xref: /freebsd/sys/dev/dc/if_dc.c (revision 7a1c0d963366a31363d3705697a083dd8efee077)
1 /*-
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ee.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /*
37  * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
38  * series chips and several workalikes including the following:
39  *
40  * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com)
41  * Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
42  * Lite-On 82c168/82c169 PNIC (www.litecom.com)
43  * ASIX Electronics AX88140A (www.asix.com.tw)
44  * ASIX Electronics AX88141 (www.asix.com.tw)
45  * ADMtek AL981 (www.admtek.com.tw)
46  * ADMtek AN983 (www.admtek.com.tw)
47  * ADMtek CardBus AN985 (www.admtek.com.tw)
48  * Netgear FA511 (www.netgear.com) Appears to be rebadged ADMTek CardBus AN985
49  * Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
50  * Accton EN1217 (www.accton.com)
51  * Xircom X3201 (www.xircom.com)
52  * Abocom FE2500
53  * Conexant LANfinity (www.conexant.com)
54  * 3Com OfficeConnect 10/100B 3CSOHO100B (www.3com.com)
55  *
56  * Datasheets for the 21143 are available at developer.intel.com.
57  * Datasheets for the clone parts can be found at their respective sites.
58  * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
59  * The PNIC II is essentially a Macronix 98715A chip; the only difference
60  * worth noting is that its multicast hash table is only 128 bits wide
61  * instead of 512.
62  *
63  * Written by Bill Paul <wpaul@ee.columbia.edu>
64  * Electrical Engineering Department
65  * Columbia University, New York City
66  */
67 /*
68  * The Intel 21143 is the successor to the DEC 21140. It is basically
69  * the same as the 21140 but with a few new features. The 21143 supports
70  * three kinds of media attachments:
71  *
72  * o MII port, for 10Mbps and 100Mbps support and NWAY
73  *   autonegotiation provided by an external PHY.
74  * o SYM port, for symbol mode 100Mbps support.
75  * o 10baseT port.
76  * o AUI/BNC port.
77  *
78  * The 100Mbps SYM port and 10baseT port can be used together in
79  * combination with the internal NWAY support to create a 10/100
80  * autosensing configuration.
81  *
82  * Note that not all tulip workalikes are handled in this driver: we only
83  * deal with those which are relatively well behaved. The Winbond is
84  * handled separately due to its different register offsets and the
85  * special handling needed for its various bugs. The PNIC is handled
86  * here, but I'm not thrilled about it.
87  *
88  * All of the workalike chips use some form of MII transceiver support
89  * with the exception of the Macronix chips, which also have a SYM port.
90  * The ASIX AX88140A is also documented to have a SYM port, but all
91  * the cards I've seen use an MII transceiver, probably because the
92  * AX88140A doesn't support internal NWAY.
93  */
94 
95 #ifdef HAVE_KERNEL_OPTION_HEADERS
96 #include "opt_device_polling.h"
97 #endif
98 
99 #include <sys/param.h>
100 #include <sys/endian.h>
101 #include <sys/systm.h>
102 #include <sys/sockio.h>
103 #include <sys/mbuf.h>
104 #include <sys/malloc.h>
105 #include <sys/kernel.h>
106 #include <sys/module.h>
107 #include <sys/socket.h>
108 
109 #include <net/if.h>
110 #include <net/if_arp.h>
111 #include <net/ethernet.h>
112 #include <net/if_dl.h>
113 #include <net/if_media.h>
114 #include <net/if_types.h>
115 #include <net/if_vlan_var.h>
116 
117 #include <net/bpf.h>
118 
119 #include <machine/bus.h>
120 #include <machine/resource.h>
121 #include <sys/bus.h>
122 #include <sys/rman.h>
123 
124 #include <dev/mii/mii.h>
125 #include <dev/mii/miivar.h>
126 
127 #include <dev/pci/pcireg.h>
128 #include <dev/pci/pcivar.h>
129 
130 #define	DC_USEIOSPACE
131 
132 #include <dev/dc/if_dcreg.h>
133 
134 #ifdef __sparc64__
135 #include <dev/ofw/openfirm.h>
136 #include <machine/ofw_machdep.h>
137 #endif
138 
139 MODULE_DEPEND(dc, pci, 1, 1, 1);
140 MODULE_DEPEND(dc, ether, 1, 1, 1);
141 MODULE_DEPEND(dc, miibus, 1, 1, 1);
142 
143 /*
144  * "device miibus" is required in kernel config.  See GENERIC if you get
145  * errors here.
146  */
147 #include "miibus_if.h"
148 
149 /*
150  * Various supported device vendors/types and their names.
151  */
152 static const struct dc_type dc_devs[] = {
153 	{ DC_DEVID(DC_VENDORID_DEC, DC_DEVICEID_21143), 0,
154 		"Intel 21143 10/100BaseTX" },
155 	{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009), 0,
156 		"Davicom DM9009 10/100BaseTX" },
157 	{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100), 0,
158 		"Davicom DM9100 10/100BaseTX" },
159 	{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102), DC_REVISION_DM9102A,
160 		"Davicom DM9102A 10/100BaseTX" },
161 	{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102), 0,
162 		"Davicom DM9102 10/100BaseTX" },
163 	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AL981), 0,
164 		"ADMtek AL981 10/100BaseTX" },
165 	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN983), 0,
166 		"ADMtek AN983 10/100BaseTX" },
167 	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN985), 0,
168 		"ADMtek AN985 CardBus 10/100BaseTX or clone" },
169 	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511), 0,
170 		"ADMtek ADM9511 10/100BaseTX" },
171 	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513), 0,
172 		"ADMtek ADM9513 10/100BaseTX" },
173 	{ DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A), DC_REVISION_88141,
174 		"ASIX AX88141 10/100BaseTX" },
175 	{ DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A), 0,
176 		"ASIX AX88140A 10/100BaseTX" },
177 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713), DC_REVISION_98713A,
178 		"Macronix 98713A 10/100BaseTX" },
179 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713), 0,
180 		"Macronix 98713 10/100BaseTX" },
181 	{ DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP), DC_REVISION_98713A,
182 		"Compex RL100-TX 10/100BaseTX" },
183 	{ DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP), 0,
184 		"Compex RL100-TX 10/100BaseTX" },
185 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), DC_REVISION_98725,
186 		"Macronix 98725 10/100BaseTX" },
187 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), DC_REVISION_98715AEC_C,
188 		"Macronix 98715AEC-C 10/100BaseTX" },
189 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), 0,
190 		"Macronix 98715/98715A 10/100BaseTX" },
191 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98727), 0,
192 		"Macronix 98727/98732 10/100BaseTX" },
193 	{ DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C115), 0,
194 		"LC82C115 PNIC II 10/100BaseTX" },
195 	{ DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168), DC_REVISION_82C169,
196 		"82c169 PNIC 10/100BaseTX" },
197 	{ DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168), 0,
198 		"82c168 PNIC 10/100BaseTX" },
199 	{ DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN1217), 0,
200 		"Accton EN1217 10/100BaseTX" },
201 	{ DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN2242), 0,
202 		"Accton EN2242 MiniPCI 10/100BaseTX" },
203 	{ DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201), 0,
204 		"Xircom X3201 10/100BaseTX" },
205 	{ DC_DEVID(DC_VENDORID_DLINK, DC_DEVICEID_DRP32TXD), 0,
206 		"Neteasy DRP-32TXD Cardbus 10/100" },
207 	{ DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500), 0,
208 		"Abocom FE2500 10/100BaseTX" },
209 	{ DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500MX), 0,
210 		"Abocom FE2500MX 10/100BaseTX" },
211 	{ DC_DEVID(DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112), 0,
212 		"Conexant LANfinity MiniPCI 10/100BaseTX" },
213 	{ DC_DEVID(DC_VENDORID_HAWKING, DC_DEVICEID_HAWKING_PN672TX), 0,
214 		"Hawking CB102 CardBus 10/100" },
215 	{ DC_DEVID(DC_VENDORID_PLANEX, DC_DEVICEID_FNW3602T), 0,
216 		"PlaneX FNW-3602-T CardBus 10/100" },
217 	{ DC_DEVID(DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB), 0,
218 		"3Com OfficeConnect 10/100B" },
219 	{ DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN120), 0,
220 		"Microsoft MN-120 CardBus 10/100" },
221 	{ DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130), 0,
222 		"Microsoft MN-130 10/100" },
223 	{ DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB08), 0,
224 		"Linksys PCMPC200 CardBus 10/100" },
225 	{ DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB09), 0,
226 		"Linksys PCMPC200 CardBus 10/100" },
227 	{ 0, 0, NULL }
228 };
229 
230 static int dc_probe(device_t);
231 static int dc_attach(device_t);
232 static int dc_detach(device_t);
233 static int dc_suspend(device_t);
234 static int dc_resume(device_t);
235 static const struct dc_type *dc_devtype(device_t);
236 static void dc_discard_rxbuf(struct dc_softc *, int);
237 static int dc_newbuf(struct dc_softc *, int);
238 static int dc_encap(struct dc_softc *, struct mbuf **);
239 static void dc_pnic_rx_bug_war(struct dc_softc *, int);
240 static int dc_rx_resync(struct dc_softc *);
241 static int dc_rxeof(struct dc_softc *);
242 static void dc_txeof(struct dc_softc *);
243 static void dc_tick(void *);
244 static void dc_tx_underrun(struct dc_softc *);
245 static void dc_intr(void *);
246 static void dc_start(struct ifnet *);
247 static void dc_start_locked(struct ifnet *);
248 static int dc_ioctl(struct ifnet *, u_long, caddr_t);
249 static void dc_init(void *);
250 static void dc_init_locked(struct dc_softc *);
251 static void dc_stop(struct dc_softc *);
252 static void dc_watchdog(void *);
253 static int dc_shutdown(device_t);
254 static int dc_ifmedia_upd(struct ifnet *);
255 static void dc_ifmedia_sts(struct ifnet *, struct ifmediareq *);
256 
257 static int dc_dma_alloc(struct dc_softc *);
258 static void dc_dma_free(struct dc_softc *);
259 static void dc_dma_map_addr(void *, bus_dma_segment_t *, int, int);
260 
261 static void dc_delay(struct dc_softc *);
262 static void dc_eeprom_idle(struct dc_softc *);
263 static void dc_eeprom_putbyte(struct dc_softc *, int);
264 static void dc_eeprom_getword(struct dc_softc *, int, uint16_t *);
265 static void dc_eeprom_getword_pnic(struct dc_softc *, int, uint16_t *);
266 static void dc_eeprom_getword_xircom(struct dc_softc *, int, uint16_t *);
267 static void dc_eeprom_width(struct dc_softc *);
268 static void dc_read_eeprom(struct dc_softc *, caddr_t, int, int, int);
269 
270 static void dc_mii_writebit(struct dc_softc *, int);
271 static int dc_mii_readbit(struct dc_softc *);
272 static void dc_mii_sync(struct dc_softc *);
273 static void dc_mii_send(struct dc_softc *, uint32_t, int);
274 static int dc_mii_readreg(struct dc_softc *, struct dc_mii_frame *);
275 static int dc_mii_writereg(struct dc_softc *, struct dc_mii_frame *);
276 static int dc_miibus_readreg(device_t, int, int);
277 static int dc_miibus_writereg(device_t, int, int, int);
278 static void dc_miibus_statchg(device_t);
279 static void dc_miibus_mediainit(device_t);
280 
281 static void dc_setcfg(struct dc_softc *, int);
282 static void dc_netcfg_wait(struct dc_softc *);
283 static uint32_t dc_mchash_le(struct dc_softc *, const uint8_t *);
284 static uint32_t dc_mchash_be(const uint8_t *);
285 static void dc_setfilt_21143(struct dc_softc *);
286 static void dc_setfilt_asix(struct dc_softc *);
287 static void dc_setfilt_admtek(struct dc_softc *);
288 static void dc_setfilt_xircom(struct dc_softc *);
289 
290 static void dc_setfilt(struct dc_softc *);
291 
292 static void dc_reset(struct dc_softc *);
293 static int dc_list_rx_init(struct dc_softc *);
294 static int dc_list_tx_init(struct dc_softc *);
295 
296 static int dc_read_srom(struct dc_softc *, int);
297 static int dc_parse_21143_srom(struct dc_softc *);
298 static int dc_decode_leaf_sia(struct dc_softc *, struct dc_eblock_sia *);
299 static int dc_decode_leaf_mii(struct dc_softc *, struct dc_eblock_mii *);
300 static int dc_decode_leaf_sym(struct dc_softc *, struct dc_eblock_sym *);
301 static void dc_apply_fixup(struct dc_softc *, int);
302 static int dc_check_multiport(struct dc_softc *);
303 
304 #ifdef DC_USEIOSPACE
305 #define	DC_RES			SYS_RES_IOPORT
306 #define	DC_RID			DC_PCI_CFBIO
307 #else
308 #define	DC_RES			SYS_RES_MEMORY
309 #define	DC_RID			DC_PCI_CFBMA
310 #endif
311 
312 static device_method_t dc_methods[] = {
313 	/* Device interface */
314 	DEVMETHOD(device_probe,		dc_probe),
315 	DEVMETHOD(device_attach,	dc_attach),
316 	DEVMETHOD(device_detach,	dc_detach),
317 	DEVMETHOD(device_suspend,	dc_suspend),
318 	DEVMETHOD(device_resume,	dc_resume),
319 	DEVMETHOD(device_shutdown,	dc_shutdown),
320 
321 	/* bus interface */
322 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
323 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
324 
325 	/* MII interface */
326 	DEVMETHOD(miibus_readreg,	dc_miibus_readreg),
327 	DEVMETHOD(miibus_writereg,	dc_miibus_writereg),
328 	DEVMETHOD(miibus_statchg,	dc_miibus_statchg),
329 	DEVMETHOD(miibus_mediainit,	dc_miibus_mediainit),
330 
331 	{ 0, 0 }
332 };
333 
334 static driver_t dc_driver = {
335 	"dc",
336 	dc_methods,
337 	sizeof(struct dc_softc)
338 };
339 
340 static devclass_t dc_devclass;
341 
342 DRIVER_MODULE(dc, pci, dc_driver, dc_devclass, 0, 0);
343 DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, 0, 0);
344 
345 #define	DC_SETBIT(sc, reg, x)				\
346 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
347 
348 #define	DC_CLRBIT(sc, reg, x)				\
349 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
350 
351 #define	SIO_SET(x)	DC_SETBIT(sc, DC_SIO, (x))
352 #define	SIO_CLR(x)	DC_CLRBIT(sc, DC_SIO, (x))
353 
354 static void
355 dc_delay(struct dc_softc *sc)
356 {
357 	int idx;
358 
359 	for (idx = (300 / 33) + 1; idx > 0; idx--)
360 		CSR_READ_4(sc, DC_BUSCTL);
361 }
362 
363 static void
364 dc_eeprom_width(struct dc_softc *sc)
365 {
366 	int i;
367 
368 	/* Force EEPROM to idle state. */
369 	dc_eeprom_idle(sc);
370 
371 	/* Enter EEPROM access mode. */
372 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
373 	dc_delay(sc);
374 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
375 	dc_delay(sc);
376 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
377 	dc_delay(sc);
378 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
379 	dc_delay(sc);
380 
381 	for (i = 3; i--;) {
382 		if (6 & (1 << i))
383 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
384 		else
385 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
386 		dc_delay(sc);
387 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
388 		dc_delay(sc);
389 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
390 		dc_delay(sc);
391 	}
392 
393 	for (i = 1; i <= 12; i++) {
394 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
395 		dc_delay(sc);
396 		if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) {
397 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
398 			dc_delay(sc);
399 			break;
400 		}
401 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
402 		dc_delay(sc);
403 	}
404 
405 	/* Turn off EEPROM access mode. */
406 	dc_eeprom_idle(sc);
407 
408 	if (i < 4 || i > 12)
409 		sc->dc_romwidth = 6;
410 	else
411 		sc->dc_romwidth = i;
412 
413 	/* Enter EEPROM access mode. */
414 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
415 	dc_delay(sc);
416 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
417 	dc_delay(sc);
418 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
419 	dc_delay(sc);
420 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
421 	dc_delay(sc);
422 
423 	/* Turn off EEPROM access mode. */
424 	dc_eeprom_idle(sc);
425 }
426 
427 static void
428 dc_eeprom_idle(struct dc_softc *sc)
429 {
430 	int i;
431 
432 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
433 	dc_delay(sc);
434 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
435 	dc_delay(sc);
436 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
437 	dc_delay(sc);
438 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
439 	dc_delay(sc);
440 
441 	for (i = 0; i < 25; i++) {
442 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
443 		dc_delay(sc);
444 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
445 		dc_delay(sc);
446 	}
447 
448 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
449 	dc_delay(sc);
450 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
451 	dc_delay(sc);
452 	CSR_WRITE_4(sc, DC_SIO, 0x00000000);
453 }
454 
455 /*
456  * Send a read command and address to the EEPROM, check for ACK.
457  */
458 static void
459 dc_eeprom_putbyte(struct dc_softc *sc, int addr)
460 {
461 	int d, i;
462 
463 	d = DC_EECMD_READ >> 6;
464 	for (i = 3; i--; ) {
465 		if (d & (1 << i))
466 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
467 		else
468 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
469 		dc_delay(sc);
470 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
471 		dc_delay(sc);
472 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
473 		dc_delay(sc);
474 	}
475 
476 	/*
477 	 * Feed in each bit and strobe the clock.
478 	 */
479 	for (i = sc->dc_romwidth; i--;) {
480 		if (addr & (1 << i)) {
481 			SIO_SET(DC_SIO_EE_DATAIN);
482 		} else {
483 			SIO_CLR(DC_SIO_EE_DATAIN);
484 		}
485 		dc_delay(sc);
486 		SIO_SET(DC_SIO_EE_CLK);
487 		dc_delay(sc);
488 		SIO_CLR(DC_SIO_EE_CLK);
489 		dc_delay(sc);
490 	}
491 }
492 
493 /*
494  * Read a word of data stored in the EEPROM at address 'addr.'
495  * The PNIC 82c168/82c169 has its own non-standard way to read
496  * the EEPROM.
497  */
498 static void
499 dc_eeprom_getword_pnic(struct dc_softc *sc, int addr, uint16_t *dest)
500 {
501 	int i;
502 	uint32_t r;
503 
504 	CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ | addr);
505 
506 	for (i = 0; i < DC_TIMEOUT; i++) {
507 		DELAY(1);
508 		r = CSR_READ_4(sc, DC_SIO);
509 		if (!(r & DC_PN_SIOCTL_BUSY)) {
510 			*dest = (uint16_t)(r & 0xFFFF);
511 			return;
512 		}
513 	}
514 }
515 
516 /*
517  * Read a word of data stored in the EEPROM at address 'addr.'
518  * The Xircom X3201 has its own non-standard way to read
519  * the EEPROM, too.
