xref: /freebsd/sys/dev/dc/if_dc.c (revision 31d62a73c2e6ac0ff413a7a17700ffc7dce254ef)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1997, 1998, 1999
5  *	Bill Paul <wpaul@ee.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 /*
39  * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
40  * series chips and several workalikes including the following:
41  *
42  * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com)
43  * Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
44  * Lite-On 82c168/82c169 PNIC (www.litecom.com)
45  * ASIX Electronics AX88140A (www.asix.com.tw)
46  * ASIX Electronics AX88141 (www.asix.com.tw)
47  * ADMtek AL981 (www.admtek.com.tw)
48  * ADMtek AN983 (www.admtek.com.tw)
49  * ADMtek CardBus AN985 (www.admtek.com.tw)
50  * Netgear FA511 (www.netgear.com) Appears to be rebadged ADMTek CardBus AN985
51  * Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
52  * Accton EN1217 (www.accton.com)
53  * Xircom X3201 (www.xircom.com)
54  * Abocom FE2500
55  * Conexant LANfinity (www.conexant.com)
56  * 3Com OfficeConnect 10/100B 3CSOHO100B (www.3com.com)
57  *
58  * Datasheets for the 21143 are available at developer.intel.com.
59  * Datasheets for the clone parts can be found at their respective sites.
60  * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
61  * The PNIC II is essentially a Macronix 98715A chip; the only difference
62  * worth noting is that its multicast hash table is only 128 bits wide
63  * instead of 512.
64  *
65  * Written by Bill Paul <wpaul@ee.columbia.edu>
66  * Electrical Engineering Department
67  * Columbia University, New York City
68  */
69 /*
70  * The Intel 21143 is the successor to the DEC 21140. It is basically
71  * the same as the 21140 but with a few new features. The 21143 supports
72  * three kinds of media attachments:
73  *
74  * o MII port, for 10Mbps and 100Mbps support and NWAY
75  *   autonegotiation provided by an external PHY.
76  * o SYM port, for symbol mode 100Mbps support.
77  * o 10baseT port.
78  * o AUI/BNC port.
79  *
80  * The 100Mbps SYM port and 10baseT port can be used together in
81  * combination with the internal NWAY support to create a 10/100
82  * autosensing configuration.
83  *
84  * Note that not all tulip workalikes are handled in this driver: we only
85  * deal with those which are relatively well behaved. The Winbond is
86  * handled separately due to its different register offsets and the
87  * special handling needed for its various bugs. The PNIC is handled
88  * here, but I'm not thrilled about it.
89  *
90  * All of the workalike chips use some form of MII transceiver support
91  * with the exception of the Macronix chips, which also have a SYM port.
92  * The ASIX AX88140A is also documented to have a SYM port, but all
93  * the cards I've seen use an MII transceiver, probably because the
94  * AX88140A doesn't support internal NWAY.
95  */
96 
97 #ifdef HAVE_KERNEL_OPTION_HEADERS
98 #include "opt_device_polling.h"
99 #endif
100 
101 #include <sys/param.h>
102 #include <sys/endian.h>
103 #include <sys/systm.h>
104 #include <sys/sockio.h>
105 #include <sys/mbuf.h>
106 #include <sys/malloc.h>
107 #include <sys/kernel.h>
108 #include <sys/module.h>
109 #include <sys/socket.h>
110 
111 #include <net/if.h>
112 #include <net/if_var.h>
113 #include <net/if_arp.h>
114 #include <net/ethernet.h>
115 #include <net/if_dl.h>
116 #include <net/if_media.h>
117 #include <net/if_types.h>
118 #include <net/if_vlan_var.h>
119 
120 #include <net/bpf.h>
121 
122 #include <machine/bus.h>
123 #include <machine/resource.h>
124 #include <sys/bus.h>
125 #include <sys/rman.h>
126 
127 #include <dev/mii/mii.h>
128 #include <dev/mii/mii_bitbang.h>
129 #include <dev/mii/miivar.h>
130 
131 #include <dev/pci/pcireg.h>
132 #include <dev/pci/pcivar.h>
133 
134 #define	DC_USEIOSPACE
135 
136 #include <dev/dc/if_dcreg.h>
137 
138 #ifdef __sparc64__
139 #include <dev/ofw/openfirm.h>
140 #include <machine/ofw_machdep.h>
141 #endif
142 
143 MODULE_DEPEND(dc, pci, 1, 1, 1);
144 MODULE_DEPEND(dc, ether, 1, 1, 1);
145 MODULE_DEPEND(dc, miibus, 1, 1, 1);
146 
147 /*
148  * "device miibus" is required in kernel config.  See GENERIC if you get
149  * errors here.
150  */
151 #include "miibus_if.h"
152 
153 /*
154  * Various supported device vendors/types and their names.
155  */
156 static const struct dc_type dc_devs[] = {
157 	{ DC_DEVID(DC_VENDORID_DEC, DC_DEVICEID_21143), 0,
158 		"Intel 21143 10/100BaseTX" },
159 	{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009), 0,
160 		"Davicom DM9009 10/100BaseTX" },
161 	{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100), 0,
162 		"Davicom DM9100 10/100BaseTX" },
163 	{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102), DC_REVISION_DM9102A,
164 		"Davicom DM9102A 10/100BaseTX" },
165 	{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102), 0,
166 		"Davicom DM9102 10/100BaseTX" },
167 	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AL981), 0,
168 		"ADMtek AL981 10/100BaseTX" },
169 	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN983), 0,
170 		"ADMtek AN983 10/100BaseTX" },
171 	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN985), 0,
172 		"ADMtek AN985 CardBus 10/100BaseTX or clone" },
173 	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511), 0,
174 		"ADMtek ADM9511 10/100BaseTX" },
175 	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513), 0,
176 		"ADMtek ADM9513 10/100BaseTX" },
177 	{ DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A), DC_REVISION_88141,
178 		"ASIX AX88141 10/100BaseTX" },
179 	{ DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A), 0,
180 		"ASIX AX88140A 10/100BaseTX" },
181 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713), DC_REVISION_98713A,
182 		"Macronix 98713A 10/100BaseTX" },
183 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713), 0,
184 		"Macronix 98713 10/100BaseTX" },
185 	{ DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP), DC_REVISION_98713A,
186 		"Compex RL100-TX 10/100BaseTX" },
187 	{ DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP), 0,
188 		"Compex RL100-TX 10/100BaseTX" },
189 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), DC_REVISION_98725,
190 		"Macronix 98725 10/100BaseTX" },
191 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), DC_REVISION_98715AEC_C,
192 		"Macronix 98715AEC-C 10/100BaseTX" },
193 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), 0,
194 		"Macronix 98715/98715A 10/100BaseTX" },
195 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98727), 0,
