xref: /freebsd/sys/dev/dc/if_dc.c (revision 6780ab54325a71e7e70112b11657973edde8655e)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ee.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD$
33  */
34 
35 /*
36  * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
37  * series chips and several workalikes including the following:
38  *
39  * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com)
40  * Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
41  * Lite-On 82c168/82c169 PNIC (www.litecom.com)
42  * ASIX Electronics AX88140A (www.asix.com.tw)
43  * ASIX Electronics AX88141 (www.asix.com.tw)
44  * ADMtek AL981 (www.admtek.com.tw)
45  * ADMtek AN985 (www.admtek.com.tw)
46  * Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
47  * Accton EN1217 (www.accton.com)
48  * Xircom X3201 (www.xircom.com)
49  * Abocom FE2500
50  * Conexant LANfinity (www.conexant.com)
51  *
52  * Datasheets for the 21143 are available at developer.intel.com.
53  * Datasheets for the clone parts can be found at their respective sites.
54  * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
55  * The PNIC II is essentially a Macronix 98715A chip; the only difference
56  * worth noting is that its multicast hash table is only 128 bits wide
57  * instead of 512.
58  *
59  * Written by Bill Paul <wpaul@ee.columbia.edu>
60  * Electrical Engineering Department
61  * Columbia University, New York City
62  */
63 
64 /*
65  * The Intel 21143 is the successor to the DEC 21140. It is basically
66  * the same as the 21140 but with a few new features. The 21143 supports
67  * three kinds of media attachments:
68  *
69  * o MII port, for 10Mbps and 100Mbps support and NWAY
70  *   autonegotiation provided by an external PHY.
71  * o SYM port, for symbol mode 100Mbps support.
72  * o 10baseT port.
73  * o AUI/BNC port.
74  *
75  * The 100Mbps SYM port and 10baseT port can be used together in
76  * combination with the internal NWAY support to create a 10/100
77  * autosensing configuration.
78  *
79  * Note that not all tulip workalikes are handled in this driver: we only
80  * deal with those which are relatively well behaved. The Winbond is
81  * handled separately due to its different register offsets and the
82  * special handling needed for its various bugs. The PNIC is handled
83  * here, but I'm not thrilled about it.
84  *
85  * All of the workalike chips use some form of MII transceiver support
86  * with the exception of the Macronix chips, which also have a SYM port.
87  * The ASIX AX88140A is also documented to have a SYM port, but all
88  * the cards I've seen use an MII transceiver, probably because the
89  * AX88140A doesn't support internal NWAY.
90  */
91 
92 #include <sys/param.h>
93 #include <sys/systm.h>
94 #include <sys/sockio.h>
95 #include <sys/mbuf.h>
96 #include <sys/malloc.h>
97 #include <sys/kernel.h>
98 #include <sys/socket.h>
99 #include <sys/sysctl.h>
100 
101 #include <net/if.h>
102 #include <net/if_arp.h>
103 #include <net/ethernet.h>
104 #include <net/if_dl.h>
105 #include <net/if_media.h>
106 #include <net/if_types.h>
107 #include <net/if_vlan_var.h>
108 
109 #include <net/bpf.h>
110 
111 #include <vm/vm.h>              /* for vtophys */
112 #include <vm/pmap.h>            /* for vtophys */
113 #include <machine/bus_pio.h>
114 #include <machine/bus_memio.h>
115 #include <machine/bus.h>
116 #include <machine/resource.h>
117 #include <sys/bus.h>
118 #include <sys/rman.h>
119 
120 #include <dev/mii/mii.h>
121 #include <dev/mii/miivar.h>
122 
123 #include <pci/pcireg.h>
124 #include <pci/pcivar.h>
125 
126 #define DC_USEIOSPACE
127 #ifdef __alpha__
128 #define SRM_MEDIA
129 #endif
130 
131 #include <pci/if_dcreg.h>
132 
133 MODULE_DEPEND(dc, miibus, 1, 1, 1);
134 
135 /* "controller miibus0" required.  See GENERIC if you get errors here. */
136 #include "miibus_if.h"
137 
138 #ifndef lint
139 static const char rcsid[] =
140   "$FreeBSD$";
141 #endif
142 
143 /*
144  * Various supported device vendors/types and their names.
145  */
146 static struct dc_type dc_devs[] = {
147 	{ DC_VENDORID_DEC, DC_DEVICEID_21143,
148 		"Intel 21143 10/100BaseTX" },
149 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009,
150 		"Davicom DM9009 10/100BaseTX" },
151 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100,
152 		"Davicom DM9100 10/100BaseTX" },
153 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
154 		"Davicom DM9102 10/100BaseTX" },
155 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
156 		"Davicom DM9102A 10/100BaseTX" },
157 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AL981,
158 		"ADMtek AL981 10/100BaseTX" },
159 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AN985,
160 		"ADMtek AN985 10/100BaseTX" },
161 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
162 		"ASIX AX88140A 10/100BaseTX" },
163 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
164 		"ASIX AX88141 10/100BaseTX" },
165 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
166 		"Macronix 98713 10/100BaseTX" },
167 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
168 		"Macronix 98713A 10/100BaseTX" },
169 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
170 		"Compex RL100-TX 10/100BaseTX" },
171 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
172 		"Compex RL100-TX 10/100BaseTX" },
173 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
174 		"Macronix 98715/98715A 10/100BaseTX" },
175 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
176 		"Macronix 98715AEC-C 10/100BaseTX" },
177 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
178 		"Macronix 98725 10/100BaseTX" },
179 	{ DC_VENDORID_MX, DC_DEVICEID_98727,
180 		"Macronix 98727/98732 10/100BaseTX" },
181 	{ DC_VENDORID_LO, DC_DEVICEID_82C115,
182 		"LC82C115 PNIC II 10/100BaseTX" },
183 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
184 		"82c168 PNIC 10/100BaseTX" },
185 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
186 		"82c169 PNIC 10/100BaseTX" },
187 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN1217,
188 		"Accton EN1217 10/100BaseTX" },
189 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN2242,
190 		"Accton EN2242 MiniPCI 10/100BaseTX" },
191 	{ DC_VENDORID_XIRCOM, DC_DEVICEID_X3201,
192 	  	"Xircom X3201 10/100BaseTX" },
193 	{ DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500,
194 		"Abocom FE2500 10/100BaseTX" },
195 	{ DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112,
196 		"Conexant LANfinity MiniPCI 10/100BaseTX" },
197 	{ DC_VENDORID_HAWKING, DC_DEVICEID_HAWKING_PN672TX,
198 		"Hawking CB102 CardBus 10/100" },
199 	{ 0, 0, NULL }
200 };
201 
202 static int dc_probe		(device_t);
203 static int dc_attach		(device_t);
204 static int dc_detach		(device_t);
205 static int dc_suspend		(device_t);
206 static int dc_resume		(device_t);
207 static void dc_acpi		(device_t);
208 static struct dc_type *dc_devtype	(device_t);
209 static int dc_newbuf		(struct dc_softc *, int, struct mbuf *);
210 static int dc_encap		(struct dc_softc *, struct mbuf *, u_int32_t *);
211 static int dc_coal		(struct dc_softc *, struct mbuf **);
212 static void dc_pnic_rx_bug_war	(struct dc_softc *, int);
213 static int dc_rx_resync		(struct dc_softc *);
214 static void dc_rxeof		(struct dc_softc *);
215 static void dc_txeof		(struct dc_softc *);
216 static void dc_tick		(void *);
217 static void dc_tx_underrun	(struct dc_softc *);
218 static void dc_intr		(void *);
219 static void dc_start		(struct ifnet *);
220 static int dc_ioctl		(struct ifnet *, u_long, caddr_t);
221 static void dc_init		(void *);
222 static void dc_stop		(struct dc_softc *);
223 static void dc_watchdog		(struct ifnet *);
224 static void dc_shutdown		(device_t);
225 static int dc_ifmedia_upd	(struct ifnet *);
226 static void dc_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
227 
228 static void dc_delay		(struct dc_softc *);
229 static void dc_eeprom_idle	(struct dc_softc *);
230 static void dc_eeprom_putbyte	(struct dc_softc *, int);
231 static void dc_eeprom_getword	(struct dc_softc *, int, u_int16_t *);
232 static void dc_eeprom_getword_pnic
233 				(struct dc_softc *, int, u_int16_t *);
234 static void dc_eeprom_getword_xircom
235 				(struct dc_softc *, int, u_int16_t *);
236 static void dc_eeprom_width	(struct dc_softc *);
237 static void dc_read_eeprom	(struct dc_softc *, caddr_t, int, int, int);
238 
239 static void dc_mii_writebit	(struct dc_softc *, int);
240 static int dc_mii_readbit	(struct dc_softc *);
241 static void dc_mii_sync		(struct dc_softc *);
242 static void dc_mii_send		(struct dc_softc *, u_int32_t, int);
243 static int dc_mii_readreg	(struct dc_softc *, struct dc_mii_frame *);
244 static int dc_mii_writereg	(struct dc_softc *, struct dc_mii_frame *);
245 static int dc_miibus_readreg	(device_t, int, int);
246 static int dc_miibus_writereg	(device_t, int, int, int);
247 static void dc_miibus_statchg	(device_t);
248 static void dc_miibus_mediainit	(device_t);
249 
250 static void dc_setcfg		(struct dc_softc *, int);
251 static u_int32_t dc_crc_le	(struct dc_softc *, caddr_t);
252 static u_int32_t dc_crc_be	(caddr_t);
253 static void dc_setfilt_21143	(struct dc_softc *);
254 static void dc_setfilt_asix	(struct dc_softc *);
255 static void dc_setfilt_admtek	(struct dc_softc *);
256 static void dc_setfilt_xircom	(struct dc_softc *);
257 
258 static void dc_setfilt		(struct dc_softc *);
259 
260 static void dc_reset		(struct dc_softc *);
261 static int dc_list_rx_init	(struct dc_softc *);
262 static int dc_list_tx_init	(struct dc_softc *);
263 
264 static void dc_read_srom	(struct dc_softc *, int);
265 static void dc_parse_21143_srom	(struct dc_softc *);
266 static void dc_decode_leaf_sia	(struct dc_softc *, struct dc_eblock_sia *);
267 static void dc_decode_leaf_mii	(struct dc_softc *, struct dc_eblock_mii *);
268 static void dc_decode_leaf_sym	(struct dc_softc *, struct dc_eblock_sym *);
269 static void dc_apply_fixup	(struct dc_softc *, int);
270 
271 #ifdef DC_USEIOSPACE
272 #define DC_RES			SYS_RES_IOPORT
273 #define DC_RID			DC_PCI_CFBIO
274 #else
275 #define DC_RES			SYS_RES_MEMORY
276 #define DC_RID			DC_PCI_CFBMA
277 #endif
278 
279 static device_method_t dc_methods[] = {
280 	/* Device interface */
281 	DEVMETHOD(device_probe,		dc_probe),
282 	DEVMETHOD(device_attach,	dc_attach),
283 	DEVMETHOD(device_detach,	dc_detach),
284 	DEVMETHOD(device_suspend,	dc_suspend),
285 	DEVMETHOD(device_resume,	dc_resume),
286 	DEVMETHOD(device_shutdown,	dc_shutdown),
287 
288 	/* bus interface */
289 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
290 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
291 
292 	/* MII interface */
293 	DEVMETHOD(miibus_readreg,	dc_miibus_readreg),
294 	DEVMETHOD(miibus_writereg,	dc_miibus_writereg),
295 	DEVMETHOD(miibus_statchg,	dc_miibus_statchg),
296 	DEVMETHOD(miibus_mediainit,	dc_miibus_mediainit),
297 
298 	{ 0, 0 }
299 };
300 
301 static driver_t dc_driver = {
302 	"dc",
303 	dc_methods,
304 	sizeof(struct dc_softc)
305 };
306 
307 static devclass_t dc_devclass;
308 #ifdef __i386__
309 static int dc_quick=1;
310 SYSCTL_INT(_hw, OID_AUTO, dc_quick, CTLFLAG_RW,
311 	&dc_quick,0,"do not mdevget in dc driver");
312 #endif
313 
314 DRIVER_MODULE(if_dc, cardbus, dc_driver, dc_devclass, 0, 0);
315 DRIVER_MODULE(if_dc, pci, dc_driver, dc_devclass, 0, 0);
316 DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, 0, 0);
317 
318 #define DC_SETBIT(sc, reg, x)				\
319 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
320 
321 #define DC_CLRBIT(sc, reg, x)				\
322 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
323 
324 #define SIO_SET(x)	DC_SETBIT(sc, DC_SIO, (x))
325 #define SIO_CLR(x)	DC_CLRBIT(sc, DC_SIO, (x))
326 
327 #define IS_MPSAFE 	0
328 
329 static void
330 dc_delay(sc)
331 	struct dc_softc		*sc;
332 {
333 	int			idx;
334 
335 	for (idx = (300 / 33) + 1; idx > 0; idx--)
336 		CSR_READ_4(sc, DC_BUSCTL);
337 }
338 
339 static void
340 dc_eeprom_width(sc)
341 	struct dc_softc		*sc;
342 {
343 	int i;
344 
345 	/* Force EEPROM to idle state. */
346 	dc_eeprom_idle(sc);
347 
348 	/* Enter EEPROM access mode. */
349 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
350 	dc_delay(sc);
351 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
352 	dc_delay(sc);
353 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
354 	dc_delay(sc);
355 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
356 	dc_delay(sc);
357 
358 	for (i = 3; i--;) {
359 		if (6 & (1 << i))
360 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
361 		else
362 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
363 		dc_delay(sc);
364 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
365 		dc_delay(sc);
366 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
367 		dc_delay(sc);
368 	}
369 
370 	for (i = 1; i <= 12; i++) {
371 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
372 		dc_delay(sc);
373 		if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) {
374 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
375 			dc_delay(sc);
376 			break;
377 		}
378 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
379 		dc_delay(sc);
380 	}
381 
382 	/* Turn off EEPROM access mode. */
383 	dc_eeprom_idle(sc);
384 
385 	if (i < 4 || i > 12)
386 		sc->dc_romwidth = 6;
387 	else
388 		sc->dc_romwidth = i;
389 
390 	/* Enter EEPROM access mode. */
391 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
392 	dc_delay(sc);
393 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
394 	dc_delay(sc);
395 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
396 	dc_delay(sc);
397 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
398 	dc_delay(sc);
399 
400 	/* Turn off EEPROM access mode. */
401 	dc_eeprom_idle(sc);
402 }
403 
404 static void
405 dc_eeprom_idle(sc)
406 	struct dc_softc		*sc;
407 {
408 	register int		i;
409 
410 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
411 	dc_delay(sc);
412 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
413 	dc_delay(sc);
414 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
415 	dc_delay(sc);
416 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
417 	dc_delay(sc);
418 
419 	for (i = 0; i < 25; i++) {
420 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
421 		dc_delay(sc);
422 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
423 		dc_delay(sc);
424 	}
425 
426 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
427 	dc_delay(sc);
428 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
429 	dc_delay(sc);
430 	CSR_WRITE_4(sc, DC_SIO, 0x00000000);
431 
432 	return;
433 }
434 
435 /*
436  * Send a read command and address to the EEPROM, check for ACK.
437  */
438 static void
439 dc_eeprom_putbyte(sc, addr)
440 	struct dc_softc		*sc;
441 	int			addr;
442 {
443 	register int		d, i;
444 
445 	d = DC_EECMD_READ >> 6;
446 	for (i = 3; i--; ) {
447 		if (d & (1 << i))
448 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
449 		else
450 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
451 		dc_delay(sc);
452 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
453 		dc_delay(sc);
454 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
455 		dc_delay(sc);
456 	}
457 
458 	/*
459 	 * Feed in each bit and strobe the clock.
460 	 */
461 	for (i = sc->dc_romwidth; i--;) {
462 		if (addr & (1 << i)) {
463 			SIO_SET(DC_SIO_EE_DATAIN);
464 		} else {
465 			SIO_CLR(DC_SIO_EE_DATAIN);
466 		}
467 		dc_delay(sc);
468 		SIO_SET(DC_SIO_EE_CLK);
469 		dc_delay(sc);
470 		SIO_CLR(DC_SIO_EE_CLK);
471 		dc_delay(sc);
472 	}
473 
474 	return;
475 }
476 
477 /*
478  * Read a word of data stored in the EEPROM at address 'addr.'
