484 		} else {
1485 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1486 		}
1487 	}
1488 
1489 	if ((media & IFM_GMASK) == IFM_FDX) {
1490 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1491 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1492 			DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1493 	} else {
1494 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1495 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1496 			DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1497 	}
1498 
1499 	if (restart)
1500 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON | DC_NETCFG_RX_ON);
1501 }
1502 
1503 static void
1504 dc_reset(struct dc_softc *sc)
1505 {
1506 	int i;
1507 
1508 	DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1509 
1510 	for (i = 0; i < DC_TIMEOUT; i++) {
1511 		DELAY(10);
1512 		if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
1513 			break;
1514 	}
1515 
1516 	if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_CONEXANT(sc) ||
1517 	    DC_IS_XIRCOM(sc) || DC_IS_INTEL(sc)) {
1518 		DELAY(10000);
1519 		DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1520 		i = 0;
1521 	}
1522 
1523 	if (i == DC_TIMEOUT)
1524 		printf("dc%d: reset never completed!\n", sc->dc_unit);
1525 
1526 	/* Wait a little while for the chip to get its brains in order. */
1527 	DELAY(1000);
1528 
1529 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
1530 	CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
1531 	CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
1532 
1533 	/*
1534 	 * Bring the SIA out of reset. In some cases, it looks
1535 	 * like failing to unreset the SIA soon enough gets it
1536 	 * into a state where it will never come out of reset
1537 	 * until we reset the whole chip again.
1538 	 */
1539 	if (DC_IS_INTEL(sc)) {
1540 		DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1541 		CSR_WRITE_4(sc, DC_10BTCTRL, 0);
1542 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
1543 	}
1544 }
1545 
1546 static struct dc_type *
1547 dc_devtype(device_t dev)
1548 {
1549 	struct dc_type *t;
1550 	u_int32_t rev;
1551 
1552 	t = dc_devs;
1553 
1554 	while (t->dc_name != NULL) {
1555 		if ((pci_get_vendor(dev) == t->dc_vid) &&
1556 		    (pci_get_device(dev) == t->dc_did)) {
1557 			/* Check the PCI revision */
1558 			rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF;
1559 			if (t->dc_did == DC_DEVICEID_98713 &&
1560 			    rev >= DC_REVISION_98713A)
1561 				t++;
1562 			if (t->dc_did == DC_DEVICEID_98713_CP &&
1563 			    rev >= DC_REVISION_98713A)
1564 				t++;
1565 			if (t->dc_did == DC_DEVICEID_987x5 &&
1566 			    rev >= DC_REVISION_98715AEC_C)
1567 				t++;
1568 			if (t->dc_did == DC_DEVICEID_987x5 &&
1569 			    rev >= DC_REVISION_98725)
1570 				t++;
1571 			if (t->dc_did == DC_DEVICEID_AX88140A &&
1572 			    rev >= DC_REVISION_88141)
1573 				t++;
1574 			if (t->dc_did == DC_DEVICEID_82C168 &&
1575 			    rev >= DC_REVISION_82C169)
1576 				t++;
1577 			if (t->dc_did == DC_DEVICEID_DM9102 &&
1578 			    rev >= DC_REVISION_DM9102A)
1579 				t++;
1580 			/*
1581 			 * The Microsoft MN-130 has a device ID of 0x0002,
1582 			 * which happens to be the same as the PNIC 82c168.
1583 			 * To keep dc_attach() from getting confused, we
1584 			 * pretend its ID is something different.
1585 			 * XXX: ideally, dc_attach() should be checking
1586 			 * vendorid+deviceid together to avoid such
1587 			 * collisions.
1588 			 */
1589 			if (t->dc_vid == DC_VENDORID_MICROSOFT &&
1590 			    t->dc_did == DC_DEVICEID_MSMN130)
1591 				t++;
1592 			return (t);
1593 		}
1594 		t++;
1595 	}
1596 
1597 	return (NULL);
1598 }
1599 
1600 /*
1601  * Probe for a 21143 or clone chip. Check the PCI vendor and device
1602  * IDs against our list and return a device name if we find a match.
1603  * We do a little bit of extra work to identify the exact type of
1604  * chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
1605  * but different revision IDs. The same is true for 98715/98715A
1606  * chips and the 98725, as well as the ASIX and ADMtek chips. In some
1607  * cases, the exact chip revision affects driver behavior.
1608  */
1609 static int
1610 dc_probe(device_t dev)
1611 {
1612 	struct dc_type *t;
1613 
1614 	t = dc_devtype(dev);
1615 
1616 	if (t != NULL) {
1617 		device_set_desc(dev, t->dc_name);
1618 		return (BUS_PROBE_DEFAULT);
1619 	}
1620 
1621 	return (ENXIO);
1622 }
1623 
1624 static void
1625 dc_apply_fixup(struct dc_softc *sc, int media)
1626 {
1627 	struct dc_mediainfo *m;
1628 	u_int8_t *p;
1629 	int i;
1630 	u_int32_t reg;
1631 
1632 	m = sc->dc_mi;
1633 
1634 	while (m != NULL) {
1635 		if (m->dc_media == media)
1636 			break;
1637 		m = m->dc_next;
1638 	}
1639 
1640 	if (m == NULL)
1641 		return;
1642 
1643 	for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) {
1644 		reg = (p[0] | (p[1] << 8)) << 16;
1645 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1646 	}
1647 
1648 	for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) {
1649 		reg = (p[0] | (p[1] << 8)) << 16;
1650 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1651 	}
1652 }
1653 
1654 static void
1655 dc_decode_leaf_sia(struct dc_softc *sc, struct dc_eblock_sia *l)
1656 {
1657 	struct dc_mediainfo *m;
1658 
1659 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1660 	switch (l->dc_sia_code & ~DC_SIA_CODE_EXT) {
1661 	case DC_SIA_CODE_10BT:
1662 		m->dc_media = IFM_10_T;
1663 		break;
1664 	case DC_SIA_CODE_10BT_FDX:
1665 		m->dc_media = IFM_10_T | IFM_FDX;
1666 		break;
1667 	case DC_SIA_CODE_10B2:
1668 		m->dc_media = IFM_10_2;
1669 		break;
1670 	case DC_SIA_CODE_10B5:
1671 		m->dc_media = IFM_10_5;
1672 		break;
1673 	default:
1674 		break;
1675 	}
1676 
1677 	/*
1678 	 * We need to ignore CSR13, CSR14, CSR15 for SIA mode.
1679 	 * Things apparently already work for cards that do
1680 	 * supply Media Specific Data.
1681 	 */
1682 	if (l->dc_sia_code & DC_SIA_CODE_EXT) {
1683 		m->dc_gp_len = 2;
1684 		m->dc_gp_ptr =
1685 		(u_int8_t *)&l->dc_un.dc_sia_ext.dc_sia_gpio_ctl;
1686 	} else {
1687 		m->dc_gp_len = 2;
1688 		m->dc_gp_ptr =
1689 		(u_int8_t *)&l->dc_un.dc_sia_noext.dc_sia_gpio_ctl;
1690 	}
1691 
1692 	m->dc_next = sc->dc_mi;
1693 	sc->dc_mi = m;
1694 
1695 	sc->dc_pmode = DC_PMODE_SIA;
1696 }
1697 
1698 static void
1699 dc_decode_leaf_sym(struct dc_softc *sc, struct dc_eblock_sym *l)
1700 {
1701 	struct dc_mediainfo *m;
1702 
1703 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1704 	if (l->dc_sym_code == DC_SYM_CODE_100BT)
1705 		m->dc_media = IFM_100_TX;
1706 
1707 	if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX)
1708 		m->dc_media = IFM_100_TX | IFM_FDX;
1709 
1710 	m->dc_gp_len = 2;
1711 	m->dc_gp_ptr = (u_int8_t *)&l->dc_sym_gpio_ctl;
1712 
1713 	m->dc_next = sc->dc_mi;
1714 	sc->dc_mi = m;
1715 
1716 	sc->dc_pmode = DC_PMODE_SYM;
1717 }
1718 
1719 static void
1720 dc_decode_leaf_mii(struct dc_softc *sc, struct dc_eblock_mii *l)
1721 {
1722 	struct dc_mediainfo *m;
1723 	u_int8_t *p;
1724 
1725 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1726 	/* We abuse IFM_AUTO to represent MII. */
1727 	m->dc_media = IFM_AUTO;
1728 	m->dc_gp_len = l->dc_gpr_len;
1729 
1730 	p = (u_int8_t *)l;
1731 	p += sizeof(struct dc_eblock_mii);
1732 	m->dc_gp_ptr = p;
1733 	p += 2 * l->dc_gpr_len;
1734 	m->dc_reset_len = *p;
1735 	p++;
1736 	m->dc_reset_ptr = p;
1737 
1738 	m->dc_next = sc->dc_mi;
1739 	sc->dc_mi = m;
1740 }
1741 
1742 static void
1743 dc_read_srom(struct dc_softc *sc, int bits)
1744 {
1745 	int size;
1746 
1747 	size = 2 << bits;
1748 	sc->dc_srom = malloc(size, M_DEVBUF, M_NOWAIT);
1749 	dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (size / 2), 0);
1750 }
1751 
1752 static void
1753 dc_parse_21143_srom(struct dc_softc *sc)
1754 {
1755 	struct dc_leaf_hdr *lhdr;
1756 	struct dc_eblock_hdr *hdr;
1757 	int have_mii, i, loff;
1758 	char *ptr;
1759 
1760 	have_mii = 0;
1761 	loff = sc->dc_srom[27];
1762 	lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]);
1763 
1764 	ptr = (char *)lhdr;
1765 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1766 	/*
1767 	 * Look if we got a MII media block.
1768 	 */
1769 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1770 		hdr = (struct dc_eblock_hdr *)ptr;
1771 		if (hdr->dc_type == DC_EBLOCK_MII)
1772 		    have_mii++;
1773 
1774 		ptr += (hdr->dc_len & 0x7F);
1775 		ptr++;
1776 	}
1777 
1778 	/*
1779 	 * Do the same thing again. Only use SIA and SYM media
1780 	 * blocks if no MII media block is available.
1781 	 */
1782 	ptr = (char *)lhdr;
1783 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1784 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1785 		hdr = (struct dc_eblock_hdr *)ptr;
1786 		switch (hdr->dc_type) {
1787 		case DC_EBLOCK_MII:
1788 			dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr);
1789 			break;
1790 		case DC_EBLOCK_SIA:
1791 			if (! have_mii)
1792 				dc_decode_leaf_sia(sc,
1793 				    (struct dc_eblock_sia *)hdr);
1794 			break;
1795 		case DC_EBLOCK_SYM:
1796 			if (! have_mii)
1797 				dc_decode_leaf_sym(sc,
1798 				    (struct dc_eblock_sym *)hdr);
1799 			break;
1800 		default:
1801 			/* Don't care. Yet. */
1802 			break;
1803 		}
1804 		ptr += (hdr->dc_len & 0x7F);
1805 		ptr++;
1806 	}
1807 }
1808 
1809 static void
1810 dc_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1811 {
1812 	u_int32_t *paddr;
1813 
1814 	KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
1815 	paddr = arg;
1816 	*paddr = segs->ds_addr;
1817 }
1818 
1819 /*
1820  * Attach the interface. Allocate softc structures, do ifmedia
1821  * setup and ethernet/BPF attach.