196 		"Macronix 98727/98732 10/100BaseTX" },
197 	{ DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C115), 0,
198 		"LC82C115 PNIC II 10/100BaseTX" },
199 	{ DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168), DC_REVISION_82C169,
200 		"82c169 PNIC 10/100BaseTX" },
201 	{ DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168), 0,
202 		"82c168 PNIC 10/100BaseTX" },
203 	{ DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN1217), 0,
204 		"Accton EN1217 10/100BaseTX" },
205 	{ DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN2242), 0,
206 		"Accton EN2242 MiniPCI 10/100BaseTX" },
207 	{ DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201), 0,
208 		"Xircom X3201 10/100BaseTX" },
209 	{ DC_DEVID(DC_VENDORID_DLINK, DC_DEVICEID_DRP32TXD), 0,
210 		"Neteasy DRP-32TXD Cardbus 10/100" },
211 	{ DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500), 0,
212 		"Abocom FE2500 10/100BaseTX" },
213 	{ DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500MX), 0,
214 		"Abocom FE2500MX 10/100BaseTX" },
215 	{ DC_DEVID(DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112), 0,
216 		"Conexant LANfinity MiniPCI 10/100BaseTX" },
217 	{ DC_DEVID(DC_VENDORID_HAWKING, DC_DEVICEID_HAWKING_PN672TX), 0,
218 		"Hawking CB102 CardBus 10/100" },
219 	{ DC_DEVID(DC_VENDORID_PLANEX, DC_DEVICEID_FNW3602T), 0,
220 		"PlaneX FNW-3602-T CardBus 10/100" },
221 	{ DC_DEVID(DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB), 0,
222 		"3Com OfficeConnect 10/100B" },
223 	{ DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN120), 0,
224 		"Microsoft MN-120 CardBus 10/100" },
225 	{ DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130), 0,
226 		"Microsoft MN-130 10/100" },
227 	{ DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB08), 0,
228 		"Linksys PCMPC200 CardBus 10/100" },
229 	{ DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB09), 0,
230 		"Linksys PCMPC200 CardBus 10/100" },
231 	{ DC_DEVID(DC_VENDORID_ULI, DC_DEVICEID_M5261), 0,
232 		"ULi M5261 FastEthernet" },
233 	{ DC_DEVID(DC_VENDORID_ULI, DC_DEVICEID_M5263), 0,
234 		"ULi M5263 FastEthernet" },
235 	{ 0, 0, NULL }
236 };
237 
238 static int dc_probe(device_t);
239 static int dc_attach(device_t);
240 static int dc_detach(device_t);
241 static int dc_suspend(device_t);
242 static int dc_resume(device_t);
243 static const struct dc_type *dc_devtype(device_t);
244 static void dc_discard_rxbuf(struct dc_softc *, int);
245 static int dc_newbuf(struct dc_softc *, int);
246 static int dc_encap(struct dc_softc *, struct mbuf **);
247 static void dc_pnic_rx_bug_war(struct dc_softc *, int);
248 static int dc_rx_resync(struct dc_softc *);
249 static int dc_rxeof(struct dc_softc *);
250 static void dc_txeof(struct dc_softc *);
251 static void dc_tick(void *);
252 static void dc_tx_underrun(struct dc_softc *);
253 static void dc_intr(void *);
254 static void dc_start(struct ifnet *);
255 static void dc_start_locked(struct ifnet *);
256 static int dc_ioctl(struct ifnet *, u_long, caddr_t);
257 static void dc_init(void *);
258 static void dc_init_locked(struct dc_softc *);
259 static void dc_stop(struct dc_softc *);
260 static void dc_watchdog(void *);
261 static int dc_shutdown(device_t);
262 static int dc_ifmedia_upd(struct ifnet *);
263 static int dc_ifmedia_upd_locked(struct dc_softc *);
264 static void dc_ifmedia_sts(struct ifnet *, struct ifmediareq *);
265 
266 static int dc_dma_alloc(struct dc_softc *);
267 static void dc_dma_free(struct dc_softc *);
268 static void dc_dma_map_addr(void *, bus_dma_segment_t *, int, int);
269 
270 static void dc_delay(struct dc_softc *);
271 static void dc_eeprom_idle(struct dc_softc *);
272 static void dc_eeprom_putbyte(struct dc_softc *, int);
273 static void dc_eeprom_getword(struct dc_softc *, int, uint16_t *);
274 static void dc_eeprom_getword_pnic(struct dc_softc *, int, uint16_t *);
275 static void dc_eeprom_getword_xircom(struct dc_softc *, int, uint16_t *);
276 static void dc_eeprom_width(struct dc_softc *);
277 static void dc_read_eeprom(struct dc_softc *, caddr_t, int, int, int);
278 
279 static int dc_miibus_readreg(device_t, int, int);
280 static int dc_miibus_writereg(device_t, int, int, int);
281 static void dc_miibus_statchg(device_t);
282 static void dc_miibus_mediainit(device_t);
283 
284 static void dc_setcfg(struct dc_softc *, int);
285 static void dc_netcfg_wait(struct dc_softc *);
286 static uint32_t dc_mchash_le(struct dc_softc *, const uint8_t *);
287 static uint32_t dc_mchash_be(const uint8_t *);
288 static void dc_setfilt_21143(struct dc_softc *);
289 static void dc_setfilt_asix(struct dc_softc *);
290 static void dc_setfilt_admtek(struct dc_softc *);
291 static void dc_setfilt_uli(struct dc_softc *);
292 static void dc_setfilt_xircom(struct dc_softc *);
293 
294 static void dc_setfilt(struct dc_softc *);
295 
296 static void dc_reset(struct dc_softc *);
297 static int dc_list_rx_init(struct dc_softc *);
298 static int dc_list_tx_init(struct dc_softc *);
299 
300 static int dc_read_srom(struct dc_softc *, int);
301 static int dc_parse_21143_srom(struct dc_softc *);
302 static int dc_decode_leaf_sia(struct dc_softc *, struct dc_eblock_sia *);
303 static int dc_decode_leaf_mii(struct dc_softc *, struct dc_eblock_mii *);
304 static int dc_decode_leaf_sym(struct dc_softc *, struct dc_eblock_sym *);
305 static void dc_apply_fixup(struct dc_softc *, int);
306 static int dc_check_multiport(struct dc_softc *);
307 
308 /*
309  * MII bit-bang glue
310  */
311 static uint32_t dc_mii_bitbang_read(device_t);
312 static void dc_mii_bitbang_write(device_t, uint32_t);
313 
314 static const struct mii_bitbang_ops dc_mii_bitbang_ops = {
315 	dc_mii_bitbang_read,
316 	dc_mii_bitbang_write,
317 	{
318 		DC_SIO_MII_DATAOUT,	/* MII_BIT_MDO */
319 		DC_SIO_MII_DATAIN,	/* MII_BIT_MDI */
320 		DC_SIO_MII_CLK,		/* MII_BIT_MDC */
321 		0,			/* MII_BIT_DIR_HOST_PHY */
322 		DC_SIO_MII_DIR,		/* MII_BIT_DIR_PHY_HOST */
323 	}
324 };
325 
326 #ifdef DC_USEIOSPACE
327 #define	DC_RES			SYS_RES_IOPORT
328 #define	DC_RID			DC_PCI_CFBIO
329 #else
330 #define	DC_RES			SYS_RES_MEMORY
331 #define	DC_RID			DC_PCI_CFBMA
332 #endif
333 
334 static device_method_t dc_methods[] = {
335 	/* Device interface */
336 	DEVMETHOD(device_probe,		dc_probe),
337 	DEVMETHOD(device_attach,	dc_attach),
338 	DEVMETHOD(device_detach,	dc_detach),
339 	DEVMETHOD(device_suspend,	dc_suspend),
340 	DEVMETHOD(device_resume,	dc_resume),
341 	DEVMETHOD(device_shutdown,	dc_shutdown),
342 
343 	/* MII interface */
344 	DEVMETHOD(miibus_readreg,	dc_miibus_readreg),