479  * The PNIC 82c168/82c169 has its own non-standard way to read
480  * the EEPROM.
481  */
482 static void
483 dc_eeprom_getword_pnic(sc, addr, dest)
484 	struct dc_softc		*sc;
485 	int			addr;
486 	u_int16_t		*dest;
487 {
488 	register int		i;
489 	u_int32_t		r;
490 
491 	CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ|addr);
492 
493 	for (i = 0; i < DC_TIMEOUT; i++) {
494 		DELAY(1);
495 		r = CSR_READ_4(sc, DC_SIO);
496 		if (!(r & DC_PN_SIOCTL_BUSY)) {
497 			*dest = (u_int16_t)(r & 0xFFFF);
498 			return;
499 		}
500 	}
501 
502 	return;
503 }
504 
505 /*
506  * Read a word of data stored in the EEPROM at address 'addr.'
507  * The Xircom X3201 has its own non-standard way to read
508  * the EEPROM, too.
509  */
510 static void
511 dc_eeprom_getword_xircom(sc, addr, dest)
512 	struct dc_softc		*sc;
513 	int			addr;
514 	u_int16_t		*dest;
515 {
516 	SIO_SET(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
517 
518 	addr *= 2;
519 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
520 	*dest = (u_int16_t)CSR_READ_4(sc, DC_SIO)&0xff;
521 	addr += 1;
522 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
523 	*dest |= ((u_int16_t)CSR_READ_4(sc, DC_SIO)&0xff) << 8;
524 
525 	SIO_CLR(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
526 	return;
527 }
528 
529 /*
530  * Read a word of data stored in the EEPROM at address 'addr.'
531  */
532 static void
533 dc_eeprom_getword(sc, addr, dest)
534 	struct dc_softc		*sc;
535 	int			addr;
536 	u_int16_t		*dest;
537 {
538 	register int		i;
539 	u_int16_t		word = 0;
540 
541 	/* Force EEPROM to idle state. */
542 	dc_eeprom_idle(sc);
543 
544 	/* Enter EEPROM access mode. */
545 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
546 	dc_delay(sc);
547 	DC_SETBIT(sc, DC_SIO,  DC_SIO_ROMCTL_READ);
548 	dc_delay(sc);
549 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
550 	dc_delay(sc);
551 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
552 	dc_delay(sc);
553 
554 	/*
555 	 * Send address of word we want to read.
556 	 */
557 	dc_eeprom_putbyte(sc, addr);
558 
559 	/*
560 	 * Start reading bits from EEPROM.
561 	 */
562 	for (i = 0x8000; i; i >>= 1) {
563 		SIO_SET(DC_SIO_EE_CLK);
564 		dc_delay(sc);
565 		if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
566 			word |= i;
567 		dc_delay(sc);
568 		SIO_CLR(DC_SIO_EE_CLK);
569 		dc_delay(sc);
570 	}
571 
572 	/* Turn off EEPROM access mode. */
573 	dc_eeprom_idle(sc);
574 
575 	*dest = word;
576 
577 	return;
578 }
579 
580 /*
581  * Read a sequence of words from the EEPROM.
582  */
583 static void
584 dc_read_eeprom(sc, dest, off, cnt, swap)
585 	struct dc_softc		*sc;
586 	caddr_t			dest;
587 	int			off;
588 	int			cnt;
589 	int			swap;
590 {
591 	int			i;
592 	u_int16_t		word = 0, *ptr;
593 
594 	for (i = 0; i < cnt; i++) {
595 		if (DC_IS_PNIC(sc))
596 			dc_eeprom_getword_pnic(sc, off + i, &word);
597 		else if (DC_IS_XIRCOM(sc))
598 			dc_eeprom_getword_xircom(sc, off + i, &word);
599 		else
600 			dc_eeprom_getword(sc, off + i, &word);
601 		ptr = (u_int16_t *)(dest + (i * 2));
602 		if (swap)
603 			*ptr = ntohs(word);
604 		else
605 			*ptr = word;
606 	}
607 
608 	return;
609 }
610 
611 /*
612  * The following two routines are taken from the Macronix 98713
613  * Application Notes pp.19-21.
614  */
615 /*
616  * Write a bit to the MII bus.
617  */
618 static void
619 dc_mii_writebit(sc, bit)
620 	struct dc_softc		*sc;
621 	int			bit;
622 {
623 	if (bit)
624 		CSR_WRITE_4(sc, DC_SIO,
625 		    DC_SIO_ROMCTL_WRITE|DC_SIO_MII_DATAOUT);
626 	else
627 		CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
628 
629 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
630 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
631 
632 	return;
633 }
634 
635 /*
636  * Read a bit from the MII bus.
637  */
638 static int
639 dc_mii_readbit(sc)
640 	struct dc_softc		*sc;
641 {
642 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_READ|DC_SIO_MII_DIR);
643 	CSR_READ_4(sc, DC_SIO);
644 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
645 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
646 	if (CSR_READ_4(sc, DC_SIO) & DC_SIO_MII_DATAIN)
647 		return(1);
648 
649 	return(0);
650 }
651 
652 /*
653  * Sync the PHYs by setting data bit and strobing the clock 32 times.
654  */
655 static void
656 dc_mii_sync(sc)
657 	struct dc_softc		*sc;
658 {
659 	register int		i;
660 
661 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
662 
663 	for (i = 0; i < 32; i++)
664 		dc_mii_writebit(sc, 1);
665 
666 	return;
667 }
668 
669 /*
670  * Clock a series of bits through the MII.
671  */
672 static void
673 dc_mii_send(sc, bits, cnt)
674 	struct dc_softc		*sc;
675 	u_int32_t		bits;
676 	int			cnt;
677 {
678 	int			i;
679 
680 	for (i = (0x1 << (cnt - 1)); i; i >>= 1)
681 		dc_mii_writebit(sc, bits & i);
682 }
683 
684 /*
685  * Read an PHY register through the MII.
686  */
687 static int
688 dc_mii_readreg(sc, frame)
689 	struct dc_softc		*sc;
690 	struct dc_mii_frame	*frame;
691 
692 {
693 	int			i, ack;
694 
695 	DC_LOCK(sc);
696 
697 	/*
698 	 * Set up frame for RX.
699 	 */
700 	frame->mii_stdelim = DC_MII_STARTDELIM;
701 	frame->mii_opcode = DC_MII_READOP;
702 	frame->mii_turnaround = 0;
703 	frame->mii_data = 0;
704 
705 	/*
706 	 * Sync the PHYs.
707 	 */
708 	dc_mii_sync(sc);
709 
710 	/*
711 	 * Send command/address info.
712 	 */
713 	dc_mii_send(sc, frame->mii_stdelim, 2);
714 	dc_mii_send(sc, frame->mii_opcode, 2);
715 	dc_mii_send(sc, frame->mii_phyaddr, 5);
716 	dc_mii_send(sc, frame->mii_regaddr, 5);
717 
718 #ifdef notdef
719 	/* Idle bit */
720 	dc_mii_writebit(sc, 1);
721 	dc_mii_writebit(sc, 0);
722 #endif
723 
724 	/* Check for ack */
725 	ack = dc_mii_readbit(sc);
726 
727 	/*
728 	 * Now try reading data bits. If the ack failed, we still
729 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
730 	 */
731 	if (ack) {
732 		for(i = 0; i < 16; i++) {
733 			dc_mii_readbit(sc);
734 		}
735 		goto fail;
736 	}
737 
738 	for (i = 0x8000; i; i >>= 1) {
739 		if (!ack) {
740 			if (dc_mii_readbit(sc))
741 				frame->mii_data |= i;
742 		}
743 	}
744 
745 fail:
746 
747 	dc_mii_writebit(sc, 0);
748 	dc_mii_writebit(sc, 0);
749 
750 	DC_UNLOCK(sc);
751 
752 	if (ack)
753 		return(1);
754 	return(0);
755 }
756 
757 /*
758  * Write to a PHY register through the MII.
759  */
760 static int
761 dc_mii_writereg(sc, frame)
762 	struct dc_softc		*sc;
763 	struct dc_mii_frame	*frame;
764 
765 {
766 	DC_LOCK(sc);
767 	/*
768 	 * Set up frame for TX.
769 	 */
770 
771 	frame->mii_stdelim = DC_MII_STARTDELIM;
772 	frame->mii_opcode = DC_MII_WRITEOP;
773 	frame->mii_turnaround = DC_MII_TURNAROUND;
774 
775 	/*
776 	 * Sync the PHYs.
777 	 */
778 	dc_mii_sync(sc);
779 
780 	dc_mii_send(sc, frame->mii_stdelim, 2);
781 	dc_mii_send(sc, frame->mii_opcode, 2);
782 	dc_mii_send(sc, frame->mii_phyaddr, 5);
783 	dc_mii_send(sc, frame->mii_regaddr, 5);
784 	dc_mii_send(sc, frame->mii_turnaround, 2);
785 	dc_mii_send(sc, frame->mii_data, 16);
786 
787 	/* Idle bit. */
788 	dc_mii_writebit(sc, 0);
789 	dc_mii_writebit(sc, 0);
790 
791 	DC_UNLOCK(sc);
792 
793 	return(0);
794 }
795 
796 static int
797 dc_miibus_readreg(dev, phy, reg)
798 	device_t		dev;
799 	int			phy, reg;
800 {
801 	struct dc_mii_frame	frame;
802 	struct dc_softc		*sc;
803 	int			i, rval, phy_reg = 0;
804 
805 	sc = device_get_softc(dev);
806 	bzero((char *)&frame, sizeof(frame));
807 
808 	/*
809 	 * Note: both the AL981 and AN985 have internal PHYs,
810 	 * however the AL981 provides direct access to the PHY
811 	 * registers while the AN985 uses a serial MII interface.
812 	 * The AN985's MII interface is also buggy in that you
813 	 * can read from any MII address (0 to 31), but only address 1
814 	 * behaves normally. To deal with both cases, we pretend
815 	 * that the PHY is at MII address 1.
816 	 */
817 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
818 		return(0);
819 
820 	/*
821 	 * Note: the ukphy probes of the RS7112 report a PHY at
822 	 * MII address 0 (possibly HomePNA?) and 1 (ethernet)
823 	 * so we only respond to correct one.
824 	 */
825 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
826 		return(0);
827 
828 	if (sc->dc_pmode != DC_PMODE_MII) {
829 		if (phy == (MII_NPHY - 1)) {
830 			switch(reg) {
831 			case MII_BMSR:
832 			/*
833 			 * Fake something to make the probe
834 			 * code think there's a PHY here.
835 			 */
836 				return(BMSR_MEDIAMASK);
837 				break;
838 			case MII_PHYIDR1:
839 				if (DC_IS_PNIC(sc))
840 					return(DC_VENDORID_LO);
841 				return(DC_VENDORID_DEC);
842 				break;
843 			case MII_PHYIDR2:
844 				if (DC_IS_PNIC(sc))
845 					return(DC_DEVICEID_82C168);
846 				return(DC_DEVICEID_21143);
847 				break;
848 			default:
849 				return(0);
850 				break;
851 			}
852 		} else
853 			return(0);
854 	}
855 
856 	if (DC_IS_PNIC(sc)) {
857 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
858 		    (phy << 23) | (reg << 18));
859 		for (i = 0; i < DC_TIMEOUT; i++) {
860 			DELAY(1);
861 			rval = CSR_READ_4(sc, DC_PN_MII);
862 			if (!(rval & DC_PN_MII_BUSY)) {
863 				rval &= 0xFFFF;
864 				return(rval == 0xFFFF ? 0 : rval);
865 			}
866 		}
867 		return(0);
868 	}
869 
870 	if (DC_IS_COMET(sc)) {
871 		switch(reg) {
872 		case MII_BMCR:
873 			phy_reg = DC_AL_BMCR;
874 			break;
875 		case MII_BMSR:
876 			phy_reg = DC_AL_BMSR;
877 			break;
878 		case MII_PHYIDR1:
879 			phy_reg = DC_AL_VENID;
880 			break;
881 		case MII_PHYIDR2:
882 			phy_reg = DC_AL_DEVID;
883 			break;
884 		case MII_ANAR:
885 			phy_reg = DC_AL_ANAR;
886 			break;
887 		case MII_ANLPAR:
888 			phy_reg = DC_AL_LPAR;
889 			break;
890 		case MII_ANER:
891 			phy_reg = DC_AL_ANER;
892 			break;
893 		default:
894 			printf("dc%d: phy_read: bad phy register %x\n",
895 			    sc->dc_unit, reg);
896 			return(0);
897 			break;
898 		}
899 
900 		rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
901 
902 		if (rval == 0xFFFF)
903 			return(0);
904 		return(rval);
905 	}
906 
907 	frame.mii_phyaddr = phy;
908 	frame.mii_regaddr = reg;
909 	if (sc->dc_type == DC_TYPE_98713) {
910 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
911 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
912 	}
913 	dc_mii_readreg(sc, &frame);
914 	if (sc->dc_type == DC_TYPE_98713)
915 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
916 
917 	return(frame.mii_data);
918 }
919 
920 static int
921 dc_miibus_writereg(dev, phy, reg, data)
922 	device_t		dev;
923 	int			phy, reg, data;
924 {
925 	struct dc_softc		*sc;
926 	struct dc_mii_frame	frame;
927 	int			i, phy_reg = 0;
928 
929 	sc = device_get_softc(dev);
930 	bzero((char *)&frame, sizeof(frame));
931 
932 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
933 		return(0);
934 
935 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
936 		return(0);
937 
938 	if (DC_IS_PNIC(sc)) {
939 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
940 		    (phy << 23) | (reg << 10) | data);
941 		for (i = 0; i < DC_TIMEOUT; i++) {
942 			if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
943 				break;
944 		}
945 		return(0);
946 	}
947 
948 	if (DC_IS_COMET(sc)) {
949 		switch(reg) {
950 		case MII_BMCR:
951 			phy_reg = DC_AL_BMCR;
952 			break;
953 		case MII_BMSR:
954 			phy_reg = DC_AL_BMSR;
955 			break;
956 		case MII_PHYIDR1:
957 			phy_reg = DC_AL_VENID;
958 			break;
959 		case MII_PHYIDR2:
960 			phy_reg = DC_AL_DEVID;
961 			break;
962 		case MII_ANAR:
963 			phy_reg = DC_AL_ANAR;
964 			break;
965 		case MII_ANLPAR:
966 			phy_reg = DC_AL_LPAR;
967 			break;
968 		case MII_ANER:
969 			phy_reg = DC_AL_ANER;
970 			break;
971 		default:
972 			printf("dc%d: phy_write: bad phy register %x\n",
973 			    sc->dc_unit, reg);
974 			return(0);
975 			break;
976 		}
977 
978 		CSR_WRITE_4(sc, phy_reg, data);
979 		return(0);
980 	}
981 
982 	frame.mii_phyaddr = phy;
983 	frame.mii_regaddr = reg;
984 	frame.mii_data = data;
985 
986 	if (sc->dc_type == DC_TYPE_98713) {
987 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
988 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
989 	}
990 	dc_mii_writereg(sc, &frame);
991 	if (sc->dc_type == DC_TYPE_98713)
992 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
993 
994 	return(0);
995 }
996 
997 static void
998 dc_miibus_statchg(dev)
999 	device_t		dev;
1000 {
1001 	struct dc_softc		*sc;
1002 	struct mii_data		*mii;
1003 	struct ifmedia		*ifm;
1004 
1005 	sc = device_get_softc(dev);
1006 	if (DC_IS_ADMTEK(sc))
1007 		return;
1008 
1009 	mii = device_get_softc(sc->dc_miibus);
1010 	ifm = &mii->mii_media;
1011 	if (DC_IS_DAVICOM(sc) &&
1012 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
1013 		dc_setcfg(sc, ifm->ifm_media);
1014 		sc->dc_if_media = ifm->ifm_media;
1015 	} else {
1016 		dc_setcfg(sc, mii->mii_media_active);
1017 		sc->dc_if_media = mii->mii_media_active;
1018 	}
1019 
1020 	return;
1021 }
1022 
1023 /*
1024  * Special support for DM9102A cards with HomePNA PHYs. Note:
1025  * with the Davicom DM9102A/DM9801 eval board that I have, it seems
1026  * to be impossible to talk to the management interface of the DM9801
1027  * PHY (its MDIO pin is not connected to anything). Consequently,
1028  * the driver has to just 'know' about the additional mode and deal
1029  * with it itself. *sigh*
1030  */
1031 static void
1032 dc_miibus_mediainit(dev)
1033 	device_t		dev;
1034 {
1035 	struct dc_softc		*sc;
1036 	struct mii_data		*mii;
1037 	struct ifmedia		*ifm;
1038 	int			rev;
1039 
1040 	rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF;
1041 
1042 	sc = device_get_softc(dev);
1043 	mii = device_get_softc(sc->dc_miibus);
1044 	ifm = &mii->mii_media;
1045 
1046 	if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A)
1047 		ifmedia_add(ifm, IFM_ETHER|IFM_HPNA_1, 0, NULL);
1048 
1049 	return;
1050 }
1051 
1052 #define DC_POLY		0xEDB88320
1053 #define DC_BITS_512	9
1054 #define DC_BITS_128	7
1055 #define DC_BITS_64	6
1056 
1057 static u_int32_t
1058 dc_crc_le(sc, addr)
1059 	struct dc_softc		*sc;
1060 	caddr_t			addr;
1061 {
1062 	u_int32_t		idx, bit, data, crc;
1063 
1064 	/* Compute CRC for the address value. */
1065 	crc = 0xFFFFFFFF; /* initial value */
1066 
1067 	for (idx = 0; idx < 6; idx++) {
1068 		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1)
1069 			crc = (crc >> 1) ^ (((crc ^ data) & 1) ? DC_POLY : 0);
1070 	}
1071 
1072 	/*
1073 	 * The hash table on the PNIC II and the MX98715AEC-C/D/E
1074 	 * chips is only 128 bits wide.