520  */
521 static void
522 dc_eeprom_getword_xircom(struct dc_softc *sc, int addr, uint16_t *dest)
523 {
524 
525 	SIO_SET(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
526 
527 	addr *= 2;
528 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
529 	*dest = (uint16_t)CSR_READ_4(sc, DC_SIO) & 0xff;
530 	addr += 1;
531 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
532 	*dest |= ((uint16_t)CSR_READ_4(sc, DC_SIO) & 0xff) << 8;
533 
534 	SIO_CLR(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
535 }
536 
537 /*
538  * Read a word of data stored in the EEPROM at address 'addr.'
539  */
540 static void
541 dc_eeprom_getword(struct dc_softc *sc, int addr, uint16_t *dest)
542 {
543 	int i;
544 	uint16_t word = 0;
545 
546 	/* Force EEPROM to idle state. */
547 	dc_eeprom_idle(sc);
548 
549 	/* Enter EEPROM access mode. */
550 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
551 	dc_delay(sc);
552 	DC_SETBIT(sc, DC_SIO,  DC_SIO_ROMCTL_READ);
553 	dc_delay(sc);
554 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
555 	dc_delay(sc);
556 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
557 	dc_delay(sc);
558 
559 	/*
560 	 * Send address of word we want to read.
561 	 */
562 	dc_eeprom_putbyte(sc, addr);
563 
564 	/*
565 	 * Start reading bits from EEPROM.
566 	 */
567 	for (i = 0x8000; i; i >>= 1) {
568 		SIO_SET(DC_SIO_EE_CLK);
569 		dc_delay(sc);
570 		if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
571 			word |= i;
572 		dc_delay(sc);
573 		SIO_CLR(DC_SIO_EE_CLK);
574 		dc_delay(sc);
575 	}
576 
577 	/* Turn off EEPROM access mode. */
578 	dc_eeprom_idle(sc);
579 
580 	*dest = word;
581 }
582 
583 /*
584  * Read a sequence of words from the EEPROM.
585  */
586 static void
587 dc_read_eeprom(struct dc_softc *sc, caddr_t dest, int off, int cnt, int be)
588 {
589 	int i;
590 	uint16_t word = 0, *ptr;
591 
592 	for (i = 0; i < cnt; i++) {
593 		if (DC_IS_PNIC(sc))
594 			dc_eeprom_getword_pnic(sc, off + i, &word);
595 		else if (DC_IS_XIRCOM(sc))
596 			dc_eeprom_getword_xircom(sc, off + i, &word);
597 		else
598 			dc_eeprom_getword(sc, off + i, &word);
599 		ptr = (uint16_t *)(dest + (i * 2));
600 		if (be)
601 			*ptr = be16toh(word);
602 		else
603 			*ptr = le16toh(word);
604 	}
605 }
606 
607 /*
608  * The following two routines are taken from the Macronix 98713
609  * Application Notes pp.19-21.
610  */
611 /*
612  * Write a bit to the MII bus.
613  */
614 static void
615 dc_mii_writebit(struct dc_softc *sc, int bit)
616 {
617 	uint32_t reg;
618 
619 	reg = DC_SIO_ROMCTL_WRITE | (bit != 0 ? DC_SIO_MII_DATAOUT : 0);
620 	CSR_WRITE_4(sc, DC_SIO, reg);
621 	CSR_BARRIER_4(sc, DC_SIO,
622 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
623 	DELAY(1);
624 
625 	CSR_WRITE_4(sc, DC_SIO, reg | DC_SIO_MII_CLK);
626 	CSR_BARRIER_4(sc, DC_SIO,
627 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
628 	DELAY(1);
629 	CSR_WRITE_4(sc, DC_SIO, reg);
630 	CSR_BARRIER_4(sc, DC_SIO,
631 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
632 	DELAY(1);
633 }
634 
635 /*
636  * Read a bit from the MII bus.
637  */
638 static int
639 dc_mii_readbit(struct dc_softc *sc)
640 {
641 	uint32_t reg;
642 
643 	reg = DC_SIO_ROMCTL_READ | DC_SIO_MII_DIR;
644 	CSR_WRITE_4(sc, DC_SIO, reg);
645 	CSR_BARRIER_4(sc, DC_SIO,
646 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
647 	DELAY(1);
648 	(void)CSR_READ_4(sc, DC_SIO);
649 	CSR_WRITE_4(sc, DC_SIO, reg | DC_SIO_MII_CLK);
650 	CSR_BARRIER_4(sc, DC_SIO,
651 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
652 	DELAY(1);
653 	CSR_WRITE_4(sc, DC_SIO, reg);
654 	CSR_BARRIER_4(sc, DC_SIO,
655 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
656 	DELAY(1);
657 	if (CSR_READ_4(sc, DC_SIO) & DC_SIO_MII_DATAIN)
658 		return (1);
659 
660 	return (0);
661 }
662 
663 /*
664  * Sync the PHYs by setting data bit and strobing the clock 32 times.
665  */
666 static void
667 dc_mii_sync(struct dc_softc *sc)
668 {
669 	int i;
670 
671 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
672 	CSR_BARRIER_4(sc, DC_SIO,
673 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
674 	DELAY(1);
675 
676 	for (i = 0; i < 32; i++)
677 		dc_mii_writebit(sc, 1);
678 }
679 
680 /*
681  * Clock a series of bits through the MII.
682  */
683 static void
684 dc_mii_send(struct dc_softc *sc, uint32_t bits, int cnt)
685 {
686 	int i;
687 
688 	for (i = (0x1 << (cnt - 1)); i; i >>= 1)
689 		dc_mii_writebit(sc, bits & i);
690 }
691 
692 /*
693  * Read an PHY register through the MII.
694  */
695 static int
696 dc_mii_readreg(struct dc_softc *sc, struct dc_mii_frame *frame)
697 {
698 	int i;
699 
700 	/*
701 	 * Set up frame for RX.
702 	 */
703 	frame->mii_stdelim = DC_MII_STARTDELIM;
704 	frame->mii_opcode = DC_MII_READOP;
705 
706 	/*
707 	 * Sync the PHYs.
708 	 */
709 	dc_mii_sync(sc);
710 
711 	/*
712 	 * Send command/address info.
713 	 */
714 	dc_mii_send(sc, frame->mii_stdelim, 2);
715 	dc_mii_send(sc, frame->mii_opcode, 2);
716 	dc_mii_send(sc, frame->mii_phyaddr, 5);
717 	dc_mii_send(sc, frame->mii_regaddr, 5);
718 
719 	/*
720 	 * Now try reading data bits.  If the turnaround failed, we still
721 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
722 	 */
723 	frame->mii_turnaround = dc_mii_readbit(sc);
724 	if (frame->mii_turnaround != 0) {
725 		for (i = 0; i < 16; i++)
726 			dc_mii_readbit(sc);
727 		goto fail;
728 	}
729 	for (i = 0x8000; i; i >>= 1) {
730 		if (dc_mii_readbit(sc))
731 			frame->mii_data |= i;
732 	}
733 
734 fail:
735 
736 	/* Clock the idle bits. */
737 	dc_mii_writebit(sc, 0);
738 	dc_mii_writebit(sc, 0);
739 
740 	if (frame->mii_turnaround != 0)
741 		return (1);
742 	return (0);
743 }
744 
745 /*
746  * Write to a PHY register through the MII.
747  */
748 static int
749 dc_mii_writereg(struct dc_softc *sc, struct dc_mii_frame *frame)
750 {
751 
752 	/*
753 	 * Set up frame for TX.
754 	 */
755 	frame->mii_stdelim = DC_MII_STARTDELIM;
756 	frame->mii_opcode = DC_MII_WRITEOP;
757 	frame->mii_turnaround = DC_MII_TURNAROUND;
758 
759 	/*
760 	 * Sync the PHYs.
761 	 */
762 	dc_mii_sync(sc);
763 
764 	dc_mii_send(sc, frame->mii_stdelim, 2);
765 	dc_mii_send(sc, frame->mii_opcode, 2);
766 	dc_mii_send(sc, frame->mii_phyaddr, 5);
767 	dc_mii_send(sc, frame->mii_regaddr, 5);
768 	dc_mii_send(sc, frame->mii_turnaround, 2);
769 	dc_mii_send(sc, frame->mii_data, 16);
770 
771 	/* Clock the idle bits. */
772 	dc_mii_writebit(sc, 0);
773 	dc_mii_writebit(sc, 0);
774 
775 	return (0);
776 }
777 
778 static int
779 dc_miibus_readreg(device_t dev, int phy, int reg)
780 {
781 	struct dc_mii_frame frame;
782 	struct dc_softc	 *sc;
783 	int i, rval, phy_reg = 0;
784 
785 	sc = device_get_softc(dev);
786 	bzero(&frame, sizeof(frame));
787 
788 	if (sc->dc_pmode != DC_PMODE_MII) {
789 		if (phy == (MII_NPHY - 1)) {
790 			switch (reg) {
791 			case MII_BMSR:
792 			/*
793 			 * Fake something to make the probe
794 			 * code think there's a PHY here.
795 			 */
796 				return (BMSR_MEDIAMASK);
797 				break;
798 			case MII_PHYIDR1:
799 				if (DC_IS_PNIC(sc))
800 					return (DC_VENDORID_LO);
801 				return (DC_VENDORID_DEC);
802 				break;
803 			case MII_PHYIDR2:
804 				if (DC_IS_PNIC(sc))
805 					return (DC_DEVICEID_82C168);
806 				return (DC_DEVICEID_21143);
807 				break;
808 			default:
809 				return (0);
810 				break;
811 			}
812 		} else
813 			return (0);
814 	}
815 
816 	if (DC_IS_PNIC(sc)) {
817 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
818 		    (phy << 23) | (reg << 18));
819 		for (i = 0; i < DC_TIMEOUT; i++) {
820 			DELAY(1);
821 			rval = CSR_READ_4(sc, DC_PN_MII);
822 			if (!(rval & DC_PN_MII_BUSY)) {
823 				rval &= 0xFFFF;
824 				return (rval == 0xFFFF ? 0 : rval);
825 			}
826 		}
827 		return (0);
828 	}
829 
830 	if (DC_IS_COMET(sc)) {
831 		switch (reg) {
832 		case MII_BMCR:
833 			phy_reg = DC_AL_BMCR;
834 			break;
835 		case MII_BMSR:
836 			phy_reg = DC_AL_BMSR;
837 			break;
838 		case MII_PHYIDR1:
839 			phy_reg = DC_AL_VENID;
840 			break;
841 		case MII_PHYIDR2:
842 			phy_reg = DC_AL_DEVID;
843 			break;
844 		case MII_ANAR:
845 			phy_reg = DC_AL_ANAR;
846 			break;
847 		case MII_ANLPAR:
848 			phy_reg = DC_AL_LPAR;
849 			break;
850 		case MII_ANER:
851 			phy_reg = DC_AL_ANER;
852 			break;
853 		default:
854 			device_printf(dev, "phy_read: bad phy register %x\n",
855 			    reg);
856 			return (0);
857 			break;
858 		}
859 
860 		rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
861 
862 		if (rval == 0xFFFF)
863 			return (0);
864 		return (rval);
865 	}
866 
867 	frame.mii_phyaddr = phy;
868 	frame.mii_regaddr = reg;
869 	if (sc->dc_type == DC_TYPE_98713) {
870 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
871 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
872 	}
873 	dc_mii_readreg(sc, &frame);
874 	if (sc->dc_type == DC_TYPE_98713)
875 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
876 
877 	return (frame.mii_data);
878 }
879 
880 static int
881 dc_miibus_writereg(device_t dev, int phy, int reg, int data)
882 {
883 	struct dc_softc *sc;
884 	struct dc_mii_frame frame;
885 	int i, phy_reg = 0;
886 
887 	sc = device_get_softc(dev);
888 	bzero(&frame, sizeof(frame));
889 
890 	if (DC_IS_PNIC(sc)) {
891 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
892 		    (phy << 23) | (reg << 10) | data);
893 		for (i = 0; i < DC_TIMEOUT; i++) {
894 			if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
895 				break;
896 		}
897 		return (0);
898 	}
899 
900 	if (DC_IS_COMET(sc)) {
901 		switch (reg) {
902 		case MII_BMCR:
903 			phy_reg = DC_AL_BMCR;
904 			break;
905 		case MII_BMSR:
906 			phy_reg = DC_AL_BMSR;
907 			break;
908 		case MII_PHYIDR1:
909 			phy_reg = DC_AL_VENID;
910 			break;
911 		case MII_PHYIDR2:
912 			phy_reg = DC_AL_DEVID;
913 			break;
914 		case MII_ANAR:
915 			phy_reg = DC_AL_ANAR;
916 			break;
917 		case MII_ANLPAR:
918 			phy_reg = DC_AL_LPAR;
919 			break;
920 		case MII_ANER:
921 			phy_reg = DC_AL_ANER;
922 			break;
923 		default:
924 			device_printf(dev, "phy_write: bad phy register %x\n",
925 			    reg);
926 			return (0);
927 			break;
928 		}
929 
930 		CSR_WRITE_4(sc, phy_reg, data);
931 		return (0);
932 	}
933 
934 	frame.mii_phyaddr = phy;
935 	frame.mii_regaddr = reg;
936 	frame.mii_data = data;
937 
938 	if (sc->dc_type == DC_TYPE_98713) {
939 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
940 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
941 	}
942 	dc_mii_writereg(sc, &frame);
943 	if (sc->dc_type == DC_TYPE_98713)
944 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
945 
946 	return (0);
947 }
948 
949 static void
950 dc_miibus_statchg(device_t dev)
951 {
952 	struct dc_softc *sc;
953 	struct ifnet *ifp;
954 	struct mii_data *mii;
955 	struct ifmedia *ifm;
956 
957 	sc = device_get_softc(dev);
958 
959 	mii = device_get_softc(sc->dc_miibus);
960 	ifp = sc->dc_ifp;
961 	if (mii == NULL || ifp == NULL ||
962 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
963 		return;
964 
965 	ifm = &mii->mii_media;
966 	if (DC_IS_DAVICOM(sc) &&
967 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
968 		dc_setcfg(sc, ifm->ifm_media);
969 		sc->dc_if_media = ifm->ifm_media;
970 		return;
971 	}
972 
973 	sc->dc_link = 0;
974 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
975 	    (IFM_ACTIVE | IFM_AVALID)) {
976 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
977 		case IFM_10_T:
978 		case IFM_100_TX:
979 			sc->dc_link = 1;
980 			break;
981 		default:
982 			break;
983 		}
984 	}
985 	if (sc->dc_link == 0)
986 		return;
987 
988 	sc->dc_if_media = mii->mii_media_active;
989 	if (DC_IS_ADMTEK(sc))
990 		return;
991 	dc_setcfg(sc, mii->mii_media_active);
992 }
993 
994 /*
995  * Special support for DM9102A cards with HomePNA PHYs. Note:
996  * with the Davicom DM9102A/DM9801 eval board that I have, it seems
997  * to be impossible to talk to the management interface of the DM9801
998  * PHY (its MDIO pin is not connected to anything). Consequently,
999  * the driver has to just 'know' about the additional mode and deal
1000  * with it itself. *sigh*
1001  */
1002 static void
1003 dc_miibus_mediainit(device_t dev)
1004 {
1005 	struct dc_softc *sc;
1006 	struct mii_data *mii;
1007 	struct ifmedia *ifm;
1008 	int rev;
1009 
1010 	rev = pci_get_revid(dev);
1011 
1012 	sc = device_get_softc(dev);
1013 	mii = device_get_softc(sc->dc_miibus);
1014 	ifm = &mii->mii_media;
1015 
1016 	if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A)
1017 		ifmedia_add(ifm, IFM_ETHER | IFM_HPNA_1, 0, NULL);
1018 }
1019 
1020 #define	DC_BITS_512	9
1021 #define	DC_BITS_128	7
1022 #define	DC_BITS_64	6
1023 
1024 static uint32_t
1025 dc_mchash_le(struct dc_softc *sc, const uint8_t *addr)
1026 {
1027 	uint32_t crc;
1028 
1029 	/* Compute CRC for the address value. */
1030 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
1031 
1032 	/*
1033 	 * The hash table on the PNIC II and the MX98715AEC-C/D/E
1034 	 * chips is only 128 bits wide.
1035 	 */
1036 	if (sc->dc_flags & DC_128BIT_HASH)
1037 		return (crc & ((1 << DC_BITS_128) - 1));
1038 
1039 	/* The hash table on the MX98715BEC is only 64 bits wide. */
1040 	if (sc->dc_flags & DC_64BIT_HASH)
1041 		return (crc & ((1 << DC_BITS_64) - 1));
1042 
1043 	/* Xircom's hash filtering table is different (read: weird) */
1044 	/* Xircom uses the LEAST significant bits */
1045 	if (DC_IS_XIRCOM(sc)) {
1046 		if ((crc & 0x180) == 0x180)
1047 			return ((crc & 0x0F) + (crc & 0x70) * 3 + (14 << 4));
1048 		else
1049 			return ((crc & 0x1F) + ((crc >> 1) & 0xF0) * 3 +
1050 			    (12 << 4));
1051 	}
1052 
1053 	return (crc & ((1 << DC_BITS_512) - 1));
1054 }
1055 
1056 /*
1057  * Calculate CRC of a multicast group address, return the lower 6 bits.
1058  */
1059 static uint32_t
1060 dc_mchash_be(const uint8_t *addr)
1061 {
1062 	uint32_t crc;
1063 
1064 	/* Compute CRC for the address value. */
1065 	crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
1066 
1067 	/* Return the filter bit position. */
1068 	return ((crc >> 26) & 0x0000003F);
1069 }
1070 
1071 /*
1072  * 21143-style RX filter setup routine. Filter programming is done by
1073  * downloading a special setup frame into the TX engine. 21143, Macronix,
1074  * PNIC, PNIC II and Davicom chips are programmed this way.
1075  *
1076  * We always program the chip using 'hash perfect' mode, i.e. one perfect
1077  * address (our node address) and a 512-bit hash filter for multicast
1078  * frames. We also sneak the broadcast address into the hash filter since
1079  * we need that too.
