xref: /freebsd/sys/dev/dc/if_dc.c (revision 39beb93c3f8bdbf72a61fda42300b5ebed7390c8)
1 /*-
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ee.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /*
37  * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
38  * series chips and several workalikes including the following:
39  *
40  * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com)
41  * Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
42  * Lite-On 82c168/82c169 PNIC (www.litecom.com)
43  * ASIX Electronics AX88140A (www.asix.com.tw)
44  * ASIX Electronics AX88141 (www.asix.com.tw)
45  * ADMtek AL981 (www.admtek.com.tw)
46  * ADMtek AN985 (www.admtek.com.tw)
47  * Netgear FA511 (www.netgear.com) Appears to be rebadged ADMTek AN985
48  * Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
49  * Accton EN1217 (www.accton.com)
50  * Xircom X3201 (www.xircom.com)
51  * Abocom FE2500
52  * Conexant LANfinity (www.conexant.com)
53  * 3Com OfficeConnect 10/100B 3CSOHO100B (www.3com.com)
54  *
55  * Datasheets for the 21143 are available at developer.intel.com.
56  * Datasheets for the clone parts can be found at their respective sites.
57  * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
58  * The PNIC II is essentially a Macronix 98715A chip; the only difference
59  * worth noting is that its multicast hash table is only 128 bits wide
60  * instead of 512.
61  *
62  * Written by Bill Paul <wpaul@ee.columbia.edu>
63  * Electrical Engineering Department
64  * Columbia University, New York City
65  */
66 /*
67  * The Intel 21143 is the successor to the DEC 21140. It is basically
68  * the same as the 21140 but with a few new features. The 21143 supports
69  * three kinds of media attachments:
70  *
71  * o MII port, for 10Mbps and 100Mbps support and NWAY
72  *   autonegotiation provided by an external PHY.
73  * o SYM port, for symbol mode 100Mbps support.
74  * o 10baseT port.
75  * o AUI/BNC port.
76  *
77  * The 100Mbps SYM port and 10baseT port can be used together in
78  * combination with the internal NWAY support to create a 10/100
79  * autosensing configuration.
80  *
81  * Note that not all tulip workalikes are handled in this driver: we only
82  * deal with those which are relatively well behaved. The Winbond is
83  * handled separately due to its different register offsets and the
84  * special handling needed for its various bugs. The PNIC is handled
85  * here, but I'm not thrilled about it.
86  *
87  * All of the workalike chips use some form of MII transceiver support
88  * with the exception of the Macronix chips, which also have a SYM port.
89  * The ASIX AX88140A is also documented to have a SYM port, but all
90  * the cards I've seen use an MII transceiver, probably because the
91  * AX88140A doesn't support internal NWAY.
92  */
93 
94 #ifdef HAVE_KERNEL_OPTION_HEADERS
95 #include "opt_device_polling.h"
96 #endif
97 
98 #include <sys/param.h>
99 #include <sys/endian.h>
100 #include <sys/systm.h>
101 #include <sys/sockio.h>
102 #include <sys/mbuf.h>
103 #include <sys/malloc.h>
104 #include <sys/kernel.h>
105 #include <sys/module.h>
106 #include <sys/socket.h>
107 
108 #include <net/if.h>
109 #include <net/if_arp.h>
110 #include <net/ethernet.h>
111 #include <net/if_dl.h>
112 #include <net/if_media.h>
113 #include <net/if_types.h>
114 #include <net/if_vlan_var.h>
115 
116 #include <net/bpf.h>
117 
118 #include <machine/bus.h>
119 #include <machine/resource.h>
120 #include <sys/bus.h>
121 #include <sys/rman.h>
122 
123 #include <dev/mii/mii.h>
124 #include <dev/mii/miivar.h>
125 
126 #include <dev/pci/pcireg.h>
127 #include <dev/pci/pcivar.h>
128 
129 #define DC_USEIOSPACE
130 
131 #include <dev/dc/if_dcreg.h>
132 
133 #ifdef __sparc64__
134 #include <dev/ofw/openfirm.h>
135 #include <machine/ofw_machdep.h>
136 #endif
137 
138 MODULE_DEPEND(dc, pci, 1, 1, 1);
139 MODULE_DEPEND(dc, ether, 1, 1, 1);
140 MODULE_DEPEND(dc, miibus, 1, 1, 1);
141 
142 /*
143  * "device miibus" is required in kernel config.  See GENERIC if you get
144  * errors here.
145  */
146 #include "miibus_if.h"
147 
148 /*
149  * Various supported device vendors/types and their names.
150  */
151 static const struct dc_type dc_devs[] = {
152 	{ DC_DEVID(DC_VENDORID_DEC, DC_DEVICEID_21143), 0,
153 		"Intel 21143 10/100BaseTX" },
154 	{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009), 0,
155 		"Davicom DM9009 10/100BaseTX" },
156 	{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100), 0,
157 		"Davicom DM9100 10/100BaseTX" },
158 	{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102), DC_REVISION_DM9102A,
159 		"Davicom DM9102A 10/100BaseTX" },
160 	{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102), 0,
161 		"Davicom DM9102 10/100BaseTX" },
162 	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AL981), 0,
163 		"ADMtek AL981 10/100BaseTX" },
164 	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN985), 0,
165 		"ADMtek AN985 10/100BaseTX" },
166 	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511), 0,
167 		"ADMtek ADM9511 10/100BaseTX" },
168 	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513), 0,
169 		"ADMtek ADM9513 10/100BaseTX" },
170 	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_FA511), 0,
171 		"Netgear FA511 10/100BaseTX" },
172 	{ DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A), DC_REVISION_88141,
173 		"ASIX AX88141 10/100BaseTX" },
174 	{ DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A), 0,
175 		"ASIX AX88140A 10/100BaseTX" },
176 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713), DC_REVISION_98713A,
177 		"Macronix 98713A 10/100BaseTX" },
178 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713), 0,
179 		"Macronix 98713 10/100BaseTX" },
180 	{ DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP), DC_REVISION_98713A,
181 		"Compex RL100-TX 10/100BaseTX" },
182 	{ DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP), 0,
183 		"Compex RL100-TX 10/100BaseTX" },
184 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), DC_REVISION_98725,
185 		"Macronix 98725 10/100BaseTX" },
186 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), DC_REVISION_98715AEC_C,
187 		"Macronix 98715AEC-C 10/100BaseTX" },
188 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), 0,
189 		"Macronix 98715/98715A 10/100BaseTX" },
190 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98727), 0,
191 		"Macronix 98727/98732 10/100BaseTX" },
192 	{ DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C115), 0,
193 		"LC82C115 PNIC II 10/100BaseTX" },
194 	{ DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168), DC_REVISION_82C169,
195 		"82c169 PNIC 10/100BaseTX" },
196 	{ DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168), 0,
197 		"82c168 PNIC 10/100BaseTX" },
198 	{ DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN1217), 0,
199 		"Accton EN1217 10/100BaseTX" },
200 	{ DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN2242), 0,
201 		"Accton EN2242 MiniPCI 10/100BaseTX" },
202 	{ DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201), 0,
203 		"Xircom X3201 10/100BaseTX" },
204 	{ DC_DEVID(DC_VENDORID_DLINK, DC_DEVICEID_DRP32TXD), 0,
205 		"Neteasy DRP-32TXD Cardbus 10/100" },
206 	{ DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500), 0,
207 		"Abocom FE2500 10/100BaseTX" },
208 	{ DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500MX), 0,
209 		"Abocom FE2500MX 10/100BaseTX" },
210 	{ DC_DEVID(DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112), 0,
211 		"Conexant LANfinity MiniPCI 10/100BaseTX" },
212 	{ DC_DEVID(DC_VENDORID_HAWKING, DC_DEVICEID_HAWKING_PN672TX), 0,
213 		"Hawking CB102 CardBus 10/100" },
214 	{ DC_DEVID(DC_VENDORID_PLANEX, DC_DEVICEID_FNW3602T), 0,
215 		"PlaneX FNW-3602-T CardBus 10/100" },
216 	{ DC_DEVID(DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB), 0,
217 		"3Com OfficeConnect 10/100B" },
218 	{ DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN120), 0,
219 		"Microsoft MN-120 CardBus 10/100" },
220 	{ DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130), 0,
221 		"Microsoft MN-130 10/100" },
222 	{ DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB08), 0,
223 		"Linksys PCMPC200 CardBus 10/100" },
224 	{ DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB09), 0,
225 		"Linksys PCMPC200 CardBus 10/100" },
226 	{ 0, 0, NULL }
227 };
228 
229 static int dc_probe(device_t);
230 static int dc_attach(device_t);
231 static int dc_detach(device_t);
232 static int dc_suspend(device_t);
233 static int dc_resume(device_t);
234 static const struct dc_type *dc_devtype(device_t);
235 static int dc_newbuf(struct dc_softc *, int, int);
236 static int dc_encap(struct dc_softc *, struct mbuf **);
237 static void dc_pnic_rx_bug_war(struct dc_softc *, int);
238 static int dc_rx_resync(struct dc_softc *);
239 static void dc_rxeof(struct dc_softc *);
240 static void dc_txeof(struct dc_softc *);
241 static void dc_tick(void *);
242 static void dc_tx_underrun(struct dc_softc *);
243 static void dc_intr(void *);
244 static void dc_start(struct ifnet *);
245 static void dc_start_locked(struct ifnet *);
246 static int dc_ioctl(struct ifnet *, u_long, caddr_t);
247 static void dc_init(void *);
248 static void dc_init_locked(struct dc_softc *);
249 static void dc_stop(struct dc_softc *);
250 static void dc_watchdog(void *);
251 static int dc_shutdown(device_t);
252 static int dc_ifmedia_upd(struct ifnet *);
253 static void dc_ifmedia_sts(struct ifnet *, struct ifmediareq *);
254 
255 static void dc_delay(struct dc_softc *);
256 static void dc_eeprom_idle(struct dc_softc *);
257 static void dc_eeprom_putbyte(struct dc_softc *, int);
258 static void dc_eeprom_getword(struct dc_softc *, int, u_int16_t *);
259 static void dc_eeprom_getword_pnic(struct dc_softc *, int, u_int16_t *);
260 static void dc_eeprom_getword_xircom(struct dc_softc *, int, u_int16_t *);
261 static void dc_eeprom_width(struct dc_softc *);
262 static void dc_read_eeprom(struct dc_softc *, caddr_t, int, int, int);
263 
264 static void dc_mii_writebit(struct dc_softc *, int);
265 static int dc_mii_readbit(struct dc_softc *);
266 static void dc_mii_sync(struct dc_softc *);
267 static void dc_mii_send(struct dc_softc *, u_int32_t, int);
268 static int dc_mii_readreg(struct dc_softc *, struct dc_mii_frame *);
269 static int dc_mii_writereg(struct dc_softc *, struct dc_mii_frame *);
270 static int dc_miibus_readreg(device_t, int, int);
271 static int dc_miibus_writereg(device_t, int, int, int);
272 static void dc_miibus_statchg(device_t);
273 static void dc_miibus_mediainit(device_t);
274 
275 static void dc_setcfg(struct dc_softc *, int);
276 static uint32_t dc_mchash_le(struct dc_softc *, const uint8_t *);
277 static uint32_t dc_mchash_be(const uint8_t *);
278 static void dc_setfilt_21143(struct dc_softc *);
279 static void dc_setfilt_asix(struct dc_softc *);
280 static void dc_setfilt_admtek(struct dc_softc *);
281 static void dc_setfilt_xircom(struct dc_softc *);
282 
283 static void dc_setfilt(struct dc_softc *);
284 
285 static void dc_reset(struct dc_softc *);
286 static int dc_list_rx_init(struct dc_softc *);
287 static int dc_list_tx_init(struct dc_softc *);
288 
289 static void dc_read_srom(struct dc_softc *, int);
290 static void dc_parse_21143_srom(struct dc_softc *);
291 static void dc_decode_leaf_sia(struct dc_softc *, struct dc_eblock_sia *);
292 static void dc_decode_leaf_mii(struct dc_softc *, struct dc_eblock_mii *);
293 static void dc_decode_leaf_sym(struct dc_softc *, struct dc_eblock_sym *);
294 static void dc_apply_fixup(struct dc_softc *, int);
295 
296 #ifdef DC_USEIOSPACE
297 #define DC_RES			SYS_RES_IOPORT
298 #define DC_RID			DC_PCI_CFBIO
299 #else
300 #define DC_RES			SYS_RES_MEMORY
301 #define DC_RID			DC_PCI_CFBMA
302 #endif
303 
304 static device_method_t dc_methods[] = {
305 	/* Device interface */
306 	DEVMETHOD(device_probe,		dc_probe),
307 	DEVMETHOD(device_attach,	dc_attach),
308 	DEVMETHOD(device_detach,	dc_detach),
309 	DEVMETHOD(device_suspend,	dc_suspend),
310 	DEVMETHOD(device_resume,	dc_resume),
311 	DEVMETHOD(device_shutdown,	dc_shutdown),
312 
313 	/* bus interface */
314 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
315 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
316 
317 	/* MII interface */
318 	DEVMETHOD(miibus_readreg,	dc_miibus_readreg),
319 	DEVMETHOD(miibus_writereg,	dc_miibus_writereg),
320 	DEVMETHOD(miibus_statchg,	dc_miibus_statchg),
321 	DEVMETHOD(miibus_mediainit,	dc_miibus_mediainit),
322 
323 	{ 0, 0 }
324 };
325 
326 static driver_t dc_driver = {
327 	"dc",
328 	dc_methods,
329 	sizeof(struct dc_softc)
330 };
331 
332 static devclass_t dc_devclass;
333 
334 DRIVER_MODULE(dc, cardbus, dc_driver, dc_devclass, 0, 0);
335 DRIVER_MODULE(dc, pci, dc_driver, dc_devclass, 0, 0);
336 DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, 0, 0);
337 
338 #define DC_SETBIT(sc, reg, x)				\
339 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
340 
341 #define DC_CLRBIT(sc, reg, x)				\
342 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
343 
344 #define SIO_SET(x)	DC_SETBIT(sc, DC_SIO, (x))
345 #define SIO_CLR(x)	DC_CLRBIT(sc, DC_SIO, (x))
346 
347 static void
348 dc_delay(struct dc_softc *sc)
349 {
350 	int idx;
351 
352 	for (idx = (300 / 33) + 1; idx > 0; idx--)
353 		CSR_READ_4(sc, DC_BUSCTL);
354 }
355 
356 static void
357 dc_eeprom_width(struct dc_softc *sc)
358 {
359 	int i;
360 
361 	/* Force EEPROM to idle state. */
362 	dc_eeprom_idle(sc);
363 
364 	/* Enter EEPROM access mode. */
365 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
366 	dc_delay(sc);
367 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
368 	dc_delay(sc);
369 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
370 	dc_delay(sc);
371 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
372 	dc_delay(sc);
373 
374 	for (i = 3; i--;) {
375 		if (6 & (1 << i))
376 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
377 		else
378 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
379 		dc_delay(sc);
380 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
381 		dc_delay(sc);
382 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
383 		dc_delay(sc);
384 	}
385 
386 	for (i = 1; i <= 12; i++) {
387 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
388 		dc_delay(sc);
389 		if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) {
390 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
391 			dc_delay(sc);
392 			break;
393 		}
394 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
395 		dc_delay(sc);
396 	}
397 
398 	/* Turn off EEPROM access mode. */
399 	dc_eeprom_idle(sc);
400 
401 	if (i < 4 || i > 12)
402 		sc->dc_romwidth = 6;
403 	else
404 		sc->dc_romwidth = i;
405 
406 	/* Enter EEPROM access mode. */
407 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
408 	dc_delay(sc);
409 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
410 	dc_delay(sc);
411 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
412 	dc_delay(sc);
413 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
414 	dc_delay(sc);
415 
416 	/* Turn off EEPROM access mode. */
417 	dc_eeprom_idle(sc);
418 }
419 
420 static void
421 dc_eeprom_idle(struct dc_softc *sc)
422 {
423 	int i;
424 
425 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
426 	dc_delay(sc);
427 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
428 	dc_delay(sc);
429 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
430 	dc_delay(sc);
431 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
432 	dc_delay(sc);
433 
434 	for (i = 0; i < 25; i++) {
435 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
436 		dc_delay(sc);
437 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
438 		dc_delay(sc);
439 	}
440 
441 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
442 	dc_delay(sc);
443 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
444 	dc_delay(sc);
445 	CSR_WRITE_4(sc, DC_SIO, 0x00000000);
446 }
447 
448 /*
449  * Send a read command and address to the EEPROM, check for ACK.
450  */
451 static void
452 dc_eeprom_putbyte(struct dc_softc *sc, int addr)
453 {
454 	int d, i;
455 
456 	d = DC_EECMD_READ >> 6;
457 	for (i = 3; i--; ) {
458 		if (d & (1 << i))
459 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
460 		else
461 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
462 		dc_delay(sc);
463 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
464 		dc_delay(sc);
465 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
466 		dc_delay(sc);
467 	}
468 
469 	/*
470 	 * Feed in each bit and strobe the clock.
