xref: /freebsd/sys/dev/dc/if_dc.c (revision 7660b554bc59a07be0431c17e0e33815818baa69)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ee.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
35  * series chips and several workalikes including the following:
36  *
37  * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com)
38  * Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
39  * Lite-On 82c168/82c169 PNIC (www.litecom.com)
40  * ASIX Electronics AX88140A (www.asix.com.tw)
41  * ASIX Electronics AX88141 (www.asix.com.tw)
42  * ADMtek AL981 (www.admtek.com.tw)
43  * ADMtek AN985 (www.admtek.com.tw)
44  * Netgear FA511 (www.netgear.com) Appears to be rebadged ADMTek AN985
45  * Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
46  * Accton EN1217 (www.accton.com)
47  * Xircom X3201 (www.xircom.com)
48  * Abocom FE2500
49  * Conexant LANfinity (www.conexant.com)
50  * 3Com OfficeConnect 10/100B 3CSOHO100B (www.3com.com)
51  *
52  * Datasheets for the 21143 are available at developer.intel.com.
53  * Datasheets for the clone parts can be found at their respective sites.
54  * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
55  * The PNIC II is essentially a Macronix 98715A chip; the only difference
56  * worth noting is that its multicast hash table is only 128 bits wide
57  * instead of 512.
58  *
59  * Written by Bill Paul <wpaul@ee.columbia.edu>
60  * Electrical Engineering Department
61  * Columbia University, New York City
62  */
63 
64 /*
65  * The Intel 21143 is the successor to the DEC 21140. It is basically
66  * the same as the 21140 but with a few new features. The 21143 supports
67  * three kinds of media attachments:
68  *
69  * o MII port, for 10Mbps and 100Mbps support and NWAY
70  *   autonegotiation provided by an external PHY.
71  * o SYM port, for symbol mode 100Mbps support.
72  * o 10baseT port.
73  * o AUI/BNC port.
74  *
75  * The 100Mbps SYM port and 10baseT port can be used together in
76  * combination with the internal NWAY support to create a 10/100
77  * autosensing configuration.
78  *
79  * Note that not all tulip workalikes are handled in this driver: we only
80  * deal with those which are relatively well behaved. The Winbond is
81  * handled separately due to its different register offsets and the
82  * special handling needed for its various bugs. The PNIC is handled
83  * here, but I'm not thrilled about it.
84  *
85  * All of the workalike chips use some form of MII transceiver support
86  * with the exception of the Macronix chips, which also have a SYM port.
87  * The ASIX AX88140A is also documented to have a SYM port, but all
88  * the cards I've seen use an MII transceiver, probably because the
89  * AX88140A doesn't support internal NWAY.
90  */
91 
92 #include <sys/cdefs.h>
93 __FBSDID("$FreeBSD$");
94 
95 #include <sys/param.h>
96 #include <sys/endian.h>
97 #include <sys/systm.h>
98 #include <sys/sockio.h>
99 #include <sys/mbuf.h>
100 #include <sys/malloc.h>
101 #include <sys/kernel.h>
102 #include <sys/socket.h>
103 #include <sys/sysctl.h>
104 
105 #include <net/if.h>
106 #include <net/if_arp.h>
107 #include <net/ethernet.h>
108 #include <net/if_dl.h>
109 #include <net/if_media.h>
110 #include <net/if_types.h>
111 #include <net/if_vlan_var.h>
112 
113 #include <net/bpf.h>
114 
115 #include <machine/bus_pio.h>
116 #include <machine/bus_memio.h>
117 #include <machine/bus.h>
118 #include <machine/resource.h>
119 #include <sys/bus.h>
120 #include <sys/rman.h>
121 
122 #include <dev/mii/mii.h>
123 #include <dev/mii/miivar.h>
124 
125 #include <dev/pci/pcireg.h>
126 #include <dev/pci/pcivar.h>
127 
128 #define DC_USEIOSPACE
129 #ifdef __alpha__
130 #define SRM_MEDIA
131 #endif
132 
133 #include <pci/if_dcreg.h>
134 
135 MODULE_DEPEND(dc, pci, 1, 1, 1);
136 MODULE_DEPEND(dc, ether, 1, 1, 1);
137 MODULE_DEPEND(dc, miibus, 1, 1, 1);
138 
139 /* "controller miibus0" required.  See GENERIC if you get errors here. */
140 #include "miibus_if.h"
141 
142 /*
143  * Various supported device vendors/types and their names.
144  */
145 static struct dc_type dc_devs[] = {
146 	{ DC_VENDORID_DEC, DC_DEVICEID_21143,
147 		"Intel 21143 10/100BaseTX" },
148 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009,
149 		"Davicom DM9009 10/100BaseTX" },
150 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100,
151 		"Davicom DM9100 10/100BaseTX" },
152 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
153 		"Davicom DM9102 10/100BaseTX" },
154 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
155 		"Davicom DM9102A 10/100BaseTX" },
156 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AL981,
157 		"ADMtek AL981 10/100BaseTX" },
158 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AN985,
159 		"ADMtek AN985 10/100BaseTX" },
160 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511,
161 		"ADMtek ADM9511 10/100BaseTX" },
162 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513,
163 		"ADMtek ADM9513 10/100BaseTX" },
164  	{ DC_VENDORID_ADMTEK, DC_DEVICEID_FA511,
165  		"Netgear FA511 10/100BaseTX" },
166 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
167 		"ASIX AX88140A 10/100BaseTX" },
168 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
169 		"ASIX AX88141 10/100BaseTX" },
170 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
171 		"Macronix 98713 10/100BaseTX" },
172 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
173 		"Macronix 98713A 10/100BaseTX" },
174 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
175 		"Compex RL100-TX 10/100BaseTX" },
176 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
177 		"Compex RL100-TX 10/100BaseTX" },
178 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
179 		"Macronix 98715/98715A 10/100BaseTX" },
180 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
181 		"Macronix 98715AEC-C 10/100BaseTX" },
182 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
183 		"Macronix 98725 10/100BaseTX" },
184 	{ DC_VENDORID_MX, DC_DEVICEID_98727,
185 		"Macronix 98727/98732 10/100BaseTX" },
186 	{ DC_VENDORID_LO, DC_DEVICEID_82C115,
187 		"LC82C115 PNIC II 10/100BaseTX" },
188 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
189 		"82c168 PNIC 10/100BaseTX" },
190 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
191 		"82c169 PNIC 10/100BaseTX" },
192 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN1217,
193 		"Accton EN1217 10/100BaseTX" },
194 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN2242,
195 		"Accton EN2242 MiniPCI 10/100BaseTX" },
196 	{ DC_VENDORID_XIRCOM, DC_DEVICEID_X3201,
197 	  	"Xircom X3201 10/100BaseTX" },
198 	{ DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500,
199 		"Abocom FE2500 10/100BaseTX" },
200 	{ DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112,
201 		"Conexant LANfinity MiniPCI 10/100BaseTX" },
202 	{ DC_VENDORID_HAWKING, DC_DEVICEID_HAWKING_PN672TX,
203 		"Hawking CB102 CardBus 10/100" },
204 	{ DC_VENDORID_PLANEX, DC_DEVICEID_FNW3602T,
205 		"PlaneX FNW-3602-T CardBus 10/100" },
206 	{ DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB,
207 		"3Com OfficeConnect 10/100B" },
208 	{ DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN120,
209 		"Microsoft MN-120 CardBus 10/100" },
210 	{ DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130,
211 		"Microsoft MN-130 10/100" },
212 	{ DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130_FAKE,
213 		"Microsoft MN-130 10/100" },
214 	{ 0, 0, NULL }
215 };
216 
217 static int dc_probe		(device_t);
218 static int dc_attach		(device_t);
219 static int dc_detach		(device_t);
220 static int dc_suspend		(device_t);
221 static int dc_resume		(device_t);
222 #ifndef BURN_BRIDGES
223 static void dc_acpi		(device_t);
224 #endif
225 static struct dc_type *dc_devtype	(device_t);
226 static int dc_newbuf		(struct dc_softc *, int, int);
227 static int dc_encap		(struct dc_softc *, struct mbuf *);
228 static void dc_pnic_rx_bug_war	(struct dc_softc *, int);
229 static int dc_rx_resync		(struct dc_softc *);
230 static void dc_rxeof		(struct dc_softc *);
231 static void dc_txeof		(struct dc_softc *);
232 static void dc_tick		(void *);
233 static void dc_tx_underrun	(struct dc_softc *);
234 static void dc_intr		(void *);
235 static void dc_start		(struct ifnet *);
236 static int dc_ioctl		(struct ifnet *, u_long, caddr_t);
237 static void dc_init		(void *);
238 static void dc_stop		(struct dc_softc *);
239 static void dc_watchdog		(struct ifnet *);
240 static void dc_shutdown		(device_t);
241 static int dc_ifmedia_upd	(struct ifnet *);
242 static void dc_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
243 
244 static void dc_delay		(struct dc_softc *);
245 static void dc_eeprom_idle	(struct dc_softc *);
246 static void dc_eeprom_putbyte	(struct dc_softc *, int);
247 static void dc_eeprom_getword	(struct dc_softc *, int, u_int16_t *);
248 static void dc_eeprom_getword_pnic
249 				(struct dc_softc *, int, u_int16_t *);
250 static void dc_eeprom_getword_xircom
251 				(struct dc_softc *, int, u_int16_t *);
252 static void dc_eeprom_width	(struct dc_softc *);
253 static void dc_read_eeprom	(struct dc_softc *, caddr_t, int, int, int);
254 
255 static void dc_mii_writebit	(struct dc_softc *, int);
256 static int dc_mii_readbit	(struct dc_softc *);
257 static void dc_mii_sync		(struct dc_softc *);
258 static void dc_mii_send		(struct dc_softc *, u_int32_t, int);
259 static int dc_mii_readreg	(struct dc_softc *, struct dc_mii_frame *);
260 static int dc_mii_writereg	(struct dc_softc *, struct dc_mii_frame *);
261 static int dc_miibus_readreg	(device_t, int, int);
262 static int dc_miibus_writereg	(device_t, int, int, int);
263 static void dc_miibus_statchg	(device_t);
264 static void dc_miibus_mediainit	(device_t);
265 
266 static void dc_setcfg		(struct dc_softc *, int);
267 static u_int32_t dc_crc_le	(struct dc_softc *, caddr_t);
268 static u_int32_t dc_crc_be	(caddr_t);
269 static void dc_setfilt_21143	(struct dc_softc *);
270 static void dc_setfilt_asix	(struct dc_softc *);
271 static void dc_setfilt_admtek	(struct dc_softc *);
272 static void dc_setfilt_xircom	(struct dc_softc *);
273 
274 static void dc_setfilt		(struct dc_softc *);
275 
276 static void dc_reset		(struct dc_softc *);
277 static int dc_list_rx_init	(struct dc_softc *);
278 static int dc_list_tx_init	(struct dc_softc *);
279 
280 static void dc_read_srom	(struct dc_softc *, int);
281 static void dc_parse_21143_srom	(struct dc_softc *);
282 static void dc_decode_leaf_sia	(struct dc_softc *, struct dc_eblock_sia *);
283 static void dc_decode_leaf_mii	(struct dc_softc *, struct dc_eblock_mii *);
284 static void dc_decode_leaf_sym	(struct dc_softc *, struct dc_eblock_sym *);
285 static void dc_apply_fixup	(struct dc_softc *, int);
286 
287 static void dc_dma_map_txbuf	(void *, bus_dma_segment_t *, int, bus_size_t,
288 				    int);
289 static void dc_dma_map_rxbuf	(void *, bus_dma_segment_t *, int, bus_size_t,
290 				    int);
291 
292 #ifdef DC_USEIOSPACE
293 #define DC_RES			SYS_RES_IOPORT
294 #define DC_RID			DC_PCI_CFBIO
295 #else
296 #define DC_RES			SYS_RES_MEMORY
297 #define DC_RID			DC_PCI_CFBMA
298 #endif
299 
300 static device_method_t dc_methods[] = {
301 	/* Device interface */
302 	DEVMETHOD(device_probe,		dc_probe),
303 	DEVMETHOD(device_attach,	dc_attach),
304 	DEVMETHOD(device_detach,	dc_detach),
305 	DEVMETHOD(device_suspend,	dc_suspend),
306 	DEVMETHOD(device_resume,	dc_resume),
307 	DEVMETHOD(device_shutdown,	dc_shutdown),
308 
309 	/* bus interface */
310 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
311 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
312 
313 	/* MII interface */
314 	DEVMETHOD(miibus_readreg,	dc_miibus_readreg),
315 	DEVMETHOD(miibus_writereg,	dc_miibus_writereg),
316 	DEVMETHOD(miibus_statchg,	dc_miibus_statchg),
317 	DEVMETHOD(miibus_mediainit,	dc_miibus_mediainit),
318 
319 	{ 0, 0 }
320 };
321 
322 static driver_t dc_driver = {
323 	"dc",
324 	dc_methods,
325 	sizeof(struct dc_softc)
326 };
327 
328 static devclass_t dc_devclass;
329 #ifdef __i386__
330 static int dc_quick = 1;
331 SYSCTL_INT(_hw, OID_AUTO, dc_quick, CTLFLAG_RW, &dc_quick, 0,
332     "do not mdevget in dc driver");
333 #endif
334 
335 DRIVER_MODULE(dc, cardbus, dc_driver, dc_devclass, 0, 0);
336 DRIVER_MODULE(dc, pci, dc_driver, dc_devclass, 0, 0);
337 DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, 0, 0);
338 
339 #define DC_SETBIT(sc, reg, x)				\
340 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
341 
342 #define DC_CLRBIT(sc, reg, x)				\
343 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
344 
345 #define SIO_SET(x)	DC_SETBIT(sc, DC_SIO, (x))
346 #define SIO_CLR(x)	DC_CLRBIT(sc, DC_SIO, (x))
347 
348 #define IS_MPSAFE 	0
349 
350 static void
351 dc_delay(struct dc_softc *sc)
352 {
353 	int idx;
354 
355 	for (idx = (300 / 33) + 1; idx > 0; idx--)
356 		CSR_READ_4(sc, DC_BUSCTL);
357 }
358 
359 static void
360 dc_eeprom_width(struct dc_softc *sc)
361 {
362 	int i;
363 
364 	/* Force EEPROM to idle state. */
365 	dc_eeprom_idle(sc);
366 
367 	/* Enter EEPROM access mode. */
368 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
369 	dc_delay(sc);
370 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
371 	dc_delay(sc);
372 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
373 	dc_delay(sc);
374 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
375 	dc_delay(sc);
376 
377 	for (i = 3; i--;) {
378 		if (6 & (1 << i))
379 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
380 		else
381 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
382 		dc_delay(sc);
383 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
384 		dc_delay(sc);
385 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
386 		dc_delay(sc);
387 	}
388 
389 	for (i = 1; i <= 12; i++) {
390 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
391 		dc_delay(sc);
392 		if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) {
393 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
394 			dc_delay(sc);
395 			break;
396 		}
397 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
398 		dc_delay(sc);
399 	}
400 
401 	/* Turn off EEPROM access mode. */
402 	dc_eeprom_idle(sc);
403 
404 	if (i < 4 || i > 12)
405 		sc->dc_romwidth = 6;
406 	else
407 		sc->dc_romwidth = i;
408 
409 	/* Enter EEPROM access mode. */
410 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
411 	dc_delay(sc);
412 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
413 	dc_delay(sc);
414 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
415 	dc_delay(sc);
416 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
417 	dc_delay(sc);
418 
419 	/* Turn off EEPROM access mode. */
420 	dc_eeprom_idle(sc);
421 }
422 
423 static void
424 dc_eeprom_idle(struct dc_softc *sc)
425 {
426 	int i;
427 
428 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
429 	dc_delay(sc);
430 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
431 	dc_delay(sc);
432 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
433 	dc_delay(sc);
434 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
435 	dc_delay(sc);
436 
437 	for (i = 0; i < 25; i++) {
438 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
439 		dc_delay(sc);
440 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
441 		dc_delay(sc);
442 	}
443 
444 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
445 	dc_delay(sc);
446 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
447 	dc_delay(sc);
448 	CSR_WRITE_4(sc, DC_SIO, 0x00000000);
449 }
450 
451 /*
452  * Send a read command and address to the EEPROM, check for ACK.
453  */
454 static void
455 dc_eeprom_putbyte(struct dc_softc *sc, int addr)
456 {
457 	int d, i;
458 
459 	d = DC_EECMD_READ >> 6;
460 	for (i = 3; i--; ) {
461 		if (d & (1 << i))
462 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
463 		else
464 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
465 		dc_delay(sc);
466 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
467 		dc_delay(sc);
468 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
469 		dc_delay(sc);
470 	}
471 
472 	/*
473 	 * Feed in each bit and strobe the clock.
474 	 */
475 	for (i = sc->dc_romwidth; i--;) {
476 		if (addr & (1 << i)) {
477 			SIO_SET(DC_SIO_EE_DATAIN);
478 		} else {
479 			SIO_CLR(DC_SIO_EE_DATAIN);
480 		}
481 		dc_delay(sc);
482 		SIO_SET(DC_SIO_EE_CLK);
483 		dc_delay(sc);
484 		SIO_CLR(DC_SIO_EE_CLK);
485 		dc_delay(sc);
486 	}
487 }
488 
489 /*
490  * Read a word of data stored in the EEPROM at address 'addr.'
