1 /* 2 * Copyright (c) 1997, 1998, 1999 3 * Bill Paul <wpaul@ee.columbia.edu>. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by Bill Paul. 16 * 4. Neither the name of the author nor the names of any co-contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 30 * THE POSSIBILITY OF SUCH DAMAGE. 31 * 32 * $FreeBSD$ 33 */ 34 35 /* 36 * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143 37 * series chips and several workalikes including the following: 38 * 39 * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com) 40 * Macronix/Lite-On 82c115 PNIC II (www.macronix.com) 41 * Lite-On 82c168/82c169 PNIC (www.litecom.com) 42 * ASIX Electronics AX88140A (www.asix.com.tw) 43 * ASIX Electronics AX88141 (www.asix.com.tw) 44 * ADMtek AL981 (www.admtek.com.tw) 45 * ADMtek AN985 (www.admtek.com.tw) 46 * Davicom DM9100, DM9102, DM9102A (www.davicom8.com) 47 * Accton EN1217 (www.accton.com) 48 * Xircom X3201 (www.xircom.com) 49 * Abocom FE2500 50 * Conexant LANfinity (www.conexant.com) 51 * 52 * Datasheets for the 21143 are available at developer.intel.com. 53 * Datasheets for the clone parts can be found at their respective sites. 54 * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.) 55 * The PNIC II is essentially a Macronix 98715A chip; the only difference 56 * worth noting is that its multicast hash table is only 128 bits wide 57 * instead of 512. 58 * 59 * Written by Bill Paul <wpaul@ee.columbia.edu> 60 * Electrical Engineering Department 61 * Columbia University, New York City 62 */ 63 64 /* 65 * The Intel 21143 is the successor to the DEC 21140. It is basically 66 * the same as the 21140 but with a few new features. The 21143 supports 67 * three kinds of media attachments: 68 * 69 * o MII port, for 10Mbps and 100Mbps support and NWAY 70 * autonegotiation provided by an external PHY. 71 * o SYM port, for symbol mode 100Mbps support. 72 * o 10baseT port. 73 * o AUI/BNC port. 74 * 75 * The 100Mbps SYM port and 10baseT port can be used together in 76 * combination with the internal NWAY support to create a 10/100 77 * autosensing configuration. 78 * 79 * Note that not all tulip workalikes are handled in this driver: we only 80 * deal with those which are relatively well behaved. The Winbond is 81 * handled separately due to its different register offsets and the 82 * special handling needed for its various bugs. The PNIC is handled 83 * here, but I'm not thrilled about it. 84 * 85 * All of the workalike chips use some form of MII transceiver support 86 * with the exception of the Macronix chips, which also have a SYM port. 87 * The ASIX AX88140A is also documented to have a SYM port, but all 88 * the cards I've seen use an MII transceiver, probably because the 89 * AX88140A doesn't support internal NWAY. 90 */ 91 92 #include <sys/param.h> 93 #include <sys/systm.h> 94 #include <sys/sockio.h> 95 #include <sys/mbuf.h> 96 #include <sys/malloc.h> 97 #include <sys/kernel.h> 98 #include <sys/socket.h> 99 #include <sys/sysctl.h> 100 101 #include <net/if.h> 102 #include <net/if_arp.h> 103 #include <net/ethernet.h> 104 #include <net/if_dl.h> 105 #include <net/if_media.h> 106 #include <net/if_types.h> 107 #include <net/if_vlan_var.h> 108 109 #include <net/bpf.h> 110 111 #include <vm/vm.h> /* for vtophys */ 112 #include <vm/pmap.h> /* for vtophys */ 113 #include <machine/bus_pio.h> 114 #include <machine/bus_memio.h> 115 #include <machine/bus.h> 116 #include <machine/resource.h> 117 #include <sys/bus.h> 118 #include <sys/rman.h> 119 120 #include <dev/mii/mii.h> 121 #include <dev/mii/miivar.h> 122 123 #include <pci/pcireg.h> 124 #include <pci/pcivar.h> 125 126 #define DC_USEIOSPACE 127 #ifdef __alpha__ 128 #define SRM_MEDIA 129 #endif 130 131 #include <pci/if_dcreg.h> 132 133 MODULE_DEPEND(dc, miibus, 1, 1, 1); 134 135 /* "controller miibus0" required. See GENERIC if you get errors here. */ 136 #include "miibus_if.h" 137 138 #ifndef lint 139 static const char rcsid[] = 140 "$FreeBSD$"; 141 #endif 142 143 /* 144 * Various supported device vendors/types and their names. 145 */ 146 static struct dc_type dc_devs[] = { 147 { DC_VENDORID_DEC, DC_DEVICEID_21143, 148 "Intel 21143 10/100BaseTX" }, 149 { DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100, 150 "Davicom DM9100 10/100BaseTX" }, 151 { DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102, 152 "Davicom DM9102 10/100BaseTX" }, 153 { DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102, 154 "Davicom DM9102A 10/100BaseTX" }, 155 { DC_VENDORID_ADMTEK, DC_DEVICEID_AL981, 156 "ADMtek AL981 10/100BaseTX" }, 157 { DC_VENDORID_ADMTEK, DC_DEVICEID_AN985, 158 "ADMtek AN985 10/100BaseTX" }, 159 { DC_VENDORID_ASIX, DC_DEVICEID_AX88140A, 160 "ASIX AX88140A 10/100BaseTX" }, 161 { DC_VENDORID_ASIX, DC_DEVICEID_AX88140A, 162 "ASIX AX88141 10/100BaseTX" }, 163 { DC_VENDORID_MX, DC_DEVICEID_98713, 164 "Macronix 98713 10/100BaseTX" }, 165 { DC_VENDORID_MX, DC_DEVICEID_98713, 166 "Macronix 98713A 10/100BaseTX" }, 167 { DC_VENDORID_CP, DC_DEVICEID_98713_CP, 168 "Compex RL100-TX 10/100BaseTX" }, 169 { DC_VENDORID_CP, DC_DEVICEID_98713_CP, 170 "Compex RL100-TX 10/100BaseTX" }, 171 { DC_VENDORID_MX, DC_DEVICEID_987x5, 172 "Macronix 98715/98715A 10/100BaseTX" }, 173 { DC_VENDORID_MX, DC_DEVICEID_987x5, 174 "Macronix 98715AEC-C 10/100BaseTX" }, 175 { DC_VENDORID_MX, DC_DEVICEID_987x5, 176 "Macronix 98725 10/100BaseTX" }, 177 { DC_VENDORID_MX, DC_DEVICEID_98727, 178 "Macronix 98727/98732 10/100BaseTX" }, 179 { DC_VENDORID_LO, DC_DEVICEID_82C115, 180 "LC82C115 PNIC II 10/100BaseTX" }, 181 { DC_VENDORID_LO, DC_DEVICEID_82C168, 182 "82c168 PNIC 10/100BaseTX" }, 183 { DC_VENDORID_LO, DC_DEVICEID_82C168, 184 "82c169 PNIC 10/100BaseTX" }, 185 { DC_VENDORID_ACCTON, DC_DEVICEID_EN1217, 186 "Accton EN1217 10/100BaseTX" }, 187 { DC_VENDORID_ACCTON, DC_DEVICEID_EN2242, 188 "Accton EN2242 MiniPCI 10/100BaseTX" }, 189 { DC_VENDORID_XIRCOM, DC_DEVICEID_X3201, 190 "Xircom X3201 10/100BaseTX" }, 191 { DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500, 192 "Abocom FE2500 10/100BaseTX" }, 193 { DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112, 194 "Conexant LANfinity MiniPCI 10/100BaseTX" }, 195 { 0, 0, NULL } 196 }; 197 198 static int dc_probe (device_t); 199 static int dc_attach (device_t); 200 static int dc_detach (device_t); 201 static int dc_suspend (device_t); 202 static int dc_resume (device_t); 203 static void dc_acpi (device_t); 204 static struct dc_type *dc_devtype (device_t); 205 static int dc_newbuf (struct dc_softc *, int, struct mbuf *); 206 static int dc_encap (struct dc_softc *, struct mbuf *, u_int32_t *); 207 static int dc_coal (struct dc_softc *, struct mbuf **); 208 static void dc_pnic_rx_bug_war (struct dc_softc *, int); 209 static int dc_rx_resync (struct dc_softc *); 210 static void dc_rxeof (struct dc_softc *); 211 static void dc_txeof (struct dc_softc *); 212 static void dc_tick (void *); 213 static void dc_tx_underrun (struct dc_softc *); 214 static void dc_intr (void *); 215 static void dc_start (struct ifnet *); 216 static int dc_ioctl (struct ifnet *, u_long, caddr_t); 217 static void dc_init (void *); 218 static void dc_stop (struct dc_softc *); 219 static void dc_watchdog (struct ifnet *); 220 static void dc_shutdown (device_t); 221 static int dc_ifmedia_upd (struct ifnet *); 222 static void dc_ifmedia_sts (struct ifnet *, struct ifmediareq *); 223 224 static void dc_delay (struct dc_softc *); 225 static void dc_eeprom_idle (struct dc_softc *); 226 static void dc_eeprom_putbyte (struct dc_softc *, int); 227 static void dc_eeprom_getword (struct dc_softc *, int, u_int16_t *); 228 static void dc_eeprom_getword_pnic 229 (struct dc_softc *, int, u_int16_t *); 230 static void dc_eeprom_getword_xircom 231 (struct dc_softc *, int, u_int16_t *); 232 static void dc_eeprom_width (struct dc_softc *); 233 static void dc_read_eeprom (struct dc_softc *, caddr_t, int, int, int); 234 235 static void dc_mii_writebit (struct dc_softc *, int); 236 static int dc_mii_readbit (struct dc_softc *); 237 static void dc_mii_sync (struct dc_softc *); 238 static void dc_mii_send (struct dc_softc *, u_int32_t, int); 239 static int dc_mii_readreg (struct dc_softc *, struct dc_mii_frame *); 240 static int dc_mii_writereg (struct dc_softc *, struct dc_mii_frame *); 241 static int dc_miibus_readreg (device_t, int, int); 242 static int dc_miibus_writereg (device_t, int, int, int); 243 static void dc_miibus_statchg (device_t); 244 static void dc_miibus_mediainit (device_t); 245 246 static void dc_setcfg (struct dc_softc *, int); 247 static u_int32_t dc_crc_le (struct dc_softc *, caddr_t); 248 static u_int32_t dc_crc_be (caddr_t); 249 static void dc_setfilt_21143 (struct dc_softc *); 250 static void dc_setfilt_asix (struct dc_softc *); 251 static void dc_setfilt_admtek (struct dc_softc *); 252 static void dc_setfilt_xircom (struct dc_softc *); 253 254 static void dc_setfilt (struct dc_softc *); 255 256 static void dc_reset (struct dc_softc *); 257 static int dc_list_rx_init (struct dc_softc *); 258 static int dc_list_tx_init (struct dc_softc *); 259 260 static void dc_read_srom (struct dc_softc *, int); 261 static void dc_parse_21143_srom (struct dc_softc *); 262 static void dc_decode_leaf_sia (struct dc_softc *, struct dc_eblock_sia *); 263 static void dc_decode_leaf_mii (struct dc_softc *, struct dc_eblock_mii *); 264 static void dc_decode_leaf_sym (struct dc_softc *, struct dc_eblock_sym *); 265 static void dc_apply_fixup (struct dc_softc *, int); 266 267 #ifdef DC_USEIOSPACE 268 #define DC_RES SYS_RES_IOPORT 269 #define DC_RID DC_PCI_CFBIO 270 #else 271 #define DC_RES SYS_RES_MEMORY 272 #define DC_RID DC_PCI_CFBMA 273 #endif 274 275 static device_method_t dc_methods[] = { 276 /* Device interface */ 277 DEVMETHOD(device_probe, dc_probe), 278 DEVMETHOD(device_attach, dc_attach), 279 DEVMETHOD(device_detach, dc_detach), 280 DEVMETHOD(device_suspend, dc_suspend), 281 DEVMETHOD(device_resume, dc_resume), 282 DEVMETHOD(device_shutdown, dc_shutdown), 283 284 /* bus interface */ 285 DEVMETHOD(bus_print_child, bus_generic_print_child), 286 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 287 288 /* MII interface */ 289 DEVMETHOD(miibus_readreg, dc_miibus_readreg), 290 DEVMETHOD(miibus_writereg, dc_miibus_writereg), 291 DEVMETHOD(miibus_statchg, dc_miibus_statchg), 292 DEVMETHOD(miibus_mediainit, dc_miibus_mediainit), 293 294 { 0, 0 } 295 }; 296 297 static driver_t dc_driver = { 298 "dc", 299 dc_methods, 300 sizeof(struct dc_softc) 301 }; 302 303 static devclass_t dc_devclass; 304 #ifdef __i386__ 305 static int dc_quick=1; 306 SYSCTL_INT(_hw, OID_AUTO, dc_quick, CTLFLAG_RW, 307 &dc_quick,0,"do not mdevget in dc driver"); 308 #endif 309 310 DRIVER_MODULE(if_dc, cardbus, dc_driver, dc_devclass, 0, 0); 311 DRIVER_MODULE(if_dc, pci, dc_driver, dc_devclass, 0, 0); 312 DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, 0, 0); 313 314 #define DC_SETBIT(sc, reg, x) \ 315 CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x)) 316 317 #define DC_CLRBIT(sc, reg, x) \ 318 CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x)) 319 320 #define SIO_SET(x) DC_SETBIT(sc, DC_SIO, (x)) 321 #define SIO_CLR(x) DC_CLRBIT(sc, DC_SIO, (x)) 322 323 #define IS_MPSAFE 0 324 325 static void 326 dc_delay(sc) 327 struct dc_softc *sc; 328 { 329 int idx; 330 331 for (idx = (300 / 33) + 1; idx > 0; idx--) 332 CSR_READ_4(sc, DC_BUSCTL); 333 } 334 335 static void 336 dc_eeprom_width(sc) 337 struct dc_softc *sc; 338 { 339 int i; 340 341 /* Force EEPROM to idle state. */ 342 dc_eeprom_idle(sc); 343 344 /* Enter EEPROM access mode. */ 345 CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL); 346 dc_delay(sc); 347 DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ); 348 dc_delay(sc); 349 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); 350 dc_delay(sc); 351 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS); 352 dc_delay(sc); 353 354 for (i = 3; i--;) { 355 if (6 & (1 << i)) 356 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN); 357 else 358 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN); 359 dc_delay(sc); 360 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK); 361 dc_delay(sc); 362 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); 363 dc_delay(sc); 364 } 365 366 for (i = 1; i <= 12; i++) { 367 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK); 368 dc_delay(sc); 369 if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) { 370 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); 371 dc_delay(sc); 372 break; 373 } 374 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); 375 dc_delay(sc); 376 } 377 378 /* Turn off EEPROM access mode. */ 379 dc_eeprom_idle(sc); 380 381 if (i < 4 || i > 12) 382 sc->dc_romwidth = 6; 383 else 384 sc->dc_romwidth = i; 385 386 /* Enter EEPROM access mode. */ 387 CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL); 388 dc_delay(sc); 389 DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ); 390 dc_delay(sc); 391 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); 392 dc_delay(sc); 393 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS); 394 dc_delay(sc); 395 396 /* Turn off EEPROM access mode. */ 397 dc_eeprom_idle(sc); 398 } 399 400 static void 401 dc_eeprom_idle(sc) 402 struct dc_softc *sc; 403 { 404 register int i; 405 406 CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL); 407 dc_delay(sc); 408 DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ); 409 dc_delay(sc); 410 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); 411 dc_delay(sc); 412 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS); 413 dc_delay(sc); 414 415 for (i = 0; i < 25; i++) { 416 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); 417 dc_delay(sc); 418 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK); 419 dc_delay(sc); 420 } 421 422 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); 423 dc_delay(sc); 424 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS); 425 dc_delay(sc); 426 CSR_WRITE_4(sc, DC_SIO, 0x00000000); 427 428 return; 429 } 430 431 /* 432 * Send a read command and address to the EEPROM, check for ACK. 433 */ 434 static void 435 dc_eeprom_putbyte(sc, addr) 436 struct dc_softc *sc; 437 int addr; 438 { 439 register int d, i; 440 441 d = DC_EECMD_READ >> 6; 442 for (i = 3; i--; ) { 443 if (d & (1 << i)) 444 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN); 445 else 446 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN); 447 dc_delay(sc); 448 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK); 449 dc_delay(sc); 450 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); 451 dc_delay(sc); 452 } 453 454 /* 455 * Feed in each bit and strobe the clock. 