1822  */
1823 static int
1824 dc_attach(device_t dev)
1825 {
1826 	int tmp = 0;
1827 	u_char eaddr[ETHER_ADDR_LEN];
1828 	u_int32_t command;
1829 	struct dc_softc *sc;
1830 	struct ifnet *ifp;
1831 	u_int32_t revision;
1832 	int unit, error = 0, rid, mac_offset;
1833 	int i;
1834 	u_int8_t *mac;
1835 
1836 	sc = device_get_softc(dev);
1837 	unit = device_get_unit(dev);
1838 
1839 	mtx_init(&sc->dc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1840 	    MTX_DEF | MTX_RECURSE);
1841 
1842 	/*
1843 	 * Map control/status registers.
1844 	 */
1845 	pci_enable_busmaster(dev);
1846 
1847 	rid = DC_RID;
1848 	sc->dc_res = bus_alloc_resource_any(dev, DC_RES, &rid, RF_ACTIVE);
1849 
1850 	if (sc->dc_res == NULL) {
1851 		printf("dc%d: couldn't map ports/memory\n", unit);
1852 		error = ENXIO;
1853 		goto fail;
1854 	}
1855 
1856 	sc->dc_btag = rman_get_bustag(sc->dc_res);
1857 	sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
1858 
1859 	/* Allocate interrupt. */
1860 	rid = 0;
1861 	sc->dc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1862 	    RF_SHAREABLE | RF_ACTIVE);
1863 
1864 	if (sc->dc_irq == NULL) {
1865 		printf("dc%d: couldn't map interrupt\n", unit);
1866 		error = ENXIO;
1867 		goto fail;
1868 	}
1869 
1870 	/* Need this info to decide on a chip type. */
1871 	sc->dc_info = dc_devtype(dev);
1872 	revision = pci_read_config(dev, DC_PCI_CFRV, 4) & 0x000000FF;
1873 
1874 	/* Get the eeprom width, but PNIC and XIRCOM have diff eeprom */
1875 	if (sc->dc_info->dc_did != DC_DEVICEID_82C168 &&
1876 	   sc->dc_info->dc_did != DC_DEVICEID_X3201)
1877 		dc_eeprom_width(sc);
1878 
1879 	switch (sc->dc_info->dc_did) {
1880 	case DC_DEVICEID_21143:
1881 		sc->dc_type = DC_TYPE_21143;
1882 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1883 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1884 		/* Save EEPROM contents so we can parse them later. */
1885 		dc_read_srom(sc, sc->dc_romwidth);
1886 		break;
1887 	case DC_DEVICEID_DM9009:
1888 	case DC_DEVICEID_DM9100:
1889 	case DC_DEVICEID_DM9102:
1890 		sc->dc_type = DC_TYPE_DM9102;
1891 		sc->dc_flags |= DC_TX_COALESCE | DC_TX_INTR_ALWAYS;
1892 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_TX_STORENFWD;
1893 		sc->dc_flags |= DC_TX_ALIGN;
1894 		sc->dc_pmode = DC_PMODE_MII;
1895 		/* Increase the latency timer value. */
1896 		command = pci_read_config(dev, DC_PCI_CFLT, 4);
1897 		command &= 0xFFFF00FF;
1898 		command |= 0x00008000;
1899 		pci_write_config(dev, DC_PCI_CFLT, command, 4);
1900 		break;
1901 	case DC_DEVICEID_AL981:
1902 		sc->dc_type = DC_TYPE_AL981;
1903 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1904 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1905 		sc->dc_pmode = DC_PMODE_MII;
1906 		dc_read_srom(sc, sc->dc_romwidth);
1907 		break;
1908 	case DC_DEVICEID_AN985:
1909 	case DC_DEVICEID_ADM9511:
1910 	case DC_DEVICEID_ADM9513:
1911 	case DC_DEVICEID_FA511:
1912 	case DC_DEVICEID_FE2500:
1913 	case DC_DEVICEID_EN2242:
1914 	case DC_DEVICEID_HAWKING_PN672TX:
1915 	case DC_DEVICEID_3CSOHOB:
1916 	case DC_DEVICEID_MSMN120:
1917 	case DC_DEVICEID_MSMN130_FAKE: /* XXX avoid collision with PNIC*/
1918 		sc->dc_type = DC_TYPE_AN985;
1919 		sc->dc_flags |= DC_64BIT_HASH;
1920 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1921 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1922 		sc->dc_pmode = DC_PMODE_MII;
1923 		/* Don't read SROM for - auto-loaded on reset */
1924 		break;
1925 	case DC_DEVICEID_98713:
1926 	case DC_DEVICEID_98713_CP:
1927 		if (revision < DC_REVISION_98713A) {
1928 			sc->dc_type = DC_TYPE_98713;
1929 		}
1930 		if (revision >= DC_REVISION_98713A) {
1931 			sc->dc_type = DC_TYPE_98713A;
1932 			sc->dc_flags |= DC_21143_NWAY;
1933 		}
1934 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1935 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1936 		break;
1937 	case DC_DEVICEID_987x5:
1938 	case DC_DEVICEID_EN1217:
1939 		/*
1940 		 * Macronix MX98715AEC-C/D/E parts have only a
1941 		 * 128-bit hash table. We need to deal with these
1942 		 * in the same manner as the PNIC II so that we
1943 		 * get the right number of bits out of the
1944 		 * CRC routine.
1945 		 */
1946 		if (revision >= DC_REVISION_98715AEC_C &&
1947 		    revision < DC_REVISION_98725)
1948 			sc->dc_flags |= DC_128BIT_HASH;
1949 		sc->dc_type = DC_TYPE_987x5;
1950 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1951 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
1952 		break;
1953 	case DC_DEVICEID_98727:
1954 		sc->dc_type = DC_TYPE_987x5;
1955 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1956 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
1957 		break;
1958 	case DC_DEVICEID_82C115:
1959 		sc->dc_type = DC_TYPE_PNICII;
1960 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR | DC_128BIT_HASH;
1961 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
1962 		break;
1963 	case DC_DEVICEID_82C168:
1964 		sc->dc_type = DC_TYPE_PNIC;
1965 		sc->dc_flags |= DC_TX_STORENFWD | DC_TX_INTR_ALWAYS;
1966 		sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
1967 		sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_NOWAIT);
1968 		if (revision < DC_REVISION_82C169)
1969 			sc->dc_pmode = DC_PMODE_SYM;
1970 		break;
1971 	case DC_DEVICEID_AX88140A:
1972 		sc->dc_type = DC_TYPE_ASIX;
1973 		sc->dc_flags |= DC_TX_USE_TX_INTR | DC_TX_INTR_FIRSTFRAG;
1974 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1975 		sc->dc_pmode = DC_PMODE_MII;
1976 		break;
1977 	case DC_DEVICEID_X3201:
1978 		sc->dc_type = DC_TYPE_XIRCOM;
1979 		sc->dc_flags |= DC_TX_INTR_ALWAYS | DC_TX_COALESCE |
1980 				DC_TX_ALIGN;
1981 		/*
1982 		 * We don't actually need to coalesce, but we're doing
1983 		 * it to obtain a double word aligned buffer.
1984 		 * The DC_TX_COALESCE flag is required.
1985 		 */
1986 		sc->dc_pmode = DC_PMODE_MII;
1987 		break;
1988 	case DC_DEVICEID_RS7112:
1989 		sc->dc_type = DC_TYPE_CONEXANT;
1990 		sc->dc_flags |= DC_TX_INTR_ALWAYS;
1991 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1992 		sc->dc_pmode = DC_PMODE_MII;
1993 		dc_read_srom(sc, sc->dc_romwidth);
1994 		break;
1995 	default:
1996 		printf("dc%d: unknown device: %x\n", sc->dc_unit,
1997 		    sc->dc_info->dc_did);
1998 		break;
1999 	}
2000 
2001 	/* Save the cache line size. */
2002 	if (DC_IS_DAVICOM(sc))
2003 		sc->dc_cachesize = 0;
2004 	else
2005 		sc->dc_cachesize = pci_read_config(dev,
2006 		    DC_PCI_CFLT, 4) & 0xFF;
2007 
2008 	/* Reset the adapter. */
2009 	dc_reset(sc);
2010 
2011 	/* Take 21143 out of snooze mode */
2012 	if (DC_IS_INTEL(sc) || DC_IS_XIRCOM(sc)) {
2013 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
2014 		command &= ~(DC_CFDD_SNOOZE_MODE | DC_CFDD_SLEEP_MODE);
2015 		pci_write_config(dev, DC_PCI_CFDD, command, 4);
2016 	}
2017 
2018 	/*
2019 	 * Try to learn something about the supported media.
2020 	 * We know that ASIX and ADMtek and Davicom devices
2021 	 * will *always* be using MII media, so that's a no-brainer.
2022 	 * The tricky ones are the Macronix/PNIC II and the
2023 	 * Intel 21143.
2024 	 */
2025 	if (DC_IS_INTEL(sc))
2026 		dc_parse_21143_srom(sc);
2027 	else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
2028 		if (sc->dc_type == DC_TYPE_98713)
2029 			sc->dc_pmode = DC_PMODE_MII;
2030 		else
2031 			sc->dc_pmode = DC_PMODE_SYM;
2032 	} else if (!sc->dc_pmode)
2033 		sc->dc_pmode = DC_PMODE_MII;
2034 
2035 	/*
2036 	 * Get station address from the EEPROM.
2037 	 */
2038 	switch(sc->dc_type) {
2039 	case DC_TYPE_98713:
2040 	case DC_TYPE_98713A:
2041 	case DC_TYPE_987x5:
2042 	case DC_TYPE_PNICII:
2043 		dc_read_eeprom(sc, (caddr_t)&mac_offset,
2044 		    (DC_EE_NODEADDR_OFFSET / 2), 1, 0);
2045 		dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
2046 		break;
2047 	case DC_TYPE_PNIC:
2048 		dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
2049 		break;
2050 	case DC_TYPE_DM9102:
2051 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2052 #ifdef __sparc64__
2053 		/*
2054 		 * If this is an onboard dc(4) the station address read from
2055 		 * the EEPROM is all zero and we have to get it from the fcode.