345 	DEVMETHOD(miibus_writereg,	dc_miibus_writereg),
346 	DEVMETHOD(miibus_statchg,	dc_miibus_statchg),
347 	DEVMETHOD(miibus_mediainit,	dc_miibus_mediainit),
348 
349 	DEVMETHOD_END
350 };
351 
352 static driver_t dc_driver = {
353 	"dc",
354 	dc_methods,
355 	sizeof(struct dc_softc)
356 };
357 
358 static devclass_t dc_devclass;
359 
360 DRIVER_MODULE_ORDERED(dc, pci, dc_driver, dc_devclass, NULL, NULL,
361     SI_ORDER_ANY);
362 MODULE_PNP_INFO("W32:vendor/device;U8:revision;D:#", pci, dc, dc_devs,
363     nitems(dc_devs) - 1);
364 DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, NULL, NULL);
365 
366 #define	DC_SETBIT(sc, reg, x)				\
367 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
368 
369 #define	DC_CLRBIT(sc, reg, x)				\
370 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
371 
372 #define	SIO_SET(x)	DC_SETBIT(sc, DC_SIO, (x))
373 #define	SIO_CLR(x)	DC_CLRBIT(sc, DC_SIO, (x))
374 
375 static void
376 dc_delay(struct dc_softc *sc)
377 {
378 	int idx;
379 
380 	for (idx = (300 / 33) + 1; idx > 0; idx--)
381 		CSR_READ_4(sc, DC_BUSCTL);
382 }
383 
384 static void
385 dc_eeprom_width(struct dc_softc *sc)
386 {
387 	int i;
388 
389 	/* Force EEPROM to idle state. */
390 	dc_eeprom_idle(sc);
391 
392 	/* Enter EEPROM access mode. */
393 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
394 	dc_delay(sc);
395 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
396 	dc_delay(sc);
397 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
398 	dc_delay(sc);
399 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
400 	dc_delay(sc);
401 
402 	for (i = 3; i--;) {
403 		if (6 & (1 << i))
404 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
405 		else
406 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
407 		dc_delay(sc);
408 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
409 		dc_delay(sc);
410 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
411 		dc_delay(sc);
412 	}
413 
414 	for (i = 1; i <= 12; i++) {
415 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
416 		dc_delay(sc);
417 		if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) {
418 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
419 			dc_delay(sc);
420 			break;
421 		}
422 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
423 		dc_delay(sc);
424 	}
425 
426 	/* Turn off EEPROM access mode. */
427 	dc_eeprom_idle(sc);
428 
429 	if (i < 4 || i > 12)
430 		sc->dc_romwidth = 6;
431 	else
432 		sc->dc_romwidth = i;
433 
434 	/* Enter EEPROM access mode. */
435 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
436 	dc_delay(sc);
437 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
438 	dc_delay(sc);
439 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
440 	dc_delay(sc);
441 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
442 	dc_delay(sc);
443 
444 	/* Turn off EEPROM access mode. */
445 	dc_eeprom_idle(sc);
446 }
447 
448 static void
449 dc_eeprom_idle(struct dc_softc *sc)
450 {
451 	int i;
452 
453 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
454 	dc_delay(sc);
455 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
456 	dc_delay(sc);
457 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
458 	dc_delay(sc);
459 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
460 	dc_delay(sc);
461 
462 	for (i = 0; i < 25; i++) {
463 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
464 		dc_delay(sc);
465 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
466 		dc_delay(sc);
467 	}
468 
469 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
470 	dc_delay(sc);
471 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
472 	dc_delay(sc);
473 	CSR_WRITE_4(sc, DC_SIO, 0x00000000);
474 }
475 
476 /*
477  * Send a read command and address to the EEPROM, check for ACK.
478  */
479 static void
480 dc_eeprom_putbyte(struct dc_softc *sc, int addr)
481 {
482 	int d, i;
483 
484 	d = DC_EECMD_READ >> 6;
485 	for (i = 3; i--; ) {
486 		if (d & (1 << i))
487 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
488 		else
489 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
490 		dc_delay(sc);
491 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
492 		dc_delay(sc);
493 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
494 		dc_delay(sc);
495 	}
496 
497 	/*
498 	 * Feed in each bit and strobe the clock.
499 	 */
500 	for (i = sc->dc_romwidth; i--;) {
501 		if (addr & (1 << i)) {
502 			SIO_SET(DC_SIO_EE_DATAIN);
503 		} else {
504 			SIO_CLR(DC_SIO_EE_DATAIN);
505 		}
506 		dc_delay(sc);
507 		SIO_SET(DC_SIO_EE_CLK);
508 		dc_delay(sc);
509 		SIO_CLR(DC_SIO_EE_CLK);
510 		dc_delay(sc);
511 	}
512 }
513 
514 /*
515  * Read a word of data stored in the EEPROM at address 'addr.'
516  * The PNIC 82c168/82c169 has its own non-standard way to read
517  * the EEPROM.
518  */
519 static void
520 dc_eeprom_getword_pnic(struct dc_softc *sc, int addr, uint16_t *dest)
521 {
522 	int i;
523 	uint32_t r;
524 
525 	CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ | addr);
526 
527 	for (i = 0; i < DC_TIMEOUT; i++) {
528 		DELAY(1);
529 		r = CSR_READ_4(sc, DC_SIO);
530 		if (!(r & DC_PN_SIOCTL_BUSY)) {
531 			*dest = (uint16_t)(r & 0xFFFF);
532 			return;
533 		}
534 	}
535 }
536 
537 /*
538  * Read a word of data stored in the EEPROM at address 'addr.'
539  * The Xircom X3201 has its own non-standard way to read
540  * the EEPROM, too.
541  */
542 static void
543 dc_eeprom_getword_xircom(struct dc_softc *sc, int addr, uint16_t *dest)
544 {
545 
546 	SIO_SET(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
547 
548 	addr *= 2;
549 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
550 	*dest = (uint16_t)CSR_READ_4(sc, DC_SIO) & 0xff;
551 	addr += 1;
552 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
553 	*dest |= ((uint16_t)CSR_READ_4(sc, DC_SIO) & 0xff) << 8;
554 
555 	SIO_CLR(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
556 }
557 
558 /*
559  * Read a word of data stored in the EEPROM at address 'addr.'
560  */
561 static void
562 dc_eeprom_getword(struct dc_softc *sc, int addr, uint16_t *dest)
563 {
564 	int i;
565 	uint16_t word = 0;
566 
567 	/* Force EEPROM to idle state. */
568 	dc_eeprom_idle(sc);
569 
570 	/* Enter EEPROM access mode. */
571 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
572 	dc_delay(sc);
573 	DC_SETBIT(sc, DC_SIO,  DC_SIO_ROMCTL_READ);
574 	dc_delay(sc);
575 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
576 	dc_delay(sc);
577 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
578 	dc_delay(sc);
579 
580 	/*
581 	 * Send address of word we want to read.