471 	 */
472 	for (i = sc->dc_romwidth; i--;) {
473 		if (addr & (1 << i)) {
474 			SIO_SET(DC_SIO_EE_DATAIN);
475 		} else {
476 			SIO_CLR(DC_SIO_EE_DATAIN);
477 		}
478 		dc_delay(sc);
479 		SIO_SET(DC_SIO_EE_CLK);
480 		dc_delay(sc);
481 		SIO_CLR(DC_SIO_EE_CLK);
482 		dc_delay(sc);
483 	}
484 }
485 
486 /*
487  * Read a word of data stored in the EEPROM at address 'addr.'
488  * The PNIC 82c168/82c169 has its own non-standard way to read
489  * the EEPROM.
490  */
491 static void
492 dc_eeprom_getword_pnic(struct dc_softc *sc, int addr, u_int16_t *dest)
493 {
494 	int i;
495 	u_int32_t r;
496 
497 	CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ | addr);
498 
499 	for (i = 0; i < DC_TIMEOUT; i++) {
500 		DELAY(1);
501 		r = CSR_READ_4(sc, DC_SIO);
502 		if (!(r & DC_PN_SIOCTL_BUSY)) {
503 			*dest = (u_int16_t)(r & 0xFFFF);
504 			return;
505 		}
506 	}
507 }
508 
509 /*
510  * Read a word of data stored in the EEPROM at address 'addr.'
511  * The Xircom X3201 has its own non-standard way to read
512  * the EEPROM, too.
513  */
514 static void
515 dc_eeprom_getword_xircom(struct dc_softc *sc, int addr, u_int16_t *dest)
516 {
517 
518 	SIO_SET(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
519 
520 	addr *= 2;
521 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
522 	*dest = (u_int16_t)CSR_READ_4(sc, DC_SIO) & 0xff;
523 	addr += 1;
524 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
525 	*dest |= ((u_int16_t)CSR_READ_4(sc, DC_SIO) & 0xff) << 8;
526 
527 	SIO_CLR(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
528 }
529 
530 /*
531  * Read a word of data stored in the EEPROM at address 'addr.'
532  */
533 static void
534 dc_eeprom_getword(struct dc_softc *sc, int addr, u_int16_t *dest)
535 {
536 	int i;
537 	u_int16_t word = 0;
538 
539 	/* Force EEPROM to idle state. */
540 	dc_eeprom_idle(sc);
541 
542 	/* Enter EEPROM access mode. */
543 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
544 	dc_delay(sc);
545 	DC_SETBIT(sc, DC_SIO,  DC_SIO_ROMCTL_READ);
546 	dc_delay(sc);
547 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
548 	dc_delay(sc);
549 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
550 	dc_delay(sc);
551 
552 	/*
553 	 * Send address of word we want to read.
554 	 */
555 	dc_eeprom_putbyte(sc, addr);
556 
557 	/*
558 	 * Start reading bits from EEPROM.
559 	 */
560 	for (i = 0x8000; i; i >>= 1) {
561 		SIO_SET(DC_SIO_EE_CLK);
562 		dc_delay(sc);
563 		if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
564 			word |= i;
565 		dc_delay(sc);
566 		SIO_CLR(DC_SIO_EE_CLK);
567 		dc_delay(sc);
568 	}
569 
570 	/* Turn off EEPROM access mode. */
571 	dc_eeprom_idle(sc);
572 
573 	*dest = word;
574 }
575 
576 /*
577  * Read a sequence of words from the EEPROM.
578  */
579 static void
580 dc_read_eeprom(struct dc_softc *sc, caddr_t dest, int off, int cnt, int be)
581 {
582 	int i;
583 	u_int16_t word = 0, *ptr;
584 
585 	for (i = 0; i < cnt; i++) {
586 		if (DC_IS_PNIC(sc))
587 			dc_eeprom_getword_pnic(sc, off + i, &word);
588 		else if (DC_IS_XIRCOM(sc))
589 			dc_eeprom_getword_xircom(sc, off + i, &word);
590 		else
591 			dc_eeprom_getword(sc, off + i, &word);
592 		ptr = (u_int16_t *)(dest + (i * 2));
593 		if (be)
594 			*ptr = be16toh(word);
595 		else
596 			*ptr = le16toh(word);
597 	}
598 }
599 
600 /*
601  * The following two routines are taken from the Macronix 98713
602  * Application Notes pp.19-21.
603  */
604 /*
605  * Write a bit to the MII bus.
606  */
607 static void
608 dc_mii_writebit(struct dc_softc *sc, int bit)
609 {
610 	uint32_t reg;
611 
612 	reg = DC_SIO_ROMCTL_WRITE | (bit != 0 ? DC_SIO_MII_DATAOUT : 0);
613 	CSR_WRITE_4(sc, DC_SIO, reg);
614 	CSR_BARRIER_4(sc, DC_SIO,
615 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
616 	DELAY(1);
617 
618 	CSR_WRITE_4(sc, DC_SIO, reg | DC_SIO_MII_CLK);
619 	CSR_BARRIER_4(sc, DC_SIO,
620 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
621 	DELAY(1);
622 	CSR_WRITE_4(sc, DC_SIO, reg);
623 	CSR_BARRIER_4(sc, DC_SIO,
624 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
625 	DELAY(1);
626 }
627 
628 /*
629  * Read a bit from the MII bus.
630  */
631 static int
632 dc_mii_readbit(struct dc_softc *sc)
633 {
634 	uint32_t reg;
635 
636 	reg = DC_SIO_ROMCTL_READ | DC_SIO_MII_DIR;
637 	CSR_WRITE_4(sc, DC_SIO, reg);
638 	CSR_BARRIER_4(sc, DC_SIO,
639 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
640 	DELAY(1);
641 	(void)CSR_READ_4(sc, DC_SIO);
642 	CSR_WRITE_4(sc, DC_SIO, reg | DC_SIO_MII_CLK);
643 	CSR_BARRIER_4(sc, DC_SIO,
644 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
645 	DELAY(1);
646 	CSR_WRITE_4(sc, DC_SIO, reg);
647 	CSR_BARRIER_4(sc, DC_SIO,
648 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
649 	DELAY(1);
650 	if (CSR_READ_4(sc, DC_SIO) & DC_SIO_MII_DATAIN)
651 		return (1);
652 
653 	return (0);
654 }
655 
656 /*
657  * Sync the PHYs by setting data bit and strobing the clock 32 times.
658  */
659 static void
660 dc_mii_sync(struct dc_softc *sc)
661 {
662 	int i;
663 
664 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
665 	CSR_BARRIER_4(sc, DC_SIO,
666 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
667 	DELAY(1);
668 
669 	for (i = 0; i < 32; i++)
670 		dc_mii_writebit(sc, 1);
671 }
672 
673 /*
674  * Clock a series of bits through the MII.
675  */
676 static void
677 dc_mii_send(struct dc_softc *sc, u_int32_t bits, int cnt)
678 {
679 	int i;
680 
681 	for (i = (0x1 << (cnt - 1)); i; i >>= 1)
682 		dc_mii_writebit(sc, bits & i);
683 }
684 
685 /*
686  * Read an PHY register through the MII.
687  */
688 static int
689 dc_mii_readreg(struct dc_softc *sc, struct dc_mii_frame *frame)
690 {
691 	int i;
692 
693 	/*
694 	 * Set up frame for RX.
695 	 */
696 	frame->mii_stdelim = DC_MII_STARTDELIM;
697 	frame->mii_opcode = DC_MII_READOP;
698 
699 	/*
700 	 * Sync the PHYs.
701 	 */
702 	dc_mii_sync(sc);
703 
704 	/*
705 	 * Send command/address info.
706 	 */
707 	dc_mii_send(sc, frame->mii_stdelim, 2);
708 	dc_mii_send(sc, frame->mii_opcode, 2);
709 	dc_mii_send(sc, frame->mii_phyaddr, 5);
710 	dc_mii_send(sc, frame->mii_regaddr, 5);
711 
712 	/*
713 	 * Now try reading data bits.  If the turnaround failed, we still
714 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
715 	 */
716 	frame->mii_turnaround = dc_mii_readbit(sc);
717 	if (frame->mii_turnaround != 0) {
718 		for (i = 0; i < 16; i++)
719 			dc_mii_readbit(sc);
720 		goto fail;
721 	}
722 	for (i = 0x8000; i; i >>= 1) {
723 		if (dc_mii_readbit(sc))
724 			frame->mii_data |= i;
725 	}
726 
727 fail:
728 
729 	/* Clock the idle bits. */
730 	dc_mii_writebit(sc, 0);
731 	dc_mii_writebit(sc, 0);
732 
733 	if (frame->mii_turnaround != 0)
734 		return (1);
735 	return (0);
736 }
737 
738 /*
739  * Write to a PHY register through the MII.
740  */
741 static int
742 dc_mii_writereg(struct dc_softc *sc, struct dc_mii_frame *frame)
743 {
744 
745 	/*
746 	 * Set up frame for TX.
747 	 */
748 	frame->mii_stdelim = DC_MII_STARTDELIM;
749 	frame->mii_opcode = DC_MII_WRITEOP;
750 	frame->mii_turnaround = DC_MII_TURNAROUND;
751 
752 	/*
753 	 * Sync the PHYs.
754 	 */
755 	dc_mii_sync(sc);
756 
757 	dc_mii_send(sc, frame->mii_stdelim, 2);
758 	dc_mii_send(sc, frame->mii_opcode, 2);
759 	dc_mii_send(sc, frame->mii_phyaddr, 5);
760 	dc_mii_send(sc, frame->mii_regaddr, 5);
761 	dc_mii_send(sc, frame->mii_turnaround, 2);
762 	dc_mii_send(sc, frame->mii_data, 16);
763 
764 	/* Clock the idle bits. */
765 	dc_mii_writebit(sc, 0);
766 	dc_mii_writebit(sc, 0);
767 
768 	return (0);
769 }
770 
771 static int
772 dc_miibus_readreg(device_t dev, int phy, int reg)
773 {
774 	struct dc_mii_frame frame;
775 	struct dc_softc	 *sc;
776 	int i, rval, phy_reg = 0;
777 
778 	sc = device_get_softc(dev);
779 	bzero(&frame, sizeof(frame));
780 
781 	/*
782 	 * Note: both the AL981 and AN985 have internal PHYs,
783 	 * however the AL981 provides direct access to the PHY
784 	 * registers while the AN985 uses a serial MII interface.
785 	 * The AN985's MII interface is also buggy in that you
786 	 * can read from any MII address (0 to 31), but only address 1
787 	 * behaves normally. To deal with both cases, we pretend
788 	 * that the PHY is at MII address 1.
789 	 */
790 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
791 		return (0);
792 
793 	/*
794 	 * Note: the ukphy probes of the RS7112 report a PHY at
795 	 * MII address 0 (possibly HomePNA?) and 1 (ethernet)
796 	 * so we only respond to correct one.
797 	 */
798 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
799 		return (0);
800 
801 	if (sc->dc_pmode != DC_PMODE_MII) {
802 		if (phy == (MII_NPHY - 1)) {
803 			switch (reg) {
804 			case MII_BMSR:
805 			/*
806 			 * Fake something to make the probe
807 			 * code think there's a PHY here.
808 			 */
809 				return (BMSR_MEDIAMASK);
810 				break;
811 			case MII_PHYIDR1:
812 				if (DC_IS_PNIC(sc))
813 					return (DC_VENDORID_LO);
814 				return (DC_VENDORID_DEC);
815 				break;
816 			case MII_PHYIDR2:
817 				if (DC_IS_PNIC(sc))
818 					return (DC_DEVICEID_82C168);
819 				return (DC_DEVICEID_21143);
820 				break;
821 			default:
822 				return (0);
823 				break;
824 			}
825 		} else
826 			return (0);
827 	}
828 
829 	if (DC_IS_PNIC(sc)) {
830 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
831 		    (phy << 23) | (reg << 18));
832 		for (i = 0; i < DC_TIMEOUT; i++) {
833 			DELAY(1);
834 			rval = CSR_READ_4(sc, DC_PN_MII);
835 			if (!(rval & DC_PN_MII_BUSY)) {
836 				rval &= 0xFFFF;
837 				return (rval == 0xFFFF ? 0 : rval);
838 			}
839 		}
840 		return (0);
841 	}
842 
843 	if (DC_IS_COMET(sc)) {
844 		switch (reg) {
845 		case MII_BMCR:
846 			phy_reg = DC_AL_BMCR;
847 			break;
848 		case MII_BMSR:
849 			phy_reg = DC_AL_BMSR;
850 			break;
851 		case MII_PHYIDR1:
852 			phy_reg = DC_AL_VENID;
853 			break;
854 		case MII_PHYIDR2:
855 			phy_reg = DC_AL_DEVID;
856 			break;
857 		case MII_ANAR:
858 			phy_reg = DC_AL_ANAR;
859 			break;
860 		case MII_ANLPAR:
861 			phy_reg = DC_AL_LPAR;
862 			break;
863 		case MII_ANER:
864 			phy_reg = DC_AL_ANER;
865 			break;
866 		default:
867 			device_printf(dev, "phy_read: bad phy register %x\n",
868 			    reg);
869 			return (0);
870 			break;
871 		}
872 
873 		rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
874 
875 		if (rval == 0xFFFF)
876 			return (0);
877 		return (rval);
878 	}
879 
880 	frame.mii_phyaddr = phy;
881 	frame.mii_regaddr = reg;
882 	if (sc->dc_type == DC_TYPE_98713) {
883 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
884 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
885 	}
886 	dc_mii_readreg(sc, &frame);
887 	if (sc->dc_type == DC_TYPE_98713)
888 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
889 
890 	return (frame.mii_data);
891 }
892 
893 static int
894 dc_miibus_writereg(device_t dev, int phy, int reg, int data)
895 {
896 	struct dc_softc *sc;
897 	struct dc_mii_frame frame;
898 	int i, phy_reg = 0;
899 
900 	sc = device_get_softc(dev);
901 	bzero(&frame, sizeof(frame));
902 
903 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
904 		return (0);
905 
906 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
907 		return (0);
908 
909 	if (DC_IS_PNIC(sc)) {
910 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
911 		    (phy << 23) | (reg << 10) | data);
912 		for (i = 0; i < DC_TIMEOUT; i++) {
913 			if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
914 				break;
915 		}
916 		return (0);
917 	}
918 
919 	if (DC_IS_COMET(sc)) {
920 		switch (reg) {
921 		case MII_BMCR:
922 			phy_reg = DC_AL_BMCR;
923 			break;
924 		case MII_BMSR:
925 			phy_reg = DC_AL_BMSR;
926 			break;
927 		case MII_PHYIDR1:
928 			phy_reg = DC_AL_VENID;
929 			break;
930 		case MII_PHYIDR2:
931 			phy_reg = DC_AL_DEVID;
932 			break;
933 		case MII_ANAR:
934 			phy_reg = DC_AL_ANAR;
935 			break;
936 		case MII_ANLPAR:
937 			phy_reg = DC_AL_LPAR;
938 			break;
939 		case MII_ANER:
940 			phy_reg = DC_AL_ANER;
941 			break;
942 		default:
943 			device_printf(dev, "phy_write: bad phy register %x\n",
944 			    reg);
945 			return (0);
946 			break;
947 		}
948 
949 		CSR_WRITE_4(sc, phy_reg, data);
950 		return (0);
951 	}
952 
953 	frame.mii_phyaddr = phy;
954 	frame.mii_regaddr = reg;
955 	frame.mii_data = data;
956 
957 	if (sc->dc_type == DC_TYPE_98713) {
958 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
959 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
960 	}
961 	dc_mii_writereg(sc, &frame);
962 	if (sc->dc_type == DC_TYPE_98713)
963 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
964 
965 	return (0);
966 }
967 
968 static void
969 dc_miibus_statchg(device_t dev)
970 {
971 	struct dc_softc *sc;
972 	struct mii_data *mii;
973 	struct ifmedia *ifm;
974 
975 	sc = device_get_softc(dev);
976 	if (DC_IS_ADMTEK(sc))
977 		return;
978 
979 	mii = device_get_softc(sc->dc_miibus);
980 	ifm = &mii->mii_media;
981 	if (DC_IS_DAVICOM(sc) &&
982 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
983 		dc_setcfg(sc, ifm->ifm_media);
984 		sc->dc_if_media = ifm->ifm_media;
985 	} else {
986 		dc_setcfg(sc, mii->mii_media_active);
987 		sc->dc_if_media = mii->mii_media_active;
988 	}
989 }
990 
991 /*
992  * Special support for DM9102A cards with HomePNA PHYs. Note:
993  * with the Davicom DM9102A/DM9801 eval board that I have, it seems
994  * to be impossible to talk to the management interface of the DM9801
995  * PHY (its MDIO pin is not connected to anything). Consequently,
996  * the driver has to just 'know' about the additional mode and deal
997  * with it itself. *sigh*
998  */
999 static void
1000 dc_miibus_mediainit(device_t dev)
1001 {
1002 	struct dc_softc *sc;
1003 	struct mii_data *mii;
1004 	struct ifmedia *ifm;
1005 	int rev;
1006 
1007 	rev = pci_get_revid(dev);
1008 
1009 	sc = device_get_softc(dev);
1010 	mii = device_get_softc(sc->dc_miibus);
1011 	ifm = &mii->mii_media;
1012 
1013 	if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A)
1014 		ifmedia_add(ifm, IFM_ETHER | IFM_HPNA_1, 0, NULL);
1015 }
1016 
1017 #define DC_BITS_512	9
1018 #define DC_BITS_128	7
1019 #define DC_BITS_64	6
1020 
1021 static uint32_t
1022 dc_mchash_le(struct dc_softc *sc, const uint8_t *addr)
1023 {
1024 	uint32_t crc;
1025 
1026 	/* Compute CRC for the address value. */
1027 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
1028 
1029 	/*
1030 	 * The hash table on the PNIC II and the MX98715AEC-C/D/E
1031 	 * chips is only 128 bits wide.
