xref: /freebsd/sys/dev/dc/if_dc.c (revision 7773002178c8dbc52b44e4d705f07706409af8e4)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ee.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
35  * series chips and several workalikes including the following:
36  *
37  * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com)
38  * Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
39  * Lite-On 82c168/82c169 PNIC (www.litecom.com)
40  * ASIX Electronics AX88140A (www.asix.com.tw)
41  * ASIX Electronics AX88141 (www.asix.com.tw)
42  * ADMtek AL981 (www.admtek.com.tw)
43  * ADMtek AN985 (www.admtek.com.tw)
44  * Netgear FA511 (www.netgear.com) Appears to be rebadged ADMTek AN985
45  * Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
46  * Accton EN1217 (www.accton.com)
47  * Xircom X3201 (www.xircom.com)
48  * Abocom FE2500
49  * Conexant LANfinity (www.conexant.com)
50  * 3Com OfficeConnect 10/100B 3CSOHO100B (www.3com.com)
51  *
52  * Datasheets for the 21143 are available at developer.intel.com.
53  * Datasheets for the clone parts can be found at their respective sites.
54  * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
55  * The PNIC II is essentially a Macronix 98715A chip; the only difference
56  * worth noting is that its multicast hash table is only 128 bits wide
57  * instead of 512.
58  *
59  * Written by Bill Paul <wpaul@ee.columbia.edu>
60  * Electrical Engineering Department
61  * Columbia University, New York City
62  */
63 
64 /*
65  * The Intel 21143 is the successor to the DEC 21140. It is basically
66  * the same as the 21140 but with a few new features. The 21143 supports
67  * three kinds of media attachments:
68  *
69  * o MII port, for 10Mbps and 100Mbps support and NWAY
70  *   autonegotiation provided by an external PHY.
71  * o SYM port, for symbol mode 100Mbps support.
72  * o 10baseT port.
73  * o AUI/BNC port.
74  *
75  * The 100Mbps SYM port and 10baseT port can be used together in
76  * combination with the internal NWAY support to create a 10/100
77  * autosensing configuration.
78  *
79  * Note that not all tulip workalikes are handled in this driver: we only
80  * deal with those which are relatively well behaved. The Winbond is
81  * handled separately due to its different register offsets and the
82  * special handling needed for its various bugs. The PNIC is handled
83  * here, but I'm not thrilled about it.
84  *
85  * All of the workalike chips use some form of MII transceiver support
86  * with the exception of the Macronix chips, which also have a SYM port.
87  * The ASIX AX88140A is also documented to have a SYM port, but all
88  * the cards I've seen use an MII transceiver, probably because the
89  * AX88140A doesn't support internal NWAY.
90  */
91 
92 #include <sys/cdefs.h>
93 __FBSDID("$FreeBSD$");
94 
95 #include <sys/param.h>
96 #include <sys/endian.h>
97 #include <sys/systm.h>
98 #include <sys/sockio.h>
99 #include <sys/mbuf.h>
100 #include <sys/malloc.h>
101 #include <sys/kernel.h>
102 #include <sys/socket.h>
103 #include <sys/sysctl.h>
104 
105 #include <net/if.h>
106 #include <net/if_arp.h>
107 #include <net/ethernet.h>
108 #include <net/if_dl.h>
109 #include <net/if_media.h>
110 #include <net/if_types.h>
111 #include <net/if_vlan_var.h>
112 
113 #include <net/bpf.h>
114 
115 #include <machine/bus_pio.h>
116 #include <machine/bus_memio.h>
117 #include <machine/bus.h>
118 #include <machine/resource.h>
119 #include <sys/bus.h>
120 #include <sys/rman.h>
121 
122 #include <dev/mii/mii.h>
123 #include <dev/mii/miivar.h>
124 
125 #include <dev/pci/pcireg.h>
126 #include <dev/pci/pcivar.h>
127 
128 #define DC_USEIOSPACE
129 #ifdef __alpha__
130 #define SRM_MEDIA
131 #endif
132 
133 #include <pci/if_dcreg.h>
134 
135 MODULE_DEPEND(dc, pci, 1, 1, 1);
136 MODULE_DEPEND(dc, ether, 1, 1, 1);
137 MODULE_DEPEND(dc, miibus, 1, 1, 1);
138 
139 /* "controller miibus0" required.  See GENERIC if you get errors here. */
140 #include "miibus_if.h"
141 
142 /*
143  * Various supported device vendors/types and their names.
144  */
145 static struct dc_type dc_devs[] = {
146 	{ DC_VENDORID_DEC, DC_DEVICEID_21143,
147 		"Intel 21143 10/100BaseTX" },
148 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009,
149 		"Davicom DM9009 10/100BaseTX" },
150 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100,
151 		"Davicom DM9100 10/100BaseTX" },
152 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
153 		"Davicom DM9102 10/100BaseTX" },
154 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
155 		"Davicom DM9102A 10/100BaseTX" },
156 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AL981,
157 		"ADMtek AL981 10/100BaseTX" },
158 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AN985,
159 		"ADMtek AN985 10/100BaseTX" },
160 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511,
161 		"ADMtek ADM9511 10/100BaseTX" },
162 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513,
163 		"ADMtek ADM9513 10/100BaseTX" },
164  	{ DC_VENDORID_ADMTEK, DC_DEVICEID_FA511,
165  		"Netgear FA511 10/100BaseTX" },
166 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
167 		"ASIX AX88140A 10/100BaseTX" },
168 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
169 		"ASIX AX88141 10/100BaseTX" },
170 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
171 		"Macronix 98713 10/100BaseTX" },
172 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
173 		"Macronix 98713A 10/100BaseTX" },
174 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
175 		"Compex RL100-TX 10/100BaseTX" },
176 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
177 		"Compex RL100-TX 10/100BaseTX" },
178 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
179 		"Macronix 98715/98715A 10/100BaseTX" },
180 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
181 		"Macronix 98715AEC-C 10/100BaseTX" },
182 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
183 		"Macronix 98725 10/100BaseTX" },
184 	{ DC_VENDORID_MX, DC_DEVICEID_98727,
185 		"Macronix 98727/98732 10/100BaseTX" },
186 	{ DC_VENDORID_LO, DC_DEVICEID_82C115,
187 		"LC82C115 PNIC II 10/100BaseTX" },
188 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
189 		"82c168 PNIC 10/100BaseTX" },
190 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
191 		"82c169 PNIC 10/100BaseTX" },
192 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN1217,
193 		"Accton EN1217 10/100BaseTX" },
194 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN2242,
195 		"Accton EN2242 MiniPCI 10/100BaseTX" },
196 	{ DC_VENDORID_XIRCOM, DC_DEVICEID_X3201,
197 	  	"Xircom X3201 10/100BaseTX" },
198 	{ DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500,
199 		"Abocom FE2500 10/100BaseTX" },
200 	{ DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112,
201 		"Conexant LANfinity MiniPCI 10/100BaseTX" },
202 	{ DC_VENDORID_HAWKING, DC_DEVICEID_HAWKING_PN672TX,
203 		"Hawking CB102 CardBus 10/100" },
204 	{ DC_VENDORID_PLANEX, DC_DEVICEID_FNW3602T,
205 		"PlaneX FNW-3602-T CardBus 10/100" },
206 	{ DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB,
207 		"3Com OfficeConnect 10/100B" },
208 	{ DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN120,
209 		"Microsoft MN-120 CardBus 10/100" },
210 	{ DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130,
211 		"Microsoft MN-130 10/100" },
212 	{ DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130_FAKE,
213 		"Microsoft MN-130 10/100" },
214 	{ 0, 0, NULL }
215 };
216 
217 static int dc_probe		(device_t);
218 static int dc_attach		(device_t);
219 static int dc_detach		(device_t);
220 static int dc_suspend		(device_t);
221 static int dc_resume		(device_t);
222 #ifndef BURN_BRIDGES
223 static void dc_acpi		(device_t);
224 #endif
225 static struct dc_type *dc_devtype	(device_t);
226 static int dc_newbuf		(struct dc_softc *, int, int);
227 static int dc_encap		(struct dc_softc *, struct mbuf **);
228 static void dc_pnic_rx_bug_war	(struct dc_softc *, int);
229 static int dc_rx_resync		(struct dc_softc *);
230 static void dc_rxeof		(struct dc_softc *);
231 static void dc_txeof		(struct dc_softc *);
232 static void dc_tick		(void *);
233 static void dc_tx_underrun	(struct dc_softc *);
234 static void dc_intr		(void *);
235 static void dc_start		(struct ifnet *);
236 static int dc_ioctl		(struct ifnet *, u_long, caddr_t);
237 static void dc_init		(void *);
238 static void dc_stop		(struct dc_softc *);
239 static void dc_watchdog		(struct ifnet *);
240 static void dc_shutdown		(device_t);
241 static int dc_ifmedia_upd	(struct ifnet *);
242 static void dc_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
243 
244 static void dc_delay		(struct dc_softc *);
245 static void dc_eeprom_idle	(struct dc_softc *);
246 static void dc_eeprom_putbyte	(struct dc_softc *, int);
247 static void dc_eeprom_getword	(struct dc_softc *, int, u_int16_t *);
248 static void dc_eeprom_getword_pnic
249 				(struct dc_softc *, int, u_int16_t *);
250 static void dc_eeprom_getword_xircom
251 				(struct dc_softc *, int, u_int16_t *);
252 static void dc_eeprom_width	(struct dc_softc *);
253 static void dc_read_eeprom	(struct dc_softc *, caddr_t, int, int, int);
254 
255 static void dc_mii_writebit	(struct dc_softc *, int);
256 static int dc_mii_readbit	(struct dc_softc *);
257 static void dc_mii_sync		(struct dc_softc *);
258 static void dc_mii_send		(struct dc_softc *, u_int32_t, int);
259 static int dc_mii_readreg	(struct dc_softc *, struct dc_mii_frame *);
260 static int dc_mii_writereg	(struct dc_softc *, struct dc_mii_frame *);
261 static int dc_miibus_readreg	(device_t, int, int);
262 static int dc_miibus_writereg	(device_t, int, int, int);
263 static void dc_miibus_statchg	(device_t);
264 static void dc_miibus_mediainit	(device_t);
265 
266 static void dc_setcfg		(struct dc_softc *, int);
267 static u_int32_t dc_crc_le	(struct dc_softc *, const uint8_t *);
268 static u_int32_t dc_crc_be	(const uint8_t *);
269 static void dc_setfilt_21143	(struct dc_softc *);
270 static void dc_setfilt_asix	(struct dc_softc *);
271 static void dc_setfilt_admtek	(struct dc_softc *);
272 static void dc_setfilt_xircom	(struct dc_softc *);
273 
274 static void dc_setfilt		(struct dc_softc *);
275 
276 static void dc_reset		(struct dc_softc *);
277 static int dc_list_rx_init	(struct dc_softc *);
278 static int dc_list_tx_init	(struct dc_softc *);
279 
280 static void dc_read_srom	(struct dc_softc *, int);
281 static void dc_parse_21143_srom	(struct dc_softc *);
282 static void dc_decode_leaf_sia	(struct dc_softc *, struct dc_eblock_sia *);
283 static void dc_decode_leaf_mii	(struct dc_softc *, struct dc_eblock_mii *);
284 static void dc_decode_leaf_sym	(struct dc_softc *, struct dc_eblock_sym *);
285 static void dc_apply_fixup	(struct dc_softc *, int);
286 
287 static void dc_dma_map_txbuf	(void *, bus_dma_segment_t *, int, bus_size_t,
288 				    int);
289 static void dc_dma_map_rxbuf	(void *, bus_dma_segment_t *, int, bus_size_t,
290 				    int);
291 
292 #ifdef DC_USEIOSPACE
293 #define DC_RES			SYS_RES_IOPORT
294 #define DC_RID			DC_PCI_CFBIO
295 #else
296 #define DC_RES			SYS_RES_MEMORY
297 #define DC_RID			DC_PCI_CFBMA
298 #endif
299 
300 static device_method_t dc_methods[] = {
301 	/* Device interface */
302 	DEVMETHOD(device_probe,		dc_probe),
303 	DEVMETHOD(device_attach,	dc_attach),
304 	DEVMETHOD(device_detach,	dc_detach),
305 	DEVMETHOD(device_suspend,	dc_suspend),
306 	DEVMETHOD(device_resume,	dc_resume),
307 	DEVMETHOD(device_shutdown,	dc_shutdown),
308 
309 	/* bus interface */
310 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
311 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
312 
313 	/* MII interface */
314 	DEVMETHOD(miibus_readreg,	dc_miibus_readreg),
315 	DEVMETHOD(miibus_writereg,	dc_miibus_writereg),
316 	DEVMETHOD(miibus_statchg,	dc_miibus_statchg),
317 	DEVMETHOD(miibus_mediainit,	dc_miibus_mediainit),
318 
319 	{ 0, 0 }
320 };
321 
322 static driver_t dc_driver = {
323 	"dc",
324 	dc_methods,
325 	sizeof(struct dc_softc)
326 };
327 
328 static devclass_t dc_devclass;
329 #ifdef __i386__
330 static int dc_quick = 1;
331 SYSCTL_INT(_hw, OID_AUTO, dc_quick, CTLFLAG_RW, &dc_quick, 0,
332     "do not m_devget() in dc driver");
333 #endif
334 
335 DRIVER_MODULE(dc, pci, dc_driver, dc_devclass, 0, 0);
336 DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, 0, 0);
337 
338 #define DC_SETBIT(sc, reg, x)				\
339 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
340 
341 #define DC_CLRBIT(sc, reg, x)				\
342 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
343 
344 #define SIO_SET(x)	DC_SETBIT(sc, DC_SIO, (x))
345 #define SIO_CLR(x)	DC_CLRBIT(sc, DC_SIO, (x))
346 
347 #define IS_MPSAFE 	0
348 
349 static void
350 dc_delay(struct dc_softc *sc)
351 {
352 	int idx;
353 
354 	for (idx = (300 / 33) + 1; idx > 0; idx--)
355 		CSR_READ_4(sc, DC_BUSCTL);
356 }
357 
358 static void
359 dc_eeprom_width(struct dc_softc *sc)
360 {
361 	int i;
362 
363 	/* Force EEPROM to idle state. */
364 	dc_eeprom_idle(sc);
365 
366 	/* Enter EEPROM access mode. */
367 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
368 	dc_delay(sc);
369 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
370 	dc_delay(sc);
371 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
372 	dc_delay(sc);
373 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
374 	dc_delay(sc);
375 
376 	for (i = 3; i--;) {
377 		if (6 & (1 << i))
378 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
379 		else
380 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
381 		dc_delay(sc);
382 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
383 		dc_delay(sc);
384 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
385 		dc_delay(sc);
386 	}
387 
388 	for (i = 1; i <= 12; i++) {
389 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
390 		dc_delay(sc);
391 		if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) {
392 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
393 			dc_delay(sc);
394 			break;
395 		}
396 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
397 		dc_delay(sc);
398 	}
399 
400 	/* Turn off EEPROM access mode. */
401 	dc_eeprom_idle(sc);
402 
403 	if (i < 4 || i > 12)
404 		sc->dc_romwidth = 6;
405 	else
406 		sc->dc_romwidth = i;
407 
408 	/* Enter EEPROM access mode. */
409 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
410 	dc_delay(sc);
411 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
412 	dc_delay(sc);
413 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
414 	dc_delay(sc);
415 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
416 	dc_delay(sc);
417 
418 	/* Turn off EEPROM access mode. */
419 	dc_eeprom_idle(sc);
420 }
421 
422 static void
423 dc_eeprom_idle(struct dc_softc *sc)
424 {
425 	int i;
426 
427 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
428 	dc_delay(sc);
429 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
430 	dc_delay(sc);
431 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
432 	dc_delay(sc);
433 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
434 	dc_delay(sc);
435 
436 	for (i = 0; i < 25; i++) {
437 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
438 		dc_delay(sc);
439 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
440 		dc_delay(sc);
441 	}
442 
443 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
444 	dc_delay(sc);
445 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
446 	dc_delay(sc);
447 	CSR_WRITE_4(sc, DC_SIO, 0x00000000);
448 }
449 
450 /*
451  * Send a read command and address to the EEPROM, check for ACK.
452  */
453 static void
454 dc_eeprom_putbyte(struct dc_softc *sc, int addr)
455 {
456 	int d, i;
457 
458 	d = DC_EECMD_READ >> 6;
459 	for (i = 3; i--; ) {
460 		if (d & (1 << i))
461 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
462 		else
463 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
464 		dc_delay(sc);
465 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
466 		dc_delay(sc);
467 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
468 		dc_delay(sc);
469 	}
470 
471 	/*
472 	 * Feed in each bit and strobe the clock.
473 	 */
474 	for (i = sc->dc_romwidth; i--;) {
475 		if (addr & (1 << i)) {
476 			SIO_SET(DC_SIO_EE_DATAIN);
477 		} else {
478 			SIO_CLR(DC_SIO_EE_DATAIN);
479 		}
480 		dc_delay(sc);
481 		SIO_SET(DC_SIO_EE_CLK);
482 		dc_delay(sc);
483 		SIO_CLR(DC_SIO_EE_CLK);
484 		dc_delay(sc);
485 	}
486 }
487 
488 /*
489  * Read a word of data stored in the EEPROM at address 'addr.'