2056 		 */
2057 		for (i = 0; i < ETHER_ADDR_LEN; i++)
2058 			if (eaddr[i] != 0x00)
2059 				break;
2060 		if (i >= ETHER_ADDR_LEN)
2061 			OF_getetheraddr(dev, eaddr);
2062 #endif
2063 		break;
2064 	case DC_TYPE_21143:
2065 	case DC_TYPE_ASIX:
2066 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2067 		break;
2068 	case DC_TYPE_AL981:
2069 	case DC_TYPE_AN985:
2070 		*(u_int32_t *)(&eaddr[0]) = CSR_READ_4(sc, DC_AL_PAR0);
2071 		*(u_int16_t *)(&eaddr[4]) = CSR_READ_4(sc, DC_AL_PAR1);
2072 		break;
2073 	case DC_TYPE_CONEXANT:
2074 		bcopy(sc->dc_srom + DC_CONEXANT_EE_NODEADDR, &eaddr,
2075 		    ETHER_ADDR_LEN);
2076 		break;
2077 	case DC_TYPE_XIRCOM:
2078 		/* The MAC comes from the CIS. */
2079 		mac = pci_get_ether(dev);
2080 		if (!mac) {
2081 			device_printf(dev, "No station address in CIS!\n");
2082 			error = ENXIO;
2083 			goto fail;
2084 		}
2085 		bcopy(mac, eaddr, ETHER_ADDR_LEN);
2086 		break;
2087 	default:
2088 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2089 		break;
2090 	}
2091 
2092 	sc->dc_unit = unit;
2093 	bcopy(eaddr, &sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
2094 
2095 	/* Allocate a busdma tag and DMA safe memory for TX/RX descriptors. */
2096 	error = bus_dma_tag_create(NULL, PAGE_SIZE, 0, BUS_SPACE_MAXADDR_32BIT,
2097 	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct dc_list_data), 1,
2098 	    sizeof(struct dc_list_data), 0, NULL, NULL, &sc->dc_ltag);
2099 	if (error) {
2100 		printf("dc%d: failed to allocate busdma tag\n", unit);
2101 		error = ENXIO;
2102 		goto fail;
2103 	}
2104 	error = bus_dmamem_alloc(sc->dc_ltag, (void **)&sc->dc_ldata,
2105 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->dc_lmap);
2106 	if (error) {
2107 		printf("dc%d: failed to allocate DMA safe memory\n", unit);
2108 		error = ENXIO;
2109 		goto fail;
2110 	}
2111 	error = bus_dmamap_load(sc->dc_ltag, sc->dc_lmap, sc->dc_ldata,
2112 	    sizeof(struct dc_list_data), dc_dma_map_addr, &sc->dc_laddr,
2113 	    BUS_DMA_NOWAIT);
2114 	if (error) {
2115 		printf("dc%d: cannot get address of the descriptors\n", unit);
2116 		error = ENXIO;
2117 		goto fail;
2118 	}
2119 
2120 	/*
2121 	 * Allocate a busdma tag and DMA safe memory for the multicast
2122 	 * setup frame.
2123 	 */
2124 	error = bus_dma_tag_create(NULL, PAGE_SIZE, 0, BUS_SPACE_MAXADDR_32BIT,
2125 	    BUS_SPACE_MAXADDR, NULL, NULL, DC_SFRAME_LEN + DC_MIN_FRAMELEN, 1,
2126 	    DC_SFRAME_LEN + DC_MIN_FRAMELEN, 0, NULL, NULL, &sc->dc_stag);
2127 	if (error) {
2128 		printf("dc%d: failed to allocate busdma tag\n", unit);
2129 		error = ENXIO;
2130 		goto fail;
2131 	}
2132 	error = bus_dmamem_alloc(sc->dc_stag, (void **)&sc->dc_cdata.dc_sbuf,
2133 	    BUS_DMA_NOWAIT, &sc->dc_smap);
2134 	if (error) {
2135 		printf("dc%d: failed to allocate DMA safe memory\n", unit);
2136 		error = ENXIO;
2137 		goto fail;
2138 	}
2139 	error = bus_dmamap_load(sc->dc_stag, sc->dc_smap, sc->dc_cdata.dc_sbuf,
2140 	    DC_SFRAME_LEN, dc_dma_map_addr, &sc->dc_saddr, BUS_DMA_NOWAIT);
2141 	if (error) {
2142 		printf("dc%d: cannot get address of the descriptors\n", unit);
2143 		error = ENXIO;
2144 		goto fail;
2145 	}
2146 
2147 	/* Allocate a busdma tag for mbufs. */
2148 	error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
2149 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, DC_TX_LIST_CNT, MCLBYTES,
2150 	    0, NULL, NULL, &sc->dc_mtag);
2151 	if (error) {
2152 		printf("dc%d: failed to allocate busdma tag\n", unit);
2153 		error = ENXIO;
2154 		goto fail;
2155 	}
2156 
2157 	/* Create the TX/RX busdma maps. */
2158 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2159 		error = bus_dmamap_create(sc->dc_mtag, 0,
2160 		    &sc->dc_cdata.dc_tx_map[i]);
2161 		if (error) {
2162 			printf("dc%d: failed to init TX ring\n", unit);
2163 			error = ENXIO;
2164 			goto fail;
2165 		}
2166 	}
2167 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2168 		error = bus_dmamap_create(sc->dc_mtag, 0,
2169 		    &sc->dc_cdata.dc_rx_map[i]);
2170 		if (error) {
2171 			printf("dc%d: failed to init RX ring\n", unit);
2172 			error = ENXIO;
2173 			goto fail;
2174 		}
2175 	}
2176 	error = bus_dmamap_create(sc->dc_mtag, 0, &sc->dc_sparemap);
2177 	if (error) {
2178 		printf("dc%d: failed to init RX ring\n", unit);
2179 		error = ENXIO;
2180 		goto fail;
2181 	}
2182 
2183 	ifp = &sc->arpcom.ac_if;
2184 	ifp->if_softc = sc;
2185 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2186 	/* XXX: bleah, MTU gets overwritten in ether_ifattach() */
2187 	ifp->if_mtu = ETHERMTU;
2188 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2189 	if (!IS_MPSAFE)
2190 		ifp->if_flags |= IFF_NEEDSGIANT;
2191 	ifp->if_ioctl = dc_ioctl;
2192 	ifp->if_start = dc_start;
2193 	ifp->if_watchdog = dc_watchdog;
2194 	ifp->if_init = dc_init;
2195 	ifp->if_baudrate = 10000000;
2196 	IFQ_SET_MAXLEN(&ifp->if_snd, DC_TX_LIST_CNT - 1);
2197 	ifp->if_snd.ifq_drv_maxlen = DC_TX_LIST_CNT - 1;
2198 	IFQ_SET_READY(&ifp->if_snd);
2199 
2200 	/*
2201 	 * Do MII setup. If this is a 21143, check for a PHY on the
2202 	 * MII bus after applying any necessary fixups to twiddle the
2203 	 * GPIO bits. If we don't end up finding a PHY, restore the
2204 	 * old selection (SIA only or SIA/SYM) and attach the dcphy
2205 	 * driver instead.
2206 	 */
2207 	if (DC_IS_INTEL(sc)) {
2208 		dc_apply_fixup(sc, IFM_AUTO);
2209 		tmp = sc->dc_pmode;
2210 		sc->dc_pmode = DC_PMODE_MII;
2211 	}
2212 
2213 	/*
2214 	 * Setup General Purpose port mode and data so the tulip can talk
2215 	 * to the MII.  This needs to be done before mii_phy_probe so that
2216 	 * we can actually see them.
2217 	 */
2218 	if (DC_IS_XIRCOM(sc)) {
2219 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
2220 		    DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2221 		DELAY(10);
2222 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
2223 		    DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2224 		DELAY(10);
2225 	}
2226 
2227 	error = mii_phy_probe(dev, &sc->dc_miibus,
2228 	    dc_ifmedia_upd, dc_ifmedia_sts);
2229 
2230 	if (error && DC_IS_INTEL(sc)) {
2231 		sc->dc_pmode = tmp;
2232 		if (sc->dc_pmode != DC_PMODE_SIA)
2233 			sc->dc_pmode = DC_PMODE_SYM;
2234 		sc->dc_flags |= DC_21143_NWAY;
2235 		mii_phy_probe(dev, &sc->dc_miibus,
2236 		    dc_ifmedia_upd, dc_ifmedia_sts);
2237 		/*
2238 		 * For non-MII cards, we need to have the 21143
2239 		 * drive the LEDs. Except there are some systems
2240 		 * like the NEC VersaPro NoteBook PC which have no
2241 		 * LEDs, and twiddling these bits has adverse effects
2242 		 * on them. (I.e. you suddenly can't get a link.)
2243 		 */
2244 		if (pci_read_config(dev, DC_PCI_CSID, 4) != 0x80281033)
2245 			sc->dc_flags |= DC_TULIP_LEDS;
2246 		error = 0;
2247 	}
2248 
2249 	if (error) {
2250 		printf("dc%d: MII without any PHY!\n", sc->dc_unit);
2251 		goto fail;
2252 	}
2253 
2254 	if (DC_IS_ADMTEK(sc)) {
2255 		/*
2256 		 * Set automatic TX underrun recovery for the ADMtek chips
2257 		 */
2258 		DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR);
2259 	}
2260 
2261 	/*
2262 	 * Tell the upper layer(s) we support long frames.
2263 	 */
2264 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2265 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
2266 #ifdef DEVICE_POLLING
2267 	ifp->if_capabilities |= IFCAP_POLLING;
2268 #endif
2269 	ifp->if_capenable = ifp->if_capabilities;
2270 
2271 	callout_init(&sc->dc_stat_ch, IS_MPSAFE ? CALLOUT_MPSAFE : 0);
2272 
2273 #ifdef SRM_MEDIA
2274 	sc->dc_srm_media = 0;
2275 
2276 	/* Remember the SRM console media setting */
2277 	if (DC_IS_INTEL(sc)) {
2278 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
2279 		command &= ~(DC_CFDD_SNOOZE_MODE | DC_CFDD_SLEEP_MODE);
2280 		switch ((command >> 8) & 0xff) {
2281 		case 3:
2282 			sc->dc_srm_media = IFM_10_T;
2283 			break;
2284 		case 4:
2285 			sc->dc_srm_media = IFM_10_T | IFM_FDX;
2286 			break;
2287 		case 5:
2288 			sc->dc_srm_media = IFM_100_TX;
2289 			break;
2290 		case 6:
2291 			sc->dc_srm_media = IFM_100_TX | IFM_FDX;
2292 			break;
2293 		}
2294 		if (sc->dc_srm_media)
2295 			sc->dc_srm_media |= IFM_ACTIVE | IFM_ETHER;
2296 	}
2297 #endif
2298 
2299 	/*
2300 	 * Call MI attach routine.
2301 	 */
2302 	ether_ifattach(ifp, eaddr);
2303 
2304 	/* Hook interrupt last to avoid having to lock softc */
2305 	error = bus_setup_intr(dev, sc->dc_irq, INTR_TYPE_NET |
2306 	    (IS_MPSAFE ? INTR_MPSAFE : 0),
2307 	    dc_intr, sc, &sc->dc_intrhand);
2308 
2309 	if (error) {
2310 		printf("dc%d: couldn't set up irq\n", unit);
2311 		ether_ifdetach(ifp);
2312 		goto fail;
2313 	}
2314 
2315 fail:
2316 	if (error)
2317 		dc_detach(dev);
2318 	return (error);
2319 }
2320 
2321 /*
2322  * Shutdown hardware and free up resources. This can be called any
2323  * time after the mutex has been initialized. It is called in both
2324  * the error case in attach and the normal detach case so it needs
2325  * to be careful about only freeing resources that have actually been
2326  * allocated.