582 	 */
583 	dc_eeprom_putbyte(sc, addr);
584 
585 	/*
586 	 * Start reading bits from EEPROM.
587 	 */
588 	for (i = 0x8000; i; i >>= 1) {
589 		SIO_SET(DC_SIO_EE_CLK);
590 		dc_delay(sc);
591 		if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
592 			word |= i;
593 		dc_delay(sc);
594 		SIO_CLR(DC_SIO_EE_CLK);
595 		dc_delay(sc);
596 	}
597 
598 	/* Turn off EEPROM access mode. */
599 	dc_eeprom_idle(sc);
600 
601 	*dest = word;
602 }
603 
604 /*
605  * Read a sequence of words from the EEPROM.
606  */
607 static void
608 dc_read_eeprom(struct dc_softc *sc, caddr_t dest, int off, int cnt, int be)
609 {
610 	int i;
611 	uint16_t word = 0, *ptr;
612 
613 	for (i = 0; i < cnt; i++) {
614 		if (DC_IS_PNIC(sc))
615 			dc_eeprom_getword_pnic(sc, off + i, &word);
616 		else if (DC_IS_XIRCOM(sc))
617 			dc_eeprom_getword_xircom(sc, off + i, &word);
618 		else
619 			dc_eeprom_getword(sc, off + i, &word);
620 		ptr = (uint16_t *)(dest + (i * 2));
621 		if (be)
622 			*ptr = be16toh(word);
623 		else
624 			*ptr = le16toh(word);
625 	}
626 }
627 
628 /*
629  * Write the MII serial port for the MII bit-bang module.
630  */
631 static void
632 dc_mii_bitbang_write(device_t dev, uint32_t val)
633 {
634 	struct dc_softc *sc;
635 
636 	sc = device_get_softc(dev);
637 
638 	CSR_WRITE_4(sc, DC_SIO, val);
639 	CSR_BARRIER_4(sc, DC_SIO,
640 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
641 }
642 
643 /*
644  * Read the MII serial port for the MII bit-bang module.
645  */
646 static uint32_t
647 dc_mii_bitbang_read(device_t dev)
648 {
649 	struct dc_softc *sc;
650 	uint32_t val;
651 
652 	sc = device_get_softc(dev);
653 
654 	val = CSR_READ_4(sc, DC_SIO);
655 	CSR_BARRIER_4(sc, DC_SIO,
656 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
657 
658 	return (val);
659 }
660 
661 static int
662 dc_miibus_readreg(device_t dev, int phy, int reg)
663 {
664 	struct dc_softc *sc;
665 	int i, rval, phy_reg = 0;
666 
667 	sc = device_get_softc(dev);
668 
669 	if (sc->dc_pmode != DC_PMODE_MII) {
670 		if (phy == (MII_NPHY - 1)) {
671 			switch (reg) {
672 			case MII_BMSR:
673 			/*
674 			 * Fake something to make the probe
675 			 * code think there's a PHY here.
676 			 */
677 				return (BMSR_MEDIAMASK);
678 			case MII_PHYIDR1:
679 				if (DC_IS_PNIC(sc))
680 					return (DC_VENDORID_LO);
681 				return (DC_VENDORID_DEC);
682 			case MII_PHYIDR2:
683 				if (DC_IS_PNIC(sc))
684 					return (DC_DEVICEID_82C168);
685 				return (DC_DEVICEID_21143);
686 			default:
687 				return (0);
688 			}
689 		} else
690 			return (0);
691 	}
692 
693 	if (DC_IS_PNIC(sc)) {
694 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
695 		    (phy << 23) | (reg << 18));
696 		for (i = 0; i < DC_TIMEOUT; i++) {
697 			DELAY(1);
698 			rval = CSR_READ_4(sc, DC_PN_MII);
699 			if (!(rval & DC_PN_MII_BUSY)) {
700 				rval &= 0xFFFF;
701 				return (rval == 0xFFFF ? 0 : rval);
702 			}
703 		}
704 		return (0);
705 	}
706 
707 	if (sc->dc_type == DC_TYPE_ULI_M5263) {
708 		CSR_WRITE_4(sc, DC_ROM,
709 		    ((phy << DC_ULI_PHY_ADDR_SHIFT) & DC_ULI_PHY_ADDR_MASK) |
710 		    ((reg << DC_ULI_PHY_REG_SHIFT) & DC_ULI_PHY_REG_MASK) |
711 		    DC_ULI_PHY_OP_READ);
712 		for (i = 0; i < DC_TIMEOUT; i++) {
713 			DELAY(1);
714 			rval = CSR_READ_4(sc, DC_ROM);
715 			if ((rval & DC_ULI_PHY_OP_DONE) != 0) {
716 				return (rval & DC_ULI_PHY_DATA_MASK);
717 			}
718 		}
719 		if (i == DC_TIMEOUT)
720 			device_printf(dev, "phy read timed out\n");
721 		return (0);
722 	}
723 
724 	if (DC_IS_COMET(sc)) {
725 		switch (reg) {
726 		case MII_BMCR:
727 			phy_reg = DC_AL_BMCR;
728 			break;
729 		case MII_BMSR:
730 			phy_reg = DC_AL_BMSR;
731 			break;
732 		case MII_PHYIDR1:
733 			phy_reg = DC_AL_VENID;
734 			break;
735 		case MII_PHYIDR2:
736 			phy_reg = DC_AL_DEVID;
737 			break;
738 		case MII_ANAR:
739 			phy_reg = DC_AL_ANAR;
740 			break;
741 		case MII_ANLPAR:
742 			phy_reg = DC_AL_LPAR;
743 			break;
744 		case MII_ANER:
745 			phy_reg = DC_AL_ANER;
746 			break;
747 		default:
748 			device_printf(dev, "phy_read: bad phy register %x\n",
749 			    reg);
750 			return (0);
751 		}
752 
753 		rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
754 		if (rval == 0xFFFF)
755 			return (0);
756 		return (rval);
757 	}
758 
759 	if (sc->dc_type == DC_TYPE_98713) {
760 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
761 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
762 	}
763 	rval = mii_bitbang_readreg(dev, &dc_mii_bitbang_ops, phy, reg);
764 	if (sc->dc_type == DC_TYPE_98713)
765 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
766 
767 	return (rval);
768 }
769 
770 static int
771 dc_miibus_writereg(device_t dev, int phy, int reg, int data)
772 {
773 	struct dc_softc *sc;
774 	int i, phy_reg = 0;
775 
776 	sc = device_get_softc(dev);
777 
778 	if (DC_IS_PNIC(sc)) {
779 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
780 		    (phy << 23) | (reg << 10) | data);
781 		for (i = 0; i < DC_TIMEOUT; i++) {
782 			if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
783 				break;
784 		}
785 		return (0);
786 	}
787 