1032 	 */
1033 	if (sc->dc_flags & DC_128BIT_HASH)
1034 		return (crc & ((1 << DC_BITS_128) - 1));
1035 
1036 	/* The hash table on the MX98715BEC is only 64 bits wide. */
1037 	if (sc->dc_flags & DC_64BIT_HASH)
1038 		return (crc & ((1 << DC_BITS_64) - 1));
1039 
1040 	/* Xircom's hash filtering table is different (read: weird) */
1041 	/* Xircom uses the LEAST significant bits */
1042 	if (DC_IS_XIRCOM(sc)) {
1043 		if ((crc & 0x180) == 0x180)
1044 			return ((crc & 0x0F) + (crc & 0x70) * 3 + (14 << 4));
1045 		else
1046 			return ((crc & 0x1F) + ((crc >> 1) & 0xF0) * 3 +
1047 			    (12 << 4));
1048 	}
1049 
1050 	return (crc & ((1 << DC_BITS_512) - 1));
1051 }
1052 
1053 /*
1054  * Calculate CRC of a multicast group address, return the lower 6 bits.
1055  */
1056 static uint32_t
1057 dc_mchash_be(const uint8_t *addr)
1058 {
1059 	uint32_t crc;
1060 
1061 	/* Compute CRC for the address value. */
1062 	crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
1063 
1064 	/* Return the filter bit position. */
1065 	return ((crc >> 26) & 0x0000003F);
1066 }
1067 
1068 /*
1069  * 21143-style RX filter setup routine. Filter programming is done by
1070  * downloading a special setup frame into the TX engine. 21143, Macronix,
1071  * PNIC, PNIC II and Davicom chips are programmed this way.
1072  *
1073  * We always program the chip using 'hash perfect' mode, i.e. one perfect
1074  * address (our node address) and a 512-bit hash filter for multicast
1075  * frames. We also sneak the broadcast address into the hash filter since
1076  * we need that too.
1077  */
1078 static void
1079 dc_setfilt_21143(struct dc_softc *sc)
1080 {
1081 	uint16_t eaddr[(ETHER_ADDR_LEN+1)/2];
1082 	struct dc_desc *sframe;
1083 	u_int32_t h, *sp;
1084 	struct ifmultiaddr *ifma;
1085 	struct ifnet *ifp;
1086 	int i;
1087 
1088 	ifp = sc->dc_ifp;
1089 
1090 	i = sc->dc_cdata.dc_tx_prod;
1091 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1092 	sc->dc_cdata.dc_tx_cnt++;
1093 	sframe = &sc->dc_ldata->dc_tx_list[i];
1094 	sp = sc->dc_cdata.dc_sbuf;
1095 	bzero(sp, DC_SFRAME_LEN);
1096 
1097 	sframe->dc_data = htole32(sc->dc_saddr);
1098 	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
1099 	    DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
1100 
1101 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
1102 
1103 	/* If we want promiscuous mode, set the allframes bit. */
1104 	if (ifp->if_flags & IFF_PROMISC)
1105 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1106 	else
1107 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1108 
1109 	if (ifp->if_flags & IFF_ALLMULTI)
1110 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1111 	else
1112 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1113 
1114 	IF_ADDR_LOCK(ifp);
1115 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1116 		if (ifma->ifma_addr->sa_family != AF_LINK)
1117 			continue;
1118 		h = dc_mchash_le(sc,
1119 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1120 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1121 	}
1122 	IF_ADDR_UNLOCK(ifp);
1123 
1124 	if (ifp->if_flags & IFF_BROADCAST) {
1125 		h = dc_mchash_le(sc, ifp->if_broadcastaddr);
1126 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1127 	}
1128 
1129 	/* Set our MAC address. */
1130 	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1131 	sp[39] = DC_SP_MAC(eaddr[0]);
1132 	sp[40] = DC_SP_MAC(eaddr[1]);
1133 	sp[41] = DC_SP_MAC(eaddr[2]);
1134 
1135 	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1136 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1137 
1138 	/*
1139 	 * The PNIC takes an exceedingly long time to process its
1140 	 * setup frame; wait 10ms after posting the setup frame
1141 	 * before proceeding, just so it has time to swallow its
1142 	 * medicine.
1143 	 */
1144 	DELAY(10000);
1145 
1146 	sc->dc_wdog_timer = 5;
1147 }
1148 
1149 static void
1150 dc_setfilt_admtek(struct dc_softc *sc)
1151 {
1152 	uint8_t eaddr[ETHER_ADDR_LEN];
1153 	struct ifnet *ifp;
1154 	struct ifmultiaddr *ifma;
1155 	int h = 0;
1156 	u_int32_t hashes[2] = { 0, 0 };
1157 
1158 	ifp = sc->dc_ifp;
1159 
1160 	/* Init our MAC address. */
1161 	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1162 	CSR_WRITE_4(sc, DC_AL_PAR0, eaddr[3] << 24 | eaddr[2] << 16 |
1163 	    eaddr[1] << 8 | eaddr[0]);
1164 	CSR_WRITE_4(sc, DC_AL_PAR1, eaddr[5] << 8 | eaddr[4]);
1165 
1166 	/* If we want promiscuous mode, set the allframes bit. */
1167 	if (ifp->if_flags & IFF_PROMISC)
1168 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1169 	else
1170 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1171 
1172 	if (ifp->if_flags & IFF_ALLMULTI)
1173 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1174 	else
1175 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1176 
1177 	/* First, zot all the existing hash bits. */
1178 	CSR_WRITE_4(sc, DC_AL_MAR0, 0);
1179 	CSR_WRITE_4(sc, DC_AL_MAR1, 0);
1180 
1181 	/*
1182 	 * If we're already in promisc or allmulti mode, we
1183 	 * don't have to bother programming the multicast filter.
1184 	 */
1185 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
1186 		return;
1187 
1188 	/* Now program new ones. */
1189 	IF_ADDR_LOCK(ifp);
1190 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1191 		if (ifma->ifma_addr->sa_family != AF_LINK)
1192 			continue;
1193 		if (DC_IS_CENTAUR(sc))
1194 			h = dc_mchash_le(sc,
1195 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1196 		else
1197 			h = dc_mchash_be(
1198 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1199 		if (h < 32)
1200 			hashes[0] |= (1 << h);
1201 		else
1202 			hashes[1] |= (1 << (h - 32));
1203 	}
1204 	IF_ADDR_UNLOCK(ifp);
1205 
1206 	CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]);
1207 	CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]);
1208 }
1209 
1210 static void
1211 dc_setfilt_asix(struct dc_softc *sc)
1212 {
1213 	uint32_t eaddr[(ETHER_ADDR_LEN+3)/4];
1214 	struct ifnet *ifp;
1215 	struct ifmultiaddr *ifma;
1216 	int h = 0;
1217 	u_int32_t hashes[2] = { 0, 0 };
1218 
1219 	ifp = sc->dc_ifp;
1220 
1221 	/* Init our MAC address. */
1222 	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1223 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
1224 	CSR_WRITE_4(sc, DC_AX_FILTDATA, eaddr[0]);
1225 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
1226 	CSR_WRITE_4(sc, DC_AX_FILTDATA, eaddr[1]);
1227 
1228 	/* If we want promiscuous mode, set the allframes bit. */
1229 	if (ifp->if_flags & IFF_PROMISC)
1230 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1231 	else
1232 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1233 
1234 	if (ifp->if_flags & IFF_ALLMULTI)
1235 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1236 	else
1237 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1238 
1239 	/*
1240 	 * The ASIX chip has a special bit to enable reception
1241 	 * of broadcast frames.
1242 	 */
1243 	if (ifp->if_flags & IFF_BROADCAST)
1244 		DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1245 	else
1246 		DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1247 
1248 	/* first, zot all the existing hash bits */
1249 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1250 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1251 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1252 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1253 
1254 	/*
1255 	 * If we're already in promisc or allmulti mode, we
1256 	 * don't have to bother programming the multicast filter.
1257 	 */
1258 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
1259 		return;
1260 
1261 	/* now program new ones */
1262 	IF_ADDR_LOCK(ifp);
1263 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1264 		if (ifma->ifma_addr->sa_family != AF_LINK)
1265 			continue;
1266 		h = dc_mchash_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1267 		if (h < 32)
1268 			hashes[0] |= (1 << h);
1269 		else
1270 			hashes[1] |= (1 << (h - 32));
1271 	}
1272 	IF_ADDR_UNLOCK(ifp);
1273 
1274 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1275 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
1276 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1277 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
1278 }
1279 
1280 static void
1281 dc_setfilt_xircom(struct dc_softc *sc)
1282 {
1283 	uint16_t eaddr[(ETHER_ADDR_LEN+1)/2];
1284 	struct ifnet *ifp;
1285 	struct ifmultiaddr *ifma;
1286 	struct dc_desc *sframe;
1287 	u_int32_t h, *sp;
1288 	int i;
1289 
1290 	ifp = sc->dc_ifp;
1291 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1292 
1293 	i = sc->dc_cdata.dc_tx_prod;
1294 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1295 	sc->dc_cdata.dc_tx_cnt++;
1296 	sframe = &sc->dc_ldata->dc_tx_list[i];
1297 	sp = sc->dc_cdata.dc_sbuf;
1298 	bzero(sp, DC_SFRAME_LEN);
1299 
1300 	sframe->dc_data = htole32(sc->dc_saddr);
1301 	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
1302 	    DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
1303 
1304 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
1305 
1306 	/* If we want promiscuous mode, set the allframes bit. */
1307 	if (ifp->if_flags & IFF_PROMISC)
1308 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1309 	else
1310 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1311 
1312 	if (ifp->if_flags & IFF_ALLMULTI)
1313 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1314 	else
1315 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1316 
1317 	IF_ADDR_LOCK(ifp);
1318 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1319 		if (ifma->ifma_addr->sa_family != AF_LINK)
1320 			continue;
1321 		h = dc_mchash_le(sc,
1322 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1323 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1324 	}
1325 	IF_ADDR_UNLOCK(ifp);
1326 
1327 	if (ifp->if_flags & IFF_BROADCAST) {
1328 		h = dc_mchash_le(sc, ifp->if_broadcastaddr);
1329 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1330 	}
1331 
1332 	/* Set our MAC address. */
1333 	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1334 	sp[0] = DC_SP_MAC(eaddr[0]);
1335 	sp[1] = DC_SP_MAC(eaddr[1]);
1336 	sp[2] = DC_SP_MAC(eaddr[2]);
1337 
1338 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
1339 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
1340 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1341 	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1342 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1343 
1344 	/*
1345 	 * Wait some time...
1346 	 */
1347 	DELAY(1000);
1348 
1349 	sc->dc_wdog_timer = 5;
1350 }
1351 
1352 static void
1353 dc_setfilt(struct dc_softc *sc)
1354 {
1355 
1356 	if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
1357 	    DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc))
1358 		dc_setfilt_21143(sc);
1359 
1360 	if (DC_IS_ASIX(sc))
1361 		dc_setfilt_asix(sc);
1362 
1363 	if (DC_IS_ADMTEK(sc))
1364 		dc_setfilt_admtek(sc);
1365 
1366 	if (DC_IS_XIRCOM(sc))
1367 		dc_setfilt_xircom(sc);
1368 }
1369 
1370 /*
1371  * In order to fiddle with the 'full-duplex' and '100Mbps' bits in
1372  * the netconfig register, we first have to put the transmit and/or
1373  * receive logic in the idle state.
1374  */
1375 static void
1376 dc_setcfg(struct dc_softc *sc, int media)
1377 {
1378 	int i, restart = 0, watchdogreg;
1379 	u_int32_t isr;
1380 
1381 	if (IFM_SUBTYPE(media) == IFM_NONE)
1382 		return;
1383 
1384 	if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON)) {
1385 		restart = 1;
1386 		DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1387 
1388 		for (i = 0; i < DC_TIMEOUT; i++) {
1389 			isr = CSR_READ_4(sc, DC_ISR);
1390 			if (isr & DC_ISR_TX_IDLE &&
1391 			    ((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
1392 			    (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT))
1393 				break;
1394 			DELAY(10);
1395 		}
1396 
1397 		if (i == DC_TIMEOUT) {
1398 			if (!(isr & DC_ISR_TX_IDLE) && !DC_IS_ASIX(sc))
1399 				device_printf(sc->dc_dev,
1400 				    "%s: failed to force tx to idle state\n",
1401 				    __func__);
1402 			if (!((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
1403 			    (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT) &&
1404 			    !DC_HAS_BROKEN_RXSTATE(sc))
1405 				device_printf(sc->dc_dev,
1406 				    "%s: failed to force rx to idle state\n",
1407 				    __func__);
1408 		}
1409 	}
1410 
1411 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
1412 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1413 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1414 		if (sc->dc_pmode == DC_PMODE_MII) {
1415 			if (DC_IS_INTEL(sc)) {
1416 			/* There's a write enable bit here that reads as 1. */
1417 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1418 				watchdogreg &= ~DC_WDOG_CTLWREN;
1419 				watchdogreg |= DC_WDOG_JABBERDIS;
1420 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1421 			} else {
1422 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1423 			}
1424 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1425 			    DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
1426 			if (sc->dc_type == DC_TYPE_98713)
1427 				DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1428 				    DC_NETCFG_SCRAMBLER));
1429 			if (!DC_IS_DAVICOM(sc))
1430 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1431 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1432 			if (DC_IS_INTEL(sc))
1433 				dc_apply_fixup(sc, IFM_AUTO);
1434 		} else {
1435 			if (DC_IS_PNIC(sc)) {
1436 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
1437 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1438 				DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1439 			}
1440 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1441 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1442 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1443 			if (DC_IS_INTEL(sc))
1444 				dc_apply_fixup(sc,
1445 				    (media & IFM_GMASK) == IFM_FDX ?
1446 				    IFM_100_TX | IFM_FDX : IFM_100_TX);
1447 		}
1448 	}
1449 
1450 	if (IFM_SUBTYPE(media) == IFM_10_T) {
1451 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1452 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1453 		if (sc->dc_pmode == DC_PMODE_MII) {
1454 			/* There's a write enable bit here that reads as 1. */
1455 			if (DC_IS_INTEL(sc)) {
1456 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1457 				watchdogreg &= ~DC_WDOG_CTLWREN;
1458 				watchdogreg |= DC_WDOG_JABBERDIS;
1459 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1460 			} else {
1461 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1462 			}
1463 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1464 			    DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
1465 			if (sc->dc_type == DC_TYPE_98713)
1466 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1467 			if (!DC_IS_DAVICOM(sc))
1468 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1469 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1470 			if (DC_IS_INTEL(sc))
1471 				dc_apply_fixup(sc, IFM_AUTO);
1472 		} else {
1473 			if (DC_IS_PNIC(sc)) {
1474 				DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
1475 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1476 				DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1477 			}
1478 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1479 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1480 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1481 			if (DC_IS_INTEL(sc)) {
1482 				DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET);
1483 				DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1484 				if ((media & IFM_GMASK) == IFM_FDX)
1485 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D);
1486 				else
1487 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F);
1488 				DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1489 				DC_CLRBIT(sc, DC_10BTCTRL,
1490 				    DC_TCTL_AUTONEGENBL);
1491 				dc_apply_fixup(sc,
1492 				    (media & IFM_GMASK) == IFM_FDX ?
1493 				    IFM_10_T | IFM_FDX : IFM_10_T);
1494 				DELAY(20000);
1495 			}
1496 		}
1497 	}
1498 
1499 	/*
1500 	 * If this is a Davicom DM9102A card with a DM9801 HomePNA
1501 	 * PHY and we want HomePNA mode, set the portsel bit to turn
1502 	 * on the external MII port.