490  * The PNIC 82c168/82c169 has its own non-standard way to read
491  * the EEPROM.
492  */
493 static void
494 dc_eeprom_getword_pnic(struct dc_softc *sc, int addr, u_int16_t *dest)
495 {
496 	int i;
497 	u_int32_t r;
498 
499 	CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ | addr);
500 
501 	for (i = 0; i < DC_TIMEOUT; i++) {
502 		DELAY(1);
503 		r = CSR_READ_4(sc, DC_SIO);
504 		if (!(r & DC_PN_SIOCTL_BUSY)) {
505 			*dest = (u_int16_t)(r & 0xFFFF);
506 			return;
507 		}
508 	}
509 }
510 
511 /*
512  * Read a word of data stored in the EEPROM at address 'addr.'
513  * The Xircom X3201 has its own non-standard way to read
514  * the EEPROM, too.
515  */
516 static void
517 dc_eeprom_getword_xircom(struct dc_softc *sc, int addr, u_int16_t *dest)
518 {
519 
520 	SIO_SET(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
521 
522 	addr *= 2;
523 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
524 	*dest = (u_int16_t)CSR_READ_4(sc, DC_SIO) & 0xff;
525 	addr += 1;
526 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
527 	*dest |= ((u_int16_t)CSR_READ_4(sc, DC_SIO) & 0xff) << 8;
528 
529 	SIO_CLR(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
530 }
531 
532 /*
533  * Read a word of data stored in the EEPROM at address 'addr.'
534  */
535 static void
536 dc_eeprom_getword(struct dc_softc *sc, int addr, u_int16_t *dest)
537 {
538 	int i;
539 	u_int16_t word = 0;
540 
541 	/* Force EEPROM to idle state. */
542 	dc_eeprom_idle(sc);
543 
544 	/* Enter EEPROM access mode. */
545 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
546 	dc_delay(sc);
547 	DC_SETBIT(sc, DC_SIO,  DC_SIO_ROMCTL_READ);
548 	dc_delay(sc);
549 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
550 	dc_delay(sc);
551 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
552 	dc_delay(sc);
553 
554 	/*
555 	 * Send address of word we want to read.
556 	 */
557 	dc_eeprom_putbyte(sc, addr);
558 
559 	/*
560 	 * Start reading bits from EEPROM.
561 	 */
562 	for (i = 0x8000; i; i >>= 1) {
563 		SIO_SET(DC_SIO_EE_CLK);
564 		dc_delay(sc);
565 		if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
566 			word |= i;
567 		dc_delay(sc);
568 		SIO_CLR(DC_SIO_EE_CLK);
569 		dc_delay(sc);
570 	}
571 
572 	/* Turn off EEPROM access mode. */
573 	dc_eeprom_idle(sc);
574 
575 	*dest = word;
576 }
577 
578 /*
579  * Read a sequence of words from the EEPROM.
580  */
581 static void
582 dc_read_eeprom(struct dc_softc *sc, caddr_t dest, int off, int cnt, int swap)
583 {
584 	int i;
585 	u_int16_t word = 0, *ptr;
586 
587 	for (i = 0; i < cnt; i++) {
588 		if (DC_IS_PNIC(sc))
589 			dc_eeprom_getword_pnic(sc, off + i, &word);
590 		else if (DC_IS_XIRCOM(sc))
591 			dc_eeprom_getword_xircom(sc, off + i, &word);
592 		else
593 			dc_eeprom_getword(sc, off + i, &word);
594 		ptr = (u_int16_t *)(dest + (i * 2));
595 		if (swap)
596 			*ptr = ntohs(word);
597 		else
598 			*ptr = word;
599 	}
600 }
601 
602 /*
603  * The following two routines are taken from the Macronix 98713
604  * Application Notes pp.19-21.
605  */
606 /*
607  * Write a bit to the MII bus.
608  */
609 static void
610 dc_mii_writebit(struct dc_softc *sc, int bit)
611 {
612 
613 	if (bit)
614 		CSR_WRITE_4(sc, DC_SIO,
615 		    DC_SIO_ROMCTL_WRITE | DC_SIO_MII_DATAOUT);
616 	else
617 		CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
618 
619 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
620 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
621 }
622 
623 /*
624  * Read a bit from the MII bus.
625  */
626 static int
627 dc_mii_readbit(struct dc_softc *sc)
628 {
629 
630 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_READ | DC_SIO_MII_DIR);
631 	CSR_READ_4(sc, DC_SIO);
632 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
633 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
634 	if (CSR_READ_4(sc, DC_SIO) & DC_SIO_MII_DATAIN)
635 		return (1);
636 
637 	return (0);
638 }
639 
640 /*
641  * Sync the PHYs by setting data bit and strobing the clock 32 times.
642  */
643 static void
644 dc_mii_sync(struct dc_softc *sc)
645 {
646 	int i;
647 
648 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
649 
650 	for (i = 0; i < 32; i++)
651 		dc_mii_writebit(sc, 1);
652 }
653 
654 /*
655  * Clock a series of bits through the MII.
656  */
657 static void
658 dc_mii_send(struct dc_softc *sc, u_int32_t bits, int cnt)
659 {
660 	int i;
661 
662 	for (i = (0x1 << (cnt - 1)); i; i >>= 1)
663 		dc_mii_writebit(sc, bits & i);
664 }
665 
666 /*
667  * Read an PHY register through the MII.
668  */
669 static int
670 dc_mii_readreg(struct dc_softc *sc, struct dc_mii_frame *frame)
671 {
672 	int i, ack;
673 
674 	DC_LOCK(sc);
675 
676 	/*
677 	 * Set up frame for RX.
678 	 */
679 	frame->mii_stdelim = DC_MII_STARTDELIM;
680 	frame->mii_opcode = DC_MII_READOP;
681 	frame->mii_turnaround = 0;
682 	frame->mii_data = 0;
683 
684 	/*
685 	 * Sync the PHYs.
686 	 */
687 	dc_mii_sync(sc);
688 
689 	/*
690 	 * Send command/address info.
691 	 */
692 	dc_mii_send(sc, frame->mii_stdelim, 2);
693 	dc_mii_send(sc, frame->mii_opcode, 2);
694 	dc_mii_send(sc, frame->mii_phyaddr, 5);
695 	dc_mii_send(sc, frame->mii_regaddr, 5);
696 
697 #ifdef notdef
698 	/* Idle bit */
699 	dc_mii_writebit(sc, 1);
700 	dc_mii_writebit(sc, 0);
701 #endif
702 
703 	/* Check for ack. */
704 	ack = dc_mii_readbit(sc);
705 
706 	/*
707 	 * Now try reading data bits. If the ack failed, we still
708 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
709 	 */
710 	if (ack) {
711 		for (i = 0; i < 16; i++)
712 			dc_mii_readbit(sc);
713 		goto fail;
714 	}
715 
716 	for (i = 0x8000; i; i >>= 1) {
717 		if (!ack) {
718 			if (dc_mii_readbit(sc))
719 				frame->mii_data |= i;
720 		}
721 	}
722 
723 fail:
724 
725 	dc_mii_writebit(sc, 0);
726 	dc_mii_writebit(sc, 0);
727 
728 	DC_UNLOCK(sc);
729 
730 	if (ack)
731 		return (1);
732 	return (0);
733 }
734 
735 /*
736  * Write to a PHY register through the MII.
737  */
738 static int
739 dc_mii_writereg(struct dc_softc *sc, struct dc_mii_frame *frame)
740 {
741 
742 	DC_LOCK(sc);
743 	/*
744 	 * Set up frame for TX.
745 	 */
746 
747 	frame->mii_stdelim = DC_MII_STARTDELIM;
748 	frame->mii_opcode = DC_MII_WRITEOP;
749 	frame->mii_turnaround = DC_MII_TURNAROUND;
750 
751 	/*
752 	 * Sync the PHYs.
753 	 */
754 	dc_mii_sync(sc);
755 
756 	dc_mii_send(sc, frame->mii_stdelim, 2);
757 	dc_mii_send(sc, frame->mii_opcode, 2);
758 	dc_mii_send(sc, frame->mii_phyaddr, 5);
759 	dc_mii_send(sc, frame->mii_regaddr, 5);
760 	dc_mii_send(sc, frame->mii_turnaround, 2);
761 	dc_mii_send(sc, frame->mii_data, 16);
762 
763 	/* Idle bit. */
764 	dc_mii_writebit(sc, 0);
765 	dc_mii_writebit(sc, 0);
766 
767 	DC_UNLOCK(sc);
768 
769 	return (0);
770 }
771 
772 static int
773 dc_miibus_readreg(device_t dev, int phy, int reg)
774 {
775 	struct dc_mii_frame frame;
776 	struct dc_softc	 *sc;
777 	int i, rval, phy_reg = 0;
778 
779 	sc = device_get_softc(dev);
780 	bzero(&frame, sizeof(frame));
781 
782 	/*
783 	 * Note: both the AL981 and AN985 have internal PHYs,
784 	 * however the AL981 provides direct access to the PHY
785 	 * registers while the AN985 uses a serial MII interface.
786 	 * The AN985's MII interface is also buggy in that you
787 	 * can read from any MII address (0 to 31), but only address 1
788 	 * behaves normally. To deal with both cases, we pretend
789 	 * that the PHY is at MII address 1.
790 	 */
791 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
792 		return (0);
793 
794 	/*
795 	 * Note: the ukphy probes of the RS7112 report a PHY at
796 	 * MII address 0 (possibly HomePNA?) and 1 (ethernet)
797 	 * so we only respond to correct one.
798 	 */
799 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
800 		return (0);
801 
802 	if (sc->dc_pmode != DC_PMODE_MII) {
803 		if (phy == (MII_NPHY - 1)) {
804 			switch (reg) {
805 			case MII_BMSR:
806 			/*
807 			 * Fake something to make the probe
808 			 * code think there's a PHY here.
809 			 */
810 				return (BMSR_MEDIAMASK);
811 				break;
812 			case MII_PHYIDR1:
813 				if (DC_IS_PNIC(sc))
814 					return (DC_VENDORID_LO);
815 				return (DC_VENDORID_DEC);
816 				break;
817 			case MII_PHYIDR2:
818 				if (DC_IS_PNIC(sc))
819 					return (DC_DEVICEID_82C168);
820 				return (DC_DEVICEID_21143);
821 				break;
822 			default:
823 				return (0);
824 				break;
825 			}
826 		} else
827 			return (0);
828 	}
829 
830 	if (DC_IS_PNIC(sc)) {
831 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
832 		    (phy << 23) | (reg << 18));
833 		for (i = 0; i < DC_TIMEOUT; i++) {
834 			DELAY(1);
835 			rval = CSR_READ_4(sc, DC_PN_MII);
836 			if (!(rval & DC_PN_MII_BUSY)) {
837 				rval &= 0xFFFF;
838 				return (rval == 0xFFFF ? 0 : rval);
839 			}
840 		}
841 		return (0);
842 	}
843 
844 	if (DC_IS_COMET(sc)) {
845 		switch (reg) {
846 		case MII_BMCR:
847 			phy_reg = DC_AL_BMCR;
848 			break;
849 		case MII_BMSR:
850 			phy_reg = DC_AL_BMSR;
851 			break;
852 		case MII_PHYIDR1:
853 			phy_reg = DC_AL_VENID;
854 			break;
855 		case MII_PHYIDR2:
856 			phy_reg = DC_AL_DEVID;
857 			break;
858 		case MII_ANAR:
859 			phy_reg = DC_AL_ANAR;
860 			break;
861 		case MII_ANLPAR:
862 			phy_reg = DC_AL_LPAR;
863 			break;
864 		case MII_ANER:
865 			phy_reg = DC_AL_ANER;
866 			break;
867 		default:
868 			printf("dc%d: phy_read: bad phy register %x\n",
869 			    sc->dc_unit, reg);
870 			return (0);
871 			break;
872 		}
873 
874 		rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
875 
876 		if (rval == 0xFFFF)
877 			return (0);
878 		return (rval);
879 	}
880 
881 	frame.mii_phyaddr = phy;
882 	frame.mii_regaddr = reg;
883 	if (sc->dc_type == DC_TYPE_98713) {
884 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
885 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
886 	}
887 	dc_mii_readreg(sc, &frame);
888 	if (sc->dc_type == DC_TYPE_98713)
889 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
890 
891 	return (frame.mii_data);
892 }
893 
894 static int
895 dc_miibus_writereg(device_t dev, int phy, int reg, int data)
896 {
897 	struct dc_softc *sc;
898 	struct dc_mii_frame frame;
899 	int i, phy_reg = 0;
900 
901 	sc = device_get_softc(dev);
902 	bzero(&frame, sizeof(frame));
903 
904 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
905 		return (0);
906 
907 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
908 		return (0);
909 
910 	if (DC_IS_PNIC(sc)) {
911 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
912 		    (phy << 23) | (reg << 10) | data);
913 		for (i = 0; i < DC_TIMEOUT; i++) {
914 			if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
915 				break;
916 		}
917 		return (0);
918 	}
919 
920 	if (DC_IS_COMET(sc)) {
921 		switch (reg) {
922 		case MII_BMCR:
923 			phy_reg = DC_AL_BMCR;
924 			break;
925 		case MII_BMSR:
926 			phy_reg = DC_AL_BMSR;
927 			break;
928 		case MII_PHYIDR1:
929 			phy_reg = DC_AL_VENID;
930 			break;
931 		case MII_PHYIDR2:
932 			phy_reg = DC_AL_DEVID;
933 			break;
934 		case MII_ANAR:
935 			phy_reg = DC_AL_ANAR;
936 			break;
937 		case MII_ANLPAR:
938 			phy_reg = DC_AL_LPAR;
939 			break;
940 		case MII_ANER:
941 			phy_reg = DC_AL_ANER;
942 			break;
943 		default:
944 			printf("dc%d: phy_write: bad phy register %x\n",
945 			    sc->dc_unit, reg);
946 			return (0);
947 			break;
948 		}
949 
950 		CSR_WRITE_4(sc, phy_reg, data);
951 		return (0);
952 	}
953 
954 	frame.mii_phyaddr = phy;
955 	frame.mii_regaddr = reg;
956 	frame.mii_data = data;
957 
958 	if (sc->dc_type == DC_TYPE_98713) {
959 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
960 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
961 	}
962 	dc_mii_writereg(sc, &frame);
963 	if (sc->dc_type == DC_TYPE_98713)
964 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
965 
966 	return (0);
967 }
968 
969 static void
970 dc_miibus_statchg(device_t dev)
971 {
972 	struct dc_softc *sc;
973 	struct mii_data *mii;
974 	struct ifmedia *ifm;
975 
976 	sc = device_get_softc(dev);
977 	if (DC_IS_ADMTEK(sc))
978 		return;
979 
980 	mii = device_get_softc(sc->dc_miibus);
981 	ifm = &mii->mii_media;
982 	if (DC_IS_DAVICOM(sc) &&
983 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
984 		dc_setcfg(sc, ifm->ifm_media);
985 		sc->dc_if_media = ifm->ifm_media;
986 	} else {
987 		dc_setcfg(sc, mii->mii_media_active);
988 		sc->dc_if_media = mii->mii_media_active;
989 	}
990 }
991 
992 /*
993  * Special support for DM9102A cards with HomePNA PHYs. Note:
994  * with the Davicom DM9102A/DM9801 eval board that I have, it seems
995  * to be impossible to talk to the management interface of the DM9801
996  * PHY (its MDIO pin is not connected to anything). Consequently,
997  * the driver has to just 'know' about the additional mode and deal
998  * with it itself. *sigh*
999  */
1000 static void
1001 dc_miibus_mediainit(device_t dev)
1002 {
1003 	struct dc_softc *sc;
1004 	struct mii_data *mii;
1005 	struct ifmedia *ifm;
1006 	int rev;
1007 
1008 	rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF;
1009 
1010 	sc = device_get_softc(dev);
1011 	mii = device_get_softc(sc->dc_miibus);
1012 	ifm = &mii->mii_media;
1013 
1014 	if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A)
1015 		ifmedia_add(ifm, IFM_ETHER | IFM_HPNA_1, 0, NULL);
1016 }
1017 
1018 #define DC_POLY		0xEDB88320
1019 #define DC_BITS_512	9
1020 #define DC_BITS_128	7
1021 #define DC_BITS_64	6
1022 
1023 static u_int32_t
1024 dc_crc_le(struct dc_softc *sc, const uint8_t *addr)
1025 {
1026 	uint32_t idx, bit, data, crc;
1027 
1028 	/* Compute CRC for the address value. */
1029 	crc = 0xFFFFFFFF; /* initial value */
1030 
1031 	for (idx = 0; idx < 6; idx++) {
1032 		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1)
1033 			crc = (crc >> 1) ^ (((crc ^ data) & 1) ? DC_POLY : 0);
1034 	}
1035 
1036 	/*
1037 	 * The hash table on the PNIC II and the MX98715AEC-C/D/E
1038 	 * chips is only 128 bits wide.