456 */ 457 for (i = sc->dc_romwidth; i--;) { 458 if (addr & (1 << i)) { 459 SIO_SET(DC_SIO_EE_DATAIN); 460 } else { 461 SIO_CLR(DC_SIO_EE_DATAIN); 462 } 463 dc_delay(sc); 464 SIO_SET(DC_SIO_EE_CLK); 465 dc_delay(sc); 466 SIO_CLR(DC_SIO_EE_CLK); 467 dc_delay(sc); 468 } 469 470 return; 471 } 472 473 /* 474 * Read a word of data stored in the EEPROM at address 'addr.' 475 * The PNIC 82c168/82c169 has its own non-standard way to read 476 * the EEPROM. 477 */ 478 static void 479 dc_eeprom_getword_pnic(sc, addr, dest) 480 struct dc_softc *sc; 481 int addr; 482 u_int16_t *dest; 483 { 484 register int i; 485 u_int32_t r; 486 487 CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ|addr); 488 489 for (i = 0; i < DC_TIMEOUT; i++) { 490 DELAY(1); 491 r = CSR_READ_4(sc, DC_SIO); 492 if (!(r & DC_PN_SIOCTL_BUSY)) { 493 *dest = (u_int16_t)(r & 0xFFFF); 494 return; 495 } 496 } 497 498 return; 499 } 500 501 /* 502 * Read a word of data stored in the EEPROM at address 'addr.' 503 * The Xircom X3201 has its own non-standard way to read 504 * the EEPROM, too. 505 */ 506 static void 507 dc_eeprom_getword_xircom(sc, addr, dest) 508 struct dc_softc *sc; 509 int addr; 510 u_int16_t *dest; 511 { 512 SIO_SET(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ); 513 514 addr *= 2; 515 CSR_WRITE_4(sc, DC_ROM, addr | 0x160); 516 *dest = (u_int16_t)CSR_READ_4(sc, DC_SIO)&0xff; 517 addr += 1; 518 CSR_WRITE_4(sc, DC_ROM, addr | 0x160); 519 *dest |= ((u_int16_t)CSR_READ_4(sc, DC_SIO)&0xff) << 8; 520 521 SIO_CLR(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ); 522 return; 523 } 524 525 /* 526 * Read a word of data stored in the EEPROM at address 'addr.' 527 */ 528 static void 529 dc_eeprom_getword(sc, addr, dest) 530 struct dc_softc *sc; 531 int addr; 532 u_int16_t *dest; 533 { 534 register int i; 535 u_int16_t word = 0; 536 537 /* Force EEPROM to idle state. */ 538 dc_eeprom_idle(sc); 539 540 /* Enter EEPROM access mode. */ 541 CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL); 542 dc_delay(sc); 543 DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ); 544 dc_delay(sc); 545 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); 546 dc_delay(sc); 547 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS); 548 dc_delay(sc); 549 550 /* 551 * Send address of word we want to read. 552 */ 553 dc_eeprom_putbyte(sc, addr); 554 555 /* 556 * Start reading bits from EEPROM. 557 */ 558 for (i = 0x8000; i; i >>= 1) { 559 SIO_SET(DC_SIO_EE_CLK); 560 dc_delay(sc); 561 if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT) 562 word |= i; 563 dc_delay(sc); 564 SIO_CLR(DC_SIO_EE_CLK); 565 dc_delay(sc); 566 } 567 568 /* Turn off EEPROM access mode. */ 569 dc_eeprom_idle(sc); 570 571 *dest = word; 572 573 return; 574 } 575 576 /* 577 * Read a sequence of words from the EEPROM. 578 */ 579 static void 580 dc_read_eeprom(sc, dest, off, cnt, swap) 581 struct dc_softc *sc; 582 caddr_t dest; 583 int off; 584 int cnt; 585 int swap; 586 { 587 int i; 588 u_int16_t word = 0, *ptr; 589 590 for (i = 0; i < cnt; i++) { 591 if (DC_IS_PNIC(sc)) 592 dc_eeprom_getword_pnic(sc, off + i, &word); 593 else if (DC_IS_XIRCOM(sc)) 594 dc_eeprom_getword_xircom(sc, off + i, &word); 595 else 596 dc_eeprom_getword(sc, off + i, &word); 597 ptr = (u_int16_t *)(dest + (i * 2)); 598 if (swap) 599 *ptr = ntohs(word); 600 else 601 *ptr = word; 602 } 603 604 return; 605 } 606 607 /* 608 * The following two routines are taken from the Macronix 98713 609 * Application Notes pp.19-21. 610 */ 611 /* 612 * Write a bit to the MII bus. 613 */ 614 static void 615 dc_mii_writebit(sc, bit) 616 struct dc_softc *sc; 617 int bit; 618 { 619 if (bit) 620 CSR_WRITE_4(sc, DC_SIO, 621 DC_SIO_ROMCTL_WRITE|DC_SIO_MII_DATAOUT); 622 else 623 CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE); 624 625 DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK); 626 DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK); 627 628 return; 629 } 630 631 /* 632 * Read a bit from the MII bus. 633 */ 634 static int 635 dc_mii_readbit(sc) 636 struct dc_softc *sc; 637 { 638 CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_READ|DC_SIO_MII_DIR); 639 CSR_READ_4(sc, DC_SIO); 640 DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK); 641 DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK); 642 if (CSR_READ_4(sc, DC_SIO) & DC_SIO_MII_DATAIN) 643 return(1); 644 645 return(0); 646 } 647 648 /* 649 * Sync the PHYs by setting data bit and strobing the clock 32 times. 650 */ 651 static void 652 dc_mii_sync(sc) 653 struct dc_softc *sc; 654 { 655 register int i; 656 657 CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE); 658 659 for (i = 0; i < 32; i++) 660 dc_mii_writebit(sc, 1); 661 662 return; 663 } 664 665 /* 666 * Clock a series of bits through the MII. 667 */ 668 static void 669 dc_mii_send(sc, bits, cnt) 670 struct dc_softc *sc; 671 u_int32_t bits; 672 int cnt; 673 { 674 int i; 675 676 for (i = (0x1 << (cnt - 1)); i; i >>= 1) 677 dc_mii_writebit(sc, bits & i); 678 } 679 680 /* 681 * Read an PHY register through the MII. 682 */ 683 static int 684 dc_mii_readreg(sc, frame) 685 struct dc_softc *sc; 686 struct dc_mii_frame *frame; 687 688 { 689 int i, ack; 690 691 DC_LOCK(sc); 692 693 /* 694 * Set up frame for RX. 695 */ 696 frame->mii_stdelim = DC_MII_STARTDELIM; 697 frame->mii_opcode = DC_MII_READOP; 698 frame->mii_turnaround = 0; 699 frame->mii_data = 0; 700 701 /* 702 * Sync the PHYs. 703 */ 704 dc_mii_sync(sc); 705 706 /* 707 * Send command/address info. 708 */ 709 dc_mii_send(sc, frame->mii_stdelim, 2); 710 dc_mii_send(sc, frame->mii_opcode, 2); 711 dc_mii_send(sc, frame->mii_phyaddr, 5); 712 dc_mii_send(sc, frame->mii_regaddr, 5); 713 714 #ifdef notdef 715 /* Idle bit */ 716 dc_mii_writebit(sc, 1); 717 dc_mii_writebit(sc, 0); 718 #endif 719 720 /* Check for ack */ 721 ack = dc_mii_readbit(sc); 722 723 /* 724 * Now try reading data bits. If the ack failed, we still 725 * need to clock through 16 cycles to keep the PHY(s) in sync. 726 */ 727 if (ack) { 728 for(i = 0; i < 16; i++) { 729 dc_mii_readbit(sc); 730 } 731 goto fail; 732 } 733 734 for (i = 0x8000; i; i >>= 1) { 735 if (!ack) { 736 if (dc_mii_readbit(sc)) 737 frame->mii_data |= i; 738 } 739 } 740 741 fail: 742 743 dc_mii_writebit(sc, 0); 744 dc_mii_writebit(sc, 0); 745 746 DC_UNLOCK(sc); 747 748 if (ack) 749 return(1); 750 return(0); 751 } 752 753 /* 754 * Write to a PHY register through the MII. 755 */ 756 static int 757 dc_mii_writereg(sc, frame) 758 struct dc_softc *sc; 759 struct dc_mii_frame *frame; 760 761 { 762 DC_LOCK(sc); 763 /* 764 * Set up frame for TX. 765 */ 766 767 frame->mii_stdelim = DC_MII_STARTDELIM; 768 frame->mii_opcode = DC_MII_WRITEOP; 769 frame->mii_turnaround = DC_MII_TURNAROUND; 770 771 /* 772 * Sync the PHYs. 773 */ 774 dc_mii_sync(sc); 775 776 dc_mii_send(sc, frame->mii_stdelim, 2); 777 dc_mii_send(sc, frame->mii_opcode, 2); 778 dc_mii_send(sc, frame->mii_phyaddr, 5); 779 dc_mii_send(sc, frame->mii_regaddr, 5); 780 dc_mii_send(sc, frame->mii_turnaround, 2); 781 dc_mii_send(sc, frame->mii_data, 16); 782 783 /* Idle bit. */ 784 dc_mii_writebit(sc, 0); 785 dc_mii_writebit(sc, 0); 786 787 DC_UNLOCK(sc); 788 789 return(0); 790 } 791 792 static int 793 dc_miibus_readreg(dev, phy, reg) 794 device_t dev; 795 int phy, reg; 796 { 797 struct dc_mii_frame frame; 798 struct dc_softc *sc; 799 int i, rval, phy_reg = 0; 800 801 sc = device_get_softc(dev); 802 bzero((char *)&frame, sizeof(frame)); 803 804 /* 805 * Note: both the AL981 and AN985 have internal PHYs, 806 * however the AL981 provides direct access to the PHY 807 * registers while the AN985 uses a serial MII interface. 808 * The AN985's MII interface is also buggy in that you 809 * can read from any MII address (0 to 31), but only address 1 810 * behaves normally. To deal with both cases, we pretend 811 * that the PHY is at MII address 1. 812 */ 813 if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR) 814 return(0); 815 816 /* 817 * Note: the ukphy probes of the RS7112 report a PHY at 818 * MII address 0 (possibly HomePNA?) and 1 (ethernet) 819 * so we only respond to correct one. 820 */ 821 if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR) 822 return(0); 823 824 if (sc->dc_pmode != DC_PMODE_MII) { 825 if (phy == (MII_NPHY - 1)) { 826 switch(reg) { 827 case MII_BMSR: 828 /* 829 * Fake something to make the probe 830 * code think there's a PHY here. 831 */ 832 return(BMSR_MEDIAMASK); 833 break; 834 case MII_PHYIDR1: 835 if (DC_IS_PNIC(sc)) 836 return(DC_VENDORID_LO); 837 return(DC_VENDORID_DEC); 838 break; 839 case MII_PHYIDR2: 840 if (DC_IS_PNIC(sc)) 841 return(DC_DEVICEID_82C168); 842 return(DC_DEVICEID_21143); 843 break; 844 default: 845 return(0); 846 break; 847 } 848 } else 849 return(0); 850 } 851 852 if (DC_IS_PNIC(sc)) { 853 CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ | 854 (phy << 23) | (reg << 18)); 855 for (i = 0; i < DC_TIMEOUT; i++) { 856 DELAY(1); 857 rval = CSR_READ_4(sc, DC_PN_MII); 858 if (!(rval & DC_PN_MII_BUSY)) { 859 rval &= 0xFFFF; 860 return(rval == 0xFFFF ? 0 : rval); 861 } 862 } 863 return(0); 864 } 865 866 if (DC_IS_COMET(sc)) { 867 switch(reg) { 868 case MII_BMCR: 869 phy_reg = DC_AL_BMCR; 870 break; 871 case MII_BMSR: 872 phy_reg = DC_AL_BMSR; 873 break; 874 case MII_PHYIDR1: 875 phy_reg = DC_AL_VENID; 876 break; 877 case MII_PHYIDR2: 878 phy_reg = DC_AL_DEVID; 879 break; 880 case MII_ANAR: 881 phy_reg = DC_AL_ANAR; 882 break; 883 case MII_ANLPAR: 884 phy_reg = DC_AL_LPAR; 885 break; 886 case MII_ANER: 887 phy_reg = DC_AL_ANER; 888 break; 889 default: 890 printf("dc%d: phy_read: bad phy register %x\n", 891 sc->dc_unit, reg); 892 return(0); 893 break; 894 } 895 896 rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF; 897 898 if (rval == 0xFFFF) 899 return(0); 900 return(rval); 901 } 902 903 frame.mii_phyaddr = phy; 904 frame.mii_regaddr = reg; 905 if (sc->dc_type == DC_TYPE_98713) { 906 phy_reg = CSR_READ_4(sc, DC_NETCFG); 907 CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL); 908 } 909 dc_mii_readreg(sc, &frame); 910 if (sc->dc_type == DC_TYPE_98713) 911 CSR_WRITE_4(sc, DC_NETCFG, phy_reg); 912 913 return(frame.mii_data); 914 } 915 916 static int 917 dc_miibus_writereg(dev, phy, reg, data) 918 device_t dev; 919 int phy, reg, data; 920 { 921 struct dc_softc *sc; 922 struct dc_mii_frame frame; 923 int i, phy_reg = 0; 924 925 sc = device_get_softc(dev); 926 bzero((char *)&frame, sizeof(frame)); 927 928 if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR) 929 return(0); 930 931 if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR) 932 return(0); 933 934 if (DC_IS_PNIC(sc)) { 935 CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE | 936 (phy << 23) | (reg << 10) | data); 937 for (i = 0; i < DC_TIMEOUT; i++) { 938 if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY)) 939 break; 940 } 941 return(0); 942 } 943 944 if (DC_IS_COMET(sc)) { 945 switch(reg) { 946 case MII_BMCR: 947 phy_reg = DC_AL_BMCR; 948 break; 949 case MII_BMSR: 950 phy_reg = DC_AL_BMSR; 951 break; 952 case MII_PHYIDR1: 953 phy_reg = DC_AL_VENID; 954 break; 955 case MII_PHYIDR2: 956 phy_reg = DC_AL_DEVID; 957 break; 958 case MII_ANAR: 959 phy_reg = DC_AL_ANAR; 960 break; 961 case MII_ANLPAR: 962 phy_reg = DC_AL_LPAR; 963 break; 964 case MII_ANER: 965 phy_reg = DC_AL_ANER; 966 break; 967 default: 968 printf("dc%d: phy_write: bad phy register %x\n", 969 sc->dc_unit, reg); 970 return(0); 971 break; 972 } 973 974 CSR_WRITE_4(sc, phy_reg, data); 975 return(0); 976 } 977 978 frame.mii_phyaddr = phy; 979 frame.mii_regaddr = reg; 980 frame.mii_data = data; 981 982 if (sc->dc_type == DC_TYPE_98713) { 983 phy_reg = CSR_READ_4(sc, DC_NETCFG); 984 CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL); 985 } 986 dc_mii_writereg(sc, &frame); 987 if (sc->dc_type == DC_TYPE_98713) 988 CSR_WRITE_4(sc, DC_NETCFG, phy_reg); 989 990 return(0); 991 } 992 993 static void 994 dc_miibus_statchg(dev) 995 device_t dev; 996 { 997 struct dc_softc *sc; 998 struct mii_data *mii; 999 struct ifmedia *ifm; 1000 1001 sc = device_get_softc(dev); 1002 if (DC_IS_ADMTEK(sc)) 1003 return; 1004 1005 mii = device_get_softc(sc->dc_miibus); 1006 ifm = &mii->mii_media; 1007 if (DC_IS_DAVICOM(sc) && 1008 IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) { 1009 dc_setcfg(sc, ifm->ifm_media); 1010 sc->dc_if_media = ifm->ifm_media; 1011 } else { 1012 dc_setcfg(sc, mii->mii_media_active); 1013 sc->dc_if_media = mii->mii_media_active; 1014 } 1015 1016 return; 1017 } 1018 1019 /* 1020 * Special support for DM9102A cards with HomePNA PHYs. Note: 1021 * with the Davicom DM9102A/DM9801 eval board that I have, it seems 1022 * to be impossible to talk to the management interface of the DM9801 1023 * PHY (its MDIO pin is not connected to anything). Consequently, 1024 * the driver has to just 'know' about the additional mode and deal 1025 * with it itself. *sigh* 1026 */ 1027 static void 1028 dc_miibus_mediainit(dev) 1029 device_t dev; 1030 { 1031 struct dc_softc *sc; 1032 struct mii_data *mii; 1033 struct ifmedia *ifm; 1034 int rev; 1035 1036 rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF; 1037 1038 sc = device_get_softc(dev); 1039 mii = device_get_softc(sc->dc_miibus); 1040 ifm = &mii->mii_media; 1041 1042 if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A) 1043 ifmedia_add(ifm, IFM_ETHER|IFM_HPNA_1, 0, NULL); 1044 1045 return; 1046 } 1047 1048 #define DC_POLY 0xEDB88320 1049 #define DC_BITS_512 9 1050 #define DC_BITS_128 7 1051 #define DC_BITS_64 6 1052 1053 static u_int32_t 1054 dc_crc_le(sc, addr) 1055 struct dc_softc *sc; 1056 caddr_t addr; 1057 { 1058 u_int32_t idx, bit, data, crc; 1059 1060 /* Compute CRC for the address value. */ 1061 crc = 0xFFFFFFFF; /* initial value */ 1062 1063 for (idx = 0; idx < 6; idx++) { 1064 for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1) 1065 crc = (crc >> 1) ^ (((crc ^ data) & 1) ? DC_POLY : 0); 1066 } 1067 1068 /* 1069 * The hash table on the PNIC II and the MX98715AEC-C/D/E 1070 * chips is only 128 bits wide. 1071 */ 1072 if (sc->dc_flags & DC_128BIT_HASH) 1073 return (crc & ((1 << DC_BITS_128) - 1)); 1074 1075 /* The hash table on the MX98715BEC is only 64 bits wide. */ 1076 if (sc->dc_flags & DC_64BIT_HASH) 1077 return (crc & ((1 << DC_BITS_64) - 1)); 1078 1079 /* Xircom's hash filtering table is different (read: weird) */ 1080 /* Xircom uses the LEAST significant bits */ 1081 if (DC_IS_XIRCOM(sc)) { 1082 if ((crc & 0x180) == 0x180) 1083 return (crc & 0x0F) + (crc & 0x70)*3 + (14 << 4); 1084 else 1085 return (crc & 0x1F) + ((crc>>1) & 0xF0)*3 + (12 << 4); 1086 } 1087 1088 return (crc & ((1 << DC_BITS_512) - 1)); 1089 } 1090 1091 /* 1092 * Calculate CRC of a multicast group address, return the lower 6 bits. 1093 */ 1094 static u_int32_t 1095 dc_crc_be(addr) 1096 caddr_t addr; 1097 { 1098 u_int32_t crc, carry; 1099 int i, j; 1100 u_int8_t c; 1101 1102 /* Compute CRC for the address value. */ 1103 crc = 0xFFFFFFFF; /* initial value */ 1104 1105 for (i = 0; i < 6; i++) { 1106 c = *(addr + i); 1107 for (j = 0; j < 8; j++) { 1108 carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01); 1109 crc <<= 1; 1110 c >>= 1; 1111 if (carry) 1112 crc = (crc ^ 0x04c11db6) | carry; 1113 } 1114 } 1115 1116 /* return the filter bit position */ 1117 return((crc >> 26) & 0x0000003F); 1118 } 1119 1120 /* 1121 * 21143-style RX filter setup routine. Filter programming is done by 1122 * downloading a special setup frame into the TX engine. 21143, Macronix, 1123 * PNIC, PNIC II and Davicom chips are programmed this way. 1124 * 1125 * We always program the chip using 'hash perfect' mode, i.e. one perfect 1126 * address (our node address) and a 512-bit hash filter for multicast 1127 * frames. We also sneak the broadcast address into the hash filter since 1128 * we need that too. 1129 */ 1130 static void 1131 dc_setfilt_21143(sc) 1132 struct dc_softc *sc; 1133 { 1134 struct dc_desc *sframe; 1135 u_int32_t h, *sp; 1136 struct ifmultiaddr *ifma; 1137 struct ifnet *ifp; 1138 int i; 1139 1140 ifp = &sc->arpcom.ac_if; 1141 1142 i = sc->dc_cdata.dc_tx_prod; 1143 DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT); 1144 sc->dc_cdata.dc_tx_cnt++; 1145 sframe = &sc->dc_ldata->dc_tx_list[i]; 1146 sp = (u_int32_t *)&sc->dc_cdata.dc_sbuf; 1147 bzero((char *)sp, DC_SFRAME_LEN); 1148 1149 sframe->dc_data = vtophys(&sc->dc_cdata.dc_sbuf); 1150 sframe->dc_ctl = DC_SFRAME_LEN | DC_TXCTL_SETUP | DC_TXCTL_TLINK | 1151 DC_FILTER_HASHPERF | DC_TXCTL_FINT; 1152 1153 sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)&sc->dc_cdata.dc_sbuf; 1154 1155 /* If we want promiscuous mode, set the allframes bit. */ 1156 if (ifp->if_flags & IFF_PROMISC) 1157 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC); 1158 else 1159 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC); 1160 1161 if (ifp->if_flags & IFF_ALLMULTI) 1162 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI); 1163 else 1164 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI); 1165 1166 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1167 if (ifma->ifma_addr->sa_family != AF_LINK) 1168 continue; 1169 h = dc_crc_le(sc, 1170 LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); 1171 sp[h >> 4] |= 1 << (h & 0xF); 1172 } 1173 1174 if (ifp->if_flags & IFF_BROADCAST) { 1175 h = dc_crc_le(sc, (caddr_t)ðerbroadcastaddr); 1176 sp[h >> 4] |= 1 << (h & 0xF); 1177 } 1178 1179 /* Set our MAC address */ 1180 sp[39] = ((u_int16_t *)sc->arpcom.ac_enaddr)[0]; 1181 sp[40] = ((u_int16_t *)sc->arpcom.ac_enaddr)[1]; 1182 sp[41] = ((u_int16_t *)sc->arpcom.ac_enaddr)[2]; 1183 1184 sframe->dc_status = DC_TXSTAT_OWN; 1185 CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF); 1186 1187 /* 1188 * The PNIC takes an exceedingly long time to process its 1189 * setup frame; wait 10ms after posting the setup frame 1190 * before proceeding, just so it has time to swallow its 1191 * medicine. 1192 */ 1193 DELAY(10000); 1194 1195 ifp->if_timer = 5; 1196 1197 return; 1198 } 1199 1200 static void 1201 dc_setfilt_admtek(sc) 1202 struct dc_softc *sc; 1203 { 1204 struct ifnet *ifp; 1205 int h = 0; 1206 u_int32_t hashes[2] = { 0, 0 }; 1207 struct ifmultiaddr *ifma; 1208 1209 ifp = &sc->arpcom.ac_if; 1210 1211 /* Init our MAC address */ 1212 CSR_WRITE_4(sc, DC_AL_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0])); 1213 CSR_WRITE_4(sc, DC_AL_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4])); 1214 1215 /* If we want promiscuous mode, set the allframes bit. */ 1216 if (ifp->if_flags & IFF_PROMISC) 1217 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC); 1218 else 1219 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC); 1220 1221 if (ifp->if_flags & IFF_ALLMULTI) 1222 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI); 1223 else 1224 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI); 1225 1226 /* first, zot all the existing hash bits */ 1227 CSR_WRITE_4(sc, DC_AL_MAR0, 0); 1228 CSR_WRITE_4(sc, DC_AL_MAR1, 0); 1229 1230 /* 1231 * If we're already in promisc or allmulti mode, we 1232 * don't have to bother programming the multicast filter. 1233 */ 1234 if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI)) 1235 return; 1236 1237 /* now program new ones */ 1238 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1239 if (ifma->ifma_addr->sa_family != AF_LINK) 1240 continue; 1241 h = dc_crc_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); 1242 if (h < 32) 1243 hashes[0] |= (1 << h); 1244 else 1245 hashes[1] |= (1 << (h - 32)); 1246 } 1247 1248 CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]); 1249 CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]); 1250 1251 return; 1252 } 1253 1254 static void 1255 dc_setfilt_asix(sc) 1256 struct dc_softc *sc; 1257 { 1258 struct ifnet *ifp; 1259 int h = 0; 1260 u_int32_t hashes[2] = { 0, 0 }; 1261 struct ifmultiaddr *ifma; 1262 1263 ifp = &sc->arpcom.ac_if; 1264 1265 /* Init our MAC address */ 1266 CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0); 1267 CSR_WRITE_4(sc, DC_AX_FILTDATA, 1268 *(u_int32_t *)(&sc->arpcom.ac_enaddr[0])); 1269 CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1); 1270 CSR_WRITE_4(sc, DC_AX_FILTDATA, 1271 *(u_int32_t *)(&sc->arpcom.ac_enaddr[4])); 1272 1273 /* If we want promiscuous mode, set the allframes bit. */ 1274 if (ifp->if_flags & IFF_PROMISC) 1275 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC); 1276 else 1277 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC); 1278 1279 if (ifp->if_flags & IFF_ALLMULTI) 1280 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI); 1281 else 1282 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI); 1283 1284 /* 1285 * The ASIX chip has a special bit to enable reception 1286 * of broadcast frames. 1287 */ 1288 if (ifp->if_flags & IFF_BROADCAST) 1289 DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD); 1290 else 1291 DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD); 1292 1293 /* first, zot all the existing hash bits */ 1294 CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0); 1295 CSR_WRITE_4(sc, DC_AX_FILTDATA, 0); 1296 CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1); 1297 CSR_WRITE_4(sc, DC_AX_FILTDATA, 0); 1298 1299 /* 1300 * If we're already in promisc or allmulti mode, we 1301 * don't have to bother programming the multicast filter. 1302 */ 1303 if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI)) 1304 return; 1305 1306 /* now program new ones */ 1307 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1308 if (ifma->ifma_addr->sa_family != AF_LINK) 1309 continue; 1310 h = dc_crc_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); 1311 if (h < 32) 1312 hashes[0] |= (1 << h); 1313 else 1314 hashes[1] |= (1 << (h - 32)); 1315 } 1316 1317 CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0); 1318 CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]); 1319 CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1); 1320 CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]); 1321 1322 return; 1323 } 1324 1325 static void 1326 dc_setfilt_xircom(sc) 1327 struct dc_softc *sc; 1328 { 1329 struct dc_desc *sframe; 1330 u_int32_t h, *sp; 1331 struct ifmultiaddr *ifma; 1332 struct ifnet *ifp; 1333 int i; 1334 1335 ifp = &sc->arpcom.ac_if; 1336 DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON)); 1337 1338 i = sc->dc_cdata.dc_tx_prod; 1339 DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT); 1340 sc->dc_cdata.dc_tx_cnt++; 1341 sframe = &sc->dc_ldata->dc_tx_list[i]; 1342 sp = (u_int32_t *)&sc->dc_cdata.dc_sbuf; 1343 bzero((char *)sp, DC_SFRAME_LEN); 1344 1345 sframe->dc_data = vtophys(&sc->dc_cdata.dc_sbuf); 1346 sframe->dc_ctl = DC_SFRAME_LEN | DC_TXCTL_SETUP | DC_TXCTL_TLINK | 1347 DC_FILTER_HASHPERF | DC_TXCTL_FINT; 1348 1349 sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)&sc->dc_cdata.dc_sbuf; 1350 1351 /* If we want promiscuous mode, set the allframes bit. */ 1352 if (ifp->if_flags & IFF_PROMISC) 1353 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC); 1354 else 1355 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC); 1356 1357 if (ifp->if_flags & IFF_ALLMULTI) 1358 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI); 1359 else 1360 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI); 1361 1362 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1363 if (ifma->ifma_addr->sa_family != AF_LINK) 1364 continue; 1365 h = dc_crc_le(sc, 1366 LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); 1367 sp[h >> 4] |= 1 << (h & 0xF); 1368 } 1369 1370 if (ifp->if_flags & IFF_BROADCAST) { 1371 h = dc_crc_le(sc, (caddr_t)ðerbroadcastaddr); 1372 sp[h >> 4] |= 1 << (h & 0xF); 1373 } 1374 1375 /* Set our MAC address */ 1376 sp[0] = ((u_int16_t *)sc->arpcom.ac_enaddr)[0]; 1377 sp[1] = ((u_int16_t *)sc->arpcom.ac_enaddr)[1]; 1378 sp[2] = ((u_int16_t *)sc->arpcom.ac_enaddr)[2]; 1379 1380 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON); 1381 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON); 1382 ifp->if_flags |= IFF_RUNNING; 1383 sframe->dc_status = DC_TXSTAT_OWN; 1384 CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF); 1385 1386 /* 1387 * wait some time... 1388 */ 1389 DELAY(1000); 1390 1391 ifp->if_timer = 5; 1392 1393 return; 1394 } 1395 1396 static void 1397 dc_setfilt(sc) 1398 struct dc_softc *sc; 1399 { 1400 if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) || 1401 DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc)) 1402 dc_setfilt_21143(sc); 1403 1404 if (DC_IS_ASIX(sc)) 1405 dc_setfilt_asix(sc); 1406 1407 if (DC_IS_ADMTEK(sc)) 1408 dc_setfilt_admtek(sc); 1409 1410 if (DC_IS_XIRCOM(sc)) 1411 dc_setfilt_xircom(sc); 1412 1413 return; 1414 } 1415 1416 /* 1417 * In order to fiddle with the 1418 * 'full-duplex' and '100Mbps' bits in the netconfig register, we 1419 * first have to put the transmit and/or receive logic in the idle state. 