491  * The PNIC 82c168/82c169 has its own non-standard way to read
492  * the EEPROM.
493  */
494 static void
495 dc_eeprom_getword_pnic(struct dc_softc *sc, int addr, u_int16_t *dest)
496 {
497 	int i;
498 	u_int32_t r;
499 
500 	CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ | addr);
501 
502 	for (i = 0; i < DC_TIMEOUT; i++) {
503 		DELAY(1);
504 		r = CSR_READ_4(sc, DC_SIO);
505 		if (!(r & DC_PN_SIOCTL_BUSY)) {
506 			*dest = (u_int16_t)(r & 0xFFFF);
507 			return;
508 		}
509 	}
510 }
511 
512 /*
513  * Read a word of data stored in the EEPROM at address 'addr.'
514  * The Xircom X3201 has its own non-standard way to read
515  * the EEPROM, too.
516  */
517 static void
518 dc_eeprom_getword_xircom(struct dc_softc *sc, int addr, u_int16_t *dest)
519 {
520 
521 	SIO_SET(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
522 
523 	addr *= 2;
524 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
525 	*dest = (u_int16_t)CSR_READ_4(sc, DC_SIO) & 0xff;
526 	addr += 1;
527 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
528 	*dest |= ((u_int16_t)CSR_READ_4(sc, DC_SIO) & 0xff) << 8;
529 
530 	SIO_CLR(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
531 }
532 
533 /*
534  * Read a word of data stored in the EEPROM at address 'addr.'
535  */
536 static void
537 dc_eeprom_getword(struct dc_softc *sc, int addr, u_int16_t *dest)
538 {
539 	int i;
540 	u_int16_t word = 0;
541 
542 	/* Force EEPROM to idle state. */
543 	dc_eeprom_idle(sc);
544 
545 	/* Enter EEPROM access mode. */
546 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
547 	dc_delay(sc);
548 	DC_SETBIT(sc, DC_SIO,  DC_SIO_ROMCTL_READ);
549 	dc_delay(sc);
550 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
551 	dc_delay(sc);
552 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
553 	dc_delay(sc);
554 
555 	/*
556 	 * Send address of word we want to read.
557 	 */
558 	dc_eeprom_putbyte(sc, addr);
559 
560 	/*
561 	 * Start reading bits from EEPROM.
562 	 */
563 	for (i = 0x8000; i; i >>= 1) {
564 		SIO_SET(DC_SIO_EE_CLK);
565 		dc_delay(sc);
566 		if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
567 			word |= i;
568 		dc_delay(sc);
569 		SIO_CLR(DC_SIO_EE_CLK);
570 		dc_delay(sc);
571 	}
572 
573 	/* Turn off EEPROM access mode. */
574 	dc_eeprom_idle(sc);
575 
576 	*dest = word;
577 }
578 
579 /*
580  * Read a sequence of words from the EEPROM.
581  */
582 static void
583 dc_read_eeprom(struct dc_softc *sc, caddr_t dest, int off, int cnt, int swap)
584 {
585 	int i;
586 	u_int16_t word = 0, *ptr;
587 
588 	for (i = 0; i < cnt; i++) {
589 		if (DC_IS_PNIC(sc))
590 			dc_eeprom_getword_pnic(sc, off + i, &word);
591 		else if (DC_IS_XIRCOM(sc))
592 			dc_eeprom_getword_xircom(sc, off + i, &word);
593 		else
594 			dc_eeprom_getword(sc, off + i, &word);
595 		ptr = (u_int16_t *)(dest + (i * 2));
596 		if (swap)
597 			*ptr = ntohs(word);
598 		else
599 			*ptr = word;
600 	}
601 }
602 
603 /*
604  * The following two routines are taken from the Macronix 98713
605  * Application Notes pp.19-21.
606  */
607 /*
608  * Write a bit to the MII bus.
609  */
610 static void
611 dc_mii_writebit(struct dc_softc *sc, int bit)
612 {
613 
614 	if (bit)
615 		CSR_WRITE_4(sc, DC_SIO,
616 		    DC_SIO_ROMCTL_WRITE | DC_SIO_MII_DATAOUT);
617 	else
618 		CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
619 
620 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
621 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
622 }
623 
624 /*
625  * Read a bit from the MII bus.
626  */
627 static int
628 dc_mii_readbit(struct dc_softc *sc)
629 {
630 
631 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_READ | DC_SIO_MII_DIR);
632 	CSR_READ_4(sc, DC_SIO);
633 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
634 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
635 	if (CSR_READ_4(sc, DC_SIO) & DC_SIO_MII_DATAIN)
636 		return (1);
637 
638 	return (0);
639 }
640 
641 /*
642  * Sync the PHYs by setting data bit and strobing the clock 32 times.
643  */
644 static void
645 dc_mii_sync(struct dc_softc *sc)
646 {
647 	int i;
648 
649 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
650 
651 	for (i = 0; i < 32; i++)
652 		dc_mii_writebit(sc, 1);
653 }
654 
655 /*
656  * Clock a series of bits through the MII.
657  */
658 static void
659 dc_mii_send(struct dc_softc *sc, u_int32_t bits, int cnt)
660 {
661 	int i;
662 
663 	for (i = (0x1 << (cnt - 1)); i; i >>= 1)
664 		dc_mii_writebit(sc, bits & i);
665 }
666 
667 /*
668  * Read an PHY register through the MII.
669  */
670 static int
671 dc_mii_readreg(struct dc_softc *sc, struct dc_mii_frame *frame)
672 {
673 	int i, ack;
674 
675 	DC_LOCK(sc);
676 
677 	/*
678 	 * Set up frame for RX.
679 	 */
680 	frame->mii_stdelim = DC_MII_STARTDELIM;
681 	frame->mii_opcode = DC_MII_READOP;
682 	frame->mii_turnaround = 0;
683 	frame->mii_data = 0;
684 
685 	/*
686 	 * Sync the PHYs.
687 	 */
688 	dc_mii_sync(sc);
689 
690 	/*
691 	 * Send command/address info.
692 	 */
693 	dc_mii_send(sc, frame->mii_stdelim, 2);
694 	dc_mii_send(sc, frame->mii_opcode, 2);
695 	dc_mii_send(sc, frame->mii_phyaddr, 5);
696 	dc_mii_send(sc, frame->mii_regaddr, 5);
697 
698 #ifdef notdef
699 	/* Idle bit */
700 	dc_mii_writebit(sc, 1);
701 	dc_mii_writebit(sc, 0);
702 #endif
703 
704 	/* Check for ack. */
705 	ack = dc_mii_readbit(sc);
706 
707 	/*
708 	 * Now try reading data bits. If the ack failed, we still
709 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
710 	 */
711 	if (ack) {
712 		for (i = 0; i < 16; i++)
713 			dc_mii_readbit(sc);
714 		goto fail;
715 	}
716 
717 	for (i = 0x8000; i; i >>= 1) {
718 		if (!ack) {
719 			if (dc_mii_readbit(sc))
720 				frame->mii_data |= i;
721 		}
722 	}
723 
724 fail:
725 
726 	dc_mii_writebit(sc, 0);
727 	dc_mii_writebit(sc, 0);
728 
729 	DC_UNLOCK(sc);
730 
731 	if (ack)
732 		return (1);
733 	return (0);
734 }
735 
736 /*
737  * Write to a PHY register through the MII.
738  */
739 static int
740 dc_mii_writereg(struct dc_softc *sc, struct dc_mii_frame *frame)
741 {
742 
743 	DC_LOCK(sc);
744 	/*
745 	 * Set up frame for TX.
746 	 */
747 
748 	frame->mii_stdelim = DC_MII_STARTDELIM;
749 	frame->mii_opcode = DC_MII_WRITEOP;
750 	frame->mii_turnaround = DC_MII_TURNAROUND;
751 
752 	/*
753 	 * Sync the PHYs.
754 	 */
755 	dc_mii_sync(sc);
756 
757 	dc_mii_send(sc, frame->mii_stdelim, 2);
758 	dc_mii_send(sc, frame->mii_opcode, 2);
759 	dc_mii_send(sc, frame->mii_phyaddr, 5);
760 	dc_mii_send(sc, frame->mii_regaddr, 5);
761 	dc_mii_send(sc, frame->mii_turnaround, 2);
762 	dc_mii_send(sc, frame->mii_data, 16);
763 
764 	/* Idle bit. */
765 	dc_mii_writebit(sc, 0);
766 	dc_mii_writebit(sc, 0);
767 
768 	DC_UNLOCK(sc);
769 
770 	return (0);
771 }
772 
773 static int
774 dc_miibus_readreg(device_t dev, int phy, int reg)
775 {
776 	struct dc_mii_frame frame;
777 	struct dc_softc	 *sc;
778 	int i, rval, phy_reg = 0;
779 
780 	sc = device_get_softc(dev);
781 	bzero(&frame, sizeof(frame));
782 
783 	/*
784 	 * Note: both the AL981 and AN985 have internal PHYs,
785 	 * however the AL981 provides direct access to the PHY
786 	 * registers while the AN985 uses a serial MII interface.
787 	 * The AN985's MII interface is also buggy in that you
788 	 * can read from any MII address (0 to 31), but only address 1
789 	 * behaves normally. To deal with both cases, we pretend
790 	 * that the PHY is at MII address 1.
791 	 */
792 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
793 		return (0);
794 
795 	/*
796 	 * Note: the ukphy probes of the RS7112 report a PHY at
797 	 * MII address 0 (possibly HomePNA?) and 1 (ethernet)
798 	 * so we only respond to correct one.
799 	 */
800 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
801 		return (0);
802 
803 	if (sc->dc_pmode != DC_PMODE_MII) {
804 		if (phy == (MII_NPHY - 1)) {
805 			switch (reg) {
806 			case MII_BMSR:
807 			/*
808 			 * Fake something to make the probe
809 			 * code think there's a PHY here.
810 			 */
811 				return (BMSR_MEDIAMASK);
812 				break;
813 			case MII_PHYIDR1:
814 				if (DC_IS_PNIC(sc))
815 					return (DC_VENDORID_LO);
816 				return (DC_VENDORID_DEC);
817 				break;
818 			case MII_PHYIDR2:
819 				if (DC_IS_PNIC(sc))
820 					return (DC_DEVICEID_82C168);
821 				return (DC_DEVICEID_21143);
822 				break;
823 			default:
824 				return (0);
825 				break;
826 			}
827 		} else
828 			return (0);
829 	}
830 
831 	if (DC_IS_PNIC(sc)) {
832 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
833 		    (phy << 23) | (reg << 18));
834 		for (i = 0; i < DC_TIMEOUT; i++) {
835 			DELAY(1);
836 			rval = CSR_READ_4(sc, DC_PN_MII);
837 			if (!(rval & DC_PN_MII_BUSY)) {
838 				rval &= 0xFFFF;
839 				return (rval == 0xFFFF ? 0 : rval);
840 			}
841 		}
842 		return (0);
843 	}
844 
845 	if (DC_IS_COMET(sc)) {
846 		switch (reg) {
847 		case MII_BMCR:
848 			phy_reg = DC_AL_BMCR;
849 			break;
850 		case MII_BMSR:
851 			phy_reg = DC_AL_BMSR;
852 			break;
853 		case MII_PHYIDR1:
854 			phy_reg = DC_AL_VENID;
855 			break;
856 		case MII_PHYIDR2:
857 			phy_reg = DC_AL_DEVID;
858 			break;
859 		case MII_ANAR:
860 			phy_reg = DC_AL_ANAR;
861 			break;
862 		case MII_ANLPAR:
863 			phy_reg = DC_AL_LPAR;
864 			break;
865 		case MII_ANER:
866 			phy_reg = DC_AL_ANER;
867 			break;
868 		default:
869 			printf("dc%d: phy_read: bad phy register %x\n",
870 			    sc->dc_unit, reg);
871 			return (0);
872 			break;
873 		}
874 
875 		rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
876 
877 		if (rval == 0xFFFF)
878 			return (0);
879 		return (rval);
880 	}
881 
882 	frame.mii_phyaddr = phy;
883 	frame.mii_regaddr = reg;
884 	if (sc->dc_type == DC_TYPE_98713) {
885 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
886 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
887 	}
888 	dc_mii_readreg(sc, &frame);
889 	if (sc->dc_type == DC_TYPE_98713)
890 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
891 
892 	return (frame.mii_data);
893 }
894 
895 static int
896 dc_miibus_writereg(device_t dev, int phy, int reg, int data)
897 {
898 	struct dc_softc *sc;
899 	struct dc_mii_frame frame;
900 	int i, phy_reg = 0;
901 
902 	sc = device_get_softc(dev);
903 	bzero(&frame, sizeof(frame));
904 
905 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
906 		return (0);
907 
908 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
909 		return (0);
910 
911 	if (DC_IS_PNIC(sc)) {
912 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
913 		    (phy << 23) | (reg << 10) | data);
914 		for (i = 0; i < DC_TIMEOUT; i++) {
915 			if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
916 				break;
917 		}
918 		return (0);
919 	}
920 
921 	if (DC_IS_COMET(sc)) {
922 		switch (reg) {
923 		case MII_BMCR:
924 			phy_reg = DC_AL_BMCR;
925 			break;
926 		case MII_BMSR:
927 			phy_reg = DC_AL_BMSR;
928 			break;
929 		case MII_PHYIDR1:
930 			phy_reg = DC_AL_VENID;
931 			break;
932 		case MII_PHYIDR2:
933 			phy_reg = DC_AL_DEVID;
934 			break;
935 		case MII_ANAR:
936 			phy_reg = DC_AL_ANAR;
937 			break;
938 		case MII_ANLPAR:
939 			phy_reg = DC_AL_LPAR;
940 			break;
941 		case MII_ANER:
942 			phy_reg = DC_AL_ANER;
943 			break;
944 		default:
945 			printf("dc%d: phy_write: bad phy register %x\n",
946 			    sc->dc_unit, reg);
947 			return (0);
948 			break;
949 		}
950 
951 		CSR_WRITE_4(sc, phy_reg, data);
952 		return (0);
953 	}
954 
955 	frame.mii_phyaddr = phy;
956 	frame.mii_regaddr = reg;
957 	frame.mii_data = data;
958 
959 	if (sc->dc_type == DC_TYPE_98713) {
960 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
961 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
962 	}
963 	dc_mii_writereg(sc, &frame);
964 	if (sc->dc_type == DC_TYPE_98713)
965 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
966 
967 	return (0);
968 }
969 
970 static void
971 dc_miibus_statchg(device_t dev)
972 {
973 	struct dc_softc *sc;
974 	struct mii_data *mii;
975 	struct ifmedia *ifm;
976 
977 	sc = device_get_softc(dev);
978 	if (DC_IS_ADMTEK(sc))
979 		return;
980 
981 	mii = device_get_softc(sc->dc_miibus);
982 	ifm = &mii->mii_media;
983 	if (DC_IS_DAVICOM(sc) &&
984 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
985 		dc_setcfg(sc, ifm->ifm_media);
986 		sc->dc_if_media = ifm->ifm_media;
987 	} else {
988 		dc_setcfg(sc, mii->mii_media_active);
989 		sc->dc_if_media = mii->mii_media_active;
990 	}
991 }
992 
993 /*
994  * Special support for DM9102A cards with HomePNA PHYs. Note:
995  * with the Davicom DM9102A/DM9801 eval board that I have, it seems
996  * to be impossible to talk to the management interface of the DM9801
997  * PHY (its MDIO pin is not connected to anything). Consequently,
998  * the driver has to just 'know' about the additional mode and deal
999  * with it itself. *sigh*
1000  */
1001 static void
1002 dc_miibus_mediainit(device_t dev)
1003 {
1004 	struct dc_softc *sc;
1005 	struct mii_data *mii;
1006 	struct ifmedia *ifm;
1007 	int rev;
1008 
1009 	rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF;
1010 
1011 	sc = device_get_softc(dev);
1012 	mii = device_get_softc(sc->dc_miibus);
1013 	ifm = &mii->mii_media;
1014 
1015 	if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A)
1016 		ifmedia_add(ifm, IFM_ETHER | IFM_HPNA_1, 0, NULL);
1017 }
1018 
1019 #define DC_POLY		0xEDB88320
1020 #define DC_BITS_512	9
1021 #define DC_BITS_128	7
1022 #define DC_BITS_64	6
1023 
1024 static u_int32_t
1025 dc_crc_le(struct dc_softc *sc, caddr_t addr)
1026 {
1027 	u_int32_t idx, bit, data, crc;
1028 
1029 	/* Compute CRC for the address value. */
1030 	crc = 0xFFFFFFFF; /* initial value */
1031 
1032 	for (idx = 0; idx < 6; idx++) {
1033 		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1)
1034 			crc = (crc >> 1) ^ (((crc ^ data) & 1) ? DC_POLY : 0);
1035 	}
1036 
1037 	/*
1038 	 * The hash table on the PNIC II and the MX98715AEC-C/D/E
1039 	 * chips is only 128 bits wide.