2327  */
2328 static int
2329 dc_detach(device_t dev)
2330 {
2331 	struct dc_softc *sc;
2332 	struct ifnet *ifp;
2333 	struct dc_mediainfo *m;
2334 	int i;
2335 
2336 	sc = device_get_softc(dev);
2337 	KASSERT(mtx_initialized(&sc->dc_mtx), ("dc mutex not initialized"));
2338 	DC_LOCK(sc);
2339 
2340 	ifp = &sc->arpcom.ac_if;
2341 
2342 	/* These should only be active if attach succeeded */
2343 	if (device_is_attached(dev)) {
2344 		dc_stop(sc);
2345 		ether_ifdetach(ifp);
2346 	}
2347 	if (sc->dc_miibus)
2348 		device_delete_child(dev, sc->dc_miibus);
2349 	bus_generic_detach(dev);
2350 
2351 	if (sc->dc_intrhand)
2352 		bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2353 	if (sc->dc_irq)
2354 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2355 	if (sc->dc_res)
2356 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2357 
2358 	if (sc->dc_cdata.dc_sbuf != NULL)
2359 		bus_dmamem_free(sc->dc_stag, sc->dc_cdata.dc_sbuf, sc->dc_smap);
2360 	if (sc->dc_ldata != NULL)
2361 		bus_dmamem_free(sc->dc_ltag, sc->dc_ldata, sc->dc_lmap);
2362 	for (i = 0; i < DC_TX_LIST_CNT; i++)
2363 		bus_dmamap_destroy(sc->dc_mtag, sc->dc_cdata.dc_tx_map[i]);
2364 	for (i = 0; i < DC_RX_LIST_CNT; i++)
2365 		bus_dmamap_destroy(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i]);
2366 	bus_dmamap_destroy(sc->dc_mtag, sc->dc_sparemap);
2367 	if (sc->dc_stag)
2368 		bus_dma_tag_destroy(sc->dc_stag);
2369 	if (sc->dc_mtag)
2370 		bus_dma_tag_destroy(sc->dc_mtag);
2371 	if (sc->dc_ltag)
2372 		bus_dma_tag_destroy(sc->dc_ltag);
2373 
2374 	free(sc->dc_pnic_rx_buf, M_DEVBUF);
2375 
2376 	while (sc->dc_mi != NULL) {
2377 		m = sc->dc_mi->dc_next;
2378 		free(sc->dc_mi, M_DEVBUF);
2379 		sc->dc_mi = m;
2380 	}
2381 	free(sc->dc_srom, M_DEVBUF);
2382 
2383 	DC_UNLOCK(sc);
2384 	mtx_destroy(&sc->dc_mtx);
2385 
2386 	return (0);
2387 }
2388 
2389 /*
2390  * Initialize the transmit descriptors.
2391  */
2392 static int
2393 dc_list_tx_init(struct dc_softc *sc)
2394 {
2395 	struct dc_chain_data *cd;
2396 	struct dc_list_data *ld;
2397 	int i, nexti;
2398 
2399 	cd = &sc->dc_cdata;
2400 	ld = sc->dc_ldata;
2401 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2402 		if (i == DC_TX_LIST_CNT - 1)
2403 			nexti = 0;
2404 		else
2405 			nexti = i + 1;
2406 		ld->dc_tx_list[i].dc_next = htole32(DC_TXDESC(sc, nexti));
2407 		cd->dc_tx_chain[i] = NULL;
2408 		ld->dc_tx_list[i].dc_data = 0;
2409 		ld->dc_tx_list[i].dc_ctl = 0;
2410 	}
2411 
2412 	cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
2413 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
2414 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2415 	return (0);
2416 }
2417 
2418 
2419 /*
2420  * Initialize the RX descriptors and allocate mbufs for them. Note that
2421  * we arrange the descriptors in a closed ring, so that the last descriptor
2422  * points back to the first.
2423  */
2424 static int
2425 dc_list_rx_init(struct dc_softc *sc)
2426 {
2427 	struct dc_chain_data *cd;
2428 	struct dc_list_data *ld;
2429 	int i, nexti;
2430 
2431 	cd = &sc->dc_cdata;
2432 	ld = sc->dc_ldata;
2433 
2434 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2435 		if (dc_newbuf(sc, i, 1) != 0)
2436 			return (ENOBUFS);
2437 		if (i == DC_RX_LIST_CNT - 1)
2438 			nexti = 0;
2439 		else
2440 			nexti = i + 1;
2441 		ld->dc_rx_list[i].dc_next = htole32(DC_RXDESC(sc, nexti));
2442 	}
2443 
2444 	cd->dc_rx_prod = 0;
2445 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
2446 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2447 	return (0);
2448 }
2449 
2450 static void
2451 dc_dma_map_rxbuf(arg, segs, nseg, mapsize, error)
2452 	void *arg;
2453 	bus_dma_segment_t *segs;
2454 	int nseg;
2455 	bus_size_t mapsize;
2456 	int error;
2457 {
2458 	struct dc_softc *sc;
2459 	struct dc_desc *c;
2460 
2461 	sc = arg;
2462 	c = &sc->dc_ldata->dc_rx_list[sc->dc_cdata.dc_rx_cur];
2463 	if (error) {
2464 		sc->dc_cdata.dc_rx_err = error;
2465 		return;
2466 	}
2467 
2468 	KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
2469 	sc->dc_cdata.dc_rx_err = 0;
2470 	c->dc_data = htole32(segs->ds_addr);
2471 }
2472 
2473 /*
2474  * Initialize an RX descriptor and attach an MBUF cluster.
2475  */
2476 static int
2477 dc_newbuf(struct dc_softc *sc, int i, int alloc)
2478 {
2479 	struct mbuf *m_new;
2480 	bus_dmamap_t tmp;
2481 	int error;
2482 
2483 	if (alloc) {
2484 		m_new = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2485 		if (m_new == NULL)
2486 			return (ENOBUFS);
2487 	} else {
2488 		m_new = sc->dc_cdata.dc_rx_chain[i];
2489 		m_new->m_data = m_new->m_ext.ext_buf;
2490 	}
2491 	m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2492 	m_adj(m_new, sizeof(u_int64_t));
2493 
2494 	/*
2495 	 * If this is a PNIC chip, zero the buffer. This is part
2496 	 * of the workaround for the receive bug in the 82c168 and
2497 	 * 82c169 chips.
2498 	 */
2499 	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
2500 		bzero(mtod(m_new, char *), m_new->m_len);
2501 
2502 	/* No need to remap the mbuf if we're reusing it. */
2503 	if (alloc) {
2504 		sc->dc_cdata.dc_rx_cur = i;
2505 		error = bus_dmamap_load_mbuf(sc->dc_mtag, sc->dc_sparemap,
2506 		    m_new, dc_dma_map_rxbuf, sc, 0);
2507 		if (error) {
2508 			m_freem(m_new);
2509 			return (error);
2510 		}
2511 		if (sc->dc_cdata.dc_rx_err != 0) {
2512 			m_freem(m_new);
2513 			return (sc->dc_cdata.dc_rx_err);
2514 		}
2515 		bus_dmamap_unload(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i]);
2516 		tmp = sc->dc_cdata.dc_rx_map[i];
2517 		sc->dc_cdata.dc_rx_map[i] = sc->dc_sparemap;
2518 		sc->dc_sparemap = tmp;
2519 		sc->dc_cdata.dc_rx_chain[i] = m_new;
2520 	}
2521 
2522 	sc->dc_ldata->dc_rx_list[i].dc_ctl = htole32(DC_RXCTL_RLINK | DC_RXLEN);
2523 	sc->dc_ldata->dc_rx_list[i].dc_status = htole32(DC_RXSTAT_OWN);
2524 	bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i],
2525 	    BUS_DMASYNC_PREREAD);
2526 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
2527 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2528 	return (0);
2529 }
2530 
2531 /*
2532  * Grrrrr.
2533  * The PNIC chip has a terrible bug in it that manifests itself during
2534  * periods of heavy activity. The exact mode of failure if difficult to
2535  * pinpoint: sometimes it only happens in promiscuous mode, sometimes it
2536  * will happen on slow machines. The bug is that sometimes instead of
2537  * uploading one complete frame during reception, it uploads what looks
2538  * like the entire contents of its FIFO memory. The frame we want is at
2539  * the end of the whole mess, but we never know exactly how much data has
2540  * been uploaded, so salvaging the frame is hard.
2541  *
2542  * There is only one way to do it reliably, and it's disgusting.
2543  * Here's what we know:
2544  *
2545  * - We know there will always be somewhere between one and three extra
2546  *   descriptors uploaded.
2547  *
2548  * - We know the desired received frame will always be at the end of the
2549  *   total data upload.
2550  *
2551  * - We know the size of the desired received frame because it will be
2552  *   provided in the length field of the status word in the last descriptor.
2553  *
2554  * Here's what we do:
2555  *
2556  * - When we allocate buffers for the receive ring, we bzero() them.
2557  *   This means that we know that the buffer contents should be all
2558  *   zeros, except for data uploaded by the chip.
2559  *
2560  * - We also force the PNIC chip to upload frames that include the
2561  *   ethernet CRC at the end.
2562  *
2563  * - We gather all of the bogus frame data into a single buffer.
2564  *
2565  * - We then position a pointer at the end of this buffer and scan
2566  *   backwards until we encounter the first non-zero byte of data.
2567  *   This is the end of the received frame. We know we will encounter
2568  *   some data at the end of the frame because the CRC will always be
2569  *   there, so even if the sender transmits a packet of all zeros,
2570  *   we won't be fooled.
2571  *
2572  * - We know the size of the actual received frame, so we subtract
2573  *   that value from the current pointer location. This brings us
2574  *   to the start of the actual received packet.
2575  *
2576  * - We copy this into an mbuf and pass it on, along with the actual
2577  *   frame length.
2578  *
2579  * The performance hit is tremendous, but it beats dropping frames all
2580  * the time.