1420 */ 1421 static void 1422 dc_setcfg(sc, media) 1423 struct dc_softc *sc; 1424 int media; 1425 { 1426 int i, restart = 0; 1427 u_int32_t isr; 1428 1429 if (IFM_SUBTYPE(media) == IFM_NONE) 1430 return; 1431 1432 if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON)) { 1433 restart = 1; 1434 DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON)); 1435 1436 for (i = 0; i < DC_TIMEOUT; i++) { 1437 isr = CSR_READ_4(sc, DC_ISR); 1438 if (isr & DC_ISR_TX_IDLE && 1439 ((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED || 1440 (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT)) 1441 break; 1442 DELAY(10); 1443 } 1444 1445 if (i == DC_TIMEOUT) 1446 printf("dc%d: failed to force tx and " 1447 "rx to idle state\n", sc->dc_unit); 1448 } 1449 1450 if (IFM_SUBTYPE(media) == IFM_100_TX) { 1451 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL); 1452 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT); 1453 if (sc->dc_pmode == DC_PMODE_MII) { 1454 int watchdogreg; 1455 1456 if (DC_IS_INTEL(sc)) { 1457 /* there's a write enable bit here that reads as 1 */ 1458 watchdogreg = CSR_READ_4(sc, DC_WATCHDOG); 1459 watchdogreg &= ~DC_WDOG_CTLWREN; 1460 watchdogreg |= DC_WDOG_JABBERDIS; 1461 CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg); 1462 } else { 1463 DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS); 1464 } 1465 DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS| 1466 DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER)); 1467 if (sc->dc_type == DC_TYPE_98713) 1468 DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS| 1469 DC_NETCFG_SCRAMBLER)); 1470 if (!DC_IS_DAVICOM(sc)) 1471 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL); 1472 DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF); 1473 if (DC_IS_INTEL(sc)) 1474 dc_apply_fixup(sc, IFM_AUTO); 1475 } else { 1476 if (DC_IS_PNIC(sc)) { 1477 DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL); 1478 DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP); 1479 DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL); 1480 } 1481 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL); 1482 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS); 1483 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER); 1484 if (DC_IS_INTEL(sc)) 1485 dc_apply_fixup(sc, 1486 (media & IFM_GMASK) == IFM_FDX ? 1487 IFM_100_TX|IFM_FDX : IFM_100_TX); 1488 } 1489 } 1490 1491 if (IFM_SUBTYPE(media) == IFM_10_T) { 1492 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL); 1493 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT); 1494 if (sc->dc_pmode == DC_PMODE_MII) { 1495 int watchdogreg; 1496 1497 /* there's a write enable bit here that reads as 1 */ 1498 if (DC_IS_INTEL(sc)) { 1499 watchdogreg = CSR_READ_4(sc, DC_WATCHDOG); 1500 watchdogreg &= ~DC_WDOG_CTLWREN; 1501 watchdogreg |= DC_WDOG_JABBERDIS; 1502 CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg); 1503 } else { 1504 DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS); 1505 } 1506 DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS| 1507 DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER)); 1508 if (sc->dc_type == DC_TYPE_98713) 1509 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS); 1510 if (!DC_IS_DAVICOM(sc)) 1511 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL); 1512 DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF); 1513 if (DC_IS_INTEL(sc)) 1514 dc_apply_fixup(sc, IFM_AUTO); 1515 } else { 1516 if (DC_IS_PNIC(sc)) { 1517 DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL); 1518 DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP); 1519 DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL); 1520 } 1521 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL); 1522 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS); 1523 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER); 1524 if (DC_IS_INTEL(sc)) { 1525 DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET); 1526 DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF); 1527 if ((media & IFM_GMASK) == IFM_FDX) 1528 DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D); 1529 else 1530 DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F); 1531 DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET); 1532 DC_CLRBIT(sc, DC_10BTCTRL, 1533 DC_TCTL_AUTONEGENBL); 1534 dc_apply_fixup(sc, 1535 (media & IFM_GMASK) == IFM_FDX ? 1536 IFM_10_T|IFM_FDX : IFM_10_T); 1537 DELAY(20000); 1538 } 1539 } 1540 } 1541 1542 /* 1543 * If this is a Davicom DM9102A card with a DM9801 HomePNA 1544 * PHY and we want HomePNA mode, set the portsel bit to turn 1545 * on the external MII port. 1546 */ 1547 if (DC_IS_DAVICOM(sc)) { 1548 if (IFM_SUBTYPE(media) == IFM_HPNA_1) { 1549 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL); 1550 sc->dc_link = 1; 1551 } else { 1552 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL); 1553 } 1554 } 1555 1556 if (DC_IS_ADMTEK(sc)) 1557 DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR); 1558 1559 if ((media & IFM_GMASK) == IFM_FDX) { 1560 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX); 1561 if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc)) 1562 DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX); 1563 } else { 1564 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX); 1565 if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc)) 1566 DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX); 1567 } 1568 1569 if (restart) 1570 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON|DC_NETCFG_RX_ON); 1571 1572 return; 1573 } 1574 1575 static void 1576 dc_reset(sc) 1577 struct dc_softc *sc; 1578 { 1579 register int i; 1580 1581 DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET); 1582 1583 for (i = 0; i < DC_TIMEOUT; i++) { 1584 DELAY(10); 1585 if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET)) 1586 break; 1587 } 1588 1589 if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_CONEXANT(sc) || 1590 DC_IS_XIRCOM(sc) || DC_IS_INTEL(sc)) { 1591 DELAY(10000); 1592 DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET); 1593 i = 0; 1594 } 1595 1596 if (i == DC_TIMEOUT) 1597 printf("dc%d: reset never completed!\n", sc->dc_unit); 1598 1599 /* Wait a little while for the chip to get its brains in order. */ 1600 DELAY(1000); 1601 1602 CSR_WRITE_4(sc, DC_IMR, 0x00000000); 1603 CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000); 1604 CSR_WRITE_4(sc, DC_NETCFG, 0x00000000); 1605 1606 /* 1607 * Bring the SIA out of reset. In some cases, it looks 1608 * like failing to unreset the SIA soon enough gets it 1609 * into a state where it will never come out of reset 1610 * until we reset the whole chip again. 1611 */ 1612 if (DC_IS_INTEL(sc)) { 1613 DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET); 1614 CSR_WRITE_4(sc, DC_10BTCTRL, 0); 1615 CSR_WRITE_4(sc, DC_WATCHDOG, 0); 1616 } 1617 1618 return; 1619 } 1620 1621 static struct dc_type * 1622 dc_devtype(dev) 1623 device_t dev; 1624 { 1625 struct dc_type *t; 1626 u_int32_t rev; 1627 1628 t = dc_devs; 1629 1630 while(t->dc_name != NULL) { 1631 if ((pci_get_vendor(dev) == t->dc_vid) && 1632 (pci_get_device(dev) == t->dc_did)) { 1633 /* Check the PCI revision */ 1634 rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF; 1635 if (t->dc_did == DC_DEVICEID_98713 && 1636 rev >= DC_REVISION_98713A) 1637 t++; 1638 if (t->dc_did == DC_DEVICEID_98713_CP && 1639 rev >= DC_REVISION_98713A) 1640 t++; 1641 if (t->dc_did == DC_DEVICEID_987x5 && 1642 rev >= DC_REVISION_98715AEC_C) 1643 t++; 1644 if (t->dc_did == DC_DEVICEID_987x5 && 1645 rev >= DC_REVISION_98725) 1646 t++; 1647 if (t->dc_did == DC_DEVICEID_AX88140A && 1648 rev >= DC_REVISION_88141) 1649 t++; 1650 if (t->dc_did == DC_DEVICEID_82C168 && 1651 rev >= DC_REVISION_82C169) 1652 t++; 1653 if (t->dc_did == DC_DEVICEID_DM9102 && 1654 rev >= DC_REVISION_DM9102A) 1655 t++; 1656 return(t); 1657 } 1658 t++; 1659 } 1660 1661 return(NULL); 1662 } 1663 1664 /* 1665 * Probe for a 21143 or clone chip. Check the PCI vendor and device 1666 * IDs against our list and return a device name if we find a match. 1667 * We do a little bit of extra work to identify the exact type of 1668 * chip. The MX98713 and MX98713A have the same PCI vendor/device ID, 1669 * but different revision IDs. The same is true for 98715/98715A 1670 * chips and the 98725, as well as the ASIX and ADMtek chips. In some 1671 * cases, the exact chip revision affects driver behavior. 1672 */ 1673 static int 1674 dc_probe(dev) 1675 device_t dev; 1676 { 1677 struct dc_type *t; 1678 1679 t = dc_devtype(dev); 1680 1681 if (t != NULL) { 1682 device_set_desc(dev, t->dc_name); 1683 return(0); 1684 } 1685 1686 return(ENXIO); 1687 } 1688 1689 static void 1690 dc_acpi(dev) 1691 device_t dev; 1692 { 1693 int unit; 1694 1695 unit = device_get_unit(dev); 1696 1697 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) { 1698 u_int32_t iobase, membase, irq; 1699 1700 /* Save important PCI config data. */ 1701 iobase = pci_read_config(dev, DC_PCI_CFBIO, 4); 1702 membase = pci_read_config(dev, DC_PCI_CFBMA, 4); 1703 irq = pci_read_config(dev, DC_PCI_CFIT, 4); 1704 1705 /* Reset the power state. */ 1706 printf("dc%d: chip is in D%d power mode " 1707 "-- setting to D0\n", unit, 1708 pci_get_powerstate(dev)); 1709 pci_set_powerstate(dev, PCI_POWERSTATE_D0); 1710 1711 /* Restore PCI config data. */ 1712 pci_write_config(dev, DC_PCI_CFBIO, iobase, 4); 1713 pci_write_config(dev, DC_PCI_CFBMA, membase, 4); 1714 pci_write_config(dev, DC_PCI_CFIT, irq, 4); 1715 } 1716 1717 return; 1718 } 1719 1720 static void 1721 dc_apply_fixup(sc, media) 1722 struct dc_softc *sc; 1723 int media; 1724 { 1725 struct dc_mediainfo *m; 1726 u_int8_t *p; 1727 int i; 1728 u_int32_t reg; 1729 1730 m = sc->dc_mi; 1731 1732 while (m != NULL) { 1733 if (m->dc_media == media) 1734 break; 1735 m = m->dc_next; 1736 } 1737 1738 if (m == NULL) 1739 return; 1740 1741 for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) { 1742 reg = (p[0] | (p[1] << 8)) << 16; 1743 CSR_WRITE_4(sc, DC_WATCHDOG, reg); 1744 } 1745 1746 for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) { 1747 reg = (p[0] | (p[1] << 8)) << 16; 1748 CSR_WRITE_4(sc, DC_WATCHDOG, reg); 1749 } 1750 1751 return; 1752 } 1753 1754 static void 1755 dc_decode_leaf_sia(sc, l) 1756 struct dc_softc *sc; 1757 struct dc_eblock_sia *l; 1758 { 1759 struct dc_mediainfo *m; 1760 1761 m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT); 1762 bzero(m, sizeof(struct dc_mediainfo)); 1763 if (l->dc_sia_code == DC_SIA_CODE_10BT) 1764 m->dc_media = IFM_10_T; 1765 1766 if (l->dc_sia_code == DC_SIA_CODE_10BT_FDX) 1767 m->dc_media = IFM_10_T|IFM_FDX; 1768 1769 if (l->dc_sia_code == DC_SIA_CODE_10B2) 1770 m->dc_media = IFM_10_2; 1771 1772 if (l->dc_sia_code == DC_SIA_CODE_10B5) 1773 m->dc_media = IFM_10_5; 1774 1775 m->dc_gp_len = 2; 1776 m->dc_gp_ptr = (u_int8_t *)&l->dc_sia_gpio_ctl; 1777 1778 m->dc_next = sc->dc_mi; 1779 sc->dc_mi = m; 1780 1781 sc->dc_pmode = DC_PMODE_SIA; 1782 1783 return; 1784 } 1785 1786 static void 1787 dc_decode_leaf_sym(sc, l) 1788 struct dc_softc *sc; 1789 struct dc_eblock_sym *l; 1790 { 1791 struct dc_mediainfo *m; 1792 1793 m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT); 1794 bzero(m, sizeof(struct dc_mediainfo)); 1795 if (l->dc_sym_code == DC_SYM_CODE_100BT) 1796 m->dc_media = IFM_100_TX; 1797 1798 if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX) 1799 m->dc_media = IFM_100_TX|IFM_FDX; 1800 1801 m->dc_gp_len = 2; 1802 m->dc_gp_ptr = (u_int8_t *)&l->dc_sym_gpio_ctl; 1803 1804 m->dc_next = sc->dc_mi; 1805 sc->dc_mi = m; 1806 1807 sc->dc_pmode = DC_PMODE_SYM; 1808 1809 return; 1810 } 1811 1812 static void 1813 dc_decode_leaf_mii(sc, l) 1814 struct dc_softc *sc; 1815 struct dc_eblock_mii *l; 1816 { 1817 u_int8_t *p; 1818 struct dc_mediainfo *m; 1819 1820 m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT); 1821 bzero(m, sizeof(struct dc_mediainfo)); 1822 /* We abuse IFM_AUTO to represent MII. */ 1823 m->dc_media = IFM_AUTO; 1824 m->dc_gp_len = l->dc_gpr_len; 1825 1826 p = (u_int8_t *)l; 1827 p += sizeof(struct dc_eblock_mii); 1828 m->dc_gp_ptr = p; 1829 p += 2 * l->dc_gpr_len; 1830 m->dc_reset_len = *p; 1831 p++; 1832 m->dc_reset_ptr = p; 1833 1834 m->dc_next = sc->dc_mi; 1835 sc->dc_mi = m; 1836 1837 return; 1838 } 1839 1840 static void 1841 dc_read_srom(sc, bits) 1842 struct dc_softc *sc; 1843 int bits; 1844 { 1845 int size; 1846 1847 size = 2 << bits; 1848 sc->dc_srom = malloc(size, M_DEVBUF, M_NOWAIT); 1849 dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (size / 2), 0); 1850 } 1851 1852 static void 1853 dc_parse_21143_srom(sc) 1854 struct dc_softc *sc; 1855 { 1856 struct dc_leaf_hdr *lhdr; 1857 struct dc_eblock_hdr *hdr; 1858 int i, loff; 1859 char *ptr; 1860 1861 loff = sc->dc_srom[27]; 1862 lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]); 1863 1864 ptr = (char *)lhdr; 1865 ptr += sizeof(struct dc_leaf_hdr) - 1; 1866 for (i = 0; i < lhdr->dc_mcnt; i++) { 1867 hdr = (struct dc_eblock_hdr *)ptr; 1868 switch(hdr->dc_type) { 1869 case DC_EBLOCK_MII: 1870 dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr); 1871 break; 1872 case DC_EBLOCK_SIA: 1873 dc_decode_leaf_sia(sc, (struct dc_eblock_sia *)hdr); 1874 break; 1875 case DC_EBLOCK_SYM: 1876 dc_decode_leaf_sym(sc, (struct dc_eblock_sym *)hdr); 1877 break; 1878 default: 1879 /* Don't care. Yet. */ 1880 break; 1881 } 1882 ptr += (hdr->dc_len & 0x7F); 1883 ptr++; 1884 } 1885 1886 return; 1887 } 1888 1889 /* 1890 * Attach the interface. Allocate softc structures, do ifmedia 1891 * setup and ethernet/BPF attach. 