1080  */
1081 static void
1082 dc_setfilt_21143(struct dc_softc *sc)
1083 {
1084 	uint16_t eaddr[(ETHER_ADDR_LEN+1)/2];
1085 	struct dc_desc *sframe;
1086 	uint32_t h, *sp;
1087 	struct ifmultiaddr *ifma;
1088 	struct ifnet *ifp;
1089 	int i;
1090 
1091 	ifp = sc->dc_ifp;
1092 
1093 	i = sc->dc_cdata.dc_tx_prod;
1094 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1095 	sc->dc_cdata.dc_tx_cnt++;
1096 	sframe = &sc->dc_ldata.dc_tx_list[i];
1097 	sp = sc->dc_cdata.dc_sbuf;
1098 	bzero(sp, DC_SFRAME_LEN);
1099 
1100 	sframe->dc_data = htole32(DC_ADDR_LO(sc->dc_saddr));
1101 	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
1102 	    DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
1103 
1104 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
1105 
1106 	/* If we want promiscuous mode, set the allframes bit. */
1107 	if (ifp->if_flags & IFF_PROMISC)
1108 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1109 	else
1110 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1111 
1112 	if (ifp->if_flags & IFF_ALLMULTI)
1113 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1114 	else
1115 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1116 
1117 	if_maddr_rlock(ifp);
1118 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1119 		if (ifma->ifma_addr->sa_family != AF_LINK)
1120 			continue;
1121 		h = dc_mchash_le(sc,
1122 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1123 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1124 	}
1125 	if_maddr_runlock(ifp);
1126 
1127 	if (ifp->if_flags & IFF_BROADCAST) {
1128 		h = dc_mchash_le(sc, ifp->if_broadcastaddr);
1129 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1130 	}
1131 
1132 	/* Set our MAC address. */
1133 	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1134 	sp[39] = DC_SP_MAC(eaddr[0]);
1135 	sp[40] = DC_SP_MAC(eaddr[1]);
1136 	sp[41] = DC_SP_MAC(eaddr[2]);
1137 
1138 	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1139 	bus_dmamap_sync(sc->dc_stag, sc->dc_smap, BUS_DMASYNC_PREWRITE);
1140 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1141 
1142 	/*
1143 	 * The PNIC takes an exceedingly long time to process its
1144 	 * setup frame; wait 10ms after posting the setup frame
1145 	 * before proceeding, just so it has time to swallow its
1146 	 * medicine.
1147 	 */
1148 	DELAY(10000);
1149 
1150 	sc->dc_wdog_timer = 5;
1151 }
1152 
1153 static void
1154 dc_setfilt_admtek(struct dc_softc *sc)
1155 {
1156 	uint8_t eaddr[ETHER_ADDR_LEN];
1157 	struct ifnet *ifp;
1158 	struct ifmultiaddr *ifma;
1159 	int h = 0;
1160 	uint32_t hashes[2] = { 0, 0 };
1161 
1162 	ifp = sc->dc_ifp;
1163 
1164 	/* Init our MAC address. */
1165 	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1166 	CSR_WRITE_4(sc, DC_AL_PAR0, eaddr[3] << 24 | eaddr[2] << 16 |
1167 	    eaddr[1] << 8 | eaddr[0]);
1168 	CSR_WRITE_4(sc, DC_AL_PAR1, eaddr[5] << 8 | eaddr[4]);
1169 
1170 	/* If we want promiscuous mode, set the allframes bit. */
1171 	if (ifp->if_flags & IFF_PROMISC)
1172 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1173 	else
1174 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1175 
1176 	if (ifp->if_flags & IFF_ALLMULTI)
1177 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1178 	else
1179 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1180 
1181 	/* First, zot all the existing hash bits. */
1182 	CSR_WRITE_4(sc, DC_AL_MAR0, 0);
1183 	CSR_WRITE_4(sc, DC_AL_MAR1, 0);
1184 
1185 	/*
1186 	 * If we're already in promisc or allmulti mode, we
1187 	 * don't have to bother programming the multicast filter.
1188 	 */
1189 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
1190 		return;
1191 
1192 	/* Now program new ones. */
1193 	if_maddr_rlock(ifp);
1194 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1195 		if (ifma->ifma_addr->sa_family != AF_LINK)
1196 			continue;
1197 		if (DC_IS_CENTAUR(sc))
1198 			h = dc_mchash_le(sc,
1199 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1200 		else
1201 			h = dc_mchash_be(
1202 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1203 		if (h < 32)
1204 			hashes[0] |= (1 << h);
1205 		else
1206 			hashes[1] |= (1 << (h - 32));
1207 	}
1208 	if_maddr_runlock(ifp);
1209 
1210 	CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]);
1211 	CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]);
1212 }
1213 
1214 static void
1215 dc_setfilt_asix(struct dc_softc *sc)
1216 {
1217 	uint32_t eaddr[(ETHER_ADDR_LEN+3)/4];
1218 	struct ifnet *ifp;
1219 	struct ifmultiaddr *ifma;
1220 	int h = 0;
1221 	uint32_t hashes[2] = { 0, 0 };
1222 
1223 	ifp = sc->dc_ifp;
1224 
1225 	/* Init our MAC address. */
1226 	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1227 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
1228 	CSR_WRITE_4(sc, DC_AX_FILTDATA, eaddr[0]);
1229 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
1230 	CSR_WRITE_4(sc, DC_AX_FILTDATA, eaddr[1]);
1231 
1232 	/* If we want promiscuous mode, set the allframes bit. */
1233 	if (ifp->if_flags & IFF_PROMISC)
1234 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1235 	else
1236 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1237 
1238 	if (ifp->if_flags & IFF_ALLMULTI)
1239 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1240 	else
1241 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1242 
1243 	/*
1244 	 * The ASIX chip has a special bit to enable reception
1245 	 * of broadcast frames.
1246 	 */
1247 	if (ifp->if_flags & IFF_BROADCAST)
1248 		DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1249 	else
1250 		DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1251 
1252 	/* first, zot all the existing hash bits */
1253 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1254 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1255 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1256 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1257 
1258 	/*
1259 	 * If we're already in promisc or allmulti mode, we
1260 	 * don't have to bother programming the multicast filter.
1261 	 */
1262 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
1263 		return;
1264 
1265 	/* now program new ones */
1266 	if_maddr_rlock(ifp);
1267 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1268 		if (ifma->ifma_addr->sa_family != AF_LINK)
1269 			continue;
1270 		h = dc_mchash_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1271 		if (h < 32)
1272 			hashes[0] |= (1 << h);
1273 		else
1274 			hashes[1] |= (1 << (h - 32));
1275 	}
1276 	if_maddr_runlock(ifp);
1277 
1278 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1279 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
1280 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1281 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
1282 }
1283 
1284 static void
1285 dc_setfilt_xircom(struct dc_softc *sc)
1286 {
1287 	uint16_t eaddr[(ETHER_ADDR_LEN+1)/2];
1288 	struct ifnet *ifp;
1289 	struct ifmultiaddr *ifma;
1290 	struct dc_desc *sframe;
1291 	uint32_t h, *sp;
1292 	int i;
1293 
1294 	ifp = sc->dc_ifp;
1295 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1296 
1297 	i = sc->dc_cdata.dc_tx_prod;
1298 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1299 	sc->dc_cdata.dc_tx_cnt++;
1300 	sframe = &sc->dc_ldata.dc_tx_list[i];
1301 	sp = sc->dc_cdata.dc_sbuf;
1302 	bzero(sp, DC_SFRAME_LEN);
1303 
1304 	sframe->dc_data = htole32(DC_ADDR_LO(sc->dc_saddr));
1305 	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
1306 	    DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
1307 
1308 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
1309 
1310 	/* If we want promiscuous mode, set the allframes bit. */
1311 	if (ifp->if_flags & IFF_PROMISC)
1312 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1313 	else
1314 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1315 
1316 	if (ifp->if_flags & IFF_ALLMULTI)
1317 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1318 	else
1319 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1320 
1321 	if_maddr_rlock(ifp);
1322 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1323 		if (ifma->ifma_addr->sa_family != AF_LINK)
1324 			continue;
1325 		h = dc_mchash_le(sc,
1326 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1327 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1328 	}
1329 	if_maddr_runlock(ifp);
1330 
1331 	if (ifp->if_flags & IFF_BROADCAST) {
1332 		h = dc_mchash_le(sc, ifp->if_broadcastaddr);
1333 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1334 	}
1335 
1336 	/* Set our MAC address. */
1337 	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1338 	sp[0] = DC_SP_MAC(eaddr[0]);
1339 	sp[1] = DC_SP_MAC(eaddr[1]);
1340 	sp[2] = DC_SP_MAC(eaddr[2]);
1341 
1342 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
1343 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
1344 	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1345 	bus_dmamap_sync(sc->dc_stag, sc->dc_smap, BUS_DMASYNC_PREWRITE);
1346 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1347 
1348 	/*
1349 	 * Wait some time...
1350 	 */
1351 	DELAY(1000);
1352 
1353 	sc->dc_wdog_timer = 5;
1354 }
1355 
1356 static void
1357 dc_setfilt(struct dc_softc *sc)
1358 {
1359 
1360 	if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
1361 	    DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc))
1362 		dc_setfilt_21143(sc);
1363 
1364 	if (DC_IS_ASIX(sc))
1365 		dc_setfilt_asix(sc);
1366 
1367 	if (DC_IS_ADMTEK(sc))
1368 		dc_setfilt_admtek(sc);
1369 
1370 	if (DC_IS_XIRCOM(sc))
1371 		dc_setfilt_xircom(sc);
1372 }
1373 
1374 static void
1375 dc_netcfg_wait(struct dc_softc *sc)
1376 {
1377 	uint32_t isr;
1378 	int i;
1379 
1380 	for (i = 0; i < DC_TIMEOUT; i++) {
1381 		isr = CSR_READ_4(sc, DC_ISR);
1382 		if (isr & DC_ISR_TX_IDLE &&
1383 		    ((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
1384 		    (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT))
1385 			break;
1386 		DELAY(10);
1387 	}
1388 	if (i == DC_TIMEOUT) {
1389 		if (!(isr & DC_ISR_TX_IDLE) && !DC_IS_ASIX(sc))
1390 			device_printf(sc->dc_dev,
1391 			    "%s: failed to force tx to idle state\n", __func__);
1392 		if (!((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
1393 		    (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT) &&
1394 		    !DC_HAS_BROKEN_RXSTATE(sc))
1395 			device_printf(sc->dc_dev,
1396 			    "%s: failed to force rx to idle state\n", __func__);
1397 	}
1398 }
1399 
1400 /*
1401  * In order to fiddle with the 'full-duplex' and '100Mbps' bits in
1402  * the netconfig register, we first have to put the transmit and/or
1403  * receive logic in the idle state.
1404  */
1405 static void
1406 dc_setcfg(struct dc_softc *sc, int media)
1407 {
1408 	int restart = 0, watchdogreg;
1409 
1410 	if (IFM_SUBTYPE(media) == IFM_NONE)
1411 		return;
1412 
1413 	if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON)) {
1414 		restart = 1;
1415 		DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1416 		dc_netcfg_wait(sc);
1417 	}
1418 
1419 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
1420 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1421 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1422 		if (sc->dc_pmode == DC_PMODE_MII) {
1423 			if (DC_IS_INTEL(sc)) {
1424 			/* There's a write enable bit here that reads as 1. */
1425 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1426 				watchdogreg &= ~DC_WDOG_CTLWREN;
1427 				watchdogreg |= DC_WDOG_JABBERDIS;
1428 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1429 			} else {
1430 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1431 			}
1432 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1433 			    DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
1434 			if (sc->dc_type == DC_TYPE_98713)
1435 				DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1436 				    DC_NETCFG_SCRAMBLER));
1437 			if (!DC_IS_DAVICOM(sc))
1438 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1439 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1440 		} else {
1441 			if (DC_IS_PNIC(sc)) {
1442 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
1443 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1444 				DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1445 			}
1446 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1447 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1448 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1449 		}
1450 	}
1451 
1452 	if (IFM_SUBTYPE(media) == IFM_10_T) {
1453 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1454 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1455 		if (sc->dc_pmode == DC_PMODE_MII) {
1456 			/* There's a write enable bit here that reads as 1. */
1457 			if (DC_IS_INTEL(sc)) {
1458 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1459 				watchdogreg &= ~DC_WDOG_CTLWREN;
1460 				watchdogreg |= DC_WDOG_JABBERDIS;
1461 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1462 			} else {
1463 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1464 			}
1465 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1466 			    DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
1467 			if (sc->dc_type == DC_TYPE_98713)
1468 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1469 			if (!DC_IS_DAVICOM(sc))
1470 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1471 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1472 		} else {
1473 			if (DC_IS_PNIC(sc)) {
1474 				DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
1475 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1476 				DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1477 			}
1478 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1479 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1480 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1481 			if (DC_IS_INTEL(sc)) {
1482 				DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET);
1483 				DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1484 				if ((media & IFM_GMASK) == IFM_FDX)
1485 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D);
1486 				else
1487 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F);
1488 				DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1489 				DC_CLRBIT(sc, DC_10BTCTRL,
1490 				    DC_TCTL_AUTONEGENBL);
1491 				DELAY(20000);
1492 			}
1493 		}
1494 	}
1495 
1496 	/*
1497 	 * If this is a Davicom DM9102A card with a DM9801 HomePNA
1498 	 * PHY and we want HomePNA mode, set the portsel bit to turn
1499 	 * on the external MII port.
1500 	 */
1501 	if (DC_IS_DAVICOM(sc)) {
1502 		if (IFM_SUBTYPE(media) == IFM_HPNA_1) {
1503 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1504 			sc->dc_link = 1;
1505 		} else {
1506 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1507 		}
1508 	}
1509 
1510 	if ((media & IFM_GMASK) == IFM_FDX) {
1511 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1512 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1513 			DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1514 	} else {
1515 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1516 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1517 			DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1518 	}
1519 
1520 	if (restart)
1521 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON | DC_NETCFG_RX_ON);
1522 }
1523 
1524 static void
1525 dc_reset(struct dc_softc *sc)
1526 {
1527 	int i;
1528 
1529 	DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1530 
1531 	for (i = 0; i < DC_TIMEOUT; i++) {
1532 		DELAY(10);
1533 		if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
1534 			break;
1535 	}
1536 
1537 	if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_CONEXANT(sc) ||
1538 	    DC_IS_XIRCOM(sc) || DC_IS_INTEL(sc)) {
1539 		DELAY(10000);
1540 		DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1541 		i = 0;
1542 	}
1543 
1544 	if (i == DC_TIMEOUT)
1545 		device_printf(sc->dc_dev, "reset never completed!\n");
1546 
1547 	/* Wait a little while for the chip to get its brains in order. */
1548 	DELAY(1000);
1549 
1550 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
1551 	CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
1552 	CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
1553 
1554 	/*
1555 	 * Bring the SIA out of reset. In some cases, it looks
1556 	 * like failing to unreset the SIA soon enough gets it
1557 	 * into a state where it will never come out of reset
1558 	 * until we reset the whole chip again.
1559 	 */
1560 	if (DC_IS_INTEL(sc)) {
1561 		DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1562 		CSR_WRITE_4(sc, DC_10BTCTRL, 0xFFFFFFFF);
1563 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
1564 	}
1565 }
1566 
1567 static const struct dc_type *
1568 dc_devtype(device_t dev)
1569 {
1570 	const struct dc_type *t;
1571 	uint32_t devid;
1572 	uint8_t rev;
1573 
1574 	t = dc_devs;
1575 	devid = pci_get_devid(dev);
1576 	rev = pci_get_revid(dev);
1577 
1578 	while (t->dc_name != NULL) {
1579 		if (devid == t->dc_devid && rev >= t->dc_minrev)
1580 			return (t);
1581 		t++;
1582 	}
1583 
1584 	return (NULL);
1585 }
1586 
1587 /*
1588  * Probe for a 21143 or clone chip. Check the PCI vendor and device
1589  * IDs against our list and return a device name if we find a match.
1590  * We do a little bit of extra work to identify the exact type of
1591  * chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
1592  * but different revision IDs. The same is true for 98715/98715A
1593  * chips and the 98725, as well as the ASIX and ADMtek chips. In some
1594  * cases, the exact chip revision affects driver behavior.
1595  */
1596 static int
1597 dc_probe(device_t dev)
1598 {
1599 	const struct dc_type *t;
1600 
1601 	t = dc_devtype(dev);
1602 
1603 	if (t != NULL) {
1604 		device_set_desc(dev, t->dc_name);
1605 		return (BUS_PROBE_DEFAULT);
1606 	}
1607 
1608 	return (ENXIO);
1609 }
1610 
1611 static void
1612 dc_apply_fixup(struct dc_softc *sc, int media)
1613 {
1614 	struct dc_mediainfo *m;
1615 	uint8_t *p;
1616 	int i;
1617 	uint32_t reg;
1618 
1619 	m = sc->dc_mi;
1620 
1621 	while (m != NULL) {
1622 		if (m->dc_media == media)
1623 			break;
1624 		m = m->dc_next;
1625 	}
1626 
1627 	if (m == NULL)
1628 		return;
1629 
1630 	for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) {
1631 		reg = (p[0] | (p[1] << 8)) << 16;
1632 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1633 	}
1634 
1635 	for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) {
1636 		reg = (p[0] | (p[1] << 8)) << 16;
1637 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1638 	}
1639 }
1640 
1641 static int
1642 dc_decode_leaf_sia(struct dc_softc *sc, struct dc_eblock_sia *l)
1643 {
1644 	struct dc_mediainfo *m;
1645 
1646 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1647 	if (m == NULL) {
1648 		device_printf(sc->dc_dev, "Could not allocate mediainfo\n");
1649 		return (ENOMEM);
1650 	}
1651 	switch (l->dc_sia_code & ~DC_SIA_CODE_EXT) {
1652 	case DC_SIA_CODE_10BT:
1653 		m->dc_media = IFM_10_T;
1654 		break;
1655 	case DC_SIA_CODE_10BT_FDX:
1656 		m->dc_media = IFM_10_T | IFM_FDX;
1657 		break;
1658 	case DC_SIA_CODE_10B2:
1659 		m->dc_media = IFM_10_2;
1660 		break;
1661 	case DC_SIA_CODE_10B5:
1662 		m->dc_media = IFM_10_5;
1663 		break;
1664 	default:
1665 		break;
1666 	}
1667 
1668 	/*
1669 	 * We need to ignore CSR13, CSR14, CSR15 for SIA mode.
1670 	 * Things apparently already work for cards that do
1671 	 * supply Media Specific Data.