2581  */
2582 
2583 #define DC_WHOLEFRAME	(DC_RXSTAT_FIRSTFRAG | DC_RXSTAT_LASTFRAG)
2584 static void
2585 dc_pnic_rx_bug_war(struct dc_softc *sc, int idx)
2586 {
2587 	struct dc_desc *cur_rx;
2588 	struct dc_desc *c = NULL;
2589 	struct mbuf *m = NULL;
2590 	unsigned char *ptr;
2591 	int i, total_len;
2592 	u_int32_t rxstat = 0;
2593 
2594 	i = sc->dc_pnic_rx_bug_save;
2595 	cur_rx = &sc->dc_ldata->dc_rx_list[idx];
2596 	ptr = sc->dc_pnic_rx_buf;
2597 	bzero(ptr, DC_RXLEN * 5);
2598 
2599 	/* Copy all the bytes from the bogus buffers. */
2600 	while (1) {
2601 		c = &sc->dc_ldata->dc_rx_list[i];
2602 		rxstat = le32toh(c->dc_status);
2603 		m = sc->dc_cdata.dc_rx_chain[i];
2604 		bcopy(mtod(m, char *), ptr, DC_RXLEN);
2605 		ptr += DC_RXLEN;
2606 		/* If this is the last buffer, break out. */
2607 		if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
2608 			break;
2609 		dc_newbuf(sc, i, 0);
2610 		DC_INC(i, DC_RX_LIST_CNT);
2611 	}
2612 
2613 	/* Find the length of the actual receive frame. */
2614 	total_len = DC_RXBYTES(rxstat);
2615 
2616 	/* Scan backwards until we hit a non-zero byte. */
2617 	while (*ptr == 0x00)
2618 		ptr--;
2619 
2620 	/* Round off. */
2621 	if ((uintptr_t)(ptr) & 0x3)
2622 		ptr -= 1;
2623 
2624 	/* Now find the start of the frame. */
2625 	ptr -= total_len;
2626 	if (ptr < sc->dc_pnic_rx_buf)
2627 		ptr = sc->dc_pnic_rx_buf;
2628 
2629 	/*
2630 	 * Now copy the salvaged frame to the last mbuf and fake up
2631 	 * the status word to make it look like a successful
2632 	 * frame reception.
2633 	 */
2634 	dc_newbuf(sc, i, 0);
2635 	bcopy(ptr, mtod(m, char *), total_len);
2636 	cur_rx->dc_status = htole32(rxstat | DC_RXSTAT_FIRSTFRAG);
2637 }
2638 
2639 /*
2640  * This routine searches the RX ring for dirty descriptors in the
2641  * event that the rxeof routine falls out of sync with the chip's
2642  * current descriptor pointer. This may happen sometimes as a result
2643  * of a "no RX buffer available" condition that happens when the chip
2644  * consumes all of the RX buffers before the driver has a chance to
2645  * process the RX ring. This routine may need to be called more than
2646  * once to bring the driver back in sync with the chip, however we
2647  * should still be getting RX DONE interrupts to drive the search
2648  * for new packets in the RX ring, so we should catch up eventually.
2649  */
2650 static int
2651 dc_rx_resync(struct dc_softc *sc)
2652 {
2653 	struct dc_desc *cur_rx;
2654 	int i, pos;
2655 
2656 	pos = sc->dc_cdata.dc_rx_prod;
2657 
2658 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2659 		cur_rx = &sc->dc_ldata->dc_rx_list[pos];
2660 		if (!(le32toh(cur_rx->dc_status) & DC_RXSTAT_OWN))
2661 			break;
2662 		DC_INC(pos, DC_RX_LIST_CNT);
2663 	}
2664 
2665 	/* If the ring really is empty, then just return. */
2666 	if (i == DC_RX_LIST_CNT)
2667 		return (0);
2668 
2669 	/* We've fallen behing the chip: catch it. */
2670 	sc->dc_cdata.dc_rx_prod = pos;
2671 
2672 	return (EAGAIN);
2673 }
2674 
2675 /*
2676  * A frame has been uploaded: pass the resulting mbuf chain up to
2677  * the higher level protocols.
2678  */
2679 static void
2680 dc_rxeof(struct dc_softc *sc)
2681 {
2682 	struct mbuf *m;
2683 	struct ifnet *ifp;
2684 	struct dc_desc *cur_rx;
2685 	int i, total_len = 0;
2686 	u_int32_t rxstat;
2687 
2688 	DC_LOCK_ASSERT(sc);
2689 
2690 	ifp = &sc->arpcom.ac_if;
2691 	i = sc->dc_cdata.dc_rx_prod;
2692 
2693 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap, BUS_DMASYNC_POSTREAD);
2694 	while (!(le32toh(sc->dc_ldata->dc_rx_list[i].dc_status) &
2695 	    DC_RXSTAT_OWN)) {
2696 #ifdef DEVICE_POLLING
2697 		if (ifp->if_flags & IFF_POLLING) {
2698 			if (sc->rxcycles <= 0)
2699 				break;
2700 			sc->rxcycles--;
2701 		}
2702 #endif
2703 		cur_rx = &sc->dc_ldata->dc_rx_list[i];
2704 		rxstat = le32toh(cur_rx->dc_status);
2705 		m = sc->dc_cdata.dc_rx_chain[i];
2706 		bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i],
2707 		    BUS_DMASYNC_POSTREAD);
2708 		total_len = DC_RXBYTES(rxstat);
2709 
2710 		if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2711 			if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
2712 				if (rxstat & DC_RXSTAT_FIRSTFRAG)
2713 					sc->dc_pnic_rx_bug_save = i;
2714 				if ((rxstat & DC_RXSTAT_LASTFRAG) == 0) {
2715 					DC_INC(i, DC_RX_LIST_CNT);
2716 					continue;
2717 				}
2718 				dc_pnic_rx_bug_war(sc, i);
2719 				rxstat = le32toh(cur_rx->dc_status);
2720 				total_len = DC_RXBYTES(rxstat);
2721 			}
2722 		}
2723 
2724 		/*
2725 		 * If an error occurs, update stats, clear the
2726 		 * status word and leave the mbuf cluster in place:
2727 		 * it should simply get re-used next time this descriptor
2728 		 * comes up in the ring.  However, don't report long
2729 		 * frames as errors since they could be vlans.
2730 		 */
2731 		if ((rxstat & DC_RXSTAT_RXERR)) {
2732 			if (!(rxstat & DC_RXSTAT_GIANT) ||
2733 			    (rxstat & (DC_RXSTAT_CRCERR | DC_RXSTAT_DRIBBLE |
2734 				       DC_RXSTAT_MIIERE | DC_RXSTAT_COLLSEEN |
2735 				       DC_RXSTAT_RUNT   | DC_RXSTAT_DE))) {
2736 				ifp->if_ierrors++;
2737 				if (rxstat & DC_RXSTAT_COLLSEEN)
2738 					ifp->if_collisions++;
2739 				dc_newbuf(sc, i, 0);
2740 				if (rxstat & DC_RXSTAT_CRCERR) {
2741 					DC_INC(i, DC_RX_LIST_CNT);
2742 					continue;
2743 				} else {
2744 					dc_init(sc);
2745 					return;
2746 				}
2747 			}
2748 		}
2749 
2750 		/* No errors; receive the packet. */
2751 		total_len -= ETHER_CRC_LEN;
2752 #ifdef __i386__
2753 		/*
2754 		 * On the x86 we do not have alignment problems, so try to
2755 		 * allocate a new buffer for the receive ring, and pass up
2756 		 * the one where the packet is already, saving the expensive
2757 		 * copy done in m_devget().
2758 		 * If we are on an architecture with alignment problems, or
2759 		 * if the allocation fails, then use m_devget and leave the
2760 		 * existing buffer in the receive ring.
2761 		 */
2762 		if (dc_quick && dc_newbuf(sc, i, 1) == 0) {
2763 			m->m_pkthdr.rcvif = ifp;
2764 			m->m_pkthdr.len = m->m_len = total_len;
2765 			DC_INC(i, DC_RX_LIST_CNT);
2766 		} else
2767 #endif
2768 		{
2769 			struct mbuf *m0;
2770 
2771 			m0 = m_devget(mtod(m, char *), total_len,
2772 				ETHER_ALIGN, ifp, NULL);
2773 			dc_newbuf(sc, i, 0);
2774 			DC_INC(i, DC_RX_LIST_CNT);
2775 			if (m0 == NULL) {
2776 				ifp->if_ierrors++;
2777 				continue;
2778 			}
2779 			m = m0;
2780 		}
2781 
2782 		ifp->if_ipackets++;
2783 		DC_UNLOCK(sc);
2784 		(*ifp->if_input)(ifp, m);
2785 		DC_LOCK(sc);
2786 	}
2787 
2788 	sc->dc_cdata.dc_rx_prod = i;
2789 }
2790 
2791 /*
2792  * A frame was downloaded to the chip. It's safe for us to clean up
2793  * the list buffers.
2794  */
2795 
2796 static void
2797 dc_txeof(struct dc_softc *sc)
2798 {
2799 	struct dc_desc *cur_tx = NULL;
2800 	struct ifnet *ifp;
2801 	int idx;
2802 	u_int32_t ctl, txstat;
2803 
2804 	ifp = &sc->arpcom.ac_if;
2805 
2806 	/*
2807 	 * Go through our tx list and free mbufs for those
2808 	 * frames that have been transmitted.
2809 	 */
2810 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap, BUS_DMASYNC_POSTREAD);
2811 	idx = sc->dc_cdata.dc_tx_cons;
2812 	while (idx != sc->dc_cdata.dc_tx_prod) {
2813 
2814 		cur_tx = &sc->dc_ldata->dc_tx_list[idx];
2815 		txstat = le32toh(cur_tx->dc_status);
2816 		ctl = le32toh(cur_tx->dc_ctl);
2817 
2818 		if (txstat & DC_TXSTAT_OWN)
2819 			break;
2820 
2821 		if (!(ctl & DC_TXCTL_LASTFRAG) || ctl & DC_TXCTL_SETUP) {
2822 			if (ctl & DC_TXCTL_SETUP) {
2823 				/*
2824 				 * Yes, the PNIC is so brain damaged
2825 				 * that it will sometimes generate a TX
2826 				 * underrun error while DMAing the RX
2827 				 * filter setup frame. If we detect this,
2828 				 * we have to send the setup frame again,
2829 				 * or else the filter won't be programmed
2830 				 * correctly.
2831 				 */
2832 				if (DC_IS_PNIC(sc)) {
2833 					if (txstat & DC_TXSTAT_ERRSUM)
2834 						dc_setfilt(sc);
2835 				}
2836 				sc->dc_cdata.dc_tx_chain[idx] = NULL;
2837 			}
2838 			sc->dc_cdata.dc_tx_cnt--;
2839 			DC_INC(idx, DC_TX_LIST_CNT);
2840 			continue;
2841 		}
2842 
2843 		if (DC_IS_XIRCOM(sc) || DC_IS_CONEXANT(sc)) {
2844 			/*
2845 			 * XXX: Why does my Xircom taunt me so?
2846 			 * For some reason it likes setting the CARRLOST flag
2847 			 * even when the carrier is there. wtf?!?
2848 			 * Who knows, but Conexant chips have the
2849 			 * same problem. Maybe they took lessons
2850 			 * from Xircom.