1503 	 */
1504 	if (DC_IS_DAVICOM(sc)) {
1505 		if (IFM_SUBTYPE(media) == IFM_HPNA_1) {
1506 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1507 			sc->dc_link = 1;
1508 		} else {
1509 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1510 		}
1511 	}
1512 
1513 	if ((media & IFM_GMASK) == IFM_FDX) {
1514 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1515 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1516 			DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1517 	} else {
1518 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1519 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1520 			DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1521 	}
1522 
1523 	if (restart)
1524 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON | DC_NETCFG_RX_ON);
1525 }
1526 
1527 static void
1528 dc_reset(struct dc_softc *sc)
1529 {
1530 	int i;
1531 
1532 	DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1533 
1534 	for (i = 0; i < DC_TIMEOUT; i++) {
1535 		DELAY(10);
1536 		if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
1537 			break;
1538 	}
1539 
1540 	if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_CONEXANT(sc) ||
1541 	    DC_IS_XIRCOM(sc) || DC_IS_INTEL(sc)) {
1542 		DELAY(10000);
1543 		DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1544 		i = 0;
1545 	}
1546 
1547 	if (i == DC_TIMEOUT)
1548 		device_printf(sc->dc_dev, "reset never completed!\n");
1549 
1550 	/* Wait a little while for the chip to get its brains in order. */
1551 	DELAY(1000);
1552 
1553 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
1554 	CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
1555 	CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
1556 
1557 	/*
1558 	 * Bring the SIA out of reset. In some cases, it looks
1559 	 * like failing to unreset the SIA soon enough gets it
1560 	 * into a state where it will never come out of reset
1561 	 * until we reset the whole chip again.
1562 	 */
1563 	if (DC_IS_INTEL(sc)) {
1564 		DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1565 		CSR_WRITE_4(sc, DC_10BTCTRL, 0);
1566 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
1567 	}
1568 }
1569 
1570 static const struct dc_type *
1571 dc_devtype(device_t dev)
1572 {
1573 	const struct dc_type *t;
1574 	u_int32_t devid;
1575 	u_int8_t rev;
1576 
1577 	t = dc_devs;
1578 	devid = pci_get_devid(dev);
1579 	rev = pci_get_revid(dev);
1580 
1581 	while (t->dc_name != NULL) {
1582 		if (devid == t->dc_devid && rev >= t->dc_minrev)
1583 			return (t);
1584 		t++;
1585 	}
1586 
1587 	return (NULL);
1588 }
1589 
1590 /*
1591  * Probe for a 21143 or clone chip. Check the PCI vendor and device
1592  * IDs against our list and return a device name if we find a match.
1593  * We do a little bit of extra work to identify the exact type of
1594  * chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
1595  * but different revision IDs. The same is true for 98715/98715A
1596  * chips and the 98725, as well as the ASIX and ADMtek chips. In some
1597  * cases, the exact chip revision affects driver behavior.
1598  */
1599 static int
1600 dc_probe(device_t dev)
1601 {
1602 	const struct dc_type *t;
1603 
1604 	t = dc_devtype(dev);
1605 
1606 	if (t != NULL) {
1607 		device_set_desc(dev, t->dc_name);
1608 		return (BUS_PROBE_DEFAULT);
1609 	}
1610 
1611 	return (ENXIO);
1612 }
1613 
1614 static void
1615 dc_apply_fixup(struct dc_softc *sc, int media)
1616 {
1617 	struct dc_mediainfo *m;
1618 	u_int8_t *p;
1619 	int i;
1620 	u_int32_t reg;
1621 
1622 	m = sc->dc_mi;
1623 
1624 	while (m != NULL) {
1625 		if (m->dc_media == media)
1626 			break;
1627 		m = m->dc_next;
1628 	}
1629 
1630 	if (m == NULL)
1631 		return;
1632 
1633 	for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) {
1634 		reg = (p[0] | (p[1] << 8)) << 16;
1635 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1636 	}
1637 
1638 	for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) {
1639 		reg = (p[0] | (p[1] << 8)) << 16;
1640 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1641 	}
1642 }
1643 
1644 static void
1645 dc_decode_leaf_sia(struct dc_softc *sc, struct dc_eblock_sia *l)
1646 {
1647 	struct dc_mediainfo *m;
1648 
1649 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1650 	switch (l->dc_sia_code & ~DC_SIA_CODE_EXT) {
1651 	case DC_SIA_CODE_10BT:
1652 		m->dc_media = IFM_10_T;
1653 		break;
1654 	case DC_SIA_CODE_10BT_FDX:
1655 		m->dc_media = IFM_10_T | IFM_FDX;
1656 		break;
1657 	case DC_SIA_CODE_10B2:
1658 		m->dc_media = IFM_10_2;
1659 		break;
1660 	case DC_SIA_CODE_10B5:
1661 		m->dc_media = IFM_10_5;
1662 		break;
1663 	default:
1664 		break;
1665 	}
1666 
1667 	/*
1668 	 * We need to ignore CSR13, CSR14, CSR15 for SIA mode.
1669 	 * Things apparently already work for cards that do
1670 	 * supply Media Specific Data.
1671 	 */
1672 	if (l->dc_sia_code & DC_SIA_CODE_EXT) {
1673 		m->dc_gp_len = 2;
1674 		m->dc_gp_ptr =
1675 		(u_int8_t *)&l->dc_un.dc_sia_ext.dc_sia_gpio_ctl;
1676 	} else {
1677 		m->dc_gp_len = 2;
1678 		m->dc_gp_ptr =
1679 		(u_int8_t *)&l->dc_un.dc_sia_noext.dc_sia_gpio_ctl;
1680 	}
1681 
1682 	m->dc_next = sc->dc_mi;
1683 	sc->dc_mi = m;
1684 
1685 	sc->dc_pmode = DC_PMODE_SIA;
1686 }
1687 
1688 static void
1689 dc_decode_leaf_sym(struct dc_softc *sc, struct dc_eblock_sym *l)
1690 {
1691 	struct dc_mediainfo *m;
1692 
1693 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1694 	if (l->dc_sym_code == DC_SYM_CODE_100BT)
1695 		m->dc_media = IFM_100_TX;
1696 
1697 	if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX)
1698 		m->dc_media = IFM_100_TX | IFM_FDX;
1699 
1700 	m->dc_gp_len = 2;
1701 	m->dc_gp_ptr = (u_int8_t *)&l->dc_sym_gpio_ctl;
1702 
1703 	m->dc_next = sc->dc_mi;
1704 	sc->dc_mi = m;
1705 
1706 	sc->dc_pmode = DC_PMODE_SYM;
1707 }
1708 
1709 static void
1710 dc_decode_leaf_mii(struct dc_softc *sc, struct dc_eblock_mii *l)
1711 {
1712 	struct dc_mediainfo *m;
1713 	u_int8_t *p;
1714 
1715 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1716 	/* We abuse IFM_AUTO to represent MII. */
1717 	m->dc_media = IFM_AUTO;
1718 	m->dc_gp_len = l->dc_gpr_len;
1719 
1720 	p = (u_int8_t *)l;
1721 	p += sizeof(struct dc_eblock_mii);
1722 	m->dc_gp_ptr = p;
1723 	p += 2 * l->dc_gpr_len;
1724 	m->dc_reset_len = *p;
1725 	p++;
1726 	m->dc_reset_ptr = p;
1727 
1728 	m->dc_next = sc->dc_mi;
1729 	sc->dc_mi = m;
1730 }
1731 
1732 static void
1733 dc_read_srom(struct dc_softc *sc, int bits)
1734 {
1735 	int size;
1736 
1737 	size = 2 << bits;
1738 	sc->dc_srom = malloc(size, M_DEVBUF, M_NOWAIT);
1739 	dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (size / 2), 0);
1740 }
1741 
1742 static void
1743 dc_parse_21143_srom(struct dc_softc *sc)
1744 {
1745 	struct dc_leaf_hdr *lhdr;
1746 	struct dc_eblock_hdr *hdr;
1747 	int have_mii, i, loff;
1748 	char *ptr;
1749 
1750 	have_mii = 0;
1751 	loff = sc->dc_srom[27];
1752 	lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]);
1753 
1754 	ptr = (char *)lhdr;
1755 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1756 	/*
1757 	 * Look if we got a MII media block.
1758 	 */
1759 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1760 		hdr = (struct dc_eblock_hdr *)ptr;
1761 		if (hdr->dc_type == DC_EBLOCK_MII)
1762 		    have_mii++;
1763 
1764 		ptr += (hdr->dc_len & 0x7F);
1765 		ptr++;
1766 	}
1767 
1768 	/*
1769 	 * Do the same thing again. Only use SIA and SYM media
1770 	 * blocks if no MII media block is available.
1771 	 */
1772 	ptr = (char *)lhdr;
1773 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1774 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1775 		hdr = (struct dc_eblock_hdr *)ptr;
1776 		switch (hdr->dc_type) {
1777 		case DC_EBLOCK_MII:
1778 			dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr);
1779 			break;
1780 		case DC_EBLOCK_SIA:
1781 			if (! have_mii)
1782 				dc_decode_leaf_sia(sc,
1783 				    (struct dc_eblock_sia *)hdr);
1784 			break;
1785 		case DC_EBLOCK_SYM:
1786 			if (! have_mii)
1787 				dc_decode_leaf_sym(sc,
1788 				    (struct dc_eblock_sym *)hdr);
1789 			break;
1790 		default:
1791 			/* Don't care. Yet. */
1792 			break;
1793 		}
1794 		ptr += (hdr->dc_len & 0x7F);
1795 		ptr++;
1796 	}
1797 }
1798 
1799 static void
1800 dc_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1801 {
1802 	u_int32_t *paddr;
1803 
1804 	KASSERT(nseg == 1,
1805 	    ("%s: wrong number of segments (%d)", __func__, nseg));
1806 	paddr = arg;
1807 	*paddr = segs->ds_addr;
1808 }
1809 
1810 /*
1811  * Attach the interface. Allocate softc structures, do ifmedia
1812  * setup and ethernet/BPF attach.
1813  */
1814 static int
1815 dc_attach(device_t dev)
1816 {
1817 	int tmp = 0;
1818 	uint32_t eaddr[(ETHER_ADDR_LEN+3)/4];
1819 	u_int32_t command;
1820 	struct dc_softc *sc;
1821 	struct ifnet *ifp;
1822 	u_int32_t reg, revision;
1823 	int error = 0, rid, mac_offset;
1824 	int i;
1825 	u_int8_t *mac;
1826 
1827 	sc = device_get_softc(dev);
1828 	sc->dc_dev = dev;
1829 
1830 	mtx_init(&sc->dc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1831 	    MTX_DEF);
1832 
1833 	/*
1834 	 * Map control/status registers.
1835 	 */
1836 	pci_enable_busmaster(dev);
1837 
1838 	rid = DC_RID;
1839 	sc->dc_res = bus_alloc_resource_any(dev, DC_RES, &rid, RF_ACTIVE);
1840 
1841 	if (sc->dc_res == NULL) {
1842 		device_printf(dev, "couldn't map ports/memory\n");
1843 		error = ENXIO;
1844 		goto fail;
1845 	}
1846 
1847 	sc->dc_btag = rman_get_bustag(sc->dc_res);
1848 	sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
1849 
1850 	/* Allocate interrupt. */
1851 	rid = 0;
1852 	sc->dc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1853 	    RF_SHAREABLE | RF_ACTIVE);
1854 
1855 	if (sc->dc_irq == NULL) {
1856 		device_printf(dev, "couldn't map interrupt\n");
1857 		error = ENXIO;
1858 		goto fail;
1859 	}
1860 
1861 	/* Need this info to decide on a chip type. */
1862 	sc->dc_info = dc_devtype(dev);
1863 	revision = pci_get_revid(dev);
1864 
1865 	/* Get the eeprom width, but PNIC and XIRCOM have diff eeprom */
1866 	if (sc->dc_info->dc_devid !=
1867 	    DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168) &&
1868 	    sc->dc_info->dc_devid !=
1869 	    DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201))
1870 		dc_eeprom_width(sc);
1871 
1872 	switch (sc->dc_info->dc_devid) {
1873 	case DC_DEVID(DC_VENDORID_DEC, DC_DEVICEID_21143):
1874 		sc->dc_type = DC_TYPE_21143;
1875 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1876 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1877 		/* Save EEPROM contents so we can parse them later. */
1878 		dc_read_srom(sc, sc->dc_romwidth);
1879 		break;
1880 	case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009):
1881 	case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100):
1882 	case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102):
1883 		sc->dc_type = DC_TYPE_DM9102;
1884 		sc->dc_flags |= DC_TX_COALESCE | DC_TX_INTR_ALWAYS;
1885 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_TX_STORENFWD;
1886 		sc->dc_flags |= DC_TX_ALIGN;
1887 		sc->dc_pmode = DC_PMODE_MII;
1888 
1889 		/* Increase the latency timer value. */
1890 		pci_write_config(dev, PCIR_LATTIMER, 0x80, 1);
1891 		break;
1892 	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AL981):
1893 		sc->dc_type = DC_TYPE_AL981;
1894 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1895 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1896 		sc->dc_pmode = DC_PMODE_MII;
1897 		dc_read_srom(sc, sc->dc_romwidth);
1898 		break;
1899 	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN985):
1900 	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511):
1901 	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513):
1902 	case DC_DEVID(DC_VENDORID_DLINK, DC_DEVICEID_DRP32TXD):
1903 	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_FA511):
1904 	case DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500):
1905 	case DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500MX):
1906 	case DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN2242):
1907 	case DC_DEVID(DC_VENDORID_HAWKING, DC_DEVICEID_HAWKING_PN672TX):
1908 	case DC_DEVID(DC_VENDORID_PLANEX, DC_DEVICEID_FNW3602T):
1909 	case DC_DEVID(DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB):
1910 	case DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN120):
1911 	case DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130):
1912 	case DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB08):
1913 	case DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB09):
1914 		sc->dc_type = DC_TYPE_AN985;
1915 		sc->dc_flags |= DC_64BIT_HASH;
1916 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1917 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1918 		sc->dc_pmode = DC_PMODE_MII;
1919 		/* Don't read SROM for - auto-loaded on reset */
1920 		break;
1921 	case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713):
1922 	case DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP):
1923 		if (revision < DC_REVISION_98713A) {
1924 			sc->dc_type = DC_TYPE_98713;
1925 		}
1926 		if (revision >= DC_REVISION_98713A) {
1927 			sc->dc_type = DC_TYPE_98713A;
1928 			sc->dc_flags |= DC_21143_NWAY;
1929 		}
1930 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1931 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1932 		break;
1933 	case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5):
1934 	case DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN1217):
1935 		/*
1936 		 * Macronix MX98715AEC-C/D/E parts have only a
1937 		 * 128-bit hash table. We need to deal with these
1938 		 * in the same manner as the PNIC II so that we
1939 		 * get the right number of bits out of the
1940 		 * CRC routine.
1941 		 */
1942 		if (revision >= DC_REVISION_98715AEC_C &&
1943 		    revision < DC_REVISION_98725)
1944 			sc->dc_flags |= DC_128BIT_HASH;
1945 		sc->dc_type = DC_TYPE_987x5;
1946 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1947 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
1948 		break;
1949 	case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98727):
1950 		sc->dc_type = DC_TYPE_987x5;
1951 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1952 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
1953 		break;
1954 	case DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C115):
1955 		sc->dc_type = DC_TYPE_PNICII;
1956 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR | DC_128BIT_HASH;
1957 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
1958 		break;
1959 	case DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168):
1960 		sc->dc_type = DC_TYPE_PNIC;
1961 		sc->dc_flags |= DC_TX_STORENFWD | DC_TX_INTR_ALWAYS;
1962 		sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
1963 		sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_NOWAIT);
1964 		if (revision < DC_REVISION_82C169)
1965 			sc->dc_pmode = DC_PMODE_SYM;
1966 		break;
1967 	case DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A):
1968 		sc->dc_type = DC_TYPE_ASIX;
1969 		sc->dc_flags |= DC_TX_USE_TX_INTR | DC_TX_INTR_FIRSTFRAG;
1970 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1971 		sc->dc_pmode = DC_PMODE_MII;
1972 		break;
1973 	case DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201):
1974 		sc->dc_type = DC_TYPE_XIRCOM;
1975 		sc->dc_flags |= DC_TX_INTR_ALWAYS | DC_TX_COALESCE |
1976 				DC_TX_ALIGN;
1977 		/*
1978 		 * We don't actually need to coalesce, but we're doing
1979 		 * it to obtain a double word aligned buffer.
1980 		 * The DC_TX_COALESCE flag is required.
1981 		 */
1982 		sc->dc_pmode = DC_PMODE_MII;
1983 		break;
1984 	case DC_DEVID(DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112):
1985 		sc->dc_type = DC_TYPE_CONEXANT;
1986 		sc->dc_flags |= DC_TX_INTR_ALWAYS;
1987 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1988 		sc->dc_pmode = DC_PMODE_MII;
1989 		dc_read_srom(sc, sc->dc_romwidth);
1990 		break;
1991 	default:
1992 		device_printf(dev, "unknown device: %x\n",
1993 		    sc->dc_info->dc_devid);
1994 		break;
1995 	}
1996 
1997 	/* Save the cache line size. */
1998 	if (DC_IS_DAVICOM(sc))
1999 		sc->dc_cachesize = 0;
2000 	else
2001 		sc->dc_cachesize = pci_get_cachelnsz(dev);
2002 
2003 	/* Reset the adapter. */
2004 	dc_reset(sc);
2005 
2006 	/* Take 21143 out of snooze mode */
2007 	if (DC_IS_INTEL(sc) || DC_IS_XIRCOM(sc)) {
2008 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
2009 		command &= ~(DC_CFDD_SNOOZE_MODE | DC_CFDD_SLEEP_MODE);
2010 		pci_write_config(dev, DC_PCI_CFDD, command, 4);
2011 	}
2012 
2013 	/*
2014 	 * Try to learn something about the supported media.