1672 	 */
1673 	if (l->dc_sia_code & DC_SIA_CODE_EXT) {
1674 		m->dc_gp_len = 2;
1675 		m->dc_gp_ptr =
1676 		(uint8_t *)&l->dc_un.dc_sia_ext.dc_sia_gpio_ctl;
1677 	} else {
1678 		m->dc_gp_len = 2;
1679 		m->dc_gp_ptr =
1680 		(uint8_t *)&l->dc_un.dc_sia_noext.dc_sia_gpio_ctl;
1681 	}
1682 
1683 	m->dc_next = sc->dc_mi;
1684 	sc->dc_mi = m;
1685 
1686 	sc->dc_pmode = DC_PMODE_SIA;
1687 	return (0);
1688 }
1689 
1690 static int
1691 dc_decode_leaf_sym(struct dc_softc *sc, struct dc_eblock_sym *l)
1692 {
1693 	struct dc_mediainfo *m;
1694 
1695 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1696 	if (m == NULL) {
1697 		device_printf(sc->dc_dev, "Could not allocate mediainfo\n");
1698 		return (ENOMEM);
1699 	}
1700 	if (l->dc_sym_code == DC_SYM_CODE_100BT)
1701 		m->dc_media = IFM_100_TX;
1702 
1703 	if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX)
1704 		m->dc_media = IFM_100_TX | IFM_FDX;
1705 
1706 	m->dc_gp_len = 2;
1707 	m->dc_gp_ptr = (uint8_t *)&l->dc_sym_gpio_ctl;
1708 
1709 	m->dc_next = sc->dc_mi;
1710 	sc->dc_mi = m;
1711 
1712 	sc->dc_pmode = DC_PMODE_SYM;
1713 	return (0);
1714 }
1715 
1716 static int
1717 dc_decode_leaf_mii(struct dc_softc *sc, struct dc_eblock_mii *l)
1718 {
1719 	struct dc_mediainfo *m;
1720 	uint8_t *p;
1721 
1722 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1723 	if (m == NULL) {
1724 		device_printf(sc->dc_dev, "Could not allocate mediainfo\n");
1725 		return (ENOMEM);
1726 	}
1727 	/* We abuse IFM_AUTO to represent MII. */
1728 	m->dc_media = IFM_AUTO;
1729 	m->dc_gp_len = l->dc_gpr_len;
1730 
1731 	p = (uint8_t *)l;
1732 	p += sizeof(struct dc_eblock_mii);
1733 	m->dc_gp_ptr = p;
1734 	p += 2 * l->dc_gpr_len;
1735 	m->dc_reset_len = *p;
1736 	p++;
1737 	m->dc_reset_ptr = p;
1738 
1739 	m->dc_next = sc->dc_mi;
1740 	sc->dc_mi = m;
1741 	return (0);
1742 }
1743 
1744 static int
1745 dc_read_srom(struct dc_softc *sc, int bits)
1746 {
1747 	int size;
1748 
1749 	size = DC_ROM_SIZE(bits);
1750 	sc->dc_srom = malloc(size, M_DEVBUF, M_NOWAIT);
1751 	if (sc->dc_srom == NULL) {
1752 		device_printf(sc->dc_dev, "Could not allocate SROM buffer\n");
1753 		return (ENOMEM);
1754 	}
1755 	dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (size / 2), 0);
1756 	return (0);
1757 }
1758 
1759 static int
1760 dc_parse_21143_srom(struct dc_softc *sc)
1761 {
1762 	struct dc_leaf_hdr *lhdr;
1763 	struct dc_eblock_hdr *hdr;
1764 	int error, have_mii, i, loff;
1765 	char *ptr;
1766 
1767 	have_mii = 0;
1768 	loff = sc->dc_srom[27];
1769 	lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]);
1770 
1771 	ptr = (char *)lhdr;
1772 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1773 	/*
1774 	 * Look if we got a MII media block.
1775 	 */
1776 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1777 		hdr = (struct dc_eblock_hdr *)ptr;
1778 		if (hdr->dc_type == DC_EBLOCK_MII)
1779 		    have_mii++;
1780 
1781 		ptr += (hdr->dc_len & 0x7F);
1782 		ptr++;
1783 	}
1784 
1785 	/*
1786 	 * Do the same thing again. Only use SIA and SYM media
1787 	 * blocks if no MII media block is available.
1788 	 */
1789 	ptr = (char *)lhdr;
1790 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1791 	error = 0;
1792 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1793 		hdr = (struct dc_eblock_hdr *)ptr;
1794 		switch (hdr->dc_type) {
1795 		case DC_EBLOCK_MII:
1796 			error = dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr);
1797 			break;
1798 		case DC_EBLOCK_SIA:
1799 			if (! have_mii)
1800 				error = dc_decode_leaf_sia(sc,
1801 				    (struct dc_eblock_sia *)hdr);
1802 			break;
1803 		case DC_EBLOCK_SYM:
1804 			if (! have_mii)
1805 				error = dc_decode_leaf_sym(sc,
1806 				    (struct dc_eblock_sym *)hdr);
1807 			break;
1808 		default:
1809 			/* Don't care. Yet. */
1810 			break;
1811 		}
1812 		ptr += (hdr->dc_len & 0x7F);
1813 		ptr++;
1814 	}
1815 	return (error);
1816 }
1817 
1818 static void
1819 dc_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1820 {
1821 	bus_addr_t *paddr;
1822 
1823 	KASSERT(nseg == 1,
1824 	    ("%s: wrong number of segments (%d)", __func__, nseg));
1825 	paddr = arg;
1826 	*paddr = segs->ds_addr;
1827 }
1828 
1829 static int
1830 dc_dma_alloc(struct dc_softc *sc)
1831 {
1832 	int error, i;
1833 
1834 	error = bus_dma_tag_create(bus_get_dma_tag(sc->dc_dev), 1, 0,
1835 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1836 	    BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0,
1837 	    NULL, NULL, &sc->dc_ptag);
1838 	if (error) {
1839 		device_printf(sc->dc_dev,
1840 		    "failed to allocate parent DMA tag\n");
1841 		goto fail;
1842 	}
1843 
1844 	/* Allocate a busdma tag and DMA safe memory for TX/RX descriptors. */
1845 	error = bus_dma_tag_create(sc->dc_ptag, DC_LIST_ALIGN, 0,
1846 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, DC_RX_LIST_SZ, 1,
1847 	    DC_RX_LIST_SZ, 0, NULL, NULL, &sc->dc_rx_ltag);
1848 	if (error) {
1849 		device_printf(sc->dc_dev, "failed to create RX list DMA tag\n");
1850 		goto fail;
1851 	}
1852 
1853 	error = bus_dma_tag_create(sc->dc_ptag, DC_LIST_ALIGN, 0,
1854 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, DC_TX_LIST_SZ, 1,
1855 	    DC_TX_LIST_SZ, 0, NULL, NULL, &sc->dc_tx_ltag);
1856 	if (error) {
1857 		device_printf(sc->dc_dev, "failed to create TX list DMA tag\n");
1858 		goto fail;
1859 	}
1860 
1861 	/* RX descriptor list. */
1862 	error = bus_dmamem_alloc(sc->dc_rx_ltag,
1863 	    (void **)&sc->dc_ldata.dc_rx_list, BUS_DMA_NOWAIT |
1864 	    BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->dc_rx_lmap);
1865 	if (error) {
1866 		device_printf(sc->dc_dev,
1867 		    "failed to allocate DMA'able memory for RX list\n");
1868 		goto fail;
1869 	}
1870 	error = bus_dmamap_load(sc->dc_rx_ltag, sc->dc_rx_lmap,
1871 	    sc->dc_ldata.dc_rx_list, DC_RX_LIST_SZ, dc_dma_map_addr,
1872 	    &sc->dc_ldata.dc_rx_list_paddr, BUS_DMA_NOWAIT);
1873 	if (error) {
1874 		device_printf(sc->dc_dev,
1875 		    "failed to load DMA'able memory for RX list\n");
1876 		goto fail;
1877 	}
1878 	/* TX descriptor list. */
1879 	error = bus_dmamem_alloc(sc->dc_tx_ltag,
1880 	    (void **)&sc->dc_ldata.dc_tx_list, BUS_DMA_NOWAIT |
1881 	    BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->dc_tx_lmap);
1882 	if (error) {
1883 		device_printf(sc->dc_dev,
1884 		    "failed to allocate DMA'able memory for TX list\n");
1885 		goto fail;
1886 	}
1887 	error = bus_dmamap_load(sc->dc_tx_ltag, sc->dc_tx_lmap,
1888 	    sc->dc_ldata.dc_tx_list, DC_TX_LIST_SZ, dc_dma_map_addr,
1889 	    &sc->dc_ldata.dc_tx_list_paddr, BUS_DMA_NOWAIT);
1890 	if (error) {
1891 		device_printf(sc->dc_dev,
1892 		    "cannot load DMA'able memory for TX list\n");
1893 		goto fail;
1894 	}
1895 
1896 	/*
1897 	 * Allocate a busdma tag and DMA safe memory for the multicast
1898 	 * setup frame.
1899 	 */
1900 	error = bus_dma_tag_create(sc->dc_ptag, DC_LIST_ALIGN, 0,
1901 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1902 	    DC_SFRAME_LEN + DC_MIN_FRAMELEN, 1, DC_SFRAME_LEN + DC_MIN_FRAMELEN,
1903 	    0, NULL, NULL, &sc->dc_stag);
1904 	if (error) {
1905 		device_printf(sc->dc_dev,
1906 		    "failed to create DMA tag for setup frame\n");
1907 		goto fail;
1908 	}
1909 	error = bus_dmamem_alloc(sc->dc_stag, (void **)&sc->dc_cdata.dc_sbuf,
1910 	    BUS_DMA_NOWAIT, &sc->dc_smap);
1911 	if (error) {
1912 		device_printf(sc->dc_dev,
1913 		    "failed to allocate DMA'able memory for setup frame\n");
1914 		goto fail;
1915 	}
1916 	error = bus_dmamap_load(sc->dc_stag, sc->dc_smap, sc->dc_cdata.dc_sbuf,
1917 	    DC_SFRAME_LEN, dc_dma_map_addr, &sc->dc_saddr, BUS_DMA_NOWAIT);
1918 	if (error) {
1919 		device_printf(sc->dc_dev,
1920 		    "cannot load DMA'able memory for setup frame\n");
1921 		goto fail;
1922 	}
1923 
1924 	/* Allocate a busdma tag for RX mbufs. */
1925 	error = bus_dma_tag_create(sc->dc_ptag, DC_RXBUF_ALIGN, 0,
1926 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1927 	    MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &sc->dc_rx_mtag);
1928 	if (error) {
1929 		device_printf(sc->dc_dev, "failed to create RX mbuf tag\n");
1930 		goto fail;
1931 	}
1932 
1933 	/* Allocate a busdma tag for TX mbufs. */
1934 	error = bus_dma_tag_create(sc->dc_ptag, 1, 0,
1935 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1936 	    MCLBYTES * DC_MAXFRAGS, DC_MAXFRAGS, MCLBYTES,
1937 	    0, NULL, NULL, &sc->dc_tx_mtag);
1938 	if (error) {
1939 		device_printf(sc->dc_dev, "failed to create TX mbuf tag\n");
1940 		goto fail;
1941 	}
1942 
1943 	/* Create the TX/RX busdma maps. */
1944 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
1945 		error = bus_dmamap_create(sc->dc_tx_mtag, 0,
1946 		    &sc->dc_cdata.dc_tx_map[i]);
1947 		if (error) {
1948 			device_printf(sc->dc_dev,
1949 			    "failed to create TX mbuf dmamap\n");
1950 			goto fail;
1951 		}
1952 	}
1953 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
1954 		error = bus_dmamap_create(sc->dc_rx_mtag, 0,
1955 		    &sc->dc_cdata.dc_rx_map[i]);
1956 		if (error) {
1957 			device_printf(sc->dc_dev,
1958 			    "failed to create RX mbuf dmamap\n");
1959 			goto fail;
1960 		}
1961 	}
1962 	error = bus_dmamap_create(sc->dc_rx_mtag, 0, &sc->dc_sparemap);
1963 	if (error) {
1964 		device_printf(sc->dc_dev,
1965 		    "failed to create spare RX mbuf dmamap\n");
1966 		goto fail;
1967 	}
1968 
1969 fail:
1970 	return (error);
1971 }
1972 
1973 static void
1974 dc_dma_free(struct dc_softc *sc)
1975 {
1976 	int i;
1977 
1978 	/* RX buffers. */
1979 	if (sc->dc_rx_mtag != NULL) {
1980 		for (i = 0; i < DC_RX_LIST_CNT; i++) {
1981 			if (sc->dc_cdata.dc_rx_map[i] != NULL)
1982 				bus_dmamap_destroy(sc->dc_rx_mtag,
1983 				    sc->dc_cdata.dc_rx_map[i]);
1984 		}
1985 		if (sc->dc_sparemap != NULL)
1986 			bus_dmamap_destroy(sc->dc_rx_mtag, sc->dc_sparemap);
1987 		bus_dma_tag_destroy(sc->dc_rx_mtag);
1988 	}
1989 
1990 	/* TX buffers. */
1991 	if (sc->dc_rx_mtag != NULL) {
1992 		for (i = 0; i < DC_TX_LIST_CNT; i++) {
1993 			if (sc->dc_cdata.dc_tx_map[i] != NULL)
1994 				bus_dmamap_destroy(sc->dc_tx_mtag,
1995 				    sc->dc_cdata.dc_tx_map[i]);
1996 		}
1997 		bus_dma_tag_destroy(sc->dc_tx_mtag);
1998 	}
1999 
2000 	/* RX descriptor list. */
2001 	if (sc->dc_rx_ltag) {
2002 		if (sc->dc_rx_lmap != NULL)
2003 			bus_dmamap_unload(sc->dc_rx_ltag, sc->dc_rx_lmap);
2004 		if (sc->dc_rx_lmap != NULL && sc->dc_ldata.dc_rx_list != NULL)
2005 			bus_dmamem_free(sc->dc_rx_ltag, sc->dc_ldata.dc_rx_list,
2006 			    sc->dc_rx_lmap);
2007 		bus_dma_tag_destroy(sc->dc_rx_ltag);
2008 	}
2009 
2010 	/* TX descriptor list. */
2011 	if (sc->dc_tx_ltag) {
2012 		if (sc->dc_tx_lmap != NULL)
2013 			bus_dmamap_unload(sc->dc_tx_ltag, sc->dc_tx_lmap);
2014 		if (sc->dc_tx_lmap != NULL && sc->dc_ldata.dc_tx_list != NULL)
2015 			bus_dmamem_free(sc->dc_tx_ltag, sc->dc_ldata.dc_tx_list,
2016 			    sc->dc_tx_lmap);
2017 		bus_dma_tag_destroy(sc->dc_tx_ltag);
2018 	}
2019 
2020 	/* multicast setup frame. */
2021 	if (sc->dc_stag) {
2022 		if (sc->dc_smap != NULL)
2023 			bus_dmamap_unload(sc->dc_stag, sc->dc_smap);
2024 		if (sc->dc_smap != NULL && sc->dc_cdata.dc_sbuf != NULL)
2025 			bus_dmamem_free(sc->dc_stag, sc->dc_cdata.dc_sbuf,
2026 			    sc->dc_smap);
2027 		bus_dma_tag_destroy(sc->dc_stag);
2028 	}
2029 }
2030 
2031 /*
2032  * Attach the interface. Allocate softc structures, do ifmedia
2033  * setup and ethernet/BPF attach.
2034  */
2035 static int
2036 dc_attach(device_t dev)
2037 {
2038 	uint32_t eaddr[(ETHER_ADDR_LEN+3)/4];
2039 	uint32_t command;
2040 	struct dc_softc *sc;
2041 	struct ifnet *ifp;
2042 	struct dc_mediainfo *m;
2043 	uint32_t reg, revision;
2044 	int error, mac_offset, phy, rid, tmp;
2045 	uint8_t *mac;
2046 
2047 	sc = device_get_softc(dev);
2048 	sc->dc_dev = dev;
2049 
2050 	mtx_init(&sc->dc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
2051 	    MTX_DEF);
2052 
2053 	/*
2054 	 * Map control/status registers.
2055 	 */
2056 	pci_enable_busmaster(dev);
2057 
2058 	rid = DC_RID;
2059 	sc->dc_res = bus_alloc_resource_any(dev, DC_RES, &rid, RF_ACTIVE);
2060 
2061 	if (sc->dc_res == NULL) {
2062 		device_printf(dev, "couldn't map ports/memory\n");
2063 		error = ENXIO;
2064 		goto fail;
2065 	}
2066 
2067 	sc->dc_btag = rman_get_bustag(sc->dc_res);
2068 	sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
2069 
2070 	/* Allocate interrupt. */
2071 	rid = 0;
2072 	sc->dc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
2073 	    RF_SHAREABLE | RF_ACTIVE);
2074 
2075 	if (sc->dc_irq == NULL) {
2076 		device_printf(dev, "couldn't map interrupt\n");
2077 		error = ENXIO;
2078 		goto fail;
2079 	}
2080 
2081 	/* Need this info to decide on a chip type. */
2082 	sc->dc_info = dc_devtype(dev);
2083 	revision = pci_get_revid(dev);
2084 
2085 	error = 0;
2086 	/* Get the eeprom width, but PNIC and XIRCOM have diff eeprom */
2087 	if (sc->dc_info->dc_devid !=
2088 	    DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168) &&
2089 	    sc->dc_info->dc_devid !=
2090 	    DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201))
2091 		dc_eeprom_width(sc);
2092 
2093 	switch (sc->dc_info->dc_devid) {
2094 	case DC_DEVID(DC_VENDORID_DEC, DC_DEVICEID_21143):
2095 		sc->dc_type = DC_TYPE_21143;
2096 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
2097 		sc->dc_flags |= DC_REDUCED_MII_POLL;
2098 		/* Save EEPROM contents so we can parse them later. */
2099 		error = dc_read_srom(sc, sc->dc_romwidth);
2100 		if (error != 0)
2101 			goto fail;
2102 		break;
2103 	case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009):
2104 	case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100):
2105 	case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102):
2106 		sc->dc_type = DC_TYPE_DM9102;
2107 		sc->dc_flags |= DC_TX_COALESCE | DC_TX_INTR_ALWAYS;
2108 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_TX_STORENFWD;
2109 		sc->dc_flags |= DC_TX_ALIGN;
2110 		sc->dc_pmode = DC_PMODE_MII;
2111 
2112 		/* Increase the latency timer value. */
2113 		pci_write_config(dev, PCIR_LATTIMER, 0x80, 1);
2114 		break;
2115 	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AL981):
2116 		sc->dc_type = DC_TYPE_AL981;
2117 		sc->dc_flags |= DC_TX_USE_TX_INTR;
2118 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
2119 		sc->dc_pmode = DC_PMODE_MII;
2120 		error = dc_read_srom(sc, sc->dc_romwidth);
2121 		if (error != 0)
2122 			goto fail;
2123 		break;
2124 	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN983):
2125 	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN985):
2126 	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511):
2127 	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513):
2128 	case DC_DEVID(DC_VENDORID_DLINK, DC_DEVICEID_DRP32TXD):
2129 	case DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500):
2130 	case DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500MX):
2131 	case DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN2242):
2132 	case DC_DEVID(DC_VENDORID_HAWKING, DC_DEVICEID_HAWKING_PN672TX):
2133 	case DC_DEVID(DC_VENDORID_PLANEX, DC_DEVICEID_FNW3602T):
2134 	case DC_DEVID(DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB):
2135 	case DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN120):
2136 	case DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130):
2137 	case DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB08):
2138 	case DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB09):
2139 		sc->dc_type = DC_TYPE_AN983;
2140 		sc->dc_flags |= DC_64BIT_HASH;
2141 		sc->dc_flags |= DC_TX_USE_TX_INTR;
2142 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
2143 		sc->dc_pmode = DC_PMODE_MII;
2144 		/* Don't read SROM for - auto-loaded on reset */
2145 		break;
2146 	case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713):
2147 	case DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP):
2148 		if (revision < DC_REVISION_98713A) {
2149 			sc->dc_type = DC_TYPE_98713;
2150 		}
2151 		if (revision >= DC_REVISION_98713A) {
2152 			sc->dc_type = DC_TYPE_98713A;
2153 			sc->dc_flags |= DC_21143_NWAY;
2154 		}
2155 		sc->dc_flags |= DC_REDUCED_MII_POLL;
2156 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
2157 		break;
2158 	case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5):
2159 	case DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN1217):
2160 		/*
2161 		 * Macronix MX98715AEC-C/D/E parts have only a
2162 		 * 128-bit hash table. We need to deal with these
2163 		 * in the same manner as the PNIC II so that we
2164 		 * get the right number of bits out of the
2165 		 * CRC routine.