1040 	 */
1041 	if (sc->dc_flags & DC_128BIT_HASH)
1042 		return (crc & ((1 << DC_BITS_128) - 1));
1043 
1044 	/* The hash table on the MX98715BEC is only 64 bits wide. */
1045 	if (sc->dc_flags & DC_64BIT_HASH)
1046 		return (crc & ((1 << DC_BITS_64) - 1));
1047 
1048 	/* Xircom's hash filtering table is different (read: weird) */
1049 	/* Xircom uses the LEAST significant bits */
1050 	if (DC_IS_XIRCOM(sc)) {
1051 		if ((crc & 0x180) == 0x180)
1052 			return ((crc & 0x0F) + (crc & 0x70) * 3 + (14 << 4));
1053 		else
1054 			return ((crc & 0x1F) + ((crc >> 1) & 0xF0) * 3 +
1055 			    (12 << 4));
1056 	}
1057 
1058 	return (crc & ((1 << DC_BITS_512) - 1));
1059 }
1060 
1061 /*
1062  * Calculate CRC of a multicast group address, return the lower 6 bits.
1063  */
1064 static u_int32_t
1065 dc_crc_be(caddr_t addr)
1066 {
1067 	u_int32_t crc, carry;
1068 	int i, j;
1069 	u_int8_t c;
1070 
1071 	/* Compute CRC for the address value. */
1072 	crc = 0xFFFFFFFF; /* initial value */
1073 
1074 	for (i = 0; i < 6; i++) {
1075 		c = *(addr + i);
1076 		for (j = 0; j < 8; j++) {
1077 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
1078 			crc <<= 1;
1079 			c >>= 1;
1080 			if (carry)
1081 				crc = (crc ^ 0x04c11db6) | carry;
1082 		}
1083 	}
1084 
1085 	/* Return the filter bit position. */
1086 	return ((crc >> 26) & 0x0000003F);
1087 }
1088 
1089 /*
1090  * 21143-style RX filter setup routine. Filter programming is done by
1091  * downloading a special setup frame into the TX engine. 21143, Macronix,
1092  * PNIC, PNIC II and Davicom chips are programmed this way.
1093  *
1094  * We always program the chip using 'hash perfect' mode, i.e. one perfect
1095  * address (our node address) and a 512-bit hash filter for multicast
1096  * frames. We also sneak the broadcast address into the hash filter since
1097  * we need that too.
1098  */
1099 static void
1100 dc_setfilt_21143(struct dc_softc *sc)
1101 {
1102 	struct dc_desc *sframe;
1103 	u_int32_t h, *sp;
1104 	struct ifmultiaddr *ifma;
1105 	struct ifnet *ifp;
1106 	int i;
1107 
1108 	ifp = &sc->arpcom.ac_if;
1109 
1110 	i = sc->dc_cdata.dc_tx_prod;
1111 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1112 	sc->dc_cdata.dc_tx_cnt++;
1113 	sframe = &sc->dc_ldata->dc_tx_list[i];
1114 	sp = sc->dc_cdata.dc_sbuf;
1115 	bzero(sp, DC_SFRAME_LEN);
1116 
1117 	sframe->dc_data = htole32(sc->dc_saddr);
1118 	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
1119 	    DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
1120 
1121 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
1122 
1123 	/* If we want promiscuous mode, set the allframes bit. */
1124 	if (ifp->if_flags & IFF_PROMISC)
1125 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1126 	else
1127 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1128 
1129 	if (ifp->if_flags & IFF_ALLMULTI)
1130 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1131 	else
1132 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1133 
1134 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1135 		if (ifma->ifma_addr->sa_family != AF_LINK)
1136 			continue;
1137 		h = dc_crc_le(sc,
1138 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1139 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1140 	}
1141 
1142 	if (ifp->if_flags & IFF_BROADCAST) {
1143 		h = dc_crc_le(sc, (caddr_t)ifp->if_broadcastaddr);
1144 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1145 	}
1146 
1147 	/* Set our MAC address */
1148 	sp[39] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
1149 	sp[40] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
1150 	sp[41] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
1151 
1152 	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1153 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1154 
1155 	/*
1156 	 * The PNIC takes an exceedingly long time to process its
1157 	 * setup frame; wait 10ms after posting the setup frame
1158 	 * before proceeding, just so it has time to swallow its
1159 	 * medicine.
1160 	 */
1161 	DELAY(10000);
1162 
1163 	ifp->if_timer = 5;
1164 }
1165 
1166 static void
1167 dc_setfilt_admtek(struct dc_softc *sc)
1168 {
1169 	struct ifnet *ifp;
1170 	struct ifmultiaddr *ifma;
1171 	int h = 0;
1172 	u_int32_t hashes[2] = { 0, 0 };
1173 
1174 	ifp = &sc->arpcom.ac_if;
1175 
1176 	/* Init our MAC address. */
1177 	CSR_WRITE_4(sc, DC_AL_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1178 	CSR_WRITE_4(sc, DC_AL_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1179 
1180 	/* If we want promiscuous mode, set the allframes bit. */
1181 	if (ifp->if_flags & IFF_PROMISC)
1182 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1183 	else
1184 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1185 
1186 	if (ifp->if_flags & IFF_ALLMULTI)
1187 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1188 	else
1189 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1190 
1191 	/* First, zot all the existing hash bits. */
1192 	CSR_WRITE_4(sc, DC_AL_MAR0, 0);
1193 	CSR_WRITE_4(sc, DC_AL_MAR1, 0);
1194 
1195 	/*
1196 	 * If we're already in promisc or allmulti mode, we
1197 	 * don't have to bother programming the multicast filter.
1198 	 */
1199 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
1200 		return;
1201 
1202 	/* Now program new ones. */
1203 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1204 		if (ifma->ifma_addr->sa_family != AF_LINK)
1205 			continue;
1206 		if (DC_IS_CENTAUR(sc))
1207 			h = dc_crc_le(sc, LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1208 		else
1209 			h = dc_crc_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1210 		if (h < 32)
1211 			hashes[0] |= (1 << h);
1212 		else
1213 			hashes[1] |= (1 << (h - 32));
1214 	}
1215 
1216 	CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]);
1217 	CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]);
1218 }
1219 
1220 static void
1221 dc_setfilt_asix(struct dc_softc *sc)
1222 {
1223 	struct ifnet *ifp;
1224 	struct ifmultiaddr *ifma;
1225 	int h = 0;
1226 	u_int32_t hashes[2] = { 0, 0 };
1227 
1228 	ifp = &sc->arpcom.ac_if;
1229 
1230 	/* Init our MAC address */
1231 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
1232 	CSR_WRITE_4(sc, DC_AX_FILTDATA,
1233 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1234 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
1235 	CSR_WRITE_4(sc, DC_AX_FILTDATA,
1236 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1237 
1238 	/* If we want promiscuous mode, set the allframes bit. */
1239 	if (ifp->if_flags & IFF_PROMISC)
1240 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1241 	else
1242 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1243 
1244 	if (ifp->if_flags & IFF_ALLMULTI)
1245 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1246 	else
1247 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1248 
1249 	/*
1250 	 * The ASIX chip has a special bit to enable reception
1251 	 * of broadcast frames.
1252 	 */
1253 	if (ifp->if_flags & IFF_BROADCAST)
1254 		DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1255 	else
1256 		DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1257 
1258 	/* first, zot all the existing hash bits */
1259 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1260 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1261 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1262 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1263 
1264 	/*
1265 	 * If we're already in promisc or allmulti mode, we
1266 	 * don't have to bother programming the multicast filter.
1267 	 */
1268 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
1269 		return;
1270 
1271 	/* now program new ones */
1272 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1273 		if (ifma->ifma_addr->sa_family != AF_LINK)
1274 			continue;
1275 		h = dc_crc_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1276 		if (h < 32)
1277 			hashes[0] |= (1 << h);
1278 		else
1279 			hashes[1] |= (1 << (h - 32));
1280 	}
1281 
1282 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1283 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
1284 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1285 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
1286 }
1287 
1288 static void
1289 dc_setfilt_xircom(struct dc_softc *sc)
1290 {
1291 	struct ifnet *ifp;
1292 	struct ifmultiaddr *ifma;
1293 	struct dc_desc *sframe;
1294 	u_int32_t h, *sp;
1295 	int i;
1296 
1297 	ifp = &sc->arpcom.ac_if;
1298 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1299 
1300 	i = sc->dc_cdata.dc_tx_prod;
1301 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1302 	sc->dc_cdata.dc_tx_cnt++;
1303 	sframe = &sc->dc_ldata->dc_tx_list[i];
1304 	sp = sc->dc_cdata.dc_sbuf;
1305 	bzero(sp, DC_SFRAME_LEN);
1306 
1307 	sframe->dc_data = htole32(sc->dc_saddr);
1308 	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
1309 	    DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
1310 
1311 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
1312 
1313 	/* If we want promiscuous mode, set the allframes bit. */
1314 	if (ifp->if_flags & IFF_PROMISC)
1315 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1316 	else
1317 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1318 
1319 	if (ifp->if_flags & IFF_ALLMULTI)
1320 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1321 	else
1322 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1323 
1324 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1325 		if (ifma->ifma_addr->sa_family != AF_LINK)
1326 			continue;
1327 		h = dc_crc_le(sc,
1328 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1329 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1330 	}
1331 
1332 	if (ifp->if_flags & IFF_BROADCAST) {
1333 		h = dc_crc_le(sc, (caddr_t)ifp->if_broadcastaddr);
1334 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1335 	}
1336 
1337 	/* Set our MAC address */
1338 	sp[0] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
1339 	sp[1] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
1340 	sp[2] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
1341 
1342 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
1343 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
1344 	ifp->if_flags |= IFF_RUNNING;
1345 	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1346 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1347 
1348 	/*
1349 	 * Wait some time...
1350 	 */
1351 	DELAY(1000);
1352 
1353 	ifp->if_timer = 5;
1354 }
1355 
1356 static void
1357 dc_setfilt(struct dc_softc *sc)
1358 {
1359 
1360 	if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
1361 	    DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc))
1362 		dc_setfilt_21143(sc);
1363 
1364 	if (DC_IS_ASIX(sc))
1365 		dc_setfilt_asix(sc);
1366 
1367 	if (DC_IS_ADMTEK(sc))
1368 		dc_setfilt_admtek(sc);
1369 
1370 	if (DC_IS_XIRCOM(sc))
1371 		dc_setfilt_xircom(sc);
1372 }
1373 
1374 /*
1375  * In order to fiddle with the 'full-duplex' and '100Mbps' bits in
1376  * the netconfig register, we first have to put the transmit and/or
1377  * receive logic in the idle state.
1378  */
1379 static void
1380 dc_setcfg(struct dc_softc *sc, int media)
1381 {
1382 	int i, restart = 0, watchdogreg;
1383 	u_int32_t isr;
1384 
1385 	if (IFM_SUBTYPE(media) == IFM_NONE)
1386 		return;
1387 
1388 	if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON)) {
1389 		restart = 1;
1390 		DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1391 
1392 		for (i = 0; i < DC_TIMEOUT; i++) {
1393 			isr = CSR_READ_4(sc, DC_ISR);
1394 			if (isr & DC_ISR_TX_IDLE &&
1395 			    ((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
1396 			    (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT))
1397 				break;
1398 			DELAY(10);
1399 		}
1400 
1401 		if (i == DC_TIMEOUT)
1402 			printf("dc%d: failed to force tx and "
1403 				"rx to idle state\n", sc->dc_unit);
1404 	}
1405 
1406 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
1407 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1408 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1409 		if (sc->dc_pmode == DC_PMODE_MII) {
1410 			if (DC_IS_INTEL(sc)) {
1411 			/* There's a write enable bit here that reads as 1. */
1412 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1413 				watchdogreg &= ~DC_WDOG_CTLWREN;
1414 				watchdogreg |= DC_WDOG_JABBERDIS;
1415 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1416 			} else {
1417 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1418 			}
1419 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1420 			    DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
1421 			if (sc->dc_type == DC_TYPE_98713)
1422 				DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1423 				    DC_NETCFG_SCRAMBLER));
1424 			if (!DC_IS_DAVICOM(sc))
1425 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1426 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1427 			if (DC_IS_INTEL(sc))
1428 				dc_apply_fixup(sc, IFM_AUTO);
1429 		} else {
1430 			if (DC_IS_PNIC(sc)) {
1431 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
1432 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1433 				DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1434 			}
1435 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1436 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1437 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1438 			if (DC_IS_INTEL(sc))
1439 				dc_apply_fixup(sc,
1440 				    (media & IFM_GMASK) == IFM_FDX ?
1441 				    IFM_100_TX | IFM_FDX : IFM_100_TX);
1442 		}
1443 	}
1444 
1445 	if (IFM_SUBTYPE(media) == IFM_10_T) {
1446 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1447 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1448 		if (sc->dc_pmode == DC_PMODE_MII) {
1449 			/* There's a write enable bit here that reads as 1. */
1450 			if (DC_IS_INTEL(sc)) {
1451 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1452 				watchdogreg &= ~DC_WDOG_CTLWREN;
1453 				watchdogreg |= DC_WDOG_JABBERDIS;
1454 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1455 			} else {
1456 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1457 			}
1458 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1459 			    DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
1460 			if (sc->dc_type == DC_TYPE_98713)
1461 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1462 			if (!DC_IS_DAVICOM(sc))
1463 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1464 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1465 			if (DC_IS_INTEL(sc))
1466 				dc_apply_fixup(sc, IFM_AUTO);
1467 		} else {
1468 			if (DC_IS_PNIC(sc)) {
1469 				DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
1470 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1471 				DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1472 			}
1473 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1474 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1475 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1476 			if (DC_IS_INTEL(sc)) {
1477 				DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET);
1478 				DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1479 				if ((media & IFM_GMASK) == IFM_FDX)
1480 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D);
1481 				else
1482 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F);
1483 				DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1484 				DC_CLRBIT(sc, DC_10BTCTRL,
1485 				    DC_TCTL_AUTONEGENBL);
1486 				dc_apply_fixup(sc,
1487 				    (media & IFM_GMASK) == IFM_FDX ?
1488 				    IFM_10_T | IFM_FDX : IFM_10_T);
1489 				DELAY(20000);
1490 			}
1491 		}
1492 	}
1493 
1494 	/*
1495 	 * If this is a Davicom DM9102A card with a DM9801 HomePNA
1496 	 * PHY and we want HomePNA mode, set the portsel bit to turn
1497 	 * on the external MII port.
1498 	 */
1499 	if (DC_IS_DAVICOM(sc)) {
1500 		if (IFM_SUBTYPE(media) == IFM_HPNA_1) {
1501 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1502 			sc->dc_link = 1;
1503 		} else {
1504 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1505 		}
1506 	}
1507 
1508 	if ((media & IFM_GMASK) == IFM_FDX) {
1509 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1510 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1511 			DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1512 	} else {
1513 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1514 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1515 			DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1516 	}
1517 
1518 	if (restart)
1519 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON | DC_NETCFG_RX_ON);
1520 }
1521 
1522 static void
1523 dc_reset(struct dc_softc *sc)
1524 {
1525 	int i;
1526 
1527 	DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1528 
1529 	for (i = 0; i < DC_TIMEOUT; i++) {
1530 		DELAY(10);
1531 		if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
1532 			break;
1533 	}
1534 
1535 	if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_CONEXANT(sc) ||
1536 	    DC_IS_XIRCOM(sc) || DC_IS_INTEL(sc)) {
1537 		DELAY(10000);
1538 		DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1539 		i = 0;
1540 	}
1541 
1542 	if (i == DC_TIMEOUT)
1543 		printf("dc%d: reset never completed!\n", sc->dc_unit);
1544 
1545 	/* Wait a little while for the chip to get its brains in order. */
1546 	DELAY(1000);
1547 
1548 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
1549 	CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
1550 	CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
1551 
1552 	/*
1553 	 * Bring the SIA out of reset. In some cases, it looks
1554 	 * like failing to unreset the SIA soon enough gets it
1555 	 * into a state where it will never come out of reset
1556 	 * until we reset the whole chip again.