1892 */ 1893 static int 1894 dc_attach(dev) 1895 device_t dev; 1896 { 1897 int tmp = 0; 1898 u_char eaddr[ETHER_ADDR_LEN]; 1899 u_int32_t command; 1900 struct dc_softc *sc; 1901 struct ifnet *ifp; 1902 u_int32_t revision; 1903 int unit, error = 0, rid, mac_offset; 1904 u_int8_t *mac; 1905 1906 sc = device_get_softc(dev); 1907 unit = device_get_unit(dev); 1908 bzero(sc, sizeof(struct dc_softc)); 1909 1910 mtx_init(&sc->dc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 1911 MTX_DEF | MTX_RECURSE); 1912 1913 /* 1914 * Handle power management nonsense. 1915 */ 1916 dc_acpi(dev); 1917 1918 /* 1919 * Map control/status registers. 1920 */ 1921 pci_enable_busmaster(dev); 1922 pci_enable_io(dev, SYS_RES_IOPORT); 1923 pci_enable_io(dev, SYS_RES_MEMORY); 1924 command = pci_read_config(dev, PCIR_COMMAND, 4); 1925 1926 #ifdef DC_USEIOSPACE 1927 if (!(command & PCIM_CMD_PORTEN)) { 1928 printf("dc%d: failed to enable I/O ports!\n", unit); 1929 error = ENXIO; 1930 goto fail_nolock; 1931 } 1932 #else 1933 if (!(command & PCIM_CMD_MEMEN)) { 1934 printf("dc%d: failed to enable memory mapping!\n", unit); 1935 error = ENXIO; 1936 goto fail_nolock; 1937 } 1938 #endif 1939 1940 rid = DC_RID; 1941 sc->dc_res = bus_alloc_resource(dev, DC_RES, &rid, 1942 0, ~0, 1, RF_ACTIVE); 1943 1944 if (sc->dc_res == NULL) { 1945 printf("dc%d: couldn't map ports/memory\n", unit); 1946 error = ENXIO; 1947 goto fail_nolock; 1948 } 1949 1950 sc->dc_btag = rman_get_bustag(sc->dc_res); 1951 sc->dc_bhandle = rman_get_bushandle(sc->dc_res); 1952 1953 /* Allocate interrupt */ 1954 rid = 0; 1955 sc->dc_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1, 1956 RF_SHAREABLE | RF_ACTIVE); 1957 1958 if (sc->dc_irq == NULL) { 1959 printf("dc%d: couldn't map interrupt\n", unit); 1960 bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res); 1961 error = ENXIO; 1962 goto fail_nolock; 1963 } 1964 1965 error = bus_setup_intr(dev, sc->dc_irq, INTR_TYPE_NET | 1966 (IS_MPSAFE ? INTR_MPSAFE : 0), 1967 dc_intr, sc, &sc->dc_intrhand); 1968 1969 if (error) { 1970 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq); 1971 bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res); 1972 printf("dc%d: couldn't set up irq\n", unit); 1973 goto fail_nolock; 1974 } 1975 DC_LOCK(sc); 1976 1977 /* Need this info to decide on a chip type. */ 1978 sc->dc_info = dc_devtype(dev); 1979 revision = pci_read_config(dev, DC_PCI_CFRV, 4) & 0x000000FF; 1980 1981 switch(sc->dc_info->dc_did) { 1982 case DC_DEVICEID_21143: 1983 sc->dc_type = DC_TYPE_21143; 1984 sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR; 1985 sc->dc_flags |= DC_REDUCED_MII_POLL; 1986 /* Save EEPROM contents so we can parse them later. */ 1987 dc_eeprom_width(sc); 1988 dc_read_srom(sc, sc->dc_romwidth); 1989 break; 1990 case DC_DEVICEID_DM9100: 1991 case DC_DEVICEID_DM9102: 1992 sc->dc_type = DC_TYPE_DM9102; 1993 sc->dc_flags |= DC_TX_COALESCE|DC_TX_INTR_ALWAYS; 1994 sc->dc_flags |= DC_REDUCED_MII_POLL|DC_TX_STORENFWD; 1995 sc->dc_pmode = DC_PMODE_MII; 1996 /* Increase the latency timer value. */ 1997 command = pci_read_config(dev, DC_PCI_CFLT, 4); 1998 command &= 0xFFFF00FF; 1999 command |= 0x00008000; 2000 pci_write_config(dev, DC_PCI_CFLT, command, 4); 2001 break; 2002 case DC_DEVICEID_AL981: 2003 sc->dc_type = DC_TYPE_AL981; 2004 sc->dc_flags |= DC_TX_USE_TX_INTR; 2005 sc->dc_flags |= DC_TX_ADMTEK_WAR; 2006 sc->dc_pmode = DC_PMODE_MII; 2007 dc_eeprom_width(sc); 2008 dc_read_srom(sc, sc->dc_romwidth); 2009 break; 2010 case DC_DEVICEID_AN985: 2011 case DC_DEVICEID_FE2500: 2012 case DC_DEVICEID_EN2242: 2013 sc->dc_type = DC_TYPE_AN985; 2014 sc->dc_flags |= DC_TX_USE_TX_INTR; 2015 sc->dc_flags |= DC_TX_ADMTEK_WAR; 2016 sc->dc_pmode = DC_PMODE_MII; 2017 dc_eeprom_width(sc); 2018 dc_read_srom(sc, sc->dc_romwidth); 2019 break; 2020 case DC_DEVICEID_98713: 2021 case DC_DEVICEID_98713_CP: 2022 if (revision < DC_REVISION_98713A) { 2023 sc->dc_type = DC_TYPE_98713; 2024 } 2025 if (revision >= DC_REVISION_98713A) { 2026 sc->dc_type = DC_TYPE_98713A; 2027 sc->dc_flags |= DC_21143_NWAY; 2028 } 2029 sc->dc_flags |= DC_REDUCED_MII_POLL; 2030 sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR; 2031 break; 2032 case DC_DEVICEID_987x5: 2033 case DC_DEVICEID_EN1217: 2034 /* 2035 * Macronix MX98715AEC-C/D/E parts have only a 2036 * 128-bit hash table. We need to deal with these 2037 * in the same manner as the PNIC II so that we 2038 * get the right number of bits out of the 2039 * CRC routine. 2040 */ 2041 if (revision >= DC_REVISION_98715AEC_C && 2042 revision < DC_REVISION_98725) 2043 sc->dc_flags |= DC_128BIT_HASH; 2044 sc->dc_type = DC_TYPE_987x5; 2045 sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR; 2046 sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY; 2047 break; 2048 case DC_DEVICEID_98727: 2049 sc->dc_type = DC_TYPE_987x5; 2050 sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR; 2051 sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY; 2052 break; 2053 case DC_DEVICEID_82C115: 2054 sc->dc_type = DC_TYPE_PNICII; 2055 sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR|DC_128BIT_HASH; 2056 sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY; 2057 break; 2058 case DC_DEVICEID_82C168: 2059 sc->dc_type = DC_TYPE_PNIC; 2060 sc->dc_flags |= DC_TX_STORENFWD|DC_TX_INTR_ALWAYS; 2061 sc->dc_flags |= DC_PNIC_RX_BUG_WAR; 2062 sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_NOWAIT); 2063 if (revision < DC_REVISION_82C169) 2064 sc->dc_pmode = DC_PMODE_SYM; 2065 break; 2066 case DC_DEVICEID_AX88140A: 2067 sc->dc_type = DC_TYPE_ASIX; 2068 sc->dc_flags |= DC_TX_USE_TX_INTR|DC_TX_INTR_FIRSTFRAG; 2069 sc->dc_flags |= DC_REDUCED_MII_POLL; 2070 sc->dc_pmode = DC_PMODE_MII; 2071 break; 2072 case DC_DEVICEID_X3201: 2073 sc->dc_type = DC_TYPE_XIRCOM; 2074 sc->dc_flags |= DC_TX_INTR_ALWAYS | DC_TX_COALESCE | 2075 DC_TX_ALIGN; 2076 /* 2077 * We don't actually need to coalesce, but we're doing 2078 * it to obtain a double word aligned buffer. 2079 * The DC_TX_COALESCE flag is required. 2080 */ 2081 sc->dc_pmode = DC_PMODE_MII; 2082 break; 2083 case DC_DEVICEID_RS7112: 2084 sc->dc_type = DC_TYPE_CONEXANT; 2085 sc->dc_flags |= DC_TX_INTR_ALWAYS; 2086 sc->dc_flags |= DC_REDUCED_MII_POLL; 2087 sc->dc_pmode = DC_PMODE_MII; 2088 dc_eeprom_width(sc); 2089 dc_read_srom(sc, sc->dc_romwidth); 2090 break; 2091 default: 2092 printf("dc%d: unknown device: %x\n", sc->dc_unit, 2093 sc->dc_info->dc_did); 2094 break; 2095 } 2096 2097 /* Save the cache line size. */ 2098 if (DC_IS_DAVICOM(sc)) 2099 sc->dc_cachesize = 0; 2100 else 2101 sc->dc_cachesize = pci_read_config(dev, 2102 DC_PCI_CFLT, 4) & 0xFF; 2103 2104 /* Reset the adapter. */ 2105 dc_reset(sc); 2106 2107 /* Take 21143 out of snooze mode */ 2108 if (DC_IS_INTEL(sc) || DC_IS_XIRCOM(sc)) { 2109 command = pci_read_config(dev, DC_PCI_CFDD, 4); 2110 command &= ~(DC_CFDD_SNOOZE_MODE|DC_CFDD_SLEEP_MODE); 2111 pci_write_config(dev, DC_PCI_CFDD, command, 4); 2112 } 2113 2114 /* 2115 * Try to learn something about the supported media. 2116 * We know that ASIX and ADMtek and Davicom devices 2117 * will *always* be using MII media, so that's a no-brainer. 2118 * The tricky ones are the Macronix/PNIC II and the 2119 * Intel 21143. 2120 */ 2121 if (DC_IS_INTEL(sc)) 2122 dc_parse_21143_srom(sc); 2123 else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) { 2124 if (sc->dc_type == DC_TYPE_98713) 2125 sc->dc_pmode = DC_PMODE_MII; 2126 else 2127 sc->dc_pmode = DC_PMODE_SYM; 2128 } else if (!sc->dc_pmode) 2129 sc->dc_pmode = DC_PMODE_MII; 2130 2131 /* 2132 * Get station address from the EEPROM. 2133 */ 2134 switch(sc->dc_type) { 2135 case DC_TYPE_98713: 2136 case DC_TYPE_98713A: 2137 case DC_TYPE_987x5: 2138 case DC_TYPE_PNICII: 2139 dc_read_eeprom(sc, (caddr_t)&mac_offset, 2140 (DC_EE_NODEADDR_OFFSET / 2), 1, 0); 2141 dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0); 2142 break; 2143 case DC_TYPE_PNIC: 2144 dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1); 2145 break; 2146 case DC_TYPE_DM9102: 2147 case DC_TYPE_21143: 2148 case DC_TYPE_ASIX: 2149 dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0); 2150 break; 2151 case DC_TYPE_AL981: 2152 case DC_TYPE_AN985: 2153 bcopy(&sc->dc_srom[DC_AL_EE_NODEADDR], (caddr_t)&eaddr, 2154 ETHER_ADDR_LEN); 2155 dc_read_eeprom(sc, (caddr_t)&eaddr, DC_AL_EE_NODEADDR, 3, 0); 2156 break; 2157 case DC_TYPE_CONEXANT: 2158 bcopy(sc->dc_srom + DC_CONEXANT_EE_NODEADDR, &eaddr, 6); 2159 break; 2160 case DC_TYPE_XIRCOM: 2161 /* The MAC comes from the CIS */ 2162 mac = pci_get_ether(dev); 2163 if (!mac) { 2164 device_printf(dev, "No station address in CIS!\n"); 2165 goto fail; 2166 } 2167 bcopy(mac, eaddr, ETHER_ADDR_LEN); 2168 break; 2169 default: 2170 dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0); 2171 break; 2172 } 2173 2174 /* 2175 * A 21143 or clone chip was detected. Inform the world. 2176 */ 2177 printf("dc%d: Ethernet address: %6D\n", unit, eaddr, ":"); 2178 2179 sc->dc_unit = unit; 2180 bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN); 2181 2182 sc->dc_ldata = contigmalloc(sizeof(struct dc_list_data), M_DEVBUF, 2183 M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0); 2184 2185 if (sc->dc_ldata == NULL) { 2186 printf("dc%d: no memory for list buffers!\n", unit); 2187 bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand); 2188 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq); 2189 bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res); 2190 error = ENXIO; 2191 goto fail; 2192 } 2193 2194 bzero(sc->dc_ldata, sizeof(struct dc_list_data)); 2195 2196 ifp = &sc->arpcom.ac_if; 2197 ifp->if_softc = sc; 2198 ifp->if_unit = unit; 2199 ifp->if_name = "dc"; 2200 /* XXX: bleah, MTU gets overwritten in ether_ifattach() */ 2201 ifp->if_mtu = ETHERMTU; 2202 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 2203 ifp->if_ioctl = dc_ioctl; 2204 ifp->if_output = ether_output; 2205 ifp->if_start = dc_start; 2206 ifp->if_watchdog = dc_watchdog; 2207 ifp->if_init = dc_init; 2208 ifp->if_baudrate = 10000000; 2209 ifp->if_snd.ifq_maxlen = DC_TX_LIST_CNT - 1; 2210 2211 /* 2212 * Do MII setup. If this is a 21143, check for a PHY on the 2213 * MII bus after applying any necessary fixups to twiddle the 2214 * GPIO bits. If we don't end up finding a PHY, restore the 2215 * old selection (SIA only or SIA/SYM) and attach the dcphy 2216 * driver instead. 2217 */ 2218 if (DC_IS_INTEL(sc)) { 2219 dc_apply_fixup(sc, IFM_AUTO); 2220 tmp = sc->dc_pmode; 2221 sc->dc_pmode = DC_PMODE_MII; 2222 } 2223 2224 error = mii_phy_probe(dev, &sc->dc_miibus, 2225 dc_ifmedia_upd, dc_ifmedia_sts); 2226 2227 if (error && DC_IS_INTEL(sc)) { 2228 sc->dc_pmode = tmp; 2229 if (sc->dc_pmode != DC_PMODE_SIA) 2230 sc->dc_pmode = DC_PMODE_SYM; 2231 sc->dc_flags |= DC_21143_NWAY; 2232 mii_phy_probe(dev, &sc->dc_miibus, 2233 dc_ifmedia_upd, dc_ifmedia_sts); 2234 /* 2235 * For non-MII cards, we need to have the 21143 2236 * drive the LEDs. Except there are some systems 2237 * like the NEC VersaPro NoteBook PC which have no 2238 * LEDs, and twiddling these bits has adverse effects 2239 * on them. (I.e. you suddenly can't get a link.) 2240 */ 2241 if (pci_read_config(dev, DC_PCI_CSID, 4) != 0x80281033) 2242 sc->dc_flags |= DC_TULIP_LEDS; 2243 error = 0; 2244 } 2245 2246 if (error) { 2247 printf("dc%d: MII without any PHY!\n", sc->dc_unit); 2248 bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand); 2249 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq); 2250 bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res); 2251 error = ENXIO; 2252 goto fail; 2253 } 2254 2255 if (DC_IS_XIRCOM(sc)) { 2256 /* 2257 * setup General Purpose Port mode and data so the tulip 2258 * can talk to the MII. 2259 */ 2260 CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN | 2261 DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT); 2262 DELAY(10); 2263 CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN | 2264 DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT); 2265 DELAY(10); 2266 } 2267 2268 /* 2269 * Call MI attach routine. 2270 */ 2271 ether_ifattach(ifp, eaddr); 2272 2273 /* 2274 * Tell the upper layer(s) we support long frames. 