2166 		 */
2167 		if (revision >= DC_REVISION_98715AEC_C &&
2168 		    revision < DC_REVISION_98725)
2169 			sc->dc_flags |= DC_128BIT_HASH;
2170 		sc->dc_type = DC_TYPE_987x5;
2171 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
2172 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
2173 		break;
2174 	case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98727):
2175 		sc->dc_type = DC_TYPE_987x5;
2176 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
2177 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
2178 		break;
2179 	case DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C115):
2180 		sc->dc_type = DC_TYPE_PNICII;
2181 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR | DC_128BIT_HASH;
2182 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
2183 		break;
2184 	case DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168):
2185 		sc->dc_type = DC_TYPE_PNIC;
2186 		sc->dc_flags |= DC_TX_STORENFWD | DC_TX_INTR_ALWAYS;
2187 		sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
2188 		sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_NOWAIT);
2189 		if (sc->dc_pnic_rx_buf == NULL) {
2190 			device_printf(sc->dc_dev,
2191 			    "Could not allocate PNIC RX buffer\n");
2192 			error = ENOMEM;
2193 			goto fail;
2194 		}
2195 		if (revision < DC_REVISION_82C169)
2196 			sc->dc_pmode = DC_PMODE_SYM;
2197 		break;
2198 	case DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A):
2199 		sc->dc_type = DC_TYPE_ASIX;
2200 		sc->dc_flags |= DC_TX_USE_TX_INTR | DC_TX_INTR_FIRSTFRAG;
2201 		sc->dc_flags |= DC_REDUCED_MII_POLL;
2202 		sc->dc_pmode = DC_PMODE_MII;
2203 		break;
2204 	case DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201):
2205 		sc->dc_type = DC_TYPE_XIRCOM;
2206 		sc->dc_flags |= DC_TX_INTR_ALWAYS | DC_TX_COALESCE |
2207 				DC_TX_ALIGN;
2208 		/*
2209 		 * We don't actually need to coalesce, but we're doing
2210 		 * it to obtain a double word aligned buffer.
2211 		 * The DC_TX_COALESCE flag is required.
2212 		 */
2213 		sc->dc_pmode = DC_PMODE_MII;
2214 		break;
2215 	case DC_DEVID(DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112):
2216 		sc->dc_type = DC_TYPE_CONEXANT;
2217 		sc->dc_flags |= DC_TX_INTR_ALWAYS;
2218 		sc->dc_flags |= DC_REDUCED_MII_POLL;
2219 		sc->dc_pmode = DC_PMODE_MII;
2220 		error = dc_read_srom(sc, sc->dc_romwidth);
2221 		if (error != 0)
2222 			goto fail;
2223 		break;
2224 	default:
2225 		device_printf(dev, "unknown device: %x\n",
2226 		    sc->dc_info->dc_devid);
2227 		break;
2228 	}
2229 
2230 	/* Save the cache line size. */
2231 	if (DC_IS_DAVICOM(sc))
2232 		sc->dc_cachesize = 0;
2233 	else
2234 		sc->dc_cachesize = pci_get_cachelnsz(dev);
2235 
2236 	/* Reset the adapter. */
2237 	dc_reset(sc);
2238 
2239 	/* Take 21143 out of snooze mode */
2240 	if (DC_IS_INTEL(sc) || DC_IS_XIRCOM(sc)) {
2241 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
2242 		command &= ~(DC_CFDD_SNOOZE_MODE | DC_CFDD_SLEEP_MODE);
2243 		pci_write_config(dev, DC_PCI_CFDD, command, 4);
2244 	}
2245 
2246 	/*
2247 	 * Try to learn something about the supported media.
2248 	 * We know that ASIX and ADMtek and Davicom devices
2249 	 * will *always* be using MII media, so that's a no-brainer.
2250 	 * The tricky ones are the Macronix/PNIC II and the
2251 	 * Intel 21143.
2252 	 */
2253 	if (DC_IS_INTEL(sc)) {
2254 		error = dc_parse_21143_srom(sc);
2255 		if (error != 0)
2256 			goto fail;
2257 	} else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
2258 		if (sc->dc_type == DC_TYPE_98713)
2259 			sc->dc_pmode = DC_PMODE_MII;
2260 		else
2261 			sc->dc_pmode = DC_PMODE_SYM;
2262 	} else if (!sc->dc_pmode)
2263 		sc->dc_pmode = DC_PMODE_MII;
2264 
2265 	/*
2266 	 * Get station address from the EEPROM.
2267 	 */
2268 	switch(sc->dc_type) {
2269 	case DC_TYPE_98713:
2270 	case DC_TYPE_98713A:
2271 	case DC_TYPE_987x5:
2272 	case DC_TYPE_PNICII:
2273 		dc_read_eeprom(sc, (caddr_t)&mac_offset,
2274 		    (DC_EE_NODEADDR_OFFSET / 2), 1, 0);
2275 		dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
2276 		break;
2277 	case DC_TYPE_PNIC:
2278 		dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
2279 		break;
2280 	case DC_TYPE_DM9102:
2281 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2282 #ifdef __sparc64__
2283 		/*
2284 		 * If this is an onboard dc(4) the station address read from
2285 		 * the EEPROM is all zero and we have to get it from the FCode.
2286 		 */
2287 		if (eaddr[0] == 0 && (eaddr[1] & ~0xffff) == 0)
2288 			OF_getetheraddr(dev, (caddr_t)&eaddr);
2289 #endif
2290 		break;
2291 	case DC_TYPE_21143:
2292 	case DC_TYPE_ASIX:
2293 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2294 		break;
2295 	case DC_TYPE_AL981:
2296 	case DC_TYPE_AN983:
2297 		reg = CSR_READ_4(sc, DC_AL_PAR0);
2298 		mac = (uint8_t *)&eaddr[0];
2299 		mac[0] = (reg >> 0) & 0xff;
2300 		mac[1] = (reg >> 8) & 0xff;
2301 		mac[2] = (reg >> 16) & 0xff;
2302 		mac[3] = (reg >> 24) & 0xff;
2303 		reg = CSR_READ_4(sc, DC_AL_PAR1);
2304 		mac[4] = (reg >> 0) & 0xff;
2305 		mac[5] = (reg >> 8) & 0xff;
2306 		break;
2307 	case DC_TYPE_CONEXANT:
2308 		bcopy(sc->dc_srom + DC_CONEXANT_EE_NODEADDR, &eaddr,
2309 		    ETHER_ADDR_LEN);
2310 		break;
2311 	case DC_TYPE_XIRCOM:
2312 		/* The MAC comes from the CIS. */
2313 		mac = pci_get_ether(dev);
2314 		if (!mac) {
2315 			device_printf(dev, "No station address in CIS!\n");
2316 			error = ENXIO;
2317 			goto fail;
2318 		}
2319 		bcopy(mac, eaddr, ETHER_ADDR_LEN);
2320 		break;
2321 	default:
2322 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2323 		break;
2324 	}
2325 
2326 	bcopy(eaddr, sc->dc_eaddr, sizeof(eaddr));
2327 	/*
2328 	 * If we still have invalid station address, see whether we can
2329 	 * find station address for chip 0.  Some multi-port controllers
2330 	 * just store station address for chip 0 if they have a shared
2331 	 * SROM.
2332 	 */
2333 	if ((sc->dc_eaddr[0] == 0 && (sc->dc_eaddr[1] & ~0xffff) == 0) ||
2334 	    (sc->dc_eaddr[0] == 0xffffffff &&
2335 	    (sc->dc_eaddr[1] & 0xffff) == 0xffff)) {
2336 		error = dc_check_multiport(sc);
2337 		if (error == 0) {
2338 			bcopy(sc->dc_eaddr, eaddr, sizeof(eaddr));
2339 			/* Extract media information. */
2340 			if (DC_IS_INTEL(sc) && sc->dc_srom != NULL) {
2341 				while (sc->dc_mi != NULL) {
2342 					m = sc->dc_mi->dc_next;
2343 					free(sc->dc_mi, M_DEVBUF);
2344 					sc->dc_mi = m;
2345 				}
2346 				error = dc_parse_21143_srom(sc);
2347 				if (error != 0)
2348 					goto fail;
2349 			}
2350 		} else if (error == ENOMEM)
2351 			goto fail;
2352 		else
2353 			error = 0;
2354 	}
2355 
2356 	if ((error = dc_dma_alloc(sc)) != 0)
2357 		goto fail;
2358 
2359 	ifp = sc->dc_ifp = if_alloc(IFT_ETHER);
2360 	if (ifp == NULL) {
2361 		device_printf(dev, "can not if_alloc()\n");
2362 		error = ENOSPC;
2363 		goto fail;
2364 	}
2365 	ifp->if_softc = sc;
2366 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2367 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2368 	ifp->if_ioctl = dc_ioctl;
2369 	ifp->if_start = dc_start;
2370 	ifp->if_init = dc_init;
2371 	IFQ_SET_MAXLEN(&ifp->if_snd, DC_TX_LIST_CNT - 1);
2372 	ifp->if_snd.ifq_drv_maxlen = DC_TX_LIST_CNT - 1;
2373 	IFQ_SET_READY(&ifp->if_snd);
2374 
2375 	/*
2376 	 * Do MII setup. If this is a 21143, check for a PHY on the
2377 	 * MII bus after applying any necessary fixups to twiddle the
2378 	 * GPIO bits. If we don't end up finding a PHY, restore the
2379 	 * old selection (SIA only or SIA/SYM) and attach the dcphy
2380 	 * driver instead.
2381 	 */
2382 	tmp = 0;
2383 	if (DC_IS_INTEL(sc)) {
2384 		dc_apply_fixup(sc, IFM_AUTO);
2385 		tmp = sc->dc_pmode;
2386 		sc->dc_pmode = DC_PMODE_MII;
2387 	}
2388 
2389 	/*
2390 	 * Setup General Purpose port mode and data so the tulip can talk
2391 	 * to the MII.  This needs to be done before mii_attach so that
2392 	 * we can actually see them.
2393 	 */
2394 	if (DC_IS_XIRCOM(sc)) {
2395 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
2396 		    DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2397 		DELAY(10);
2398 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
2399 		    DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2400 		DELAY(10);
2401 	}
2402 
2403 	phy = MII_PHY_ANY;
2404 	/*
2405 	 * Note: both the AL981 and AN983 have internal PHYs, however the
2406 	 * AL981 provides direct access to the PHY registers while the AN983
2407 	 * uses a serial MII interface. The AN983's MII interface is also
2408 	 * buggy in that you can read from any MII address (0 to 31), but
2409 	 * only address 1 behaves normally. To deal with both cases, we
2410 	 * pretend that the PHY is at MII address 1.
2411 	 */
2412 	if (DC_IS_ADMTEK(sc))
2413 		phy = DC_ADMTEK_PHYADDR;
2414 
2415 	/*
2416 	 * Note: the ukphy probes of the RS7112 report a PHY at MII address
2417 	 * 0 (possibly HomePNA?) and 1 (ethernet) so we only respond to the
2418 	 * correct one.
2419 	 */
2420 	if (DC_IS_CONEXANT(sc))
2421 		phy = DC_CONEXANT_PHYADDR;
2422 
2423 	error = mii_attach(dev, &sc->dc_miibus, ifp, dc_ifmedia_upd,
2424 	    dc_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
2425 
2426 	if (error && DC_IS_INTEL(sc)) {
2427 		sc->dc_pmode = tmp;
2428 		if (sc->dc_pmode != DC_PMODE_SIA)
2429 			sc->dc_pmode = DC_PMODE_SYM;
2430 		sc->dc_flags |= DC_21143_NWAY;
2431 		mii_attach(dev, &sc->dc_miibus, ifp, dc_ifmedia_upd,
2432 		    dc_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY,
2433 		    MII_OFFSET_ANY, 0);
2434 		/*
2435 		 * For non-MII cards, we need to have the 21143
2436 		 * drive the LEDs. Except there are some systems
2437 		 * like the NEC VersaPro NoteBook PC which have no
2438 		 * LEDs, and twiddling these bits has adverse effects
2439 		 * on them. (I.e. you suddenly can't get a link.)
2440 		 */
2441 		if (!(pci_get_subvendor(dev) == 0x1033 &&
2442 		    pci_get_subdevice(dev) == 0x8028))
2443 			sc->dc_flags |= DC_TULIP_LEDS;
2444 		error = 0;
2445 	}
2446 
2447 	if (error) {
2448 		device_printf(dev, "attaching PHYs failed\n");
2449 		goto fail;
2450 	}
2451 
2452 	if (DC_IS_ADMTEK(sc)) {
2453 		/*
2454 		 * Set automatic TX underrun recovery for the ADMtek chips
2455 		 */
2456 		DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR);
2457 	}
2458 
2459 	/*
2460 	 * Tell the upper layer(s) we support long frames.
2461 	 */
2462 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2463 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
2464 	ifp->if_capenable = ifp->if_capabilities;
2465 #ifdef DEVICE_POLLING
2466 	ifp->if_capabilities |= IFCAP_POLLING;
2467 #endif
2468 
2469 	callout_init_mtx(&sc->dc_stat_ch, &sc->dc_mtx, 0);
2470 	callout_init_mtx(&sc->dc_wdog_ch, &sc->dc_mtx, 0);
2471 
2472 	/*
2473 	 * Call MI attach routine.
2474 	 */
2475 	ether_ifattach(ifp, (caddr_t)eaddr);
2476 
2477 	/* Hook interrupt last to avoid having to lock softc */
2478 	error = bus_setup_intr(dev, sc->dc_irq, INTR_TYPE_NET | INTR_MPSAFE,
2479 	    NULL, dc_intr, sc, &sc->dc_intrhand);
2480 
2481 	if (error) {
2482 		device_printf(dev, "couldn't set up irq\n");
2483 		ether_ifdetach(ifp);
2484 		goto fail;
2485 	}
2486 
2487 fail:
2488 	if (error)
2489 		dc_detach(dev);
2490 	return (error);
2491 }
2492 
2493 /*
2494  * Shutdown hardware and free up resources. This can be called any
2495  * time after the mutex has been initialized. It is called in both
2496  * the error case in attach and the normal detach case so it needs
2497  * to be careful about only freeing resources that have actually been
2498  * allocated.
2499  */
2500 static int
2501 dc_detach(device_t dev)
2502 {
2503 	struct dc_softc *sc;
2504 	struct ifnet *ifp;
2505 	struct dc_mediainfo *m;
2506 
2507 	sc = device_get_softc(dev);
2508 	KASSERT(mtx_initialized(&sc->dc_mtx), ("dc mutex not initialized"));
2509 
2510 	ifp = sc->dc_ifp;
2511 
2512 #ifdef DEVICE_POLLING
2513 	if (ifp->if_capenable & IFCAP_POLLING)
2514 		ether_poll_deregister(ifp);
2515 #endif
2516 
2517 	/* These should only be active if attach succeeded */
2518 	if (device_is_attached(dev)) {
2519 		DC_LOCK(sc);
2520 		dc_stop(sc);
2521 		DC_UNLOCK(sc);
2522 		callout_drain(&sc->dc_stat_ch);
2523 		callout_drain(&sc->dc_wdog_ch);
2524 		ether_ifdetach(ifp);
2525 	}
2526 	if (sc->dc_miibus)
2527 		device_delete_child(dev, sc->dc_miibus);
2528 	bus_generic_detach(dev);
2529 
2530 	if (sc->dc_intrhand)
2531 		bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2532 	if (sc->dc_irq)
2533 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2534 	if (sc->dc_res)
2535 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2536 
2537 	if (ifp)
2538 		if_free(ifp);
2539 
2540 	dc_dma_free(sc);
2541 
2542 	free(sc->dc_pnic_rx_buf, M_DEVBUF);
2543 
2544 	while (sc->dc_mi != NULL) {
2545 		m = sc->dc_mi->dc_next;
2546 		free(sc->dc_mi, M_DEVBUF);
2547 		sc->dc_mi = m;
2548 	}
2549 	free(sc->dc_srom, M_DEVBUF);
2550 
2551 	mtx_destroy(&sc->dc_mtx);
2552 
2553 	return (0);
2554 }
2555 
2556 /*
2557  * Initialize the transmit descriptors.
2558  */
2559 static int
2560 dc_list_tx_init(struct dc_softc *sc)
2561 {
2562 	struct dc_chain_data *cd;
2563 	struct dc_list_data *ld;
2564 	int i, nexti;
2565 
2566 	cd = &sc->dc_cdata;
2567 	ld = &sc->dc_ldata;
2568 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2569 		if (i == DC_TX_LIST_CNT - 1)
2570 			nexti = 0;
2571 		else
2572 			nexti = i + 1;
2573 		ld->dc_tx_list[i].dc_status = 0;
2574 		ld->dc_tx_list[i].dc_ctl = 0;
2575 		ld->dc_tx_list[i].dc_data = 0;
2576 		ld->dc_tx_list[i].dc_next = htole32(DC_TXDESC(sc, nexti));
2577 		cd->dc_tx_chain[i] = NULL;
2578 	}
2579 
2580 	cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
2581 	cd->dc_tx_pkts = 0;
2582 	bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap,
2583 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2584 	return (0);
2585 }
2586 
2587 
2588 /*
2589  * Initialize the RX descriptors and allocate mbufs for them. Note that
2590  * we arrange the descriptors in a closed ring, so that the last descriptor
2591  * points back to the first.
2592  */
2593 static int
2594 dc_list_rx_init(struct dc_softc *sc)
2595 {
2596 	struct dc_chain_data *cd;
2597 	struct dc_list_data *ld;
2598 	int i, nexti;
2599 
2600 	cd = &sc->dc_cdata;
2601 	ld = &sc->dc_ldata;
2602 
2603 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2604 		if (dc_newbuf(sc, i) != 0)
2605 			return (ENOBUFS);
2606 		if (i == DC_RX_LIST_CNT - 1)
2607 			nexti = 0;
2608 		else
2609 			nexti = i + 1;
2610 		ld->dc_rx_list[i].dc_next = htole32(DC_RXDESC(sc, nexti));
2611 	}
2612 
2613 	cd->dc_rx_prod = 0;
2614 	bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_rx_lmap,
2615 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2616 	return (0);
2617 }
2618 
2619 /*
2620  * Initialize an RX descriptor and attach an MBUF cluster.