1557 	 */
1558 	if (DC_IS_INTEL(sc)) {
1559 		DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1560 		CSR_WRITE_4(sc, DC_10BTCTRL, 0);
1561 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
1562 	}
1563 }
1564 
1565 static struct dc_type *
1566 dc_devtype(device_t dev)
1567 {
1568 	struct dc_type *t;
1569 	u_int32_t rev;
1570 
1571 	t = dc_devs;
1572 
1573 	while (t->dc_name != NULL) {
1574 		if ((pci_get_vendor(dev) == t->dc_vid) &&
1575 		    (pci_get_device(dev) == t->dc_did)) {
1576 			/* Check the PCI revision */
1577 			rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF;
1578 			if (t->dc_did == DC_DEVICEID_98713 &&
1579 			    rev >= DC_REVISION_98713A)
1580 				t++;
1581 			if (t->dc_did == DC_DEVICEID_98713_CP &&
1582 			    rev >= DC_REVISION_98713A)
1583 				t++;
1584 			if (t->dc_did == DC_DEVICEID_987x5 &&
1585 			    rev >= DC_REVISION_98715AEC_C)
1586 				t++;
1587 			if (t->dc_did == DC_DEVICEID_987x5 &&
1588 			    rev >= DC_REVISION_98725)
1589 				t++;
1590 			if (t->dc_did == DC_DEVICEID_AX88140A &&
1591 			    rev >= DC_REVISION_88141)
1592 				t++;
1593 			if (t->dc_did == DC_DEVICEID_82C168 &&
1594 			    rev >= DC_REVISION_82C169)
1595 				t++;
1596 			if (t->dc_did == DC_DEVICEID_DM9102 &&
1597 			    rev >= DC_REVISION_DM9102A)
1598 				t++;
1599 			/*
1600 			 * The Microsoft MN-130 has a device ID of 0x0002,
1601 			 * which happens to be the same as the PNIC 82c168.
1602 			 * To keep dc_attach() from getting confused, we
1603 			 * pretend its ID is something different.
1604 			 * XXX: ideally, dc_attach() should be checking
1605 			 * vendorid+deviceid together to avoid such
1606 			 * collisions.
1607 			 */
1608 			if (t->dc_vid == DC_VENDORID_MICROSOFT &&
1609 			    t->dc_did == DC_DEVICEID_MSMN130)
1610 				t++;
1611 			return (t);
1612 		}
1613 		t++;
1614 	}
1615 
1616 	return (NULL);
1617 }
1618 
1619 /*
1620  * Probe for a 21143 or clone chip. Check the PCI vendor and device
1621  * IDs against our list and return a device name if we find a match.
1622  * We do a little bit of extra work to identify the exact type of
1623  * chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
1624  * but different revision IDs. The same is true for 98715/98715A
1625  * chips and the 98725, as well as the ASIX and ADMtek chips. In some
1626  * cases, the exact chip revision affects driver behavior.
1627  */
1628 static int
1629 dc_probe(device_t dev)
1630 {
1631 	struct dc_type *t;
1632 
1633 	t = dc_devtype(dev);
1634 
1635 	if (t != NULL) {
1636 		device_set_desc(dev, t->dc_name);
1637 		return (0);
1638 	}
1639 
1640 	return (ENXIO);
1641 }
1642 
1643 #ifndef BURN_BRIDGES
1644 static void
1645 dc_acpi(device_t dev)
1646 {
1647 	int unit;
1648 	u_int32_t iobase, membase, irq;
1649 
1650 	unit = device_get_unit(dev);
1651 
1652 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1653 		/* Save important PCI config data. */
1654 		iobase = pci_read_config(dev, DC_PCI_CFBIO, 4);
1655 		membase = pci_read_config(dev, DC_PCI_CFBMA, 4);
1656 		irq = pci_read_config(dev, DC_PCI_CFIT, 4);
1657 
1658 		/* Reset the power state. */
1659 		printf("dc%d: chip is in D%d power mode "
1660 		    "-- setting to D0\n", unit,
1661 		    pci_get_powerstate(dev));
1662 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1663 
1664 		/* Restore PCI config data. */
1665 		pci_write_config(dev, DC_PCI_CFBIO, iobase, 4);
1666 		pci_write_config(dev, DC_PCI_CFBMA, membase, 4);
1667 		pci_write_config(dev, DC_PCI_CFIT, irq, 4);
1668 	}
1669 }
1670 #endif
1671 
1672 static void
1673 dc_apply_fixup(struct dc_softc *sc, int media)
1674 {
1675 	struct dc_mediainfo *m;
1676 	u_int8_t *p;
1677 	int i;
1678 	u_int32_t reg;
1679 
1680 	m = sc->dc_mi;
1681 
1682 	while (m != NULL) {
1683 		if (m->dc_media == media)
1684 			break;
1685 		m = m->dc_next;
1686 	}
1687 
1688 	if (m == NULL)
1689 		return;
1690 
1691 	for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) {
1692 		reg = (p[0] | (p[1] << 8)) << 16;
1693 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1694 	}
1695 
1696 	for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) {
1697 		reg = (p[0] | (p[1] << 8)) << 16;
1698 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1699 	}
1700 }
1701 
1702 static void
1703 dc_decode_leaf_sia(struct dc_softc *sc, struct dc_eblock_sia *l)
1704 {
1705 	struct dc_mediainfo *m;
1706 
1707 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1708 	if (l->dc_sia_code == DC_SIA_CODE_10BT)
1709 		m->dc_media = IFM_10_T;
1710 
1711 	if (l->dc_sia_code == DC_SIA_CODE_10BT_FDX)
1712 		m->dc_media = IFM_10_T | IFM_FDX;
1713 
1714 	if (l->dc_sia_code == DC_SIA_CODE_10B2)
1715 		m->dc_media = IFM_10_2;
1716 
1717 	if (l->dc_sia_code == DC_SIA_CODE_10B5)
1718 		m->dc_media = IFM_10_5;
1719 
1720 	m->dc_gp_len = 2;
1721 	m->dc_gp_ptr = (u_int8_t *)&l->dc_sia_gpio_ctl;
1722 
1723 	m->dc_next = sc->dc_mi;
1724 	sc->dc_mi = m;
1725 
1726 	sc->dc_pmode = DC_PMODE_SIA;
1727 }
1728 
1729 static void
1730 dc_decode_leaf_sym(struct dc_softc *sc, struct dc_eblock_sym *l)
1731 {
1732 	struct dc_mediainfo *m;
1733 
1734 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1735 	if (l->dc_sym_code == DC_SYM_CODE_100BT)
1736 		m->dc_media = IFM_100_TX;
1737 
1738 	if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX)
1739 		m->dc_media = IFM_100_TX | IFM_FDX;
1740 
1741 	m->dc_gp_len = 2;
1742 	m->dc_gp_ptr = (u_int8_t *)&l->dc_sym_gpio_ctl;
1743 
1744 	m->dc_next = sc->dc_mi;
1745 	sc->dc_mi = m;
1746 
1747 	sc->dc_pmode = DC_PMODE_SYM;
1748 }
1749 
1750 static void
1751 dc_decode_leaf_mii(struct dc_softc *sc, struct dc_eblock_mii *l)
1752 {
1753 	struct dc_mediainfo *m;
1754 	u_int8_t *p;
1755 
1756 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1757 	/* We abuse IFM_AUTO to represent MII. */
1758 	m->dc_media = IFM_AUTO;
1759 	m->dc_gp_len = l->dc_gpr_len;
1760 
1761 	p = (u_int8_t *)l;
1762 	p += sizeof(struct dc_eblock_mii);
1763 	m->dc_gp_ptr = p;
1764 	p += 2 * l->dc_gpr_len;
1765 	m->dc_reset_len = *p;
1766 	p++;
1767 	m->dc_reset_ptr = p;
1768 
1769 	m->dc_next = sc->dc_mi;
1770 	sc->dc_mi = m;
1771 }
1772 
1773 static void
1774 dc_read_srom(struct dc_softc *sc, int bits)
1775 {
1776 	int size;
1777 
1778 	size = 2 << bits;
1779 	sc->dc_srom = malloc(size, M_DEVBUF, M_NOWAIT);
1780 	dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (size / 2), 0);
1781 }
1782 
1783 static void
1784 dc_parse_21143_srom(struct dc_softc *sc)
1785 {
1786 	struct dc_leaf_hdr *lhdr;
1787 	struct dc_eblock_hdr *hdr;
1788 	int have_mii, i, loff;
1789 	char *ptr;
1790 
1791 	have_mii = 0;
1792 	loff = sc->dc_srom[27];
1793 	lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]);
1794 
1795 	ptr = (char *)lhdr;
1796 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1797 	/*
1798 	 * Look if we got a MII media block.
1799 	 */
1800 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1801 		hdr = (struct dc_eblock_hdr *)ptr;
1802 		if (hdr->dc_type == DC_EBLOCK_MII)
1803 		    have_mii++;
1804 
1805 		ptr += (hdr->dc_len & 0x7F);
1806 		ptr++;
1807 	}
1808 
1809 	/*
1810 	 * Do the same thing again. Only use SIA and SYM media
1811 	 * blocks if no MII media block is available.
1812 	 */
1813 	ptr = (char *)lhdr;
1814 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1815 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1816 		hdr = (struct dc_eblock_hdr *)ptr;
1817 		switch (hdr->dc_type) {
1818 		case DC_EBLOCK_MII:
1819 			dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr);
1820 			break;
1821 		case DC_EBLOCK_SIA:
1822 			if (! have_mii)
1823 				dc_decode_leaf_sia(sc,
1824 				    (struct dc_eblock_sia *)hdr);
1825 			break;
1826 		case DC_EBLOCK_SYM:
1827 			if (! have_mii)
1828 				dc_decode_leaf_sym(sc,
1829 				    (struct dc_eblock_sym *)hdr);
1830 			break;
1831 		default:
1832 			/* Don't care. Yet. */
1833 			break;
1834 		}
1835 		ptr += (hdr->dc_len & 0x7F);
1836 		ptr++;
1837 	}
1838 }
1839 
1840 static void
1841 dc_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1842 {
1843 	u_int32_t *paddr;
1844 
1845 	KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
1846 	paddr = arg;
1847 	*paddr = segs->ds_addr;
1848 }
1849 
1850 /*
1851  * Attach the interface. Allocate softc structures, do ifmedia
1852  * setup and ethernet/BPF attach.
1853  */
1854 static int
1855 dc_attach(device_t dev)
1856 {
1857 	int tmp = 0;
1858 	u_char eaddr[ETHER_ADDR_LEN];
1859 	u_int32_t command;
1860 	struct dc_softc *sc;
1861 	struct ifnet *ifp;
1862 	u_int32_t revision;
1863 	int unit, error = 0, rid, mac_offset;
1864 	int i;
1865 	u_int8_t *mac;
1866 
1867 	sc = device_get_softc(dev);
1868 	unit = device_get_unit(dev);
1869 
1870 	mtx_init(&sc->dc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1871 	    MTX_DEF | MTX_RECURSE);
1872 #ifndef BURN_BRIDGES
1873 	/*
1874 	 * Handle power management nonsense.
1875 	 */
1876 	dc_acpi(dev);
1877 #endif
1878 	/*
1879 	 * Map control/status registers.
1880 	 */
1881 	pci_enable_busmaster(dev);
1882 
1883 	rid = DC_RID;
1884 	sc->dc_res = bus_alloc_resource(dev, DC_RES, &rid,
1885 	    0, ~0, 1, RF_ACTIVE);
1886 
1887 	if (sc->dc_res == NULL) {
1888 		printf("dc%d: couldn't map ports/memory\n", unit);
1889 		error = ENXIO;
1890 		goto fail;
1891 	}
1892 
1893 	sc->dc_btag = rman_get_bustag(sc->dc_res);
1894 	sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
1895 
1896 	/* Allocate interrupt. */
1897 	rid = 0;
1898 	sc->dc_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1899 	    RF_SHAREABLE | RF_ACTIVE);
1900 
1901 	if (sc->dc_irq == NULL) {
1902 		printf("dc%d: couldn't map interrupt\n", unit);
1903 		error = ENXIO;
1904 		goto fail;
1905 	}
1906 
1907 	/* Need this info to decide on a chip type. */
1908 	sc->dc_info = dc_devtype(dev);
1909 	revision = pci_read_config(dev, DC_PCI_CFRV, 4) & 0x000000FF;
1910 
1911 	/* Get the eeprom width, but PNIC and XIRCOM have diff eeprom */
1912 	if (sc->dc_info->dc_did != DC_DEVICEID_82C168 &&
1913 	   sc->dc_info->dc_did != DC_DEVICEID_X3201)
1914 		dc_eeprom_width(sc);
1915 
1916 	switch (sc->dc_info->dc_did) {
1917 	case DC_DEVICEID_21143:
1918 		sc->dc_type = DC_TYPE_21143;
1919 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1920 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1921 		/* Save EEPROM contents so we can parse them later. */
1922 		dc_read_srom(sc, sc->dc_romwidth);
1923 		break;
1924 	case DC_DEVICEID_DM9009:
1925 	case DC_DEVICEID_DM9100:
1926 	case DC_DEVICEID_DM9102:
1927 		sc->dc_type = DC_TYPE_DM9102;
1928 		sc->dc_flags |= DC_TX_COALESCE | DC_TX_INTR_ALWAYS;
1929 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_TX_STORENFWD;
1930 		sc->dc_flags |= DC_TX_ALIGN;
1931 		sc->dc_pmode = DC_PMODE_MII;
1932 		/* Increase the latency timer value. */
1933 		command = pci_read_config(dev, DC_PCI_CFLT, 4);
1934 		command &= 0xFFFF00FF;
1935 		command |= 0x00008000;
1936 		pci_write_config(dev, DC_PCI_CFLT, command, 4);
1937 		break;
1938 	case DC_DEVICEID_AL981:
1939 		sc->dc_type = DC_TYPE_AL981;
1940 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1941 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1942 		sc->dc_pmode = DC_PMODE_MII;
1943 		dc_read_srom(sc, sc->dc_romwidth);
1944 		break;
1945 	case DC_DEVICEID_AN985:
1946 	case DC_DEVICEID_ADM9511:
1947 	case DC_DEVICEID_ADM9513:
1948 	case DC_DEVICEID_FA511:
1949 	case DC_DEVICEID_FE2500:
1950 	case DC_DEVICEID_EN2242:
1951 	case DC_DEVICEID_HAWKING_PN672TX:
1952 	case DC_DEVICEID_3CSOHOB:
1953 	case DC_DEVICEID_MSMN120:
1954 	case DC_DEVICEID_MSMN130_FAKE: /* XXX avoid collision with PNIC*/
1955 		sc->dc_type = DC_TYPE_AN985;
1956 		sc->dc_flags |= DC_64BIT_HASH;
1957 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1958 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1959 		sc->dc_pmode = DC_PMODE_MII;
1960 		/* Don't read SROM for - auto-loaded on reset */
1961 		break;
1962 	case DC_DEVICEID_98713:
1963 	case DC_DEVICEID_98713_CP:
1964 		if (revision < DC_REVISION_98713A) {
1965 			sc->dc_type = DC_TYPE_98713;
1966 		}
1967 		if (revision >= DC_REVISION_98713A) {
1968 			sc->dc_type = DC_TYPE_98713A;
1969 			sc->dc_flags |= DC_21143_NWAY;
1970 		}
1971 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1972 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1973 		break;
1974 	case DC_DEVICEID_987x5:
1975 	case DC_DEVICEID_EN1217:
1976 		/*
1977 		 * Macronix MX98715AEC-C/D/E parts have only a
1978 		 * 128-bit hash table. We need to deal with these
1979 		 * in the same manner as the PNIC II so that we
1980 		 * get the right number of bits out of the
1981 		 * CRC routine.
1982 		 */
1983 		if (revision >= DC_REVISION_98715AEC_C &&
1984 		    revision < DC_REVISION_98725)
1985 			sc->dc_flags |= DC_128BIT_HASH;
1986 		sc->dc_type = DC_TYPE_987x5;
1987 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1988 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
1989 		break;
1990 	case DC_DEVICEID_98727:
1991 		sc->dc_type = DC_TYPE_987x5;
1992 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1993 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
1994 		break;
1995 	case DC_DEVICEID_82C115:
1996 		sc->dc_type = DC_TYPE_PNICII;
1997 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR | DC_128BIT_HASH;
1998 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
1999 		break;
2000 	case DC_DEVICEID_82C168:
2001 		sc->dc_type = DC_TYPE_PNIC;
2002 		sc->dc_flags |= DC_TX_STORENFWD | DC_TX_INTR_ALWAYS;
2003 		sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
2004 		sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_NOWAIT);
2005 		if (revision < DC_REVISION_82C169)
2006 			sc->dc_pmode = DC_PMODE_SYM;
2007 		break;
2008 	case DC_DEVICEID_AX88140A:
2009 		sc->dc_type = DC_TYPE_ASIX;
2010 		sc->dc_flags |= DC_TX_USE_TX_INTR | DC_TX_INTR_FIRSTFRAG;
2011 		sc->dc_flags |= DC_REDUCED_MII_POLL;
2012 		sc->dc_pmode = DC_PMODE_MII;
2013 		break;
2014 	case DC_DEVICEID_X3201:
2015 		sc->dc_type = DC_TYPE_XIRCOM;
2016 		sc->dc_flags |= DC_TX_INTR_ALWAYS | DC_TX_COALESCE |
2017 				DC_TX_ALIGN;
2018 		/*
2019 		 * We don't actually need to coalesce, but we're doing
2020 		 * it to obtain a double word aligned buffer.
2021 		 * The DC_TX_COALESCE flag is required.