1039 	 */
1040 	if (sc->dc_flags & DC_128BIT_HASH)
1041 		return (crc & ((1 << DC_BITS_128) - 1));
1042 
1043 	/* The hash table on the MX98715BEC is only 64 bits wide. */
1044 	if (sc->dc_flags & DC_64BIT_HASH)
1045 		return (crc & ((1 << DC_BITS_64) - 1));
1046 
1047 	/* Xircom's hash filtering table is different (read: weird) */
1048 	/* Xircom uses the LEAST significant bits */
1049 	if (DC_IS_XIRCOM(sc)) {
1050 		if ((crc & 0x180) == 0x180)
1051 			return ((crc & 0x0F) + (crc & 0x70) * 3 + (14 << 4));
1052 		else
1053 			return ((crc & 0x1F) + ((crc >> 1) & 0xF0) * 3 +
1054 			    (12 << 4));
1055 	}
1056 
1057 	return (crc & ((1 << DC_BITS_512) - 1));
1058 }
1059 
1060 /*
1061  * Calculate CRC of a multicast group address, return the lower 6 bits.
1062  */
1063 static u_int32_t
1064 dc_crc_be(const uint8_t *addr)
1065 {
1066 	uint32_t crc, carry;
1067 	int i, j;
1068 	uint8_t c;
1069 
1070 	/* Compute CRC for the address value. */
1071 	crc = 0xFFFFFFFF; /* initial value */
1072 
1073 	for (i = 0; i < 6; i++) {
1074 		c = *(addr + i);
1075 		for (j = 0; j < 8; j++) {
1076 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
1077 			crc <<= 1;
1078 			c >>= 1;
1079 			if (carry)
1080 				crc = (crc ^ 0x04c11db6) | carry;
1081 		}
1082 	}
1083 
1084 	/* Return the filter bit position. */
1085 	return ((crc >> 26) & 0x0000003F);
1086 }
1087 
1088 /*
1089  * 21143-style RX filter setup routine. Filter programming is done by
1090  * downloading a special setup frame into the TX engine. 21143, Macronix,
1091  * PNIC, PNIC II and Davicom chips are programmed this way.
1092  *
1093  * We always program the chip using 'hash perfect' mode, i.e. one perfect
1094  * address (our node address) and a 512-bit hash filter for multicast
1095  * frames. We also sneak the broadcast address into the hash filter since
1096  * we need that too.
1097  */
1098 static void
1099 dc_setfilt_21143(struct dc_softc *sc)
1100 {
1101 	struct dc_desc *sframe;
1102 	u_int32_t h, *sp;
1103 	struct ifmultiaddr *ifma;
1104 	struct ifnet *ifp;
1105 	int i;
1106 
1107 	ifp = &sc->arpcom.ac_if;
1108 
1109 	i = sc->dc_cdata.dc_tx_prod;
1110 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1111 	sc->dc_cdata.dc_tx_cnt++;
1112 	sframe = &sc->dc_ldata->dc_tx_list[i];
1113 	sp = sc->dc_cdata.dc_sbuf;
1114 	bzero(sp, DC_SFRAME_LEN);
1115 
1116 	sframe->dc_data = htole32(sc->dc_saddr);
1117 	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
1118 	    DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
1119 
1120 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
1121 
1122 	/* If we want promiscuous mode, set the allframes bit. */
1123 	if (ifp->if_flags & IFF_PROMISC)
1124 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1125 	else
1126 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1127 
1128 	if (ifp->if_flags & IFF_ALLMULTI)
1129 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1130 	else
1131 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1132 
1133 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1134 		if (ifma->ifma_addr->sa_family != AF_LINK)
1135 			continue;
1136 		h = dc_crc_le(sc,
1137 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1138 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1139 	}
1140 
1141 	if (ifp->if_flags & IFF_BROADCAST) {
1142 		h = dc_crc_le(sc, ifp->if_broadcastaddr);
1143 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1144 	}
1145 
1146 	/* Set our MAC address */
1147 	sp[39] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
1148 	sp[40] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
1149 	sp[41] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
1150 
1151 	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1152 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1153 
1154 	/*
1155 	 * The PNIC takes an exceedingly long time to process its
1156 	 * setup frame; wait 10ms after posting the setup frame
1157 	 * before proceeding, just so it has time to swallow its
1158 	 * medicine.
1159 	 */
1160 	DELAY(10000);
1161 
1162 	ifp->if_timer = 5;
1163 }
1164 
1165 static void
1166 dc_setfilt_admtek(struct dc_softc *sc)
1167 {
1168 	struct ifnet *ifp;
1169 	struct ifmultiaddr *ifma;
1170 	int h = 0;
1171 	u_int32_t hashes[2] = { 0, 0 };
1172 
1173 	ifp = &sc->arpcom.ac_if;
1174 
1175 	/* Init our MAC address. */
1176 	CSR_WRITE_4(sc, DC_AL_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1177 	CSR_WRITE_4(sc, DC_AL_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1178 
1179 	/* If we want promiscuous mode, set the allframes bit. */
1180 	if (ifp->if_flags & IFF_PROMISC)
1181 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1182 	else
1183 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1184 
1185 	if (ifp->if_flags & IFF_ALLMULTI)
1186 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1187 	else
1188 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1189 
1190 	/* First, zot all the existing hash bits. */
1191 	CSR_WRITE_4(sc, DC_AL_MAR0, 0);
1192 	CSR_WRITE_4(sc, DC_AL_MAR1, 0);
1193 
1194 	/*
1195 	 * If we're already in promisc or allmulti mode, we
1196 	 * don't have to bother programming the multicast filter.
1197 	 */
1198 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
1199 		return;
1200 
1201 	/* Now program new ones. */
1202 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1203 		if (ifma->ifma_addr->sa_family != AF_LINK)
1204 			continue;
1205 		if (DC_IS_CENTAUR(sc))
1206 			h = dc_crc_le(sc, LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1207 		else
1208 			h = dc_crc_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1209 		if (h < 32)
1210 			hashes[0] |= (1 << h);
1211 		else
1212 			hashes[1] |= (1 << (h - 32));
1213 	}
1214 
1215 	CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]);
1216 	CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]);
1217 }
1218 
1219 static void
1220 dc_setfilt_asix(struct dc_softc *sc)
1221 {
1222 	struct ifnet *ifp;
1223 	struct ifmultiaddr *ifma;
1224 	int h = 0;
1225 	u_int32_t hashes[2] = { 0, 0 };
1226 
1227 	ifp = &sc->arpcom.ac_if;
1228 
1229 	/* Init our MAC address */
1230 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
1231 	CSR_WRITE_4(sc, DC_AX_FILTDATA,
1232 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1233 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
1234 	CSR_WRITE_4(sc, DC_AX_FILTDATA,
1235 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1236 
1237 	/* If we want promiscuous mode, set the allframes bit. */
1238 	if (ifp->if_flags & IFF_PROMISC)
1239 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1240 	else
1241 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1242 
1243 	if (ifp->if_flags & IFF_ALLMULTI)
1244 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1245 	else
1246 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1247 
1248 	/*
1249 	 * The ASIX chip has a special bit to enable reception
1250 	 * of broadcast frames.
1251 	 */
1252 	if (ifp->if_flags & IFF_BROADCAST)
1253 		DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1254 	else
1255 		DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1256 
1257 	/* first, zot all the existing hash bits */
1258 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1259 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1260 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1261 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1262 
1263 	/*
1264 	 * If we're already in promisc or allmulti mode, we
1265 	 * don't have to bother programming the multicast filter.
1266 	 */
1267 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
1268 		return;
1269 
1270 	/* now program new ones */
1271 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1272 		if (ifma->ifma_addr->sa_family != AF_LINK)
1273 			continue;
1274 		h = dc_crc_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1275 		if (h < 32)
1276 			hashes[0] |= (1 << h);
1277 		else
1278 			hashes[1] |= (1 << (h - 32));
1279 	}
1280 
1281 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1282 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
1283 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1284 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
1285 }
1286 
1287 static void
1288 dc_setfilt_xircom(struct dc_softc *sc)
1289 {
1290 	struct ifnet *ifp;
1291 	struct ifmultiaddr *ifma;
1292 	struct dc_desc *sframe;
1293 	u_int32_t h, *sp;
1294 	int i;
1295 
1296 	ifp = &sc->arpcom.ac_if;
1297 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1298 
1299 	i = sc->dc_cdata.dc_tx_prod;
1300 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1301 	sc->dc_cdata.dc_tx_cnt++;
1302 	sframe = &sc->dc_ldata->dc_tx_list[i];
1303 	sp = sc->dc_cdata.dc_sbuf;
1304 	bzero(sp, DC_SFRAME_LEN);
1305 
1306 	sframe->dc_data = htole32(sc->dc_saddr);
1307 	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
1308 	    DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
1309 
1310 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
1311 
1312 	/* If we want promiscuous mode, set the allframes bit. */
1313 	if (ifp->if_flags & IFF_PROMISC)
1314 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1315 	else
1316 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1317 
1318 	if (ifp->if_flags & IFF_ALLMULTI)
1319 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1320 	else
1321 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1322 
1323 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1324 		if (ifma->ifma_addr->sa_family != AF_LINK)
1325 			continue;
1326 		h = dc_crc_le(sc,
1327 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1328 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1329 	}
1330 
1331 	if (ifp->if_flags & IFF_BROADCAST) {
1332 		h = dc_crc_le(sc, ifp->if_broadcastaddr);
1333 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1334 	}
1335 
1336 	/* Set our MAC address */
1337 	sp[0] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
1338 	sp[1] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
1339 	sp[2] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
1340 
1341 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
1342 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
1343 	ifp->if_flags |= IFF_RUNNING;
1344 	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1345 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1346 
1347 	/*
1348 	 * Wait some time...
1349 	 */
1350 	DELAY(1000);
1351 
1352 	ifp->if_timer = 5;
1353 }
1354 
1355 static void
1356 dc_setfilt(struct dc_softc *sc)
1357 {
1358 
1359 	if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
1360 	    DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc))
1361 		dc_setfilt_21143(sc);
1362 
1363 	if (DC_IS_ASIX(sc))
1364 		dc_setfilt_asix(sc);
1365 
1366 	if (DC_IS_ADMTEK(sc))
1367 		dc_setfilt_admtek(sc);
1368 
1369 	if (DC_IS_XIRCOM(sc))
1370 		dc_setfilt_xircom(sc);
1371 }
1372 
1373 /*
1374  * In order to fiddle with the 'full-duplex' and '100Mbps' bits in
1375  * the netconfig register, we first have to put the transmit and/or
1376  * receive logic in the idle state.
1377  */
1378 static void
1379 dc_setcfg(struct dc_softc *sc, int media)
1380 {
1381 	int i, restart = 0, watchdogreg;
1382 	u_int32_t isr;
1383 
1384 	if (IFM_SUBTYPE(media) == IFM_NONE)
1385 		return;
1386 
1387 	if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON)) {
1388 		restart = 1;
1389 		DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1390 
1391 		for (i = 0; i < DC_TIMEOUT; i++) {
1392 			isr = CSR_READ_4(sc, DC_ISR);
1393 			if (isr & DC_ISR_TX_IDLE &&
1394 			    ((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
1395 			    (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT))
1396 				break;
1397 			DELAY(10);
1398 		}
1399 
1400 		if (i == DC_TIMEOUT)
1401 			printf("dc%d: failed to force tx and "
1402 				"rx to idle state\n", sc->dc_unit);
1403 	}
1404 
1405 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
1406 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1407 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1408 		if (sc->dc_pmode == DC_PMODE_MII) {
1409 			if (DC_IS_INTEL(sc)) {
1410 			/* There's a write enable bit here that reads as 1. */
1411 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1412 				watchdogreg &= ~DC_WDOG_CTLWREN;
1413 				watchdogreg |= DC_WDOG_JABBERDIS;
1414 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1415 			} else {
1416 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1417 			}
1418 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1419 			    DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
1420 			if (sc->dc_type == DC_TYPE_98713)
1421 				DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1422 				    DC_NETCFG_SCRAMBLER));
1423 			if (!DC_IS_DAVICOM(sc))
1424 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1425 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1426 			if (DC_IS_INTEL(sc))
1427 				dc_apply_fixup(sc, IFM_AUTO);
1428 		} else {
1429 			if (DC_IS_PNIC(sc)) {
1430 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
1431 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1432 				DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1433 			}
1434 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1435 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1436 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1437 			if (DC_IS_INTEL(sc))
1438 				dc_apply_fixup(sc,
1439 				    (media & IFM_GMASK) == IFM_FDX ?
1440 				    IFM_100_TX | IFM_FDX : IFM_100_TX);
1441 		}
1442 	}
1443 
1444 	if (IFM_SUBTYPE(media) == IFM_10_T) {
1445 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1446 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1447 		if (sc->dc_pmode == DC_PMODE_MII) {
1448 			/* There's a write enable bit here that reads as 1. */
1449 			if (DC_IS_INTEL(sc)) {
1450 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1451 				watchdogreg &= ~DC_WDOG_CTLWREN;
1452 				watchdogreg |= DC_WDOG_JABBERDIS;
1453 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1454 			} else {
1455 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1456 			}
1457 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1458 			    DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
1459 			if (sc->dc_type == DC_TYPE_98713)
1460 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1461 			if (!DC_IS_DAVICOM(sc))
1462 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1463 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1464 			if (DC_IS_INTEL(sc))
1465 				dc_apply_fixup(sc, IFM_AUTO);
1466 		} else {
1467 			if (DC_IS_PNIC(sc)) {
1468 				DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
1469 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1470 				DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1471 			}
1472 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1473 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1474 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1475 			if (DC_IS_INTEL(sc)) {
1476 				DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET);
1477 				DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1478 				if ((media & IFM_GMASK) == IFM_FDX)
1479 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D);
1480 				else
1481 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F);
1482 				DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1483 				DC_CLRBIT(sc, DC_10BTCTRL,
1484 				    DC_TCTL_AUTONEGENBL);
1485 				dc_apply_fixup(sc,
1486 				    (media & IFM_GMASK) == IFM_FDX ?
1487 				    IFM_10_T | IFM_FDX : IFM_10_T);
1488 				DELAY(20000);
1489 			}
1490 		}
1491 	}
1492 
1493 	/*
1494 	 * If this is a Davicom DM9102A card with a DM9801 HomePNA
1495 	 * PHY and we want HomePNA mode, set the portsel bit to turn
1496 	 * on the external MII port.
1497 	 */
1498 	if (DC_IS_DAVICOM(sc)) {
1499 		if (IFM_SUBTYPE(media) == IFM_HPNA_1) {
1500 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1501 			sc->dc_link = 1;
1502 		} else {
1503 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1504 		}
1505 	}
1506 
1507 	if ((media & IFM_GMASK) == IFM_FDX) {
1508 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1509 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1510 			DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1511 	} else {
1512 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1513 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1514 			DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1515 	}
1516 
1517 	if (restart)
1518 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON | DC_NETCFG_RX_ON);
1519 }
1520 
1521 static void
1522 dc_reset(struct dc_softc *sc)
1523 {
1524 	int i;
1525 
1526 	DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1527 
1528 	for (i = 0; i < DC_TIMEOUT; i++) {
1529 		DELAY(10);
1530 		if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
1531 			break;
1532 	}
1533 
1534 	if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_CONEXANT(sc) ||
1535 	    DC_IS_XIRCOM(sc) || DC_IS_INTEL(sc)) {
1536 		DELAY(10000);
1537 		DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1538 		i = 0;
1539 	}
1540 
1541 	if (i == DC_TIMEOUT)
1542 		printf("dc%d: reset never completed!\n", sc->dc_unit);
1543 
1544 	/* Wait a little while for the chip to get its brains in order. */
1545 	DELAY(1000);
1546 
1547 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
1548 	CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
1549 	CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
1550 
1551 	/*
1552 	 * Bring the SIA out of reset. In some cases, it looks
1553 	 * like failing to unreset the SIA soon enough gets it
1554 	 * into a state where it will never come out of reset
1555 	 * until we reset the whole chip again.
1556 	 */
1557 	if (DC_IS_INTEL(sc)) {
1558 		DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1559 		CSR_WRITE_4(sc, DC_10BTCTRL, 0);
1560 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
1561 	}
1562 }
1563 
1564 static struct dc_type *
1565 dc_devtype(device_t dev)
1566 {
1567 	struct dc_type *t;
1568 	u_int32_t rev;
1569 
1570 	t = dc_devs;
1571 
1572 	while (t->dc_name != NULL) {
1573 		if ((pci_get_vendor(dev) == t->dc_vid) &&
1574 		    (pci_get_device(dev) == t->dc_did)) {
1575 			/* Check the PCI revision */
1576 			rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF;
1577 			if (t->dc_did == DC_DEVICEID_98713 &&
1578 			    rev >= DC_REVISION_98713A)
1579 				t++;
1580 			if (t->dc_did == DC_DEVICEID_98713_CP &&
1581 			    rev >= DC_REVISION_98713A)
1582 				t++;
1583 			if (t->dc_did == DC_DEVICEID_987x5 &&
1584 			    rev >= DC_REVISION_98715AEC_C)
1585 				t++;
1586 			if (t->dc_did == DC_DEVICEID_987x5 &&
1587 			    rev >= DC_REVISION_98725)
1588 				t++;
1589 			if (t->dc_did == DC_DEVICEID_AX88140A &&
1590 			    rev >= DC_REVISION_88141)
1591 				t++;
1592 			if (t->dc_did == DC_DEVICEID_82C168 &&
1593 			    rev >= DC_REVISION_82C169)
1594 				t++;
1595 			if (t->dc_did == DC_DEVICEID_DM9102 &&
1596 			    rev >= DC_REVISION_DM9102A)
1597 				t++;
1598 			/*
1599 			 * The Microsoft MN-130 has a device ID of 0x0002,
1600 			 * which happens to be the same as the PNIC 82c168.