2621  */
2622 static int
2623 dc_newbuf(struct dc_softc *sc, int i)
2624 {
2625 	struct mbuf *m;
2626 	bus_dmamap_t map;
2627 	bus_dma_segment_t segs[1];
2628 	int error, nseg;
2629 
2630 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2631 	if (m == NULL)
2632 		return (ENOBUFS);
2633 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2634 	m_adj(m, sizeof(u_int64_t));
2635 
2636 	/*
2637 	 * If this is a PNIC chip, zero the buffer. This is part
2638 	 * of the workaround for the receive bug in the 82c168 and
2639 	 * 82c169 chips.
2640 	 */
2641 	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
2642 		bzero(mtod(m, char *), m->m_len);
2643 
2644 	error = bus_dmamap_load_mbuf_sg(sc->dc_rx_mtag, sc->dc_sparemap,
2645 	    m, segs, &nseg, 0);
2646 	if (error) {
2647 		m_freem(m);
2648 		return (error);
2649 	}
2650 	KASSERT(nseg == 1, ("%s: wrong number of segments (%d)", __func__,
2651 	    nseg));
2652 	if (sc->dc_cdata.dc_rx_chain[i] != NULL)
2653 		bus_dmamap_unload(sc->dc_rx_mtag, sc->dc_cdata.dc_rx_map[i]);
2654 
2655 	map = sc->dc_cdata.dc_rx_map[i];
2656 	sc->dc_cdata.dc_rx_map[i] = sc->dc_sparemap;
2657 	sc->dc_sparemap = map;
2658 	sc->dc_cdata.dc_rx_chain[i] = m;
2659 	bus_dmamap_sync(sc->dc_rx_mtag, sc->dc_cdata.dc_rx_map[i],
2660 	    BUS_DMASYNC_PREREAD);
2661 
2662 	sc->dc_ldata.dc_rx_list[i].dc_ctl = htole32(DC_RXCTL_RLINK | DC_RXLEN);
2663 	sc->dc_ldata.dc_rx_list[i].dc_data =
2664 	    htole32(DC_ADDR_LO(segs[0].ds_addr));
2665 	sc->dc_ldata.dc_rx_list[i].dc_status = htole32(DC_RXSTAT_OWN);
2666 	bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_rx_lmap,
2667 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2668 	return (0);
2669 }
2670 
2671 /*
2672  * Grrrrr.
2673  * The PNIC chip has a terrible bug in it that manifests itself during
2674  * periods of heavy activity. The exact mode of failure if difficult to
2675  * pinpoint: sometimes it only happens in promiscuous mode, sometimes it
2676  * will happen on slow machines. The bug is that sometimes instead of
2677  * uploading one complete frame during reception, it uploads what looks
2678  * like the entire contents of its FIFO memory. The frame we want is at
2679  * the end of the whole mess, but we never know exactly how much data has
2680  * been uploaded, so salvaging the frame is hard.
2681  *
2682  * There is only one way to do it reliably, and it's disgusting.
2683  * Here's what we know:
2684  *
2685  * - We know there will always be somewhere between one and three extra
2686  *   descriptors uploaded.
2687  *
2688  * - We know the desired received frame will always be at the end of the
2689  *   total data upload.
2690  *
2691  * - We know the size of the desired received frame because it will be
2692  *   provided in the length field of the status word in the last descriptor.
2693  *
2694  * Here's what we do:
2695  *
2696  * - When we allocate buffers for the receive ring, we bzero() them.
2697  *   This means that we know that the buffer contents should be all
2698  *   zeros, except for data uploaded by the chip.
2699  *
2700  * - We also force the PNIC chip to upload frames that include the
2701  *   ethernet CRC at the end.
2702  *
2703  * - We gather all of the bogus frame data into a single buffer.
2704  *
2705  * - We then position a pointer at the end of this buffer and scan
2706  *   backwards until we encounter the first non-zero byte of data.
2707  *   This is the end of the received frame. We know we will encounter
2708  *   some data at the end of the frame because the CRC will always be
2709  *   there, so even if the sender transmits a packet of all zeros,
2710  *   we won't be fooled.
2711  *
2712  * - We know the size of the actual received frame, so we subtract
2713  *   that value from the current pointer location. This brings us
2714  *   to the start of the actual received packet.
2715  *
2716  * - We copy this into an mbuf and pass it on, along with the actual
2717  *   frame length.
2718  *
2719  * The performance hit is tremendous, but it beats dropping frames all
2720  * the time.
2721  */
2722 
2723 #define	DC_WHOLEFRAME	(DC_RXSTAT_FIRSTFRAG | DC_RXSTAT_LASTFRAG)
2724 static void
2725 dc_pnic_rx_bug_war(struct dc_softc *sc, int idx)
2726 {
2727 	struct dc_desc *cur_rx;
2728 	struct dc_desc *c = NULL;
2729 	struct mbuf *m = NULL;
2730 	unsigned char *ptr;
2731 	int i, total_len;
2732 	uint32_t rxstat = 0;
2733 
2734 	i = sc->dc_pnic_rx_bug_save;
2735 	cur_rx = &sc->dc_ldata.dc_rx_list[idx];
2736 	ptr = sc->dc_pnic_rx_buf;
2737 	bzero(ptr, DC_RXLEN * 5);
2738 
2739 	/* Copy all the bytes from the bogus buffers. */
2740 	while (1) {
2741 		c = &sc->dc_ldata.dc_rx_list[i];
2742 		rxstat = le32toh(c->dc_status);
2743 		m = sc->dc_cdata.dc_rx_chain[i];
2744 		bcopy(mtod(m, char *), ptr, DC_RXLEN);
2745 		ptr += DC_RXLEN;
2746 		/* If this is the last buffer, break out. */
2747 		if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
2748 			break;
2749 		dc_discard_rxbuf(sc, i);
2750 		DC_INC(i, DC_RX_LIST_CNT);
2751 	}
2752 
2753 	/* Find the length of the actual receive frame. */
2754 	total_len = DC_RXBYTES(rxstat);
2755 
2756 	/* Scan backwards until we hit a non-zero byte. */
2757 	while (*ptr == 0x00)
2758 		ptr--;
2759 
2760 	/* Round off. */
2761 	if ((uintptr_t)(ptr) & 0x3)
2762 		ptr -= 1;
2763 
2764 	/* Now find the start of the frame. */
2765 	ptr -= total_len;
2766 	if (ptr < sc->dc_pnic_rx_buf)
2767 		ptr = sc->dc_pnic_rx_buf;
2768 
2769 	/*
2770 	 * Now copy the salvaged frame to the last mbuf and fake up
2771 	 * the status word to make it look like a successful
2772 	 * frame reception.
2773 	 */
2774 	bcopy(ptr, mtod(m, char *), total_len);
2775 	cur_rx->dc_status = htole32(rxstat | DC_RXSTAT_FIRSTFRAG);
2776 }
2777 
2778 /*
2779  * This routine searches the RX ring for dirty descriptors in the
2780  * event that the rxeof routine falls out of sync with the chip's
2781  * current descriptor pointer. This may happen sometimes as a result
2782  * of a "no RX buffer available" condition that happens when the chip
2783  * consumes all of the RX buffers before the driver has a chance to
2784  * process the RX ring. This routine may need to be called more than
2785  * once to bring the driver back in sync with the chip, however we
2786  * should still be getting RX DONE interrupts to drive the search
2787  * for new packets in the RX ring, so we should catch up eventually.
2788  */
2789 static int
2790 dc_rx_resync(struct dc_softc *sc)
2791 {
2792 	struct dc_desc *cur_rx;
2793 	int i, pos;
2794 
2795 	pos = sc->dc_cdata.dc_rx_prod;
2796 
2797 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2798 		cur_rx = &sc->dc_ldata.dc_rx_list[pos];
2799 		if (!(le32toh(cur_rx->dc_status) & DC_RXSTAT_OWN))
2800 			break;
2801 		DC_INC(pos, DC_RX_LIST_CNT);
2802 	}
2803 
2804 	/* If the ring really is empty, then just return. */
2805 	if (i == DC_RX_LIST_CNT)
2806 		return (0);
2807 
2808 	/* We've fallen behing the chip: catch it. */
2809 	sc->dc_cdata.dc_rx_prod = pos;
2810 
2811 	return (EAGAIN);
2812 }
2813 
2814 static void
2815 dc_discard_rxbuf(struct dc_softc *sc, int i)
2816 {
2817 	struct mbuf *m;
2818 
2819 	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2820 		m = sc->dc_cdata.dc_rx_chain[i];
2821 		bzero(mtod(m, char *), m->m_len);
2822 	}
2823 
2824 	sc->dc_ldata.dc_rx_list[i].dc_ctl = htole32(DC_RXCTL_RLINK | DC_RXLEN);
2825 	sc->dc_ldata.dc_rx_list[i].dc_status = htole32(DC_RXSTAT_OWN);
2826 	bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_rx_lmap, BUS_DMASYNC_PREREAD |
2827 	    BUS_DMASYNC_PREWRITE);
2828 }
2829 
2830 /*
2831  * A frame has been uploaded: pass the resulting mbuf chain up to
2832  * the higher level protocols.
2833  */
2834 static int
2835 dc_rxeof(struct dc_softc *sc)
2836 {
2837 	struct mbuf *m;
2838 	struct ifnet *ifp;
2839 	struct dc_desc *cur_rx;
2840 	int i, total_len, rx_npkts;
2841 	uint32_t rxstat;
2842 
2843 	DC_LOCK_ASSERT(sc);
2844 
2845 	ifp = sc->dc_ifp;
2846 	rx_npkts = 0;
2847 
2848 	bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_rx_lmap, BUS_DMASYNC_POSTREAD |
2849 	    BUS_DMASYNC_POSTWRITE);
2850 	for (i = sc->dc_cdata.dc_rx_prod;
2851 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
2852 	    DC_INC(i, DC_RX_LIST_CNT)) {
2853 #ifdef DEVICE_POLLING
2854 		if (ifp->if_capenable & IFCAP_POLLING) {
2855 			if (sc->rxcycles <= 0)
2856 				break;
2857 			sc->rxcycles--;
2858 		}
2859 #endif
2860 		cur_rx = &sc->dc_ldata.dc_rx_list[i];
2861 		rxstat = le32toh(cur_rx->dc_status);
2862 		if ((rxstat & DC_RXSTAT_OWN) != 0)
2863 			break;
2864 		m = sc->dc_cdata.dc_rx_chain[i];
2865 		bus_dmamap_sync(sc->dc_rx_mtag, sc->dc_cdata.dc_rx_map[i],
2866 		    BUS_DMASYNC_POSTREAD);
2867 		total_len = DC_RXBYTES(rxstat);
2868 		rx_npkts++;
2869 
2870 		if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2871 			if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
2872 				if (rxstat & DC_RXSTAT_FIRSTFRAG)
2873 					sc->dc_pnic_rx_bug_save = i;
2874 				if ((rxstat & DC_RXSTAT_LASTFRAG) == 0)
2875 					continue;
2876 				dc_pnic_rx_bug_war(sc, i);
2877 				rxstat = le32toh(cur_rx->dc_status);
2878 				total_len = DC_RXBYTES(rxstat);
2879 			}
2880 		}
2881 
2882 		/*
2883 		 * If an error occurs, update stats, clear the
2884 		 * status word and leave the mbuf cluster in place:
2885 		 * it should simply get re-used next time this descriptor
2886 		 * comes up in the ring.  However, don't report long
2887 		 * frames as errors since they could be vlans.
2888 		 */
2889 		if ((rxstat & DC_RXSTAT_RXERR)) {
2890 			if (!(rxstat & DC_RXSTAT_GIANT) ||
2891 			    (rxstat & (DC_RXSTAT_CRCERR | DC_RXSTAT_DRIBBLE |
2892 				       DC_RXSTAT_MIIERE | DC_RXSTAT_COLLSEEN |
2893 				       DC_RXSTAT_RUNT   | DC_RXSTAT_DE))) {
2894 				ifp->if_ierrors++;
2895 				if (rxstat & DC_RXSTAT_COLLSEEN)
2896 					ifp->if_collisions++;
2897 				dc_discard_rxbuf(sc, i);
2898 				if (rxstat & DC_RXSTAT_CRCERR)
2899 					continue;
2900 				else {
2901 					ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2902 					dc_init_locked(sc);
2903 					return (rx_npkts);
2904 				}
2905 			}
2906 		}
2907 
2908 		/* No errors; receive the packet. */
2909 		total_len -= ETHER_CRC_LEN;
2910 #ifdef __NO_STRICT_ALIGNMENT
2911 		/*
2912 		 * On architectures without alignment problems we try to
2913 		 * allocate a new buffer for the receive ring, and pass up
2914 		 * the one where the packet is already, saving the expensive
2915 		 * copy done in m_devget().
2916 		 * If we are on an architecture with alignment problems, or
2917 		 * if the allocation fails, then use m_devget and leave the
2918 		 * existing buffer in the receive ring.
2919 		 */
2920 		if (dc_newbuf(sc, i) != 0) {
2921 			dc_discard_rxbuf(sc, i);
2922 			ifp->if_iqdrops++;
2923 			continue;
2924 		}
2925 		m->m_pkthdr.rcvif = ifp;
2926 		m->m_pkthdr.len = m->m_len = total_len;
2927 #else
2928 		{
2929 			struct mbuf *m0;
2930 
2931 			m0 = m_devget(mtod(m, char *), total_len,
2932 				ETHER_ALIGN, ifp, NULL);
2933 			dc_discard_rxbuf(sc, i);
2934 			if (m0 == NULL) {
2935 				ifp->if_iqdrops++;
2936 				continue;
2937 			}
2938 			m = m0;
2939 		}
2940 #endif
2941 
2942 		ifp->if_ipackets++;
2943 		DC_UNLOCK(sc);
2944 		(*ifp->if_input)(ifp, m);
2945 		DC_LOCK(sc);
2946 	}
2947 
2948 	sc->dc_cdata.dc_rx_prod = i;
2949 	return (rx_npkts);
2950 }
2951 
2952 /*
2953  * A frame was downloaded to the chip. It's safe for us to clean up
2954  * the list buffers.
2955  */
2956 static void
2957 dc_txeof(struct dc_softc *sc)
2958 {
2959 	struct dc_desc *cur_tx;
2960 	struct ifnet *ifp;
2961 	int idx, setup;
2962 	uint32_t ctl, txstat;
2963 
2964 	if (sc->dc_cdata.dc_tx_cnt == 0)
2965 		return;
2966 
2967 	ifp = sc->dc_ifp;
2968 
2969 	/*
2970 	 * Go through our tx list and free mbufs for those
2971 	 * frames that have been transmitted.
2972 	 */
2973 	bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_tx_lmap, BUS_DMASYNC_POSTREAD |
2974 	    BUS_DMASYNC_POSTWRITE);
2975 	setup = 0;
2976 	for (idx = sc->dc_cdata.dc_tx_cons; idx != sc->dc_cdata.dc_tx_prod;
2977 	    DC_INC(idx, DC_TX_LIST_CNT), sc->dc_cdata.dc_tx_cnt--) {
2978 		cur_tx = &sc->dc_ldata.dc_tx_list[idx];
2979 		txstat = le32toh(cur_tx->dc_status);
2980 		ctl = le32toh(cur_tx->dc_ctl);
2981 
2982 		if (txstat & DC_TXSTAT_OWN)
2983 			break;
2984 
2985 		if (sc->dc_cdata.dc_tx_chain[idx] == NULL)
2986 			continue;
2987 
2988 		if (ctl & DC_TXCTL_SETUP) {
2989 			cur_tx->dc_ctl = htole32(ctl & ~DC_TXCTL_SETUP);
2990 			setup++;
2991 			bus_dmamap_sync(sc->dc_stag, sc->dc_smap,
2992 			    BUS_DMASYNC_POSTWRITE);
2993 			/*
2994 			 * Yes, the PNIC is so brain damaged
2995 			 * that it will sometimes generate a TX
2996 			 * underrun error while DMAing the RX
2997 			 * filter setup frame. If we detect this,
2998 			 * we have to send the setup frame again,
2999 			 * or else the filter won't be programmed
3000 			 * correctly.
3001 			 */
3002 			if (DC_IS_PNIC(sc)) {
3003 				if (txstat & DC_TXSTAT_ERRSUM)
3004 					dc_setfilt(sc);
3005 			}
3006 			sc->dc_cdata.dc_tx_chain[idx] = NULL;
3007 			continue;
3008 		}
3009 
3010 		if (DC_IS_XIRCOM(sc) || DC_IS_CONEXANT(sc)) {
3011 			/*
3012 			 * XXX: Why does my Xircom taunt me so?
3013 			 * For some reason it likes setting the CARRLOST flag
3014 			 * even when the carrier is there. wtf?!?
3015 			 * Who knows, but Conexant chips have the
3016 			 * same problem. Maybe they took lessons
3017 			 * from Xircom.
3018 			 */
3019 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
3020 			    sc->dc_pmode == DC_PMODE_MII &&
3021 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
3022 			    DC_TXSTAT_NOCARRIER)))
3023 				txstat &= ~DC_TXSTAT_ERRSUM;
3024 		} else {
3025 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
3026 			    sc->dc_pmode == DC_PMODE_MII &&
3027 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
3028 			    DC_TXSTAT_NOCARRIER | DC_TXSTAT_CARRLOST)))
3029 				txstat &= ~DC_TXSTAT_ERRSUM;
3030 		}
3031 
3032 		if (txstat & DC_TXSTAT_ERRSUM) {
3033 			ifp->if_oerrors++;
3034 			if (txstat & DC_TXSTAT_EXCESSCOLL)
3035 				ifp->if_collisions++;
3036 			if (txstat & DC_TXSTAT_LATECOLL)
3037 				ifp->if_collisions++;
3038 			if (!(txstat & DC_TXSTAT_UNDERRUN)) {
3039 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3040 				dc_init_locked(sc);
3041 				return;
3042 			}
3043 		} else
3044 			ifp->if_opackets++;
3045 		ifp->if_collisions += (txstat & DC_TXSTAT_COLLCNT) >> 3;
3046 
3047 		bus_dmamap_sync(sc->dc_tx_mtag, sc->dc_cdata.dc_tx_map[idx],
3048 		    BUS_DMASYNC_POSTWRITE);
3049 		bus_dmamap_unload(sc->dc_tx_mtag, sc->dc_cdata.dc_tx_map[idx]);
3050 		m_freem(sc->dc_cdata.dc_tx_chain[idx]);
3051 		sc->dc_cdata.dc_tx_chain[idx] = NULL;
3052 	}
3053 	sc->dc_cdata.dc_tx_cons = idx;
3054 
3055 	if (sc->dc_cdata.dc_tx_cnt <= DC_TX_LIST_CNT - DC_TX_LIST_RSVD) {
3056 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3057 		if (sc->dc_cdata.dc_tx_cnt == 0)
3058 			sc->dc_wdog_timer = 0;
3059 	}
3060 	if (setup > 0)
3061 		bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap,
3062 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3063 }
3064 
3065 static void
3066 dc_tick(void *xsc)
3067 {
3068 	struct dc_softc *sc;
3069 	struct mii_data *mii;
3070 	struct ifnet *ifp;
3071 	uint32_t r;
3072 
3073 	sc = xsc;
3074 	DC_LOCK_ASSERT(sc);
3075 	ifp = sc->dc_ifp;
3076 	mii = device_get_softc(sc->dc_miibus);
3077 
3078 	/*
3079 	 * Reclaim transmitted frames for controllers that do
3080 	 * not generate TX completion interrupt for every frame.