2015 	 * We know that ASIX and ADMtek and Davicom devices
2016 	 * will *always* be using MII media, so that's a no-brainer.
2017 	 * The tricky ones are the Macronix/PNIC II and the
2018 	 * Intel 21143.
2019 	 */
2020 	if (DC_IS_INTEL(sc))
2021 		dc_parse_21143_srom(sc);
2022 	else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
2023 		if (sc->dc_type == DC_TYPE_98713)
2024 			sc->dc_pmode = DC_PMODE_MII;
2025 		else
2026 			sc->dc_pmode = DC_PMODE_SYM;
2027 	} else if (!sc->dc_pmode)
2028 		sc->dc_pmode = DC_PMODE_MII;
2029 
2030 	/*
2031 	 * Get station address from the EEPROM.
2032 	 */
2033 	switch(sc->dc_type) {
2034 	case DC_TYPE_98713:
2035 	case DC_TYPE_98713A:
2036 	case DC_TYPE_987x5:
2037 	case DC_TYPE_PNICII:
2038 		dc_read_eeprom(sc, (caddr_t)&mac_offset,
2039 		    (DC_EE_NODEADDR_OFFSET / 2), 1, 0);
2040 		dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
2041 		break;
2042 	case DC_TYPE_PNIC:
2043 		dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
2044 		break;
2045 	case DC_TYPE_DM9102:
2046 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2047 #ifdef __sparc64__
2048 		/*
2049 		 * If this is an onboard dc(4) the station address read from
2050 		 * the EEPROM is all zero and we have to get it from the FCode.
2051 		 */
2052 		if (eaddr[0] == 0 && (eaddr[1] & ~0xffff) == 0)
2053 			OF_getetheraddr(dev, (caddr_t)&eaddr);
2054 #endif
2055 		break;
2056 	case DC_TYPE_21143:
2057 	case DC_TYPE_ASIX:
2058 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2059 		break;
2060 	case DC_TYPE_AL981:
2061 	case DC_TYPE_AN985:
2062 		reg = CSR_READ_4(sc, DC_AL_PAR0);
2063 		mac = (uint8_t *)&eaddr[0];
2064 		mac[0] = (reg >> 0) & 0xff;
2065 		mac[1] = (reg >> 8) & 0xff;
2066 		mac[2] = (reg >> 16) & 0xff;
2067 		mac[3] = (reg >> 24) & 0xff;
2068 		reg = CSR_READ_4(sc, DC_AL_PAR1);
2069 		mac[4] = (reg >> 0) & 0xff;
2070 		mac[5] = (reg >> 8) & 0xff;
2071 		break;
2072 	case DC_TYPE_CONEXANT:
2073 		bcopy(sc->dc_srom + DC_CONEXANT_EE_NODEADDR, &eaddr,
2074 		    ETHER_ADDR_LEN);
2075 		break;
2076 	case DC_TYPE_XIRCOM:
2077 		/* The MAC comes from the CIS. */
2078 		mac = pci_get_ether(dev);
2079 		if (!mac) {
2080 			device_printf(dev, "No station address in CIS!\n");
2081 			error = ENXIO;
2082 			goto fail;
2083 		}
2084 		bcopy(mac, eaddr, ETHER_ADDR_LEN);
2085 		break;
2086 	default:
2087 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2088 		break;
2089 	}
2090 
2091 	/* Allocate a busdma tag and DMA safe memory for TX/RX descriptors. */
2092 	error = bus_dma_tag_create(bus_get_dma_tag(dev), PAGE_SIZE, 0,
2093 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
2094 	    sizeof(struct dc_list_data), 1, sizeof(struct dc_list_data),
2095 	    0, NULL, NULL, &sc->dc_ltag);
2096 	if (error) {
2097 		device_printf(dev, "failed to allocate busdma tag\n");
2098 		error = ENXIO;
2099 		goto fail;
2100 	}
2101 	error = bus_dmamem_alloc(sc->dc_ltag, (void **)&sc->dc_ldata,
2102 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->dc_lmap);
2103 	if (error) {
2104 		device_printf(dev, "failed to allocate DMA safe memory\n");
2105 		error = ENXIO;
2106 		goto fail;
2107 	}
2108 	error = bus_dmamap_load(sc->dc_ltag, sc->dc_lmap, sc->dc_ldata,
2109 	    sizeof(struct dc_list_data), dc_dma_map_addr, &sc->dc_laddr,
2110 	    BUS_DMA_NOWAIT);
2111 	if (error) {
2112 		device_printf(dev, "cannot get address of the descriptors\n");
2113 		error = ENXIO;
2114 		goto fail;
2115 	}
2116 
2117 	/*
2118 	 * Allocate a busdma tag and DMA safe memory for the multicast
2119 	 * setup frame.
2120 	 */
2121 	error = bus_dma_tag_create(bus_get_dma_tag(dev), PAGE_SIZE, 0,
2122 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
2123 	    DC_SFRAME_LEN + DC_MIN_FRAMELEN, 1, DC_SFRAME_LEN + DC_MIN_FRAMELEN,
2124 	    0, NULL, NULL, &sc->dc_stag);
2125 	if (error) {
2126 		device_printf(dev, "failed to allocate busdma tag\n");
2127 		error = ENXIO;
2128 		goto fail;
2129 	}
2130 	error = bus_dmamem_alloc(sc->dc_stag, (void **)&sc->dc_cdata.dc_sbuf,
2131 	    BUS_DMA_NOWAIT, &sc->dc_smap);
2132 	if (error) {
2133 		device_printf(dev, "failed to allocate DMA safe memory\n");
2134 		error = ENXIO;
2135 		goto fail;
2136 	}
2137 	error = bus_dmamap_load(sc->dc_stag, sc->dc_smap, sc->dc_cdata.dc_sbuf,
2138 	    DC_SFRAME_LEN, dc_dma_map_addr, &sc->dc_saddr, BUS_DMA_NOWAIT);
2139 	if (error) {
2140 		device_printf(dev, "cannot get address of the descriptors\n");
2141 		error = ENXIO;
2142 		goto fail;
2143 	}
2144 
2145 	/* Allocate a busdma tag for mbufs. */
2146 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0,
2147 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
2148 	    MCLBYTES * DC_MAXFRAGS, DC_MAXFRAGS, MCLBYTES,
2149 	    0, NULL, NULL, &sc->dc_mtag);
2150 	if (error) {
2151 		device_printf(dev, "failed to allocate busdma tag\n");
2152 		error = ENXIO;
2153 		goto fail;
2154 	}
2155 
2156 	/* Create the TX/RX busdma maps. */
2157 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2158 		error = bus_dmamap_create(sc->dc_mtag, 0,
2159 		    &sc->dc_cdata.dc_tx_map[i]);
2160 		if (error) {
2161 			device_printf(dev, "failed to init TX ring\n");
2162 			error = ENXIO;
2163 			goto fail;
2164 		}
2165 	}
2166 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2167 		error = bus_dmamap_create(sc->dc_mtag, 0,
2168 		    &sc->dc_cdata.dc_rx_map[i]);
2169 		if (error) {
2170 			device_printf(dev, "failed to init RX ring\n");
2171 			error = ENXIO;
2172 			goto fail;
2173 		}
2174 	}
2175 	error = bus_dmamap_create(sc->dc_mtag, 0, &sc->dc_sparemap);
2176 	if (error) {
2177 		device_printf(dev, "failed to init RX ring\n");
2178 		error = ENXIO;
2179 		goto fail;
2180 	}
2181 
2182 	ifp = sc->dc_ifp = if_alloc(IFT_ETHER);
2183 	if (ifp == NULL) {
2184 		device_printf(dev, "can not if_alloc()\n");
2185 		error = ENOSPC;
2186 		goto fail;
2187 	}
2188 	ifp->if_softc = sc;
2189 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2190 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2191 	ifp->if_ioctl = dc_ioctl;
2192 	ifp->if_start = dc_start;
2193 	ifp->if_init = dc_init;
2194 	IFQ_SET_MAXLEN(&ifp->if_snd, DC_TX_LIST_CNT - 1);
2195 	ifp->if_snd.ifq_drv_maxlen = DC_TX_LIST_CNT - 1;
2196 	IFQ_SET_READY(&ifp->if_snd);
2197 
2198 	/*
2199 	 * Do MII setup. If this is a 21143, check for a PHY on the
2200 	 * MII bus after applying any necessary fixups to twiddle the
2201 	 * GPIO bits. If we don't end up finding a PHY, restore the
2202 	 * old selection (SIA only or SIA/SYM) and attach the dcphy
2203 	 * driver instead.
2204 	 */
2205 	if (DC_IS_INTEL(sc)) {
2206 		dc_apply_fixup(sc, IFM_AUTO);
2207 		tmp = sc->dc_pmode;
2208 		sc->dc_pmode = DC_PMODE_MII;
2209 	}
2210 
2211 	/*
2212 	 * Setup General Purpose port mode and data so the tulip can talk
2213 	 * to the MII.  This needs to be done before mii_phy_probe so that
2214 	 * we can actually see them.
2215 	 */
2216 	if (DC_IS_XIRCOM(sc)) {
2217 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
2218 		    DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2219 		DELAY(10);
2220 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
2221 		    DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2222 		DELAY(10);
2223 	}
2224 
2225 	error = mii_phy_probe(dev, &sc->dc_miibus,
2226 	    dc_ifmedia_upd, dc_ifmedia_sts);
2227 
2228 	if (error && DC_IS_INTEL(sc)) {
2229 		sc->dc_pmode = tmp;
2230 		if (sc->dc_pmode != DC_PMODE_SIA)
2231 			sc->dc_pmode = DC_PMODE_SYM;
2232 		sc->dc_flags |= DC_21143_NWAY;
2233 		mii_phy_probe(dev, &sc->dc_miibus,
2234 		    dc_ifmedia_upd, dc_ifmedia_sts);
2235 		/*
2236 		 * For non-MII cards, we need to have the 21143
2237 		 * drive the LEDs. Except there are some systems
2238 		 * like the NEC VersaPro NoteBook PC which have no
2239 		 * LEDs, and twiddling these bits has adverse effects
2240 		 * on them. (I.e. you suddenly can't get a link.)
2241 		 */
2242 		if (!(pci_get_subvendor(dev) == 0x1033 &&
2243 		    pci_get_subdevice(dev) == 0x8028))
2244 			sc->dc_flags |= DC_TULIP_LEDS;
2245 		error = 0;
2246 	}
2247 
2248 	if (error) {
2249 		device_printf(dev, "MII without any PHY!\n");
2250 		goto fail;
2251 	}
2252 
2253 	if (DC_IS_ADMTEK(sc)) {
2254 		/*
2255 		 * Set automatic TX underrun recovery for the ADMtek chips
2256 		 */
2257 		DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR);
2258 	}
2259 
2260 	/*
2261 	 * Tell the upper layer(s) we support long frames.
2262 	 */
2263 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2264 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
2265 	ifp->if_capenable = ifp->if_capabilities;
2266 #ifdef DEVICE_POLLING
2267 	ifp->if_capabilities |= IFCAP_POLLING;
2268 #endif
2269 
2270 	callout_init_mtx(&sc->dc_stat_ch, &sc->dc_mtx, 0);
2271 	callout_init_mtx(&sc->dc_wdog_ch, &sc->dc_mtx, 0);
2272 
2273 	/*
2274 	 * Call MI attach routine.
2275 	 */
2276 	ether_ifattach(ifp, (caddr_t)eaddr);
2277 
2278 	/* Hook interrupt last to avoid having to lock softc */
2279 	error = bus_setup_intr(dev, sc->dc_irq, INTR_TYPE_NET | INTR_MPSAFE,
2280 	    NULL, dc_intr, sc, &sc->dc_intrhand);
2281 
2282 	if (error) {
2283 		device_printf(dev, "couldn't set up irq\n");
2284 		ether_ifdetach(ifp);
2285 		goto fail;
2286 	}
2287 
2288 fail:
2289 	if (error)
2290 		dc_detach(dev);
2291 	return (error);
2292 }
2293 
2294 /*
2295  * Shutdown hardware and free up resources. This can be called any
2296  * time after the mutex has been initialized. It is called in both
2297  * the error case in attach and the normal detach case so it needs
2298  * to be careful about only freeing resources that have actually been
2299  * allocated.
2300  */
2301 static int
2302 dc_detach(device_t dev)
2303 {
2304 	struct dc_softc *sc;
2305 	struct ifnet *ifp;
2306 	struct dc_mediainfo *m;
2307 	int i;
2308 
2309 	sc = device_get_softc(dev);
2310 	KASSERT(mtx_initialized(&sc->dc_mtx), ("dc mutex not initialized"));
2311 
2312 	ifp = sc->dc_ifp;
2313 
2314 #ifdef DEVICE_POLLING
2315 	if (ifp->if_capenable & IFCAP_POLLING)
2316 		ether_poll_deregister(ifp);
2317 #endif
2318 
2319 	/* These should only be active if attach succeeded */
2320 	if (device_is_attached(dev)) {
2321 		DC_LOCK(sc);
2322 		dc_stop(sc);
2323 		DC_UNLOCK(sc);
2324 		callout_drain(&sc->dc_stat_ch);
2325 		callout_drain(&sc->dc_wdog_ch);
2326 		ether_ifdetach(ifp);
2327 	}
2328 	if (sc->dc_miibus)
2329 		device_delete_child(dev, sc->dc_miibus);
2330 	bus_generic_detach(dev);
2331 
2332 	if (sc->dc_intrhand)
2333 		bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2334 	if (sc->dc_irq)
2335 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2336 	if (sc->dc_res)
2337 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2338 
2339 	if (ifp)
2340 		if_free(ifp);
2341 
2342 	if (sc->dc_cdata.dc_sbuf != NULL)
2343 		bus_dmamem_free(sc->dc_stag, sc->dc_cdata.dc_sbuf, sc->dc_smap);
2344 	if (sc->dc_ldata != NULL)
2345 		bus_dmamem_free(sc->dc_ltag, sc->dc_ldata, sc->dc_lmap);
2346 	if (sc->dc_mtag) {
2347 		for (i = 0; i < DC_TX_LIST_CNT; i++)
2348 			if (sc->dc_cdata.dc_tx_map[i] != NULL)
2349 				bus_dmamap_destroy(sc->dc_mtag,
2350 				    sc->dc_cdata.dc_tx_map[i]);
2351 		for (i = 0; i < DC_RX_LIST_CNT; i++)
2352 			if (sc->dc_cdata.dc_rx_map[i] != NULL)
2353 				bus_dmamap_destroy(sc->dc_mtag,
2354 				    sc->dc_cdata.dc_rx_map[i]);
2355 		bus_dmamap_destroy(sc->dc_mtag, sc->dc_sparemap);
2356 	}
2357 	if (sc->dc_stag)
2358 		bus_dma_tag_destroy(sc->dc_stag);
2359 	if (sc->dc_mtag)
2360 		bus_dma_tag_destroy(sc->dc_mtag);
2361 	if (sc->dc_ltag)
2362 		bus_dma_tag_destroy(sc->dc_ltag);
2363 
2364 	free(sc->dc_pnic_rx_buf, M_DEVBUF);
2365 
2366 	while (sc->dc_mi != NULL) {
2367 		m = sc->dc_mi->dc_next;
2368 		free(sc->dc_mi, M_DEVBUF);
2369 		sc->dc_mi = m;
2370 	}
2371 	free(sc->dc_srom, M_DEVBUF);
2372 
2373 	mtx_destroy(&sc->dc_mtx);
2374 
2375 	return (0);
2376 }
2377 
2378 /*
2379  * Initialize the transmit descriptors.
2380  */
2381 static int
2382 dc_list_tx_init(struct dc_softc *sc)
2383 {
2384 	struct dc_chain_data *cd;
2385 	struct dc_list_data *ld;
2386 	int i, nexti;
2387 
2388 	cd = &sc->dc_cdata;
2389 	ld = sc->dc_ldata;
2390 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2391 		if (i == DC_TX_LIST_CNT - 1)
2392 			nexti = 0;
2393 		else
2394 			nexti = i + 1;
2395 		ld->dc_tx_list[i].dc_next = htole32(DC_TXDESC(sc, nexti));
2396 		cd->dc_tx_chain[i] = NULL;
2397 		ld->dc_tx_list[i].dc_data = 0;
2398 		ld->dc_tx_list[i].dc_ctl = 0;
2399 	}
2400 
2401 	cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
2402 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
2403 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2404 	return (0);
2405 }
2406 
2407 
2408 /*
2409  * Initialize the RX descriptors and allocate mbufs for them. Note that
2410  * we arrange the descriptors in a closed ring, so that the last descriptor
2411  * points back to the first.