2851 			 */
2852 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2853 			    sc->dc_pmode == DC_PMODE_MII &&
2854 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
2855 			    DC_TXSTAT_NOCARRIER)))
2856 				txstat &= ~DC_TXSTAT_ERRSUM;
2857 		} else {
2858 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2859 			    sc->dc_pmode == DC_PMODE_MII &&
2860 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
2861 			    DC_TXSTAT_NOCARRIER | DC_TXSTAT_CARRLOST)))
2862 				txstat &= ~DC_TXSTAT_ERRSUM;
2863 		}
2864 
2865 		if (txstat & DC_TXSTAT_ERRSUM) {
2866 			ifp->if_oerrors++;
2867 			if (txstat & DC_TXSTAT_EXCESSCOLL)
2868 				ifp->if_collisions++;
2869 			if (txstat & DC_TXSTAT_LATECOLL)
2870 				ifp->if_collisions++;
2871 			if (!(txstat & DC_TXSTAT_UNDERRUN)) {
2872 				dc_init(sc);
2873 				return;
2874 			}
2875 		}
2876 
2877 		ifp->if_collisions += (txstat & DC_TXSTAT_COLLCNT) >> 3;
2878 
2879 		ifp->if_opackets++;
2880 		if (sc->dc_cdata.dc_tx_chain[idx] != NULL) {
2881 			bus_dmamap_sync(sc->dc_mtag,
2882 			    sc->dc_cdata.dc_tx_map[idx],
2883 			    BUS_DMASYNC_POSTWRITE);
2884 			bus_dmamap_unload(sc->dc_mtag,
2885 			    sc->dc_cdata.dc_tx_map[idx]);
2886 			m_freem(sc->dc_cdata.dc_tx_chain[idx]);
2887 			sc->dc_cdata.dc_tx_chain[idx] = NULL;
2888 		}
2889 
2890 		sc->dc_cdata.dc_tx_cnt--;
2891 		DC_INC(idx, DC_TX_LIST_CNT);
2892 	}
2893 
2894 	if (idx != sc->dc_cdata.dc_tx_cons) {
2895 	    	/* Some buffers have been freed. */
2896 		sc->dc_cdata.dc_tx_cons = idx;
2897 		ifp->if_flags &= ~IFF_OACTIVE;
2898 	}
2899 	ifp->if_timer = (sc->dc_cdata.dc_tx_cnt == 0) ? 0 : 5;
2900 }
2901 
2902 static void
2903 dc_tick(void *xsc)
2904 {
2905 	struct dc_softc *sc;
2906 	struct mii_data *mii;
2907 	struct ifnet *ifp;
2908 	u_int32_t r;
2909 
2910 	sc = xsc;
2911 	DC_LOCK(sc);
2912 	ifp = &sc->arpcom.ac_if;
2913 	mii = device_get_softc(sc->dc_miibus);
2914 
2915 	if (sc->dc_flags & DC_REDUCED_MII_POLL) {
2916 		if (sc->dc_flags & DC_21143_NWAY) {
2917 			r = CSR_READ_4(sc, DC_10BTSTAT);
2918 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2919 			    IFM_100_TX && (r & DC_TSTAT_LS100)) {
2920 				sc->dc_link = 0;
2921 				mii_mediachg(mii);
2922 			}
2923 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2924 			    IFM_10_T && (r & DC_TSTAT_LS10)) {
2925 				sc->dc_link = 0;
2926 				mii_mediachg(mii);
2927 			}
2928 			if (sc->dc_link == 0)
2929 				mii_tick(mii);
2930 		} else {
2931 			r = CSR_READ_4(sc, DC_ISR);
2932 			if ((r & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT &&
2933 			    sc->dc_cdata.dc_tx_cnt == 0) {
2934 				mii_tick(mii);
2935 				if (!(mii->mii_media_status & IFM_ACTIVE))
2936 					sc->dc_link = 0;
2937 			}
2938 		}
2939 	} else
2940 		mii_tick(mii);
2941 
2942 	/*
2943 	 * When the init routine completes, we expect to be able to send
2944 	 * packets right away, and in fact the network code will send a
2945 	 * gratuitous ARP the moment the init routine marks the interface
2946 	 * as running. However, even though the MAC may have been initialized,
2947 	 * there may be a delay of a few seconds before the PHY completes
2948 	 * autonegotiation and the link is brought up. Any transmissions
2949 	 * made during that delay will be lost. Dealing with this is tricky:
2950 	 * we can't just pause in the init routine while waiting for the
2951 	 * PHY to come ready since that would bring the whole system to
2952 	 * a screeching halt for several seconds.
2953 	 *
2954 	 * What we do here is prevent the TX start routine from sending
2955 	 * any packets until a link has been established. After the
2956 	 * interface has been initialized, the tick routine will poll
2957 	 * the state of the PHY until the IFM_ACTIVE flag is set. Until
2958 	 * that time, packets will stay in the send queue, and once the
2959 	 * link comes up, they will be flushed out to the wire.
2960 	 */
2961 	if (!sc->dc_link && mii->mii_media_status & IFM_ACTIVE &&
2962 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2963 		sc->dc_link++;
2964 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2965 			dc_start(ifp);
2966 	}
2967 
2968 	if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link)
2969 		callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
2970 	else
2971 		callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
2972 
2973 	DC_UNLOCK(sc);
2974 }
2975 
2976 /*
2977  * A transmit underrun has occurred.  Back off the transmit threshold,
2978  * or switch to store and forward mode if we have to.
2979  */
2980 static void
2981 dc_tx_underrun(struct dc_softc *sc)
2982 {
2983 	u_int32_t isr;
2984 	int i;
2985 
2986 	if (DC_IS_DAVICOM(sc))
2987 		dc_init(sc);
2988 
2989 	if (DC_IS_INTEL(sc)) {
2990 		/*
2991 		 * The real 21143 requires that the transmitter be idle
2992 		 * in order to change the transmit threshold or store
2993 		 * and forward state.
2994 		 */
2995 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2996 
2997 		for (i = 0; i < DC_TIMEOUT; i++) {
2998 			isr = CSR_READ_4(sc, DC_ISR);
2999 			if (isr & DC_ISR_TX_IDLE)
3000 				break;
3001 			DELAY(10);
3002 		}
3003 		if (i == DC_TIMEOUT) {
3004 			printf("dc%d: failed to force tx to idle state\n",
3005 			    sc->dc_unit);
3006 			dc_init(sc);
3007 		}
3008 	}
3009 
3010 	printf("dc%d: TX underrun -- ", sc->dc_unit);
3011 	sc->dc_txthresh += DC_TXTHRESH_INC;
3012 	if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3013 		printf("using store and forward mode\n");
3014 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3015 	} else {
3016 		printf("increasing TX threshold\n");
3017 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3018 		DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3019 	}
3020 
3021 	if (DC_IS_INTEL(sc))
3022 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3023 }
3024 
3025 #ifdef DEVICE_POLLING
3026 static poll_handler_t dc_poll;
3027 
3028 static void
3029 dc_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
3030 {
3031 	struct dc_softc *sc = ifp->if_softc;
3032 
3033 	if (!(ifp->if_capenable & IFCAP_POLLING)) {
3034 		ether_poll_deregister(ifp);
3035 		cmd = POLL_DEREGISTER;
3036 	}
3037 	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
3038 		/* Re-enable interrupts. */
3039 		CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3040 		return;
3041 	}
3042 	DC_LOCK(sc);
3043 	sc->rxcycles = count;
3044 	dc_rxeof(sc);
3045 	dc_txeof(sc);
3046 	if (!IFQ_IS_EMPTY(&ifp->if_snd) && !(ifp->if_flags & IFF_OACTIVE))
3047 		dc_start(ifp);
3048 
3049 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
3050 		u_int32_t	status;
3051 
3052 		status = CSR_READ_4(sc, DC_ISR);
3053 		status &= (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF |
3054 			DC_ISR_TX_NOBUF | DC_ISR_TX_IDLE | DC_ISR_TX_UNDERRUN |
3055 			DC_ISR_BUS_ERR);
3056 		if (!status) {
3057 			DC_UNLOCK(sc);
3058 			return;
3059 		}
3060 		/* ack what we have */
3061 		CSR_WRITE_4(sc, DC_ISR, status);
3062 
3063 		if (status & (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF)) {
3064 			u_int32_t r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
3065 			ifp->if_ierrors += (r & 0xffff) + ((r >> 17) & 0x7ff);
3066 
3067 			if (dc_rx_resync(sc))
3068 				dc_rxeof(sc);
3069 		}
3070 		/* restart transmit unit if necessary */
3071 		if (status & DC_ISR_TX_IDLE && sc->dc_cdata.dc_tx_cnt)
3072 			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3073 
3074 		if (status & DC_ISR_TX_UNDERRUN)
3075 			dc_tx_underrun(sc);
3076 
3077 		if (status & DC_ISR_BUS_ERR) {
3078 			printf("dc_poll: dc%d bus error\n", sc->dc_unit);
3079 			dc_reset(sc);
3080 			dc_init(sc);
3081 		}
3082 	}
3083 	DC_UNLOCK(sc);
3084 }
3085 #endif /* DEVICE_POLLING */
3086 
3087 static void
3088 dc_intr(void *arg)
3089 {
3090 	struct dc_softc *sc;
3091 	struct ifnet *ifp;
3092 	u_int32_t status;
3093 
3094 	sc = arg;
3095 
3096 	if (sc->suspended)
3097 		return;
3098 
3099 	if ((CSR_READ_4(sc, DC_ISR) & DC_INTRS) == 0)
3100 		return;
3101 
3102 	DC_LOCK(sc);
3103 	ifp = &sc->arpcom.ac_if;
3104 #ifdef DEVICE_POLLING
3105 	if (ifp->if_flags & IFF_POLLING)
3106 		goto done;
3107 	if ((ifp->if_capenable & IFCAP_POLLING) &&
3108 	    ether_poll_register(dc_poll, ifp)) { /* ok, disable interrupts */
3109 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3110 		goto done;
3111 	}
3112 #endif
3113 
3114 	/* Suppress unwanted interrupts */
3115 	if (!(ifp->if_flags & IFF_UP)) {
3116 		if (CSR_READ_4(sc, DC_ISR) & DC_INTRS)
3117 			dc_stop(sc);
3118 		DC_UNLOCK(sc);
3119 		return;
3120 	}
3121 
3122 	/* Disable interrupts. */
3123 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3124 
3125 	while (((status = CSR_READ_4(sc, DC_ISR)) & DC_INTRS)
3126 	      && status != 0xFFFFFFFF) {
3127 
3128 		CSR_WRITE_4(sc, DC_ISR, status);
3129 
3130 		if (status & DC_ISR_RX_OK) {
3131 			int		curpkts;
3132 			curpkts = ifp->if_ipackets;
3133 			dc_rxeof(sc);
3134 			if (curpkts == ifp->if_ipackets) {
3135 				while (dc_rx_resync(sc))
3136 					dc_rxeof(sc);
3137 			}
3138 		}
3139 
3140 		if (status & (DC_ISR_TX_OK | DC_ISR_TX_NOBUF))
3141 			dc_txeof(sc);
3142 
3143 		if (status & DC_ISR_TX_IDLE) {
3144 			dc_txeof(sc);
3145 			if (sc->dc_cdata.dc_tx_cnt) {
3146 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3147 				CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3148 			}
3149 		}
3150 
3151 		if (status & DC_ISR_TX_UNDERRUN)
3152 			dc_tx_underrun(sc);
3153 
3154 		if ((status & DC_ISR_RX_WATDOGTIMEO)
3155 		    || (status & DC_ISR_RX_NOBUF)) {
3156 			int		curpkts;
3157 			curpkts = ifp->if_ipackets;
3158 			dc_rxeof(sc);
3159 			if (curpkts == ifp->if_ipackets) {
3160 				while (dc_rx_resync(sc))
3161 					dc_rxeof(sc);