1075 	 */
1076 	if (sc->dc_flags & DC_128BIT_HASH)
1077 		return (crc & ((1 << DC_BITS_128) - 1));
1078 
1079 	/* The hash table on the MX98715BEC is only 64 bits wide. */
1080 	if (sc->dc_flags & DC_64BIT_HASH)
1081 		return (crc & ((1 << DC_BITS_64) - 1));
1082 
1083 	/* Xircom's hash filtering table is different (read: weird) */
1084 	/* Xircom uses the LEAST significant bits */
1085 	if (DC_IS_XIRCOM(sc)) {
1086 		if ((crc & 0x180) == 0x180)
1087 			return (crc & 0x0F) + (crc	& 0x70)*3 + (14 << 4);
1088 		else
1089 			return (crc & 0x1F) + ((crc>>1) & 0xF0)*3 + (12 << 4);
1090 	}
1091 
1092 	return (crc & ((1 << DC_BITS_512) - 1));
1093 }
1094 
1095 /*
1096  * Calculate CRC of a multicast group address, return the lower 6 bits.
1097  */
1098 static u_int32_t
1099 dc_crc_be(addr)
1100 	caddr_t			addr;
1101 {
1102 	u_int32_t		crc, carry;
1103 	int			i, j;
1104 	u_int8_t		c;
1105 
1106 	/* Compute CRC for the address value. */
1107 	crc = 0xFFFFFFFF; /* initial value */
1108 
1109 	for (i = 0; i < 6; i++) {
1110 		c = *(addr + i);
1111 		for (j = 0; j < 8; j++) {
1112 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
1113 			crc <<= 1;
1114 			c >>= 1;
1115 			if (carry)
1116 				crc = (crc ^ 0x04c11db6) | carry;
1117 		}
1118 	}
1119 
1120 	/* return the filter bit position */
1121 	return((crc >> 26) & 0x0000003F);
1122 }
1123 
1124 /*
1125  * 21143-style RX filter setup routine. Filter programming is done by
1126  * downloading a special setup frame into the TX engine. 21143, Macronix,
1127  * PNIC, PNIC II and Davicom chips are programmed this way.
1128  *
1129  * We always program the chip using 'hash perfect' mode, i.e. one perfect
1130  * address (our node address) and a 512-bit hash filter for multicast
1131  * frames. We also sneak the broadcast address into the hash filter since
1132  * we need that too.
1133  */
1134 static void
1135 dc_setfilt_21143(sc)
1136 	struct dc_softc		*sc;
1137 {
1138 	struct dc_desc		*sframe;
1139 	u_int32_t		h, *sp;
1140 	struct ifmultiaddr	*ifma;
1141 	struct ifnet		*ifp;
1142 	int			i;
1143 
1144 	ifp = &sc->arpcom.ac_if;
1145 
1146 	i = sc->dc_cdata.dc_tx_prod;
1147 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1148 	sc->dc_cdata.dc_tx_cnt++;
1149 	sframe = &sc->dc_ldata->dc_tx_list[i];
1150 	sp = (u_int32_t *)&sc->dc_cdata.dc_sbuf;
1151 	bzero((char *)sp, DC_SFRAME_LEN);
1152 
1153 	sframe->dc_data = vtophys(&sc->dc_cdata.dc_sbuf);
1154 	sframe->dc_ctl = DC_SFRAME_LEN | DC_TXCTL_SETUP | DC_TXCTL_TLINK |
1155 	    DC_FILTER_HASHPERF | DC_TXCTL_FINT;
1156 
1157 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)&sc->dc_cdata.dc_sbuf;
1158 
1159 	/* If we want promiscuous mode, set the allframes bit. */
1160 	if (ifp->if_flags & IFF_PROMISC)
1161 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1162 	else
1163 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1164 
1165 	if (ifp->if_flags & IFF_ALLMULTI)
1166 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1167 	else
1168 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1169 
1170 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1171 		if (ifma->ifma_addr->sa_family != AF_LINK)
1172 			continue;
1173 		h = dc_crc_le(sc,
1174 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1175 		sp[h >> 4] |= 1 << (h & 0xF);
1176 	}
1177 
1178 	if (ifp->if_flags & IFF_BROADCAST) {
1179 		h = dc_crc_le(sc, (caddr_t)&etherbroadcastaddr);
1180 		sp[h >> 4] |= 1 << (h & 0xF);
1181 	}
1182 
1183 	/* Set our MAC address */
1184 	sp[39] = ((u_int16_t *)sc->arpcom.ac_enaddr)[0];
1185 	sp[40] = ((u_int16_t *)sc->arpcom.ac_enaddr)[1];
1186 	sp[41] = ((u_int16_t *)sc->arpcom.ac_enaddr)[2];
1187 
1188 	sframe->dc_status = DC_TXSTAT_OWN;
1189 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1190 
1191 	/*
1192 	 * The PNIC takes an exceedingly long time to process its
1193 	 * setup frame; wait 10ms after posting the setup frame
1194 	 * before proceeding, just so it has time to swallow its
1195 	 * medicine.
1196 	 */
1197 	DELAY(10000);
1198 
1199 	ifp->if_timer = 5;
1200 
1201 	return;
1202 }
1203 
1204 static void
1205 dc_setfilt_admtek(sc)
1206 	struct dc_softc		*sc;
1207 {
1208 	struct ifnet		*ifp;
1209 	int			h = 0;
1210 	u_int32_t		hashes[2] = { 0, 0 };
1211 	struct ifmultiaddr	*ifma;
1212 
1213 	ifp = &sc->arpcom.ac_if;
1214 
1215 	/* Init our MAC address */
1216 	CSR_WRITE_4(sc, DC_AL_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1217 	CSR_WRITE_4(sc, DC_AL_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1218 
1219 	/* If we want promiscuous mode, set the allframes bit. */
1220 	if (ifp->if_flags & IFF_PROMISC)
1221 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1222 	else
1223 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1224 
1225 	if (ifp->if_flags & IFF_ALLMULTI)
1226 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1227 	else
1228 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1229 
1230 	/* first, zot all the existing hash bits */
1231 	CSR_WRITE_4(sc, DC_AL_MAR0, 0);
1232 	CSR_WRITE_4(sc, DC_AL_MAR1, 0);
1233 
1234 	/*
1235 	 * If we're already in promisc or allmulti mode, we
1236 	 * don't have to bother programming the multicast filter.
1237 	 */
1238 	if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI))
1239 		return;
1240 
1241 	/* now program new ones */
1242 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1243 		if (ifma->ifma_addr->sa_family != AF_LINK)
1244 			continue;
1245 		h = dc_crc_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1246 		if (h < 32)
1247 			hashes[0] |= (1 << h);
1248 		else
1249 			hashes[1] |= (1 << (h - 32));
1250 	}
1251 
1252 	CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]);
1253 	CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]);
1254 
1255 	return;
1256 }
1257 
1258 static void
1259 dc_setfilt_asix(sc)
1260 	struct dc_softc		*sc;
1261 {
1262 	struct ifnet		*ifp;
1263 	int			h = 0;
1264 	u_int32_t		hashes[2] = { 0, 0 };
1265 	struct ifmultiaddr	*ifma;
1266 
1267 	ifp = &sc->arpcom.ac_if;
1268 
1269 	/* Init our MAC address */
1270 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
1271 	CSR_WRITE_4(sc, DC_AX_FILTDATA,
1272 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1273 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
1274 	CSR_WRITE_4(sc, DC_AX_FILTDATA,
1275 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1276 
1277 	/* If we want promiscuous mode, set the allframes bit. */
1278 	if (ifp->if_flags & IFF_PROMISC)
1279 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1280 	else
1281 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1282 
1283 	if (ifp->if_flags & IFF_ALLMULTI)
1284 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1285 	else
1286 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1287 
1288 	/*
1289 	 * The ASIX chip has a special bit to enable reception
1290 	 * of broadcast frames.
1291 	 */
1292 	if (ifp->if_flags & IFF_BROADCAST)
1293 		DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1294 	else
1295 		DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1296 
1297 	/* first, zot all the existing hash bits */
1298 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1299 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1300 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1301 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1302 
1303 	/*
1304 	 * If we're already in promisc or allmulti mode, we
1305 	 * don't have to bother programming the multicast filter.
1306 	 */
1307 	if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI))
1308 		return;
1309 
1310 	/* now program new ones */
1311 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1312 		if (ifma->ifma_addr->sa_family != AF_LINK)
1313 			continue;
1314 		h = dc_crc_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1315 		if (h < 32)
1316 			hashes[0] |= (1 << h);
1317 		else
1318 			hashes[1] |= (1 << (h - 32));
1319 	}
1320 
1321 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1322 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
1323 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1324 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
1325 
1326 	return;
1327 }
1328 
1329 static void
1330 dc_setfilt_xircom(sc)
1331 	struct dc_softc		*sc;
1332 {
1333 	struct dc_desc		*sframe;
1334 	u_int32_t		h, *sp;
1335 	struct ifmultiaddr	*ifma;
1336 	struct ifnet		*ifp;
1337 	int			i;
1338 
1339 	ifp = &sc->arpcom.ac_if;
1340 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON));
1341 
1342 	i = sc->dc_cdata.dc_tx_prod;
1343 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1344 	sc->dc_cdata.dc_tx_cnt++;
1345 	sframe = &sc->dc_ldata->dc_tx_list[i];
1346 	sp = (u_int32_t *)&sc->dc_cdata.dc_sbuf;
1347 	bzero((char *)sp, DC_SFRAME_LEN);
1348 
1349 	sframe->dc_data = vtophys(&sc->dc_cdata.dc_sbuf);
1350 	sframe->dc_ctl = DC_SFRAME_LEN | DC_TXCTL_SETUP | DC_TXCTL_TLINK |
1351 	    DC_FILTER_HASHPERF | DC_TXCTL_FINT;
1352 
1353 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)&sc->dc_cdata.dc_sbuf;
1354 
1355 	/* If we want promiscuous mode, set the allframes bit. */
1356 	if (ifp->if_flags & IFF_PROMISC)
1357 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1358 	else
1359 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1360 
1361 	if (ifp->if_flags & IFF_ALLMULTI)
1362 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1363 	else
1364 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1365 
1366 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1367 		if (ifma->ifma_addr->sa_family != AF_LINK)
1368 			continue;
1369 		h = dc_crc_le(sc,
1370 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1371 		sp[h >> 4] |= 1 << (h & 0xF);
1372 	}
1373 
1374 	if (ifp->if_flags & IFF_BROADCAST) {
1375 		h = dc_crc_le(sc, (caddr_t)&etherbroadcastaddr);
1376 		sp[h >> 4] |= 1 << (h & 0xF);
1377 	}
1378 
1379 	/* Set our MAC address */
1380 	sp[0] = ((u_int16_t *)sc->arpcom.ac_enaddr)[0];
1381 	sp[1] = ((u_int16_t *)sc->arpcom.ac_enaddr)[1];
1382 	sp[2] = ((u_int16_t *)sc->arpcom.ac_enaddr)[2];
1383 
1384 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
1385 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
1386 	ifp->if_flags |= IFF_RUNNING;
1387 	sframe->dc_status = DC_TXSTAT_OWN;
1388 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1389 
1390 	/*
1391 	 * wait some time...
1392 	 */
1393 	DELAY(1000);
1394 
1395 	ifp->if_timer = 5;
1396 
1397 	return;
1398 }
1399 
1400 static void
1401 dc_setfilt(sc)
1402 	struct dc_softc		*sc;
1403 {
1404 	if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
1405 	    DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc))
1406 		dc_setfilt_21143(sc);
1407 
1408 	if (DC_IS_ASIX(sc))
1409 		dc_setfilt_asix(sc);
1410 
1411 	if (DC_IS_ADMTEK(sc))
1412 		dc_setfilt_admtek(sc);
1413 
1414 	if (DC_IS_XIRCOM(sc))
1415 		dc_setfilt_xircom(sc);
1416 
1417 	return;
1418 }
1419 
1420 /*
1421  * In order to fiddle with the
1422  * 'full-duplex' and '100Mbps' bits in the netconfig register, we
1423  * first have to put the transmit and/or receive logic in the idle state.
1424  */
1425 static void
1426 dc_setcfg(sc, media)
1427 	struct dc_softc		*sc;
1428 	int			media;
1429 {
1430 	int			i, restart = 0;
1431 	u_int32_t		isr;
1432 
1433 	if (IFM_SUBTYPE(media) == IFM_NONE)
1434 		return;
1435 
1436 	if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON)) {
1437 		restart = 1;
1438 		DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON));
1439 
1440 		for (i = 0; i < DC_TIMEOUT; i++) {
1441 			isr = CSR_READ_4(sc, DC_ISR);
1442 			if (isr & DC_ISR_TX_IDLE &&
1443 			    ((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
1444 			    (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT))
1445 				break;
1446 			DELAY(10);
1447 		}
1448 
1449 		if (i == DC_TIMEOUT)
1450 			printf("dc%d: failed to force tx and "
1451 				"rx to idle state\n", sc->dc_unit);
1452 	}
1453 
1454 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
1455 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1456 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1457 		if (sc->dc_pmode == DC_PMODE_MII) {
1458 			int	watchdogreg;
1459 
1460 			if (DC_IS_INTEL(sc)) {
1461 			/* there's a write enable bit here that reads as 1 */
1462 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1463 				watchdogreg &= ~DC_WDOG_CTLWREN;
1464 				watchdogreg |= DC_WDOG_JABBERDIS;
1465 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1466 			} else {
1467 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1468 			}
1469 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1470 			    DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER));
1471 			if (sc->dc_type == DC_TYPE_98713)
1472 				DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1473 				    DC_NETCFG_SCRAMBLER));
1474 			if (!DC_IS_DAVICOM(sc))
1475 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1476 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1477 			if (DC_IS_INTEL(sc))
1478 				dc_apply_fixup(sc, IFM_AUTO);
1479 		} else {
1480 			if (DC_IS_PNIC(sc)) {
1481 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
1482 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1483 				DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1484 			}
1485 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1486 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1487 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1488 			if (DC_IS_INTEL(sc))
1489 				dc_apply_fixup(sc,
1490 				    (media & IFM_GMASK) == IFM_FDX ?