2412  */
2413 static int
2414 dc_list_rx_init(struct dc_softc *sc)
2415 {
2416 	struct dc_chain_data *cd;
2417 	struct dc_list_data *ld;
2418 	int i, nexti;
2419 
2420 	cd = &sc->dc_cdata;
2421 	ld = sc->dc_ldata;
2422 
2423 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2424 		if (dc_newbuf(sc, i, 1) != 0)
2425 			return (ENOBUFS);
2426 		if (i == DC_RX_LIST_CNT - 1)
2427 			nexti = 0;
2428 		else
2429 			nexti = i + 1;
2430 		ld->dc_rx_list[i].dc_next = htole32(DC_RXDESC(sc, nexti));
2431 	}
2432 
2433 	cd->dc_rx_prod = 0;
2434 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
2435 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2436 	return (0);
2437 }
2438 
2439 /*
2440  * Initialize an RX descriptor and attach an MBUF cluster.
2441  */
2442 static int
2443 dc_newbuf(struct dc_softc *sc, int i, int alloc)
2444 {
2445 	struct mbuf *m_new;
2446 	bus_dmamap_t tmp;
2447 	bus_dma_segment_t segs[1];
2448 	int error, nseg;
2449 
2450 	if (alloc) {
2451 		m_new = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2452 		if (m_new == NULL)
2453 			return (ENOBUFS);
2454 	} else {
2455 		m_new = sc->dc_cdata.dc_rx_chain[i];
2456 		m_new->m_data = m_new->m_ext.ext_buf;
2457 	}
2458 	m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2459 	m_adj(m_new, sizeof(u_int64_t));
2460 
2461 	/*
2462 	 * If this is a PNIC chip, zero the buffer. This is part
2463 	 * of the workaround for the receive bug in the 82c168 and
2464 	 * 82c169 chips.
2465 	 */
2466 	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
2467 		bzero(mtod(m_new, char *), m_new->m_len);
2468 
2469 	/* No need to remap the mbuf if we're reusing it. */
2470 	if (alloc) {
2471 		error = bus_dmamap_load_mbuf_sg(sc->dc_mtag, sc->dc_sparemap,
2472 		    m_new, segs, &nseg, 0);
2473 		if (error) {
2474 			m_freem(m_new);
2475 			return (error);
2476 		}
2477 		KASSERT(nseg == 1,
2478 		    ("%s: wrong number of segments (%d)", __func__, nseg));
2479 		sc->dc_ldata->dc_rx_list[i].dc_data = htole32(segs->ds_addr);
2480 		bus_dmamap_unload(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i]);
2481 		tmp = sc->dc_cdata.dc_rx_map[i];
2482 		sc->dc_cdata.dc_rx_map[i] = sc->dc_sparemap;
2483 		sc->dc_sparemap = tmp;
2484 		sc->dc_cdata.dc_rx_chain[i] = m_new;
2485 	}
2486 
2487 	sc->dc_ldata->dc_rx_list[i].dc_ctl = htole32(DC_RXCTL_RLINK | DC_RXLEN);
2488 	sc->dc_ldata->dc_rx_list[i].dc_status = htole32(DC_RXSTAT_OWN);
2489 	bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i],
2490 	    BUS_DMASYNC_PREREAD);
2491 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
2492 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2493 	return (0);
2494 }
2495 
2496 /*
2497  * Grrrrr.
2498  * The PNIC chip has a terrible bug in it that manifests itself during
2499  * periods of heavy activity. The exact mode of failure if difficult to
2500  * pinpoint: sometimes it only happens in promiscuous mode, sometimes it
2501  * will happen on slow machines. The bug is that sometimes instead of
2502  * uploading one complete frame during reception, it uploads what looks
2503  * like the entire contents of its FIFO memory. The frame we want is at
2504  * the end of the whole mess, but we never know exactly how much data has
2505  * been uploaded, so salvaging the frame is hard.
2506  *
2507  * There is only one way to do it reliably, and it's disgusting.
2508  * Here's what we know:
2509  *
2510  * - We know there will always be somewhere between one and three extra
2511  *   descriptors uploaded.
2512  *
2513  * - We know the desired received frame will always be at the end of the
2514  *   total data upload.
2515  *
2516  * - We know the size of the desired received frame because it will be
2517  *   provided in the length field of the status word in the last descriptor.
2518  *
2519  * Here's what we do:
2520  *
2521  * - When we allocate buffers for the receive ring, we bzero() them.
2522  *   This means that we know that the buffer contents should be all
2523  *   zeros, except for data uploaded by the chip.
2524  *
2525  * - We also force the PNIC chip to upload frames that include the
2526  *   ethernet CRC at the end.
2527  *
2528  * - We gather all of the bogus frame data into a single buffer.
2529  *
2530  * - We then position a pointer at the end of this buffer and scan
2531  *   backwards until we encounter the first non-zero byte of data.
2532  *   This is the end of the received frame. We know we will encounter
2533  *   some data at the end of the frame because the CRC will always be
2534  *   there, so even if the sender transmits a packet of all zeros,
2535  *   we won't be fooled.
2536  *
2537  * - We know the size of the actual received frame, so we subtract
2538  *   that value from the current pointer location. This brings us
2539  *   to the start of the actual received packet.
2540  *
2541  * - We copy this into an mbuf and pass it on, along with the actual
2542  *   frame length.
2543  *
2544  * The performance hit is tremendous, but it beats dropping frames all
2545  * the time.
2546  */
2547 
2548 #define DC_WHOLEFRAME	(DC_RXSTAT_FIRSTFRAG | DC_RXSTAT_LASTFRAG)
2549 static void
2550 dc_pnic_rx_bug_war(struct dc_softc *sc, int idx)
2551 {
2552 	struct dc_desc *cur_rx;
2553 	struct dc_desc *c = NULL;
2554 	struct mbuf *m = NULL;
2555 	unsigned char *ptr;
2556 	int i, total_len;
2557 	u_int32_t rxstat = 0;
2558 
2559 	i = sc->dc_pnic_rx_bug_save;
2560 	cur_rx = &sc->dc_ldata->dc_rx_list[idx];
2561 	ptr = sc->dc_pnic_rx_buf;
2562 	bzero(ptr, DC_RXLEN * 5);
2563 
2564 	/* Copy all the bytes from the bogus buffers. */
2565 	while (1) {
2566 		c = &sc->dc_ldata->dc_rx_list[i];
2567 		rxstat = le32toh(c->dc_status);
2568 		m = sc->dc_cdata.dc_rx_chain[i];
2569 		bcopy(mtod(m, char *), ptr, DC_RXLEN);
2570 		ptr += DC_RXLEN;
2571 		/* If this is the last buffer, break out. */
2572 		if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
2573 			break;
2574 		dc_newbuf(sc, i, 0);
2575 		DC_INC(i, DC_RX_LIST_CNT);
2576 	}
2577 
2578 	/* Find the length of the actual receive frame. */
2579 	total_len = DC_RXBYTES(rxstat);
2580 
2581 	/* Scan backwards until we hit a non-zero byte. */
2582 	while (*ptr == 0x00)
2583 		ptr--;
2584 
2585 	/* Round off. */
2586 	if ((uintptr_t)(ptr) & 0x3)
2587 		ptr -= 1;
2588 
2589 	/* Now find the start of the frame. */
2590 	ptr -= total_len;
2591 	if (ptr < sc->dc_pnic_rx_buf)
2592 		ptr = sc->dc_pnic_rx_buf;
2593 
2594 	/*
2595 	 * Now copy the salvaged frame to the last mbuf and fake up
2596 	 * the status word to make it look like a successful
2597 	 * frame reception.
2598 	 */
2599 	dc_newbuf(sc, i, 0);
2600 	bcopy(ptr, mtod(m, char *), total_len);
2601 	cur_rx->dc_status = htole32(rxstat | DC_RXSTAT_FIRSTFRAG);
2602 }
2603 
2604 /*
2605  * This routine searches the RX ring for dirty descriptors in the
2606  * event that the rxeof routine falls out of sync with the chip's
2607  * current descriptor pointer. This may happen sometimes as a result
2608  * of a "no RX buffer available" condition that happens when the chip
2609  * consumes all of the RX buffers before the driver has a chance to
2610  * process the RX ring. This routine may need to be called more than
2611  * once to bring the driver back in sync with the chip, however we
2612  * should still be getting RX DONE interrupts to drive the search
2613  * for new packets in the RX ring, so we should catch up eventually.
2614  */
2615 static int
2616 dc_rx_resync(struct dc_softc *sc)
2617 {
2618 	struct dc_desc *cur_rx;
2619 	int i, pos;
2620 
2621 	pos = sc->dc_cdata.dc_rx_prod;
2622 
2623 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2624 		cur_rx = &sc->dc_ldata->dc_rx_list[pos];
2625 		if (!(le32toh(cur_rx->dc_status) & DC_RXSTAT_OWN))
2626 			break;
2627 		DC_INC(pos, DC_RX_LIST_CNT);
2628 	}
2629 
2630 	/* If the ring really is empty, then just return. */
2631 	if (i == DC_RX_LIST_CNT)
2632 		return (0);
2633 
2634 	/* We've fallen behing the chip: catch it. */
2635 	sc->dc_cdata.dc_rx_prod = pos;
2636 
2637 	return (EAGAIN);
2638 }
2639 
2640 /*
2641  * A frame has been uploaded: pass the resulting mbuf chain up to
2642  * the higher level protocols.
2643  */
2644 static void
2645 dc_rxeof(struct dc_softc *sc)
2646 {
2647 	struct mbuf *m, *m0;
2648 	struct ifnet *ifp;
2649 	struct dc_desc *cur_rx;
2650 	int i, total_len = 0;
2651 	u_int32_t rxstat;
2652 
2653 	DC_LOCK_ASSERT(sc);
2654 
2655 	ifp = sc->dc_ifp;
2656 	i = sc->dc_cdata.dc_rx_prod;
2657 
2658 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap, BUS_DMASYNC_POSTREAD);
2659 	while (!(le32toh(sc->dc_ldata->dc_rx_list[i].dc_status) &
2660 	    DC_RXSTAT_OWN)) {
2661 #ifdef DEVICE_POLLING
2662 		if (ifp->if_capenable & IFCAP_POLLING) {
2663 			if (sc->rxcycles <= 0)
2664 				break;
2665 			sc->rxcycles--;
2666 		}
2667 #endif
2668 		cur_rx = &sc->dc_ldata->dc_rx_list[i];
2669 		rxstat = le32toh(cur_rx->dc_status);
2670 		m = sc->dc_cdata.dc_rx_chain[i];
2671 		bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i],
2672 		    BUS_DMASYNC_POSTREAD);
2673 		total_len = DC_RXBYTES(rxstat);
2674 
2675 		if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2676 			if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
2677 				if (rxstat & DC_RXSTAT_FIRSTFRAG)
2678 					sc->dc_pnic_rx_bug_save = i;
2679 				if ((rxstat & DC_RXSTAT_LASTFRAG) == 0) {
2680 					DC_INC(i, DC_RX_LIST_CNT);
2681 					continue;
2682 				}
2683 				dc_pnic_rx_bug_war(sc, i);
2684 				rxstat = le32toh(cur_rx->dc_status);
2685 				total_len = DC_RXBYTES(rxstat);
2686 			}
2687 		}
2688 
2689 		/*
2690 		 * If an error occurs, update stats, clear the
2691 		 * status word and leave the mbuf cluster in place:
2692 		 * it should simply get re-used next time this descriptor
2693 		 * comes up in the ring.  However, don't report long
2694 		 * frames as errors since they could be vlans.
2695 		 */
2696 		if ((rxstat & DC_RXSTAT_RXERR)) {
2697 			if (!(rxstat & DC_RXSTAT_GIANT) ||
2698 			    (rxstat & (DC_RXSTAT_CRCERR | DC_RXSTAT_DRIBBLE |
2699 				       DC_RXSTAT_MIIERE | DC_RXSTAT_COLLSEEN |
2700 				       DC_RXSTAT_RUNT   | DC_RXSTAT_DE))) {
2701 				ifp->if_ierrors++;
2702 				if (rxstat & DC_RXSTAT_COLLSEEN)
2703 					ifp->if_collisions++;
2704 				dc_newbuf(sc, i, 0);
2705 				if (rxstat & DC_RXSTAT_CRCERR) {
2706 					DC_INC(i, DC_RX_LIST_CNT);
2707 					continue;
2708 				} else {
2709 					dc_init_locked(sc);
2710 					return;
2711 				}
2712 			}
2713 		}
2714 
2715 		/* No errors; receive the packet. */
2716 		total_len -= ETHER_CRC_LEN;
2717 #ifdef __NO_STRICT_ALIGNMENT
2718 		/*
2719 		 * On architectures without alignment problems we try to
2720 		 * allocate a new buffer for the receive ring, and pass up
2721 		 * the one where the packet is already, saving the expensive
2722 		 * copy done in m_devget().
2723 		 * If we are on an architecture with alignment problems, or
2724 		 * if the allocation fails, then use m_devget and leave the
2725 		 * existing buffer in the receive ring.
2726 		 */
2727 		if (dc_newbuf(sc, i, 1) == 0) {
2728 			m->m_pkthdr.rcvif = ifp;
2729 			m->m_pkthdr.len = m->m_len = total_len;
2730 			DC_INC(i, DC_RX_LIST_CNT);
2731 		} else
2732 #endif
2733 		{
2734 			m0 = m_devget(mtod(m, char *), total_len,
2735 				ETHER_ALIGN, ifp, NULL);
2736 			dc_newbuf(sc, i, 0);
2737 			DC_INC(i, DC_RX_LIST_CNT);
2738 			if (m0 == NULL) {
2739 				ifp->if_ierrors++;
2740 				continue;
2741 			}
2742 			m = m0;
2743 		}
2744 
2745 		ifp->if_ipackets++;
2746 		DC_UNLOCK(sc);
2747 		(*ifp->if_input)(ifp, m);
2748 		DC_LOCK(sc);
2749 	}
2750 
2751 	sc->dc_cdata.dc_rx_prod = i;
2752 }
2753 
2754 /*
2755  * A frame was downloaded to the chip. It's safe for us to clean up
2756  * the list buffers.
2757  */
2758 static void
2759 dc_txeof(struct dc_softc *sc)
2760 {
2761 	struct dc_desc *cur_tx = NULL;
2762 	struct ifnet *ifp;
2763 	int idx;
2764 	u_int32_t ctl, txstat;
2765 
2766 	ifp = sc->dc_ifp;
2767 
2768 	/*
2769 	 * Go through our tx list and free mbufs for those
2770 	 * frames that have been transmitted.
2771 	 */
2772 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap, BUS_DMASYNC_POSTREAD);
2773 	idx = sc->dc_cdata.dc_tx_cons;
2774 	while (idx != sc->dc_cdata.dc_tx_prod) {
2775 
2776 		cur_tx = &sc->dc_ldata->dc_tx_list[idx];
2777 		txstat = le32toh(cur_tx->dc_status);
2778 		ctl = le32toh(cur_tx->dc_ctl);
2779 
2780 		if (txstat & DC_TXSTAT_OWN)
2781 			break;
2782 
2783 		if (!(ctl & DC_TXCTL_LASTFRAG) || ctl & DC_TXCTL_SETUP) {
2784 			if (ctl & DC_TXCTL_SETUP) {
2785 				/*
2786 				 * Yes, the PNIC is so brain damaged
2787 				 * that it will sometimes generate a TX
2788 				 * underrun error while DMAing the RX
2789 				 * filter setup frame. If we detect this,
2790 				 * we have to send the setup frame again,
2791 				 * or else the filter won't be programmed
2792 				 * correctly.
2793 				 */
2794 				if (DC_IS_PNIC(sc)) {
2795 					if (txstat & DC_TXSTAT_ERRSUM)
2796 						dc_setfilt(sc);
2797 				}
2798 				sc->dc_cdata.dc_tx_chain[idx] = NULL;
2799 			}
2800 			sc->dc_cdata.dc_tx_cnt--;
2801 			DC_INC(idx, DC_TX_LIST_CNT);
2802 			continue;
2803 		}
2804 
2805 		if (DC_IS_XIRCOM(sc) || DC_IS_CONEXANT(sc)) {
2806 			/*
2807 			 * XXX: Why does my Xircom taunt me so?
2808 			 * For some reason it likes setting the CARRLOST flag
2809 			 * even when the carrier is there. wtf?!?
2810 			 * Who knows, but Conexant chips have the
2811 			 * same problem. Maybe they took lessons
2812 			 * from Xircom.