788 	if (sc->dc_type == DC_TYPE_ULI_M5263) {
789 		CSR_WRITE_4(sc, DC_ROM,
790 		    ((phy << DC_ULI_PHY_ADDR_SHIFT) & DC_ULI_PHY_ADDR_MASK) |
791 		    ((reg << DC_ULI_PHY_REG_SHIFT) & DC_ULI_PHY_REG_MASK) |
792 		    ((data << DC_ULI_PHY_DATA_SHIFT) & DC_ULI_PHY_DATA_MASK) |
793 		    DC_ULI_PHY_OP_WRITE);
794 		DELAY(1);
795 		return (0);
796 	}
797 
798 	if (DC_IS_COMET(sc)) {
799 		switch (reg) {
800 		case MII_BMCR:
801 			phy_reg = DC_AL_BMCR;
802 			break;
803 		case MII_BMSR:
804 			phy_reg = DC_AL_BMSR;
805 			break;
806 		case MII_PHYIDR1:
807 			phy_reg = DC_AL_VENID;
808 			break;
809 		case MII_PHYIDR2:
810 			phy_reg = DC_AL_DEVID;
811 			break;
812 		case MII_ANAR:
813 			phy_reg = DC_AL_ANAR;
814 			break;
815 		case MII_ANLPAR:
816 			phy_reg = DC_AL_LPAR;
817 			break;
818 		case MII_ANER:
819 			phy_reg = DC_AL_ANER;
820 			break;
821 		default:
822 			device_printf(dev, "phy_write: bad phy register %x\n",
823 			    reg);
824 			return (0);
825 			break;
826 		}
827 
828 		CSR_WRITE_4(sc, phy_reg, data);
829 		return (0);
830 	}
831 
832 	if (sc->dc_type == DC_TYPE_98713) {
833 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
834 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
835 	}
836 	mii_bitbang_writereg(dev, &dc_mii_bitbang_ops, phy, reg, data);
837 	if (sc->dc_type == DC_TYPE_98713)
838 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
839 
840 	return (0);
841 }
842 
843 static void
844 dc_miibus_statchg(device_t dev)
845 {
846 	struct dc_softc *sc;
847 	struct ifnet *ifp;
848 	struct mii_data *mii;
849 	struct ifmedia *ifm;
850 
851 	sc = device_get_softc(dev);
852 
853 	mii = device_get_softc(sc->dc_miibus);
854 	ifp = sc->dc_ifp;
855 	if (mii == NULL || ifp == NULL ||
856 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
857 		return;
858 
859 	ifm = &mii->mii_media;
860 	if (DC_IS_DAVICOM(sc) && IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
861 		dc_setcfg(sc, ifm->ifm_media);
862 		return;
863 	} else if (!DC_IS_ADMTEK(sc))
864 		dc_setcfg(sc, mii->mii_media_active);
865 
866 	sc->dc_link = 0;
867 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
868 	    (IFM_ACTIVE | IFM_AVALID)) {
869 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
870 		case IFM_10_T:
871 		case IFM_100_TX:
872 			sc->dc_link = 1;
873 			break;
874 		}
875 	}
876 }
877 
878 /*
879  * Special support for DM9102A cards with HomePNA PHYs. Note:
880  * with the Davicom DM9102A/DM9801 eval board that I have, it seems
881  * to be impossible to talk to the management interface of the DM9801
882  * PHY (its MDIO pin is not connected to anything). Consequently,
883  * the driver has to just 'know' about the additional mode and deal
884  * with it itself. *sigh*
885  */
886 static void
887 dc_miibus_mediainit(device_t dev)
888 {
889 	struct dc_softc *sc;
890 	struct mii_data *mii;
891 	struct ifmedia *ifm;
892 	int rev;
893 
894 	rev = pci_get_revid(dev);
895 
896 	sc = device_get_softc(dev);
897 	mii = device_get_softc(sc->dc_miibus);
898 	ifm = &mii->mii_media;
899 
900 	if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A)
901 		ifmedia_add(ifm, IFM_ETHER | IFM_HPNA_1, 0, NULL);
902 }
903 
904 #define	DC_BITS_512	9
905 #define	DC_BITS_128	7
906 #define	DC_BITS_64	6
907 
908 static uint32_t
909 dc_mchash_le(struct dc_softc *sc, const uint8_t *addr)
910 {
911 	uint32_t crc;
912 
913 	/* Compute CRC for the address value. */
914 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
915 
916 	/*
917 	 * The hash table on the PNIC II and the MX98715AEC-C/D/E
918 	 * chips is only 128 bits wide.
919 	 */
920 	if (sc->dc_flags & DC_128BIT_HASH)
921 		return (crc & ((1 << DC_BITS_128) - 1));
922 
923 	/* The hash table on the MX98715BEC is only 64 bits wide. */
924 	if (sc->dc_flags & DC_64BIT_HASH)
925 		return (crc & ((1 << DC_BITS_64) - 1));
926 
927 	/* Xircom's hash filtering table is different (read: weird) */
928 	/* Xircom uses the LEAST significant bits */
929 	if (DC_IS_XIRCOM(sc)) {
930 		if ((crc & 0x180) == 0x180)
931 			return ((crc & 0x0F) + (crc & 0x70) * 3 + (14 << 4));
932 		else
933 			return ((crc & 0x1F) + ((crc >> 1) & 0xF0) * 3 +
934 			    (12 << 4));
935 	}
936 
937 	return (crc & ((1 << DC_BITS_512) - 1));
938 }
939 
940 /*
941  * Calculate CRC of a multicast group address, return the lower 6 bits.
942  */
943 static uint32_t
944 dc_mchash_be(const uint8_t *addr)
945 {
946 	uint32_t crc;
947 
948 	/* Compute CRC for the address value. */
949 	crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
950 
951 	/* Return the filter bit position. */
952 	return ((crc >> 26) & 0x0000003F);
953 }
954 
955 /*
956  * 21143-style RX filter setup routine. Filter programming is done by
957  * downloading a special setup frame into the TX engine. 21143, Macronix,
958  * PNIC, PNIC II and Davicom chips are programmed this way.
959  *
960  * We always program the chip using 'hash perfect' mode, i.e. one perfect
961  * address (our node address) and a 512-bit hash filter for multicast
962  * frames. We also sneak the broadcast address into the hash filter since
963  * we need that too.