1491 				    IFM_100_TX|IFM_FDX : IFM_100_TX);
1492 		}
1493 	}
1494 
1495 	if (IFM_SUBTYPE(media) == IFM_10_T) {
1496 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1497 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1498 		if (sc->dc_pmode == DC_PMODE_MII) {
1499 			int	watchdogreg;
1500 
1501 			/* there's a write enable bit here that reads as 1 */
1502 			if (DC_IS_INTEL(sc)) {
1503 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1504 				watchdogreg &= ~DC_WDOG_CTLWREN;
1505 				watchdogreg |= DC_WDOG_JABBERDIS;
1506 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1507 			} else {
1508 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1509 			}
1510 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1511 			    DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER));
1512 			if (sc->dc_type == DC_TYPE_98713)
1513 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1514 			if (!DC_IS_DAVICOM(sc))
1515 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1516 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1517 			if (DC_IS_INTEL(sc))
1518 				dc_apply_fixup(sc, IFM_AUTO);
1519 		} else {
1520 			if (DC_IS_PNIC(sc)) {
1521 				DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
1522 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1523 				DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1524 			}
1525 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1526 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1527 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1528 			if (DC_IS_INTEL(sc)) {
1529 				DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET);
1530 				DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1531 				if ((media & IFM_GMASK) == IFM_FDX)
1532 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D);
1533 				else
1534 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F);
1535 				DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1536 				DC_CLRBIT(sc, DC_10BTCTRL,
1537 				    DC_TCTL_AUTONEGENBL);
1538 				dc_apply_fixup(sc,
1539 				    (media & IFM_GMASK) == IFM_FDX ?
1540 				    IFM_10_T|IFM_FDX : IFM_10_T);
1541 				DELAY(20000);
1542 			}
1543 		}
1544 	}
1545 
1546 	/*
1547 	 * If this is a Davicom DM9102A card with a DM9801 HomePNA
1548 	 * PHY and we want HomePNA mode, set the portsel bit to turn
1549 	 * on the external MII port.
1550 	 */
1551 	if (DC_IS_DAVICOM(sc)) {
1552 		if (IFM_SUBTYPE(media) == IFM_HPNA_1) {
1553 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1554 			sc->dc_link = 1;
1555 		} else {
1556 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1557 		}
1558 	}
1559 
1560 	if ((media & IFM_GMASK) == IFM_FDX) {
1561 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1562 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1563 			DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1564 	} else {
1565 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1566 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1567 			DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1568 	}
1569 
1570 	if (restart)
1571 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON|DC_NETCFG_RX_ON);
1572 
1573 	return;
1574 }
1575 
1576 static void
1577 dc_reset(sc)
1578 	struct dc_softc		*sc;
1579 {
1580 	register int		i;
1581 
1582 	DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1583 
1584 	for (i = 0; i < DC_TIMEOUT; i++) {
1585 		DELAY(10);
1586 		if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
1587 			break;
1588 	}
1589 
1590 	if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_CONEXANT(sc) ||
1591 	    DC_IS_XIRCOM(sc) || DC_IS_INTEL(sc)) {
1592 		DELAY(10000);
1593 		DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1594 		i = 0;
1595 	}
1596 
1597 	if (i == DC_TIMEOUT)
1598 		printf("dc%d: reset never completed!\n", sc->dc_unit);
1599 
1600 	/* Wait a little while for the chip to get its brains in order. */
1601 	DELAY(1000);
1602 
1603 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
1604 	CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
1605 	CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
1606 
1607 	/*
1608 	 * Bring the SIA out of reset. In some cases, it looks
1609 	 * like failing to unreset the SIA soon enough gets it
1610 	 * into a state where it will never come out of reset
1611 	 * until we reset the whole chip again.
1612 	 */
1613 	if (DC_IS_INTEL(sc)) {
1614 		DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1615 		CSR_WRITE_4(sc, DC_10BTCTRL, 0);
1616 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
1617 	}
1618 
1619 	return;
1620 }
1621 
1622 static struct dc_type *
1623 dc_devtype(dev)
1624 	device_t		dev;
1625 {
1626 	struct dc_type		*t;
1627 	u_int32_t		rev;
1628 
1629 	t = dc_devs;
1630 
1631 	while(t->dc_name != NULL) {
1632 		if ((pci_get_vendor(dev) == t->dc_vid) &&
1633 		    (pci_get_device(dev) == t->dc_did)) {
1634 			/* Check the PCI revision */
1635 			rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF;
1636 			if (t->dc_did == DC_DEVICEID_98713 &&
1637 			    rev >= DC_REVISION_98713A)
1638 				t++;
1639 			if (t->dc_did == DC_DEVICEID_98713_CP &&
1640 			    rev >= DC_REVISION_98713A)
1641 				t++;
1642 			if (t->dc_did == DC_DEVICEID_987x5 &&
1643 			    rev >= DC_REVISION_98715AEC_C)
1644 				t++;
1645 			if (t->dc_did == DC_DEVICEID_987x5 &&
1646 			    rev >= DC_REVISION_98725)
1647 				t++;
1648 			if (t->dc_did == DC_DEVICEID_AX88140A &&
1649 			    rev >= DC_REVISION_88141)
1650 				t++;
1651 			if (t->dc_did == DC_DEVICEID_82C168 &&
1652 			    rev >= DC_REVISION_82C169)
1653 				t++;
1654 			if (t->dc_did == DC_DEVICEID_DM9102 &&
1655 			    rev >= DC_REVISION_DM9102A)
1656 				t++;
1657 			return(t);
1658 		}
1659 		t++;
1660 	}
1661 
1662 	return(NULL);
1663 }
1664 
1665 /*
1666  * Probe for a 21143 or clone chip. Check the PCI vendor and device
1667  * IDs against our list and return a device name if we find a match.
1668  * We do a little bit of extra work to identify the exact type of
1669  * chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
1670  * but different revision IDs. The same is true for 98715/98715A
1671  * chips and the 98725, as well as the ASIX and ADMtek chips. In some
1672  * cases, the exact chip revision affects driver behavior.
1673  */
1674 static int
1675 dc_probe(dev)
1676 	device_t		dev;
1677 {
1678 	struct dc_type		*t;
1679 
1680 	t = dc_devtype(dev);
1681 
1682 	if (t != NULL) {
1683 		device_set_desc(dev, t->dc_name);
1684 		return(0);
1685 	}
1686 
1687 	return(ENXIO);
1688 }
1689 
1690 static void
1691 dc_acpi(dev)
1692 	device_t		dev;
1693 {
1694 	int			unit;
1695 
1696 	unit = device_get_unit(dev);
1697 
1698 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1699 		u_int32_t		iobase, membase, irq;
1700 
1701 		/* Save important PCI config data. */
1702 		iobase = pci_read_config(dev, DC_PCI_CFBIO, 4);
1703 		membase = pci_read_config(dev, DC_PCI_CFBMA, 4);
1704 		irq = pci_read_config(dev, DC_PCI_CFIT, 4);
1705 
1706 		/* Reset the power state. */
1707 		printf("dc%d: chip is in D%d power mode "
1708 		    "-- setting to D0\n", unit,
1709 		    pci_get_powerstate(dev));
1710 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1711 
1712 		/* Restore PCI config data. */
1713 		pci_write_config(dev, DC_PCI_CFBIO, iobase, 4);
1714 		pci_write_config(dev, DC_PCI_CFBMA, membase, 4);
1715 		pci_write_config(dev, DC_PCI_CFIT, irq, 4);
1716 	}
1717 
1718 	return;
1719 }
1720 
1721 static void
1722 dc_apply_fixup(sc, media)
1723 	struct dc_softc		*sc;
1724 	int			media;
1725 {
1726 	struct dc_mediainfo	*m;
1727 	u_int8_t		*p;
1728 	int			i;
1729 	u_int32_t		reg;
1730 
1731 	m = sc->dc_mi;
1732 
1733 	while (m != NULL) {
1734 		if (m->dc_media == media)
1735 			break;
1736 		m = m->dc_next;
1737 	}
1738 
1739 	if (m == NULL)
1740 		return;
1741 
1742 	for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) {
1743 		reg = (p[0] | (p[1] << 8)) << 16;
1744 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1745 	}
1746 
1747 	for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) {
1748 		reg = (p[0] | (p[1] << 8)) << 16;
1749 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1750 	}
1751 
1752 	return;
1753 }
1754 
1755 static void
1756 dc_decode_leaf_sia(sc, l)
1757 	struct dc_softc		*sc;
1758 	struct dc_eblock_sia	*l;
1759 {
1760 	struct dc_mediainfo	*m;
1761 
1762 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT);
1763 	bzero(m, sizeof(struct dc_mediainfo));
1764 	if (l->dc_sia_code == DC_SIA_CODE_10BT)
1765 		m->dc_media = IFM_10_T;
1766 
1767 	if (l->dc_sia_code == DC_SIA_CODE_10BT_FDX)
1768 		m->dc_media = IFM_10_T|IFM_FDX;
1769 
1770 	if (l->dc_sia_code == DC_SIA_CODE_10B2)
1771 		m->dc_media = IFM_10_2;
1772 
1773 	if (l->dc_sia_code == DC_SIA_CODE_10B5)
1774 		m->dc_media = IFM_10_5;
1775 
1776 	m->dc_gp_len = 2;
1777 	m->dc_gp_ptr = (u_int8_t *)&l->dc_sia_gpio_ctl;
1778 
1779 	m->dc_next = sc->dc_mi;
1780 	sc->dc_mi = m;
1781 
1782 	sc->dc_pmode = DC_PMODE_SIA;
1783 
1784 	return;
1785 }
1786 
1787 static void
1788 dc_decode_leaf_sym(sc, l)
1789 	struct dc_softc		*sc;
1790 	struct dc_eblock_sym	*l;
1791 {
1792 	struct dc_mediainfo	*m;
1793 
1794 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT);
1795 	bzero(m, sizeof(struct dc_mediainfo));
1796 	if (l->dc_sym_code == DC_SYM_CODE_100BT)
1797 		m->dc_media = IFM_100_TX;
1798 
1799 	if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX)
1800 		m->dc_media = IFM_100_TX|IFM_FDX;
1801 
1802 	m->dc_gp_len = 2;
1803 	m->dc_gp_ptr = (u_int8_t *)&l->dc_sym_gpio_ctl;
1804 
1805 	m->dc_next = sc->dc_mi;
1806 	sc->dc_mi = m;
1807 
1808 	sc->dc_pmode = DC_PMODE_SYM;
1809 
1810 	return;
1811 }
1812 
1813 static void
1814 dc_decode_leaf_mii(sc, l)
1815 	struct dc_softc		*sc;
1816 	struct dc_eblock_mii	*l;
1817 {
1818 	u_int8_t		*p;
1819 	struct dc_mediainfo	*m;
1820 
1821 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT);
1822 	bzero(m, sizeof(struct dc_mediainfo));
1823 	/* We abuse IFM_AUTO to represent MII. */
1824 	m->dc_media = IFM_AUTO;
1825 	m->dc_gp_len = l->dc_gpr_len;
1826 
1827 	p = (u_int8_t *)l;
1828 	p += sizeof(struct dc_eblock_mii);
1829 	m->dc_gp_ptr = p;
1830 	p += 2 * l->dc_gpr_len;
1831 	m->dc_reset_len = *p;
1832 	p++;
1833 	m->dc_reset_ptr = p;
1834 
1835 	m->dc_next = sc->dc_mi;
1836 	sc->dc_mi = m;
1837 
1838 	return;
1839 }
1840 
1841 static void
1842 dc_read_srom(sc, bits)
1843 	struct dc_softc		*sc;
1844 	int			bits;
1845 {
1846 	int size;
1847 
1848 	size = 2 << bits;
1849 	sc->dc_srom = malloc(size, M_DEVBUF, M_NOWAIT);
1850 	dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (size / 2), 0);
1851 }
1852 
1853 static void
1854 dc_parse_21143_srom(sc)
1855 	struct dc_softc		*sc;
1856 {
1857 	struct dc_leaf_hdr	*lhdr;
1858 	struct dc_eblock_hdr	*hdr;
1859 	int			i, loff;
1860 	char			*ptr;
1861 
1862 	loff = sc->dc_srom[27];
1863 	lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]);
1864 
1865 	ptr = (char *)lhdr;
1866 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1867 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1868 		hdr = (struct dc_eblock_hdr *)ptr;
1869 		switch(hdr->dc_type) {
1870 		case DC_EBLOCK_MII:
1871 			dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr);
1872 			break;
1873 		case DC_EBLOCK_SIA:
1874 			dc_decode_leaf_sia(sc, (struct dc_eblock_sia *)hdr);
1875 			break;
1876 		case DC_EBLOCK_SYM:
1877 			dc_decode_leaf_sym(sc, (struct dc_eblock_sym *)hdr);
1878 			break;
1879 		default:
1880 			/* Don't care. Yet. */
1881 			break;
1882 		}
1883 		ptr += (hdr->dc_len & 0x7F);
1884 		ptr++;
1885 	}
1886 
1887 	return;
1888 }
1889 
1890 /*
1891  * Attach the interface. Allocate softc structures, do ifmedia
1892  * setup and ethernet/BPF attach.
1893  */
1894 static int
1895 dc_attach(dev)
1896 	device_t		dev;
1897 {
1898 	int			tmp = 0;
1899 	u_char			eaddr[ETHER_ADDR_LEN];
1900 	u_int32_t		command;
1901 	struct dc_softc		*sc;
1902 	struct ifnet		*ifp;
1903 	u_int32_t		revision;
1904 	int			unit, error = 0, rid, mac_offset;
1905 	u_int8_t		*mac;
1906 
1907 	sc = device_get_softc(dev);
1908 	unit = device_get_unit(dev);
1909 	bzero(sc, sizeof(struct dc_softc));
1910 
1911 	mtx_init(&sc->dc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1912 	    MTX_DEF | MTX_RECURSE);
1913 
1914 	/*
1915 	 * Handle power management nonsense.
1916 	 */
1917 	dc_acpi(dev);
1918 
1919 	/*
1920 	 * Map control/status registers.
1921 	 */
1922 	pci_enable_busmaster(dev);
1923 	pci_enable_io(dev, SYS_RES_IOPORT);
1924 	pci_enable_io(dev, SYS_RES_MEMORY);
1925 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1926 
1927 #ifdef DC_USEIOSPACE
1928 	if (!(command & PCIM_CMD_PORTEN)) {
1929 		printf("dc%d: failed to enable I/O ports!\n", unit);
1930 		error = ENXIO;
1931 		goto fail;
1932 	}
1933 #else
1934 	if (!(command & PCIM_CMD_MEMEN)) {
1935 		printf("dc%d: failed to enable memory mapping!\n", unit);
1936 		error = ENXIO;
1937 		goto fail;
1938 	}
1939 #endif
1940 
1941 	rid = DC_RID;
1942 	sc->dc_res = bus_alloc_resource(dev, DC_RES, &rid,
1943 	    0, ~0, 1, RF_ACTIVE);
1944 
1945 	if (sc->dc_res == NULL) {
1946 		printf("dc%d: couldn't map ports/memory\n", unit);
1947 		error = ENXIO;
1948 		goto fail;
1949 	}
1950 
1951 	sc->dc_btag = rman_get_bustag(sc->dc_res);
1952 	sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
1953 
1954 	/* Need this info to decide on a chip type. */
1955 	sc->dc_info = dc_devtype(dev);
1956 	revision = pci_read_config(dev, DC_PCI_CFRV, 4) & 0x000000FF;
1957 
1958 	switch(sc->dc_info->dc_did) {
1959 	case DC_DEVICEID_21143:
1960 		sc->dc_type = DC_TYPE_21143;
1961 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1962 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1963 		/* Save EEPROM contents so we can parse them later. */
1964 		dc_eeprom_width(sc);
1965 		dc_read_srom(sc, sc->dc_romwidth);
1966 		break;
1967 	case DC_DEVICEID_DM9009:
1968 	case DC_DEVICEID_DM9100:
1969 	case DC_DEVICEID_DM9102:
1970 		sc->dc_type = DC_TYPE_DM9102;
1971 		sc->dc_flags |= DC_TX_COALESCE|DC_TX_INTR_ALWAYS;
1972 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_TX_STORENFWD;
1973 		sc->dc_pmode = DC_PMODE_MII;
1974 		/* Increase the latency timer value. */
1975 		command = pci_read_config(dev, DC_PCI_CFLT, 4);
1976 		command &= 0xFFFF00FF;
1977 		command |= 0x00008000;
1978 		pci_write_config(dev, DC_PCI_CFLT, command, 4);
1979 		break;
1980 	case DC_DEVICEID_AL981:
1981 		sc->dc_type = DC_TYPE_AL981;
1982 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1983 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1984 		sc->dc_pmode = DC_PMODE_MII;
1985 		dc_eeprom_width(sc);
1986 		dc_read_srom(sc, sc->dc_romwidth);
1987 		break;
1988 	case DC_DEVICEID_AN985:
1989 	case DC_DEVICEID_FE2500:
1990 	case DC_DEVICEID_EN2242:
1991 	case DC_DEVICEID_HAWKING_PN672TX:
1992 		sc->dc_type = DC_TYPE_AN985;
1993 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1994 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1995 		sc->dc_pmode = DC_PMODE_MII;
1996 		dc_eeprom_width(sc);
1997 		dc_read_srom(sc, sc->dc_romwidth);
1998 		break;
1999 	case DC_DEVICEID_98713:
2000 	case DC_DEVICEID_98713_CP:
2001 		if (revision < DC_REVISION_98713A) {
2002 			sc->dc_type = DC_TYPE_98713;
2003 		}
2004 		if (revision >= DC_REVISION_98713A) {
2005 			sc->dc_type = DC_TYPE_98713A;
2006 			sc->dc_flags |= DC_21143_NWAY;
2007 		}
2008 		sc->dc_flags |= DC_REDUCED_MII_POLL;
2009 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
2010 		break;
2011 	case DC_DEVICEID_987x5:
2012 	case DC_DEVICEID_EN1217:
2013 		/*
2014 		 * Macronix MX98715AEC-C/D/E parts have only a
2015 		 * 128-bit hash table. We need to deal with these
2016 		 * in the same manner as the PNIC II so that we
2017 		 * get the right number of bits out of the
2018 		 * CRC routine.