1601 			 * To keep dc_attach() from getting confused, we
1602 			 * pretend its ID is something different.
1603 			 * XXX: ideally, dc_attach() should be checking
1604 			 * vendorid+deviceid together to avoid such
1605 			 * collisions.
1606 			 */
1607 			if (t->dc_vid == DC_VENDORID_MICROSOFT &&
1608 			    t->dc_did == DC_DEVICEID_MSMN130)
1609 				t++;
1610 			return (t);
1611 		}
1612 		t++;
1613 	}
1614 
1615 	return (NULL);
1616 }
1617 
1618 /*
1619  * Probe for a 21143 or clone chip. Check the PCI vendor and device
1620  * IDs against our list and return a device name if we find a match.
1621  * We do a little bit of extra work to identify the exact type of
1622  * chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
1623  * but different revision IDs. The same is true for 98715/98715A
1624  * chips and the 98725, as well as the ASIX and ADMtek chips. In some
1625  * cases, the exact chip revision affects driver behavior.
1626  */
1627 static int
1628 dc_probe(device_t dev)
1629 {
1630 	struct dc_type *t;
1631 
1632 	t = dc_devtype(dev);
1633 
1634 	if (t != NULL) {
1635 		device_set_desc(dev, t->dc_name);
1636 		return (0);
1637 	}
1638 
1639 	return (ENXIO);
1640 }
1641 
1642 #ifndef BURN_BRIDGES
1643 static void
1644 dc_acpi(device_t dev)
1645 {
1646 	int unit;
1647 	u_int32_t iobase, membase, irq;
1648 
1649 	unit = device_get_unit(dev);
1650 
1651 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1652 		/* Save important PCI config data. */
1653 		iobase = pci_read_config(dev, DC_PCI_CFBIO, 4);
1654 		membase = pci_read_config(dev, DC_PCI_CFBMA, 4);
1655 		irq = pci_read_config(dev, DC_PCI_CFIT, 4);
1656 
1657 		/* Reset the power state. */
1658 		printf("dc%d: chip is in D%d power mode "
1659 		    "-- setting to D0\n", unit,
1660 		    pci_get_powerstate(dev));
1661 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1662 
1663 		/* Restore PCI config data. */
1664 		pci_write_config(dev, DC_PCI_CFBIO, iobase, 4);
1665 		pci_write_config(dev, DC_PCI_CFBMA, membase, 4);
1666 		pci_write_config(dev, DC_PCI_CFIT, irq, 4);
1667 	}
1668 }
1669 #endif
1670 
1671 static void
1672 dc_apply_fixup(struct dc_softc *sc, int media)
1673 {
1674 	struct dc_mediainfo *m;
1675 	u_int8_t *p;
1676 	int i;
1677 	u_int32_t reg;
1678 
1679 	m = sc->dc_mi;
1680 
1681 	while (m != NULL) {
1682 		if (m->dc_media == media)
1683 			break;
1684 		m = m->dc_next;
1685 	}
1686 
1687 	if (m == NULL)
1688 		return;
1689 
1690 	for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) {
1691 		reg = (p[0] | (p[1] << 8)) << 16;
1692 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1693 	}
1694 
1695 	for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) {
1696 		reg = (p[0] | (p[1] << 8)) << 16;
1697 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1698 	}
1699 }
1700 
1701 static void
1702 dc_decode_leaf_sia(struct dc_softc *sc, struct dc_eblock_sia *l)
1703 {
1704 	struct dc_mediainfo *m;
1705 
1706 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1707 	switch (l->dc_sia_code & ~DC_SIA_CODE_EXT) {
1708 	case DC_SIA_CODE_10BT:
1709 		m->dc_media = IFM_10_T;
1710 		break;
1711 	case DC_SIA_CODE_10BT_FDX:
1712 		m->dc_media = IFM_10_T | IFM_FDX;
1713 		break;
1714 	case DC_SIA_CODE_10B2:
1715 		m->dc_media = IFM_10_2;
1716 		break;
1717 	case DC_SIA_CODE_10B5:
1718 		m->dc_media = IFM_10_5;
1719 		break;
1720 	default:
1721 		break;
1722 	}
1723 
1724 	/*
1725 	 * We need to ignore CSR13, CSR14, CSR15 for SIA mode.
1726 	 * Things apparently already work for cards that do
1727 	 * supply Media Specific Data.
1728 	 */
1729 	if (l->dc_sia_code & DC_SIA_CODE_EXT) {
1730 		m->dc_gp_len = 2;
1731 		m->dc_gp_ptr =
1732 		(u_int8_t *)&l->dc_un.dc_sia_ext.dc_sia_gpio_ctl;
1733 	} else {
1734 		m->dc_gp_len = 2;
1735 		m->dc_gp_ptr =
1736 		(u_int8_t *)&l->dc_un.dc_sia_noext.dc_sia_gpio_ctl;
1737 	}
1738 
1739 	m->dc_next = sc->dc_mi;
1740 	sc->dc_mi = m;
1741 
1742 	sc->dc_pmode = DC_PMODE_SIA;
1743 }
1744 
1745 static void
1746 dc_decode_leaf_sym(struct dc_softc *sc, struct dc_eblock_sym *l)
1747 {
1748 	struct dc_mediainfo *m;
1749 
1750 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1751 	if (l->dc_sym_code == DC_SYM_CODE_100BT)
1752 		m->dc_media = IFM_100_TX;
1753 
1754 	if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX)
1755 		m->dc_media = IFM_100_TX | IFM_FDX;
1756 
1757 	m->dc_gp_len = 2;
1758 	m->dc_gp_ptr = (u_int8_t *)&l->dc_sym_gpio_ctl;
1759 
1760 	m->dc_next = sc->dc_mi;
1761 	sc->dc_mi = m;
1762 
1763 	sc->dc_pmode = DC_PMODE_SYM;
1764 }
1765 
1766 static void
1767 dc_decode_leaf_mii(struct dc_softc *sc, struct dc_eblock_mii *l)
1768 {
1769 	struct dc_mediainfo *m;
1770 	u_int8_t *p;
1771 
1772 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1773 	/* We abuse IFM_AUTO to represent MII. */
1774 	m->dc_media = IFM_AUTO;
1775 	m->dc_gp_len = l->dc_gpr_len;
1776 
1777 	p = (u_int8_t *)l;
1778 	p += sizeof(struct dc_eblock_mii);
1779 	m->dc_gp_ptr = p;
1780 	p += 2 * l->dc_gpr_len;
1781 	m->dc_reset_len = *p;
1782 	p++;
1783 	m->dc_reset_ptr = p;
1784 
1785 	m->dc_next = sc->dc_mi;
1786 	sc->dc_mi = m;
1787 }
1788 
1789 static void
1790 dc_read_srom(struct dc_softc *sc, int bits)
1791 {
1792 	int size;
1793 
1794 	size = 2 << bits;
1795 	sc->dc_srom = malloc(size, M_DEVBUF, M_NOWAIT);
1796 	dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (size / 2), 0);
1797 }
1798 
1799 static void
1800 dc_parse_21143_srom(struct dc_softc *sc)
1801 {
1802 	struct dc_leaf_hdr *lhdr;
1803 	struct dc_eblock_hdr *hdr;
1804 	int have_mii, i, loff;
1805 	char *ptr;
1806 
1807 	have_mii = 0;
1808 	loff = sc->dc_srom[27];
1809 	lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]);
1810 
1811 	ptr = (char *)lhdr;
1812 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1813 	/*
1814 	 * Look if we got a MII media block.
1815 	 */
1816 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1817 		hdr = (struct dc_eblock_hdr *)ptr;
1818 		if (hdr->dc_type == DC_EBLOCK_MII)
1819 		    have_mii++;
1820 
1821 		ptr += (hdr->dc_len & 0x7F);
1822 		ptr++;
1823 	}
1824 
1825 	/*
1826 	 * Do the same thing again. Only use SIA and SYM media
1827 	 * blocks if no MII media block is available.
1828 	 */
1829 	ptr = (char *)lhdr;
1830 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1831 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1832 		hdr = (struct dc_eblock_hdr *)ptr;
1833 		switch (hdr->dc_type) {
1834 		case DC_EBLOCK_MII:
1835 			dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr);
1836 			break;
1837 		case DC_EBLOCK_SIA:
1838 			if (! have_mii)
1839 				dc_decode_leaf_sia(sc,
1840 				    (struct dc_eblock_sia *)hdr);
1841 			break;
1842 		case DC_EBLOCK_SYM:
1843 			if (! have_mii)
1844 				dc_decode_leaf_sym(sc,
1845 				    (struct dc_eblock_sym *)hdr);
1846 			break;
1847 		default:
1848 			/* Don't care. Yet. */
1849 			break;
1850 		}
1851 		ptr += (hdr->dc_len & 0x7F);
1852 		ptr++;
1853 	}
1854 }
1855 
1856 static void
1857 dc_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1858 {
1859 	u_int32_t *paddr;
1860 
1861 	KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
1862 	paddr = arg;
1863 	*paddr = segs->ds_addr;
1864 }
1865 
1866 /*
1867  * Attach the interface. Allocate softc structures, do ifmedia
1868  * setup and ethernet/BPF attach.
1869  */
1870 static int
1871 dc_attach(device_t dev)
1872 {
1873 	int tmp = 0;
1874 	u_char eaddr[ETHER_ADDR_LEN];
1875 	u_int32_t command;
1876 	struct dc_softc *sc;
1877 	struct ifnet *ifp;
1878 	u_int32_t revision;
1879 	int unit, error = 0, rid, mac_offset;
1880 	int i;
1881 	u_int8_t *mac;
1882 
1883 	sc = device_get_softc(dev);
1884 	unit = device_get_unit(dev);
1885 
1886 	mtx_init(&sc->dc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1887 	    MTX_DEF | MTX_RECURSE);
1888 #ifndef BURN_BRIDGES
1889 	/*
1890 	 * Handle power management nonsense.
1891 	 */
1892 	dc_acpi(dev);
1893 #endif
1894 	/*
1895 	 * Map control/status registers.
1896 	 */
1897 	pci_enable_busmaster(dev);
1898 
1899 	rid = DC_RID;
1900 	sc->dc_res = bus_alloc_resource(dev, DC_RES, &rid,
1901 	    0, ~0, 1, RF_ACTIVE);
1902 
1903 	if (sc->dc_res == NULL) {
1904 		printf("dc%d: couldn't map ports/memory\n", unit);
1905 		error = ENXIO;
1906 		goto fail;
1907 	}
1908 
1909 	sc->dc_btag = rman_get_bustag(sc->dc_res);
1910 	sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
1911 
1912 	/* Allocate interrupt. */
1913 	rid = 0;
1914 	sc->dc_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1915 	    RF_SHAREABLE | RF_ACTIVE);
1916 
1917 	if (sc->dc_irq == NULL) {
1918 		printf("dc%d: couldn't map interrupt\n", unit);
1919 		error = ENXIO;
1920 		goto fail;
1921 	}
1922 
1923 	/* Need this info to decide on a chip type. */
1924 	sc->dc_info = dc_devtype(dev);
1925 	revision = pci_read_config(dev, DC_PCI_CFRV, 4) & 0x000000FF;
1926 
1927 	/* Get the eeprom width, but PNIC and XIRCOM have diff eeprom */
1928 	if (sc->dc_info->dc_did != DC_DEVICEID_82C168 &&
1929 	   sc->dc_info->dc_did != DC_DEVICEID_X3201)
1930 		dc_eeprom_width(sc);
1931 
1932 	switch (sc->dc_info->dc_did) {
1933 	case DC_DEVICEID_21143:
1934 		sc->dc_type = DC_TYPE_21143;
1935 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1936 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1937 		/* Save EEPROM contents so we can parse them later. */
1938 		dc_read_srom(sc, sc->dc_romwidth);
1939 		break;
1940 	case DC_DEVICEID_DM9009:
1941 	case DC_DEVICEID_DM9100:
1942 	case DC_DEVICEID_DM9102:
1943 		sc->dc_type = DC_TYPE_DM9102;
1944 		sc->dc_flags |= DC_TX_COALESCE | DC_TX_INTR_ALWAYS;
1945 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_TX_STORENFWD;
1946 		sc->dc_flags |= DC_TX_ALIGN;
1947 		sc->dc_pmode = DC_PMODE_MII;
1948 		/* Increase the latency timer value. */
1949 		command = pci_read_config(dev, DC_PCI_CFLT, 4);
1950 		command &= 0xFFFF00FF;
1951 		command |= 0x00008000;
1952 		pci_write_config(dev, DC_PCI_CFLT, command, 4);
1953 		break;
1954 	case DC_DEVICEID_AL981:
1955 		sc->dc_type = DC_TYPE_AL981;
1956 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1957 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1958 		sc->dc_pmode = DC_PMODE_MII;
1959 		dc_read_srom(sc, sc->dc_romwidth);
1960 		break;
1961 	case DC_DEVICEID_AN985:
1962 	case DC_DEVICEID_ADM9511:
1963 	case DC_DEVICEID_ADM9513:
1964 	case DC_DEVICEID_FA511:
1965 	case DC_DEVICEID_FE2500:
1966 	case DC_DEVICEID_EN2242:
1967 	case DC_DEVICEID_HAWKING_PN672TX:
1968 	case DC_DEVICEID_3CSOHOB:
1969 	case DC_DEVICEID_MSMN120:
1970 	case DC_DEVICEID_MSMN130_FAKE: /* XXX avoid collision with PNIC*/
1971 		sc->dc_type = DC_TYPE_AN985;
1972 		sc->dc_flags |= DC_64BIT_HASH;
1973 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1974 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1975 		sc->dc_pmode = DC_PMODE_MII;
1976 		/* Don't read SROM for - auto-loaded on reset */
1977 		break;
1978 	case DC_DEVICEID_98713:
1979 	case DC_DEVICEID_98713_CP:
1980 		if (revision < DC_REVISION_98713A) {
1981 			sc->dc_type = DC_TYPE_98713;
1982 		}
1983 		if (revision >= DC_REVISION_98713A) {
1984 			sc->dc_type = DC_TYPE_98713A;
1985 			sc->dc_flags |= DC_21143_NWAY;
1986 		}
1987 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1988 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1989 		break;
1990 	case DC_DEVICEID_987x5:
1991 	case DC_DEVICEID_EN1217:
1992 		/*
1993 		 * Macronix MX98715AEC-C/D/E parts have only a
1994 		 * 128-bit hash table. We need to deal with these
1995 		 * in the same manner as the PNIC II so that we
1996 		 * get the right number of bits out of the
1997 		 * CRC routine.
1998 		 */
1999 		if (revision >= DC_REVISION_98715AEC_C &&
2000 		    revision < DC_REVISION_98725)
2001 			sc->dc_flags |= DC_128BIT_HASH;
2002 		sc->dc_type = DC_TYPE_987x5;
2003 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
2004 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
2005 		break;
2006 	case DC_DEVICEID_98727:
2007 		sc->dc_type = DC_TYPE_987x5;
2008 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
2009 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
2010 		break;
2011 	case DC_DEVICEID_82C115:
2012 		sc->dc_type = DC_TYPE_PNICII;
2013 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR | DC_128BIT_HASH;
2014 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
2015 		break;
2016 	case DC_DEVICEID_82C168:
2017 		sc->dc_type = DC_TYPE_PNIC;
2018 		sc->dc_flags |= DC_TX_STORENFWD | DC_TX_INTR_ALWAYS;
2019 		sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
2020 		sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_NOWAIT);
2021 		if (revision < DC_REVISION_82C169)
2022 			sc->dc_pmode = DC_PMODE_SYM;
2023 		break;
2024 	case DC_DEVICEID_AX88140A:
2025 		sc->dc_type = DC_TYPE_ASIX;
2026 		sc->dc_flags |= DC_TX_USE_TX_INTR | DC_TX_INTR_FIRSTFRAG;
2027 		sc->dc_flags |= DC_REDUCED_MII_POLL;
2028 		sc->dc_pmode = DC_PMODE_MII;
2029 		break;
2030 	case DC_DEVICEID_X3201:
2031 		sc->dc_type = DC_TYPE_XIRCOM;
2032 		sc->dc_flags |= DC_TX_INTR_ALWAYS | DC_TX_COALESCE |
2033 				DC_TX_ALIGN;
2034 		/*
2035 		 * We don't actually need to coalesce, but we're doing
2036 		 * it to obtain a double word aligned buffer.
2037 		 * The DC_TX_COALESCE flag is required.