2275 */ 2276 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); 2277 ifp->if_capabilities |= IFCAP_VLAN_MTU; 2278 2279 callout_init(&sc->dc_stat_ch, IS_MPSAFE); 2280 2281 #ifdef SRM_MEDIA 2282 sc->dc_srm_media = 0; 2283 2284 /* Remember the SRM console media setting */ 2285 if (DC_IS_INTEL(sc)) { 2286 command = pci_read_config(dev, DC_PCI_CFDD, 4); 2287 command &= ~(DC_CFDD_SNOOZE_MODE|DC_CFDD_SLEEP_MODE); 2288 switch ((command >> 8) & 0xff) { 2289 case 3: 2290 sc->dc_srm_media = IFM_10_T; 2291 break; 2292 case 4: 2293 sc->dc_srm_media = IFM_10_T | IFM_FDX; 2294 break; 2295 case 5: 2296 sc->dc_srm_media = IFM_100_TX; 2297 break; 2298 case 6: 2299 sc->dc_srm_media = IFM_100_TX | IFM_FDX; 2300 break; 2301 } 2302 if (sc->dc_srm_media) 2303 sc->dc_srm_media |= IFM_ACTIVE | IFM_ETHER; 2304 } 2305 #endif 2306 2307 DC_UNLOCK(sc); 2308 return(0); 2309 2310 fail: 2311 DC_UNLOCK(sc); 2312 fail_nolock: 2313 mtx_destroy(&sc->dc_mtx); 2314 return(error); 2315 } 2316 2317 static int 2318 dc_detach(dev) 2319 device_t dev; 2320 { 2321 struct dc_softc *sc; 2322 struct ifnet *ifp; 2323 struct dc_mediainfo *m; 2324 2325 sc = device_get_softc(dev); 2326 2327 DC_LOCK(sc); 2328 2329 ifp = &sc->arpcom.ac_if; 2330 2331 dc_stop(sc); 2332 ether_ifdetach(ifp); 2333 2334 bus_generic_detach(dev); 2335 device_delete_child(dev, sc->dc_miibus); 2336 2337 bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand); 2338 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq); 2339 bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res); 2340 2341 contigfree(sc->dc_ldata, sizeof(struct dc_list_data), M_DEVBUF); 2342 if (sc->dc_pnic_rx_buf != NULL) 2343 free(sc->dc_pnic_rx_buf, M_DEVBUF); 2344 2345 while(sc->dc_mi != NULL) { 2346 m = sc->dc_mi->dc_next; 2347 free(sc->dc_mi, M_DEVBUF); 2348 sc->dc_mi = m; 2349 } 2350 free(sc->dc_srom, M_DEVBUF); 2351 2352 DC_UNLOCK(sc); 2353 mtx_destroy(&sc->dc_mtx); 2354 2355 return(0); 2356 } 2357 2358 /* 2359 * Initialize the transmit descriptors. 2360 */ 2361 static int 2362 dc_list_tx_init(sc) 2363 struct dc_softc *sc; 2364 { 2365 struct dc_chain_data *cd; 2366 struct dc_list_data *ld; 2367 int i, nexti; 2368 2369 cd = &sc->dc_cdata; 2370 ld = sc->dc_ldata; 2371 for (i = 0; i < DC_TX_LIST_CNT; i++) { 2372 nexti = (i == (DC_TX_LIST_CNT - 1)) ? 0 : i+1; 2373 ld->dc_tx_list[i].dc_next = vtophys(&ld->dc_tx_list[nexti]); 2374 cd->dc_tx_chain[i] = NULL; 2375 ld->dc_tx_list[i].dc_data = 0; 2376 ld->dc_tx_list[i].dc_ctl = 0; 2377 } 2378 2379 cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0; 2380 2381 return(0); 2382 } 2383 2384 2385 /* 2386 * Initialize the RX descriptors and allocate mbufs for them. Note that 2387 * we arrange the descriptors in a closed ring, so that the last descriptor 2388 * points back to the first. 2389 */ 2390 static int 2391 dc_list_rx_init(sc) 2392 struct dc_softc *sc; 2393 { 2394 struct dc_chain_data *cd; 2395 struct dc_list_data *ld; 2396 int i, nexti; 2397 2398 cd = &sc->dc_cdata; 2399 ld = sc->dc_ldata; 2400 2401 for (i = 0; i < DC_RX_LIST_CNT; i++) { 2402 if (dc_newbuf(sc, i, NULL) == ENOBUFS) 2403 return(ENOBUFS); 2404 nexti = (i == (DC_RX_LIST_CNT - 1)) ? 0 : i+1; 2405 ld->dc_rx_list[i].dc_next = vtophys(&ld->dc_rx_list[nexti]); 2406 } 2407 2408 cd->dc_rx_prod = 0; 2409 2410 return(0); 2411 } 2412 2413 /* 2414 * Initialize an RX descriptor and attach an MBUF cluster. 2415 */ 2416 static int 2417 dc_newbuf(sc, i, m) 2418 struct dc_softc *sc; 2419 int i; 2420 struct mbuf *m; 2421 { 2422 struct mbuf *m_new = NULL; 2423 struct dc_desc *c; 2424 2425 c = &sc->dc_ldata->dc_rx_list[i]; 2426 2427 if (m == NULL) { 2428 MGETHDR(m_new, M_DONTWAIT, MT_DATA); 2429 if (m_new == NULL) 2430 return(ENOBUFS); 2431 2432 MCLGET(m_new, M_DONTWAIT); 2433 if (!(m_new->m_flags & M_EXT)) { 2434 m_freem(m_new); 2435 return(ENOBUFS); 2436 } 2437 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; 2438 } else { 2439 m_new = m; 2440 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; 2441 m_new->m_data = m_new->m_ext.ext_buf; 2442 } 2443 2444 m_adj(m_new, sizeof(u_int64_t)); 2445 2446 /* 2447 * If this is a PNIC chip, zero the buffer. This is part 2448 * of the workaround for the receive bug in the 82c168 and 2449 * 82c169 chips. 2450 */ 2451 if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) 2452 bzero((char *)mtod(m_new, char *), m_new->m_len); 2453 2454 sc->dc_cdata.dc_rx_chain[i] = m_new; 2455 c->dc_data = vtophys(mtod(m_new, caddr_t)); 2456 c->dc_ctl = DC_RXCTL_RLINK | DC_RXLEN; 2457 c->dc_status = DC_RXSTAT_OWN; 2458 2459 return(0); 2460 } 2461 2462 /* 2463 * Grrrrr. 2464 * The PNIC chip has a terrible bug in it that manifests itself during 2465 * periods of heavy activity. The exact mode of failure if difficult to 2466 * pinpoint: sometimes it only happens in promiscuous mode, sometimes it 2467 * will happen on slow machines. The bug is that sometimes instead of 2468 * uploading one complete frame during reception, it uploads what looks 2469 * like the entire contents of its FIFO memory. The frame we want is at 2470 * the end of the whole mess, but we never know exactly how much data has 2471 * been uploaded, so salvaging the frame is hard. 2472 * 2473 * There is only one way to do it reliably, and it's disgusting. 2474 * Here's what we know: 2475 * 2476 * - We know there will always be somewhere between one and three extra 2477 * descriptors uploaded. 2478 * 2479 * - We know the desired received frame will always be at the end of the 2480 * total data upload. 2481 * 2482 * - We know the size of the desired received frame because it will be 2483 * provided in the length field of the status word in the last descriptor. 2484 * 2485 * Here's what we do: 2486 * 2487 * - When we allocate buffers for the receive ring, we bzero() them. 2488 * This means that we know that the buffer contents should be all 2489 * zeros, except for data uploaded by the chip. 2490 * 2491 * - We also force the PNIC chip to upload frames that include the 2492 * ethernet CRC at the end. 2493 * 2494 * - We gather all of the bogus frame data into a single buffer. 2495 * 2496 * - We then position a pointer at the end of this buffer and scan 2497 * backwards until we encounter the first non-zero byte of data. 2498 * This is the end of the received frame. We know we will encounter 2499 * some data at the end of the frame because the CRC will always be 2500 * there, so even if the sender transmits a packet of all zeros, 2501 * we won't be fooled. 2502 * 2503 * - We know the size of the actual received frame, so we subtract 2504 * that value from the current pointer location. This brings us 2505 * to the start of the actual received packet. 2506 * 2507 * - We copy this into an mbuf and pass it on, along with the actual 2508 * frame length. 2509 * 2510 * The performance hit is tremendous, but it beats dropping frames all 2511 * the time. 2512 */ 2513 2514 #define DC_WHOLEFRAME (DC_RXSTAT_FIRSTFRAG|DC_RXSTAT_LASTFRAG) 2515 static void 2516 dc_pnic_rx_bug_war(sc, idx) 2517 struct dc_softc *sc; 2518 int idx; 2519 { 2520 struct dc_desc *cur_rx; 2521 struct dc_desc *c = NULL; 2522 struct mbuf *m = NULL; 2523 unsigned char *ptr; 2524 int i, total_len; 2525 u_int32_t rxstat = 0; 2526 2527 i = sc->dc_pnic_rx_bug_save; 2528 cur_rx = &sc->dc_ldata->dc_rx_list[idx]; 2529 ptr = sc->dc_pnic_rx_buf; 2530 bzero(ptr, sizeof(DC_RXLEN * 5)); 2531 2532 /* Copy all the bytes from the bogus buffers. */ 2533 while (1) { 2534 c = &sc->dc_ldata->dc_rx_list[i]; 2535 rxstat = c->dc_status; 2536 m = sc->dc_cdata.dc_rx_chain[i]; 2537 bcopy(mtod(m, char *), ptr, DC_RXLEN); 2538 ptr += DC_RXLEN; 2539 /* If this is the last buffer, break out. */ 2540 if (i == idx || rxstat & DC_RXSTAT_LASTFRAG) 2541 break; 2542 dc_newbuf(sc, i, m); 2543 DC_INC(i, DC_RX_LIST_CNT); 2544 } 2545 2546 /* Find the length of the actual receive frame. */ 2547 total_len = DC_RXBYTES(rxstat); 2548 2549 /* Scan backwards until we hit a non-zero byte. */ 2550 while(*ptr == 0x00) 2551 ptr--; 2552 2553 /* Round off. */ 2554 if ((uintptr_t)(ptr) & 0x3) 2555 ptr -= 1; 2556 2557 /* Now find the start of the frame. */ 2558 ptr -= total_len; 2559 if (ptr < sc->dc_pnic_rx_buf) 2560 ptr = sc->dc_pnic_rx_buf; 2561 2562 /* 2563 * Now copy the salvaged frame to the last mbuf and fake up 2564 * the status word to make it look like a successful 2565 * frame reception. 2566 */ 2567 dc_newbuf(sc, i, m); 2568 bcopy(ptr, mtod(m, char *), total_len); 2569 cur_rx->dc_status = rxstat | DC_RXSTAT_FIRSTFRAG; 2570 2571 return; 2572 } 2573 2574 /* 2575 * This routine searches the RX ring for dirty descriptors in the 2576 * event that the rxeof routine falls out of sync with the chip's 2577 * current descriptor pointer. This may happen sometimes as a result 2578 * of a "no RX buffer available" condition that happens when the chip 2579 * consumes all of the RX buffers before the driver has a chance to 2580 * process the RX ring. This routine may need to be called more than 2581 * once to bring the driver back in sync with the chip, however we 2582 * should still be getting RX DONE interrupts to drive the search 2583 * for new packets in the RX ring, so we should catch up eventually. 2584 */ 2585 static int 2586 dc_rx_resync(sc) 2587 struct dc_softc *sc; 2588 { 2589 int i, pos; 2590 struct dc_desc *cur_rx; 2591 2592 pos = sc->dc_cdata.dc_rx_prod; 2593 2594 for (i = 0; i < DC_RX_LIST_CNT; i++) { 2595 cur_rx = &sc->dc_ldata->dc_rx_list[pos]; 2596 if (!(cur_rx->dc_status & DC_RXSTAT_OWN)) 2597 break; 2598 DC_INC(pos, DC_RX_LIST_CNT); 2599 } 2600 2601 /* If the ring really is empty, then just return. */ 2602 if (i == DC_RX_LIST_CNT) 2603 return(0); 2604 2605 /* We've fallen behing the chip: catch it. */ 2606 sc->dc_cdata.dc_rx_prod = pos; 2607 2608 return(EAGAIN); 2609 } 2610 2611 /* 2612 * A frame has been uploaded: pass the resulting mbuf chain up to 2613 * the higher level protocols. 2614 */ 2615 static void 2616 dc_rxeof(sc) 2617 struct dc_softc *sc; 2618 { 2619 struct mbuf *m; 2620 struct ifnet *ifp; 2621 struct dc_desc *cur_rx; 2622 int i, total_len = 0; 2623 u_int32_t rxstat; 2624 2625 ifp = &sc->arpcom.ac_if; 2626 i = sc->dc_cdata.dc_rx_prod; 2627 2628 while(!(sc->dc_ldata->dc_rx_list[i].dc_status & DC_RXSTAT_OWN)) { 2629 2630 #ifdef DEVICE_POLLING 2631 if (ifp->if_flags & IFF_POLLING) { 2632 if (sc->rxcycles <= 0) 2633 break; 2634 sc->rxcycles--; 2635 } 2636 #endif /* DEVICE_POLLING */ 2637 cur_rx = &sc->dc_ldata->dc_rx_list[i]; 2638 rxstat = cur_rx->dc_status; 2639 m = sc->dc_cdata.dc_rx_chain[i]; 2640 total_len = DC_RXBYTES(rxstat); 2641 2642 if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) { 2643 if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) { 2644 if (rxstat & DC_RXSTAT_FIRSTFRAG) 2645 sc->dc_pnic_rx_bug_save = i; 2646 if ((rxstat & DC_RXSTAT_LASTFRAG) == 0) { 2647 DC_INC(i, DC_RX_LIST_CNT); 2648 continue; 2649 } 2650 dc_pnic_rx_bug_war(sc, i); 2651 rxstat = cur_rx->dc_status; 2652 total_len = DC_RXBYTES(rxstat); 2653 } 2654 } 2655 2656 sc->dc_cdata.dc_rx_chain[i] = NULL; 2657 2658 /* 2659 * If an error occurs, update stats, clear the 2660 * status word and leave the mbuf cluster in place: 2661 * it should simply get re-used next time this descriptor 2662 * comes up in the ring. However, don't report long 2663 * frames as errors since they could be vlans 2664 */ 2665 if ((rxstat & DC_RXSTAT_RXERR)){ 2666 if (!(rxstat & DC_RXSTAT_GIANT) || 2667 (rxstat & (DC_RXSTAT_CRCERR | DC_RXSTAT_DRIBBLE | 2668 DC_RXSTAT_MIIERE | DC_RXSTAT_COLLSEEN | 2669 DC_RXSTAT_RUNT | DC_RXSTAT_DE))) { 2670 ifp->if_ierrors++; 2671 if (rxstat & DC_RXSTAT_COLLSEEN) 2672 ifp->if_collisions++; 2673 dc_newbuf(sc, i, m); 2674 if (rxstat & DC_RXSTAT_CRCERR) { 2675 DC_INC(i, DC_RX_LIST_CNT); 2676 continue; 2677 } else { 2678 dc_init(sc); 2679 return; 2680 } 2681 } 2682 } 2683 2684 /* No errors; receive the packet. */ 2685 total_len -= ETHER_CRC_LEN; 2686 #ifdef __i386__ 2687 /* 2688 * On the x86 we do not have alignment problems, so try to 2689 * allocate a new buffer for the receive ring, and pass up 2690 * the one where the packet is already, saving the expensive 2691 * copy done in m_devget(). 2692 * If we are on an architecture with alignment problems, or 2693 * if the allocation fails, then use m_devget and leave the 2694 * existing buffer in the receive ring. 2695 */ 2696 if (dc_quick && dc_newbuf(sc, i, NULL) == 0) { 2697 m->m_pkthdr.rcvif = ifp; 2698 m->m_pkthdr.len = m->m_len = total_len; 2699 DC_INC(i, DC_RX_LIST_CNT); 2700 } else 2701 #endif 2702 { 2703 struct mbuf *m0; 2704 2705 m0 = m_devget(mtod(m, char *), total_len, 2706 ETHER_ALIGN, ifp, NULL); 2707 dc_newbuf(sc, i, m); 2708 DC_INC(i, DC_RX_LIST_CNT); 2709 if (m0 == NULL) { 2710 ifp->if_ierrors++; 2711 continue; 2712 } 2713 m = m0; 2714 } 2715 2716 ifp->if_ipackets++; 2717 (*ifp->if_input)(ifp, m); 2718 } 2719 2720 sc->dc_cdata.dc_rx_prod = i; 2721 } 2722 2723 /* 2724 * A frame was downloaded to the chip. It's safe for us to clean up 2725 * the list buffers. 2726 */ 2727 2728 static void 2729 dc_txeof(sc) 2730 struct dc_softc *sc; 2731 { 2732 struct dc_desc *cur_tx = NULL; 2733 struct ifnet *ifp; 2734 int idx; 2735 2736 ifp = &sc->arpcom.ac_if; 2737 2738 /* 2739 * Go through our tx list and free mbufs for those 2740 * frames that have been transmitted. 2741 */ 2742 idx = sc->dc_cdata.dc_tx_cons; 2743 while(idx != sc->dc_cdata.dc_tx_prod) { 2744 u_int32_t txstat; 2745 2746 cur_tx = &sc->dc_ldata->dc_tx_list[idx]; 2747 txstat = cur_tx->dc_status; 2748 2749 if (txstat & DC_TXSTAT_OWN) 2750 break; 2751 2752 if (!(cur_tx->dc_ctl & DC_TXCTL_LASTFRAG) || 2753 cur_tx->dc_ctl & DC_TXCTL_SETUP) { 2754 if (cur_tx->dc_ctl & DC_TXCTL_SETUP) { 2755 /* 2756 * Yes, the PNIC is so brain damaged 2757 * that it will sometimes generate a TX 2758 * underrun error while DMAing the RX 2759 * filter setup frame. If we detect this, 2760 * we have to send the setup frame again, 2761 * or else the filter won't be programmed 2762 * correctly. 