2019 		 */
2020 		if (revision >= DC_REVISION_98715AEC_C &&
2021 		    revision < DC_REVISION_98725)
2022 			sc->dc_flags |= DC_128BIT_HASH;
2023 		sc->dc_type = DC_TYPE_987x5;
2024 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
2025 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
2026 		break;
2027 	case DC_DEVICEID_98727:
2028 		sc->dc_type = DC_TYPE_987x5;
2029 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
2030 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
2031 		break;
2032 	case DC_DEVICEID_82C115:
2033 		sc->dc_type = DC_TYPE_PNICII;
2034 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR|DC_128BIT_HASH;
2035 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
2036 		break;
2037 	case DC_DEVICEID_82C168:
2038 		sc->dc_type = DC_TYPE_PNIC;
2039 		sc->dc_flags |= DC_TX_STORENFWD|DC_TX_INTR_ALWAYS;
2040 		sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
2041 		sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_NOWAIT);
2042 		if (revision < DC_REVISION_82C169)
2043 			sc->dc_pmode = DC_PMODE_SYM;
2044 		break;
2045 	case DC_DEVICEID_AX88140A:
2046 		sc->dc_type = DC_TYPE_ASIX;
2047 		sc->dc_flags |= DC_TX_USE_TX_INTR|DC_TX_INTR_FIRSTFRAG;
2048 		sc->dc_flags |= DC_REDUCED_MII_POLL;
2049 		sc->dc_pmode = DC_PMODE_MII;
2050 		break;
2051 	case DC_DEVICEID_X3201:
2052 		sc->dc_type = DC_TYPE_XIRCOM;
2053 		sc->dc_flags |= DC_TX_INTR_ALWAYS | DC_TX_COALESCE |
2054 				DC_TX_ALIGN;
2055 		/*
2056 		 * We don't actually need to coalesce, but we're doing
2057 		 * it to obtain a double word aligned buffer.
2058 		 * The DC_TX_COALESCE flag is required.
2059 		 */
2060 		sc->dc_pmode = DC_PMODE_MII;
2061 		break;
2062 	case DC_DEVICEID_RS7112:
2063 		sc->dc_type = DC_TYPE_CONEXANT;
2064 		sc->dc_flags |= DC_TX_INTR_ALWAYS;
2065 		sc->dc_flags |= DC_REDUCED_MII_POLL;
2066 		sc->dc_pmode = DC_PMODE_MII;
2067 		dc_eeprom_width(sc);
2068 		dc_read_srom(sc, sc->dc_romwidth);
2069 		break;
2070 	default:
2071 		printf("dc%d: unknown device: %x\n", sc->dc_unit,
2072 		    sc->dc_info->dc_did);
2073 		break;
2074 	}
2075 
2076 	/* Save the cache line size. */
2077 	if (DC_IS_DAVICOM(sc))
2078 		sc->dc_cachesize = 0;
2079 	else
2080 		sc->dc_cachesize = pci_read_config(dev,
2081 		    DC_PCI_CFLT, 4) & 0xFF;
2082 
2083 	/* Reset the adapter. */
2084 	dc_reset(sc);
2085 
2086 	/* Take 21143 out of snooze mode */
2087 	if (DC_IS_INTEL(sc) || DC_IS_XIRCOM(sc)) {
2088 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
2089 		command &= ~(DC_CFDD_SNOOZE_MODE|DC_CFDD_SLEEP_MODE);
2090 		pci_write_config(dev, DC_PCI_CFDD, command, 4);
2091 	}
2092 
2093 	/*
2094 	 * Try to learn something about the supported media.
2095 	 * We know that ASIX and ADMtek and Davicom devices
2096 	 * will *always* be using MII media, so that's a no-brainer.
2097 	 * The tricky ones are the Macronix/PNIC II and the
2098 	 * Intel 21143.
2099 	 */
2100 	if (DC_IS_INTEL(sc))
2101 		dc_parse_21143_srom(sc);
2102 	else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
2103 		if (sc->dc_type == DC_TYPE_98713)
2104 			sc->dc_pmode = DC_PMODE_MII;
2105 		else
2106 			sc->dc_pmode = DC_PMODE_SYM;
2107 	} else if (!sc->dc_pmode)
2108 		sc->dc_pmode = DC_PMODE_MII;
2109 
2110 	/*
2111 	 * Get station address from the EEPROM.
2112 	 */
2113 	switch(sc->dc_type) {
2114 	case DC_TYPE_98713:
2115 	case DC_TYPE_98713A:
2116 	case DC_TYPE_987x5:
2117 	case DC_TYPE_PNICII:
2118 		dc_read_eeprom(sc, (caddr_t)&mac_offset,
2119 		    (DC_EE_NODEADDR_OFFSET / 2), 1, 0);
2120 		dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
2121 		break;
2122 	case DC_TYPE_PNIC:
2123 		dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
2124 		break;
2125 	case DC_TYPE_DM9102:
2126 	case DC_TYPE_21143:
2127 	case DC_TYPE_ASIX:
2128 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2129 		break;
2130 	case DC_TYPE_AL981:
2131 	case DC_TYPE_AN985:
2132 		bcopy(&sc->dc_srom[DC_AL_EE_NODEADDR], (caddr_t)&eaddr,
2133 		    ETHER_ADDR_LEN);
2134 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_AL_EE_NODEADDR, 3, 0);
2135 		break;
2136 	case DC_TYPE_CONEXANT:
2137 		bcopy(sc->dc_srom + DC_CONEXANT_EE_NODEADDR, &eaddr, 6);
2138 		break;
2139 	case DC_TYPE_XIRCOM:
2140 		/* The MAC comes from the CIS */
2141 		mac = pci_get_ether(dev);
2142 		if (!mac) {
2143 			device_printf(dev, "No station address in CIS!\n");
2144 			bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2145 			error = ENXIO;
2146 			goto fail;
2147 		}
2148 		bcopy(mac, eaddr, ETHER_ADDR_LEN);
2149 		break;
2150 	default:
2151 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2152 		break;
2153 	}
2154 
2155 	/*
2156 	 * A 21143 or clone chip was detected. Inform the world.
2157 	 */
2158 	printf("dc%d: Ethernet address: %6D\n", unit, eaddr, ":");
2159 
2160 	sc->dc_unit = unit;
2161 	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
2162 
2163 	sc->dc_ldata = contigmalloc(sizeof(struct dc_list_data), M_DEVBUF,
2164 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
2165 
2166 	if (sc->dc_ldata == NULL) {
2167 		printf("dc%d: no memory for list buffers!\n", unit);
2168 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2169 		error = ENXIO;
2170 		goto fail;
2171 	}
2172 
2173 	bzero(sc->dc_ldata, sizeof(struct dc_list_data));
2174 
2175 	ifp = &sc->arpcom.ac_if;
2176 	ifp->if_softc = sc;
2177 	ifp->if_unit = unit;
2178 	ifp->if_name = "dc";
2179 	/* XXX: bleah, MTU gets overwritten in ether_ifattach() */
2180 	ifp->if_mtu = ETHERMTU;
2181 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2182 	ifp->if_ioctl = dc_ioctl;
2183 	ifp->if_output = ether_output;
2184 	ifp->if_start = dc_start;
2185 	ifp->if_watchdog = dc_watchdog;
2186 	ifp->if_init = dc_init;
2187 	ifp->if_baudrate = 10000000;
2188 	ifp->if_snd.ifq_maxlen = DC_TX_LIST_CNT - 1;
2189 
2190 	/*
2191 	 * Do MII setup. If this is a 21143, check for a PHY on the
2192 	 * MII bus after applying any necessary fixups to twiddle the
2193 	 * GPIO bits. If we don't end up finding a PHY, restore the
2194 	 * old selection (SIA only or SIA/SYM) and attach the dcphy
2195 	 * driver instead.
2196 	 */
2197 	if (DC_IS_INTEL(sc)) {
2198 		dc_apply_fixup(sc, IFM_AUTO);
2199 		tmp = sc->dc_pmode;
2200 		sc->dc_pmode = DC_PMODE_MII;
2201 	}
2202 
2203 	error = mii_phy_probe(dev, &sc->dc_miibus,
2204 	    dc_ifmedia_upd, dc_ifmedia_sts);
2205 
2206 	if (error && DC_IS_INTEL(sc)) {
2207 		sc->dc_pmode = tmp;
2208 		if (sc->dc_pmode != DC_PMODE_SIA)
2209 			sc->dc_pmode = DC_PMODE_SYM;
2210 		sc->dc_flags |= DC_21143_NWAY;
2211 		mii_phy_probe(dev, &sc->dc_miibus,
2212 		    dc_ifmedia_upd, dc_ifmedia_sts);
2213 		/*
2214 		 * For non-MII cards, we need to have the 21143
2215 		 * drive the LEDs. Except there are some systems
2216 		 * like the NEC VersaPro NoteBook PC which have no
2217 		 * LEDs, and twiddling these bits has adverse effects
2218 		 * on them. (I.e. you suddenly can't get a link.)
2219 		 */
2220 		if (pci_read_config(dev, DC_PCI_CSID, 4) != 0x80281033)
2221 			sc->dc_flags |= DC_TULIP_LEDS;
2222 		error = 0;
2223 	}
2224 
2225 	if (error) {
2226 		printf("dc%d: MII without any PHY!\n", sc->dc_unit);
2227 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2228 		error = ENXIO;
2229 		goto fail;
2230 	}
2231 
2232 	if (DC_IS_XIRCOM(sc)) {
2233 		/*
2234 		 * setup General Purpose Port mode and data so the tulip
2235 		 * can talk to the MII.
2236 		 */
2237 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
2238 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2239 		DELAY(10);
2240 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
2241 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2242 		DELAY(10);
2243 	}
2244 
2245 	if (DC_IS_ADMTEK(sc)) {
2246 		/*
2247 		 * Set automatic TX underrun recovery for the ADMtek chips
2248 		 */
2249 		DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR);
2250 	}
2251 
2252 	/*
2253 	 * Tell the upper layer(s) we support long frames.
2254 	 */
2255 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2256 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
2257 
2258 	callout_init(&sc->dc_stat_ch, IS_MPSAFE);
2259 
2260 #ifdef SRM_MEDIA
2261 	sc->dc_srm_media = 0;
2262 
2263 	/* Remember the SRM console media setting */
2264 	if (DC_IS_INTEL(sc)) {
2265 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
2266 		command &= ~(DC_CFDD_SNOOZE_MODE|DC_CFDD_SLEEP_MODE);
2267 		switch ((command >> 8) & 0xff) {
2268 		case 3:
2269 			sc->dc_srm_media = IFM_10_T;
2270 			break;
2271 		case 4:
2272 			sc->dc_srm_media = IFM_10_T | IFM_FDX;
2273 			break;
2274 		case 5:
2275 			sc->dc_srm_media = IFM_100_TX;
2276 			break;
2277 		case 6:
2278 			sc->dc_srm_media = IFM_100_TX | IFM_FDX;
2279 			break;
2280 		}
2281 		if (sc->dc_srm_media)
2282 			sc->dc_srm_media |= IFM_ACTIVE | IFM_ETHER;
2283 	}
2284 #endif
2285 
2286 	/*
2287 	 * Call MI attach routine.
2288 	 */
2289 	ether_ifattach(ifp, eaddr);
2290 
2291 	/* Allocate interrupt */
2292 	rid = 0;
2293 	sc->dc_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
2294 	    RF_SHAREABLE | RF_ACTIVE);
2295 
2296 	if (sc->dc_irq == NULL) {
2297 		printf("dc%d: couldn't map interrupt\n", unit);
2298 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2299 		error = ENXIO;
2300 		goto fail;
2301 	}
2302 
2303 	error = bus_setup_intr(dev, sc->dc_irq, INTR_TYPE_NET |
2304 	    (IS_MPSAFE ? INTR_MPSAFE : 0),
2305 	    dc_intr, sc, &sc->dc_intrhand);
2306 
2307 	if (error) {
2308 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2309 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2310 		printf("dc%d: couldn't set up irq\n", unit);
2311 	}
2312 
2313 fail:
2314 	if (error != 0)
2315 		mtx_destroy(&sc->dc_mtx);
2316 	return (error);
2317 }
2318 
2319 static int
2320 dc_detach(dev)
2321 	device_t		dev;
2322 {
2323 	struct dc_softc		*sc;
2324 	struct ifnet		*ifp;
2325 	struct dc_mediainfo	*m;
2326 
2327 	sc = device_get_softc(dev);
2328 
2329 	DC_LOCK(sc);
2330 
2331 	ifp = &sc->arpcom.ac_if;
2332 
2333 	dc_stop(sc);
2334 	ether_ifdetach(ifp);
2335 
2336 	bus_generic_detach(dev);
2337 	device_delete_child(dev, sc->dc_miibus);
2338 
2339 	bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2340 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2341 	bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2342 
2343 	contigfree(sc->dc_ldata, sizeof(struct dc_list_data), M_DEVBUF);
2344 	if (sc->dc_pnic_rx_buf != NULL)
2345 		free(sc->dc_pnic_rx_buf, M_DEVBUF);
2346 
2347 	while(sc->dc_mi != NULL) {
2348 		m = sc->dc_mi->dc_next;
2349 		free(sc->dc_mi, M_DEVBUF);
2350 		sc->dc_mi = m;
2351 	}
2352 	free(sc->dc_srom, M_DEVBUF);
2353 
2354 	DC_UNLOCK(sc);
2355 	mtx_destroy(&sc->dc_mtx);
2356 
2357 	return(0);
2358 }
2359 
2360 /*
2361  * Initialize the transmit descriptors.
2362  */
2363 static int
2364 dc_list_tx_init(sc)
2365 	struct dc_softc		*sc;
2366 {
2367 	struct dc_chain_data	*cd;
2368 	struct dc_list_data	*ld;
2369 	int			i, nexti;
2370 
2371 	cd = &sc->dc_cdata;
2372 	ld = sc->dc_ldata;
2373 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2374 		nexti = (i == (DC_TX_LIST_CNT - 1)) ? 0 : i+1;
2375 		ld->dc_tx_list[i].dc_next = vtophys(&ld->dc_tx_list[nexti]);
2376 		cd->dc_tx_chain[i] = NULL;
2377 		ld->dc_tx_list[i].dc_data = 0;
2378 		ld->dc_tx_list[i].dc_ctl = 0;
2379 	}
2380 
2381 	cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
2382 
2383 	return(0);
2384 }
2385 
2386 
2387 /*
2388  * Initialize the RX descriptors and allocate mbufs for them. Note that
2389  * we arrange the descriptors in a closed ring, so that the last descriptor
2390  * points back to the first.