964  */
965 static void
966 dc_setfilt_21143(struct dc_softc *sc)
967 {
968 	uint16_t eaddr[(ETHER_ADDR_LEN+1)/2];
969 	struct dc_desc *sframe;
970 	uint32_t h, *sp;
971 	struct ifmultiaddr *ifma;
972 	struct ifnet *ifp;
973 	int i;
974 
975 	ifp = sc->dc_ifp;
976 
977 	i = sc->dc_cdata.dc_tx_prod;
978 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
979 	sc->dc_cdata.dc_tx_cnt++;
980 	sframe = &sc->dc_ldata.dc_tx_list[i];
981 	sp = sc->dc_cdata.dc_sbuf;
982 	bzero(sp, DC_SFRAME_LEN);
983 
984 	sframe->dc_data = htole32(DC_ADDR_LO(sc->dc_saddr));
985 	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
986 	    DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
987 
988 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
989 
990 	/* If we want promiscuous mode, set the allframes bit. */
991 	if (ifp->if_flags & IFF_PROMISC)
992 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
993 	else
994 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
995 
996 	if (ifp->if_flags & IFF_ALLMULTI)
997 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
998 	else
999 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1000 
1001 	if_maddr_rlock(ifp);
1002 	CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1003 		if (ifma->ifma_addr->sa_family != AF_LINK)
1004 			continue;
1005 		h = dc_mchash_le(sc,
1006 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1007 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1008 	}
1009 	if_maddr_runlock(ifp);
1010 
1011 	if (ifp->if_flags & IFF_BROADCAST) {
1012 		h = dc_mchash_le(sc, ifp->if_broadcastaddr);
1013 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1014 	}
1015 
1016 	/* Set our MAC address. */
1017 	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1018 	sp[39] = DC_SP_MAC(eaddr[0]);
1019 	sp[40] = DC_SP_MAC(eaddr[1]);
1020 	sp[41] = DC_SP_MAC(eaddr[2]);
1021 
1022 	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1023 	bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap, BUS_DMASYNC_PREREAD |
1024 	    BUS_DMASYNC_PREWRITE);
1025 	bus_dmamap_sync(sc->dc_stag, sc->dc_smap, BUS_DMASYNC_PREWRITE);
1026 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1027 
1028 	/*
1029 	 * The PNIC takes an exceedingly long time to process its
1030 	 * setup frame; wait 10ms after posting the setup frame
1031 	 * before proceeding, just so it has time to swallow its
1032 	 * medicine.
1033 	 */
1034 	DELAY(10000);
1035 
1036 	sc->dc_wdog_timer = 5;
1037 }
1038 
1039 static void
1040 dc_setfilt_admtek(struct dc_softc *sc)
1041 {
1042 	uint8_t eaddr[ETHER_ADDR_LEN];
1043 	struct ifnet *ifp;
1044 	struct ifmultiaddr *ifma;
1045 	int h = 0;
1046 	uint32_t hashes[2] = { 0, 0 };
1047 
1048 	ifp = sc->dc_ifp;
1049 
1050 	/* Init our MAC address. */
1051 	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1052 	CSR_WRITE_4(sc, DC_AL_PAR0, eaddr[3] << 24 | eaddr[2] << 16 |
1053 	    eaddr[1] << 8 | eaddr[0]);
1054 	CSR_WRITE_4(sc, DC_AL_PAR1, eaddr[5] << 8 | eaddr[4]);
1055 
1056 	/* If we want promiscuous mode, set the allframes bit. */
1057 	if (ifp->if_flags & IFF_PROMISC)
1058 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1059 	else
1060 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1061 
1062 	if (ifp->if_flags & IFF_ALLMULTI)
1063 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1064 	else
1065 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1066 
1067 	/* First, zot all the existing hash bits. */
1068 	CSR_WRITE_4(sc, DC_AL_MAR0, 0);
1069 	CSR_WRITE_4(sc, DC_AL_MAR1, 0);
1070 
1071 	/*
1072 	 * If we're already in promisc or allmulti mode, we
1073 	 * don't have to bother programming the multicast filter.
1074 	 */
1075 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
1076 		return;
1077 
1078 	/* Now program new ones. */
1079 	if_maddr_rlock(ifp);
1080 	CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1081 		if (ifma->ifma_addr->sa_family != AF_LINK)
1082 			continue;
1083 		if (DC_IS_CENTAUR(sc))
1084 			h = dc_mchash_le(sc,
1085 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1086 		else
1087 			h = dc_mchash_be(
1088 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1089 		if (h < 32)
1090 			hashes[0] |= (1 << h);
1091 		else
1092 			hashes[1] |= (1 << (h - 32));
1093 	}
1094 	if_maddr_runlock(ifp);
1095 
1096 	CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]);
1097 	CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]);
1098 }
1099 
1100 static void
1101 dc_setfilt_asix(struct dc_softc *sc)
1102 {
1103 	uint32_t eaddr[(ETHER_ADDR_LEN+3)/4];
1104 	struct ifnet *ifp;
1105 	struct ifmultiaddr *ifma;
1106 	int h = 0;
1107 	uint32_t hashes[2] = { 0, 0 };
1108 
1109 	ifp = sc->dc_ifp;
1110 
1111 	/* Init our MAC address. */
1112 	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1113 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
1114 	CSR_WRITE_4(sc, DC_AX_FILTDATA, eaddr[0]);
1115 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
1116 	CSR_WRITE_4(sc, DC_AX_FILTDATA, eaddr[1]);
1117 
1118 	/* If we want promiscuous mode, set the allframes bit. */
1119 	if (ifp->if_flags & IFF_PROMISC)
1120 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1121 	else
1122 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1123 
1124 	if (ifp->if_flags & IFF_ALLMULTI)
1125 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1126 	else
1127 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1128 
1129 	/*
1130 	 * The ASIX chip has a special bit to enable reception
1131 	 * of broadcast frames.
1132 	 */
1133 	if (ifp->if_flags & IFF_BROADCAST)
1134 		DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1135 	else
1136 		DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1137 
1138 	/* first, zot all the existing hash bits */
1139 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1140 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1141 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1142 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1143 
1144 	/*
1145 	 * If we're already in promisc or allmulti mode, we
1146 	 * don't have to bother programming the multicast filter.