2022 		 */
2023 		sc->dc_pmode = DC_PMODE_MII;
2024 		break;
2025 	case DC_DEVICEID_RS7112:
2026 		sc->dc_type = DC_TYPE_CONEXANT;
2027 		sc->dc_flags |= DC_TX_INTR_ALWAYS;
2028 		sc->dc_flags |= DC_REDUCED_MII_POLL;
2029 		sc->dc_pmode = DC_PMODE_MII;
2030 		dc_read_srom(sc, sc->dc_romwidth);
2031 		break;
2032 	default:
2033 		printf("dc%d: unknown device: %x\n", sc->dc_unit,
2034 		    sc->dc_info->dc_did);
2035 		break;
2036 	}
2037 
2038 	/* Save the cache line size. */
2039 	if (DC_IS_DAVICOM(sc))
2040 		sc->dc_cachesize = 0;
2041 	else
2042 		sc->dc_cachesize = pci_read_config(dev,
2043 		    DC_PCI_CFLT, 4) & 0xFF;
2044 
2045 	/* Reset the adapter. */
2046 	dc_reset(sc);
2047 
2048 	/* Take 21143 out of snooze mode */
2049 	if (DC_IS_INTEL(sc) || DC_IS_XIRCOM(sc)) {
2050 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
2051 		command &= ~(DC_CFDD_SNOOZE_MODE | DC_CFDD_SLEEP_MODE);
2052 		pci_write_config(dev, DC_PCI_CFDD, command, 4);
2053 	}
2054 
2055 	/*
2056 	 * Try to learn something about the supported media.
2057 	 * We know that ASIX and ADMtek and Davicom devices
2058 	 * will *always* be using MII media, so that's a no-brainer.
2059 	 * The tricky ones are the Macronix/PNIC II and the
2060 	 * Intel 21143.
2061 	 */
2062 	if (DC_IS_INTEL(sc))
2063 		dc_parse_21143_srom(sc);
2064 	else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
2065 		if (sc->dc_type == DC_TYPE_98713)
2066 			sc->dc_pmode = DC_PMODE_MII;
2067 		else
2068 			sc->dc_pmode = DC_PMODE_SYM;
2069 	} else if (!sc->dc_pmode)
2070 		sc->dc_pmode = DC_PMODE_MII;
2071 
2072 	/*
2073 	 * Get station address from the EEPROM.
2074 	 */
2075 	switch(sc->dc_type) {
2076 	case DC_TYPE_98713:
2077 	case DC_TYPE_98713A:
2078 	case DC_TYPE_987x5:
2079 	case DC_TYPE_PNICII:
2080 		dc_read_eeprom(sc, (caddr_t)&mac_offset,
2081 		    (DC_EE_NODEADDR_OFFSET / 2), 1, 0);
2082 		dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
2083 		break;
2084 	case DC_TYPE_PNIC:
2085 		dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
2086 		break;
2087 	case DC_TYPE_DM9102:
2088 	case DC_TYPE_21143:
2089 	case DC_TYPE_ASIX:
2090 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2091 		break;
2092 	case DC_TYPE_AL981:
2093 	case DC_TYPE_AN985:
2094 		*(u_int32_t *)(&eaddr[0]) = CSR_READ_4(sc, DC_AL_PAR0);
2095 		*(u_int16_t *)(&eaddr[4]) = CSR_READ_4(sc, DC_AL_PAR1);
2096 		break;
2097 	case DC_TYPE_CONEXANT:
2098 		bcopy(sc->dc_srom + DC_CONEXANT_EE_NODEADDR, &eaddr,
2099 		    ETHER_ADDR_LEN);
2100 		break;
2101 	case DC_TYPE_XIRCOM:
2102 		/* The MAC comes from the CIS. */
2103 		mac = pci_get_ether(dev);
2104 		if (!mac) {
2105 			device_printf(dev, "No station address in CIS!\n");
2106 			error = ENXIO;
2107 			goto fail;
2108 		}
2109 		bcopy(mac, eaddr, ETHER_ADDR_LEN);
2110 		break;
2111 	default:
2112 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2113 		break;
2114 	}
2115 
2116 	/*
2117 	 * A 21143 or clone chip was detected. Inform the world.
2118 	 */
2119 	printf("dc%d: Ethernet address: %6D\n", unit, eaddr, ":");
2120 
2121 	sc->dc_unit = unit;
2122 	bcopy(eaddr, &sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
2123 
2124 	/* Allocate a busdma tag and DMA safe memory for TX/RX descriptors. */
2125 	error = bus_dma_tag_create(NULL, PAGE_SIZE, 0, BUS_SPACE_MAXADDR_32BIT,
2126 	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct dc_list_data), 1,
2127 	    sizeof(struct dc_list_data), 0, NULL, NULL, &sc->dc_ltag);
2128 	if (error) {
2129 		printf("dc%d: failed to allocate busdma tag\n", unit);
2130 		error = ENXIO;
2131 		goto fail;
2132 	}
2133 	error = bus_dmamem_alloc(sc->dc_ltag, (void **)&sc->dc_ldata,
2134 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->dc_lmap);
2135 	if (error) {
2136 		printf("dc%d: failed to allocate DMA safe memory\n", unit);
2137 		error = ENXIO;
2138 		goto fail;
2139 	}
2140 	error = bus_dmamap_load(sc->dc_ltag, sc->dc_lmap, sc->dc_ldata,
2141 	    sizeof(struct dc_list_data), dc_dma_map_addr, &sc->dc_laddr,
2142 	    BUS_DMA_NOWAIT);
2143 	if (error) {
2144 		printf("dc%d: cannot get address of the descriptors\n", unit);
2145 		error = ENXIO;
2146 		goto fail;
2147 	}
2148 
2149 	/*
2150 	 * Allocate a busdma tag and DMA safe memory for the multicast
2151 	 * setup frame.
2152 	 */
2153 	error = bus_dma_tag_create(NULL, PAGE_SIZE, 0, BUS_SPACE_MAXADDR_32BIT,
2154 	    BUS_SPACE_MAXADDR, NULL, NULL, DC_SFRAME_LEN + DC_MIN_FRAMELEN, 1,
2155 	    DC_SFRAME_LEN + DC_MIN_FRAMELEN, 0, NULL, NULL, &sc->dc_stag);
2156 	if (error) {
2157 		printf("dc%d: failed to allocate busdma tag\n", unit);
2158 		error = ENXIO;
2159 		goto fail;
2160 	}
2161 	error = bus_dmamem_alloc(sc->dc_stag, (void **)&sc->dc_cdata.dc_sbuf,
2162 	    BUS_DMA_NOWAIT, &sc->dc_smap);
2163 	if (error) {
2164 		printf("dc%d: failed to allocate DMA safe memory\n", unit);
2165 		error = ENXIO;
2166 		goto fail;
2167 	}
2168 	error = bus_dmamap_load(sc->dc_stag, sc->dc_smap, sc->dc_cdata.dc_sbuf,
2169 	    DC_SFRAME_LEN, dc_dma_map_addr, &sc->dc_saddr, BUS_DMA_NOWAIT);
2170 	if (error) {
2171 		printf("dc%d: cannot get address of the descriptors\n", unit);
2172 		error = ENXIO;
2173 		goto fail;
2174 	}
2175 
2176 	/* Allocate a busdma tag for mbufs. */
2177 	error = bus_dma_tag_create(NULL, PAGE_SIZE, 0, BUS_SPACE_MAXADDR_32BIT,
2178 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * DC_TX_LIST_CNT,
2179 	    DC_TX_LIST_CNT, MCLBYTES, 0, NULL, NULL, &sc->dc_mtag);
2180 	if (error) {
2181 		printf("dc%d: failed to allocate busdma tag\n", unit);
2182 		error = ENXIO;
2183 		goto fail;
2184 	}
2185 
2186 	/* Create the TX/RX busdma maps. */
2187 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2188 		error = bus_dmamap_create(sc->dc_mtag, 0,
2189 		    &sc->dc_cdata.dc_tx_map[i]);
2190 		if (error) {
2191 			printf("dc%d: failed to init TX ring\n", unit);
2192 			error = ENXIO;
2193 			goto fail;
2194 		}
2195 	}
2196 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2197 		error = bus_dmamap_create(sc->dc_mtag, 0,
2198 		    &sc->dc_cdata.dc_rx_map[i]);
2199 		if (error) {
2200 			printf("dc%d: failed to init RX ring\n", unit);
2201 			error = ENXIO;
2202 			goto fail;
2203 		}
2204 	}
2205 	error = bus_dmamap_create(sc->dc_mtag, 0, &sc->dc_sparemap);
2206 	if (error) {
2207 		printf("dc%d: failed to init RX ring\n", unit);
2208 		error = ENXIO;
2209 		goto fail;
2210 	}
2211 
2212 	ifp = &sc->arpcom.ac_if;
2213 	ifp->if_softc = sc;
2214 	ifp->if_unit = unit;
2215 	ifp->if_name = "dc";
2216 	/* XXX: bleah, MTU gets overwritten in ether_ifattach() */
2217 	ifp->if_mtu = ETHERMTU;
2218 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2219 	ifp->if_ioctl = dc_ioctl;
2220 	ifp->if_start = dc_start;
2221 	ifp->if_watchdog = dc_watchdog;
2222 	ifp->if_init = dc_init;
2223 	ifp->if_baudrate = 10000000;
2224 	ifp->if_snd.ifq_maxlen = DC_TX_LIST_CNT - 1;
2225 
2226 	/*
2227 	 * Do MII setup. If this is a 21143, check for a PHY on the
2228 	 * MII bus after applying any necessary fixups to twiddle the
2229 	 * GPIO bits. If we don't end up finding a PHY, restore the
2230 	 * old selection (SIA only or SIA/SYM) and attach the dcphy
2231 	 * driver instead.
2232 	 */
2233 	if (DC_IS_INTEL(sc)) {
2234 		dc_apply_fixup(sc, IFM_AUTO);
2235 		tmp = sc->dc_pmode;
2236 		sc->dc_pmode = DC_PMODE_MII;
2237 	}
2238 
2239 	error = mii_phy_probe(dev, &sc->dc_miibus,
2240 	    dc_ifmedia_upd, dc_ifmedia_sts);
2241 
2242 	if (error && DC_IS_INTEL(sc)) {
2243 		sc->dc_pmode = tmp;
2244 		if (sc->dc_pmode != DC_PMODE_SIA)
2245 			sc->dc_pmode = DC_PMODE_SYM;
2246 		sc->dc_flags |= DC_21143_NWAY;
2247 		mii_phy_probe(dev, &sc->dc_miibus,
2248 		    dc_ifmedia_upd, dc_ifmedia_sts);
2249 		/*
2250 		 * For non-MII cards, we need to have the 21143
2251 		 * drive the LEDs. Except there are some systems
2252 		 * like the NEC VersaPro NoteBook PC which have no
2253 		 * LEDs, and twiddling these bits has adverse effects
2254 		 * on them. (I.e. you suddenly can't get a link.)
2255 		 */
2256 		if (pci_read_config(dev, DC_PCI_CSID, 4) != 0x80281033)
2257 			sc->dc_flags |= DC_TULIP_LEDS;
2258 		error = 0;
2259 	}
2260 
2261 	if (error) {
2262 		printf("dc%d: MII without any PHY!\n", sc->dc_unit);
2263 		goto fail;
2264 	}
2265 
2266 	if (DC_IS_XIRCOM(sc)) {
2267 		/*
2268 		 * setup General Purpose Port mode and data so the tulip
2269 		 * can talk to the MII.
2270 		 */
2271 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
2272 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2273 		DELAY(10);
2274 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
2275 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2276 		DELAY(10);
2277 	}
2278 
2279 	if (DC_IS_ADMTEK(sc)) {
2280 		/*
2281 		 * Set automatic TX underrun recovery for the ADMtek chips
2282 		 */
2283 		DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR);
2284 	}
2285 
2286 	/*
2287 	 * Tell the upper layer(s) we support long frames.
2288 	 */
2289 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2290 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
2291 
2292 	callout_init(&sc->dc_stat_ch, IS_MPSAFE ? CALLOUT_MPSAFE : 0);
2293 
2294 #ifdef SRM_MEDIA
2295 	sc->dc_srm_media = 0;
2296 
2297 	/* Remember the SRM console media setting */
2298 	if (DC_IS_INTEL(sc)) {
2299 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
2300 		command &= ~(DC_CFDD_SNOOZE_MODE | DC_CFDD_SLEEP_MODE);
2301 		switch ((command >> 8) & 0xff) {
2302 		case 3:
2303 			sc->dc_srm_media = IFM_10_T;
2304 			break;
2305 		case 4:
2306 			sc->dc_srm_media = IFM_10_T | IFM_FDX;
2307 			break;
2308 		case 5:
2309 			sc->dc_srm_media = IFM_100_TX;
2310 			break;
2311 		case 6:
2312 			sc->dc_srm_media = IFM_100_TX | IFM_FDX;
2313 			break;
2314 		}
2315 		if (sc->dc_srm_media)
2316 			sc->dc_srm_media |= IFM_ACTIVE | IFM_ETHER;
2317 	}
2318 #endif
2319 
2320 	/*
2321 	 * Call MI attach routine.
2322 	 */
2323 	ether_ifattach(ifp, eaddr);
2324 
2325 	/* Hook interrupt last to avoid having to lock softc */
2326 	error = bus_setup_intr(dev, sc->dc_irq, INTR_TYPE_NET |
2327 	    (IS_MPSAFE ? INTR_MPSAFE : 0),
2328 	    dc_intr, sc, &sc->dc_intrhand);
2329 
2330 	if (error) {
2331 		printf("dc%d: couldn't set up irq\n", unit);
2332 		ether_ifdetach(ifp);
2333 		goto fail;
2334 	}
2335 
2336 fail:
2337 	if (error)
2338 		dc_detach(dev);
2339 	return (error);
2340 }
2341 
2342 /*
2343  * Shutdown hardware and free up resources. This can be called any
2344  * time after the mutex has been initialized. It is called in both
2345  * the error case in attach and the normal detach case so it needs
2346  * to be careful about only freeing resources that have actually been
2347  * allocated.
2348  */
2349 static int
2350 dc_detach(device_t dev)
2351 {
2352 	struct dc_softc *sc;
2353 	struct ifnet *ifp;
2354 	struct dc_mediainfo *m;
2355 	int i;
2356 
2357 	sc = device_get_softc(dev);
2358 	KASSERT(mtx_initialized(&sc->dc_mtx), ("dc mutex not initialized"));
2359 	DC_LOCK(sc);
2360 
2361 	ifp = &sc->arpcom.ac_if;
2362 
2363 	/* These should only be active if attach succeeded */
2364 	if (device_is_attached(dev)) {
2365 		dc_stop(sc);
2366 		ether_ifdetach(ifp);
2367 	}
2368 	if (sc->dc_miibus)
2369 		device_delete_child(dev, sc->dc_miibus);
2370 	bus_generic_detach(dev);
2371 
2372 	if (sc->dc_intrhand)
2373 		bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2374 	if (sc->dc_irq)
2375 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2376 	if (sc->dc_res)
2377 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2378 
2379 	if (sc->dc_cdata.dc_sbuf != NULL)
2380 		bus_dmamem_free(sc->dc_stag, sc->dc_cdata.dc_sbuf, sc->dc_smap);
2381 	if (sc->dc_ldata != NULL)
2382 		bus_dmamem_free(sc->dc_ltag, sc->dc_ldata, sc->dc_lmap);
2383 	for (i = 0; i < DC_TX_LIST_CNT; i++)
2384 		bus_dmamap_destroy(sc->dc_mtag, sc->dc_cdata.dc_tx_map[i]);
2385 	for (i = 0; i < DC_RX_LIST_CNT; i++)
2386 		bus_dmamap_destroy(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i]);
2387 	bus_dmamap_destroy(sc->dc_mtag, sc->dc_sparemap);
2388 	if (sc->dc_stag)
2389 		bus_dma_tag_destroy(sc->dc_stag);
2390 	if (sc->dc_mtag)
2391 		bus_dma_tag_destroy(sc->dc_mtag);
2392 	if (sc->dc_ltag)
2393 		bus_dma_tag_destroy(sc->dc_ltag);
2394 
2395 	free(sc->dc_pnic_rx_buf, M_DEVBUF);
2396 
2397 	while (sc->dc_mi != NULL) {
2398 		m = sc->dc_mi->dc_next;
2399 		free(sc->dc_mi, M_DEVBUF);
2400 		sc->dc_mi = m;
2401 	}
2402 	free(sc->dc_srom, M_DEVBUF);
2403 
2404 	DC_UNLOCK(sc);
2405 	mtx_destroy(&sc->dc_mtx);
2406 
2407 	return (0);
2408 }
2409 
2410 /*
2411  * Initialize the transmit descriptors.
2412  */
2413 static int
2414 dc_list_tx_init(struct dc_softc *sc)
2415 {
2416 	struct dc_chain_data *cd;
2417 	struct dc_list_data *ld;
2418 	int i, nexti;
2419 
2420 	cd = &sc->dc_cdata;
2421 	ld = sc->dc_ldata;
2422 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2423 		if (i == DC_TX_LIST_CNT - 1)
2424 			nexti = 0;
2425 		else
2426 			nexti = i + 1;
2427 		ld->dc_tx_list[i].dc_next = htole32(DC_TXDESC(sc, nexti));
2428 		cd->dc_tx_chain[i] = NULL;
2429 		ld->dc_tx_list[i].dc_data = 0;
2430 		ld->dc_tx_list[i].dc_ctl = 0;
2431 	}
2432 
2433 	cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
2434 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
2435 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2436 	return (0);
2437 }
2438 
2439 
2440 /*
2441  * Initialize the RX descriptors and allocate mbufs for them. Note that
2442  * we arrange the descriptors in a closed ring, so that the last descriptor
2443  * points back to the first.