2391  */
2392 static int
2393 dc_list_rx_init(sc)
2394 	struct dc_softc		*sc;
2395 {
2396 	struct dc_chain_data	*cd;
2397 	struct dc_list_data	*ld;
2398 	int			i, nexti;
2399 
2400 	cd = &sc->dc_cdata;
2401 	ld = sc->dc_ldata;
2402 
2403 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2404 		if (dc_newbuf(sc, i, NULL) == ENOBUFS)
2405 			return(ENOBUFS);
2406 		nexti = (i == (DC_RX_LIST_CNT - 1)) ? 0 : i+1;
2407 		ld->dc_rx_list[i].dc_next = vtophys(&ld->dc_rx_list[nexti]);
2408 	}
2409 
2410 	cd->dc_rx_prod = 0;
2411 
2412 	return(0);
2413 }
2414 
2415 /*
2416  * Initialize an RX descriptor and attach an MBUF cluster.
2417  */
2418 static int
2419 dc_newbuf(sc, i, m)
2420 	struct dc_softc		*sc;
2421 	int			i;
2422 	struct mbuf		*m;
2423 {
2424 	struct mbuf		*m_new = NULL;
2425 	struct dc_desc		*c;
2426 
2427 	c = &sc->dc_ldata->dc_rx_list[i];
2428 
2429 	if (m == NULL) {
2430 		MGETHDR(m_new, M_NOWAIT, MT_DATA);
2431 		if (m_new == NULL)
2432 			return(ENOBUFS);
2433 
2434 		MCLGET(m_new, M_NOWAIT);
2435 		if (!(m_new->m_flags & M_EXT)) {
2436 			m_freem(m_new);
2437 			return(ENOBUFS);
2438 		}
2439 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2440 	} else {
2441 		m_new = m;
2442 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2443 		m_new->m_data = m_new->m_ext.ext_buf;
2444 	}
2445 
2446 	m_adj(m_new, sizeof(u_int64_t));
2447 
2448 	/*
2449 	 * If this is a PNIC chip, zero the buffer. This is part
2450 	 * of the workaround for the receive bug in the 82c168 and
2451 	 * 82c169 chips.
2452 	 */
2453 	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
2454 		bzero((char *)mtod(m_new, char *), m_new->m_len);
2455 
2456 	sc->dc_cdata.dc_rx_chain[i] = m_new;
2457 	c->dc_data = vtophys(mtod(m_new, caddr_t));
2458 	c->dc_ctl = DC_RXCTL_RLINK | DC_RXLEN;
2459 	c->dc_status = DC_RXSTAT_OWN;
2460 
2461 	return(0);
2462 }
2463 
2464 /*
2465  * Grrrrr.
2466  * The PNIC chip has a terrible bug in it that manifests itself during
2467  * periods of heavy activity. The exact mode of failure if difficult to
2468  * pinpoint: sometimes it only happens in promiscuous mode, sometimes it
2469  * will happen on slow machines. The bug is that sometimes instead of
2470  * uploading one complete frame during reception, it uploads what looks
2471  * like the entire contents of its FIFO memory. The frame we want is at
2472  * the end of the whole mess, but we never know exactly how much data has
2473  * been uploaded, so salvaging the frame is hard.
2474  *
2475  * There is only one way to do it reliably, and it's disgusting.
2476  * Here's what we know:
2477  *
2478  * - We know there will always be somewhere between one and three extra
2479  *   descriptors uploaded.
2480  *
2481  * - We know the desired received frame will always be at the end of the
2482  *   total data upload.
2483  *
2484  * - We know the size of the desired received frame because it will be
2485  *   provided in the length field of the status word in the last descriptor.
2486  *
2487  * Here's what we do:
2488  *
2489  * - When we allocate buffers for the receive ring, we bzero() them.
2490  *   This means that we know that the buffer contents should be all
2491  *   zeros, except for data uploaded by the chip.
2492  *
2493  * - We also force the PNIC chip to upload frames that include the
2494  *   ethernet CRC at the end.
2495  *
2496  * - We gather all of the bogus frame data into a single buffer.
2497  *
2498  * - We then position a pointer at the end of this buffer and scan
2499  *   backwards until we encounter the first non-zero byte of data.
2500  *   This is the end of the received frame. We know we will encounter
2501  *   some data at the end of the frame because the CRC will always be
2502  *   there, so even if the sender transmits a packet of all zeros,
2503  *   we won't be fooled.
2504  *
2505  * - We know the size of the actual received frame, so we subtract
2506  *   that value from the current pointer location. This brings us
2507  *   to the start of the actual received packet.
2508  *
2509  * - We copy this into an mbuf and pass it on, along with the actual
2510  *   frame length.
2511  *
2512  * The performance hit is tremendous, but it beats dropping frames all
2513  * the time.
2514  */
2515 
2516 #define DC_WHOLEFRAME	(DC_RXSTAT_FIRSTFRAG|DC_RXSTAT_LASTFRAG)
2517 static void
2518 dc_pnic_rx_bug_war(sc, idx)
2519 	struct dc_softc		*sc;
2520 	int			idx;
2521 {
2522 	struct dc_desc		*cur_rx;
2523 	struct dc_desc		*c = NULL;
2524 	struct mbuf		*m = NULL;
2525 	unsigned char		*ptr;
2526 	int			i, total_len;
2527 	u_int32_t		rxstat = 0;
2528 
2529 	i = sc->dc_pnic_rx_bug_save;
2530 	cur_rx = &sc->dc_ldata->dc_rx_list[idx];
2531 	ptr = sc->dc_pnic_rx_buf;
2532 	bzero(ptr, sizeof(DC_RXLEN * 5));
2533 
2534 	/* Copy all the bytes from the bogus buffers. */
2535 	while (1) {
2536 		c = &sc->dc_ldata->dc_rx_list[i];
2537 		rxstat = c->dc_status;
2538 		m = sc->dc_cdata.dc_rx_chain[i];
2539 		bcopy(mtod(m, char *), ptr, DC_RXLEN);
2540 		ptr += DC_RXLEN;
2541 		/* If this is the last buffer, break out. */
2542 		if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
2543 			break;
2544 		dc_newbuf(sc, i, m);
2545 		DC_INC(i, DC_RX_LIST_CNT);
2546 	}
2547 
2548 	/* Find the length of the actual receive frame. */
2549 	total_len = DC_RXBYTES(rxstat);
2550 
2551 	/* Scan backwards until we hit a non-zero byte. */
2552 	while(*ptr == 0x00)
2553 		ptr--;
2554 
2555 	/* Round off. */
2556 	if ((uintptr_t)(ptr) & 0x3)
2557 		ptr -= 1;
2558 
2559 	/* Now find the start of the frame. */
2560 	ptr -= total_len;
2561 	if (ptr < sc->dc_pnic_rx_buf)
2562 		ptr = sc->dc_pnic_rx_buf;
2563 
2564 	/*
2565 	 * Now copy the salvaged frame to the last mbuf and fake up
2566 	 * the status word to make it look like a successful
2567 	 * frame reception.
2568 	 */
2569 	dc_newbuf(sc, i, m);
2570 	bcopy(ptr, mtod(m, char *), total_len);
2571 	cur_rx->dc_status = rxstat | DC_RXSTAT_FIRSTFRAG;
2572 
2573 	return;
2574 }
2575 
2576 /*
2577  * This routine searches the RX ring for dirty descriptors in the
2578  * event that the rxeof routine falls out of sync with the chip's
2579  * current descriptor pointer. This may happen sometimes as a result
2580  * of a "no RX buffer available" condition that happens when the chip
2581  * consumes all of the RX buffers before the driver has a chance to
2582  * process the RX ring. This routine may need to be called more than
2583  * once to bring the driver back in sync with the chip, however we
2584  * should still be getting RX DONE interrupts to drive the search
2585  * for new packets in the RX ring, so we should catch up eventually.
2586  */
2587 static int
2588 dc_rx_resync(sc)
2589 	struct dc_softc		*sc;
2590 {
2591 	int			i, pos;
2592 	struct dc_desc		*cur_rx;
2593 
2594 	pos = sc->dc_cdata.dc_rx_prod;
2595 
2596 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2597 		cur_rx = &sc->dc_ldata->dc_rx_list[pos];
2598 		if (!(cur_rx->dc_status & DC_RXSTAT_OWN))
2599 			break;
2600 		DC_INC(pos, DC_RX_LIST_CNT);
2601 	}
2602 
2603 	/* If the ring really is empty, then just return. */
2604 	if (i == DC_RX_LIST_CNT)
2605 		return(0);
2606 
2607 	/* We've fallen behing the chip: catch it. */
2608 	sc->dc_cdata.dc_rx_prod = pos;
2609 
2610 	return(EAGAIN);
2611 }
2612 
2613 /*
2614  * A frame has been uploaded: pass the resulting mbuf chain up to
2615  * the higher level protocols.
2616  */
2617 static void
2618 dc_rxeof(sc)
2619 	struct dc_softc		*sc;
2620 {
2621 	struct mbuf		*m;
2622 	struct ifnet		*ifp;
2623 	struct dc_desc		*cur_rx;
2624 	int			i, total_len = 0;
2625 	u_int32_t		rxstat;
2626 
2627 	ifp = &sc->arpcom.ac_if;
2628 	i = sc->dc_cdata.dc_rx_prod;
2629 
2630 	while(!(sc->dc_ldata->dc_rx_list[i].dc_status & DC_RXSTAT_OWN)) {
2631 
2632 #ifdef DEVICE_POLLING
2633 		if (ifp->if_flags & IFF_POLLING) {
2634 			if (sc->rxcycles <= 0)
2635 				break;
2636 			sc->rxcycles--;
2637 		}
2638 #endif /* DEVICE_POLLING */
2639 		cur_rx = &sc->dc_ldata->dc_rx_list[i];
2640 		rxstat = cur_rx->dc_status;
2641 		m = sc->dc_cdata.dc_rx_chain[i];
2642 		total_len = DC_RXBYTES(rxstat);
2643 
2644 		if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2645 			if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
2646 				if (rxstat & DC_RXSTAT_FIRSTFRAG)
2647 					sc->dc_pnic_rx_bug_save = i;
2648 				if ((rxstat & DC_RXSTAT_LASTFRAG) == 0) {
2649 					DC_INC(i, DC_RX_LIST_CNT);
2650 					continue;
2651 				}
2652 				dc_pnic_rx_bug_war(sc, i);
2653 				rxstat = cur_rx->dc_status;
2654 				total_len = DC_RXBYTES(rxstat);
2655 			}
2656 		}
2657 
2658 		sc->dc_cdata.dc_rx_chain[i] = NULL;
2659 
2660 		/*
2661 		 * If an error occurs, update stats, clear the
2662 		 * status word and leave the mbuf cluster in place:
2663 		 * it should simply get re-used next time this descriptor
2664 		 * comes up in the ring.  However, don't report long
2665 		 * frames as errors since they could be vlans
2666 		 */
2667 		if ((rxstat & DC_RXSTAT_RXERR)){
2668 			if (!(rxstat & DC_RXSTAT_GIANT) ||
2669 			    (rxstat & (DC_RXSTAT_CRCERR | DC_RXSTAT_DRIBBLE |
2670 				       DC_RXSTAT_MIIERE | DC_RXSTAT_COLLSEEN |
2671 				       DC_RXSTAT_RUNT   | DC_RXSTAT_DE))) {
2672 				ifp->if_ierrors++;
2673 				if (rxstat & DC_RXSTAT_COLLSEEN)
2674 					ifp->if_collisions++;
2675 				dc_newbuf(sc, i, m);
2676 				if (rxstat & DC_RXSTAT_CRCERR) {
2677 					DC_INC(i, DC_RX_LIST_CNT);
2678 					continue;
2679 				} else {
2680 					dc_init(sc);
2681 					return;
2682 				}
2683 			}
2684 		}
2685 
2686 		/* No errors; receive the packet. */
2687 		total_len -= ETHER_CRC_LEN;
2688 #ifdef __i386__
2689 		/*
2690 		 * On the x86 we do not have alignment problems, so try to
2691 		 * allocate a new buffer for the receive ring, and pass up
2692 		 * the one where the packet is already, saving the expensive
2693 		 * copy done in m_devget().
2694 		 * If we are on an architecture with alignment problems, or
2695 		 * if the allocation fails, then use m_devget and leave the
2696 		 * existing buffer in the receive ring.
2697 		 */
2698 		if (dc_quick && dc_newbuf(sc, i, NULL) == 0) {
2699 			m->m_pkthdr.rcvif = ifp;
2700 			m->m_pkthdr.len = m->m_len = total_len;
2701 			DC_INC(i, DC_RX_LIST_CNT);
2702 		} else
2703 #endif
2704 		{
2705 			struct mbuf *m0;
2706 
2707 			m0 = m_devget(mtod(m, char *), total_len,
2708 				ETHER_ALIGN, ifp, NULL);
2709 			dc_newbuf(sc, i, m);
2710 			DC_INC(i, DC_RX_LIST_CNT);
2711 			if (m0 == NULL) {
2712 				ifp->if_ierrors++;
2713 				continue;
2714 			}
2715 			m = m0;
2716 		}
2717 
2718 		ifp->if_ipackets++;
2719 		(*ifp->if_input)(ifp, m);
2720 	}
2721 
2722 	sc->dc_cdata.dc_rx_prod = i;
2723 }
2724 
2725 /*
2726  * A frame was downloaded to the chip. It's safe for us to clean up
2727  * the list buffers.
2728  */
2729 
2730 static void
2731 dc_txeof(sc)
2732 	struct dc_softc		*sc;
2733 {
2734 	struct dc_desc		*cur_tx = NULL;
2735 	struct ifnet		*ifp;
2736 	int			idx;
2737 
2738 	ifp = &sc->arpcom.ac_if;
2739 
2740 	/*
2741 	 * Go through our tx list and free mbufs for those
2742 	 * frames that have been transmitted.
2743 	 */
2744 	idx = sc->dc_cdata.dc_tx_cons;
2745 	while(idx != sc->dc_cdata.dc_tx_prod) {
2746 		u_int32_t		txstat;
2747 
2748 		cur_tx = &sc->dc_ldata->dc_tx_list[idx];
2749 		txstat = cur_tx->dc_status;
2750 
2751 		if (txstat & DC_TXSTAT_OWN)
2752 			break;
2753 
2754 		if (!(cur_tx->dc_ctl & DC_TXCTL_LASTFRAG) ||
2755 		    cur_tx->dc_ctl & DC_TXCTL_SETUP) {
2756 			if (cur_tx->dc_ctl & DC_TXCTL_SETUP) {
2757 				/*
2758 				 * Yes, the PNIC is so brain damaged
2759 				 * that it will sometimes generate a TX
2760 				 * underrun error while DMAing the RX
2761 				 * filter setup frame. If we detect this,
2762 				 * we have to send the setup frame again,
2763 				 * or else the filter won't be programmed
2764 				 * correctly.
2765 				 */
2766 				if (DC_IS_PNIC(sc)) {
2767 					if (txstat & DC_TXSTAT_ERRSUM)
2768 						dc_setfilt(sc);
2769 				}
2770 				sc->dc_cdata.dc_tx_chain[idx] = NULL;
2771 			}
2772 			sc->dc_cdata.dc_tx_cnt--;
2773 			DC_INC(idx, DC_TX_LIST_CNT);
2774 			continue;
2775 		}
2776 
2777 		if (DC_IS_XIRCOM(sc) || DC_IS_CONEXANT(sc)) {
2778 			/*
2779 			 * XXX: Why does my Xircom taunt me so?
2780 			 * For some reason it likes setting the CARRLOST flag
2781 			 * even when the carrier is there. wtf?!?
2782 			 * Who knows, but Conexant chips have the
2783 			 * same problem. Maybe they took lessons
2784 			 * from Xircom.