3162 			}
3163 		}
3164 
3165 		if (status & DC_ISR_BUS_ERR) {
3166 			dc_reset(sc);
3167 			dc_init(sc);
3168 		}
3169 	}
3170 
3171 	/* Re-enable interrupts. */
3172 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3173 
3174 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3175 		dc_start(ifp);
3176 
3177 #ifdef DEVICE_POLLING
3178 done:
3179 #endif
3180 
3181 	DC_UNLOCK(sc);
3182 }
3183 
3184 static void
3185 dc_dma_map_txbuf(arg, segs, nseg, mapsize, error)
3186 	void *arg;
3187 	bus_dma_segment_t *segs;
3188 	int nseg;
3189 	bus_size_t mapsize;
3190 	int error;
3191 {
3192 	struct dc_softc *sc;
3193 	struct dc_desc *f;
3194 	int cur, first, frag, i;
3195 
3196 	sc = arg;
3197 	if (error) {
3198 		sc->dc_cdata.dc_tx_err = error;
3199 		return;
3200 	}
3201 
3202 	first = cur = frag = sc->dc_cdata.dc_tx_prod;
3203 	for (i = 0; i < nseg; i++) {
3204 		if ((sc->dc_flags & DC_TX_ADMTEK_WAR) &&
3205 		    (frag == (DC_TX_LIST_CNT - 1)) &&
3206 		    (first != sc->dc_cdata.dc_tx_first)) {
3207 			bus_dmamap_unload(sc->dc_mtag,
3208 			    sc->dc_cdata.dc_tx_map[first]);
3209 			sc->dc_cdata.dc_tx_err = ENOBUFS;
3210 			return;
3211 		}
3212 
3213 		f = &sc->dc_ldata->dc_tx_list[frag];
3214 		f->dc_ctl = htole32(DC_TXCTL_TLINK | segs[i].ds_len);
3215 		if (i == 0) {
3216 			f->dc_status = 0;
3217 			f->dc_ctl |= htole32(DC_TXCTL_FIRSTFRAG);
3218 		} else
3219 			f->dc_status = htole32(DC_TXSTAT_OWN);
3220 		f->dc_data = htole32(segs[i].ds_addr);
3221 		cur = frag;
3222 		DC_INC(frag, DC_TX_LIST_CNT);
3223 	}
3224 
3225 	sc->dc_cdata.dc_tx_err = 0;
3226 	sc->dc_cdata.dc_tx_prod = frag;
3227 	sc->dc_cdata.dc_tx_cnt += nseg;
3228 	sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_LASTFRAG);
3229 	sc->dc_cdata.dc_tx_chain[cur] = sc->dc_cdata.dc_tx_mapping;
3230 	if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
3231 		sc->dc_ldata->dc_tx_list[first].dc_ctl |=
3232 		    htole32(DC_TXCTL_FINT);
3233 	if (sc->dc_flags & DC_TX_INTR_ALWAYS)
3234 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
3235 	if (sc->dc_flags & DC_TX_USE_TX_INTR && sc->dc_cdata.dc_tx_cnt > 64)
3236 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
3237 	sc->dc_ldata->dc_tx_list[first].dc_status = htole32(DC_TXSTAT_OWN);
3238 }
3239 
3240 /*
3241  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
3242  * pointers to the fragment pointers.
3243  */
3244 static int
3245 dc_encap(struct dc_softc *sc, struct mbuf **m_head)
3246 {
3247 	struct mbuf *m;
3248 	int error, idx, chainlen = 0;
3249 
3250 	/*
3251 	 * If there's no way we can send any packets, return now.
3252 	 */
3253 	if (DC_TX_LIST_CNT - sc->dc_cdata.dc_tx_cnt < 6)
3254 		return (ENOBUFS);
3255 
3256 	/*
3257 	 * Count the number of frags in this chain to see if
3258 	 * we need to m_defrag.  Since the descriptor list is shared
3259 	 * by all packets, we'll m_defrag long chains so that they
3260 	 * do not use up the entire list, even if they would fit.
3261 	 */
3262 	for (m = *m_head; m != NULL; m = m->m_next)
3263 		chainlen++;
3264 
3265 	if ((chainlen > DC_TX_LIST_CNT / 4) ||
3266 	    ((DC_TX_LIST_CNT - (chainlen + sc->dc_cdata.dc_tx_cnt)) < 6)) {
3267 		m = m_defrag(*m_head, M_DONTWAIT);
3268 		if (m == NULL)
3269 			return (ENOBUFS);
3270 		*m_head = m;
3271 	}
3272 
3273 	/*
3274 	 * Start packing the mbufs in this chain into
3275 	 * the fragment pointers. Stop when we run out
3276 	 * of fragments or hit the end of the mbuf chain.
3277 	 */
3278 	idx = sc->dc_cdata.dc_tx_prod;
3279 	sc->dc_cdata.dc_tx_mapping = *m_head;
3280 	error = bus_dmamap_load_mbuf(sc->dc_mtag, sc->dc_cdata.dc_tx_map[idx],
3281 	    *m_head, dc_dma_map_txbuf, sc, 0);
3282 	if (error)
3283 		return (error);
3284 	if (sc->dc_cdata.dc_tx_err != 0)
3285 		return (sc->dc_cdata.dc_tx_err);
3286 	bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_tx_map[idx],
3287 	    BUS_DMASYNC_PREWRITE);
3288 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
3289 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
3290 	return (0);
3291 }
3292 
3293 /*
3294  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3295  * to the mbuf data regions directly in the transmit lists. We also save a
3296  * copy of the pointers since the transmit list fragment pointers are
3297  * physical addresses.
3298  */
3299 
3300 static void
3301 dc_start(struct ifnet *ifp)
3302 {
3303 	struct dc_softc *sc;
3304 	struct mbuf *m_head = NULL, *m;
3305 	unsigned int queued = 0;
3306 	int idx;
3307 
3308 	sc = ifp->if_softc;
3309 
3310 	DC_LOCK(sc);
3311 
3312 	if (!sc->dc_link && ifp->if_snd.ifq_len < 10) {
3313 		DC_UNLOCK(sc);
3314 		return;
3315 	}
3316 
3317 	if (ifp->if_flags & IFF_OACTIVE) {
3318 		DC_UNLOCK(sc);
3319 		return;
3320 	}
3321 
3322 	idx = sc->dc_cdata.dc_tx_first = sc->dc_cdata.dc_tx_prod;
3323 
3324 	while (sc->dc_cdata.dc_tx_chain[idx] == NULL) {
3325 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
3326 		if (m_head == NULL)
3327 			break;
3328 
3329 		if (sc->dc_flags & DC_TX_COALESCE &&
3330 		    (m_head->m_next != NULL ||
3331 		     sc->dc_flags & DC_TX_ALIGN)) {
3332 			m = m_defrag(m_head, M_DONTWAIT);
3333 			if (m == NULL) {
3334 				IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
3335 				ifp->if_flags |= IFF_OACTIVE;
3336 				break;
3337 			} else {
3338 				m_head = m;
3339 			}
3340 		}
3341 
3342 		if (dc_encap(sc, &m_head)) {
3343 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
3344 			ifp->if_flags |= IFF_OACTIVE;
3345 			break;
3346 		}
3347 		idx = sc->dc_cdata.dc_tx_prod;
3348 
3349 		queued++;
3350 		/*
3351 		 * If there's a BPF listener, bounce a copy of this frame
3352 		 * to him.
3353 		 */
3354 		BPF_MTAP(ifp, m_head);
3355 
3356 		if (sc->dc_flags & DC_TX_ONE) {
3357 			ifp->if_flags |= IFF_OACTIVE;
3358 			break;
3359 		}
3360 	}
3361 
3362 	if (queued > 0) {
3363 		/* Transmit */
3364 		if (!(sc->dc_flags & DC_TX_POLL))
3365 			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3366 
3367 		/*
3368 		 * Set a timeout in case the chip goes out to lunch.
3369 		 */
3370 		ifp->if_timer = 5;
3371 	}
3372 
3373 	DC_UNLOCK(sc);
3374 }
3375 
3376 static void
3377 dc_init(void *xsc)
3378 {
3379 	struct dc_softc *sc = xsc;
3380 	struct ifnet *ifp = &sc->arpcom.ac_if;
3381 	struct mii_data *mii;
3382 
3383 	DC_LOCK(sc);
3384 
3385 	mii = device_get_softc(sc->dc_miibus);
3386 
3387 	/*
3388 	 * Cancel pending I/O and free all RX/TX buffers.
3389 	 */
3390 	dc_stop(sc);
3391 	dc_reset(sc);
3392 
3393 	/*
3394 	 * Set cache alignment and burst length.
3395 	 */
3396 	if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc))
3397 		CSR_WRITE_4(sc, DC_BUSCTL, 0);
3398 	else
3399 		CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME | DC_BUSCTL_MRLE);
3400 	/*
3401 	 * Evenly share the bus between receive and transmit process.
3402 	 */
3403 	if (DC_IS_INTEL(sc))
3404 		DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION);
3405 	if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
3406 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
3407 	} else {
3408 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
3409 	}
3410 	if (sc->dc_flags & DC_TX_POLL)
3411 		DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
3412 	switch(sc->dc_cachesize) {
3413 	case 32:
3414 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
3415 		break;
3416 	case 16:
3417 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
3418 		break;
3419 	case 8:
3420 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
3421 		break;
3422 	case 0:
3423 	default:
3424 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
3425 		break;
3426 	}
3427 
3428 	if (sc->dc_flags & DC_TX_STORENFWD)
3429 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3430 	else {
3431 		if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3432 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3433 		} else {
3434 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3435 			DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3436 		}
3437 	}
3438 
3439 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
3440 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
3441 
3442 	if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
3443 		/*
3444 		 * The app notes for the 98713 and 98715A say that
3445 		 * in order to have the chips operate properly, a magic
3446 		 * number must be written to CSR16. Macronix does not
3447 		 * document the meaning of these bits so there's no way
3448 		 * to know exactly what they do. The 98713 has a magic
3449 		 * number all its own; the rest all use a different one.
3450 		 */
3451 		DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
3452 		if (sc->dc_type == DC_TYPE_98713)
3453 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
3454 		else
3455 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
3456 	}
3457 
3458 	if (DC_IS_XIRCOM(sc)) {
3459 		/*
3460 		 * setup General Purpose Port mode and data so the tulip
3461 		 * can talk to the MII.
3462 		 */
3463 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
3464 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3465 		DELAY(10);
3466 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
3467 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3468 		DELAY(10);
3469 	}
3470 
3471 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3472 	DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN);
3473 
3474 	/* Init circular RX list. */
3475 	if (dc_list_rx_init(sc) == ENOBUFS) {
3476 		printf("dc%d: initialization failed: no "
3477 		    "memory for rx buffers\n", sc->dc_unit);
3478 		dc_stop(sc);
3479 		DC_UNLOCK(sc);
3480 		return;
3481 	}
3482 
3483 	/*
3484 	 * Init TX descriptors.