2038 		 */
2039 		sc->dc_pmode = DC_PMODE_MII;
2040 		break;
2041 	case DC_DEVICEID_RS7112:
2042 		sc->dc_type = DC_TYPE_CONEXANT;
2043 		sc->dc_flags |= DC_TX_INTR_ALWAYS;
2044 		sc->dc_flags |= DC_REDUCED_MII_POLL;
2045 		sc->dc_pmode = DC_PMODE_MII;
2046 		dc_read_srom(sc, sc->dc_romwidth);
2047 		break;
2048 	default:
2049 		printf("dc%d: unknown device: %x\n", sc->dc_unit,
2050 		    sc->dc_info->dc_did);
2051 		break;
2052 	}
2053 
2054 	/* Save the cache line size. */
2055 	if (DC_IS_DAVICOM(sc))
2056 		sc->dc_cachesize = 0;
2057 	else
2058 		sc->dc_cachesize = pci_read_config(dev,
2059 		    DC_PCI_CFLT, 4) & 0xFF;
2060 
2061 	/* Reset the adapter. */
2062 	dc_reset(sc);
2063 
2064 	/* Take 21143 out of snooze mode */
2065 	if (DC_IS_INTEL(sc) || DC_IS_XIRCOM(sc)) {
2066 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
2067 		command &= ~(DC_CFDD_SNOOZE_MODE | DC_CFDD_SLEEP_MODE);
2068 		pci_write_config(dev, DC_PCI_CFDD, command, 4);
2069 	}
2070 
2071 	/*
2072 	 * Try to learn something about the supported media.
2073 	 * We know that ASIX and ADMtek and Davicom devices
2074 	 * will *always* be using MII media, so that's a no-brainer.
2075 	 * The tricky ones are the Macronix/PNIC II and the
2076 	 * Intel 21143.
2077 	 */
2078 	if (DC_IS_INTEL(sc))
2079 		dc_parse_21143_srom(sc);
2080 	else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
2081 		if (sc->dc_type == DC_TYPE_98713)
2082 			sc->dc_pmode = DC_PMODE_MII;
2083 		else
2084 			sc->dc_pmode = DC_PMODE_SYM;
2085 	} else if (!sc->dc_pmode)
2086 		sc->dc_pmode = DC_PMODE_MII;
2087 
2088 	/*
2089 	 * Get station address from the EEPROM.
2090 	 */
2091 	switch(sc->dc_type) {
2092 	case DC_TYPE_98713:
2093 	case DC_TYPE_98713A:
2094 	case DC_TYPE_987x5:
2095 	case DC_TYPE_PNICII:
2096 		dc_read_eeprom(sc, (caddr_t)&mac_offset,
2097 		    (DC_EE_NODEADDR_OFFSET / 2), 1, 0);
2098 		dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
2099 		break;
2100 	case DC_TYPE_PNIC:
2101 		dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
2102 		break;
2103 	case DC_TYPE_DM9102:
2104 	case DC_TYPE_21143:
2105 	case DC_TYPE_ASIX:
2106 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2107 		break;
2108 	case DC_TYPE_AL981:
2109 	case DC_TYPE_AN985:
2110 		*(u_int32_t *)(&eaddr[0]) = CSR_READ_4(sc, DC_AL_PAR0);
2111 		*(u_int16_t *)(&eaddr[4]) = CSR_READ_4(sc, DC_AL_PAR1);
2112 		break;
2113 	case DC_TYPE_CONEXANT:
2114 		bcopy(sc->dc_srom + DC_CONEXANT_EE_NODEADDR, &eaddr,
2115 		    ETHER_ADDR_LEN);
2116 		break;
2117 	case DC_TYPE_XIRCOM:
2118 		/* The MAC comes from the CIS. */
2119 		mac = pci_get_ether(dev);
2120 		if (!mac) {
2121 			device_printf(dev, "No station address in CIS!\n");
2122 			error = ENXIO;
2123 			goto fail;
2124 		}
2125 		bcopy(mac, eaddr, ETHER_ADDR_LEN);
2126 		break;
2127 	default:
2128 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2129 		break;
2130 	}
2131 
2132 	/*
2133 	 * A 21143 or clone chip was detected. Inform the world.
2134 	 */
2135 	printf("dc%d: Ethernet address: %6D\n", unit, eaddr, ":");
2136 
2137 	sc->dc_unit = unit;
2138 	bcopy(eaddr, &sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
2139 
2140 	/* Allocate a busdma tag and DMA safe memory for TX/RX descriptors. */
2141 	error = bus_dma_tag_create(NULL, PAGE_SIZE, 0, BUS_SPACE_MAXADDR_32BIT,
2142 	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct dc_list_data), 1,
2143 	    sizeof(struct dc_list_data), 0, NULL, NULL, &sc->dc_ltag);
2144 	if (error) {
2145 		printf("dc%d: failed to allocate busdma tag\n", unit);
2146 		error = ENXIO;
2147 		goto fail;
2148 	}
2149 	error = bus_dmamem_alloc(sc->dc_ltag, (void **)&sc->dc_ldata,
2150 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->dc_lmap);
2151 	if (error) {
2152 		printf("dc%d: failed to allocate DMA safe memory\n", unit);
2153 		error = ENXIO;
2154 		goto fail;
2155 	}
2156 	error = bus_dmamap_load(sc->dc_ltag, sc->dc_lmap, sc->dc_ldata,
2157 	    sizeof(struct dc_list_data), dc_dma_map_addr, &sc->dc_laddr,
2158 	    BUS_DMA_NOWAIT);
2159 	if (error) {
2160 		printf("dc%d: cannot get address of the descriptors\n", unit);
2161 		error = ENXIO;
2162 		goto fail;
2163 	}
2164 
2165 	/*
2166 	 * Allocate a busdma tag and DMA safe memory for the multicast
2167 	 * setup frame.
2168 	 */
2169 	error = bus_dma_tag_create(NULL, PAGE_SIZE, 0, BUS_SPACE_MAXADDR_32BIT,
2170 	    BUS_SPACE_MAXADDR, NULL, NULL, DC_SFRAME_LEN + DC_MIN_FRAMELEN, 1,
2171 	    DC_SFRAME_LEN + DC_MIN_FRAMELEN, 0, NULL, NULL, &sc->dc_stag);
2172 	if (error) {
2173 		printf("dc%d: failed to allocate busdma tag\n", unit);
2174 		error = ENXIO;
2175 		goto fail;
2176 	}
2177 	error = bus_dmamem_alloc(sc->dc_stag, (void **)&sc->dc_cdata.dc_sbuf,
2178 	    BUS_DMA_NOWAIT, &sc->dc_smap);
2179 	if (error) {
2180 		printf("dc%d: failed to allocate DMA safe memory\n", unit);
2181 		error = ENXIO;
2182 		goto fail;
2183 	}
2184 	error = bus_dmamap_load(sc->dc_stag, sc->dc_smap, sc->dc_cdata.dc_sbuf,
2185 	    DC_SFRAME_LEN, dc_dma_map_addr, &sc->dc_saddr, BUS_DMA_NOWAIT);
2186 	if (error) {
2187 		printf("dc%d: cannot get address of the descriptors\n", unit);
2188 		error = ENXIO;
2189 		goto fail;
2190 	}
2191 
2192 	/* Allocate a busdma tag for mbufs. */
2193 	error = bus_dma_tag_create(NULL, PAGE_SIZE, 0, BUS_SPACE_MAXADDR_32BIT,
2194 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * DC_TX_LIST_CNT,
2195 	    DC_TX_LIST_CNT, MCLBYTES, 0, NULL, NULL, &sc->dc_mtag);
2196 	if (error) {
2197 		printf("dc%d: failed to allocate busdma tag\n", unit);
2198 		error = ENXIO;
2199 		goto fail;
2200 	}
2201 
2202 	/* Create the TX/RX busdma maps. */
2203 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2204 		error = bus_dmamap_create(sc->dc_mtag, 0,
2205 		    &sc->dc_cdata.dc_tx_map[i]);
2206 		if (error) {
2207 			printf("dc%d: failed to init TX ring\n", unit);
2208 			error = ENXIO;
2209 			goto fail;
2210 		}
2211 	}
2212 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2213 		error = bus_dmamap_create(sc->dc_mtag, 0,
2214 		    &sc->dc_cdata.dc_rx_map[i]);
2215 		if (error) {
2216 			printf("dc%d: failed to init RX ring\n", unit);
2217 			error = ENXIO;
2218 			goto fail;
2219 		}
2220 	}
2221 	error = bus_dmamap_create(sc->dc_mtag, 0, &sc->dc_sparemap);
2222 	if (error) {
2223 		printf("dc%d: failed to init RX ring\n", unit);
2224 		error = ENXIO;
2225 		goto fail;
2226 	}
2227 
2228 	ifp = &sc->arpcom.ac_if;
2229 	ifp->if_softc = sc;
2230 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2231 	/* XXX: bleah, MTU gets overwritten in ether_ifattach() */
2232 	ifp->if_mtu = ETHERMTU;
2233 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2234 	ifp->if_ioctl = dc_ioctl;
2235 	ifp->if_start = dc_start;
2236 	ifp->if_watchdog = dc_watchdog;
2237 	ifp->if_init = dc_init;
2238 	ifp->if_baudrate = 10000000;
2239 	ifp->if_snd.ifq_maxlen = DC_TX_LIST_CNT - 1;
2240 
2241 	/*
2242 	 * Do MII setup. If this is a 21143, check for a PHY on the
2243 	 * MII bus after applying any necessary fixups to twiddle the
2244 	 * GPIO bits. If we don't end up finding a PHY, restore the
2245 	 * old selection (SIA only or SIA/SYM) and attach the dcphy
2246 	 * driver instead.
2247 	 */
2248 	if (DC_IS_INTEL(sc)) {
2249 		dc_apply_fixup(sc, IFM_AUTO);
2250 		tmp = sc->dc_pmode;
2251 		sc->dc_pmode = DC_PMODE_MII;
2252 	}
2253 
2254 	error = mii_phy_probe(dev, &sc->dc_miibus,
2255 	    dc_ifmedia_upd, dc_ifmedia_sts);
2256 
2257 	if (error && DC_IS_INTEL(sc)) {
2258 		sc->dc_pmode = tmp;
2259 		if (sc->dc_pmode != DC_PMODE_SIA)
2260 			sc->dc_pmode = DC_PMODE_SYM;
2261 		sc->dc_flags |= DC_21143_NWAY;
2262 		mii_phy_probe(dev, &sc->dc_miibus,
2263 		    dc_ifmedia_upd, dc_ifmedia_sts);
2264 		/*
2265 		 * For non-MII cards, we need to have the 21143
2266 		 * drive the LEDs. Except there are some systems
2267 		 * like the NEC VersaPro NoteBook PC which have no
2268 		 * LEDs, and twiddling these bits has adverse effects
2269 		 * on them. (I.e. you suddenly can't get a link.)
2270 		 */
2271 		if (pci_read_config(dev, DC_PCI_CSID, 4) != 0x80281033)
2272 			sc->dc_flags |= DC_TULIP_LEDS;
2273 		error = 0;
2274 	}
2275 
2276 	if (error) {
2277 		printf("dc%d: MII without any PHY!\n", sc->dc_unit);
2278 		goto fail;
2279 	}
2280 
2281 	if (DC_IS_XIRCOM(sc)) {
2282 		/*
2283 		 * setup General Purpose Port mode and data so the tulip
2284 		 * can talk to the MII.
2285 		 */
2286 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
2287 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2288 		DELAY(10);
2289 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
2290 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2291 		DELAY(10);
2292 	}
2293 
2294 	if (DC_IS_ADMTEK(sc)) {
2295 		/*
2296 		 * Set automatic TX underrun recovery for the ADMtek chips
2297 		 */
2298 		DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR);
2299 	}
2300 
2301 	/*
2302 	 * Tell the upper layer(s) we support long frames.
2303 	 */
2304 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2305 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
2306 
2307 	callout_init(&sc->dc_stat_ch, IS_MPSAFE ? CALLOUT_MPSAFE : 0);
2308 
2309 #ifdef SRM_MEDIA
2310 	sc->dc_srm_media = 0;
2311 
2312 	/* Remember the SRM console media setting */
2313 	if (DC_IS_INTEL(sc)) {
2314 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
2315 		command &= ~(DC_CFDD_SNOOZE_MODE | DC_CFDD_SLEEP_MODE);
2316 		switch ((command >> 8) & 0xff) {
2317 		case 3:
2318 			sc->dc_srm_media = IFM_10_T;
2319 			break;
2320 		case 4:
2321 			sc->dc_srm_media = IFM_10_T | IFM_FDX;
2322 			break;
2323 		case 5:
2324 			sc->dc_srm_media = IFM_100_TX;
2325 			break;
2326 		case 6:
2327 			sc->dc_srm_media = IFM_100_TX | IFM_FDX;
2328 			break;
2329 		}
2330 		if (sc->dc_srm_media)
2331 			sc->dc_srm_media |= IFM_ACTIVE | IFM_ETHER;
2332 	}
2333 #endif
2334 
2335 	/*
2336 	 * Call MI attach routine.
2337 	 */
2338 	ether_ifattach(ifp, eaddr);
2339 
2340 	/* Hook interrupt last to avoid having to lock softc */
2341 	error = bus_setup_intr(dev, sc->dc_irq, INTR_TYPE_NET |
2342 	    (IS_MPSAFE ? INTR_MPSAFE : 0),
2343 	    dc_intr, sc, &sc->dc_intrhand);
2344 
2345 	if (error) {
2346 		printf("dc%d: couldn't set up irq\n", unit);
2347 		ether_ifdetach(ifp);
2348 		goto fail;
2349 	}
2350 
2351 fail:
2352 	if (error)
2353 		dc_detach(dev);
2354 	return (error);
2355 }
2356 
2357 /*
2358  * Shutdown hardware and free up resources. This can be called any
2359  * time after the mutex has been initialized. It is called in both
2360  * the error case in attach and the normal detach case so it needs
2361  * to be careful about only freeing resources that have actually been
2362  * allocated.
2363  */
2364 static int
2365 dc_detach(device_t dev)
2366 {
2367 	struct dc_softc *sc;
2368 	struct ifnet *ifp;
2369 	struct dc_mediainfo *m;
2370 	int i;
2371 
2372 	sc = device_get_softc(dev);
2373 	KASSERT(mtx_initialized(&sc->dc_mtx), ("dc mutex not initialized"));
2374 	DC_LOCK(sc);
2375 
2376 	ifp = &sc->arpcom.ac_if;
2377 
2378 	/* These should only be active if attach succeeded */
2379 	if (device_is_attached(dev)) {
2380 		dc_stop(sc);
2381 		ether_ifdetach(ifp);
2382 	}
2383 	if (sc->dc_miibus)
2384 		device_delete_child(dev, sc->dc_miibus);
2385 	bus_generic_detach(dev);
2386 
2387 	if (sc->dc_intrhand)
2388 		bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2389 	if (sc->dc_irq)
2390 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2391 	if (sc->dc_res)
2392 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2393 
2394 	if (sc->dc_cdata.dc_sbuf != NULL)
2395 		bus_dmamem_free(sc->dc_stag, sc->dc_cdata.dc_sbuf, sc->dc_smap);
2396 	if (sc->dc_ldata != NULL)
2397 		bus_dmamem_free(sc->dc_ltag, sc->dc_ldata, sc->dc_lmap);
2398 	for (i = 0; i < DC_TX_LIST_CNT; i++)
2399 		bus_dmamap_destroy(sc->dc_mtag, sc->dc_cdata.dc_tx_map[i]);
2400 	for (i = 0; i < DC_RX_LIST_CNT; i++)
2401 		bus_dmamap_destroy(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i]);
2402 	bus_dmamap_destroy(sc->dc_mtag, sc->dc_sparemap);
2403 	if (sc->dc_stag)
2404 		bus_dma_tag_destroy(sc->dc_stag);
2405 	if (sc->dc_mtag)
2406 		bus_dma_tag_destroy(sc->dc_mtag);
2407 	if (sc->dc_ltag)
2408 		bus_dma_tag_destroy(sc->dc_ltag);
2409 
2410 	free(sc->dc_pnic_rx_buf, M_DEVBUF);
2411 
2412 	while (sc->dc_mi != NULL) {
2413 		m = sc->dc_mi->dc_next;
2414 		free(sc->dc_mi, M_DEVBUF);
2415 		sc->dc_mi = m;
2416 	}
2417 	free(sc->dc_srom, M_DEVBUF);
2418 
2419 	DC_UNLOCK(sc);
2420 	mtx_destroy(&sc->dc_mtx);
2421 
2422 	return (0);
2423 }
2424 
2425 /*
2426  * Initialize the transmit descriptors.