2785 			 */
2786 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2787 			    sc->dc_pmode == DC_PMODE_MII &&
2788 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM|
2789 			    DC_TXSTAT_NOCARRIER)))
2790 				txstat &= ~DC_TXSTAT_ERRSUM;
2791 		} else {
2792 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2793 			    sc->dc_pmode == DC_PMODE_MII &&
2794 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM|
2795 			    DC_TXSTAT_NOCARRIER|DC_TXSTAT_CARRLOST)))
2796 				txstat &= ~DC_TXSTAT_ERRSUM;
2797 		}
2798 
2799 		if (txstat & DC_TXSTAT_ERRSUM) {
2800 			ifp->if_oerrors++;
2801 			if (txstat & DC_TXSTAT_EXCESSCOLL)
2802 				ifp->if_collisions++;
2803 			if (txstat & DC_TXSTAT_LATECOLL)
2804 				ifp->if_collisions++;
2805 			if (!(txstat & DC_TXSTAT_UNDERRUN)) {
2806 				dc_init(sc);
2807 				return;
2808 			}
2809 		}
2810 
2811 		ifp->if_collisions += (txstat & DC_TXSTAT_COLLCNT) >> 3;
2812 
2813 		ifp->if_opackets++;
2814 		if (sc->dc_cdata.dc_tx_chain[idx] != NULL) {
2815 			m_freem(sc->dc_cdata.dc_tx_chain[idx]);
2816 			sc->dc_cdata.dc_tx_chain[idx] = NULL;
2817 		}
2818 
2819 		sc->dc_cdata.dc_tx_cnt--;
2820 		DC_INC(idx, DC_TX_LIST_CNT);
2821 	}
2822 
2823 	if (idx != sc->dc_cdata.dc_tx_cons) {
2824 	    	/* some buffers have been freed */
2825 		sc->dc_cdata.dc_tx_cons = idx;
2826 		ifp->if_flags &= ~IFF_OACTIVE;
2827 	}
2828 	ifp->if_timer = (sc->dc_cdata.dc_tx_cnt == 0) ? 0 : 5;
2829 
2830 	return;
2831 }
2832 
2833 static void
2834 dc_tick(xsc)
2835 	void			*xsc;
2836 {
2837 	struct dc_softc		*sc;
2838 	struct mii_data		*mii;
2839 	struct ifnet		*ifp;
2840 	u_int32_t		r;
2841 
2842 	sc = xsc;
2843 	DC_LOCK(sc);
2844 	ifp = &sc->arpcom.ac_if;
2845 	mii = device_get_softc(sc->dc_miibus);
2846 
2847 	if (sc->dc_flags & DC_REDUCED_MII_POLL) {
2848 		if (sc->dc_flags & DC_21143_NWAY) {
2849 			r = CSR_READ_4(sc, DC_10BTSTAT);
2850 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2851 			    IFM_100_TX && (r & DC_TSTAT_LS100)) {
2852 				sc->dc_link = 0;
2853 				mii_mediachg(mii);
2854 			}
2855 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2856 			    IFM_10_T && (r & DC_TSTAT_LS10)) {
2857 				sc->dc_link = 0;
2858 				mii_mediachg(mii);
2859 			}
2860 			if (sc->dc_link == 0)
2861 				mii_tick(mii);
2862 		} else {
2863 			r = CSR_READ_4(sc, DC_ISR);
2864 			if ((r & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT &&
2865 			    sc->dc_cdata.dc_tx_cnt == 0) {
2866 				mii_tick(mii);
2867 				if (!(mii->mii_media_status & IFM_ACTIVE))
2868 					sc->dc_link = 0;
2869 			}
2870 		}
2871 	} else
2872 		mii_tick(mii);
2873 
2874 	/*
2875 	 * When the init routine completes, we expect to be able to send
2876 	 * packets right away, and in fact the network code will send a
2877 	 * gratuitous ARP the moment the init routine marks the interface
2878 	 * as running. However, even though the MAC may have been initialized,
2879 	 * there may be a delay of a few seconds before the PHY completes
2880 	 * autonegotiation and the link is brought up. Any transmissions
2881 	 * made during that delay will be lost. Dealing with this is tricky:
2882 	 * we can't just pause in the init routine while waiting for the
2883 	 * PHY to come ready since that would bring the whole system to
2884 	 * a screeching halt for several seconds.
2885 	 *
2886 	 * What we do here is prevent the TX start routine from sending
2887 	 * any packets until a link has been established. After the
2888 	 * interface has been initialized, the tick routine will poll
2889 	 * the state of the PHY until the IFM_ACTIVE flag is set. Until
2890 	 * that time, packets will stay in the send queue, and once the
2891 	 * link comes up, they will be flushed out to the wire.
2892 	 */
2893 	if (!sc->dc_link && mii->mii_media_status & IFM_ACTIVE &&
2894 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2895 		sc->dc_link++;
2896 		if (ifp->if_snd.ifq_head != NULL)
2897 			dc_start(ifp);
2898 	}
2899 
2900 	if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link)
2901 		callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
2902 	else
2903 		callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
2904 
2905 	DC_UNLOCK(sc);
2906 
2907 	return;
2908 }
2909 
2910 /*
2911  * A transmit underrun has occurred.  Back off the transmit threshold,
2912  * or switch to store and forward mode if we have to.
2913  */
2914 static void
2915 dc_tx_underrun(sc)
2916 	struct dc_softc		*sc;
2917 {
2918 	u_int32_t		isr;
2919 	int			i;
2920 
2921 	if (DC_IS_DAVICOM(sc))
2922 		dc_init(sc);
2923 
2924 	if (DC_IS_INTEL(sc)) {
2925 		/*
2926 		 * The real 21143 requires that the transmitter be idle
2927 		 * in order to change the transmit threshold or store
2928 		 * and forward state.
2929 		 */
2930 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2931 
2932 		for (i = 0; i < DC_TIMEOUT; i++) {
2933 			isr = CSR_READ_4(sc, DC_ISR);
2934 			if (isr & DC_ISR_TX_IDLE)
2935 				break;
2936 			DELAY(10);
2937 		}
2938 		if (i == DC_TIMEOUT) {
2939 			printf("dc%d: failed to force tx to idle state\n",
2940 			    sc->dc_unit);
2941 			dc_init(sc);
2942 		}
2943 	}
2944 
2945 	printf("dc%d: TX underrun -- ", sc->dc_unit);
2946 	sc->dc_txthresh += DC_TXTHRESH_INC;
2947 	if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
2948 		printf("using store and forward mode\n");
2949 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
2950 	} else {
2951 		printf("increasing TX threshold\n");
2952 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
2953 		DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
2954 	}
2955 
2956 	if (DC_IS_INTEL(sc))
2957 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2958 
2959 	return;
2960 }
2961 
2962 #ifdef DEVICE_POLLING
2963 static poll_handler_t dc_poll;
2964 
2965 static void
2966 dc_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2967 {
2968 	struct	dc_softc *sc = ifp->if_softc;
2969 
2970 	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
2971 		/* Re-enable interrupts. */
2972 		CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
2973 		return;
2974 	}
2975 	sc->rxcycles = count;
2976 	dc_rxeof(sc);
2977 	dc_txeof(sc);
2978 	if (ifp->if_snd.ifq_head != NULL && !(ifp->if_flags & IFF_OACTIVE))
2979 		dc_start(ifp);
2980 
2981 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
2982 		u_int32_t	status;
2983 
2984 		status = CSR_READ_4(sc, DC_ISR);
2985 		status &= (DC_ISR_RX_WATDOGTIMEO|DC_ISR_RX_NOBUF|
2986 			DC_ISR_TX_NOBUF|DC_ISR_TX_IDLE|DC_ISR_TX_UNDERRUN|
2987 			DC_ISR_BUS_ERR);
2988 		if (!status)
2989 			return;
2990 		/* ack what we have */
2991 		CSR_WRITE_4(sc, DC_ISR, status);
2992 
2993 		if (status & (DC_ISR_RX_WATDOGTIMEO|DC_ISR_RX_NOBUF)) {
2994 			u_int32_t r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
2995 			ifp->if_ierrors += (r & 0xffff) + ((r >> 17) & 0x7ff);
2996 
2997 			if (dc_rx_resync(sc))
2998 				dc_rxeof(sc);
2999 		}
3000 		/* restart transmit unit if necessary */
3001 		if (status & DC_ISR_TX_IDLE && sc->dc_cdata.dc_tx_cnt)
3002 			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3003 
3004 		if (status & DC_ISR_TX_UNDERRUN)
3005 			dc_tx_underrun(sc);
3006 
3007 		if (status & DC_ISR_BUS_ERR) {
3008 			printf("dc_poll: dc%d bus error\n", sc->dc_unit);
3009 			dc_reset(sc);
3010 			dc_init(sc);
3011 		}
3012 	}
3013 }
3014 #endif /* DEVICE_POLLING */
3015 
3016 static void
3017 dc_intr(arg)
3018 	void			*arg;
3019 {
3020 	struct dc_softc		*sc;
3021 	struct ifnet		*ifp;
3022 	u_int32_t		status;
3023 
3024 	sc = arg;
3025 
3026 	if (sc->suspended) {
3027 		return;
3028 	}
3029 
3030 	if ((CSR_READ_4(sc, DC_ISR) & DC_INTRS) == 0)
3031 		return;
3032 
3033 	DC_LOCK(sc);
3034 	ifp = &sc->arpcom.ac_if;
3035 #ifdef DEVICE_POLLING
3036 	if (ifp->if_flags & IFF_POLLING)
3037 		goto done;
3038 	if (ether_poll_register(dc_poll, ifp)) { /* ok, disable interrupts */
3039 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3040 		goto done;
3041 	}
3042 #endif /* DEVICE_POLLING */
3043 
3044 	/* Suppress unwanted interrupts */
3045 	if (!(ifp->if_flags & IFF_UP)) {
3046 		if (CSR_READ_4(sc, DC_ISR) & DC_INTRS)
3047 			dc_stop(sc);
3048 		DC_UNLOCK(sc);
3049 		return;
3050 	}
3051 
3052 	/* Disable interrupts. */
3053 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3054 
3055 	while(((status = CSR_READ_4(sc, DC_ISR)) & DC_INTRS)
3056 	      && status != 0xFFFFFFFF) {
3057 
3058 		CSR_WRITE_4(sc, DC_ISR, status);
3059 
3060 		if (status & DC_ISR_RX_OK) {
3061 			int		curpkts;
3062 			curpkts = ifp->if_ipackets;
3063 			dc_rxeof(sc);
3064 			if (curpkts == ifp->if_ipackets) {
3065 				while(dc_rx_resync(sc))
3066 					dc_rxeof(sc);
3067 			}
3068 		}
3069 
3070 		if (status & (DC_ISR_TX_OK|DC_ISR_TX_NOBUF))
3071 			dc_txeof(sc);
3072 
3073 		if (status & DC_ISR_TX_IDLE) {
3074 			dc_txeof(sc);
3075 			if (sc->dc_cdata.dc_tx_cnt) {
3076 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3077 				CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3078 			}
3079 		}
3080 
3081 		if (status & DC_ISR_TX_UNDERRUN)
3082 			dc_tx_underrun(sc);
3083 
3084 		if ((status & DC_ISR_RX_WATDOGTIMEO)
3085 		    || (status & DC_ISR_RX_NOBUF)) {
3086 			int		curpkts;
3087 			curpkts = ifp->if_ipackets;
3088 			dc_rxeof(sc);
3089 			if (curpkts == ifp->if_ipackets) {
3090 				while(dc_rx_resync(sc))
3091 					dc_rxeof(sc);
3092 			}
3093 		}
3094 
3095 		if (status & DC_ISR_BUS_ERR) {
3096 			dc_reset(sc);
3097 			dc_init(sc);
3098 		}
3099 	}
3100 
3101 	/* Re-enable interrupts. */
3102 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3103 
3104 	if (ifp->if_snd.ifq_head != NULL)
3105 		dc_start(ifp);
3106 
3107 #ifdef DEVICE_POLLING
3108 done:
3109 #endif /* DEVICE_POLLING */
3110 
3111 	DC_UNLOCK(sc);
3112 
3113 	return;
3114 }
3115 
3116 /*
3117  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
3118  * pointers to the fragment pointers.
3119  */
3120 static int
3121 dc_encap(sc, m_head, txidx)
3122 	struct dc_softc		*sc;
3123 	struct mbuf		*m_head;
3124 	u_int32_t		*txidx;
3125 {
3126 	struct dc_desc		*f = NULL;
3127 	struct mbuf		*m;
3128 	int			frag, cur, cnt = 0;
3129 
3130 	/*
3131 	 * Start packing the mbufs in this chain into
3132 	 * the fragment pointers. Stop when we run out
3133 	 * of fragments or hit the end of the mbuf chain.
3134 	 */
3135 	m = m_head;
3136 	cur = frag = *txidx;
3137 
3138 	for (m = m_head; m != NULL; m = m->m_next) {
3139 		if (m->m_len != 0) {
3140 			if (sc->dc_flags & DC_TX_ADMTEK_WAR) {
3141 				if (*txidx != sc->dc_cdata.dc_tx_prod &&
3142 				    frag == (DC_TX_LIST_CNT - 1))
3143 					return(ENOBUFS);
3144 			}
3145 			if ((DC_TX_LIST_CNT -
3146 			    (sc->dc_cdata.dc_tx_cnt + cnt)) < 5)
3147 				return(ENOBUFS);
3148 
3149 			f = &sc->dc_ldata->dc_tx_list[frag];
3150 			f->dc_ctl = DC_TXCTL_TLINK | m->m_len;
3151 			if (cnt == 0) {
3152 				f->dc_status = 0;
3153 				f->dc_ctl |= DC_TXCTL_FIRSTFRAG;
3154 			} else
3155 				f->dc_status = DC_TXSTAT_OWN;
3156 			f->dc_data = vtophys(mtod(m, vm_offset_t));
3157 			cur = frag;
3158 			DC_INC(frag, DC_TX_LIST_CNT);
3159 			cnt++;
3160 		}
3161 	}
3162 
3163 	if (m != NULL)
3164 		return(ENOBUFS);
3165 
3166 	sc->dc_cdata.dc_tx_cnt += cnt;
3167 	sc->dc_cdata.dc_tx_chain[cur] = m_head;
3168 	sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_LASTFRAG;
3169 	if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
3170 		sc->dc_ldata->dc_tx_list[*txidx].dc_ctl |= DC_TXCTL_FINT;
3171 	if (sc->dc_flags & DC_TX_INTR_ALWAYS)
3172 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT;
3173 	if (sc->dc_flags & DC_TX_USE_TX_INTR && sc->dc_cdata.dc_tx_cnt > 64)
3174 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT;
3175 	sc->dc_ldata->dc_tx_list[*txidx].dc_status = DC_TXSTAT_OWN;
3176 	*txidx = frag;
3177 
3178 	return(0);
3179 }
3180 
3181 /*
3182  * Coalesce an mbuf chain into a single mbuf cluster buffer.
3183  * Needed for some really badly behaved chips that just can't
3184  * do scatter/gather correctly.
3185  */
3186 static int
3187 dc_coal(sc, m_head)
3188 	struct dc_softc		*sc;
3189 	struct mbuf		**m_head;
3190 {
3191 	struct mbuf		*m_new, *m;
3192 
3193 	m = *m_head;
3194 	MGETHDR(m_new, M_NOWAIT, MT_DATA);
3195 	if (m_new == NULL)
3196 		return(ENOBUFS);
3197 	if (m->m_pkthdr.len > MHLEN) {
3198 		MCLGET(m_new, M_NOWAIT);
3199 		if (!(m_new->m_flags & M_EXT)) {
3200 			m_freem(m_new);
3201 			return(ENOBUFS);
3202 		}
3203 	}
3204 	m_copydata(m, 0, m->m_pkthdr.len, mtod(m_new, caddr_t));
3205 	m_new->m_pkthdr.len = m_new->m_len = m->m_pkthdr.len;
3206 	m_freem(m);
3207 	*m_head = m_new;
3208 
3209 	return(0);
3210 }
3211 
3212 /*
3213  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3214  * to the mbuf data regions directly in the transmit lists. We also save a
3215  * copy of the pointers since the transmit list fragment pointers are
3216  * physical addresses.