2763 */ 2764 if (DC_IS_PNIC(sc)) { 2765 if (txstat & DC_TXSTAT_ERRSUM) 2766 dc_setfilt(sc); 2767 } 2768 sc->dc_cdata.dc_tx_chain[idx] = NULL; 2769 } 2770 sc->dc_cdata.dc_tx_cnt--; 2771 DC_INC(idx, DC_TX_LIST_CNT); 2772 continue; 2773 } 2774 2775 if (DC_IS_XIRCOM(sc) || DC_IS_CONEXANT(sc)) { 2776 /* 2777 * XXX: Why does my Xircom taunt me so? 2778 * For some reason it likes setting the CARRLOST flag 2779 * even when the carrier is there. wtf?!? 2780 * Who knows, but Conexant chips have the 2781 * same problem. Maybe they took lessons 2782 * from Xircom. 2783 */ 2784 if (/*sc->dc_type == DC_TYPE_21143 &&*/ 2785 sc->dc_pmode == DC_PMODE_MII && 2786 ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM| 2787 DC_TXSTAT_NOCARRIER))) 2788 txstat &= ~DC_TXSTAT_ERRSUM; 2789 } else { 2790 if (/*sc->dc_type == DC_TYPE_21143 &&*/ 2791 sc->dc_pmode == DC_PMODE_MII && 2792 ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM| 2793 DC_TXSTAT_NOCARRIER|DC_TXSTAT_CARRLOST))) 2794 txstat &= ~DC_TXSTAT_ERRSUM; 2795 } 2796 2797 if (txstat & DC_TXSTAT_ERRSUM) { 2798 ifp->if_oerrors++; 2799 if (txstat & DC_TXSTAT_EXCESSCOLL) 2800 ifp->if_collisions++; 2801 if (txstat & DC_TXSTAT_LATECOLL) 2802 ifp->if_collisions++; 2803 if (!(txstat & DC_TXSTAT_UNDERRUN)) { 2804 dc_init(sc); 2805 return; 2806 } 2807 } 2808 2809 ifp->if_collisions += (txstat & DC_TXSTAT_COLLCNT) >> 3; 2810 2811 ifp->if_opackets++; 2812 if (sc->dc_cdata.dc_tx_chain[idx] != NULL) { 2813 m_freem(sc->dc_cdata.dc_tx_chain[idx]); 2814 sc->dc_cdata.dc_tx_chain[idx] = NULL; 2815 } 2816 2817 sc->dc_cdata.dc_tx_cnt--; 2818 DC_INC(idx, DC_TX_LIST_CNT); 2819 } 2820 2821 if (idx != sc->dc_cdata.dc_tx_cons) { 2822 /* some buffers have been freed */ 2823 sc->dc_cdata.dc_tx_cons = idx; 2824 ifp->if_flags &= ~IFF_OACTIVE; 2825 } 2826 ifp->if_timer = (sc->dc_cdata.dc_tx_cnt == 0) ? 0 : 5; 2827 2828 return; 2829 } 2830 2831 static void 2832 dc_tick(xsc) 2833 void *xsc; 2834 { 2835 struct dc_softc *sc; 2836 struct mii_data *mii; 2837 struct ifnet *ifp; 2838 u_int32_t r; 2839 2840 sc = xsc; 2841 DC_LOCK(sc); 2842 ifp = &sc->arpcom.ac_if; 2843 mii = device_get_softc(sc->dc_miibus); 2844 2845 if (sc->dc_flags & DC_REDUCED_MII_POLL) { 2846 if (sc->dc_flags & DC_21143_NWAY) { 2847 r = CSR_READ_4(sc, DC_10BTSTAT); 2848 if (IFM_SUBTYPE(mii->mii_media_active) == 2849 IFM_100_TX && (r & DC_TSTAT_LS100)) { 2850 sc->dc_link = 0; 2851 mii_mediachg(mii); 2852 } 2853 if (IFM_SUBTYPE(mii->mii_media_active) == 2854 IFM_10_T && (r & DC_TSTAT_LS10)) { 2855 sc->dc_link = 0; 2856 mii_mediachg(mii); 2857 } 2858 if (sc->dc_link == 0) 2859 mii_tick(mii); 2860 } else { 2861 r = CSR_READ_4(sc, DC_ISR); 2862 if ((r & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT && 2863 sc->dc_cdata.dc_tx_cnt == 0) 2864 mii_tick(mii); 2865 if (!(mii->mii_media_status & IFM_ACTIVE)) 2866 sc->dc_link = 0; 2867 } 2868 } else 2869 mii_tick(mii); 2870 2871 /* 2872 * When the init routine completes, we expect to be able to send 2873 * packets right away, and in fact the network code will send a 2874 * gratuitous ARP the moment the init routine marks the interface 2875 * as running. However, even though the MAC may have been initialized, 2876 * there may be a delay of a few seconds before the PHY completes 2877 * autonegotiation and the link is brought up. Any transmissions 2878 * made during that delay will be lost. Dealing with this is tricky: 2879 * we can't just pause in the init routine while waiting for the 2880 * PHY to come ready since that would bring the whole system to 2881 * a screeching halt for several seconds. 2882 * 2883 * What we do here is prevent the TX start routine from sending 2884 * any packets until a link has been established. After the 2885 * interface has been initialized, the tick routine will poll 2886 * the state of the PHY until the IFM_ACTIVE flag is set. Until 2887 * that time, packets will stay in the send queue, and once the 2888 * link comes up, they will be flushed out to the wire. 2889 */ 2890 if (!sc->dc_link && mii->mii_media_status & IFM_ACTIVE && 2891 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { 2892 sc->dc_link++; 2893 if (ifp->if_snd.ifq_head != NULL) 2894 dc_start(ifp); 2895 } 2896 2897 if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link) 2898 callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc); 2899 else 2900 callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc); 2901 2902 DC_UNLOCK(sc); 2903 2904 return; 2905 } 2906 2907 /* 2908 * A transmit underrun has occurred. Back off the transmit threshold, 2909 * or switch to store and forward mode if we have to. 2910 */ 2911 static void 2912 dc_tx_underrun(sc) 2913 struct dc_softc *sc; 2914 { 2915 u_int32_t isr; 2916 int i; 2917 2918 if (DC_IS_DAVICOM(sc)) 2919 dc_init(sc); 2920 2921 if (DC_IS_INTEL(sc)) { 2922 /* 2923 * The real 21143 requires that the transmitter be idle 2924 * in order to change the transmit threshold or store 2925 * and forward state. 2926 */ 2927 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON); 2928 2929 for (i = 0; i < DC_TIMEOUT; i++) { 2930 isr = CSR_READ_4(sc, DC_ISR); 2931 if (isr & DC_ISR_TX_IDLE) 2932 break; 2933 DELAY(10); 2934 } 2935 if (i == DC_TIMEOUT) { 2936 printf("dc%d: failed to force tx to idle state\n", 2937 sc->dc_unit); 2938 dc_init(sc); 2939 } 2940 } 2941 2942 printf("dc%d: TX underrun -- ", sc->dc_unit); 2943 sc->dc_txthresh += DC_TXTHRESH_INC; 2944 if (sc->dc_txthresh > DC_TXTHRESH_MAX) { 2945 printf("using store and forward mode\n"); 2946 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD); 2947 } else { 2948 printf("increasing TX threshold\n"); 2949 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH); 2950 DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh); 2951 } 2952 2953 if (DC_IS_INTEL(sc)) 2954 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON); 2955 2956 return; 2957 } 2958 2959 #ifdef DEVICE_POLLING 2960 static poll_handler_t dc_poll; 2961 2962 static void 2963 dc_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) 2964 { 2965 struct dc_softc *sc = ifp->if_softc; 2966 2967 if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */ 2968 /* Re-enable interrupts. */ 2969 CSR_WRITE_4(sc, DC_IMR, DC_INTRS); 2970 return; 2971 } 2972 sc->rxcycles = count; 2973 dc_rxeof(sc); 2974 dc_txeof(sc); 2975 if (ifp->if_snd.ifq_head != NULL && !(ifp->if_flags & IFF_OACTIVE)) 2976 dc_start(ifp); 2977 2978 if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */ 2979 u_int32_t status; 2980 2981 status = CSR_READ_4(sc, DC_ISR); 2982 status &= (DC_ISR_RX_WATDOGTIMEO|DC_ISR_RX_NOBUF| 2983 DC_ISR_TX_NOBUF|DC_ISR_TX_IDLE|DC_ISR_TX_UNDERRUN| 2984 DC_ISR_BUS_ERR); 2985 if (!status) 2986 return; 2987 /* ack what we have */ 2988 CSR_WRITE_4(sc, DC_ISR, status); 2989 2990 if (status & (DC_ISR_RX_WATDOGTIMEO|DC_ISR_RX_NOBUF)) { 2991 u_int32_t r = CSR_READ_4(sc, DC_FRAMESDISCARDED); 2992 ifp->if_ierrors += (r & 0xffff) + ((r >> 17) & 0x7ff); 2993 2994 if (dc_rx_resync(sc)) 2995 dc_rxeof(sc); 2996 } 2997 /* restart transmit unit if necessary */ 2998 if (status & DC_ISR_TX_IDLE && sc->dc_cdata.dc_tx_cnt) 2999 CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF); 3000 3001 if (status & DC_ISR_TX_UNDERRUN) 3002 dc_tx_underrun(sc); 3003 3004 if (status & DC_ISR_BUS_ERR) { 3005 printf("dc_poll: dc%d bus error\n", sc->dc_unit); 3006 dc_reset(sc); 3007 dc_init(sc); 3008 } 3009 } 3010 } 3011 #endif /* DEVICE_POLLING */ 3012 3013 static void 3014 dc_intr(arg) 3015 void *arg; 3016 { 3017 struct dc_softc *sc; 3018 struct ifnet *ifp; 3019 u_int32_t status; 3020 3021 sc = arg; 3022 3023 if (sc->suspended) { 3024 return; 3025 } 3026 3027 if ((CSR_READ_4(sc, DC_ISR) & DC_INTRS) == 0) 3028 return; 3029 3030 DC_LOCK(sc); 3031 ifp = &sc->arpcom.ac_if; 3032 #ifdef DEVICE_POLLING 3033 if (ifp->if_flags & IFF_POLLING) 3034 goto done; 3035 if (ether_poll_register(dc_poll, ifp)) { /* ok, disable interrupts */ 3036 CSR_WRITE_4(sc, DC_IMR, 0x00000000); 3037 goto done; 3038 } 3039 #endif /* DEVICE_POLLING */ 3040 3041 /* Suppress unwanted interrupts */ 3042 if (!(ifp->if_flags & IFF_UP)) { 3043 if (CSR_READ_4(sc, DC_ISR) & DC_INTRS) 3044 dc_stop(sc); 3045 DC_UNLOCK(sc); 3046 return; 3047 } 3048 3049 /* Disable interrupts. */ 3050 CSR_WRITE_4(sc, DC_IMR, 0x00000000); 3051 3052 while(((status = CSR_READ_4(sc, DC_ISR)) & DC_INTRS) 3053 && status != 0xFFFFFFFF) { 3054 3055 CSR_WRITE_4(sc, DC_ISR, status); 3056 3057 if (status & DC_ISR_RX_OK) { 3058 int curpkts; 3059 curpkts = ifp->if_ipackets; 3060 dc_rxeof(sc); 3061 if (curpkts == ifp->if_ipackets) { 3062 while(dc_rx_resync(sc)) 3063 dc_rxeof(sc); 3064 } 3065 } 3066 3067 if (status & (DC_ISR_TX_OK|DC_ISR_TX_NOBUF)) 3068 dc_txeof(sc); 3069 3070 if (status & DC_ISR_TX_IDLE) { 3071 dc_txeof(sc); 3072 if (sc->dc_cdata.dc_tx_cnt) { 3073 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON); 3074 CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF); 3075 } 3076 } 3077 3078 if (status & DC_ISR_TX_UNDERRUN) 3079 dc_tx_underrun(sc); 3080 3081 if ((status & DC_ISR_RX_WATDOGTIMEO) 3082 || (status & DC_ISR_RX_NOBUF)) { 3083 int curpkts; 3084 curpkts = ifp->if_ipackets; 3085 dc_rxeof(sc); 3086 if (curpkts == ifp->if_ipackets) { 3087 while(dc_rx_resync(sc)) 3088 dc_rxeof(sc); 3089 } 3090 } 3091 3092 if (status & DC_ISR_BUS_ERR) { 3093 dc_reset(sc); 3094 dc_init(sc); 3095 } 3096 } 3097 3098 /* Re-enable interrupts. */ 3099 CSR_WRITE_4(sc, DC_IMR, DC_INTRS); 3100 3101 if (ifp->if_snd.ifq_head != NULL) 3102 dc_start(ifp); 3103 3104 #ifdef DEVICE_POLLING 3105 done: 3106 #endif /* DEVICE_POLLING */ 3107 3108 DC_UNLOCK(sc); 3109 3110 return; 3111 } 3112 3113 /* 3114 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data 3115 * pointers to the fragment pointers. 3116 */ 3117 static int 3118 dc_encap(sc, m_head, txidx) 3119 struct dc_softc *sc; 3120 struct mbuf *m_head; 3121 u_int32_t *txidx; 3122 { 3123 struct dc_desc *f = NULL; 3124 struct mbuf *m; 3125 int frag, cur, cnt = 0; 3126 3127 /* 3128 * Start packing the mbufs in this chain into 3129 * the fragment pointers. Stop when we run out 3130 * of fragments or hit the end of the mbuf chain. 3131 */ 3132 m = m_head; 3133 cur = frag = *txidx; 3134 3135 for (m = m_head; m != NULL; m = m->m_next) { 3136 if (m->m_len != 0) { 3137 if (sc->dc_flags & DC_TX_ADMTEK_WAR) { 3138 if (*txidx != sc->dc_cdata.dc_tx_prod && 3139 frag == (DC_TX_LIST_CNT - 1)) 3140 return(ENOBUFS); 3141 } 3142 if ((DC_TX_LIST_CNT - 3143 (sc->dc_cdata.dc_tx_cnt + cnt)) < 5) 3144 return(ENOBUFS); 3145 3146 f = &sc->dc_ldata->dc_tx_list[frag]; 3147 f->dc_ctl = DC_TXCTL_TLINK | m->m_len; 3148 if (cnt == 0) { 3149 f->dc_status = 0; 3150 f->dc_ctl |= DC_TXCTL_FIRSTFRAG; 3151 } else 3152 f->dc_status = DC_TXSTAT_OWN; 3153 f->dc_data = vtophys(mtod(m, vm_offset_t)); 3154 cur = frag; 3155 DC_INC(frag, DC_TX_LIST_CNT); 3156 cnt++; 3157 } 3158 } 3159 3160 if (m != NULL) 3161 return(ENOBUFS); 3162 3163 sc->dc_cdata.dc_tx_cnt += cnt; 3164 sc->dc_cdata.dc_tx_chain[cur] = m_head; 3165 sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_LASTFRAG; 3166 if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG) 3167 sc->dc_ldata->dc_tx_list[*txidx].dc_ctl |= DC_TXCTL_FINT; 3168 if (sc->dc_flags & DC_TX_INTR_ALWAYS) 3169 sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT; 3170 if (sc->dc_flags & DC_TX_USE_TX_INTR && sc->dc_cdata.dc_tx_cnt > 64) 3171 sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT; 3172 sc->dc_ldata->dc_tx_list[*txidx].dc_status = DC_TXSTAT_OWN; 3173 *txidx = frag; 3174 3175 return(0); 3176 } 3177 3178 /* 3179 * Coalesce an mbuf chain into a single mbuf cluster buffer. 3180 * Needed for some really badly behaved chips that just can't 3181 * do scatter/gather correctly. 3182 */ 3183 static int 3184 dc_coal(sc, m_head) 3185 struct dc_softc *sc; 3186 struct mbuf **m_head; 3187 { 3188 struct mbuf *m_new, *m; 3189 3190 m = *m_head; 3191 MGETHDR(m_new, M_DONTWAIT, MT_DATA); 3192 if (m_new == NULL) 3193 return(ENOBUFS); 3194 if (m->m_pkthdr.len > MHLEN) { 3195 MCLGET(m_new, M_DONTWAIT); 3196 if (!(m_new->m_flags & M_EXT)) { 3197 m_freem(m_new); 3198 return(ENOBUFS); 3199 } 3200 } 3201 m_copydata(m, 0, m->m_pkthdr.len, mtod(m_new, caddr_t)); 3202 m_new->m_pkthdr.len = m_new->m_len = m->m_pkthdr.len; 3203 m_freem(m); 3204 *m_head = m_new; 3205 3206 return(0); 3207 } 3208 3209 /* 3210 * Main transmit routine. To avoid having to do mbuf copies, we put pointers 3211 * to the mbuf data regions directly in the transmit lists. We also save a 3212 * copy of the pointers since the transmit list fragment pointers are 3213 * physical addresses. 3214 */ 3215 3216 static void 3217 dc_start(ifp) 3218 struct ifnet *ifp; 3219 { 3220 struct dc_softc *sc; 3221 struct mbuf *m_head = NULL; 3222 int idx; 3223 3224 sc = ifp->if_softc; 3225 3226 DC_LOCK(sc); 3227 3228 if (!sc->dc_link && ifp->if_snd.ifq_len < 10) { 3229 DC_UNLOCK(sc); 3230 return; 3231 } 3232 3233 if (ifp->if_flags & IFF_OACTIVE) { 3234 DC_UNLOCK(sc); 3235 return; 3236 } 3237 3238 idx = sc->dc_cdata.dc_tx_prod; 3239 3240 while(sc->dc_cdata.dc_tx_chain[idx] == NULL) { 3241 IF_DEQUEUE(&ifp->if_snd, m_head); 3242 if (m_head == NULL) 3243 break; 3244 3245 if (sc->dc_flags & DC_TX_COALESCE && 3246 (m_head->m_next != NULL || 3247 sc->dc_flags & DC_TX_ALIGN)) { 3248 if (dc_coal(sc, &m_head)) { 3249 IF_PREPEND(&ifp->if_snd, m_head); 3250 ifp->if_flags |= IFF_OACTIVE; 3251 break; 3252 } 3253 } 3254 3255 if (dc_encap(sc, m_head, &idx)) { 3256 IF_PREPEND(&ifp->if_snd, m_head); 3257 ifp->if_flags |= IFF_OACTIVE; 3258 break; 3259 } 3260 3261 /* 3262 * If there's a BPF listener, bounce a copy of this frame 3263 * to him. 3264 */ 3265 BPF_MTAP(ifp, m_head); 3266 3267 if (sc->dc_flags & DC_TX_ONE) { 3268 ifp->if_flags |= IFF_OACTIVE; 3269 break; 3270 } 3271 } 3272 3273 /* Transmit */ 3274 sc->dc_cdata.dc_tx_prod = idx; 3275 if (!