2427  */
2428 static int
2429 dc_list_tx_init(struct dc_softc *sc)
2430 {
2431 	struct dc_chain_data *cd;
2432 	struct dc_list_data *ld;
2433 	int i, nexti;
2434 
2435 	cd = &sc->dc_cdata;
2436 	ld = sc->dc_ldata;
2437 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2438 		if (i == DC_TX_LIST_CNT - 1)
2439 			nexti = 0;
2440 		else
2441 			nexti = i + 1;
2442 		ld->dc_tx_list[i].dc_next = htole32(DC_TXDESC(sc, nexti));
2443 		cd->dc_tx_chain[i] = NULL;
2444 		ld->dc_tx_list[i].dc_data = 0;
2445 		ld->dc_tx_list[i].dc_ctl = 0;
2446 	}
2447 
2448 	cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
2449 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
2450 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2451 	return (0);
2452 }
2453 
2454 
2455 /*
2456  * Initialize the RX descriptors and allocate mbufs for them. Note that
2457  * we arrange the descriptors in a closed ring, so that the last descriptor
2458  * points back to the first.
2459  */
2460 static int
2461 dc_list_rx_init(struct dc_softc *sc)
2462 {
2463 	struct dc_chain_data *cd;
2464 	struct dc_list_data *ld;
2465 	int i, nexti;
2466 
2467 	cd = &sc->dc_cdata;
2468 	ld = sc->dc_ldata;
2469 
2470 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2471 		if (dc_newbuf(sc, i, 1) != 0)
2472 			return (ENOBUFS);
2473 		if (i == DC_RX_LIST_CNT - 1)
2474 			nexti = 0;
2475 		else
2476 			nexti = i + 1;
2477 		ld->dc_rx_list[i].dc_next = htole32(DC_RXDESC(sc, nexti));
2478 	}
2479 
2480 	cd->dc_rx_prod = 0;
2481 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
2482 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2483 	return (0);
2484 }
2485 
2486 static void
2487 dc_dma_map_rxbuf(arg, segs, nseg, mapsize, error)
2488 	void *arg;
2489 	bus_dma_segment_t *segs;
2490 	int nseg;
2491 	bus_size_t mapsize;
2492 	int error;
2493 {
2494 	struct dc_softc *sc;
2495 	struct dc_desc *c;
2496 
2497 	sc = arg;
2498 	c = &sc->dc_ldata->dc_rx_list[sc->dc_cdata.dc_rx_cur];
2499 	if (error) {
2500 		sc->dc_cdata.dc_rx_err = error;
2501 		return;
2502 	}
2503 
2504 	KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
2505 	sc->dc_cdata.dc_rx_err = 0;
2506 	c->dc_data = htole32(segs->ds_addr);
2507 }
2508 
2509 /*
2510  * Initialize an RX descriptor and attach an MBUF cluster.
2511  */
2512 static int
2513 dc_newbuf(struct dc_softc *sc, int i, int alloc)
2514 {
2515 	struct mbuf *m_new;
2516 	bus_dmamap_t tmp;
2517 	int error;
2518 
2519 	if (alloc) {
2520 		m_new = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2521 		if (m_new == NULL)
2522 			return (ENOBUFS);
2523 	} else {
2524 		m_new = sc->dc_cdata.dc_rx_chain[i];
2525 		m_new->m_data = m_new->m_ext.ext_buf;
2526 	}
2527 	m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2528 	m_adj(m_new, sizeof(u_int64_t));
2529 
2530 	/*
2531 	 * If this is a PNIC chip, zero the buffer. This is part
2532 	 * of the workaround for the receive bug in the 82c168 and
2533 	 * 82c169 chips.
2534 	 */
2535 	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
2536 		bzero(mtod(m_new, char *), m_new->m_len);
2537 
2538 	/* No need to remap the mbuf if we're reusing it. */
2539 	if (alloc) {
2540 		sc->dc_cdata.dc_rx_cur = i;
2541 		error = bus_dmamap_load_mbuf(sc->dc_mtag, sc->dc_sparemap,
2542 		    m_new, dc_dma_map_rxbuf, sc, 0);
2543 		if (error) {
2544 			m_freem(m_new);
2545 			return (error);
2546 		}
2547 		if (sc->dc_cdata.dc_rx_err != 0) {
2548 			m_freem(m_new);
2549 			return (sc->dc_cdata.dc_rx_err);
2550 		}
2551 		bus_dmamap_unload(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i]);
2552 		tmp = sc->dc_cdata.dc_rx_map[i];
2553 		sc->dc_cdata.dc_rx_map[i] = sc->dc_sparemap;
2554 		sc->dc_sparemap = tmp;
2555 		sc->dc_cdata.dc_rx_chain[i] = m_new;
2556 	}
2557 
2558 	sc->dc_ldata->dc_rx_list[i].dc_ctl = htole32(DC_RXCTL_RLINK | DC_RXLEN);
2559 	sc->dc_ldata->dc_rx_list[i].dc_status = htole32(DC_RXSTAT_OWN);
2560 	bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i],
2561 	    BUS_DMASYNC_PREREAD);
2562 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
2563 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2564 	return (0);
2565 }
2566 
2567 /*
2568  * Grrrrr.
2569  * The PNIC chip has a terrible bug in it that manifests itself during
2570  * periods of heavy activity. The exact mode of failure if difficult to
2571  * pinpoint: sometimes it only happens in promiscuous mode, sometimes it
2572  * will happen on slow machines. The bug is that sometimes instead of
2573  * uploading one complete frame during reception, it uploads what looks
2574  * like the entire contents of its FIFO memory. The frame we want is at
2575  * the end of the whole mess, but we never know exactly how much data has
2576  * been uploaded, so salvaging the frame is hard.
2577  *
2578  * There is only one way to do it reliably, and it's disgusting.
2579  * Here's what we know:
2580  *
2581  * - We know there will always be somewhere between one and three extra
2582  *   descriptors uploaded.
2583  *
2584  * - We know the desired received frame will always be at the end of the
2585  *   total data upload.
2586  *
2587  * - We know the size of the desired received frame because it will be
2588  *   provided in the length field of the status word in the last descriptor.
2589  *
2590  * Here's what we do:
2591  *
2592  * - When we allocate buffers for the receive ring, we bzero() them.
2593  *   This means that we know that the buffer contents should be all
2594  *   zeros, except for data uploaded by the chip.
2595  *
2596  * - We also force the PNIC chip to upload frames that include the
2597  *   ethernet CRC at the end.
2598  *
2599  * - We gather all of the bogus frame data into a single buffer.
2600  *
2601  * - We then position a pointer at the end of this buffer and scan
2602  *   backwards until we encounter the first non-zero byte of data.
2603  *   This is the end of the received frame. We know we will encounter
2604  *   some data at the end of the frame because the CRC will always be
2605  *   there, so even if the sender transmits a packet of all zeros,
2606  *   we won't be fooled.
2607  *
2608  * - We know the size of the actual received frame, so we subtract
2609  *   that value from the current pointer location. This brings us
2610  *   to the start of the actual received packet.
2611  *
2612  * - We copy this into an mbuf and pass it on, along with the actual
2613  *   frame length.
2614  *
2615  * The performance hit is tremendous, but it beats dropping frames all
2616  * the time.
2617  */
2618 
2619 #define DC_WHOLEFRAME	(DC_RXSTAT_FIRSTFRAG | DC_RXSTAT_LASTFRAG)
2620 static void
2621 dc_pnic_rx_bug_war(struct dc_softc *sc, int idx)
2622 {
2623 	struct dc_desc *cur_rx;
2624 	struct dc_desc *c = NULL;
2625 	struct mbuf *m = NULL;
2626 	unsigned char *ptr;
2627 	int i, total_len;
2628 	u_int32_t rxstat = 0;
2629 
2630 	i = sc->dc_pnic_rx_bug_save;
2631 	cur_rx = &sc->dc_ldata->dc_rx_list[idx];
2632 	ptr = sc->dc_pnic_rx_buf;
2633 	bzero(ptr, DC_RXLEN * 5);
2634 
2635 	/* Copy all the bytes from the bogus buffers. */
2636 	while (1) {
2637 		c = &sc->dc_ldata->dc_rx_list[i];
2638 		rxstat = le32toh(c->dc_status);
2639 		m = sc->dc_cdata.dc_rx_chain[i];
2640 		bcopy(mtod(m, char *), ptr, DC_RXLEN);
2641 		ptr += DC_RXLEN;
2642 		/* If this is the last buffer, break out. */
2643 		if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
2644 			break;
2645 		dc_newbuf(sc, i, 0);
2646 		DC_INC(i, DC_RX_LIST_CNT);
2647 	}
2648 
2649 	/* Find the length of the actual receive frame. */
2650 	total_len = DC_RXBYTES(rxstat);
2651 
2652 	/* Scan backwards until we hit a non-zero byte. */
2653 	while (*ptr == 0x00)
2654 		ptr--;
2655 
2656 	/* Round off. */
2657 	if ((uintptr_t)(ptr) & 0x3)
2658 		ptr -= 1;
2659 
2660 	/* Now find the start of the frame. */
2661 	ptr -= total_len;
2662 	if (ptr < sc->dc_pnic_rx_buf)
2663 		ptr = sc->dc_pnic_rx_buf;
2664 
2665 	/*
2666 	 * Now copy the salvaged frame to the last mbuf and fake up
2667 	 * the status word to make it look like a successful
2668 	 * frame reception.
2669 	 */
2670 	dc_newbuf(sc, i, 0);
2671 	bcopy(ptr, mtod(m, char *), total_len);
2672 	cur_rx->dc_status = htole32(rxstat | DC_RXSTAT_FIRSTFRAG);
2673 }
2674 
2675 /*
2676  * This routine searches the RX ring for dirty descriptors in the
2677  * event that the rxeof routine falls out of sync with the chip's
2678  * current descriptor pointer. This may happen sometimes as a result
2679  * of a "no RX buffer available" condition that happens when the chip
2680  * consumes all of the RX buffers before the driver has a chance to
2681  * process the RX ring. This routine may need to be called more than
2682  * once to bring the driver back in sync with the chip, however we
2683  * should still be getting RX DONE interrupts to drive the search
2684  * for new packets in the RX ring, so we should catch up eventually.
2685  */
2686 static int
2687 dc_rx_resync(struct dc_softc *sc)
2688 {
2689 	struct dc_desc *cur_rx;
2690 	int i, pos;
2691 
2692 	pos = sc->dc_cdata.dc_rx_prod;
2693 
2694 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2695 		cur_rx = &sc->dc_ldata->dc_rx_list[pos];
2696 		if (!(le32toh(cur_rx->dc_status) & DC_RXSTAT_OWN))
2697 			break;
2698 		DC_INC(pos, DC_RX_LIST_CNT);
2699 	}
2700 
2701 	/* If the ring really is empty, then just return. */
2702 	if (i == DC_RX_LIST_CNT)
2703 		return (0);
2704 
2705 	/* We've fallen behing the chip: catch it. */
2706 	sc->dc_cdata.dc_rx_prod = pos;
2707 
2708 	return (EAGAIN);
2709 }
2710 
2711 /*
2712  * A frame has been uploaded: pass the resulting mbuf chain up to
2713  * the higher level protocols.
2714  */
2715 static void
2716 dc_rxeof(struct dc_softc *sc)
2717 {
2718 	struct mbuf *m;
2719 	struct ifnet *ifp;
2720 	struct dc_desc *cur_rx;
2721 	int i, total_len = 0;
2722 	u_int32_t rxstat;
2723 
2724 	ifp = &sc->arpcom.ac_if;
2725 	i = sc->dc_cdata.dc_rx_prod;
2726 
2727 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap, BUS_DMASYNC_POSTREAD);
2728 	while (!(le32toh(sc->dc_ldata->dc_rx_list[i].dc_status) &
2729 	    DC_RXSTAT_OWN)) {
2730 #ifdef DEVICE_POLLING
2731 		if (ifp->if_flags & IFF_POLLING) {
2732 			if (sc->rxcycles <= 0)
2733 				break;
2734 			sc->rxcycles--;
2735 		}
2736 #endif
2737 		cur_rx = &sc->dc_ldata->dc_rx_list[i];
2738 		rxstat = le32toh(cur_rx->dc_status);
2739 		m = sc->dc_cdata.dc_rx_chain[i];
2740 		bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i],
2741 		    BUS_DMASYNC_POSTREAD);
2742 		total_len = DC_RXBYTES(rxstat);
2743 
2744 		if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2745 			if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
2746 				if (rxstat & DC_RXSTAT_FIRSTFRAG)
2747 					sc->dc_pnic_rx_bug_save = i;
2748 				if ((rxstat & DC_RXSTAT_LASTFRAG) == 0) {
2749 					DC_INC(i, DC_RX_LIST_CNT);
2750 					continue;
2751 				}
2752 				dc_pnic_rx_bug_war(sc, i);
2753 				rxstat = le32toh(cur_rx->dc_status);
2754 				total_len = DC_RXBYTES(rxstat);
2755 			}
2756 		}
2757 
2758 		/*
2759 		 * If an error occurs, update stats, clear the
2760 		 * status word and leave the mbuf cluster in place:
2761 		 * it should simply get re-used next time this descriptor
2762 		 * comes up in the ring.  However, don't report long
2763 		 * frames as errors since they could be vlans.
2764 		 */
2765 		if ((rxstat & DC_RXSTAT_RXERR)) {
2766 			if (!(rxstat & DC_RXSTAT_GIANT) ||
2767 			    (rxstat & (DC_RXSTAT_CRCERR | DC_RXSTAT_DRIBBLE |
2768 				       DC_RXSTAT_MIIERE | DC_RXSTAT_COLLSEEN |
2769 				       DC_RXSTAT_RUNT   | DC_RXSTAT_DE))) {
2770 				ifp->if_ierrors++;
2771 				if (rxstat & DC_RXSTAT_COLLSEEN)
2772 					ifp->if_collisions++;
2773 				dc_newbuf(sc, i, 0);
2774 				if (rxstat & DC_RXSTAT_CRCERR) {
2775 					DC_INC(i, DC_RX_LIST_CNT);
2776 					continue;
2777 				} else {
2778 					dc_init(sc);
2779 					return;
2780 				}
2781 			}
2782 		}
2783 
2784 		/* No errors; receive the packet. */
2785 		total_len -= ETHER_CRC_LEN;
2786 #ifdef __i386__
2787 		/*
2788 		 * On the x86 we do not have alignment problems, so try to
2789 		 * allocate a new buffer for the receive ring, and pass up
2790 		 * the one where the packet is already, saving the expensive
2791 		 * copy done in m_devget().
2792 		 * If we are on an architecture with alignment problems, or
2793 		 * if the allocation fails, then use m_devget and leave the
2794 		 * existing buffer in the receive ring.
2795 		 */
2796 		if (dc_quick && dc_newbuf(sc, i, 1) == 0) {
2797 			m->m_pkthdr.rcvif = ifp;
2798 			m->m_pkthdr.len = m->m_len = total_len;
2799 			DC_INC(i, DC_RX_LIST_CNT);
2800 		} else
2801 #endif
2802 		{
2803 			struct mbuf *m0;
2804 
2805 			m0 = m_devget(mtod(m, char *), total_len,
2806 				ETHER_ALIGN, ifp, NULL);
2807 			dc_newbuf(sc, i, 0);
2808 			DC_INC(i, DC_RX_LIST_CNT);
2809 			if (m0 == NULL) {
2810 				ifp->if_ierrors++;
2811 				continue;
2812 			}
2813 			m = m0;
2814 		}
2815 
2816 		ifp->if_ipackets++;
2817 		(*ifp->if_input)(ifp, m);
2818 	}
2819 
2820 	sc->dc_cdata.dc_rx_prod = i;
2821 }
2822 
2823 /*
2824  * A frame was downloaded to the chip. It's safe for us to clean up
2825  * the list buffers.
2826  */
2827 
2828 static void
2829 dc_txeof(struct dc_softc *sc)
2830 {
2831 	struct dc_desc *cur_tx = NULL;
2832 	struct ifnet *ifp;
2833 	int idx;
2834 	u_int32_t ctl, txstat;
2835 
2836 	ifp = &sc->arpcom.ac_if;
2837 
2838 	/*
2839 	 * Go through our tx list and free mbufs for those
2840 	 * frames that have been transmitted.
2841 	 */
2842 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap, BUS_DMASYNC_POSTREAD);
2843 	idx = sc->dc_cdata.dc_tx_cons;
2844 	while (idx != sc->dc_cdata.dc_tx_prod) {
2845 
2846 		cur_tx = &sc->dc_ldata->dc_tx_list[idx];
2847 		txstat = le32toh(cur_tx->dc_status);
2848 		ctl = le32toh(cur_tx->dc_ctl);
2849 
2850 		if (txstat & DC_TXSTAT_OWN)
2851 			break;
2852 
2853 		if (!(ctl & DC_TXCTL_FIRSTFRAG) || ctl & DC_TXCTL_SETUP) {
2854 			if (ctl & DC_TXCTL_SETUP) {
2855 				/*
2856 				 * Yes, the PNIC is so brain damaged
2857 				 * that it will sometimes generate a TX
2858 				 * underrun error while DMAing the RX
2859 				 * filter setup frame. If we detect this,
2860 				 * we have to send the setup frame again,
2861 				 * or else the filter won't be programmed
2862 				 * correctly.