3217  */
3218 
3219 static void
3220 dc_start(ifp)
3221 	struct ifnet		*ifp;
3222 {
3223 	struct dc_softc		*sc;
3224 	struct mbuf		*m_head = NULL;
3225 	int			idx;
3226 
3227 	sc = ifp->if_softc;
3228 
3229 	DC_LOCK(sc);
3230 
3231 	if (!sc->dc_link && ifp->if_snd.ifq_len < 10) {
3232 		DC_UNLOCK(sc);
3233 		return;
3234 	}
3235 
3236 	if (ifp->if_flags & IFF_OACTIVE) {
3237 		DC_UNLOCK(sc);
3238 		return;
3239 	}
3240 
3241 	idx = sc->dc_cdata.dc_tx_prod;
3242 
3243 	while(sc->dc_cdata.dc_tx_chain[idx] == NULL) {
3244 		IF_DEQUEUE(&ifp->if_snd, m_head);
3245 		if (m_head == NULL)
3246 			break;
3247 
3248 		if (sc->dc_flags & DC_TX_COALESCE &&
3249 		    (m_head->m_next != NULL ||
3250 		     sc->dc_flags & DC_TX_ALIGN)) {
3251 			if (dc_coal(sc, &m_head)) {
3252 				IF_PREPEND(&ifp->if_snd, m_head);
3253 				ifp->if_flags |= IFF_OACTIVE;
3254 				break;
3255 			}
3256 		}
3257 
3258 		if (dc_encap(sc, m_head, &idx)) {
3259 			IF_PREPEND(&ifp->if_snd, m_head);
3260 			ifp->if_flags |= IFF_OACTIVE;
3261 			break;
3262 		}
3263 
3264 		/*
3265 		 * If there's a BPF listener, bounce a copy of this frame
3266 		 * to him.
3267 		 */
3268 		BPF_MTAP(ifp, m_head);
3269 
3270 		if (sc->dc_flags & DC_TX_ONE) {
3271 			ifp->if_flags |= IFF_OACTIVE;
3272 			break;
3273 		}
3274 	}
3275 
3276 	/* Transmit */
3277 	sc->dc_cdata.dc_tx_prod = idx;
3278 	if (!(sc->dc_flags & DC_TX_POLL))
3279 		CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3280 
3281 	/*
3282 	 * Set a timeout in case the chip goes out to lunch.
3283 	 */
3284 	ifp->if_timer = 5;
3285 
3286 	DC_UNLOCK(sc);
3287 
3288 	return;
3289 }
3290 
3291 static void
3292 dc_init(xsc)
3293 	void			*xsc;
3294 {
3295 	struct dc_softc		*sc = xsc;
3296 	struct ifnet		*ifp = &sc->arpcom.ac_if;
3297 	struct mii_data		*mii;
3298 
3299 	DC_LOCK(sc);
3300 
3301 	mii = device_get_softc(sc->dc_miibus);
3302 
3303 	/*
3304 	 * Cancel pending I/O and free all RX/TX buffers.
3305 	 */
3306 	dc_stop(sc);
3307 	dc_reset(sc);
3308 
3309 	/*
3310 	 * Set cache alignment and burst length.
3311 	 */
3312 	if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc))
3313 		CSR_WRITE_4(sc, DC_BUSCTL, 0);
3314 	else
3315 		CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME|DC_BUSCTL_MRLE);
3316 	/*
3317 	 * Evenly share the bus between receive and transmit process.
3318 	 */
3319 	if (DC_IS_INTEL(sc))
3320 		DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION);
3321 	if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
3322 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
3323 	} else {
3324 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
3325 	}
3326 	if (sc->dc_flags & DC_TX_POLL)
3327 		DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
3328 	switch(sc->dc_cachesize) {
3329 	case 32:
3330 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
3331 		break;
3332 	case 16:
3333 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
3334 		break;
3335 	case 8:
3336 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
3337 		break;
3338 	case 0:
3339 	default:
3340 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
3341 		break;
3342 	}
3343 
3344 	if (sc->dc_flags & DC_TX_STORENFWD)
3345 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3346 	else {
3347 		if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3348 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3349 		} else {
3350 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3351 			DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3352 		}
3353 	}
3354 
3355 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
3356 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
3357 
3358 	if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
3359 		/*
3360 		 * The app notes for the 98713 and 98715A say that
3361 		 * in order to have the chips operate properly, a magic
3362 		 * number must be written to CSR16. Macronix does not
3363 		 * document the meaning of these bits so there's no way
3364 		 * to know exactly what they do. The 98713 has a magic
3365 		 * number all its own; the rest all use a different one.
3366 		 */
3367 		DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
3368 		if (sc->dc_type == DC_TYPE_98713)
3369 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
3370 		else
3371 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
3372 	}
3373 
3374 	if (DC_IS_XIRCOM(sc)) {
3375 		/*
3376 		 * setup General Purpose Port mode and data so the tulip
3377 		 * can talk to the MII.
3378 		 */
3379 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
3380 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3381 		DELAY(10);
3382 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
3383 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3384 		DELAY(10);
3385 	}
3386 
3387 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3388 	DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN);
3389 
3390 	/* Init circular RX list. */
3391 	if (dc_list_rx_init(sc) == ENOBUFS) {
3392 		printf("dc%d: initialization failed: no "
3393 		    "memory for rx buffers\n", sc->dc_unit);
3394 		dc_stop(sc);
3395 		DC_UNLOCK(sc);
3396 		return;
3397 	}
3398 
3399 	/*
3400 	 * Init tx descriptors.
3401 	 */
3402 	dc_list_tx_init(sc);
3403 
3404 	/*
3405 	 * Load the address of the RX list.
3406 	 */
3407 	CSR_WRITE_4(sc, DC_RXADDR, vtophys(&sc->dc_ldata->dc_rx_list[0]));
3408 	CSR_WRITE_4(sc, DC_TXADDR, vtophys(&sc->dc_ldata->dc_tx_list[0]));
3409 
3410 	/*
3411 	 * Enable interrupts.
3412 	 */
3413 #ifdef DEVICE_POLLING
3414 	/*
3415 	 * ... but only if we are not polling, and make sure they are off in
3416 	 * the case of polling. Some cards (e.g. fxp) turn interrupts on
3417 	 * after a reset.
3418 	 */
3419 	if (ifp->if_flags & IFF_POLLING)
3420 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3421 	else
3422 #endif
3423 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3424 	CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
3425 
3426 	/* Enable transmitter. */
3427 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3428 
3429 	/*
3430 	 * If this is an Intel 21143 and we're not using the
3431 	 * MII port, program the LED control pins so we get
3432 	 * link and activity indications.
3433 	 */
3434 	if (sc->dc_flags & DC_TULIP_LEDS) {
3435 		CSR_WRITE_4(sc, DC_WATCHDOG,
3436 		    DC_WDOG_CTLWREN|DC_WDOG_LINK|DC_WDOG_ACTIVITY);
3437 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
3438 	}
3439 
3440 	/*
3441 	 * Load the RX/multicast filter. We do this sort of late
3442 	 * because the filter programming scheme on the 21143 and
3443 	 * some clones requires DMAing a setup frame via the TX
3444 	 * engine, and we need the transmitter enabled for that.
3445 	 */
3446 	dc_setfilt(sc);
3447 
3448 	/* Enable receiver. */
3449 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
3450 	CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
3451 
3452 	mii_mediachg(mii);
3453 	dc_setcfg(sc, sc->dc_if_media);
3454 
3455 	ifp->if_flags |= IFF_RUNNING;
3456 	ifp->if_flags &= ~IFF_OACTIVE;
3457 
3458 	/* Don't start the ticker if this is a homePNA link. */
3459 	if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_HPNA_1)
3460 		sc->dc_link = 1;
3461 	else {
3462 		if (sc->dc_flags & DC_21143_NWAY)
3463 			callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
3464 		else
3465 			callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
3466 	}
3467 
3468 #ifdef SRM_MEDIA
3469 	if(sc->dc_srm_media) {
3470 		struct ifreq ifr;
3471 
3472 		ifr.ifr_media = sc->dc_srm_media;
3473 		ifmedia_ioctl(ifp, &ifr, &mii->mii_media, SIOCSIFMEDIA);
3474 		sc->dc_srm_media = 0;
3475 	}
3476 #endif
3477 	DC_UNLOCK(sc);
3478 	return;
3479 }
3480 
3481 /*
3482  * Set media options.
3483  */
3484 static int
3485 dc_ifmedia_upd(ifp)
3486 	struct ifnet		*ifp;
3487 {
3488 	struct dc_softc		*sc;
3489 	struct mii_data		*mii;
3490 	struct ifmedia		*ifm;
3491 
3492 	sc = ifp->if_softc;
3493 	mii = device_get_softc(sc->dc_miibus);
3494 	mii_mediachg(mii);
3495 	ifm = &mii->mii_media;
3496 
3497 	if (DC_IS_DAVICOM(sc) &&
3498 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1)
3499 		dc_setcfg(sc, ifm->ifm_media);
3500 	else
3501 		sc->dc_link = 0;
3502 
3503 	return(0);
3504 }
3505 
3506 /*
3507  * Report current media status.
3508  */
3509 static void
3510 dc_ifmedia_sts(ifp, ifmr)
3511 	struct ifnet		*ifp;
3512 	struct ifmediareq	*ifmr;
3513 {
3514 	struct dc_softc		*sc;
3515 	struct mii_data		*mii;
3516 	struct ifmedia		*ifm;
3517 
3518 	sc = ifp->if_softc;
3519 	mii = device_get_softc(sc->dc_miibus);
3520 	mii_pollstat(mii);
3521 	ifm = &mii->mii_media;
3522 	if (DC_IS_DAVICOM(sc)) {
3523 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
3524 			ifmr->ifm_active = ifm->ifm_media;
3525 			ifmr->ifm_status = 0;
3526 			return;
3527 		}
3528 	}
3529 	ifmr->ifm_active = mii->mii_media_active;
3530 	ifmr->ifm_status = mii->mii_media_status;
3531 
3532 	return;
3533 }
3534 
3535 static int
3536 dc_ioctl(ifp, command, data)
3537 	struct ifnet		*ifp;
3538 	u_long			command;
3539 	caddr_t			data;
3540 {
3541 	struct dc_softc		*sc = ifp->if_softc;
3542 	struct ifreq		*ifr = (struct ifreq *) data;
3543 	struct mii_data		*mii;
3544 	int			error = 0;
3545 
3546 	DC_LOCK(sc);
3547 
3548 	switch(command) {
3549 	case SIOCSIFFLAGS:
3550 		if (ifp->if_flags & IFF_UP) {
3551 			int need_setfilt = (ifp->if_flags ^ sc->dc_if_flags) &
3552 				(IFF_PROMISC | IFF_ALLMULTI);
3553 
3554 			if (ifp->if_flags & IFF_RUNNING) {
3555 				if (need_setfilt)
3556 					dc_setfilt(sc);
3557 			} else {
3558 				sc->dc_txthresh = 0;
3559 				dc_init(sc);
3560 			}
3561 		} else {
3562 			if (ifp->if_flags & IFF_RUNNING)
3563 				dc_stop(sc);
3564 		}
3565 		sc->dc_if_flags = ifp->if_flags;
3566 		error = 0;
3567 		break;
3568 	case SIOCADDMULTI:
3569 	case SIOCDELMULTI:
3570 		dc_setfilt(sc);
3571 		error = 0;
3572 		break;
3573 	case SIOCGIFMEDIA:
3574 	case SIOCSIFMEDIA:
3575 		mii = device_get_softc(sc->dc_miibus);
3576 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
3577 #ifdef SRM_MEDIA
3578 		if (sc->dc_srm_media)
3579 			sc->dc_srm_media = 0;
3580 #endif
3581 		break;
3582 	default:
3583 		error = ether_ioctl(ifp, command, data);
3584 		break;
3585 	}
3586 
3587 	DC_UNLOCK(sc);
3588 
3589 	return(error);
3590 }
3591 
3592 static void
3593 dc_watchdog(ifp)
3594 	struct ifnet		*ifp;
3595 {
3596 	struct dc_softc		*sc;
3597 
3598 	sc = ifp->if_softc;
3599 
3600 	DC_LOCK(sc);
3601 
3602 	ifp->if_oerrors++;
3603 	printf("dc%d: watchdog timeout\n", sc->dc_unit);
3604 
3605 	dc_stop(sc);
3606 	dc_reset(sc);
3607 	dc_init(sc);
3608 
3609 	if (ifp->if_snd.ifq_head != NULL)
3610 		dc_start(ifp);
3611 
3612 	DC_UNLOCK(sc);
3613 
3614 	return;
3615 }
3616 
3617 /*
3618  * Stop the adapter and free any mbufs allocated to the
3619  * RX and TX lists.
3620  */
3621 static void
3622 dc_stop(sc)
3623 	struct dc_softc		*sc;
3624 {
3625 	register int		i;
3626 	struct ifnet		*ifp;
3627 
3628 	DC_LOCK(sc);
3629 
3630 	ifp = &sc->arpcom.ac_if;
3631 	ifp->if_timer = 0;
3632 
3633 	callout_stop(&sc->dc_stat_ch);
3634 
3635 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3636 #ifdef DEVICE_POLLING
3637 	ether_poll_deregister(ifp);
3638 #endif
3639 
3640 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ON|DC_NETCFG_TX_ON));
3641 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3642 	CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
3643 	CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
3644 	sc->dc_link = 0;
3645 
3646 	/*
3647 	 * Free data in the RX lists.
3648 	 */
3649 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
3650 		if (sc->dc_cdata.dc_rx_chain[i] != NULL) {
3651 			m_freem(sc->dc_cdata.dc_rx_chain[i]);
3652 			sc->dc_cdata.dc_rx_chain[i] = NULL;
3653 		}
3654 	}
3655 	bzero((char *)&sc->dc_ldata->dc_rx_list,
3656 		sizeof(sc->dc_ldata->dc_rx_list));
3657 
3658 	/*
3659 	 * Free the TX list buffers.
3660 	 */
3661 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
3662 		if (sc->dc_cdata.dc_tx_chain[i] != NULL) {
3663 			if (sc->dc_ldata->dc_tx_list[i].dc_ctl &
3664 			    DC_TXCTL_SETUP) {
3665 				sc->dc_cdata.dc_tx_chain[i] = NULL;
3666 				continue;
3667 			}
3668 			m_freem(sc->dc_cdata.dc_tx_chain[i]);
3669 			sc->dc_cdata.dc_tx_chain[i] = NULL;
3670 		}
3671 	}
3672 
3673 	bzero((char *)&sc->dc_ldata->dc_tx_list,
3674 		sizeof(sc->dc_ldata->dc_tx_list));
3675 
3676 	DC_UNLOCK(sc);
3677 
3678 	return;
3679 }
3680 
3681 /*
3682  * Device suspend routine.  Stop the interface and save some PCI
3683  * settings in case the BIOS doesn't restore them properly on
3684  * resume.
3685  */
3686 static int
3687 dc_suspend(dev)
3688 	device_t		dev;
3689 {
3690 	register int		i;
3691 	int			s;
3692 	struct dc_softc		*sc;
3693 
3694 	s = splimp();
3695 
3696 	sc = device_get_softc(dev);
3697 
3698 	dc_stop(sc);
3699 
3700 	for (i = 0; i < 5; i++)
3701 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
3702 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
3703 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
3704 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
3705 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
3706 
3707 	sc->suspended = 1;
3708 
3709 	splx(s);
3710 	return (0);
3711 }
3712 
3713 /*
3714  * Device resume routine.  Restore some PCI settings in case the BIOS
3715  * doesn't, re-enable busmastering, and restart the interface if
3716  * appropriate.
3717  */
3718 static int
3719 dc_resume(dev)
3720 	device_t		dev;
3721 {
3722 	register int		i;
3723 	int			s;
3724 	struct dc_softc		*sc;
3725 	struct ifnet		*ifp;
3726 
3727 	s = splimp();
3728 
3729 	sc = device_get_softc(dev);
3730 	ifp = &sc->arpcom.ac_if;
3731 
3732 	dc_acpi(dev);
3733 
3734 	/* better way to do this? */
3735 	for (i = 0; i < 5; i++)
3736 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
3737 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
3738 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
3739 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
3740 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
3741 
3742 	/* reenable busmastering */
3743 	pci_enable_busmaster(dev);
3744 	pci_enable_io(dev, DC_RES);
3745 
3746 	/* reinitialize interface if necessary */
3747 	if (ifp->if_flags & IFF_UP)
3748 		dc_init(sc);
3749 
3750 	sc->suspended = 0;
3751 
3752 	splx(s);
3753 	return (0);
3754 }
3755 
3756 /*
3757  * Stop all chip I/O so that the kernel's probe routines don't
3758  * get confused by errant DMAs when rebooting.
3759  */
3760 static void
3761 dc_shutdown(dev)
3762 	device_t		dev;
3763 {
3764 	struct dc_softc		*sc;
3765 
3766 	sc = device_get_softc(dev);
3767 
3768 	dc_stop(sc);
3769 
3770 	return;
3771 }
3772