2444  */
2445 static int
2446 dc_list_rx_init(struct dc_softc *sc)
2447 {
2448 	struct dc_chain_data *cd;
2449 	struct dc_list_data *ld;
2450 	int i, nexti;
2451 
2452 	cd = &sc->dc_cdata;
2453 	ld = sc->dc_ldata;
2454 
2455 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2456 		if (dc_newbuf(sc, i, 1) != 0)
2457 			return (ENOBUFS);
2458 		if (i == DC_RX_LIST_CNT - 1)
2459 			nexti = 0;
2460 		else
2461 			nexti = i + 1;
2462 		ld->dc_rx_list[i].dc_next = htole32(DC_RXDESC(sc, nexti));
2463 	}
2464 
2465 	cd->dc_rx_prod = 0;
2466 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
2467 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2468 	return (0);
2469 }
2470 
2471 static void
2472 dc_dma_map_rxbuf(arg, segs, nseg, mapsize, error)
2473 	void *arg;
2474 	bus_dma_segment_t *segs;
2475 	int nseg;
2476 	bus_size_t mapsize;
2477 	int error;
2478 {
2479 	struct dc_softc *sc;
2480 	struct dc_desc *c;
2481 
2482 	sc = arg;
2483 	c = &sc->dc_ldata->dc_rx_list[sc->dc_cdata.dc_rx_cur];
2484 	if (error) {
2485 		sc->dc_cdata.dc_rx_err = error;
2486 		return;
2487 	}
2488 
2489 	KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
2490 	sc->dc_cdata.dc_rx_err = 0;
2491 	c->dc_data = htole32(segs->ds_addr);
2492 }
2493 
2494 /*
2495  * Initialize an RX descriptor and attach an MBUF cluster.
2496  */
2497 static int
2498 dc_newbuf(struct dc_softc *sc, int i, int alloc)
2499 {
2500 	struct mbuf *m_new;
2501 	bus_dmamap_t tmp;
2502 	int error;
2503 
2504 	if (alloc) {
2505 		m_new = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2506 		if (m_new == NULL)
2507 			return (ENOBUFS);
2508 	} else {
2509 		m_new = sc->dc_cdata.dc_rx_chain[i];
2510 		m_new->m_data = m_new->m_ext.ext_buf;
2511 	}
2512 	m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2513 	m_adj(m_new, sizeof(u_int64_t));
2514 
2515 	/*
2516 	 * If this is a PNIC chip, zero the buffer. This is part
2517 	 * of the workaround for the receive bug in the 82c168 and
2518 	 * 82c169 chips.
2519 	 */
2520 	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
2521 		bzero(mtod(m_new, char *), m_new->m_len);
2522 
2523 	/* No need to remap the mbuf if we're reusing it. */
2524 	if (alloc) {
2525 		sc->dc_cdata.dc_rx_cur = i;
2526 		error = bus_dmamap_load_mbuf(sc->dc_mtag, sc->dc_sparemap,
2527 		    m_new, dc_dma_map_rxbuf, sc, 0);
2528 		if (error) {
2529 			m_freem(m_new);
2530 			return (error);
2531 		}
2532 		if (sc->dc_cdata.dc_rx_err != 0) {
2533 			m_freem(m_new);
2534 			return (sc->dc_cdata.dc_rx_err);
2535 		}
2536 		bus_dmamap_unload(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i]);
2537 		tmp = sc->dc_cdata.dc_rx_map[i];
2538 		sc->dc_cdata.dc_rx_map[i] = sc->dc_sparemap;
2539 		sc->dc_sparemap = tmp;
2540 		sc->dc_cdata.dc_rx_chain[i] = m_new;
2541 	}
2542 
2543 	sc->dc_ldata->dc_rx_list[i].dc_ctl = htole32(DC_RXCTL_RLINK | DC_RXLEN);
2544 	sc->dc_ldata->dc_rx_list[i].dc_status = htole32(DC_RXSTAT_OWN);
2545 	bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i],
2546 	    BUS_DMASYNC_PREREAD);
2547 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
2548 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2549 	return (0);
2550 }
2551 
2552 /*
2553  * Grrrrr.
2554  * The PNIC chip has a terrible bug in it that manifests itself during
2555  * periods of heavy activity. The exact mode of failure if difficult to
2556  * pinpoint: sometimes it only happens in promiscuous mode, sometimes it
2557  * will happen on slow machines. The bug is that sometimes instead of
2558  * uploading one complete frame during reception, it uploads what looks
2559  * like the entire contents of its FIFO memory. The frame we want is at
2560  * the end of the whole mess, but we never know exactly how much data has
2561  * been uploaded, so salvaging the frame is hard.
2562  *
2563  * There is only one way to do it reliably, and it's disgusting.
2564  * Here's what we know:
2565  *
2566  * - We know there will always be somewhere between one and three extra
2567  *   descriptors uploaded.
2568  *
2569  * - We know the desired received frame will always be at the end of the
2570  *   total data upload.
2571  *
2572  * - We know the size of the desired received frame because it will be
2573  *   provided in the length field of the status word in the last descriptor.
2574  *
2575  * Here's what we do:
2576  *
2577  * - When we allocate buffers for the receive ring, we bzero() them.
2578  *   This means that we know that the buffer contents should be all
2579  *   zeros, except for data uploaded by the chip.
2580  *
2581  * - We also force the PNIC chip to upload frames that include the
2582  *   ethernet CRC at the end.
2583  *
2584  * - We gather all of the bogus frame data into a single buffer.
2585  *
2586  * - We then position a pointer at the end of this buffer and scan
2587  *   backwards until we encounter the first non-zero byte of data.
2588  *   This is the end of the received frame. We know we will encounter
2589  *   some data at the end of the frame because the CRC will always be
2590  *   there, so even if the sender transmits a packet of all zeros,
2591  *   we won't be fooled.
2592  *
2593  * - We know the size of the actual received frame, so we subtract
2594  *   that value from the current pointer location. This brings us
2595  *   to the start of the actual received packet.
2596  *
2597  * - We copy this into an mbuf and pass it on, along with the actual
2598  *   frame length.
2599  *
2600  * The performance hit is tremendous, but it beats dropping frames all
2601  * the time.
2602  */
2603 
2604 #define DC_WHOLEFRAME	(DC_RXSTAT_FIRSTFRAG | DC_RXSTAT_LASTFRAG)
2605 static void
2606 dc_pnic_rx_bug_war(struct dc_softc *sc, int idx)
2607 {
2608 	struct dc_desc *cur_rx;
2609 	struct dc_desc *c = NULL;
2610 	struct mbuf *m = NULL;
2611 	unsigned char *ptr;
2612 	int i, total_len;
2613 	u_int32_t rxstat = 0;
2614 
2615 	i = sc->dc_pnic_rx_bug_save;
2616 	cur_rx = &sc->dc_ldata->dc_rx_list[idx];
2617 	ptr = sc->dc_pnic_rx_buf;
2618 	bzero(ptr, DC_RXLEN * 5);
2619 
2620 	/* Copy all the bytes from the bogus buffers. */
2621 	while (1) {
2622 		c = &sc->dc_ldata->dc_rx_list[i];
2623 		rxstat = le32toh(c->dc_status);
2624 		m = sc->dc_cdata.dc_rx_chain[i];
2625 		bcopy(mtod(m, char *), ptr, DC_RXLEN);
2626 		ptr += DC_RXLEN;
2627 		/* If this is the last buffer, break out. */
2628 		if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
2629 			break;
2630 		dc_newbuf(sc, i, 0);
2631 		DC_INC(i, DC_RX_LIST_CNT);
2632 	}
2633 
2634 	/* Find the length of the actual receive frame. */
2635 	total_len = DC_RXBYTES(rxstat);
2636 
2637 	/* Scan backwards until we hit a non-zero byte. */
2638 	while (*ptr == 0x00)
2639 		ptr--;
2640 
2641 	/* Round off. */
2642 	if ((uintptr_t)(ptr) & 0x3)
2643 		ptr -= 1;
2644 
2645 	/* Now find the start of the frame. */
2646 	ptr -= total_len;
2647 	if (ptr < sc->dc_pnic_rx_buf)
2648 		ptr = sc->dc_pnic_rx_buf;
2649 
2650 	/*
2651 	 * Now copy the salvaged frame to the last mbuf and fake up
2652 	 * the status word to make it look like a successful
2653 	 * frame reception.
2654 	 */
2655 	dc_newbuf(sc, i, 0);
2656 	bcopy(ptr, mtod(m, char *), total_len);
2657 	cur_rx->dc_status = htole32(rxstat | DC_RXSTAT_FIRSTFRAG);
2658 }
2659 
2660 /*
2661  * This routine searches the RX ring for dirty descriptors in the
2662  * event that the rxeof routine falls out of sync with the chip's
2663  * current descriptor pointer. This may happen sometimes as a result
2664  * of a "no RX buffer available" condition that happens when the chip
2665  * consumes all of the RX buffers before the driver has a chance to
2666  * process the RX ring. This routine may need to be called more than
2667  * once to bring the driver back in sync with the chip, however we
2668  * should still be getting RX DONE interrupts to drive the search
2669  * for new packets in the RX ring, so we should catch up eventually.
2670  */
2671 static int
2672 dc_rx_resync(struct dc_softc *sc)
2673 {
2674 	struct dc_desc *cur_rx;
2675 	int i, pos;
2676 
2677 	pos = sc->dc_cdata.dc_rx_prod;
2678 
2679 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2680 		cur_rx = &sc->dc_ldata->dc_rx_list[pos];
2681 		if (!(le32toh(cur_rx->dc_status) & DC_RXSTAT_OWN))
2682 			break;
2683 		DC_INC(pos, DC_RX_LIST_CNT);
2684 	}
2685 
2686 	/* If the ring really is empty, then just return. */
2687 	if (i == DC_RX_LIST_CNT)
2688 		return (0);
2689 
2690 	/* We've fallen behing the chip: catch it. */
2691 	sc->dc_cdata.dc_rx_prod = pos;
2692 
2693 	return (EAGAIN);
2694 }
2695 
2696 /*
2697  * A frame has been uploaded: pass the resulting mbuf chain up to
2698  * the higher level protocols.
2699  */
2700 static void
2701 dc_rxeof(struct dc_softc *sc)
2702 {
2703 	struct mbuf *m;
2704 	struct ifnet *ifp;
2705 	struct dc_desc *cur_rx;
2706 	int i, total_len = 0;
2707 	u_int32_t rxstat;
2708 
2709 	ifp = &sc->arpcom.ac_if;
2710 	i = sc->dc_cdata.dc_rx_prod;
2711 
2712 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap, BUS_DMASYNC_POSTREAD);
2713 	while (!(le32toh(sc->dc_ldata->dc_rx_list[i].dc_status) &
2714 	    DC_RXSTAT_OWN)) {
2715 #ifdef DEVICE_POLLING
2716 		if (ifp->if_flags & IFF_POLLING) {
2717 			if (sc->rxcycles <= 0)
2718 				break;
2719 			sc->rxcycles--;
2720 		}
2721 #endif
2722 		cur_rx = &sc->dc_ldata->dc_rx_list[i];
2723 		rxstat = le32toh(cur_rx->dc_status);
2724 		m = sc->dc_cdata.dc_rx_chain[i];
2725 		bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i],
2726 		    BUS_DMASYNC_POSTREAD);
2727 		total_len = DC_RXBYTES(rxstat);
2728 
2729 		if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2730 			if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
2731 				if (rxstat & DC_RXSTAT_FIRSTFRAG)
2732 					sc->dc_pnic_rx_bug_save = i;
2733 				if ((rxstat & DC_RXSTAT_LASTFRAG) == 0) {
2734 					DC_INC(i, DC_RX_LIST_CNT);
2735 					continue;
2736 				}
2737 				dc_pnic_rx_bug_war(sc, i);
2738 				rxstat = le32toh(cur_rx->dc_status);
2739 				total_len = DC_RXBYTES(rxstat);
2740 			}
2741 		}
2742 
2743 		/*
2744 		 * If an error occurs, update stats, clear the
2745 		 * status word and leave the mbuf cluster in place:
2746 		 * it should simply get re-used next time this descriptor
2747 		 * comes up in the ring.  However, don't report long
2748 		 * frames as errors since they could be vlans.
2749 		 */
2750 		if ((rxstat & DC_RXSTAT_RXERR)) {
2751 			if (!(rxstat & DC_RXSTAT_GIANT) ||
2752 			    (rxstat & (DC_RXSTAT_CRCERR | DC_RXSTAT_DRIBBLE |
2753 				       DC_RXSTAT_MIIERE | DC_RXSTAT_COLLSEEN |
2754 				       DC_RXSTAT_RUNT   | DC_RXSTAT_DE))) {
2755 				ifp->if_ierrors++;
2756 				if (rxstat & DC_RXSTAT_COLLSEEN)
2757 					ifp->if_collisions++;
2758 				dc_newbuf(sc, i, 0);
2759 				if (rxstat & DC_RXSTAT_CRCERR) {
2760 					DC_INC(i, DC_RX_LIST_CNT);
2761 					continue;
2762 				} else {
2763 					dc_init(sc);
2764 					return;
2765 				}
2766 			}
2767 		}
2768 
2769 		/* No errors; receive the packet. */
2770 		total_len -= ETHER_CRC_LEN;
2771 #ifdef __i386__
2772 		/*
2773 		 * On the x86 we do not have alignment problems, so try to
2774 		 * allocate a new buffer for the receive ring, and pass up
2775 		 * the one where the packet is already, saving the expensive
2776 		 * copy done in m_devget().
2777 		 * If we are on an architecture with alignment problems, or
2778 		 * if the allocation fails, then use m_devget and leave the
2779 		 * existing buffer in the receive ring.
2780 		 */
2781 		if (dc_quick && dc_newbuf(sc, i, 1) == 0) {
2782 			m->m_pkthdr.rcvif = ifp;
2783 			m->m_pkthdr.len = m->m_len = total_len;
2784 			DC_INC(i, DC_RX_LIST_CNT);
2785 		} else
2786 #endif
2787 		{
2788 			struct mbuf *m0;
2789 
2790 			m0 = m_devget(mtod(m, char *), total_len,
2791 				ETHER_ALIGN, ifp, NULL);
2792 			dc_newbuf(sc, i, 0);
2793 			DC_INC(i, DC_RX_LIST_CNT);
2794 			if (m0 == NULL) {
2795 				ifp->if_ierrors++;
2796 				continue;
2797 			}
2798 			m = m0;
2799 		}
2800 
2801 		ifp->if_ipackets++;
2802 		(*ifp->if_input)(ifp, m);
2803 	}
2804 
2805 	sc->dc_cdata.dc_rx_prod = i;
2806 }
2807 
2808 /*
2809  * A frame was downloaded to the chip. It's safe for us to clean up
2810  * the list buffers.
2811  */
2812 
2813 static void
2814 dc_txeof(struct dc_softc *sc)
2815 {
2816 	struct dc_desc *cur_tx = NULL;
2817 	struct ifnet *ifp;
2818 	int idx;
2819 	u_int32_t ctl, txstat;
2820 
2821 	ifp = &sc->arpcom.ac_if;
2822 
2823 	/*
2824 	 * Go through our tx list and free mbufs for those
2825 	 * frames that have been transmitted.
2826 	 */
2827 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap, BUS_DMASYNC_POSTREAD);
2828 	idx = sc->dc_cdata.dc_tx_cons;
2829 	while (idx != sc->dc_cdata.dc_tx_prod) {
2830 
2831 		cur_tx = &sc->dc_ldata->dc_tx_list[idx];
2832 		txstat = le32toh(cur_tx->dc_status);
2833 		ctl = le32toh(cur_tx->dc_ctl);
2834 
2835 		if (txstat & DC_TXSTAT_OWN)
2836 			break;
2837 
2838 		if (!(ctl & DC_TXCTL_FIRSTFRAG) || ctl & DC_TXCTL_SETUP) {
2839 			if (ctl & DC_TXCTL_SETUP) {
2840 				/*
2841 				 * Yes, the PNIC is so brain damaged
2842 				 * that it will sometimes generate a TX
2843 				 * underrun error while DMAing the RX
2844 				 * filter setup frame. If we detect this,
2845 				 * we have to send the setup frame again,
2846 				 * or else the filter won't be programmed
2847 				 * correctly.
2848 				 */
2849 				if (DC_IS_PNIC(sc)) {
2850 					if (txstat & DC_TXSTAT_ERRSUM)
2851 						dc_setfilt(sc);
2852 				}
2853 				sc->dc_cdata.dc_tx_chain[idx] = NULL;
2854 			}
2855 			sc->dc_cdata.dc_tx_cnt--;
2856 			DC_INC(idx, DC_TX_LIST_CNT);
2857 			continue;
2858 		}
2859 
2860 		if (DC_IS_XIRCOM(sc) || DC_IS_CONEXANT(sc)) {
2861 			/*
2862 			 * XXX: Why does my Xircom taunt me so?