2813 			 */
2814 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2815 			    sc->dc_pmode == DC_PMODE_MII &&
2816 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
2817 			    DC_TXSTAT_NOCARRIER)))
2818 				txstat &= ~DC_TXSTAT_ERRSUM;
2819 		} else {
2820 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2821 			    sc->dc_pmode == DC_PMODE_MII &&
2822 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
2823 			    DC_TXSTAT_NOCARRIER | DC_TXSTAT_CARRLOST)))
2824 				txstat &= ~DC_TXSTAT_ERRSUM;
2825 		}
2826 
2827 		if (txstat & DC_TXSTAT_ERRSUM) {
2828 			ifp->if_oerrors++;
2829 			if (txstat & DC_TXSTAT_EXCESSCOLL)
2830 				ifp->if_collisions++;
2831 			if (txstat & DC_TXSTAT_LATECOLL)
2832 				ifp->if_collisions++;
2833 			if (!(txstat & DC_TXSTAT_UNDERRUN)) {
2834 				dc_init_locked(sc);
2835 				return;
2836 			}
2837 		}
2838 
2839 		ifp->if_collisions += (txstat & DC_TXSTAT_COLLCNT) >> 3;
2840 
2841 		ifp->if_opackets++;
2842 		if (sc->dc_cdata.dc_tx_chain[idx] != NULL) {
2843 			bus_dmamap_sync(sc->dc_mtag,
2844 			    sc->dc_cdata.dc_tx_map[idx],
2845 			    BUS_DMASYNC_POSTWRITE);
2846 			bus_dmamap_unload(sc->dc_mtag,
2847 			    sc->dc_cdata.dc_tx_map[idx]);
2848 			m_freem(sc->dc_cdata.dc_tx_chain[idx]);
2849 			sc->dc_cdata.dc_tx_chain[idx] = NULL;
2850 		}
2851 
2852 		sc->dc_cdata.dc_tx_cnt--;
2853 		DC_INC(idx, DC_TX_LIST_CNT);
2854 	}
2855 	sc->dc_cdata.dc_tx_cons = idx;
2856 
2857 	if (DC_TX_LIST_CNT - sc->dc_cdata.dc_tx_cnt > DC_TX_LIST_RSVD)
2858 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2859 
2860 	if (sc->dc_cdata.dc_tx_cnt == 0)
2861 		sc->dc_wdog_timer = 0;
2862 }
2863 
2864 static void
2865 dc_tick(void *xsc)
2866 {
2867 	struct dc_softc *sc;
2868 	struct mii_data *mii;
2869 	struct ifnet *ifp;
2870 	u_int32_t r;
2871 
2872 	sc = xsc;
2873 	DC_LOCK_ASSERT(sc);
2874 	ifp = sc->dc_ifp;
2875 	mii = device_get_softc(sc->dc_miibus);
2876 
2877 	if (sc->dc_flags & DC_REDUCED_MII_POLL) {
2878 		if (sc->dc_flags & DC_21143_NWAY) {
2879 			r = CSR_READ_4(sc, DC_10BTSTAT);
2880 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2881 			    IFM_100_TX && (r & DC_TSTAT_LS100)) {
2882 				sc->dc_link = 0;
2883 				mii_mediachg(mii);
2884 			}
2885 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2886 			    IFM_10_T && (r & DC_TSTAT_LS10)) {
2887 				sc->dc_link = 0;
2888 				mii_mediachg(mii);
2889 			}
2890 			if (sc->dc_link == 0)
2891 				mii_tick(mii);
2892 		} else {
2893 			/*
2894 			 * For NICs which never report DC_RXSTATE_WAIT, we
2895 			 * have to bite the bullet...
2896 			 */
2897 			if ((DC_HAS_BROKEN_RXSTATE(sc) || (CSR_READ_4(sc,
2898 			    DC_ISR) & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT) &&
2899 			    sc->dc_cdata.dc_tx_cnt == 0) {
2900 				mii_tick(mii);
2901 				if (!(mii->mii_media_status & IFM_ACTIVE))
2902 					sc->dc_link = 0;
2903 			}
2904 		}
2905 	} else
2906 		mii_tick(mii);
2907 
2908 	/*
2909 	 * When the init routine completes, we expect to be able to send
2910 	 * packets right away, and in fact the network code will send a
2911 	 * gratuitous ARP the moment the init routine marks the interface
2912 	 * as running. However, even though the MAC may have been initialized,
2913 	 * there may be a delay of a few seconds before the PHY completes
2914 	 * autonegotiation and the link is brought up. Any transmissions
2915 	 * made during that delay will be lost. Dealing with this is tricky:
2916 	 * we can't just pause in the init routine while waiting for the
2917 	 * PHY to come ready since that would bring the whole system to
2918 	 * a screeching halt for several seconds.
2919 	 *
2920 	 * What we do here is prevent the TX start routine from sending
2921 	 * any packets until a link has been established. After the
2922 	 * interface has been initialized, the tick routine will poll
2923 	 * the state of the PHY until the IFM_ACTIVE flag is set. Until
2924 	 * that time, packets will stay in the send queue, and once the
2925 	 * link comes up, they will be flushed out to the wire.
2926 	 */
2927 	if (!sc->dc_link && mii->mii_media_status & IFM_ACTIVE &&
2928 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2929 		sc->dc_link++;
2930 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2931 			dc_start_locked(ifp);
2932 	}
2933 
2934 	if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link)
2935 		callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
2936 	else
2937 		callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
2938 }
2939 
2940 /*
2941  * A transmit underrun has occurred.  Back off the transmit threshold,
2942  * or switch to store and forward mode if we have to.
2943  */
2944 static void
2945 dc_tx_underrun(struct dc_softc *sc)
2946 {
2947 	u_int32_t isr;
2948 	int i;
2949 
2950 	if (DC_IS_DAVICOM(sc))
2951 		dc_init_locked(sc);
2952 
2953 	if (DC_IS_INTEL(sc)) {
2954 		/*
2955 		 * The real 21143 requires that the transmitter be idle
2956 		 * in order to change the transmit threshold or store
2957 		 * and forward state.
2958 		 */
2959 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2960 
2961 		for (i = 0; i < DC_TIMEOUT; i++) {
2962 			isr = CSR_READ_4(sc, DC_ISR);
2963 			if (isr & DC_ISR_TX_IDLE)
2964 				break;
2965 			DELAY(10);
2966 		}
2967 		if (i == DC_TIMEOUT) {
2968 			device_printf(sc->dc_dev,
2969 			    "%s: failed to force tx to idle state\n",
2970 			    __func__);
2971 			dc_init_locked(sc);
2972 		}
2973 	}
2974 
2975 	device_printf(sc->dc_dev, "TX underrun -- ");
2976 	sc->dc_txthresh += DC_TXTHRESH_INC;
2977 	if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
2978 		printf("using store and forward mode\n");
2979 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
2980 	} else {
2981 		printf("increasing TX threshold\n");
2982 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
2983 		DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
2984 	}
2985 
2986 	if (DC_IS_INTEL(sc))
2987 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2988 }
2989 
2990 #ifdef DEVICE_POLLING
2991 static poll_handler_t dc_poll;
2992 
2993 static void
2994 dc_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2995 {
2996 	struct dc_softc *sc = ifp->if_softc;
2997 
2998 	DC_LOCK(sc);
2999 
3000 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3001 		DC_UNLOCK(sc);
3002 		return;
3003 	}
3004 
3005 	sc->rxcycles = count;
3006 	dc_rxeof(sc);
3007 	dc_txeof(sc);
3008 	if (!IFQ_IS_EMPTY(&ifp->if_snd) &&
3009 	    !(ifp->if_drv_flags & IFF_DRV_OACTIVE))
3010 		dc_start_locked(ifp);
3011 
3012 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
3013 		u_int32_t	status;
3014 
3015 		status = CSR_READ_4(sc, DC_ISR);
3016 		status &= (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF |
3017 			DC_ISR_TX_NOBUF | DC_ISR_TX_IDLE | DC_ISR_TX_UNDERRUN |
3018 			DC_ISR_BUS_ERR);
3019 		if (!status) {
3020 			DC_UNLOCK(sc);
3021 			return;
3022 		}
3023 		/* ack what we have */
3024 		CSR_WRITE_4(sc, DC_ISR, status);
3025 
3026 		if (status & (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF)) {
3027 			u_int32_t r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
3028 			ifp->if_ierrors += (r & 0xffff) + ((r >> 17) & 0x7ff);
3029 
3030 			if (dc_rx_resync(sc))
3031 				dc_rxeof(sc);
3032 		}
3033 		/* restart transmit unit if necessary */
3034 		if (status & DC_ISR_TX_IDLE && sc->dc_cdata.dc_tx_cnt)
3035 			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3036 
3037 		if (status & DC_ISR_TX_UNDERRUN)
3038 			dc_tx_underrun(sc);
3039 
3040 		if (status & DC_ISR_BUS_ERR) {
3041 			if_printf(ifp, "%s: bus error\n", __func__);
3042 			dc_reset(sc);
3043 			dc_init_locked(sc);
3044 		}
3045 	}
3046 	DC_UNLOCK(sc);
3047 }
3048 #endif /* DEVICE_POLLING */
3049 
3050 static void
3051 dc_intr(void *arg)
3052 {
3053 	struct dc_softc *sc;
3054 	struct ifnet *ifp;
3055 	u_int32_t status;
3056 
3057 	sc = arg;
3058 
3059 	if (sc->suspended)
3060 		return;
3061 
3062 	if ((CSR_READ_4(sc, DC_ISR) & DC_INTRS) == 0)
3063 		return;
3064 
3065 	DC_LOCK(sc);
3066 	ifp = sc->dc_ifp;
3067 #ifdef DEVICE_POLLING
3068 	if (ifp->if_capenable & IFCAP_POLLING) {
3069 		DC_UNLOCK(sc);
3070 		return;
3071 	}
3072 #endif
3073 
3074 	/* Suppress unwanted interrupts */
3075 	if (!(ifp->if_flags & IFF_UP)) {
3076 		if (CSR_READ_4(sc, DC_ISR) & DC_INTRS)
3077 			dc_stop(sc);
3078 		DC_UNLOCK(sc);
3079 		return;
3080 	}
3081 
3082 	/* Disable interrupts. */
3083 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3084 
3085 	while (((status = CSR_READ_4(sc, DC_ISR)) & DC_INTRS) &&
3086 	    status != 0xFFFFFFFF &&
3087 	    (ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3088 
3089 		CSR_WRITE_4(sc, DC_ISR, status);
3090 
3091 		if (status & DC_ISR_RX_OK) {
3092 			int		curpkts;
3093 			curpkts = ifp->if_ipackets;
3094 			dc_rxeof(sc);
3095 			if (curpkts == ifp->if_ipackets) {
3096 				while (dc_rx_resync(sc))
3097 					dc_rxeof(sc);
3098 			}
3099 		}
3100 
3101 		if (status & (DC_ISR_TX_OK | DC_ISR_TX_NOBUF))
3102 			dc_txeof(sc);
3103 
3104 		if (status & DC_ISR_TX_IDLE) {
3105 			dc_txeof(sc);
3106 			if (sc->dc_cdata.dc_tx_cnt) {
3107 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3108 				CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3109 			}
3110 		}
3111 
3112 		if (status & DC_ISR_TX_UNDERRUN)
3113 			dc_tx_underrun(sc);
3114 
3115 		if ((status & DC_ISR_RX_WATDOGTIMEO)
3116 		    || (status & DC_ISR_RX_NOBUF)) {
3117 			int		curpkts;
3118 			curpkts = ifp->if_ipackets;
3119 			dc_rxeof(sc);
3120 			if (curpkts == ifp->if_ipackets) {
3121 				while (dc_rx_resync(sc))
3122 					dc_rxeof(sc);
3123 			}
3124 		}
3125 
3126 		if (status & DC_ISR_BUS_ERR) {
3127 			dc_reset(sc);
3128 			dc_init_locked(sc);
3129 		}
3130 	}
3131 
3132 	/* Re-enable interrupts. */
3133 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3134 
3135 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3136 		dc_start_locked(ifp);
3137 
3138 	DC_UNLOCK(sc);
3139 }
3140 
3141 /*
3142  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
3143  * pointers to the fragment pointers.
3144  */
3145 static int
3146 dc_encap(struct dc_softc *sc, struct mbuf **m_head)
3147 {
3148 	bus_dma_segment_t segs[DC_MAXFRAGS];
3149 	struct dc_desc *f;
3150 	struct mbuf *m;
3151 	int cur, defragged, error, first, frag, i, idx, nseg;
3152 
3153 	/*
3154 	 * If there's no way we can send any packets, return now.
3155 	 */
3156 	if (DC_TX_LIST_CNT - sc->dc_cdata.dc_tx_cnt <= DC_TX_LIST_RSVD)
3157 		return (ENOBUFS);
3158 
3159 	m = NULL;
3160 	defragged = 0;
3161 	if (sc->dc_flags & DC_TX_COALESCE &&
3162 	    ((*m_head)->m_next != NULL || sc->dc_flags & DC_TX_ALIGN)) {
3163 		m = m_defrag(*m_head, M_DONTWAIT);
3164 		defragged = 1;
3165 	} else {
3166 		/*
3167 		 * Count the number of frags in this chain to see if we
3168 		 * need to m_collapse.  Since the descriptor list is shared
3169 		 * by all packets, we'll m_collapse long chains so that they
3170 		 * do not use up the entire list, even if they would fit.
3171 		 */
3172 		i = 0;
3173 		for (m = *m_head; m != NULL; m = m->m_next)
3174 			i++;
3175 		if (i > DC_TX_LIST_CNT / 4 ||
3176 		    DC_TX_LIST_CNT - i + sc->dc_cdata.dc_tx_cnt <=
3177 		    DC_TX_LIST_RSVD) {
3178 			m = m_collapse(*m_head, M_DONTWAIT, DC_MAXFRAGS);
3179 			defragged = 1;
3180 		}
3181 	}
3182 	if (defragged != 0) {
3183 		if (m == NULL) {
3184 			m_freem(*m_head);
3185 			*m_head = NULL;
3186 			return (ENOBUFS);
3187 		}
3188 		*m_head = m;
3189 	}
3190 
3191 	idx = sc->dc_cdata.dc_tx_prod;
3192 	error = bus_dmamap_load_mbuf_sg(sc->dc_mtag,
3193 	    sc->dc_cdata.dc_tx_map[idx], *m_head, segs, &nseg, 0);
3194 	if (error == EFBIG) {
3195 		if (defragged != 0 || (m = m_collapse(*m_head, M_DONTWAIT,
3196 		    DC_MAXFRAGS)) == NULL) {
3197 			m_freem(*m_head);
3198 			*m_head = NULL;
3199 			return (defragged != 0 ? error : ENOBUFS);
3200 		}
3201 		*m_head = m;
3202 		error = bus_dmamap_load_mbuf_sg(sc->dc_mtag,
3203 		    sc->dc_cdata.dc_tx_map[idx], *m_head, segs, &nseg, 0);
3204 		if (error != 0) {
3205 			m_freem(*m_head);
3206 			*m_head = NULL;
3207 			return (error);
3208 		}
3209 	} else if (error != 0)
3210 		return (error);
3211 	KASSERT(nseg <= DC_MAXFRAGS,
3212 	    ("%s: wrong number of segments (%d)", __func__, nseg));
3213 	if (nseg == 0) {
3214 		m_freem(*m_head);
3215 		*m_head = NULL;
3216 		return (EIO);
3217 	}
3218 
3219 	first = cur = frag = sc->dc_cdata.dc_tx_prod;
3220 	for (i = 0; i < nseg; i++) {
3221 		if ((sc->dc_flags & DC_TX_ADMTEK_WAR) &&
3222 		    (frag == (DC_TX_LIST_CNT - 1)) &&
3223 		    (first != sc->dc_cdata.dc_tx_first)) {
3224 			bus_dmamap_unload(sc->dc_mtag,
3225 			    sc->dc_cdata.dc_tx_map[first]);
3226 			m_freem(*m_head);
3227 			*m_head = NULL;
3228 			return (ENOBUFS);
3229 		}
3230 
3231 		f = &sc->dc_ldata->dc_tx_list[frag];
3232 		f->dc_ctl = htole32(DC_TXCTL_TLINK | segs[i].ds_len);
3233 		if (i == 0) {
3234 			f->dc_status = 0;
3235 			f->dc_ctl |= htole32(DC_TXCTL_FIRSTFRAG);
3236 		} else
3237 			f->dc_status = htole32(DC_TXSTAT_OWN);
3238 		f->dc_data = htole32(segs[i].ds_addr);
3239 		cur = frag;
3240 		DC_INC(frag, DC_TX_LIST_CNT);
3241 	}
3242 
3243 	sc->dc_cdata.dc_tx_prod = frag;
3244 	sc->dc_cdata.dc_tx_cnt += nseg;
3245 	sc->dc_cdata.dc_tx_chain[cur] = *m_head;
3246 	sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_LASTFRAG);
3247 	if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
3248 		sc->dc_ldata->dc_tx_list[first].dc_ctl |=
3249 		    htole32(DC_TXCTL_FINT);
3250 	if (sc->dc_flags & DC_TX_INTR_ALWAYS)
3251 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
3252 	if (sc->dc_flags & DC_TX_USE_TX_INTR && sc->dc_cdata.dc_tx_cnt > 64)
3253 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
3254 	sc->dc_ldata->dc_tx_list[first].dc_status = htole32(DC_TXSTAT_OWN);
3255 
3256 	bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_tx_map[idx],
3257 	    BUS_DMASYNC_PREWRITE);
3258 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
3259 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
3260 	return (0);
3261 }
3262 
3263 static void
3264 dc_start(struct ifnet *ifp)
3265 {
3266 	struct dc_softc *sc;
3267 
3268 	sc = ifp->if_softc;
3269 	DC_LOCK(sc);
3270 	dc_start_locked(ifp);
3271 	DC_UNLOCK(sc);
3272 }
3273 
3274 /*
3275  * Main transmit routine
3276  * To avoid having to do mbuf copies, we put pointers to the mbuf data
3277  * regions directly in the transmit lists.  We also save a copy of the
3278  * pointers since the transmit list fragment pointers are physical
3279  * addresses.