3081 	 */
3082 	if (sc->dc_flags & DC_TX_USE_TX_INTR)
3083 		dc_txeof(sc);
3084 
3085 	if (sc->dc_flags & DC_REDUCED_MII_POLL) {
3086 		if (sc->dc_flags & DC_21143_NWAY) {
3087 			r = CSR_READ_4(sc, DC_10BTSTAT);
3088 			if (IFM_SUBTYPE(mii->mii_media_active) ==
3089 			    IFM_100_TX && (r & DC_TSTAT_LS100)) {
3090 				sc->dc_link = 0;
3091 				mii_mediachg(mii);
3092 			}
3093 			if (IFM_SUBTYPE(mii->mii_media_active) ==
3094 			    IFM_10_T && (r & DC_TSTAT_LS10)) {
3095 				sc->dc_link = 0;
3096 				mii_mediachg(mii);
3097 			}
3098 			if (sc->dc_link == 0)
3099 				mii_tick(mii);
3100 		} else {
3101 			/*
3102 			 * For NICs which never report DC_RXSTATE_WAIT, we
3103 			 * have to bite the bullet...
3104 			 */
3105 			if ((DC_HAS_BROKEN_RXSTATE(sc) || (CSR_READ_4(sc,
3106 			    DC_ISR) & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT) &&
3107 			    sc->dc_cdata.dc_tx_cnt == 0)
3108 				mii_tick(mii);
3109 		}
3110 	} else
3111 		mii_tick(mii);
3112 
3113 	/*
3114 	 * When the init routine completes, we expect to be able to send
3115 	 * packets right away, and in fact the network code will send a
3116 	 * gratuitous ARP the moment the init routine marks the interface
3117 	 * as running. However, even though the MAC may have been initialized,
3118 	 * there may be a delay of a few seconds before the PHY completes
3119 	 * autonegotiation and the link is brought up. Any transmissions
3120 	 * made during that delay will be lost. Dealing with this is tricky:
3121 	 * we can't just pause in the init routine while waiting for the
3122 	 * PHY to come ready since that would bring the whole system to
3123 	 * a screeching halt for several seconds.
3124 	 *
3125 	 * What we do here is prevent the TX start routine from sending
3126 	 * any packets until a link has been established. After the
3127 	 * interface has been initialized, the tick routine will poll
3128 	 * the state of the PHY until the IFM_ACTIVE flag is set. Until
3129 	 * that time, packets will stay in the send queue, and once the
3130 	 * link comes up, they will be flushed out to the wire.
3131 	 */
3132 	if (sc->dc_link != 0 && !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3133 		dc_start_locked(ifp);
3134 
3135 	if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link)
3136 		callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
3137 	else
3138 		callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
3139 }
3140 
3141 /*
3142  * A transmit underrun has occurred.  Back off the transmit threshold,
3143  * or switch to store and forward mode if we have to.
3144  */
3145 static void
3146 dc_tx_underrun(struct dc_softc *sc)
3147 {
3148 	uint32_t netcfg, isr;
3149 	int i, reinit;
3150 
3151 	reinit = 0;
3152 	netcfg = CSR_READ_4(sc, DC_NETCFG);
3153 	device_printf(sc->dc_dev, "TX underrun -- ");
3154 	if ((sc->dc_flags & DC_TX_STORENFWD) == 0) {
3155 		if (sc->dc_txthresh + DC_TXTHRESH_INC > DC_TXTHRESH_MAX) {
3156 			printf("using store and forward mode\n");
3157 			netcfg |= DC_NETCFG_STORENFWD;
3158 		} else {
3159 			printf("increasing TX threshold\n");
3160 			sc->dc_txthresh += DC_TXTHRESH_INC;
3161 			netcfg &= ~DC_NETCFG_TX_THRESH;
3162 			netcfg |= sc->dc_txthresh;
3163 		}
3164 
3165 		if (DC_IS_INTEL(sc)) {
3166 			/*
3167 			 * The real 21143 requires that the transmitter be idle
3168 			 * in order to change the transmit threshold or store
3169 			 * and forward state.
3170 			 */
3171 			CSR_WRITE_4(sc, DC_NETCFG, netcfg & ~DC_NETCFG_TX_ON);
3172 
3173 			for (i = 0; i < DC_TIMEOUT; i++) {
3174 				isr = CSR_READ_4(sc, DC_ISR);
3175 				if (isr & DC_ISR_TX_IDLE)
3176 					break;
3177 				DELAY(10);
3178 			}
3179 			if (i == DC_TIMEOUT) {
3180 				device_printf(sc->dc_dev,
3181 				    "%s: failed to force tx to idle state\n",
3182 				    __func__);
3183 				reinit++;
3184 			}
3185 		}
3186 	} else {
3187 		printf("resetting\n");
3188 		reinit++;
3189 	}
3190 
3191 	if (reinit == 0) {
3192 		CSR_WRITE_4(sc, DC_NETCFG, netcfg);
3193 		if (DC_IS_INTEL(sc))
3194 			CSR_WRITE_4(sc, DC_NETCFG, netcfg | DC_NETCFG_TX_ON);
3195 	} else {
3196 		sc->dc_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3197 		dc_init_locked(sc);
3198 	}
3199 }
3200 
3201 #ifdef DEVICE_POLLING
3202 static poll_handler_t dc_poll;
3203 
3204 static int
3205 dc_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
3206 {
3207 	struct dc_softc *sc = ifp->if_softc;
3208 	int rx_npkts = 0;
3209 
3210 	DC_LOCK(sc);
3211 
3212 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3213 		DC_UNLOCK(sc);
3214 		return (rx_npkts);
3215 	}
3216 
3217 	sc->rxcycles = count;
3218 	rx_npkts = dc_rxeof(sc);
3219 	dc_txeof(sc);
3220 	if (!IFQ_IS_EMPTY(&ifp->if_snd) &&
3221 	    !(ifp->if_drv_flags & IFF_DRV_OACTIVE))
3222 		dc_start_locked(ifp);
3223 
3224 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
3225 		uint32_t	status;
3226 
3227 		status = CSR_READ_4(sc, DC_ISR);
3228 		status &= (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF |
3229 			DC_ISR_TX_NOBUF | DC_ISR_TX_IDLE | DC_ISR_TX_UNDERRUN |
3230 			DC_ISR_BUS_ERR);
3231 		if (!status) {
3232 			DC_UNLOCK(sc);
3233 			return (rx_npkts);
3234 		}
3235 		/* ack what we have */
3236 		CSR_WRITE_4(sc, DC_ISR, status);
3237 
3238 		if (status & (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF)) {
3239 			uint32_t r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
3240 			ifp->if_ierrors += (r & 0xffff) + ((r >> 17) & 0x7ff);
3241 
3242 			if (dc_rx_resync(sc))
3243 				dc_rxeof(sc);
3244 		}
3245 		/* restart transmit unit if necessary */
3246 		if (status & DC_ISR_TX_IDLE && sc->dc_cdata.dc_tx_cnt)
3247 			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3248 
3249 		if (status & DC_ISR_TX_UNDERRUN)
3250 			dc_tx_underrun(sc);
3251 
3252 		if (status & DC_ISR_BUS_ERR) {
3253 			if_printf(ifp, "%s: bus error\n", __func__);
3254 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3255 			dc_init_locked(sc);
3256 		}
3257 	}
3258 	DC_UNLOCK(sc);
3259 	return (rx_npkts);
3260 }
3261 #endif /* DEVICE_POLLING */
3262 
3263 static void
3264 dc_intr(void *arg)
3265 {
3266 	struct dc_softc *sc;
3267 	struct ifnet *ifp;
3268 	uint32_t r, status;
3269 	int n;
3270 
3271 	sc = arg;
3272 
3273 	if (sc->suspended)
3274 		return;
3275 
3276 	DC_LOCK(sc);
3277 	status = CSR_READ_4(sc, DC_ISR);
3278 	if (status == 0xFFFFFFFF || (status & DC_INTRS) == 0) {
3279 		DC_UNLOCK(sc);
3280 		return;
3281 	}
3282 	ifp = sc->dc_ifp;
3283 #ifdef DEVICE_POLLING
3284 	if (ifp->if_capenable & IFCAP_POLLING) {
3285 		DC_UNLOCK(sc);
3286 		return;
3287 	}
3288 #endif
3289 	/* Disable interrupts. */
3290 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3291 
3292 	for (n = 16; n > 0; n--) {
3293 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
3294 			break;
3295 		/* Ack interrupts. */
3296 		CSR_WRITE_4(sc, DC_ISR, status);
3297 
3298 		if (status & DC_ISR_RX_OK) {
3299 			if (dc_rxeof(sc) == 0) {
3300 				while (dc_rx_resync(sc))
3301 					dc_rxeof(sc);
3302 			}
3303 		}
3304 
3305 		if (status & (DC_ISR_TX_OK | DC_ISR_TX_NOBUF))
3306 			dc_txeof(sc);
3307 
3308 		if (status & DC_ISR_TX_IDLE) {
3309 			dc_txeof(sc);
3310 			if (sc->dc_cdata.dc_tx_cnt) {
3311 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3312 				CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3313 			}
3314 		}
3315 
3316 		if (status & DC_ISR_TX_UNDERRUN)
3317 			dc_tx_underrun(sc);
3318 
3319 		if ((status & DC_ISR_RX_WATDOGTIMEO)
3320 		    || (status & DC_ISR_RX_NOBUF)) {
3321 			r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
3322 			ifp->if_ierrors += (r & 0xffff) + ((r >> 17) & 0x7ff);
3323 			if (dc_rxeof(sc) == 0) {
3324 				while (dc_rx_resync(sc))
3325 					dc_rxeof(sc);
3326 			}
3327 		}
3328 
3329 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3330 			dc_start_locked(ifp);
3331 
3332 		if (status & DC_ISR_BUS_ERR) {
3333 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3334 			dc_init_locked(sc);
3335 			DC_UNLOCK(sc);
3336 			return;
3337 		}
3338 		status = CSR_READ_4(sc, DC_ISR);
3339 		if (status == 0xFFFFFFFF || (status & DC_INTRS) == 0)
3340 			break;
3341 	}
3342 
3343 	/* Re-enable interrupts. */
3344 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3345 		CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3346 
3347 	DC_UNLOCK(sc);
3348 }
3349 
3350 /*
3351  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
3352  * pointers to the fragment pointers.
3353  */
3354 static int
3355 dc_encap(struct dc_softc *sc, struct mbuf **m_head)
3356 {
3357 	bus_dma_segment_t segs[DC_MAXFRAGS];
3358 	bus_dmamap_t map;
3359 	struct dc_desc *f;
3360 	struct mbuf *m;
3361 	int cur, defragged, error, first, frag, i, idx, nseg;
3362 
3363 	m = NULL;
3364 	defragged = 0;
3365 	if (sc->dc_flags & DC_TX_COALESCE &&
3366 	    ((*m_head)->m_next != NULL || sc->dc_flags & DC_TX_ALIGN)) {
3367 		m = m_defrag(*m_head, M_DONTWAIT);
3368 		defragged = 1;
3369 	} else {
3370 		/*
3371 		 * Count the number of frags in this chain to see if we
3372 		 * need to m_collapse.  Since the descriptor list is shared
3373 		 * by all packets, we'll m_collapse long chains so that they
3374 		 * do not use up the entire list, even if they would fit.
3375 		 */
3376 		i = 0;
3377 		for (m = *m_head; m != NULL; m = m->m_next)
3378 			i++;
3379 		if (i > DC_TX_LIST_CNT / 4 ||
3380 		    DC_TX_LIST_CNT - i + sc->dc_cdata.dc_tx_cnt <=
3381 		    DC_TX_LIST_RSVD) {
3382 			m = m_collapse(*m_head, M_DONTWAIT, DC_MAXFRAGS);
3383 			defragged = 1;
3384 		}
3385 	}
3386 	if (defragged != 0) {
3387 		if (m == NULL) {
3388 			m_freem(*m_head);
3389 			*m_head = NULL;
3390 			return (ENOBUFS);
3391 		}
3392 		*m_head = m;
3393 	}
3394 
3395 	idx = sc->dc_cdata.dc_tx_prod;
3396 	error = bus_dmamap_load_mbuf_sg(sc->dc_tx_mtag,
3397 	    sc->dc_cdata.dc_tx_map[idx], *m_head, segs, &nseg, 0);
3398 	if (error == EFBIG) {
3399 		if (defragged != 0 || (m = m_collapse(*m_head, M_DONTWAIT,
3400 		    DC_MAXFRAGS)) == NULL) {
3401 			m_freem(*m_head);
3402 			*m_head = NULL;
3403 			return (defragged != 0 ? error : ENOBUFS);
3404 		}
3405 		*m_head = m;
3406 		error = bus_dmamap_load_mbuf_sg(sc->dc_tx_mtag,
3407 		    sc->dc_cdata.dc_tx_map[idx], *m_head, segs, &nseg, 0);
3408 		if (error != 0) {
3409 			m_freem(*m_head);
3410 			*m_head = NULL;
3411 			return (error);
3412 		}
3413 	} else if (error != 0)
3414 		return (error);
3415 	KASSERT(nseg <= DC_MAXFRAGS,
3416 	    ("%s: wrong number of segments (%d)", __func__, nseg));
3417 	if (nseg == 0) {
3418 		m_freem(*m_head);
3419 		*m_head = NULL;
3420 		return (EIO);
3421 	}
3422 
3423 	/* Check descriptor overruns. */
3424 	if (sc->dc_cdata.dc_tx_cnt + nseg > DC_TX_LIST_CNT - DC_TX_LIST_RSVD) {
3425 		bus_dmamap_unload(sc->dc_tx_mtag, sc->dc_cdata.dc_tx_map[idx]);
3426 		return (ENOBUFS);
3427 	}
3428 	bus_dmamap_sync(sc->dc_tx_mtag, sc->dc_cdata.dc_tx_map[idx],
3429 	    BUS_DMASYNC_PREWRITE);
3430 
3431 	first = cur = frag = sc->dc_cdata.dc_tx_prod;
3432 	for (i = 0; i < nseg; i++) {
3433 		if ((sc->dc_flags & DC_TX_ADMTEK_WAR) &&
3434 		    (frag == (DC_TX_LIST_CNT - 1)) &&
3435 		    (first != sc->dc_cdata.dc_tx_first)) {
3436 			bus_dmamap_unload(sc->dc_tx_mtag,
3437 			    sc->dc_cdata.dc_tx_map[first]);
3438 			m_freem(*m_head);
3439 			*m_head = NULL;
3440 			return (ENOBUFS);
3441 		}
3442 
3443 		f = &sc->dc_ldata.dc_tx_list[frag];
3444 		f->dc_ctl = htole32(DC_TXCTL_TLINK | segs[i].ds_len);
3445 		if (i == 0) {
3446 			f->dc_status = 0;
3447 			f->dc_ctl |= htole32(DC_TXCTL_FIRSTFRAG);
3448 		} else
3449 			f->dc_status = htole32(DC_TXSTAT_OWN);
3450 		f->dc_data = htole32(DC_ADDR_LO(segs[i].ds_addr));
3451 		cur = frag;
3452 		DC_INC(frag, DC_TX_LIST_CNT);
3453 	}
3454 
3455 	sc->dc_cdata.dc_tx_prod = frag;
3456 	sc->dc_cdata.dc_tx_cnt += nseg;
3457 	sc->dc_cdata.dc_tx_chain[cur] = *m_head;
3458 	sc->dc_ldata.dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_LASTFRAG);
3459 	if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
3460 		sc->dc_ldata.dc_tx_list[first].dc_ctl |=
3461 		    htole32(DC_TXCTL_FINT);
3462 	if (sc->dc_flags & DC_TX_INTR_ALWAYS)
3463 		sc->dc_ldata.dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
3464 	if (sc->dc_flags & DC_TX_USE_TX_INTR &&
3465 	    ++sc->dc_cdata.dc_tx_pkts >= 8) {
3466 		sc->dc_cdata.dc_tx_pkts = 0;
3467 		sc->dc_ldata.dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
3468 	}
3469 	sc->dc_ldata.dc_tx_list[first].dc_status = htole32(DC_TXSTAT_OWN);
3470 
3471 	bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap,
3472 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3473 
3474 	/*
3475 	 * Swap the last and the first dmamaps to ensure the map for
3476 	 * this transmission is placed at the last descriptor.
3477 	 */
3478 	map = sc->dc_cdata.dc_tx_map[cur];
3479 	sc->dc_cdata.dc_tx_map[cur] = sc->dc_cdata.dc_tx_map[first];
3480 	sc->dc_cdata.dc_tx_map[first] = map;
3481 
3482 	return (0);
3483 }
3484 
3485 static void
3486 dc_start(struct ifnet *ifp)
3487 {
3488 	struct dc_softc *sc;
3489 
3490 	sc = ifp->if_softc;
3491 	DC_LOCK(sc);
3492 	dc_start_locked(ifp);
3493 	DC_UNLOCK(sc);
3494 }
3495 
3496 /*
3497  * Main transmit routine
3498  * To avoid having to do mbuf copies, we put pointers to the mbuf data
3499  * regions directly in the transmit lists.  We also save a copy of the
3500  * pointers since the transmit list fragment pointers are physical
3501  * addresses.
3502  */
3503 static void
3504 dc_start_locked(struct ifnet *ifp)
3505 {
3506 	struct dc_softc *sc;
3507 	struct mbuf *m_head;
3508 	int queued;
3509 
3510 	sc = ifp->if_softc;
3511 
3512 	DC_LOCK_ASSERT(sc);
3513 
3514 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
3515 	    IFF_DRV_RUNNING || sc->dc_link == 0)
3516 		return;
3517 
3518 	sc->dc_cdata.dc_tx_first = sc->dc_cdata.dc_tx_prod;
3519 
3520 	for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
3521 		/*
3522 		 * If there's no way we can send any packets, return now.
3523 		 */
3524 		if (sc->dc_cdata.dc_tx_cnt > DC_TX_LIST_CNT - DC_TX_LIST_RSVD) {
3525 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3526 			break;
3527 		}
3528 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
3529 		if (m_head == NULL)
3530 			break;
3531 
3532 		if (dc_encap(sc, &m_head)) {
3533 			if (m_head == NULL)
3534 				break;
3535 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
3536 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3537 			break;
3538 		}
3539 
3540 		queued++;
3541 		/*
3542 		 * If there's a BPF listener, bounce a copy of this frame
3543 		 * to him.