2863 			 * For some reason it likes setting the CARRLOST flag
2864 			 * even when the carrier is there. wtf?!?
2865 			 * Who knows, but Conexant chips have the
2866 			 * same problem. Maybe they took lessons
2867 			 * from Xircom.
2868 			 */
2869 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2870 			    sc->dc_pmode == DC_PMODE_MII &&
2871 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
2872 			    DC_TXSTAT_NOCARRIER)))
2873 				txstat &= ~DC_TXSTAT_ERRSUM;
2874 		} else {
2875 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2876 			    sc->dc_pmode == DC_PMODE_MII &&
2877 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
2878 			    DC_TXSTAT_NOCARRIER | DC_TXSTAT_CARRLOST)))
2879 				txstat &= ~DC_TXSTAT_ERRSUM;
2880 		}
2881 
2882 		if (txstat & DC_TXSTAT_ERRSUM) {
2883 			ifp->if_oerrors++;
2884 			if (txstat & DC_TXSTAT_EXCESSCOLL)
2885 				ifp->if_collisions++;
2886 			if (txstat & DC_TXSTAT_LATECOLL)
2887 				ifp->if_collisions++;
2888 			if (!(txstat & DC_TXSTAT_UNDERRUN)) {
2889 				dc_init(sc);
2890 				return;
2891 			}
2892 		}
2893 
2894 		ifp->if_collisions += (txstat & DC_TXSTAT_COLLCNT) >> 3;
2895 
2896 		ifp->if_opackets++;
2897 		if (sc->dc_cdata.dc_tx_chain[idx] != NULL) {
2898 			bus_dmamap_sync(sc->dc_mtag,
2899 			    sc->dc_cdata.dc_tx_map[idx],
2900 			    BUS_DMASYNC_POSTWRITE);
2901 			bus_dmamap_unload(sc->dc_mtag,
2902 			    sc->dc_cdata.dc_tx_map[idx]);
2903 			m_freem(sc->dc_cdata.dc_tx_chain[idx]);
2904 			sc->dc_cdata.dc_tx_chain[idx] = NULL;
2905 		}
2906 
2907 		sc->dc_cdata.dc_tx_cnt--;
2908 		DC_INC(idx, DC_TX_LIST_CNT);
2909 	}
2910 
2911 	if (idx != sc->dc_cdata.dc_tx_cons) {
2912 	    	/* Some buffers have been freed. */
2913 		sc->dc_cdata.dc_tx_cons = idx;
2914 		ifp->if_flags &= ~IFF_OACTIVE;
2915 	}
2916 	ifp->if_timer = (sc->dc_cdata.dc_tx_cnt == 0) ? 0 : 5;
2917 }
2918 
2919 static void
2920 dc_tick(void *xsc)
2921 {
2922 	struct dc_softc *sc;
2923 	struct mii_data *mii;
2924 	struct ifnet *ifp;
2925 	u_int32_t r;
2926 
2927 	sc = xsc;
2928 	DC_LOCK(sc);
2929 	ifp = &sc->arpcom.ac_if;
2930 	mii = device_get_softc(sc->dc_miibus);
2931 
2932 	if (sc->dc_flags & DC_REDUCED_MII_POLL) {
2933 		if (sc->dc_flags & DC_21143_NWAY) {
2934 			r = CSR_READ_4(sc, DC_10BTSTAT);
2935 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2936 			    IFM_100_TX && (r & DC_TSTAT_LS100)) {
2937 				sc->dc_link = 0;
2938 				mii_mediachg(mii);
2939 			}
2940 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2941 			    IFM_10_T && (r & DC_TSTAT_LS10)) {
2942 				sc->dc_link = 0;
2943 				mii_mediachg(mii);
2944 			}
2945 			if (sc->dc_link == 0)
2946 				mii_tick(mii);
2947 		} else {
2948 			r = CSR_READ_4(sc, DC_ISR);
2949 			if ((r & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT &&
2950 			    sc->dc_cdata.dc_tx_cnt == 0) {
2951 				mii_tick(mii);
2952 				if (!(mii->mii_media_status & IFM_ACTIVE))
2953 					sc->dc_link = 0;
2954 			}
2955 		}
2956 	} else
2957 		mii_tick(mii);
2958 
2959 	/*
2960 	 * When the init routine completes, we expect to be able to send
2961 	 * packets right away, and in fact the network code will send a
2962 	 * gratuitous ARP the moment the init routine marks the interface
2963 	 * as running. However, even though the MAC may have been initialized,
2964 	 * there may be a delay of a few seconds before the PHY completes
2965 	 * autonegotiation and the link is brought up. Any transmissions
2966 	 * made during that delay will be lost. Dealing with this is tricky:
2967 	 * we can't just pause in the init routine while waiting for the
2968 	 * PHY to come ready since that would bring the whole system to
2969 	 * a screeching halt for several seconds.
2970 	 *
2971 	 * What we do here is prevent the TX start routine from sending
2972 	 * any packets until a link has been established. After the
2973 	 * interface has been initialized, the tick routine will poll
2974 	 * the state of the PHY until the IFM_ACTIVE flag is set. Until
2975 	 * that time, packets will stay in the send queue, and once the
2976 	 * link comes up, they will be flushed out to the wire.
2977 	 */
2978 	if (!sc->dc_link && mii->mii_media_status & IFM_ACTIVE &&
2979 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2980 		sc->dc_link++;
2981 		if (ifp->if_snd.ifq_head != NULL)
2982 			dc_start(ifp);
2983 	}
2984 
2985 	if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link)
2986 		callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
2987 	else
2988 		callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
2989 
2990 	DC_UNLOCK(sc);
2991 }
2992 
2993 /*
2994  * A transmit underrun has occurred.  Back off the transmit threshold,
2995  * or switch to store and forward mode if we have to.
2996  */
2997 static void
2998 dc_tx_underrun(struct dc_softc *sc)
2999 {
3000 	u_int32_t isr;
3001 	int i;
3002 
3003 	if (DC_IS_DAVICOM(sc))
3004 		dc_init(sc);
3005 
3006 	if (DC_IS_INTEL(sc)) {
3007 		/*
3008 		 * The real 21143 requires that the transmitter be idle
3009 		 * in order to change the transmit threshold or store
3010 		 * and forward state.
3011 		 */
3012 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3013 
3014 		for (i = 0; i < DC_TIMEOUT; i++) {
3015 			isr = CSR_READ_4(sc, DC_ISR);
3016 			if (isr & DC_ISR_TX_IDLE)
3017 				break;
3018 			DELAY(10);
3019 		}
3020 		if (i == DC_TIMEOUT) {
3021 			printf("dc%d: failed to force tx to idle state\n",
3022 			    sc->dc_unit);
3023 			dc_init(sc);
3024 		}
3025 	}
3026 
3027 	printf("dc%d: TX underrun -- ", sc->dc_unit);
3028 	sc->dc_txthresh += DC_TXTHRESH_INC;
3029 	if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3030 		printf("using store and forward mode\n");
3031 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3032 	} else {
3033 		printf("increasing TX threshold\n");
3034 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3035 		DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3036 	}
3037 
3038 	if (DC_IS_INTEL(sc))
3039 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3040 }
3041 
3042 #ifdef DEVICE_POLLING
3043 static poll_handler_t dc_poll;
3044 
3045 static void
3046 dc_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
3047 {
3048 	struct dc_softc *sc = ifp->if_softc;
3049 
3050 	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
3051 		/* Re-enable interrupts. */
3052 		CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3053 		return;
3054 	}
3055 	sc->rxcycles = count;
3056 	dc_rxeof(sc);
3057 	dc_txeof(sc);
3058 	if (ifp->if_snd.ifq_head != NULL && !(ifp->if_flags & IFF_OACTIVE))
3059 		dc_start(ifp);
3060 
3061 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
3062 		u_int32_t	status;
3063 
3064 		status = CSR_READ_4(sc, DC_ISR);
3065 		status &= (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF |
3066 			DC_ISR_TX_NOBUF | DC_ISR_TX_IDLE | DC_ISR_TX_UNDERRUN |
3067 			DC_ISR_BUS_ERR);
3068 		if (!status)
3069 			return;
3070 		/* ack what we have */
3071 		CSR_WRITE_4(sc, DC_ISR, status);
3072 
3073 		if (status & (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF)) {
3074 			u_int32_t r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
3075 			ifp->if_ierrors += (r & 0xffff) + ((r >> 17) & 0x7ff);
3076 
3077 			if (dc_rx_resync(sc))
3078 				dc_rxeof(sc);
3079 		}
3080 		/* restart transmit unit if necessary */
3081 		if (status & DC_ISR_TX_IDLE && sc->dc_cdata.dc_tx_cnt)
3082 			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3083 
3084 		if (status & DC_ISR_TX_UNDERRUN)
3085 			dc_tx_underrun(sc);
3086 
3087 		if (status & DC_ISR_BUS_ERR) {
3088 			printf("dc_poll: dc%d bus error\n", sc->dc_unit);
3089 			dc_reset(sc);
3090 			dc_init(sc);
3091 		}
3092 	}
3093 }
3094 #endif /* DEVICE_POLLING */
3095 
3096 static void
3097 dc_intr(void *arg)
3098 {
3099 	struct dc_softc *sc;
3100 	struct ifnet *ifp;
3101 	u_int32_t status;
3102 
3103 	sc = arg;
3104 
3105 	if (sc->suspended)
3106 		return;
3107 
3108 	if ((CSR_READ_4(sc, DC_ISR) & DC_INTRS) == 0)
3109 		return;
3110 
3111 	DC_LOCK(sc);
3112 	ifp = &sc->arpcom.ac_if;
3113 #ifdef DEVICE_POLLING
3114 	if (ifp->if_flags & IFF_POLLING)
3115 		goto done;
3116 	if (ether_poll_register(dc_poll, ifp)) { /* ok, disable interrupts */
3117 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3118 		goto done;
3119 	}
3120 #endif
3121 
3122 	/* Suppress unwanted interrupts */
3123 	if (!(ifp->if_flags & IFF_UP)) {
3124 		if (CSR_READ_4(sc, DC_ISR) & DC_INTRS)
3125 			dc_stop(sc);
3126 		DC_UNLOCK(sc);
3127 		return;
3128 	}
3129 
3130 	/* Disable interrupts. */
3131 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3132 
3133 	while (((status = CSR_READ_4(sc, DC_ISR)) & DC_INTRS)
3134 	      && status != 0xFFFFFFFF) {
3135 
3136 		CSR_WRITE_4(sc, DC_ISR, status);
3137 
3138 		if (status & DC_ISR_RX_OK) {
3139 			int		curpkts;
3140 			curpkts = ifp->if_ipackets;
3141 			dc_rxeof(sc);
3142 			if (curpkts == ifp->if_ipackets) {
3143 				while (dc_rx_resync(sc))
3144 					dc_rxeof(sc);
3145 			}
3146 		}
3147 
3148 		if (status & (DC_ISR_TX_OK | DC_ISR_TX_NOBUF))
3149 			dc_txeof(sc);
3150 
3151 		if (status & DC_ISR_TX_IDLE) {
3152 			dc_txeof(sc);
3153 			if (sc->dc_cdata.dc_tx_cnt) {
3154 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3155 				CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3156 			}
3157 		}
3158 
3159 		if (status & DC_ISR_TX_UNDERRUN)
3160 			dc_tx_underrun(sc);
3161 
3162 		if ((status & DC_ISR_RX_WATDOGTIMEO)
3163 		    || (status & DC_ISR_RX_NOBUF)) {
3164 			int		curpkts;
3165 			curpkts = ifp->if_ipackets;
3166 			dc_rxeof(sc);
3167 			if (curpkts == ifp->if_ipackets) {
3168 				while (dc_rx_resync(sc))
3169 					dc_rxeof(sc);
3170 			}
3171 		}
3172 
3173 		if (status & DC_ISR_BUS_ERR) {
3174 			dc_reset(sc);
3175 			dc_init(sc);
3176 		}
3177 	}
3178 
3179 	/* Re-enable interrupts. */
3180 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3181 
3182 	if (ifp->if_snd.ifq_head != NULL)
3183 		dc_start(ifp);
3184 
3185 #ifdef DEVICE_POLLING
3186 done:
3187 #endif
3188 
3189 	DC_UNLOCK(sc);
3190 }
3191 
3192 static void
3193 dc_dma_map_txbuf(arg, segs, nseg, mapsize, error)
3194 	void *arg;
3195 	bus_dma_segment_t *segs;
3196 	int nseg;
3197 	bus_size_t mapsize;
3198 	int error;
3199 {
3200 	struct dc_softc *sc;
3201 	struct dc_desc *f;
3202 	int cur, first, frag, i;
3203 
3204 	sc = arg;
3205 	if (error) {
3206 		sc->dc_cdata.dc_tx_err = error;
3207 		return;
3208 	}
3209 
3210 	first = cur = frag = sc->dc_cdata.dc_tx_prod;
3211 	for (i = 0; i < nseg; i++) {
3212 		if ((sc->dc_flags & DC_TX_ADMTEK_WAR) &&
3213 		    (frag == (DC_TX_LIST_CNT - 1)) &&
3214 		    (first != sc->dc_cdata.dc_tx_first)) {
3215 			bus_dmamap_unload(sc->dc_mtag,
3216 			    sc->dc_cdata.dc_tx_map[first]);
3217 			sc->dc_cdata.dc_tx_err = ENOBUFS;
3218 			return;
3219 		}
3220 
3221 		f = &sc->dc_ldata->dc_tx_list[frag];
3222 		f->dc_ctl = htole32(DC_TXCTL_TLINK | segs[i].ds_len);
3223 		if (i == 0) {
3224 			f->dc_status = 0;
3225 			f->dc_ctl |= htole32(DC_TXCTL_FIRSTFRAG);
3226 		} else
3227 			f->dc_status = htole32(DC_TXSTAT_OWN);
3228 		f->dc_data = htole32(segs[i].ds_addr);
3229 		cur = frag;
3230 		DC_INC(frag, DC_TX_LIST_CNT);
3231 	}
3232 
3233 	sc->dc_cdata.dc_tx_err = 0;
3234 	sc->dc_cdata.dc_tx_prod = frag;
3235 	sc->dc_cdata.dc_tx_cnt += nseg;
3236 	sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_LASTFRAG);
3237 	if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
3238 		sc->dc_ldata->dc_tx_list[first].dc_ctl |=
3239 		    htole32(DC_TXCTL_FINT);
3240 	if (sc->dc_flags & DC_TX_INTR_ALWAYS)
3241 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
3242 	if (sc->dc_flags & DC_TX_USE_TX_INTR && sc->dc_cdata.dc_tx_cnt > 64)
3243 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
3244 	sc->dc_ldata->dc_tx_list[first].dc_status = htole32(DC_TXSTAT_OWN);
3245 }
3246 
3247 /*
3248  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
3249  * pointers to the fragment pointers.
3250  */
3251 static int
3252 dc_encap(struct dc_softc *sc, struct mbuf *m_head)
3253 {
3254 	struct mbuf *m;
3255 	int error, idx, chainlen = 0;
3256 
3257 	/*
3258 	 * If there's no way we can send any packets, return now.
3259 	 */
3260 	if (DC_TX_LIST_CNT - sc->dc_cdata.dc_tx_cnt < 6)
3261 		return (ENOBUFS);
3262 
3263 	/*
3264 	 * Count the number of frags in this chain to see if
3265 	 * we need to m_defrag.  Since the descriptor list is shared
3266 	 * by all packets, we'll m_defrag long chains so that they
3267 	 * do not use up the entire list, even if they would fit.
3268 	 */
3269 	for (m = m_head; m != NULL; m = m->m_next)
3270 		chainlen++;
3271 
3272 	if ((chainlen > DC_TX_LIST_CNT / 4) ||
3273 	    ((DC_TX_LIST_CNT - (chainlen + sc->dc_cdata.dc_tx_cnt)) < 6)) {
3274 		m = m_defrag(m_head, M_DONTWAIT);
3275 		if (m == NULL)
3276 			return (ENOBUFS);
3277 		m_head = m;
3278 	}
3279 
3280 	/*
3281 	 * Start packing the mbufs in this chain into
3282 	 * the fragment pointers. Stop when we run out
3283 	 * of fragments or hit the end of the mbuf chain.
3284 	 */
3285 	idx = sc->dc_cdata.dc_tx_prod;
3286 	error = bus_dmamap_load_mbuf(sc->dc_mtag, sc->dc_cdata.dc_tx_map[idx],
3287 	    m_head, dc_dma_map_txbuf, sc, 0);
3288 	if (error)
3289 		return (error);
3290 	if (sc->dc_cdata.dc_tx_err != 0)
3291 		return (sc->dc_cdata.dc_tx_err);
3292 	sc->dc_cdata.dc_tx_chain[idx] = m_head;
3293 	bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_tx_map[idx],
3294 	    BUS_DMASYNC_PREWRITE);
3295 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
3296 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
3297 	return (0);
3298 }
3299 
3300 /*
3301  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3302  * to the mbuf data regions directly in the transmit lists. We also save a
3303  * copy of the pointers since the transmit list fragment pointers are
3304  * physical addresses.