1147 	 */
1148 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
1149 		return;
1150 
1151 	/* now program new ones */
1152 	if_maddr_rlock(ifp);
1153 	CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1154 		if (ifma->ifma_addr->sa_family != AF_LINK)
1155 			continue;
1156 		h = dc_mchash_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1157 		if (h < 32)
1158 			hashes[0] |= (1 << h);
1159 		else
1160 			hashes[1] |= (1 << (h - 32));
1161 	}
1162 	if_maddr_runlock(ifp);
1163 
1164 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1165 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
1166 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1167 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
1168 }
1169 
1170 static void
1171 dc_setfilt_uli(struct dc_softc *sc)
1172 {
1173 	uint8_t eaddr[ETHER_ADDR_LEN];
1174 	struct ifnet *ifp;
1175 	struct ifmultiaddr *ifma;
1176 	struct dc_desc *sframe;
1177 	uint32_t filter, *sp;
1178 	uint8_t *ma;
1179 	int i, mcnt;
1180 
1181 	ifp = sc->dc_ifp;
1182 
1183 	i = sc->dc_cdata.dc_tx_prod;
1184 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1185 	sc->dc_cdata.dc_tx_cnt++;
1186 	sframe = &sc->dc_ldata.dc_tx_list[i];
1187 	sp = sc->dc_cdata.dc_sbuf;
1188 	bzero(sp, DC_SFRAME_LEN);
1189 
1190 	sframe->dc_data = htole32(DC_ADDR_LO(sc->dc_saddr));
1191 	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
1192 	    DC_TXCTL_TLINK | DC_FILTER_PERFECT | DC_TXCTL_FINT);
1193 
1194 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
1195 
1196 	/* Set station address. */
1197 	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1198 	*sp++ = DC_SP_MAC(eaddr[1] << 8 | eaddr[0]);
1199 	*sp++ = DC_SP_MAC(eaddr[3] << 8 | eaddr[2]);
1200 	*sp++ = DC_SP_MAC(eaddr[5] << 8 | eaddr[4]);
1201 
1202 	/* Set broadcast address. */
1203 	*sp++ = DC_SP_MAC(0xFFFF);
1204 	*sp++ = DC_SP_MAC(0xFFFF);
1205 	*sp++ = DC_SP_MAC(0xFFFF);
1206 
1207 	/* Extract current filter configuration. */
1208 	filter = CSR_READ_4(sc, DC_NETCFG);
1209 	filter &= ~(DC_NETCFG_RX_PROMISC | DC_NETCFG_RX_ALLMULTI);
1210 
1211 	/* Now build perfect filters. */
1212 	mcnt = 0;
1213 	if_maddr_rlock(ifp);
1214 	CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1215 		if (ifma->ifma_addr->sa_family != AF_LINK)
1216 			continue;
1217 		if (mcnt >= DC_ULI_FILTER_NPERF) {
1218 			filter |= DC_NETCFG_RX_ALLMULTI;
1219 			break;
1220 		}
1221 		ma = LLADDR((struct sockaddr_dl *)ifma->ifma_addr);
1222 		*sp++ = DC_SP_MAC(ma[1] << 8 | ma[0]);
1223 		*sp++ = DC_SP_MAC(ma[3] << 8 | ma[2]);
1224 		*sp++ = DC_SP_MAC(ma[5] << 8 | ma[4]);
1225 		mcnt++;
1226 	}
1227 	if_maddr_runlock(ifp);
1228 
1229 	for (; mcnt < DC_ULI_FILTER_NPERF; mcnt++) {
1230 		*sp++ = DC_SP_MAC(0xFFFF);
1231 		*sp++ = DC_SP_MAC(0xFFFF);
1232 		*sp++ = DC_SP_MAC(0xFFFF);
1233 	}
1234 
1235 	if (filter & (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON))
1236 		CSR_WRITE_4(sc, DC_NETCFG,
1237 		    filter & ~(DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1238 	if (ifp->if_flags & IFF_PROMISC)
1239 		filter |= DC_NETCFG_RX_PROMISC | DC_NETCFG_RX_ALLMULTI;
1240 	if (ifp->if_flags & IFF_ALLMULTI)
1241 		filter |= DC_NETCFG_RX_ALLMULTI;
1242 	CSR_WRITE_4(sc, DC_NETCFG,
1243 	    filter & ~(DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1244 	if (filter & (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON))
1245 		CSR_WRITE_4(sc, DC_NETCFG, filter);
1246 
1247 	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1248 	bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap, BUS_DMASYNC_PREREAD |
1249 	    BUS_DMASYNC_PREWRITE);
1250 	bus_dmamap_sync(sc->dc_stag, sc->dc_smap, BUS_DMASYNC_PREWRITE);
1251 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1252 
1253 	/*
1254 	 * Wait some time...
1255 	 */
1256 	DELAY(1000);
1257 
1258 	sc->dc_wdog_timer = 5;
1259 }
1260 
1261 static void
1262 dc_setfilt_xircom(struct dc_softc *sc)
1263 {
1264 	uint16_t eaddr[(ETHER_ADDR_LEN+1)/2];
1265 	struct ifnet *ifp;
1266 	struct ifmultiaddr *ifma;
1267 	struct dc_desc *sframe;
1268 	uint32_t h, *sp;
1269 	int i;
1270 
1271 	ifp = sc->dc_ifp;
1272 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1273 
1274 	i = sc->dc_cdata.dc_tx_prod;
1275 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1276 	sc->dc_cdata.dc_tx_cnt++;
1277 	sframe = &sc->dc_ldata.dc_tx_list[i];
1278 	sp = sc->dc_cdata.dc_sbuf;
1279 	bzero(sp, DC_SFRAME_LEN);
1280 
1281 	sframe->dc_data = htole32(DC_ADDR_LO(sc->dc_saddr));
1282 	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
1283 	    DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
1284 
1285 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
1286 
1287 	/* If we want promiscuous mode, set the allframes bit. */
1288 	if (ifp->if_flags & IFF_PROMISC)
1289 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1290 	else
1291 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1292 
1293 	if (ifp->if_flags & IFF_ALLMULTI)
1294 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1295 	else
1296 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1297 
1298 	if_maddr_rlock(ifp);
1299 	CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1300 		if (ifma->ifma_addr->sa_family != AF_LINK)
1301 			continue;
1302 		h = dc_mchash_le(sc,
1303 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1304 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1305 	}
1306 	if_maddr_runlock(ifp);
1307 
1308 	if (ifp->if_flags & IFF_BROADCAST) {
1309 		h = dc_mchash_le(sc, ifp->if_broadcastaddr);
1310 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1311 	}
1312 
1313 	/* Set our MAC address. */
1314 	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1315 	sp[0] = DC_SP_MAC(eaddr[0]);
1316 	sp[1] = DC_SP_MAC(eaddr[1]);
1317 	sp[2] = DC_SP_MAC(eaddr[2]);
1318 
1319 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
1320 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
1321 	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1322 	bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap, BUS_DMASYNC_PREREAD |
1323 	    BUS_DMASYNC_PREWRITE);
1324 	bus_dmamap_sync(sc->dc_stag, sc->dc_smap, BUS_DMASYNC_PREWRITE);
1325 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1326 
1327 	/*
1328 	 * Wait some time...
1329 	 */
1330 	DELAY(1000);
1331 
1332 	sc->dc_wdog_timer = 5;
1333 }
1334 
1335 static void
1336 dc_setfilt(struct dc_softc *sc)
1337 {
1338 
1339 	if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
1340 	    DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc))
1341 		dc_setfilt_21143(sc);
1342 
1343 	if (DC_IS_ASIX(sc))
1344 		dc_setfilt_asix(sc);
1345 
1346 	if (DC_IS_ADMTEK(sc))
1347 		dc_setfilt_admtek(sc);
1348 
1349 	if (DC_IS_ULI(sc))
1350 		dc_setfilt_uli(sc);
1351 
1352 	if (DC_IS_XIRCOM(sc))
1353 		dc_setfilt_xircom(sc);
1354 }
1355 
1356 static void
1357 dc_netcfg_wait(struct dc_softc *sc)
1358 {
1359 	uint32_t isr;
1360 	int i;
1361 
1362 	for (i = 0; i < DC_TIMEOUT; i++) {
1363 		isr = CSR_READ_4(sc, DC_ISR);
1364 		if (isr & DC_ISR_TX_IDLE &&
1365 		    ((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
1366 		    (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT))
1367 			break;
1368 		DELAY(10);
1369 	}
1370 	if (i == DC_TIMEOUT && bus_child_present(sc->dc_dev)) {
1371 		if (!(isr & DC_ISR_TX_IDLE) && !DC_IS_ASIX(sc))
1372 			device_printf(sc->dc_dev,
1373 			    "%s: failed to force tx to idle state\n", __func__);
1374 		if (!((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
1375 		    (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT) &&
1376 		    !DC_HAS_BROKEN_RXSTATE(sc))
1377 			device_printf(sc->dc_dev,
1378 			    "%s: failed to force rx to idle state\n", __func__);
1379 	}
1380 }
1381 
1382 /*
1383  * In order to fiddle with the 'full-duplex' and '100Mbps' bits in
1384  * the netconfig register, we first have to put the transmit and/or
1385  * receive logic in the idle state.