3544 		 */
3545 		BPF_MTAP(ifp, m_head);
3546 	}
3547 
3548 	if (queued > 0) {
3549 		/* Transmit */
3550 		if (!(sc->dc_flags & DC_TX_POLL))
3551 			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3552 
3553 		/*
3554 		 * Set a timeout in case the chip goes out to lunch.
3555 		 */
3556 		sc->dc_wdog_timer = 5;
3557 	}
3558 }
3559 
3560 static void
3561 dc_init(void *xsc)
3562 {
3563 	struct dc_softc *sc = xsc;
3564 
3565 	DC_LOCK(sc);
3566 	dc_init_locked(sc);
3567 	DC_UNLOCK(sc);
3568 }
3569 
3570 static void
3571 dc_init_locked(struct dc_softc *sc)
3572 {
3573 	struct ifnet *ifp = sc->dc_ifp;
3574 	struct mii_data *mii;
3575 	struct ifmedia *ifm;
3576 
3577 	DC_LOCK_ASSERT(sc);
3578 
3579 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
3580 		return;
3581 
3582 	mii = device_get_softc(sc->dc_miibus);
3583 
3584 	/*
3585 	 * Cancel pending I/O and free all RX/TX buffers.
3586 	 */
3587 	dc_stop(sc);
3588 	dc_reset(sc);
3589 	if (DC_IS_INTEL(sc)) {
3590 		ifm = &mii->mii_media;
3591 		dc_apply_fixup(sc, ifm->ifm_media);
3592 	}
3593 
3594 	/*
3595 	 * Set cache alignment and burst length.
3596 	 */
3597 	if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc))
3598 		CSR_WRITE_4(sc, DC_BUSCTL, 0);
3599 	else
3600 		CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME | DC_BUSCTL_MRLE);
3601 	/*
3602 	 * Evenly share the bus between receive and transmit process.
3603 	 */
3604 	if (DC_IS_INTEL(sc))
3605 		DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION);
3606 	if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
3607 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
3608 	} else {
3609 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
3610 	}
3611 	if (sc->dc_flags & DC_TX_POLL)
3612 		DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
3613 	switch(sc->dc_cachesize) {
3614 	case 32:
3615 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
3616 		break;
3617 	case 16:
3618 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
3619 		break;
3620 	case 8:
3621 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
3622 		break;
3623 	case 0:
3624 	default:
3625 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
3626 		break;
3627 	}
3628 
3629 	if (sc->dc_flags & DC_TX_STORENFWD)
3630 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3631 	else {
3632 		if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3633 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3634 		} else {
3635 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3636 			DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3637 		}
3638 	}
3639 
3640 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
3641 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
3642 
3643 	if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
3644 		/*
3645 		 * The app notes for the 98713 and 98715A say that
3646 		 * in order to have the chips operate properly, a magic
3647 		 * number must be written to CSR16. Macronix does not
3648 		 * document the meaning of these bits so there's no way
3649 		 * to know exactly what they do. The 98713 has a magic
3650 		 * number all its own; the rest all use a different one.
3651 		 */
3652 		DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
3653 		if (sc->dc_type == DC_TYPE_98713)
3654 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
3655 		else
3656 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
3657 	}
3658 
3659 	if (DC_IS_XIRCOM(sc)) {
3660 		/*
3661 		 * setup General Purpose Port mode and data so the tulip
3662 		 * can talk to the MII.
3663 		 */
3664 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
3665 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3666 		DELAY(10);
3667 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
3668 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3669 		DELAY(10);
3670 	}
3671 
3672 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3673 	DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN);
3674 
3675 	/* Init circular RX list. */
3676 	if (dc_list_rx_init(sc) == ENOBUFS) {
3677 		device_printf(sc->dc_dev,
3678 		    "initialization failed: no memory for rx buffers\n");
3679 		dc_stop(sc);
3680 		return;
3681 	}
3682 
3683 	/*
3684 	 * Init TX descriptors.
3685 	 */
3686 	dc_list_tx_init(sc);
3687 
3688 	/*
3689 	 * Load the address of the RX list.
3690 	 */
3691 	CSR_WRITE_4(sc, DC_RXADDR, DC_RXDESC(sc, 0));
3692 	CSR_WRITE_4(sc, DC_TXADDR, DC_TXDESC(sc, 0));
3693 
3694 	/*
3695 	 * Enable interrupts.
3696 	 */
3697 #ifdef DEVICE_POLLING
3698 	/*
3699 	 * ... but only if we are not polling, and make sure they are off in
3700 	 * the case of polling. Some cards (e.g. fxp) turn interrupts on
3701 	 * after a reset.
3702 	 */
3703 	if (ifp->if_capenable & IFCAP_POLLING)
3704 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3705 	else
3706 #endif
3707 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3708 	CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
3709 
3710 	/* Enable transmitter. */
3711 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3712 
3713 	/*
3714 	 * If this is an Intel 21143 and we're not using the
3715 	 * MII port, program the LED control pins so we get
3716 	 * link and activity indications.
3717 	 */
3718 	if (sc->dc_flags & DC_TULIP_LEDS) {
3719 		CSR_WRITE_4(sc, DC_WATCHDOG,
3720 		    DC_WDOG_CTLWREN | DC_WDOG_LINK | DC_WDOG_ACTIVITY);
3721 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
3722 	}
3723 
3724 	/*
3725 	 * Load the RX/multicast filter. We do this sort of late
3726 	 * because the filter programming scheme on the 21143 and
3727 	 * some clones requires DMAing a setup frame via the TX
3728 	 * engine, and we need the transmitter enabled for that.
3729 	 */
3730 	dc_setfilt(sc);
3731 
3732 	/* Enable receiver. */
3733 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
3734 	CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
3735 
3736 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3737 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3738 
3739 	mii_mediachg(mii);
3740 	dc_setcfg(sc, sc->dc_if_media);
3741 
3742 	/* Clear missed frames and overflow counter. */
3743 	CSR_READ_4(sc, DC_FRAMESDISCARDED);
3744 
3745 	/* Don't start the ticker if this is a homePNA link. */
3746 	if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_HPNA_1)
3747 		sc->dc_link = 1;
3748 	else {
3749 		if (sc->dc_flags & DC_21143_NWAY)
3750 			callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
3751 		else
3752 			callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
3753 	}
3754 
3755 	sc->dc_wdog_timer = 0;
3756 	callout_reset(&sc->dc_wdog_ch, hz, dc_watchdog, sc);
3757 }
3758 
3759 /*
3760  * Set media options.
3761  */
3762 static int
3763 dc_ifmedia_upd(struct ifnet *ifp)
3764 {
3765 	struct dc_softc *sc;
3766 	struct mii_data *mii;
3767 	struct ifmedia *ifm;
3768 
3769 	sc = ifp->if_softc;
3770 	mii = device_get_softc(sc->dc_miibus);
3771 	DC_LOCK(sc);
3772 	mii_mediachg(mii);
3773 	ifm = &mii->mii_media;
3774 
3775 	if (DC_IS_INTEL(sc))
3776 		dc_setcfg(sc, ifm->ifm_media);
3777 	else if (DC_IS_DAVICOM(sc) &&
3778 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1)
3779 		dc_setcfg(sc, ifm->ifm_media);
3780 	else
3781 		sc->dc_link = 0;
3782 	DC_UNLOCK(sc);
3783 
3784 	return (0);
3785 }
3786 
3787 /*
3788  * Report current media status.
3789  */
3790 static void
3791 dc_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3792 {
3793 	struct dc_softc *sc;
3794 	struct mii_data *mii;
3795 	struct ifmedia *ifm;
3796 
3797 	sc = ifp->if_softc;
3798 	mii = device_get_softc(sc->dc_miibus);
3799 	DC_LOCK(sc);
3800 	mii_pollstat(mii);
3801 	ifm = &mii->mii_media;
3802 	if (DC_IS_DAVICOM(sc)) {
3803 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
3804 			ifmr->ifm_active = ifm->ifm_media;
3805 			ifmr->ifm_status = 0;
3806 			DC_UNLOCK(sc);
3807 			return;
3808 		}
3809 	}
3810 	ifmr->ifm_active = mii->mii_media_active;
3811 	ifmr->ifm_status = mii->mii_media_status;
3812 	DC_UNLOCK(sc);
3813 }
3814 
3815 static int
3816 dc_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
3817 {
3818 	struct dc_softc *sc = ifp->if_softc;
3819 	struct ifreq *ifr = (struct ifreq *)data;
3820 	struct mii_data *mii;
3821 	int error = 0;
3822 
3823 	switch (command) {
3824 	case SIOCSIFFLAGS:
3825 		DC_LOCK(sc);
3826 		if (ifp->if_flags & IFF_UP) {
3827 			int need_setfilt = (ifp->if_flags ^ sc->dc_if_flags) &
3828 				(IFF_PROMISC | IFF_ALLMULTI);
3829 
3830 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3831 				if (need_setfilt)
3832 					dc_setfilt(sc);
3833 			} else {
3834 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3835 				dc_init_locked(sc);
3836 			}
3837 		} else {
3838 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3839 				dc_stop(sc);
3840 		}
3841 		sc->dc_if_flags = ifp->if_flags;
3842 		DC_UNLOCK(sc);
3843 		break;
3844 	case SIOCADDMULTI:
3845 	case SIOCDELMULTI:
3846 		DC_LOCK(sc);
3847 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3848 			dc_setfilt(sc);
3849 		DC_UNLOCK(sc);
3850 		break;
3851 	case SIOCGIFMEDIA:
3852 	case SIOCSIFMEDIA:
3853 		mii = device_get_softc(sc->dc_miibus);
3854 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
3855 		break;
3856 	case SIOCSIFCAP:
3857 #ifdef DEVICE_POLLING
3858 		if (ifr->ifr_reqcap & IFCAP_POLLING &&
3859 		    !(ifp->if_capenable & IFCAP_POLLING)) {
3860 			error = ether_poll_register(dc_poll, ifp);
3861 			if (error)
3862 				return(error);
3863 			DC_LOCK(sc);
3864 			/* Disable interrupts */
3865 			CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3866 			ifp->if_capenable |= IFCAP_POLLING;
3867 			DC_UNLOCK(sc);
3868 			return (error);
3869 		}
3870 		if (!(ifr->ifr_reqcap & IFCAP_POLLING) &&
3871 		    ifp->if_capenable & IFCAP_POLLING) {
3872 			error = ether_poll_deregister(ifp);
3873 			/* Enable interrupts. */
3874 			DC_LOCK(sc);
3875 			CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3876 			ifp->if_capenable &= ~IFCAP_POLLING;
3877 			DC_UNLOCK(sc);
3878 			return (error);
3879 		}
3880 #endif /* DEVICE_POLLING */
3881 		break;
3882 	default:
3883 		error = ether_ioctl(ifp, command, data);
3884 		break;
3885 	}
3886 
3887 	return (error);
3888 }
3889 
3890 static void
3891 dc_watchdog(void *xsc)
3892 {
3893 	struct dc_softc *sc = xsc;
3894 	struct ifnet *ifp;
3895 
3896 	DC_LOCK_ASSERT(sc);
3897 
3898 	if (sc->dc_wdog_timer == 0 || --sc->dc_wdog_timer != 0) {
3899 		callout_reset(&sc->dc_wdog_ch, hz, dc_watchdog, sc);
3900 		return;
3901 	}
3902 
3903 	ifp = sc->dc_ifp;
3904 	ifp->if_oerrors++;
3905 	device_printf(sc->dc_dev, "watchdog timeout\n");
3906 
3907 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3908 	dc_init_locked(sc);
3909 
3910 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3911 		dc_start_locked(ifp);
3912 }
3913 
3914 /*
3915  * Stop the adapter and free any mbufs allocated to the
3916  * RX and TX lists.
3917  */
3918 static void
3919 dc_stop(struct dc_softc *sc)
3920 {
3921 	struct ifnet *ifp;
3922 	struct dc_list_data *ld;
3923 	struct dc_chain_data *cd;
3924 	int i;
3925 	uint32_t ctl, netcfg;
3926 
3927 	DC_LOCK_ASSERT(sc);
3928 
3929 	ifp = sc->dc_ifp;
3930 	ld = &sc->dc_ldata;
3931 	cd = &sc->dc_cdata;
3932 
3933 	callout_stop(&sc->dc_stat_ch);
3934 	callout_stop(&sc->dc_wdog_ch);
3935 	sc->dc_wdog_timer = 0;
3936 	sc->dc_link = 0;
3937 
3938 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3939 
3940 	netcfg = CSR_READ_4(sc, DC_NETCFG);
3941 	if (netcfg & (DC_NETCFG_RX_ON | DC_NETCFG_TX_ON))
3942 		CSR_WRITE_4(sc, DC_NETCFG,
3943 		   netcfg & ~(DC_NETCFG_RX_ON | DC_NETCFG_TX_ON));
3944 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3945 	/* Wait the completion of TX/RX SM. */
3946 	if (netcfg & (DC_NETCFG_RX_ON | DC_NETCFG_TX_ON))
3947 		dc_netcfg_wait(sc);
3948 
3949 	CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
3950 	CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
3951 
3952 	/*
3953 	 * Free data in the RX lists.
3954 	 */
3955 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
3956 		if (cd->dc_rx_chain[i] != NULL) {
3957 			bus_dmamap_sync(sc->dc_rx_mtag,
3958 			    cd->dc_rx_map[i], BUS_DMASYNC_POSTREAD);
3959 			bus_dmamap_unload(sc->dc_rx_mtag,
3960 			    cd->dc_rx_map[i]);
3961 			m_freem(cd->dc_rx_chain[i]);
3962 			cd->dc_rx_chain[i] = NULL;
3963 		}
3964 	}
3965 	bzero(ld->dc_rx_list, DC_RX_LIST_SZ);
3966 	bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_rx_lmap,
3967 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3968 
3969 	/*
3970 	 * Free the TX list buffers.
3971 	 */
3972 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
3973 		if (cd->dc_tx_chain[i] != NULL) {
3974 			ctl = le32toh(ld->dc_tx_list[i].dc_ctl);
3975 			if (ctl & DC_TXCTL_SETUP) {
3976 				bus_dmamap_sync(sc->dc_stag, sc->dc_smap,
3977 				    BUS_DMASYNC_POSTWRITE);
3978 			} else {
3979 				bus_dmamap_sync(sc->dc_tx_mtag,
3980 				    cd->dc_tx_map[i], BUS_DMASYNC_POSTWRITE);
3981 				bus_dmamap_unload(sc->dc_tx_mtag,
3982 				    cd->dc_tx_map[i]);
3983 				m_freem(cd->dc_tx_chain[i]);
3984 			}
3985 			cd->dc_tx_chain[i] = NULL;
3986 		}
3987 	}
3988 	bzero(ld->dc_tx_list, DC_TX_LIST_SZ);
3989 	bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap,
3990 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3991 }
3992 
3993 /*
3994  * Device suspend routine.  Stop the interface and save some PCI
3995  * settings in case the BIOS doesn't restore them properly on
3996  * resume.
3997  */
3998 static int
3999 dc_suspend(device_t dev)
4000 {
4001 	struct dc_softc *sc;
4002 
4003 	sc = device_get_softc(dev);
4004 	DC_LOCK(sc);
4005 	dc_stop(sc);
4006 	sc->suspended = 1;
4007 	DC_UNLOCK(sc);
4008 
4009 	return (0);
4010 }
4011 
4012 /*
4013  * Device resume routine.  Restore some PCI settings in case the BIOS
4014  * doesn't, re-enable busmastering, and restart the interface if
4015  * appropriate.
4016  */
4017 static int
4018 dc_resume(device_t dev)
4019 {
4020 	struct dc_softc *sc;
4021 	struct ifnet *ifp;
4022 
4023 	sc = device_get_softc(dev);
4024 	ifp = sc->dc_ifp;
4025 
4026 	/* reinitialize interface if necessary */
4027 	DC_LOCK(sc);
4028 	if (ifp->if_flags & IFF_UP)
4029 		dc_init_locked(sc);
4030 
4031 	sc->suspended = 0;
4032 	DC_UNLOCK(sc);
4033 
4034 	return (0);
4035 }
4036 
4037 /*
4038  * Stop all chip I/O so that the kernel's probe routines don't
4039  * get confused by errant DMAs when rebooting.
4040  */
4041 static int
4042 dc_shutdown(device_t dev)
4043 {
4044 	struct dc_softc *sc;
4045 
4046 	sc = device_get_softc(dev);
4047 
4048 	DC_LOCK(sc);
4049 	dc_stop(sc);
4050 	DC_UNLOCK(sc);
4051 
4052 	return (0);
4053 }
4054 
4055 static int
4056 dc_check_multiport(struct dc_softc *sc)
4057 {
4058 	struct dc_softc *dsc;
4059 	devclass_t dc;
4060 	device_t child;
4061 	uint8_t *eaddr;
4062 	int unit;
4063 
4064 	dc = devclass_find("dc");
4065 	for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
4066 		child = devclass_get_device(dc, unit);
4067 		if (child == NULL)
4068 			continue;
4069 		if (child == sc->dc_dev)
4070 			continue;
4071 		if (device_get_parent(child) != device_get_parent(sc->dc_dev))
4072 			continue;
4073 		if (unit > device_get_unit(sc->dc_dev))
4074 			continue;
4075 		if (device_is_attached(child) == 0)
4076 			continue;
4077 		dsc = device_get_softc(child);
4078 		device_printf(sc->dc_dev,
4079 		    "Using station address of %s as base\n",
4080 		    device_get_nameunit(child));
4081 		bcopy(dsc->dc_eaddr, sc->dc_eaddr, ETHER_ADDR_LEN);
4082 		eaddr = (uint8_t *)sc->dc_eaddr;
4083 		eaddr[5]++;
4084 		/* Prepare SROM to parse again. */
4085 		if (DC_IS_INTEL(sc) && dsc->dc_srom != NULL &&
4086 		    sc->dc_romwidth != 0) {
4087 			free(sc->dc_srom, M_DEVBUF);
4088 			sc->dc_romwidth = dsc->dc_romwidth;
4089 			sc->dc_srom = malloc(DC_ROM_SIZE(sc->dc_romwidth),
4090 			    M_DEVBUF, M_NOWAIT);
4091 			if (sc->dc_srom == NULL) {
4092 				device_printf(sc->dc_dev,
4093 				    "Could not allocate SROM buffer\n");
4094 				return (ENOMEM);
4095 			}
4096 			bcopy(dsc->dc_srom, sc->dc_srom,
4097 			    DC_ROM_SIZE(sc->dc_romwidth));
4098 		}
4099 		return (0);
4100 	}
4101 	return (ENOENT);
4102 }
4103