3305  */
3306 
3307 static void
3308 dc_start(struct ifnet *ifp)
3309 {
3310 	struct dc_softc *sc;
3311 	struct mbuf *m_head = NULL, *m;
3312 	int idx;
3313 
3314 	sc = ifp->if_softc;
3315 
3316 	DC_LOCK(sc);
3317 
3318 	if (!sc->dc_link && ifp->if_snd.ifq_len < 10) {
3319 		DC_UNLOCK(sc);
3320 		return;
3321 	}
3322 
3323 	if (ifp->if_flags & IFF_OACTIVE) {
3324 		DC_UNLOCK(sc);
3325 		return;
3326 	}
3327 
3328 	idx = sc->dc_cdata.dc_tx_first = sc->dc_cdata.dc_tx_prod;
3329 
3330 	while (sc->dc_cdata.dc_tx_chain[idx] == NULL) {
3331 		IF_DEQUEUE(&ifp->if_snd, m_head);
3332 		if (m_head == NULL)
3333 			break;
3334 
3335 		if (sc->dc_flags & DC_TX_COALESCE &&
3336 		    (m_head->m_next != NULL ||
3337 		     sc->dc_flags & DC_TX_ALIGN)) {
3338 			m = m_defrag(m_head, M_DONTWAIT);
3339 			if (m == NULL) {
3340 				IF_PREPEND(&ifp->if_snd, m_head);
3341 				ifp->if_flags |= IFF_OACTIVE;
3342 				break;
3343 			} else {
3344 				m_head = m;
3345 			}
3346 		}
3347 
3348 		if (dc_encap(sc, m_head)) {
3349 			IF_PREPEND(&ifp->if_snd, m_head);
3350 			ifp->if_flags |= IFF_OACTIVE;
3351 			break;
3352 		}
3353 		idx = sc->dc_cdata.dc_tx_prod;
3354 
3355 		/*
3356 		 * If there's a BPF listener, bounce a copy of this frame
3357 		 * to him.
3358 		 */
3359 		BPF_MTAP(ifp, m_head);
3360 
3361 		if (sc->dc_flags & DC_TX_ONE) {
3362 			ifp->if_flags |= IFF_OACTIVE;
3363 			break;
3364 		}
3365 	}
3366 
3367 	/* Transmit */
3368 	if (!(sc->dc_flags & DC_TX_POLL))
3369 		CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3370 
3371 	/*
3372 	 * Set a timeout in case the chip goes out to lunch.
3373 	 */
3374 	ifp->if_timer = 5;
3375 
3376 	DC_UNLOCK(sc);
3377 }
3378 
3379 static void
3380 dc_init(void *xsc)
3381 {
3382 	struct dc_softc *sc = xsc;
3383 	struct ifnet *ifp = &sc->arpcom.ac_if;
3384 	struct mii_data *mii;
3385 
3386 	DC_LOCK(sc);
3387 
3388 	mii = device_get_softc(sc->dc_miibus);
3389 
3390 	/*
3391 	 * Cancel pending I/O and free all RX/TX buffers.
3392 	 */
3393 	dc_stop(sc);
3394 	dc_reset(sc);
3395 
3396 	/*
3397 	 * Set cache alignment and burst length.
3398 	 */
3399 	if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc))
3400 		CSR_WRITE_4(sc, DC_BUSCTL, 0);
3401 	else
3402 		CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME | DC_BUSCTL_MRLE);
3403 	/*
3404 	 * Evenly share the bus between receive and transmit process.
3405 	 */
3406 	if (DC_IS_INTEL(sc))
3407 		DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION);
3408 	if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
3409 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
3410 	} else {
3411 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
3412 	}
3413 	if (sc->dc_flags & DC_TX_POLL)
3414 		DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
3415 	switch(sc->dc_cachesize) {
3416 	case 32:
3417 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
3418 		break;
3419 	case 16:
3420 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
3421 		break;
3422 	case 8:
3423 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
3424 		break;
3425 	case 0:
3426 	default:
3427 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
3428 		break;
3429 	}
3430 
3431 	if (sc->dc_flags & DC_TX_STORENFWD)
3432 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3433 	else {
3434 		if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3435 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3436 		} else {
3437 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3438 			DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3439 		}
3440 	}
3441 
3442 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
3443 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
3444 
3445 	if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
3446 		/*
3447 		 * The app notes for the 98713 and 98715A say that
3448 		 * in order to have the chips operate properly, a magic
3449 		 * number must be written to CSR16. Macronix does not
3450 		 * document the meaning of these bits so there's no way
3451 		 * to know exactly what they do. The 98713 has a magic
3452 		 * number all its own; the rest all use a different one.
3453 		 */
3454 		DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
3455 		if (sc->dc_type == DC_TYPE_98713)
3456 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
3457 		else
3458 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
3459 	}
3460 
3461 	if (DC_IS_XIRCOM(sc)) {
3462 		/*
3463 		 * setup General Purpose Port mode and data so the tulip
3464 		 * can talk to the MII.
3465 		 */
3466 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
3467 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3468 		DELAY(10);
3469 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
3470 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3471 		DELAY(10);
3472 	}
3473 
3474 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3475 	DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN);
3476 
3477 	/* Init circular RX list. */
3478 	if (dc_list_rx_init(sc) == ENOBUFS) {
3479 		printf("dc%d: initialization failed: no "
3480 		    "memory for rx buffers\n", sc->dc_unit);
3481 		dc_stop(sc);
3482 		DC_UNLOCK(sc);
3483 		return;
3484 	}
3485 
3486 	/*
3487 	 * Init TX descriptors.
3488 	 */
3489 	dc_list_tx_init(sc);
3490 
3491 	/*
3492 	 * Load the address of the RX list.
3493 	 */
3494 	CSR_WRITE_4(sc, DC_RXADDR, DC_RXDESC(sc, 0));
3495 	CSR_WRITE_4(sc, DC_TXADDR, DC_TXDESC(sc, 0));
3496 
3497 	/*
3498 	 * Enable interrupts.
3499 	 */
3500 #ifdef DEVICE_POLLING
3501 	/*
3502 	 * ... but only if we are not polling, and make sure they are off in
3503 	 * the case of polling. Some cards (e.g. fxp) turn interrupts on
3504 	 * after a reset.
3505 	 */
3506 	if (ifp->if_flags & IFF_POLLING)
3507 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3508 	else
3509 #endif
3510 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3511 	CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
3512 
3513 	/* Enable transmitter. */
3514 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3515 
3516 	/*
3517 	 * If this is an Intel 21143 and we're not using the
3518 	 * MII port, program the LED control pins so we get
3519 	 * link and activity indications.
3520 	 */
3521 	if (sc->dc_flags & DC_TULIP_LEDS) {
3522 		CSR_WRITE_4(sc, DC_WATCHDOG,
3523 		    DC_WDOG_CTLWREN | DC_WDOG_LINK | DC_WDOG_ACTIVITY);
3524 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
3525 	}
3526 
3527 	/*
3528 	 * Load the RX/multicast filter. We do this sort of late
3529 	 * because the filter programming scheme on the 21143 and
3530 	 * some clones requires DMAing a setup frame via the TX
3531 	 * engine, and we need the transmitter enabled for that.
3532 	 */
3533 	dc_setfilt(sc);
3534 
3535 	/* Enable receiver. */
3536 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
3537 	CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
3538 
3539 	mii_mediachg(mii);
3540 	dc_setcfg(sc, sc->dc_if_media);
3541 
3542 	ifp->if_flags |= IFF_RUNNING;
3543 	ifp->if_flags &= ~IFF_OACTIVE;
3544 
3545 	/* Don't start the ticker if this is a homePNA link. */
3546 	if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_HPNA_1)
3547 		sc->dc_link = 1;
3548 	else {
3549 		if (sc->dc_flags & DC_21143_NWAY)
3550 			callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
3551 		else
3552 			callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
3553 	}
3554 
3555 #ifdef SRM_MEDIA
3556 	if(sc->dc_srm_media) {
3557 		struct ifreq ifr;
3558 
3559 		ifr.ifr_media = sc->dc_srm_media;
3560 		ifmedia_ioctl(ifp, &ifr, &mii->mii_media, SIOCSIFMEDIA);
3561 		sc->dc_srm_media = 0;
3562 	}
3563 #endif
3564 	DC_UNLOCK(sc);
3565 }
3566 
3567 /*
3568  * Set media options.
3569  */
3570 static int
3571 dc_ifmedia_upd(struct ifnet *ifp)
3572 {
3573 	struct dc_softc *sc;
3574 	struct mii_data *mii;
3575 	struct ifmedia *ifm;
3576 
3577 	sc = ifp->if_softc;
3578 	mii = device_get_softc(sc->dc_miibus);
3579 	mii_mediachg(mii);
3580 	ifm = &mii->mii_media;
3581 
3582 	if (DC_IS_DAVICOM(sc) &&
3583 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1)
3584 		dc_setcfg(sc, ifm->ifm_media);
3585 	else
3586 		sc->dc_link = 0;
3587 
3588 	return (0);
3589 }
3590 
3591 /*
3592  * Report current media status.
3593  */
3594 static void
3595 dc_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3596 {
3597 	struct dc_softc *sc;
3598 	struct mii_data *mii;
3599 	struct ifmedia *ifm;
3600 
3601 	sc = ifp->if_softc;
3602 	mii = device_get_softc(sc->dc_miibus);
3603 	mii_pollstat(mii);
3604 	ifm = &mii->mii_media;
3605 	if (DC_IS_DAVICOM(sc)) {
3606 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
3607 			ifmr->ifm_active = ifm->ifm_media;
3608 			ifmr->ifm_status = 0;
3609 			return;
3610 		}
3611 	}
3612 	ifmr->ifm_active = mii->mii_media_active;
3613 	ifmr->ifm_status = mii->mii_media_status;
3614 }
3615 
3616 static int
3617 dc_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
3618 {
3619 	struct dc_softc *sc = ifp->if_softc;
3620 	struct ifreq *ifr = (struct ifreq *)data;
3621 	struct mii_data *mii;
3622 	int error = 0;
3623 
3624 	DC_LOCK(sc);
3625 
3626 	switch (command) {
3627 	case SIOCSIFFLAGS:
3628 		if (ifp->if_flags & IFF_UP) {
3629 			int need_setfilt = (ifp->if_flags ^ sc->dc_if_flags) &
3630 				(IFF_PROMISC | IFF_ALLMULTI);
3631 
3632 			if (ifp->if_flags & IFF_RUNNING) {
3633 				if (need_setfilt)
3634 					dc_setfilt(sc);
3635 			} else {
3636 				sc->dc_txthresh = 0;
3637 				dc_init(sc);
3638 			}
3639 		} else {
3640 			if (ifp->if_flags & IFF_RUNNING)
3641 				dc_stop(sc);
3642 		}
3643 		sc->dc_if_flags = ifp->if_flags;
3644 		error = 0;
3645 		break;
3646 	case SIOCADDMULTI:
3647 	case SIOCDELMULTI:
3648 		dc_setfilt(sc);
3649 		error = 0;
3650 		break;
3651 	case SIOCGIFMEDIA:
3652 	case SIOCSIFMEDIA:
3653 		mii = device_get_softc(sc->dc_miibus);
3654 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
3655 #ifdef SRM_MEDIA
3656 		if (sc->dc_srm_media)
3657 			sc->dc_srm_media = 0;
3658 #endif
3659 		break;
3660 	default:
3661 		error = ether_ioctl(ifp, command, data);
3662 		break;
3663 	}
3664 
3665 	DC_UNLOCK(sc);
3666 
3667 	return (error);
3668 }
3669 
3670 static void
3671 dc_watchdog(struct ifnet *ifp)
3672 {
3673 	struct dc_softc *sc;
3674 
3675 	sc = ifp->if_softc;
3676 
3677 	DC_LOCK(sc);
3678 
3679 	ifp->if_oerrors++;
3680 	printf("dc%d: watchdog timeout\n", sc->dc_unit);
3681 
3682 	dc_stop(sc);
3683 	dc_reset(sc);
3684 	dc_init(sc);
3685 
3686 	if (ifp->if_snd.ifq_head != NULL)
3687 		dc_start(ifp);
3688 
3689 	DC_UNLOCK(sc);
3690 }
3691 
3692 /*
3693  * Stop the adapter and free any mbufs allocated to the
3694  * RX and TX lists.
3695  */
3696 static void
3697 dc_stop(struct dc_softc *sc)
3698 {
3699 	struct ifnet *ifp;
3700 	struct dc_list_data *ld;
3701 	struct dc_chain_data *cd;
3702 	int i;
3703 	u_int32_t ctl;
3704 
3705 	DC_LOCK(sc);
3706 
3707 	ifp = &sc->arpcom.ac_if;
3708 	ifp->if_timer = 0;
3709 	ld = sc->dc_ldata;
3710 	cd = &sc->dc_cdata;
3711 
3712 	callout_stop(&sc->dc_stat_ch);
3713 
3714 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3715 #ifdef DEVICE_POLLING
3716 	ether_poll_deregister(ifp);
3717 #endif
3718 
3719 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ON | DC_NETCFG_TX_ON));
3720 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3721 	CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
3722 	CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
3723 	sc->dc_link = 0;
3724 
3725 	/*
3726 	 * Free data in the RX lists.
3727 	 */
3728 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
3729 		if (cd->dc_rx_chain[i] != NULL) {
3730 			m_freem(cd->dc_rx_chain[i]);
3731 			cd->dc_rx_chain[i] = NULL;
3732 		}
3733 	}
3734 	bzero(&ld->dc_rx_list, sizeof(ld->dc_rx_list));
3735 
3736 	/*
3737 	 * Free the TX list buffers.
3738 	 */
3739 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
3740 		if (cd->dc_tx_chain[i] != NULL) {
3741 			ctl = le32toh(ld->dc_tx_list[i].dc_ctl);
3742 			if ((ctl & DC_TXCTL_SETUP) ||
3743 			    !(ctl & DC_TXCTL_FIRSTFRAG)) {
3744 				cd->dc_tx_chain[i] = NULL;
3745 				continue;
3746 			}
3747 			bus_dmamap_unload(sc->dc_mtag, cd->dc_tx_map[i]);
3748 			m_freem(cd->dc_tx_chain[i]);
3749 			cd->dc_tx_chain[i] = NULL;
3750 		}
3751 	}
3752 	bzero(&ld->dc_tx_list, sizeof(ld->dc_tx_list));
3753 
3754 	DC_UNLOCK(sc);
3755 }
3756 
3757 /*
3758  * Device suspend routine.  Stop the interface and save some PCI
3759  * settings in case the BIOS doesn't restore them properly on
3760  * resume.
3761  */
3762 static int
3763 dc_suspend(device_t dev)
3764 {
3765 	struct dc_softc *sc;
3766 	int i, s;
3767 
3768 	s = splimp();
3769 
3770 	sc = device_get_softc(dev);
3771 
3772 	dc_stop(sc);
3773 
3774 	for (i = 0; i < 5; i++)
3775 		sc->saved_maps[i] = pci_read_config(dev, PCIR_BAR(i), 4);
3776 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
3777 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
3778 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
3779 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
3780 
3781 	sc->suspended = 1;
3782 
3783 	splx(s);
3784 	return (0);
3785 }
3786 
3787 /*
3788  * Device resume routine.  Restore some PCI settings in case the BIOS
3789  * doesn't, re-enable busmastering, and restart the interface if
3790  * appropriate.
3791  */
3792 static int
3793 dc_resume(device_t dev)
3794 {
3795 	struct dc_softc *sc;
3796 	struct ifnet *ifp;
3797 	int i, s;
3798 
3799 	s = splimp();
3800 
3801 	sc = device_get_softc(dev);
3802 	ifp = &sc->arpcom.ac_if;
3803 #ifndef BURN_BRIDGES
3804 	dc_acpi(dev);
3805 #endif
3806 	/* better way to do this? */
3807 	for (i = 0; i < 5; i++)
3808 		pci_write_config(dev, PCIR_BAR(i), sc->saved_maps[i], 4);
3809 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
3810 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
3811 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
3812 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
3813 
3814 	/* reenable busmastering */
3815 	pci_enable_busmaster(dev);
3816 	pci_enable_io(dev, DC_RES);
3817 
3818 	/* reinitialize interface if necessary */
3819 	if (ifp->if_flags & IFF_UP)
3820 		dc_init(sc);
3821 
3822 	sc->suspended = 0;
3823 
3824 	splx(s);
3825 	return (0);
3826 }
3827 
3828 /*
3829  * Stop all chip I/O so that the kernel's probe routines don't
3830  * get confused by errant DMAs when rebooting.
3831  */
3832 static void
3833 dc_shutdown(device_t dev)
3834 {
3835 	struct dc_softc *sc;
3836 
3837 	sc = device_get_softc(dev);
3838 
3839 	dc_stop(sc);
3840 }
3841