3485 	 */
3486 	dc_list_tx_init(sc);
3487 
3488 	/*
3489 	 * Load the address of the RX list.
3490 	 */
3491 	CSR_WRITE_4(sc, DC_RXADDR, DC_RXDESC(sc, 0));
3492 	CSR_WRITE_4(sc, DC_TXADDR, DC_TXDESC(sc, 0));
3493 
3494 	/*
3495 	 * Enable interrupts.
3496 	 */
3497 #ifdef DEVICE_POLLING
3498 	/*
3499 	 * ... but only if we are not polling, and make sure they are off in
3500 	 * the case of polling. Some cards (e.g. fxp) turn interrupts on
3501 	 * after a reset.
3502 	 */
3503 	if (ifp->if_flags & IFF_POLLING)
3504 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3505 	else
3506 #endif
3507 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3508 	CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
3509 
3510 	/* Enable transmitter. */
3511 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3512 
3513 	/*
3514 	 * If this is an Intel 21143 and we're not using the
3515 	 * MII port, program the LED control pins so we get
3516 	 * link and activity indications.
3517 	 */
3518 	if (sc->dc_flags & DC_TULIP_LEDS) {
3519 		CSR_WRITE_4(sc, DC_WATCHDOG,
3520 		    DC_WDOG_CTLWREN | DC_WDOG_LINK | DC_WDOG_ACTIVITY);
3521 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
3522 	}
3523 
3524 	/*
3525 	 * Load the RX/multicast filter. We do this sort of late
3526 	 * because the filter programming scheme on the 21143 and
3527 	 * some clones requires DMAing a setup frame via the TX
3528 	 * engine, and we need the transmitter enabled for that.
3529 	 */
3530 	dc_setfilt(sc);
3531 
3532 	/* Enable receiver. */
3533 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
3534 	CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
3535 
3536 	mii_mediachg(mii);
3537 	dc_setcfg(sc, sc->dc_if_media);
3538 
3539 	ifp->if_flags |= IFF_RUNNING;
3540 	ifp->if_flags &= ~IFF_OACTIVE;
3541 
3542 	/* Don't start the ticker if this is a homePNA link. */
3543 	if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_HPNA_1)
3544 		sc->dc_link = 1;
3545 	else {
3546 		if (sc->dc_flags & DC_21143_NWAY)
3547 			callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
3548 		else
3549 			callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
3550 	}
3551 
3552 #ifdef SRM_MEDIA
3553 	if(sc->dc_srm_media) {
3554 		struct ifreq ifr;
3555 
3556 		ifr.ifr_media = sc->dc_srm_media;
3557 		ifmedia_ioctl(ifp, &ifr, &mii->mii_media, SIOCSIFMEDIA);
3558 		sc->dc_srm_media = 0;
3559 	}
3560 #endif
3561 	DC_UNLOCK(sc);
3562 }
3563 
3564 /*
3565  * Set media options.
3566  */
3567 static int
3568 dc_ifmedia_upd(struct ifnet *ifp)
3569 {
3570 	struct dc_softc *sc;
3571 	struct mii_data *mii;
3572 	struct ifmedia *ifm;
3573 
3574 	sc = ifp->if_softc;
3575 	mii = device_get_softc(sc->dc_miibus);
3576 	mii_mediachg(mii);
3577 	ifm = &mii->mii_media;
3578 
3579 	if (DC_IS_DAVICOM(sc) &&
3580 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1)
3581 		dc_setcfg(sc, ifm->ifm_media);
3582 	else
3583 		sc->dc_link = 0;
3584 
3585 	return (0);
3586 }
3587 
3588 /*
3589  * Report current media status.
3590  */
3591 static void
3592 dc_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3593 {
3594 	struct dc_softc *sc;
3595 	struct mii_data *mii;
3596 	struct ifmedia *ifm;
3597 
3598 	sc = ifp->if_softc;
3599 	mii = device_get_softc(sc->dc_miibus);
3600 	mii_pollstat(mii);
3601 	ifm = &mii->mii_media;
3602 	if (DC_IS_DAVICOM(sc)) {
3603 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
3604 			ifmr->ifm_active = ifm->ifm_media;
3605 			ifmr->ifm_status = 0;
3606 			return;
3607 		}
3608 	}
3609 	ifmr->ifm_active = mii->mii_media_active;
3610 	ifmr->ifm_status = mii->mii_media_status;
3611 }
3612 
3613 static int
3614 dc_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
3615 {
3616 	struct dc_softc *sc = ifp->if_softc;
3617 	struct ifreq *ifr = (struct ifreq *)data;
3618 	struct mii_data *mii;
3619 	int error = 0;
3620 
3621 	DC_LOCK(sc);
3622 
3623 	switch (command) {
3624 	case SIOCSIFFLAGS:
3625 		if (ifp->if_flags & IFF_UP) {
3626 			int need_setfilt = (ifp->if_flags ^ sc->dc_if_flags) &
3627 				(IFF_PROMISC | IFF_ALLMULTI);
3628 
3629 			if (ifp->if_flags & IFF_RUNNING) {
3630 				if (need_setfilt)
3631 					dc_setfilt(sc);
3632 			} else {
3633 				sc->dc_txthresh = 0;
3634 				dc_init(sc);
3635 			}
3636 		} else {
3637 			if (ifp->if_flags & IFF_RUNNING)
3638 				dc_stop(sc);
3639 		}
3640 		sc->dc_if_flags = ifp->if_flags;
3641 		error = 0;
3642 		break;
3643 	case SIOCADDMULTI:
3644 	case SIOCDELMULTI:
3645 		dc_setfilt(sc);
3646 		error = 0;
3647 		break;
3648 	case SIOCGIFMEDIA:
3649 	case SIOCSIFMEDIA:
3650 		mii = device_get_softc(sc->dc_miibus);
3651 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
3652 #ifdef SRM_MEDIA
3653 		if (sc->dc_srm_media)
3654 			sc->dc_srm_media = 0;
3655 #endif
3656 		break;
3657 	case SIOCSIFCAP:
3658 		ifp->if_capenable &= ~IFCAP_POLLING;
3659 		ifp->if_capenable |= ifr->ifr_reqcap & IFCAP_POLLING;
3660 		break;
3661 	default:
3662 		error = ether_ioctl(ifp, command, data);
3663 		break;
3664 	}
3665 
3666 	DC_UNLOCK(sc);
3667 
3668 	return (error);
3669 }
3670 
3671 static void
3672 dc_watchdog(struct ifnet *ifp)
3673 {
3674 	struct dc_softc *sc;
3675 
3676 	sc = ifp->if_softc;
3677 
3678 	DC_LOCK(sc);
3679 
3680 	ifp->if_oerrors++;
3681 	printf("dc%d: watchdog timeout\n", sc->dc_unit);
3682 
3683 	dc_stop(sc);
3684 	dc_reset(sc);
3685 	dc_init(sc);
3686 
3687 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3688 		dc_start(ifp);
3689 
3690 	DC_UNLOCK(sc);
3691 }
3692 
3693 /*
3694  * Stop the adapter and free any mbufs allocated to the
3695  * RX and TX lists.
3696  */
3697 static void
3698 dc_stop(struct dc_softc *sc)
3699 {
3700 	struct ifnet *ifp;
3701 	struct dc_list_data *ld;
3702 	struct dc_chain_data *cd;
3703 	int i;
3704 	u_int32_t ctl;
3705 
3706 	DC_LOCK(sc);
3707 
3708 	ifp = &sc->arpcom.ac_if;
3709 	ifp->if_timer = 0;
3710 	ld = sc->dc_ldata;
3711 	cd = &sc->dc_cdata;
3712 
3713 	callout_stop(&sc->dc_stat_ch);
3714 
3715 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3716 #ifdef DEVICE_POLLING
3717 	ether_poll_deregister(ifp);
3718 #endif
3719 
3720 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ON | DC_NETCFG_TX_ON));
3721 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3722 	CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
3723 	CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
3724 	sc->dc_link = 0;
3725 
3726 	/*
3727 	 * Free data in the RX lists.
3728 	 */
3729 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
3730 		if (cd->dc_rx_chain[i] != NULL) {
3731 			m_freem(cd->dc_rx_chain[i]);
3732 			cd->dc_rx_chain[i] = NULL;
3733 		}
3734 	}
3735 	bzero(&ld->dc_rx_list, sizeof(ld->dc_rx_list));
3736 
3737 	/*
3738 	 * Free the TX list buffers.
3739 	 */
3740 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
3741 		if (cd->dc_tx_chain[i] != NULL) {
3742 			ctl = le32toh(ld->dc_tx_list[i].dc_ctl);
3743 			if ((ctl & DC_TXCTL_SETUP) ||
3744 			    !(ctl & DC_TXCTL_LASTFRAG)) {
3745 				cd->dc_tx_chain[i] = NULL;
3746 				continue;
3747 			}
3748 			bus_dmamap_unload(sc->dc_mtag, cd->dc_tx_map[i]);
3749 			m_freem(cd->dc_tx_chain[i]);
3750 			cd->dc_tx_chain[i] = NULL;
3751 		}
3752 	}
3753 	bzero(&ld->dc_tx_list, sizeof(ld->dc_tx_list));
3754 
3755 	DC_UNLOCK(sc);
3756 }
3757 
3758 /*
3759  * Device suspend routine.  Stop the interface and save some PCI
3760  * settings in case the BIOS doesn't restore them properly on
3761  * resume.
3762  */
3763 static int
3764 dc_suspend(device_t dev)
3765 {
3766 	struct dc_softc *sc;
3767 	int s;
3768 
3769 	s = splimp();
3770 
3771 	sc = device_get_softc(dev);
3772 	dc_stop(sc);
3773 	sc->suspended = 1;
3774 
3775 	splx(s);
3776 	return (0);
3777 }
3778 
3779 /*
3780  * Device resume routine.  Restore some PCI settings in case the BIOS
3781  * doesn't, re-enable busmastering, and restart the interface if
3782  * appropriate.
3783  */
3784 static int
3785 dc_resume(device_t dev)
3786 {
3787 	struct dc_softc *sc;
3788 	struct ifnet *ifp;
3789 	int s;
3790 
3791 	s = splimp();
3792 
3793 	sc = device_get_softc(dev);
3794 	ifp = &sc->arpcom.ac_if;
3795 
3796 	/* reinitialize interface if necessary */
3797 	if (ifp->if_flags & IFF_UP)
3798 		dc_init(sc);
3799 
3800 	sc->suspended = 0;
3801 
3802 	splx(s);
3803 	return (0);
3804 }
3805 
3806 /*
3807  * Stop all chip I/O so that the kernel's probe routines don't
3808  * get confused by errant DMAs when rebooting.
3809  */
3810 static void
3811 dc_shutdown(device_t dev)
3812 {
3813 	struct dc_softc *sc;
3814 
3815 	sc = device_get_softc(dev);
3816 
3817 	dc_stop(sc);
3818 }
3819