2863 				 */
2864 				if (DC_IS_PNIC(sc)) {
2865 					if (txstat & DC_TXSTAT_ERRSUM)
2866 						dc_setfilt(sc);
2867 				}
2868 				sc->dc_cdata.dc_tx_chain[idx] = NULL;
2869 			}
2870 			sc->dc_cdata.dc_tx_cnt--;
2871 			DC_INC(idx, DC_TX_LIST_CNT);
2872 			continue;
2873 		}
2874 
2875 		if (DC_IS_XIRCOM(sc) || DC_IS_CONEXANT(sc)) {
2876 			/*
2877 			 * XXX: Why does my Xircom taunt me so?
2878 			 * For some reason it likes setting the CARRLOST flag
2879 			 * even when the carrier is there. wtf?!?
2880 			 * Who knows, but Conexant chips have the
2881 			 * same problem. Maybe they took lessons
2882 			 * from Xircom.
2883 			 */
2884 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2885 			    sc->dc_pmode == DC_PMODE_MII &&
2886 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
2887 			    DC_TXSTAT_NOCARRIER)))
2888 				txstat &= ~DC_TXSTAT_ERRSUM;
2889 		} else {
2890 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2891 			    sc->dc_pmode == DC_PMODE_MII &&
2892 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
2893 			    DC_TXSTAT_NOCARRIER | DC_TXSTAT_CARRLOST)))
2894 				txstat &= ~DC_TXSTAT_ERRSUM;
2895 		}
2896 
2897 		if (txstat & DC_TXSTAT_ERRSUM) {
2898 			ifp->if_oerrors++;
2899 			if (txstat & DC_TXSTAT_EXCESSCOLL)
2900 				ifp->if_collisions++;
2901 			if (txstat & DC_TXSTAT_LATECOLL)
2902 				ifp->if_collisions++;
2903 			if (!(txstat & DC_TXSTAT_UNDERRUN)) {
2904 				dc_init(sc);
2905 				return;
2906 			}
2907 		}
2908 
2909 		ifp->if_collisions += (txstat & DC_TXSTAT_COLLCNT) >> 3;
2910 
2911 		ifp->if_opackets++;
2912 		if (sc->dc_cdata.dc_tx_chain[idx] != NULL) {
2913 			bus_dmamap_sync(sc->dc_mtag,
2914 			    sc->dc_cdata.dc_tx_map[idx],
2915 			    BUS_DMASYNC_POSTWRITE);
2916 			bus_dmamap_unload(sc->dc_mtag,
2917 			    sc->dc_cdata.dc_tx_map[idx]);
2918 			m_freem(sc->dc_cdata.dc_tx_chain[idx]);
2919 			sc->dc_cdata.dc_tx_chain[idx] = NULL;
2920 		}
2921 
2922 		sc->dc_cdata.dc_tx_cnt--;
2923 		DC_INC(idx, DC_TX_LIST_CNT);
2924 	}
2925 
2926 	if (idx != sc->dc_cdata.dc_tx_cons) {
2927 	    	/* Some buffers have been freed. */
2928 		sc->dc_cdata.dc_tx_cons = idx;
2929 		ifp->if_flags &= ~IFF_OACTIVE;
2930 	}
2931 	ifp->if_timer = (sc->dc_cdata.dc_tx_cnt == 0) ? 0 : 5;
2932 }
2933 
2934 static void
2935 dc_tick(void *xsc)
2936 {
2937 	struct dc_softc *sc;
2938 	struct mii_data *mii;
2939 	struct ifnet *ifp;
2940 	u_int32_t r;
2941 
2942 	sc = xsc;
2943 	DC_LOCK(sc);
2944 	ifp = &sc->arpcom.ac_if;
2945 	mii = device_get_softc(sc->dc_miibus);
2946 
2947 	if (sc->dc_flags & DC_REDUCED_MII_POLL) {
2948 		if (sc->dc_flags & DC_21143_NWAY) {
2949 			r = CSR_READ_4(sc, DC_10BTSTAT);
2950 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2951 			    IFM_100_TX && (r & DC_TSTAT_LS100)) {
2952 				sc->dc_link = 0;
2953 				mii_mediachg(mii);
2954 			}
2955 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2956 			    IFM_10_T && (r & DC_TSTAT_LS10)) {
2957 				sc->dc_link = 0;
2958 				mii_mediachg(mii);
2959 			}
2960 			if (sc->dc_link == 0)
2961 				mii_tick(mii);
2962 		} else {
2963 			r = CSR_READ_4(sc, DC_ISR);
2964 			if ((r & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT &&
2965 			    sc->dc_cdata.dc_tx_cnt == 0) {
2966 				mii_tick(mii);
2967 				if (!(mii->mii_media_status & IFM_ACTIVE))
2968 					sc->dc_link = 0;
2969 			}
2970 		}
2971 	} else
2972 		mii_tick(mii);
2973 
2974 	/*
2975 	 * When the init routine completes, we expect to be able to send
2976 	 * packets right away, and in fact the network code will send a
2977 	 * gratuitous ARP the moment the init routine marks the interface
2978 	 * as running. However, even though the MAC may have been initialized,
2979 	 * there may be a delay of a few seconds before the PHY completes
2980 	 * autonegotiation and the link is brought up. Any transmissions
2981 	 * made during that delay will be lost. Dealing with this is tricky:
2982 	 * we can't just pause in the init routine while waiting for the
2983 	 * PHY to come ready since that would bring the whole system to
2984 	 * a screeching halt for several seconds.
2985 	 *
2986 	 * What we do here is prevent the TX start routine from sending
2987 	 * any packets until a link has been established. After the
2988 	 * interface has been initialized, the tick routine will poll
2989 	 * the state of the PHY until the IFM_ACTIVE flag is set. Until
2990 	 * that time, packets will stay in the send queue, and once the
2991 	 * link comes up, they will be flushed out to the wire.
2992 	 */
2993 	if (!sc->dc_link && mii->mii_media_status & IFM_ACTIVE &&
2994 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2995 		sc->dc_link++;
2996 		if (ifp->if_snd.ifq_head != NULL)
2997 			dc_start(ifp);
2998 	}
2999 
3000 	if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link)
3001 		callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
3002 	else
3003 		callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
3004 
3005 	DC_UNLOCK(sc);
3006 }
3007 
3008 /*
3009  * A transmit underrun has occurred.  Back off the transmit threshold,
3010  * or switch to store and forward mode if we have to.
3011  */
3012 static void
3013 dc_tx_underrun(struct dc_softc *sc)
3014 {
3015 	u_int32_t isr;
3016 	int i;
3017 
3018 	if (DC_IS_DAVICOM(sc))
3019 		dc_init(sc);
3020 
3021 	if (DC_IS_INTEL(sc)) {
3022 		/*
3023 		 * The real 21143 requires that the transmitter be idle
3024 		 * in order to change the transmit threshold or store
3025 		 * and forward state.
3026 		 */
3027 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3028 
3029 		for (i = 0; i < DC_TIMEOUT; i++) {
3030 			isr = CSR_READ_4(sc, DC_ISR);
3031 			if (isr & DC_ISR_TX_IDLE)
3032 				break;
3033 			DELAY(10);
3034 		}
3035 		if (i == DC_TIMEOUT) {
3036 			printf("dc%d: failed to force tx to idle state\n",
3037 			    sc->dc_unit);
3038 			dc_init(sc);
3039 		}
3040 	}
3041 
3042 	printf("dc%d: TX underrun -- ", sc->dc_unit);
3043 	sc->dc_txthresh += DC_TXTHRESH_INC;
3044 	if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3045 		printf("using store and forward mode\n");
3046 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3047 	} else {
3048 		printf("increasing TX threshold\n");
3049 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3050 		DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3051 	}
3052 
3053 	if (DC_IS_INTEL(sc))
3054 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3055 }
3056 
3057 #ifdef DEVICE_POLLING
3058 static poll_handler_t dc_poll;
3059 
3060 static void
3061 dc_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
3062 {
3063 	struct dc_softc *sc = ifp->if_softc;
3064 
3065 	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
3066 		/* Re-enable interrupts. */
3067 		CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3068 		return;
3069 	}
3070 	sc->rxcycles = count;
3071 	dc_rxeof(sc);
3072 	dc_txeof(sc);
3073 	if (ifp->if_snd.ifq_head != NULL && !(ifp->if_flags & IFF_OACTIVE))
3074 		dc_start(ifp);
3075 
3076 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
3077 		u_int32_t	status;
3078 
3079 		status = CSR_READ_4(sc, DC_ISR);
3080 		status &= (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF |
3081 			DC_ISR_TX_NOBUF | DC_ISR_TX_IDLE | DC_ISR_TX_UNDERRUN |
3082 			DC_ISR_BUS_ERR);
3083 		if (!status)
3084 			return;
3085 		/* ack what we have */
3086 		CSR_WRITE_4(sc, DC_ISR, status);
3087 
3088 		if (status & (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF)) {
3089 			u_int32_t r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
3090 			ifp->if_ierrors += (r & 0xffff) + ((r >> 17) & 0x7ff);
3091 
3092 			if (dc_rx_resync(sc))
3093 				dc_rxeof(sc);
3094 		}
3095 		/* restart transmit unit if necessary */
3096 		if (status & DC_ISR_TX_IDLE && sc->dc_cdata.dc_tx_cnt)
3097 			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3098 
3099 		if (status & DC_ISR_TX_UNDERRUN)
3100 			dc_tx_underrun(sc);
3101 
3102 		if (status & DC_ISR_BUS_ERR) {
3103 			printf("dc_poll: dc%d bus error\n", sc->dc_unit);
3104 			dc_reset(sc);
3105 			dc_init(sc);
3106 		}
3107 	}
3108 }
3109 #endif /* DEVICE_POLLING */
3110 
3111 static void
3112 dc_intr(void *arg)
3113 {
3114 	struct dc_softc *sc;
3115 	struct ifnet *ifp;
3116 	u_int32_t status;
3117 
3118 	sc = arg;
3119 
3120 	if (sc->suspended)
3121 		return;
3122 
3123 	if ((CSR_READ_4(sc, DC_ISR) & DC_INTRS) == 0)
3124 		return;
3125 
3126 	DC_LOCK(sc);
3127 	ifp = &sc->arpcom.ac_if;
3128 #ifdef DEVICE_POLLING
3129 	if (ifp->if_flags & IFF_POLLING)
3130 		goto done;
3131 	if (ether_poll_register(dc_poll, ifp)) { /* ok, disable interrupts */
3132 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3133 		goto done;
3134 	}
3135 #endif
3136 
3137 	/* Suppress unwanted interrupts */
3138 	if (!(ifp->if_flags & IFF_UP)) {
3139 		if (CSR_READ_4(sc, DC_ISR) & DC_INTRS)
3140 			dc_stop(sc);
3141 		DC_UNLOCK(sc);
3142 		return;
3143 	}
3144 
3145 	/* Disable interrupts. */
3146 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3147 
3148 	while (((status = CSR_READ_4(sc, DC_ISR)) & DC_INTRS)
3149 	      && status != 0xFFFFFFFF) {
3150 
3151 		CSR_WRITE_4(sc, DC_ISR, status);
3152 
3153 		if (status & DC_ISR_RX_OK) {
3154 			int		curpkts;
3155 			curpkts = ifp->if_ipackets;
3156 			dc_rxeof(sc);
3157 			if (curpkts == ifp->if_ipackets) {
3158 				while (dc_rx_resync(sc))
3159 					dc_rxeof(sc);
3160 			}
3161 		}
3162 
3163 		if (status & (DC_ISR_TX_OK | DC_ISR_TX_NOBUF))
3164 			dc_txeof(sc);
3165 
3166 		if (status & DC_ISR_TX_IDLE) {
3167 			dc_txeof(sc);
3168 			if (sc->dc_cdata.dc_tx_cnt) {
3169 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3170 				CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3171 			}
3172 		}
3173 
3174 		if (status & DC_ISR_TX_UNDERRUN)
3175 			dc_tx_underrun(sc);
3176 
3177 		if ((status & DC_ISR_RX_WATDOGTIMEO)
3178 		    || (status & DC_ISR_RX_NOBUF)) {
3179 			int		curpkts;
3180 			curpkts = ifp->if_ipackets;
3181 			dc_rxeof(sc);
3182 			if (curpkts == ifp->if_ipackets) {
3183 				while (dc_rx_resync(sc))
3184 					dc_rxeof(sc);
3185 			}
3186 		}
3187 
3188 		if (status & DC_ISR_BUS_ERR) {
3189 			dc_reset(sc);
3190 			dc_init(sc);
3191 		}
3192 	}
3193 
3194 	/* Re-enable interrupts. */
3195 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3196 
3197 	if (ifp->if_snd.ifq_head != NULL)
3198 		dc_start(ifp);
3199 
3200 #ifdef DEVICE_POLLING
3201 done:
3202 #endif
3203 
3204 	DC_UNLOCK(sc);
3205 }
3206 
3207 static void
3208 dc_dma_map_txbuf(arg, segs, nseg, mapsize, error)
3209 	void *arg;
3210 	bus_dma_segment_t *segs;
3211 	int nseg;
3212 	bus_size_t mapsize;
3213 	int error;
3214 {
3215 	struct dc_softc *sc;
3216 	struct dc_desc *f;
3217 	int cur, first, frag, i;
3218 
3219 	sc = arg;
3220 	if (error) {
3221 		sc->dc_cdata.dc_tx_err = error;
3222 		return;
3223 	}
3224 
3225 	first = cur = frag = sc->dc_cdata.dc_tx_prod;
3226 	for (i = 0; i < nseg; i++) {
3227 		if ((sc->dc_flags & DC_TX_ADMTEK_WAR) &&
3228 		    (frag == (DC_TX_LIST_CNT - 1)) &&
3229 		    (first != sc->dc_cdata.dc_tx_first)) {
3230 			bus_dmamap_unload(sc->dc_mtag,
3231 			    sc->dc_cdata.dc_tx_map[first]);
3232 			sc->dc_cdata.dc_tx_err = ENOBUFS;
3233 			return;
3234 		}
3235 
3236 		f = &sc->dc_ldata->dc_tx_list[frag];
3237 		f->dc_ctl = htole32(DC_TXCTL_TLINK | segs[i].ds_len);
3238 		if (i == 0) {
3239 			f->dc_status = 0;
3240 			f->dc_ctl |= htole32(DC_TXCTL_FIRSTFRAG);
3241 		} else
3242 			f->dc_status = htole32(DC_TXSTAT_OWN);
3243 		f->dc_data = htole32(segs[i].ds_addr);
3244 		cur = frag;
3245 		DC_INC(frag, DC_TX_LIST_CNT);
3246 	}
3247 
3248 	sc->dc_cdata.dc_tx_err = 0;
3249 	sc->dc_cdata.dc_tx_prod = frag;
3250 	sc->dc_cdata.dc_tx_cnt += nseg;
3251 	sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_LASTFRAG);
3252 	if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
3253 		sc->dc_ldata->dc_tx_list[first].dc_ctl |=
3254 		    htole32(DC_TXCTL_FINT);
3255 	if (sc->dc_flags & DC_TX_INTR_ALWAYS)
3256 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
3257 	if (sc->dc_flags & DC_TX_USE_TX_INTR && sc->dc_cdata.dc_tx_cnt > 64)
3258 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
3259 	sc->dc_ldata->dc_tx_list[first].dc_status = htole32(DC_TXSTAT_OWN);
3260 }
3261 
3262 /*
3263  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
3264  * pointers to the fragment pointers.
3265  */
3266 static int
3267 dc_encap(struct dc_softc *sc, struct mbuf **m_head)
3268 {
3269 	struct mbuf *m;
3270 	int error, idx, chainlen = 0;
3271 
3272 	/*
3273 	 * If there's no way we can send any packets, return now.
3274 	 */
3275 	if (DC_TX_LIST_CNT - sc->dc_cdata.dc_tx_cnt < 6)
3276 		return (ENOBUFS);
3277 
3278 	/*
3279 	 * Count the number of frags in this chain to see if
3280 	 * we need to m_defrag.  Since the descriptor list is shared
3281 	 * by all packets, we'll m_defrag long chains so that they
3282 	 * do not use up the entire list, even if they would fit.
3283 	 */
3284 	for (m = *m_head; m != NULL; m = m->m_next)
3285 		chainlen++;
3286 
3287 	if ((chainlen > DC_TX_LIST_CNT / 4) ||
3288 	    ((DC_TX_LIST_CNT - (chainlen + sc->dc_cdata.dc_tx_cnt)) < 6)) {
3289 		m = m_defrag(*m_head, M_DONTWAIT);
3290 		if (m == NULL)
3291 			return (ENOBUFS);
3292 		*m_head = m;
3293 	}
3294 
3295 	/*
3296 	 * Start packing the mbufs in this chain into
3297 	 * the fragment pointers. Stop when we run out
3298 	 * of fragments or hit the end of the mbuf chain.
3299 	 */
3300 	idx = sc->dc_cdata.dc_tx_prod;
3301 	error = bus_dmamap_load_mbuf(sc->dc_mtag, sc->dc_cdata.dc_tx_map[idx],
3302 	    *m_head, dc_dma_map_txbuf, sc, 0);
3303 	if (error)
3304 		return (error);
3305 	if (sc->dc_cdata.dc_tx_err != 0)
3306 		return (sc->dc_cdata.dc_tx_err);
3307 	sc->dc_cdata.dc_tx_chain[idx] = *m_head;
3308 	bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_tx_map[idx],
3309 	    BUS_DMASYNC_PREWRITE);
3310 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
3311 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
3312 	return (0);
3313 }
3314 
3315 /*
3316  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3317  * to the mbuf data regions directly in the transmit lists. We also save a
3318  * copy of the pointers since the transmit list fragment pointers are
3319  * physical addresses.