3280  */
3281 static void
3282 dc_start_locked(struct ifnet *ifp)
3283 {
3284 	struct dc_softc *sc;
3285 	struct mbuf *m_head = NULL;
3286 	unsigned int queued = 0;
3287 	int idx;
3288 
3289 	sc = ifp->if_softc;
3290 
3291 	DC_LOCK_ASSERT(sc);
3292 
3293 	if (!sc->dc_link && ifp->if_snd.ifq_len < 10)
3294 		return;
3295 
3296 	if (ifp->if_drv_flags & IFF_DRV_OACTIVE)
3297 		return;
3298 
3299 	idx = sc->dc_cdata.dc_tx_first = sc->dc_cdata.dc_tx_prod;
3300 
3301 	while (sc->dc_cdata.dc_tx_chain[idx] == NULL) {
3302 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
3303 		if (m_head == NULL)
3304 			break;
3305 
3306 		if (dc_encap(sc, &m_head)) {
3307 			if (m_head == NULL)
3308 				break;
3309 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
3310 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3311 			break;
3312 		}
3313 		idx = sc->dc_cdata.dc_tx_prod;
3314 
3315 		queued++;
3316 		/*
3317 		 * If there's a BPF listener, bounce a copy of this frame
3318 		 * to him.
3319 		 */
3320 		BPF_MTAP(ifp, m_head);
3321 
3322 		if (sc->dc_flags & DC_TX_ONE) {
3323 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3324 			break;
3325 		}
3326 	}
3327 
3328 	if (queued > 0) {
3329 		/* Transmit */
3330 		if (!(sc->dc_flags & DC_TX_POLL))
3331 			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3332 
3333 		/*
3334 		 * Set a timeout in case the chip goes out to lunch.
3335 		 */
3336 		sc->dc_wdog_timer = 5;
3337 	}
3338 }
3339 
3340 static void
3341 dc_init(void *xsc)
3342 {
3343 	struct dc_softc *sc = xsc;
3344 
3345 	DC_LOCK(sc);
3346 	dc_init_locked(sc);
3347 	DC_UNLOCK(sc);
3348 }
3349 
3350 static void
3351 dc_init_locked(struct dc_softc *sc)
3352 {
3353 	struct ifnet *ifp = sc->dc_ifp;
3354 	struct mii_data *mii;
3355 
3356 	DC_LOCK_ASSERT(sc);
3357 
3358 	mii = device_get_softc(sc->dc_miibus);
3359 
3360 	/*
3361 	 * Cancel pending I/O and free all RX/TX buffers.
3362 	 */
3363 	dc_stop(sc);
3364 	dc_reset(sc);
3365 
3366 	/*
3367 	 * Set cache alignment and burst length.
3368 	 */
3369 	if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc))
3370 		CSR_WRITE_4(sc, DC_BUSCTL, 0);
3371 	else
3372 		CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME | DC_BUSCTL_MRLE);
3373 	/*
3374 	 * Evenly share the bus between receive and transmit process.
3375 	 */
3376 	if (DC_IS_INTEL(sc))
3377 		DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION);
3378 	if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
3379 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
3380 	} else {
3381 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
3382 	}
3383 	if (sc->dc_flags & DC_TX_POLL)
3384 		DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
3385 	switch(sc->dc_cachesize) {
3386 	case 32:
3387 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
3388 		break;
3389 	case 16:
3390 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
3391 		break;
3392 	case 8:
3393 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
3394 		break;
3395 	case 0:
3396 	default:
3397 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
3398 		break;
3399 	}
3400 
3401 	if (sc->dc_flags & DC_TX_STORENFWD)
3402 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3403 	else {
3404 		if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3405 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3406 		} else {
3407 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3408 			DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3409 		}
3410 	}
3411 
3412 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
3413 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
3414 
3415 	if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
3416 		/*
3417 		 * The app notes for the 98713 and 98715A say that
3418 		 * in order to have the chips operate properly, a magic
3419 		 * number must be written to CSR16. Macronix does not
3420 		 * document the meaning of these bits so there's no way
3421 		 * to know exactly what they do. The 98713 has a magic
3422 		 * number all its own; the rest all use a different one.
3423 		 */
3424 		DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
3425 		if (sc->dc_type == DC_TYPE_98713)
3426 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
3427 		else
3428 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
3429 	}
3430 
3431 	if (DC_IS_XIRCOM(sc)) {
3432 		/*
3433 		 * setup General Purpose Port mode and data so the tulip
3434 		 * can talk to the MII.
3435 		 */
3436 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
3437 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3438 		DELAY(10);
3439 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
3440 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3441 		DELAY(10);
3442 	}
3443 
3444 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3445 	DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN);
3446 
3447 	/* Init circular RX list. */
3448 	if (dc_list_rx_init(sc) == ENOBUFS) {
3449 		device_printf(sc->dc_dev,
3450 		    "initialization failed: no memory for rx buffers\n");
3451 		dc_stop(sc);
3452 		return;
3453 	}
3454 
3455 	/*
3456 	 * Init TX descriptors.
3457 	 */
3458 	dc_list_tx_init(sc);
3459 
3460 	/*
3461 	 * Load the address of the RX list.
3462 	 */
3463 	CSR_WRITE_4(sc, DC_RXADDR, DC_RXDESC(sc, 0));
3464 	CSR_WRITE_4(sc, DC_TXADDR, DC_TXDESC(sc, 0));
3465 
3466 	/*
3467 	 * Enable interrupts.
3468 	 */
3469 #ifdef DEVICE_POLLING
3470 	/*
3471 	 * ... but only if we are not polling, and make sure they are off in
3472 	 * the case of polling. Some cards (e.g. fxp) turn interrupts on
3473 	 * after a reset.
3474 	 */
3475 	if (ifp->if_capenable & IFCAP_POLLING)
3476 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3477 	else
3478 #endif
3479 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3480 	CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
3481 
3482 	/* Enable transmitter. */
3483 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3484 
3485 	/*
3486 	 * If this is an Intel 21143 and we're not using the
3487 	 * MII port, program the LED control pins so we get
3488 	 * link and activity indications.
3489 	 */
3490 	if (sc->dc_flags & DC_TULIP_LEDS) {
3491 		CSR_WRITE_4(sc, DC_WATCHDOG,
3492 		    DC_WDOG_CTLWREN | DC_WDOG_LINK | DC_WDOG_ACTIVITY);
3493 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
3494 	}
3495 
3496 	/*
3497 	 * Load the RX/multicast filter. We do this sort of late
3498 	 * because the filter programming scheme on the 21143 and
3499 	 * some clones requires DMAing a setup frame via the TX
3500 	 * engine, and we need the transmitter enabled for that.
3501 	 */
3502 	dc_setfilt(sc);
3503 
3504 	/* Enable receiver. */
3505 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
3506 	CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
3507 
3508 	mii_mediachg(mii);
3509 	dc_setcfg(sc, sc->dc_if_media);
3510 
3511 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3512 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3513 
3514 	/* Don't start the ticker if this is a homePNA link. */
3515 	if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_HPNA_1)
3516 		sc->dc_link = 1;
3517 	else {
3518 		if (sc->dc_flags & DC_21143_NWAY)
3519 			callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
3520 		else
3521 			callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
3522 	}
3523 
3524 	sc->dc_wdog_timer = 0;
3525 	callout_reset(&sc->dc_wdog_ch, hz, dc_watchdog, sc);
3526 }
3527 
3528 /*
3529  * Set media options.
3530  */
3531 static int
3532 dc_ifmedia_upd(struct ifnet *ifp)
3533 {
3534 	struct dc_softc *sc;
3535 	struct mii_data *mii;
3536 	struct ifmedia *ifm;
3537 
3538 	sc = ifp->if_softc;
3539 	mii = device_get_softc(sc->dc_miibus);
3540 	DC_LOCK(sc);
3541 	mii_mediachg(mii);
3542 	ifm = &mii->mii_media;
3543 
3544 	if (DC_IS_DAVICOM(sc) &&
3545 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1)
3546 		dc_setcfg(sc, ifm->ifm_media);
3547 	else
3548 		sc->dc_link = 0;
3549 	DC_UNLOCK(sc);
3550 
3551 	return (0);
3552 }
3553 
3554 /*
3555  * Report current media status.
3556  */
3557 static void
3558 dc_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3559 {
3560 	struct dc_softc *sc;
3561 	struct mii_data *mii;
3562 	struct ifmedia *ifm;
3563 
3564 	sc = ifp->if_softc;
3565 	mii = device_get_softc(sc->dc_miibus);
3566 	DC_LOCK(sc);
3567 	mii_pollstat(mii);
3568 	ifm = &mii->mii_media;
3569 	if (DC_IS_DAVICOM(sc)) {
3570 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
3571 			ifmr->ifm_active = ifm->ifm_media;
3572 			ifmr->ifm_status = 0;
3573 			DC_UNLOCK(sc);
3574 			return;
3575 		}
3576 	}
3577 	ifmr->ifm_active = mii->mii_media_active;
3578 	ifmr->ifm_status = mii->mii_media_status;
3579 	DC_UNLOCK(sc);
3580 }
3581 
3582 static int
3583 dc_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
3584 {
3585 	struct dc_softc *sc = ifp->if_softc;
3586 	struct ifreq *ifr = (struct ifreq *)data;
3587 	struct mii_data *mii;
3588 	int error = 0;
3589 
3590 	switch (command) {
3591 	case SIOCSIFFLAGS:
3592 		DC_LOCK(sc);
3593 		if (ifp->if_flags & IFF_UP) {
3594 			int need_setfilt = (ifp->if_flags ^ sc->dc_if_flags) &
3595 				(IFF_PROMISC | IFF_ALLMULTI);
3596 
3597 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3598 				if (need_setfilt)
3599 					dc_setfilt(sc);
3600 			} else {
3601 				sc->dc_txthresh = 0;
3602 				dc_init_locked(sc);
3603 			}
3604 		} else {
3605 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3606 				dc_stop(sc);
3607 		}
3608 		sc->dc_if_flags = ifp->if_flags;
3609 		DC_UNLOCK(sc);
3610 		error = 0;
3611 		break;
3612 	case SIOCADDMULTI:
3613 	case SIOCDELMULTI:
3614 		DC_LOCK(sc);
3615 		dc_setfilt(sc);
3616 		DC_UNLOCK(sc);
3617 		error = 0;
3618 		break;
3619 	case SIOCGIFMEDIA:
3620 	case SIOCSIFMEDIA:
3621 		mii = device_get_softc(sc->dc_miibus);
3622 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
3623 		break;
3624 	case SIOCSIFCAP:
3625 #ifdef DEVICE_POLLING
3626 		if (ifr->ifr_reqcap & IFCAP_POLLING &&
3627 		    !(ifp->if_capenable & IFCAP_POLLING)) {
3628 			error = ether_poll_register(dc_poll, ifp);
3629 			if (error)
3630 				return(error);
3631 			DC_LOCK(sc);
3632 			/* Disable interrupts */
3633 			CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3634 			ifp->if_capenable |= IFCAP_POLLING;
3635 			DC_UNLOCK(sc);
3636 			return (error);
3637 		}
3638 		if (!(ifr->ifr_reqcap & IFCAP_POLLING) &&
3639 		    ifp->if_capenable & IFCAP_POLLING) {
3640 			error = ether_poll_deregister(ifp);
3641 			/* Enable interrupts. */
3642 			DC_LOCK(sc);
3643 			CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3644 			ifp->if_capenable &= ~IFCAP_POLLING;
3645 			DC_UNLOCK(sc);
3646 			return (error);
3647 		}
3648 #endif /* DEVICE_POLLING */
3649 		break;
3650 	default:
3651 		error = ether_ioctl(ifp, command, data);
3652 		break;
3653 	}
3654 
3655 	return (error);
3656 }
3657 
3658 static void
3659 dc_watchdog(void *xsc)
3660 {
3661 	struct dc_softc *sc = xsc;
3662 	struct ifnet *ifp;
3663 
3664 	DC_LOCK_ASSERT(sc);
3665 
3666 	if (sc->dc_wdog_timer == 0 || --sc->dc_wdog_timer != 0) {
3667 		callout_reset(&sc->dc_wdog_ch, hz, dc_watchdog, sc);
3668 		return;
3669 	}
3670 
3671 	ifp = sc->dc_ifp;
3672 	ifp->if_oerrors++;
3673 	device_printf(sc->dc_dev, "watchdog timeout\n");
3674 
3675 	dc_stop(sc);
3676 	dc_reset(sc);
3677 	dc_init_locked(sc);
3678 
3679 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3680 		dc_start_locked(ifp);
3681 }
3682 
3683 /*
3684  * Stop the adapter and free any mbufs allocated to the
3685  * RX and TX lists.
3686  */
3687 static void
3688 dc_stop(struct dc_softc *sc)
3689 {
3690 	struct ifnet *ifp;
3691 	struct dc_list_data *ld;
3692 	struct dc_chain_data *cd;
3693 	int i;
3694 	u_int32_t ctl;
3695 
3696 	DC_LOCK_ASSERT(sc);
3697 
3698 	ifp = sc->dc_ifp;
3699 	ld = sc->dc_ldata;
3700 	cd = &sc->dc_cdata;
3701 
3702 	callout_stop(&sc->dc_stat_ch);
3703 	callout_stop(&sc->dc_wdog_ch);
3704 	sc->dc_wdog_timer = 0;
3705 
3706 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3707 
3708 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ON | DC_NETCFG_TX_ON));
3709 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3710 	CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
3711 	CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
3712 	sc->dc_link = 0;
3713 
3714 	/*
3715 	 * Free data in the RX lists.
3716 	 */
3717 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
3718 		if (cd->dc_rx_chain[i] != NULL) {
3719 			m_freem(cd->dc_rx_chain[i]);
3720 			cd->dc_rx_chain[i] = NULL;
3721 		}
3722 	}
3723 	bzero(&ld->dc_rx_list, sizeof(ld->dc_rx_list));
3724 
3725 	/*
3726 	 * Free the TX list buffers.
3727 	 */
3728 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
3729 		if (cd->dc_tx_chain[i] != NULL) {
3730 			ctl = le32toh(ld->dc_tx_list[i].dc_ctl);
3731 			if ((ctl & DC_TXCTL_SETUP) ||
3732 			    !(ctl & DC_TXCTL_LASTFRAG)) {
3733 				cd->dc_tx_chain[i] = NULL;
3734 				continue;
3735 			}
3736 			bus_dmamap_unload(sc->dc_mtag, cd->dc_tx_map[i]);
3737 			m_freem(cd->dc_tx_chain[i]);
3738 			cd->dc_tx_chain[i] = NULL;
3739 		}
3740 	}
3741 	bzero(&ld->dc_tx_list, sizeof(ld->dc_tx_list));
3742 }
3743 
3744 /*
3745  * Device suspend routine.  Stop the interface and save some PCI
3746  * settings in case the BIOS doesn't restore them properly on
3747  * resume.
3748  */
3749 static int
3750 dc_suspend(device_t dev)
3751 {
3752 	struct dc_softc *sc;
3753 
3754 	sc = device_get_softc(dev);
3755 	DC_LOCK(sc);
3756 	dc_stop(sc);
3757 	sc->suspended = 1;
3758 	DC_UNLOCK(sc);
3759 
3760 	return (0);
3761 }
3762 
3763 /*
3764  * Device resume routine.  Restore some PCI settings in case the BIOS
3765  * doesn't, re-enable busmastering, and restart the interface if
3766  * appropriate.
3767  */
3768 static int
3769 dc_resume(device_t dev)
3770 {
3771 	struct dc_softc *sc;
3772 	struct ifnet *ifp;
3773 
3774 	sc = device_get_softc(dev);
3775 	ifp = sc->dc_ifp;
3776 
3777 	/* reinitialize interface if necessary */
3778 	DC_LOCK(sc);
3779 	if (ifp->if_flags & IFF_UP)
3780 		dc_init_locked(sc);
3781 
3782 	sc->suspended = 0;
3783 	DC_UNLOCK(sc);
3784 
3785 	return (0);
3786 }
3787 
3788 /*
3789  * Stop all chip I/O so that the kernel's probe routines don't
3790  * get confused by errant DMAs when rebooting.
3791  */
3792 static int
3793 dc_shutdown(device_t dev)
3794 {
3795 	struct dc_softc *sc;
3796 
3797 	sc = device_get_softc(dev);
3798 
3799 	DC_LOCK(sc);
3800 	dc_stop(sc);
3801 	DC_UNLOCK(sc);
3802 
3803 	return (0);
3804 }
3805