(sc->dc_flags & DC_TX_POLL)) 3276 CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF); 3277 3278 /* 3279 * Set a timeout in case the chip goes out to lunch. 3280 */ 3281 ifp->if_timer = 5; 3282 3283 DC_UNLOCK(sc); 3284 3285 return; 3286 } 3287 3288 static void 3289 dc_init(xsc) 3290 void *xsc; 3291 { 3292 struct dc_softc *sc = xsc; 3293 struct ifnet *ifp = &sc->arpcom.ac_if; 3294 struct mii_data *mii; 3295 3296 DC_LOCK(sc); 3297 3298 mii = device_get_softc(sc->dc_miibus); 3299 3300 /* 3301 * Cancel pending I/O and free all RX/TX buffers. 3302 */ 3303 dc_stop(sc); 3304 dc_reset(sc); 3305 3306 /* 3307 * Set cache alignment and burst length. 3308 */ 3309 if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc)) 3310 CSR_WRITE_4(sc, DC_BUSCTL, 0); 3311 else 3312 CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME|DC_BUSCTL_MRLE); 3313 /* 3314 * Evenly share the bus between receive and transmit process. 3315 */ 3316 if (DC_IS_INTEL(sc)) 3317 DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION); 3318 if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) { 3319 DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA); 3320 } else { 3321 DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG); 3322 } 3323 if (sc->dc_flags & DC_TX_POLL) 3324 DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1); 3325 switch(sc->dc_cachesize) { 3326 case 32: 3327 DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG); 3328 break; 3329 case 16: 3330 DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG); 3331 break; 3332 case 8: 3333 DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG); 3334 break; 3335 case 0: 3336 default: 3337 DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE); 3338 break; 3339 } 3340 3341 if (sc->dc_flags & DC_TX_STORENFWD) 3342 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD); 3343 else { 3344 if (sc->dc_txthresh > DC_TXTHRESH_MAX) { 3345 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD); 3346 } else { 3347 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD); 3348 DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh); 3349 } 3350 } 3351 3352 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC); 3353 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF); 3354 3355 if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) { 3356 /* 3357 * The app notes for the 98713 and 98715A say that 3358 * in order to have the chips operate properly, a magic 3359 * number must be written to CSR16. Macronix does not 3360 * document the meaning of these bits so there's no way 3361 * to know exactly what they do. The 98713 has a magic 3362 * number all its own; the rest all use a different one. 3363 */ 3364 DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000); 3365 if (sc->dc_type == DC_TYPE_98713) 3366 DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713); 3367 else 3368 DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715); 3369 } 3370 3371 if (DC_IS_XIRCOM(sc)) { 3372 /* 3373 * setup General Purpose Port mode and data so the tulip 3374 * can talk to the MII. 3375 */ 3376 CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN | 3377 DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT); 3378 DELAY(10); 3379 CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN | 3380 DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT); 3381 DELAY(10); 3382 } 3383 3384 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH); 3385 DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN); 3386 3387 /* Init circular RX list. */ 3388 if (dc_list_rx_init(sc) == ENOBUFS) { 3389 printf("dc%d: initialization failed: no " 3390 "memory for rx buffers\n", sc->dc_unit); 3391 dc_stop(sc); 3392 DC_UNLOCK(sc); 3393 return; 3394 } 3395 3396 /* 3397 * Init tx descriptors. 3398 */ 3399 dc_list_tx_init(sc); 3400 3401 /* 3402 * Load the address of the RX list. 3403 */ 3404 CSR_WRITE_4(sc, DC_RXADDR, vtophys(&sc->dc_ldata->dc_rx_list[0])); 3405 CSR_WRITE_4(sc, DC_TXADDR, vtophys(&sc->dc_ldata->dc_tx_list[0])); 3406 3407 /* 3408 * Enable interrupts. 3409 */ 3410 #ifdef DEVICE_POLLING 3411 /* 3412 * ... but only if we are not polling, and make sure they are off in 3413 * the case of polling. Some cards (e.g. fxp) turn interrupts on 3414 * after a reset. 3415 */ 3416 if (ifp->if_flags & IFF_POLLING) 3417 CSR_WRITE_4(sc, DC_IMR, 0x00000000); 3418 else 3419 #endif 3420 CSR_WRITE_4(sc, DC_IMR, DC_INTRS); 3421 CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF); 3422 3423 /* Enable transmitter. */ 3424 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON); 3425 3426 /* 3427 * If this is an Intel 21143 and we're not using the 3428 * MII port, program the LED control pins so we get 3429 * link and activity indications. 3430 */ 3431 if (sc->dc_flags & DC_TULIP_LEDS) { 3432 CSR_WRITE_4(sc, DC_WATCHDOG, 3433 DC_WDOG_CTLWREN|DC_WDOG_LINK|DC_WDOG_ACTIVITY); 3434 CSR_WRITE_4(sc, DC_WATCHDOG, 0); 3435 } 3436 3437 /* 3438 * Load the RX/multicast filter. We do this sort of late 3439 * because the filter programming scheme on the 21143 and 3440 * some clones requires DMAing a setup frame via the TX 3441 * engine, and we need the transmitter enabled for that. 3442 */ 3443 dc_setfilt(sc); 3444 3445 /* Enable receiver. */ 3446 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON); 3447 CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF); 3448 3449 mii_mediachg(mii); 3450 dc_setcfg(sc, sc->dc_if_media); 3451 3452 ifp->if_flags |= IFF_RUNNING; 3453 ifp->if_flags &= ~IFF_OACTIVE; 3454 3455 /* Don't start the ticker if this is a homePNA link. */ 3456 if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_HPNA_1) 3457 sc->dc_link = 1; 3458 else { 3459 if (sc->dc_flags & DC_21143_NWAY) 3460 callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc); 3461 else 3462 callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc); 3463 } 3464 3465 #ifdef SRM_MEDIA 3466 if(sc->dc_srm_media) { 3467 struct ifreq ifr; 3468 3469 ifr.ifr_media = sc->dc_srm_media; 3470 ifmedia_ioctl(ifp, &ifr, &mii->mii_media, SIOCSIFMEDIA); 3471 sc->dc_srm_media = 0; 3472 } 3473 #endif 3474 DC_UNLOCK(sc); 3475 return; 3476 } 3477 3478 /* 3479 * Set media options. 3480 */ 3481 static int 3482 dc_ifmedia_upd(ifp) 3483 struct ifnet *ifp; 3484 { 3485 struct dc_softc *sc; 3486 struct mii_data *mii; 3487 struct ifmedia *ifm; 3488 3489 sc = ifp->if_softc; 3490 mii = device_get_softc(sc->dc_miibus); 3491 mii_mediachg(mii); 3492 ifm = &mii->mii_media; 3493 3494 if (DC_IS_DAVICOM(sc) && 3495 IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) 3496 dc_setcfg(sc, ifm->ifm_media); 3497 else 3498 sc->dc_link = 0; 3499 3500 return(0); 3501 } 3502 3503 /* 3504 * Report current media status. 3505 */ 3506 static void 3507 dc_ifmedia_sts(ifp, ifmr) 3508 struct ifnet *ifp; 3509 struct ifmediareq *ifmr; 3510 { 3511 struct dc_softc *sc; 3512 struct mii_data *mii; 3513 struct ifmedia *ifm; 3514 3515 sc = ifp->if_softc; 3516 mii = device_get_softc(sc->dc_miibus); 3517 mii_pollstat(mii); 3518 ifm = &mii->mii_media; 3519 if (DC_IS_DAVICOM(sc)) { 3520 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) { 3521 ifmr->ifm_active = ifm->ifm_media; 3522 ifmr->ifm_status = 0; 3523 return; 3524 } 3525 } 3526 ifmr->ifm_active = mii->mii_media_active; 3527 ifmr->ifm_status = mii->mii_media_status; 3528 3529 return; 3530 } 3531 3532 static int 3533 dc_ioctl(ifp, command, data) 3534 struct ifnet *ifp; 3535 u_long command; 3536 caddr_t data; 3537 { 3538 struct dc_softc *sc = ifp->if_softc; 3539 struct ifreq *ifr = (struct ifreq *) data; 3540 struct mii_data *mii; 3541 int error = 0; 3542 3543 DC_LOCK(sc); 3544 3545 switch(command) { 3546 case SIOCSIFFLAGS: 3547 if (ifp->if_flags & IFF_UP) { 3548 int need_setfilt = (ifp->if_flags ^ sc->dc_if_flags) & 3549 (IFF_PROMISC | IFF_ALLMULTI); 3550 3551 if (ifp->if_flags & IFF_RUNNING) { 3552 if (need_setfilt) 3553 dc_setfilt(sc); 3554 } else { 3555 sc->dc_txthresh = 0; 3556 dc_init(sc); 3557 } 3558 } else { 3559 if (ifp->if_flags & IFF_RUNNING) 3560 dc_stop(sc); 3561 } 3562 sc->dc_if_flags = ifp->if_flags; 3563 error = 0; 3564 break; 3565 case SIOCADDMULTI: 3566 case SIOCDELMULTI: 3567 dc_setfilt(sc); 3568 error = 0; 3569 break; 3570 case SIOCGIFMEDIA: 3571 case SIOCSIFMEDIA: 3572 mii = device_get_softc(sc->dc_miibus); 3573 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); 3574 #ifdef SRM_MEDIA 3575 if (sc->dc_srm_media) 3576 sc->dc_srm_media = 0; 3577 #endif 3578 break; 3579 default: 3580 error = ether_ioctl(ifp, command, data); 3581 break; 3582 } 3583 3584 DC_UNLOCK(sc); 3585 3586 return(error); 3587 } 3588 3589 static void 3590 dc_watchdog(ifp) 3591 struct ifnet *ifp; 3592 { 3593 struct dc_softc *sc; 3594 3595 sc = ifp->if_softc; 3596 3597 DC_LOCK(sc); 3598 3599 ifp->if_oerrors++; 3600 printf("dc%d: watchdog timeout\n", sc->dc_unit); 3601 3602 dc_stop(sc); 3603 dc_reset(sc); 3604 dc_init(sc); 3605 3606 if (ifp->if_snd.ifq_head != NULL) 3607 dc_start(ifp); 3608 3609 DC_UNLOCK(sc); 3610 3611 return; 3612 } 3613 3614 /* 3615 * Stop the adapter and free any mbufs allocated to the 3616 * RX and TX lists. 3617 */ 3618 static void 3619 dc_stop(sc) 3620 struct dc_softc *sc; 3621 { 3622 register int i; 3623 struct ifnet *ifp; 3624 3625 DC_LOCK(sc); 3626 3627 ifp = &sc->arpcom.ac_if; 3628 ifp->if_timer = 0; 3629 3630 callout_stop(&sc->dc_stat_ch); 3631 3632 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 3633 #ifdef DEVICE_POLLING 3634 ether_poll_deregister(ifp); 3635 #endif 3636 3637 DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ON|DC_NETCFG_TX_ON)); 3638 CSR_WRITE_4(sc, DC_IMR, 0x00000000); 3639 CSR_WRITE_4(sc, DC_TXADDR, 0x00000000); 3640 CSR_WRITE_4(sc, DC_RXADDR, 0x00000000); 3641 sc->dc_link = 0; 3642 3643 /* 3644 * Free data in the RX lists. 3645 */ 3646 for (i = 0; i < DC_RX_LIST_CNT; i++) { 3647 if (sc->dc_cdata.dc_rx_chain[i] != NULL) { 3648 m_freem(sc->dc_cdata.dc_rx_chain[i]); 3649 sc->dc_cdata.dc_rx_chain[i] = NULL; 3650 } 3651 } 3652 bzero((char *)&sc->dc_ldata->dc_rx_list, 3653 sizeof(sc->dc_ldata->dc_rx_list)); 3654 3655 /* 3656 * Free the TX list buffers. 3657 */ 3658 for (i = 0; i < DC_TX_LIST_CNT; i++) { 3659 if (sc->dc_cdata.dc_tx_chain[i] != NULL) { 3660 if (sc->dc_ldata->dc_tx_list[i].dc_ctl & 3661 DC_TXCTL_SETUP) { 3662 sc->dc_cdata.dc_tx_chain[i] = NULL; 3663 continue; 3664 } 3665 m_freem(sc->dc_cdata.dc_tx_chain[i]); 3666 sc->dc_cdata.dc_tx_chain[i] = NULL; 3667 } 3668 } 3669 3670 bzero((char *)&sc->dc_ldata->dc_tx_list, 3671 sizeof(sc->dc_ldata->dc_tx_list)); 3672 3673 DC_UNLOCK(sc); 3674 3675 return; 3676 } 3677 3678 /* 3679 * Device suspend routine. Stop the interface and save some PCI 3680 * settings in case the BIOS doesn't restore them properly on 3681 * resume. 3682 */ 3683 static int 3684 dc_suspend(dev) 3685 device_t dev; 3686 { 3687 register int i; 3688 int s; 3689 struct dc_softc *sc; 3690 3691 s = splimp(); 3692 3693 sc = device_get_softc(dev); 3694 3695 dc_stop(sc); 3696 3697 for (i = 0; i < 5; i++) 3698 sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4); 3699 sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4); 3700 sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1); 3701 sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1); 3702 sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1); 3703 3704 sc->suspended = 1; 3705 3706 splx(s); 3707 return (0); 3708 } 3709 3710 /* 3711 * Device resume routine. Restore some PCI settings in case the BIOS 3712 * doesn't, re-enable busmastering, and restart the interface if 3713 * appropriate. 3714 */ 3715 static int 3716 dc_resume(dev) 3717 device_t dev; 3718 { 3719 register int i; 3720 int s; 3721 struct dc_softc *sc; 3722 struct ifnet *ifp; 3723 3724 s = splimp(); 3725 3726 sc = device_get_softc(dev); 3727 ifp = &sc->arpcom.ac_if; 3728 3729 dc_acpi(dev); 3730 3731 /* better way to do this? */ 3732 for (i = 0; i < 5; i++) 3733 pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4); 3734 pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4); 3735 pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1); 3736 pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1); 3737 pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1); 3738 3739 /* reenable busmastering */ 3740 pci_enable_busmaster(dev); 3741 pci_enable_io(dev, DC_RES); 3742 3743 /* reinitialize interface if necessary */ 3744 if (ifp->if_flags & IFF_UP) 3745 dc_init(sc); 3746 3747 sc->suspended = 0; 3748 3749 splx(s); 3750 return (0); 3751 } 3752 3753 /* 3754 * Stop all chip I/O so that the kernel's probe routines don't 3755 * get confused by errant DMAs when rebooting. 3756 */ 3757 static void 3758 dc_shutdown(dev) 3759 device_t dev; 3760 { 3761 struct dc_softc *sc; 3762 3763 sc = device_get_softc(dev); 3764 3765 dc_stop(sc); 3766 3767 return; 3768 } 3769