3320  */
3321 
3322 static void
3323 dc_start(struct ifnet *ifp)
3324 {
3325 	struct dc_softc *sc;
3326 	struct mbuf *m_head = NULL, *m;
3327 	int idx;
3328 
3329 	sc = ifp->if_softc;
3330 
3331 	DC_LOCK(sc);
3332 
3333 	if (!sc->dc_link && ifp->if_snd.ifq_len < 10) {
3334 		DC_UNLOCK(sc);
3335 		return;
3336 	}
3337 
3338 	if (ifp->if_flags & IFF_OACTIVE) {
3339 		DC_UNLOCK(sc);
3340 		return;
3341 	}
3342 
3343 	idx = sc->dc_cdata.dc_tx_first = sc->dc_cdata.dc_tx_prod;
3344 
3345 	while (sc->dc_cdata.dc_tx_chain[idx] == NULL) {
3346 		IF_DEQUEUE(&ifp->if_snd, m_head);
3347 		if (m_head == NULL)
3348 			break;
3349 
3350 		if (sc->dc_flags & DC_TX_COALESCE &&
3351 		    (m_head->m_next != NULL ||
3352 		     sc->dc_flags & DC_TX_ALIGN)) {
3353 			m = m_defrag(m_head, M_DONTWAIT);
3354 			if (m == NULL) {
3355 				IF_PREPEND(&ifp->if_snd, m_head);
3356 				ifp->if_flags |= IFF_OACTIVE;
3357 				break;
3358 			} else {
3359 				m_head = m;
3360 			}
3361 		}
3362 
3363 		if (dc_encap(sc, &m_head)) {
3364 			IF_PREPEND(&ifp->if_snd, m_head);
3365 			ifp->if_flags |= IFF_OACTIVE;
3366 			break;
3367 		}
3368 		idx = sc->dc_cdata.dc_tx_prod;
3369 
3370 		/*
3371 		 * If there's a BPF listener, bounce a copy of this frame
3372 		 * to him.
3373 		 */
3374 		BPF_MTAP(ifp, m_head);
3375 
3376 		if (sc->dc_flags & DC_TX_ONE) {
3377 			ifp->if_flags |= IFF_OACTIVE;
3378 			break;
3379 		}
3380 	}
3381 
3382 	/* Transmit */
3383 	if (!(sc->dc_flags & DC_TX_POLL))
3384 		CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3385 
3386 	/*
3387 	 * Set a timeout in case the chip goes out to lunch.
3388 	 */
3389 	ifp->if_timer = 5;
3390 
3391 	DC_UNLOCK(sc);
3392 }
3393 
3394 static void
3395 dc_init(void *xsc)
3396 {
3397 	struct dc_softc *sc = xsc;
3398 	struct ifnet *ifp = &sc->arpcom.ac_if;
3399 	struct mii_data *mii;
3400 
3401 	DC_LOCK(sc);
3402 
3403 	mii = device_get_softc(sc->dc_miibus);
3404 
3405 	/*
3406 	 * Cancel pending I/O and free all RX/TX buffers.
3407 	 */
3408 	dc_stop(sc);
3409 	dc_reset(sc);
3410 
3411 	/*
3412 	 * Set cache alignment and burst length.
3413 	 */
3414 	if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc))
3415 		CSR_WRITE_4(sc, DC_BUSCTL, 0);
3416 	else
3417 		CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME | DC_BUSCTL_MRLE);
3418 	/*
3419 	 * Evenly share the bus between receive and transmit process.
3420 	 */
3421 	if (DC_IS_INTEL(sc))
3422 		DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION);
3423 	if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
3424 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
3425 	} else {
3426 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
3427 	}
3428 	if (sc->dc_flags & DC_TX_POLL)
3429 		DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
3430 	switch(sc->dc_cachesize) {
3431 	case 32:
3432 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
3433 		break;
3434 	case 16:
3435 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
3436 		break;
3437 	case 8:
3438 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
3439 		break;
3440 	case 0:
3441 	default:
3442 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
3443 		break;
3444 	}
3445 
3446 	if (sc->dc_flags & DC_TX_STORENFWD)
3447 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3448 	else {
3449 		if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3450 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3451 		} else {
3452 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3453 			DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3454 		}
3455 	}
3456 
3457 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
3458 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
3459 
3460 	if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
3461 		/*
3462 		 * The app notes for the 98713 and 98715A say that
3463 		 * in order to have the chips operate properly, a magic
3464 		 * number must be written to CSR16. Macronix does not
3465 		 * document the meaning of these bits so there's no way
3466 		 * to know exactly what they do. The 98713 has a magic
3467 		 * number all its own; the rest all use a different one.
3468 		 */
3469 		DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
3470 		if (sc->dc_type == DC_TYPE_98713)
3471 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
3472 		else
3473 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
3474 	}
3475 
3476 	if (DC_IS_XIRCOM(sc)) {
3477 		/*
3478 		 * setup General Purpose Port mode and data so the tulip
3479 		 * can talk to the MII.
3480 		 */
3481 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
3482 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3483 		DELAY(10);
3484 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
3485 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3486 		DELAY(10);
3487 	}
3488 
3489 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3490 	DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN);
3491 
3492 	/* Init circular RX list. */
3493 	if (dc_list_rx_init(sc) == ENOBUFS) {
3494 		printf("dc%d: initialization failed: no "
3495 		    "memory for rx buffers\n", sc->dc_unit);
3496 		dc_stop(sc);
3497 		DC_UNLOCK(sc);
3498 		return;
3499 	}
3500 
3501 	/*
3502 	 * Init TX descriptors.
3503 	 */
3504 	dc_list_tx_init(sc);
3505 
3506 	/*
3507 	 * Load the address of the RX list.
3508 	 */
3509 	CSR_WRITE_4(sc, DC_RXADDR, DC_RXDESC(sc, 0));
3510 	CSR_WRITE_4(sc, DC_TXADDR, DC_TXDESC(sc, 0));
3511 
3512 	/*
3513 	 * Enable interrupts.
3514 	 */
3515 #ifdef DEVICE_POLLING
3516 	/*
3517 	 * ... but only if we are not polling, and make sure they are off in
3518 	 * the case of polling. Some cards (e.g. fxp) turn interrupts on
3519 	 * after a reset.
3520 	 */
3521 	if (ifp->if_flags & IFF_POLLING)
3522 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3523 	else
3524 #endif
3525 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3526 	CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
3527 
3528 	/* Enable transmitter. */
3529 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3530 
3531 	/*
3532 	 * If this is an Intel 21143 and we're not using the
3533 	 * MII port, program the LED control pins so we get
3534 	 * link and activity indications.
3535 	 */
3536 	if (sc->dc_flags & DC_TULIP_LEDS) {
3537 		CSR_WRITE_4(sc, DC_WATCHDOG,
3538 		    DC_WDOG_CTLWREN | DC_WDOG_LINK | DC_WDOG_ACTIVITY);
3539 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
3540 	}
3541 
3542 	/*
3543 	 * Load the RX/multicast filter. We do this sort of late
3544 	 * because the filter programming scheme on the 21143 and
3545 	 * some clones requires DMAing a setup frame via the TX
3546 	 * engine, and we need the transmitter enabled for that.
3547 	 */
3548 	dc_setfilt(sc);
3549 
3550 	/* Enable receiver. */
3551 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
3552 	CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
3553 
3554 	mii_mediachg(mii);
3555 	dc_setcfg(sc, sc->dc_if_media);
3556 
3557 	ifp->if_flags |= IFF_RUNNING;
3558 	ifp->if_flags &= ~IFF_OACTIVE;
3559 
3560 	/* Don't start the ticker if this is a homePNA link. */
3561 	if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_HPNA_1)
3562 		sc->dc_link = 1;
3563 	else {
3564 		if (sc->dc_flags & DC_21143_NWAY)
3565 			callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
3566 		else
3567 			callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
3568 	}
3569 
3570 #ifdef SRM_MEDIA
3571 	if(sc->dc_srm_media) {
3572 		struct ifreq ifr;
3573 
3574 		ifr.ifr_media = sc->dc_srm_media;
3575 		ifmedia_ioctl(ifp, &ifr, &mii->mii_media, SIOCSIFMEDIA);
3576 		sc->dc_srm_media = 0;
3577 	}
3578 #endif
3579 	DC_UNLOCK(sc);
3580 }
3581 
3582 /*
3583  * Set media options.
3584  */
3585 static int
3586 dc_ifmedia_upd(struct ifnet *ifp)
3587 {
3588 	struct dc_softc *sc;
3589 	struct mii_data *mii;
3590 	struct ifmedia *ifm;
3591 
3592 	sc = ifp->if_softc;
3593 	mii = device_get_softc(sc->dc_miibus);
3594 	mii_mediachg(mii);
3595 	ifm = &mii->mii_media;
3596 
3597 	if (DC_IS_DAVICOM(sc) &&
3598 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1)
3599 		dc_setcfg(sc, ifm->ifm_media);
3600 	else
3601 		sc->dc_link = 0;
3602 
3603 	return (0);
3604 }
3605 
3606 /*
3607  * Report current media status.
3608  */
3609 static void
3610 dc_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3611 {
3612 	struct dc_softc *sc;
3613 	struct mii_data *mii;
3614 	struct ifmedia *ifm;
3615 
3616 	sc = ifp->if_softc;
3617 	mii = device_get_softc(sc->dc_miibus);
3618 	mii_pollstat(mii);
3619 	ifm = &mii->mii_media;
3620 	if (DC_IS_DAVICOM(sc)) {
3621 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
3622 			ifmr->ifm_active = ifm->ifm_media;
3623 			ifmr->ifm_status = 0;
3624 			return;
3625 		}
3626 	}
3627 	ifmr->ifm_active = mii->mii_media_active;
3628 	ifmr->ifm_status = mii->mii_media_status;
3629 }
3630 
3631 static int
3632 dc_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
3633 {
3634 	struct dc_softc *sc = ifp->if_softc;
3635 	struct ifreq *ifr = (struct ifreq *)data;
3636 	struct mii_data *mii;
3637 	int error = 0;
3638 
3639 	DC_LOCK(sc);
3640 
3641 	switch (command) {
3642 	case SIOCSIFFLAGS:
3643 		if (ifp->if_flags & IFF_UP) {
3644 			int need_setfilt = (ifp->if_flags ^ sc->dc_if_flags) &
3645 				(IFF_PROMISC | IFF_ALLMULTI);
3646 
3647 			if (ifp->if_flags & IFF_RUNNING) {
3648 				if (need_setfilt)
3649 					dc_setfilt(sc);
3650 			} else {
3651 				sc->dc_txthresh = 0;
3652 				dc_init(sc);
3653 			}
3654 		} else {
3655 			if (ifp->if_flags & IFF_RUNNING)
3656 				dc_stop(sc);
3657 		}
3658 		sc->dc_if_flags = ifp->if_flags;
3659 		error = 0;
3660 		break;
3661 	case SIOCADDMULTI:
3662 	case SIOCDELMULTI:
3663 		dc_setfilt(sc);
3664 		error = 0;
3665 		break;
3666 	case SIOCGIFMEDIA:
3667 	case SIOCSIFMEDIA:
3668 		mii = device_get_softc(sc->dc_miibus);
3669 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
3670 #ifdef SRM_MEDIA
3671 		if (sc->dc_srm_media)
3672 			sc->dc_srm_media = 0;
3673 #endif
3674 		break;
3675 	default:
3676 		error = ether_ioctl(ifp, command, data);
3677 		break;
3678 	}
3679 
3680 	DC_UNLOCK(sc);
3681 
3682 	return (error);
3683 }
3684 
3685 static void
3686 dc_watchdog(struct ifnet *ifp)
3687 {
3688 	struct dc_softc *sc;
3689 
3690 	sc = ifp->if_softc;
3691 
3692 	DC_LOCK(sc);
3693 
3694 	ifp->if_oerrors++;
3695 	printf("dc%d: watchdog timeout\n", sc->dc_unit);
3696 
3697 	dc_stop(sc);
3698 	dc_reset(sc);
3699 	dc_init(sc);
3700 
3701 	if (ifp->if_snd.ifq_head != NULL)
3702 		dc_start(ifp);
3703 
3704 	DC_UNLOCK(sc);
3705 }
3706 
3707 /*
3708  * Stop the adapter and free any mbufs allocated to the
3709  * RX and TX lists.
3710  */
3711 static void
3712 dc_stop(struct dc_softc *sc)
3713 {
3714 	struct ifnet *ifp;
3715 	struct dc_list_data *ld;
3716 	struct dc_chain_data *cd;
3717 	int i;
3718 	u_int32_t ctl;
3719 
3720 	DC_LOCK(sc);
3721 
3722 	ifp = &sc->arpcom.ac_if;
3723 	ifp->if_timer = 0;
3724 	ld = sc->dc_ldata;
3725 	cd = &sc->dc_cdata;
3726 
3727 	callout_stop(&sc->dc_stat_ch);
3728 
3729 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3730 #ifdef DEVICE_POLLING
3731 	ether_poll_deregister(ifp);
3732 #endif
3733 
3734 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ON | DC_NETCFG_TX_ON));
3735 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3736 	CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
3737 	CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
3738 	sc->dc_link = 0;
3739 
3740 	/*
3741 	 * Free data in the RX lists.
3742 	 */
3743 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
3744 		if (cd->dc_rx_chain[i] != NULL) {
3745 			m_freem(cd->dc_rx_chain[i]);
3746 			cd->dc_rx_chain[i] = NULL;
3747 		}
3748 	}
3749 	bzero(&ld->dc_rx_list, sizeof(ld->dc_rx_list));
3750 
3751 	/*
3752 	 * Free the TX list buffers.
3753 	 */
3754 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
3755 		if (cd->dc_tx_chain[i] != NULL) {
3756 			ctl = le32toh(ld->dc_tx_list[i].dc_ctl);
3757 			if ((ctl & DC_TXCTL_SETUP) ||
3758 			    !(ctl & DC_TXCTL_FIRSTFRAG)) {
3759 				cd->dc_tx_chain[i] = NULL;
3760 				continue;
3761 			}
3762 			bus_dmamap_unload(sc->dc_mtag, cd->dc_tx_map[i]);
3763 			m_freem(cd->dc_tx_chain[i]);
3764 			cd->dc_tx_chain[i] = NULL;
3765 		}
3766 	}
3767 	bzero(&ld->dc_tx_list, sizeof(ld->dc_tx_list));
3768 
3769 	DC_UNLOCK(sc);
3770 }
3771 
3772 /*
3773  * Device suspend routine.  Stop the interface and save some PCI
3774  * settings in case the BIOS doesn't restore them properly on
3775  * resume.
3776  */
3777 static int
3778 dc_suspend(device_t dev)
3779 {
3780 	struct dc_softc *sc;
3781 	int i, s;
3782 
3783 	s = splimp();
3784 
3785 	sc = device_get_softc(dev);
3786 
3787 	dc_stop(sc);
3788 
3789 	for (i = 0; i < 5; i++)
3790 		sc->saved_maps[i] = pci_read_config(dev, PCIR_BAR(i), 4);
3791 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
3792 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
3793 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
3794 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
3795 
3796 	sc->suspended = 1;
3797 
3798 	splx(s);
3799 	return (0);
3800 }
3801 
3802 /*
3803  * Device resume routine.  Restore some PCI settings in case the BIOS
3804  * doesn't, re-enable busmastering, and restart the interface if
3805  * appropriate.
3806  */
3807 static int
3808 dc_resume(device_t dev)
3809 {
3810 	struct dc_softc *sc;
3811 	struct ifnet *ifp;
3812 	int i, s;
3813 
3814 	s = splimp();
3815 
3816 	sc = device_get_softc(dev);
3817 	ifp = &sc->arpcom.ac_if;
3818 #ifndef BURN_BRIDGES
3819 	dc_acpi(dev);
3820 #endif
3821 	/* better way to do this? */
3822 	for (i = 0; i < 5; i++)
3823 		pci_write_config(dev, PCIR_BAR(i), sc->saved_maps[i], 4);
3824 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
3825 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
3826 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
3827 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
3828 
3829 	/* reenable busmastering */
3830 	pci_enable_busmaster(dev);
3831 	pci_enable_io(dev, DC_RES);
3832 
3833 	/* reinitialize interface if necessary */
3834 	if (ifp->if_flags & IFF_UP)
3835 		dc_init(sc);
3836 
3837 	sc->suspended = 0;
3838 
3839 	splx(s);
3840 	return (0);
3841 }
3842 
3843 /*
3844  * Stop all chip I/O so that the kernel's probe routines don't
3845  * get confused by errant DMAs when rebooting.
3846  */
3847 static void
3848 dc_shutdown(device_t dev)
3849 {
3850 	struct dc_softc *sc;
3851 
3852 	sc = device_get_softc(dev);
3853 
3854 	dc_stop(sc);
3855 }
3856