1386  */
1387 static void
1388 dc_setcfg(struct dc_softc *sc, int media)
1389 {
1390 	int restart = 0, watchdogreg;
1391 
1392 	if (IFM_SUBTYPE(media) == IFM_NONE)
1393 		return;
1394 
1395 	if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON)) {
1396 		restart = 1;
1397 		DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1398 		dc_netcfg_wait(sc);
1399 	}
1400 
1401 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
1402 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1403 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1404 		if (sc->dc_pmode == DC_PMODE_MII) {
1405 			if (DC_IS_INTEL(sc)) {
1406 			/* There's a write enable bit here that reads as 1. */
1407 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1408 				watchdogreg &= ~DC_WDOG_CTLWREN;
1409 				watchdogreg |= DC_WDOG_JABBERDIS;
1410 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1411 			} else {
1412 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1413 			}
1414 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1415 			    DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
1416 			if (sc->dc_type == DC_TYPE_98713)
1417 				DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1418 				    DC_NETCFG_SCRAMBLER));
1419 			if (!DC_IS_DAVICOM(sc))
1420 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1421 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1422 		} else {
1423 			if (DC_IS_PNIC(sc)) {
1424 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
1425 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1426 				DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1427 			}
1428 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1429 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1430 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1431 		}
1432 	}
1433 
1434 	if (IFM_SUBTYPE(media) == IFM_10_T) {
1435 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1436 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1437 		if (sc->dc_pmode == DC_PMODE_MII) {
1438 			/* There's a write enable bit here that reads as 1. */
1439 			if (DC_IS_INTEL(sc)) {
1440 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1441 				watchdogreg &= ~DC_WDOG_CTLWREN;
1442 				watchdogreg |= DC_WDOG_JABBERDIS;
1443 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1444 			} else {
1445 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1446 			}
1447 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1448 			    DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
1449 			if (sc->dc_type == DC_TYPE_98713)
1450 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1451 			if (!DC_IS_DAVICOM(sc))
1452 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1453 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1454 		} else {
1455 			if (DC_IS_PNIC(sc)) {
1456 				DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
1457 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1458 				DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1459 			}
1460 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1461 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1462 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1463 			if (DC_IS_INTEL(sc)) {
1464 				DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET);
1465 				DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1466 				if ((media & IFM_GMASK) == IFM_FDX)
1467 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D);
1468 				else
1469 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F);
1470 				DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1471 				DC_CLRBIT(sc, DC_10BTCTRL,
1472 				    DC_TCTL_AUTONEGENBL);
1473 				DELAY(20000);
1474 			}
1475 		}
1476 	}
1477 
1478 	/*
1479 	 * If this is a Davicom DM9102A card with a DM9801 HomePNA
1480 	 * PHY and we want HomePNA mode, set the portsel bit to turn
1481 	 * on the external MII port.
1482 	 */
1483 	if (DC_IS_DAVICOM(sc)) {
1484 		if (IFM_SUBTYPE(media) == IFM_HPNA_1) {
1485 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1486 			sc->dc_link = 1;
1487 		} else {
1488 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1489 		}
1490 	}
1491 
1492 	if ((media & IFM_GMASK) == IFM_FDX) {
1493 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1494 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1495 			DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1496 	} else {
1497 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1498 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1499 			DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1500 	}
1501 
1502 	if (restart)
1503 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON | DC_NETCFG_RX_ON);
1504 }
1505 
1506 static void
1507 dc_reset(struct dc_softc *sc)
1508 {
1509 	int i;
1510 
1511 	DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1512 
1513 	for (i = 0; i < DC_TIMEOUT; i++) {
1514 		DELAY(10);
1515 		if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
1516 			break;
1517 	}
1518 
1519 	if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_CONEXANT(sc) ||
1520 	    DC_IS_XIRCOM(sc) || DC_IS_INTEL(sc) || DC_IS_ULI(sc)) {
1521 		DELAY(10000);
1522 		DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1523 		i = 0;
1524 	}
1525 
1526 	if (i == DC_TIMEOUT)
1527 		device_printf(sc->dc_dev, "reset never completed!\n");
1528 
1529 	/* Wait a little while for the chip to get its brains in order. */
1530 	DELAY(1000);
1531 
1532 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
1533 	CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
1534 	CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
1535 
1536 	/*
1537 	 * Bring the SIA out of reset. In some cases, it looks
1538 	 * like failing to unreset the SIA soon enough gets it
1539 	 * into a state where it will never come out of reset
1540 	 * until we reset the whole chip again.
1541 	 */
1542 	if (DC_IS_INTEL(sc)) {
1543 		DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1544 		CSR_WRITE_4(sc, DC_10BTCTRL, 0xFFFFFFFF);
1545 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
1546 	}
1547 }
1548 
1549 static const struct dc_type *
1550 dc_devtype(device_t dev)
1551 {
1552 	const struct dc_type *t;
1553 	uint32_t devid;
1554 	uint8_t rev;
1555 
1556 	t = dc_devs;
1557 	devid = pci_get_devid(dev);
1558 	rev = pci_get_revid(dev);
1559 
1560 	while (t->dc_name != NULL) {
1561 		if (devid == t->dc_devid && rev >= t->dc_minrev)
1562 			return (t);
1563 		t++;
1564 	}
1565 
1566 	return (NULL);
1567 }
1568 
1569 /*
1570  * Probe for a 21143 or clone chip. Check the PCI vendor and device
1571  * IDs against our list and return a device name if we find a match.
1572  * We do a little bit of extra work to identify the exact type of
1573  * chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
1574  * but different revision IDs. The same is true for 98715/98715A
1575  * chips and the 98725, as well as the ASIX and ADMtek chips. In some
1576  * cases, the exact chip revision affects driver behavior.
1577  */
1578 static int
1579 dc_probe(device_t dev)
1580 {
1581 	const struct dc_type *t;
1582 
1583 	t = dc_devtype(dev);
1584 
1585 	if (t != NULL) {
1586 		device_set_desc(dev, t->dc_name);
1587 		return (BUS_PROBE_DEFAULT);
1588 	}
1589 
1590 	return (ENXIO);
1591 }
1592 
1593 static void
1594 dc_apply_fixup(struct dc_softc *sc, int media)
1595 {
1596 	struct dc_mediainfo *m;
1597 	uint8_t *p;
1598 	int i;
1599 	uint32_t reg;
1600 
1601 	m = sc->dc_mi;
1602 
1603 	while (m != NULL) {
1604 		if (m->dc_media == media)
1605 			break;
1606 		m = m->dc_next;
1607 	}
1608 
1609 	if (m == NULL)
1610 		return;
1611 
1612 	for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) {
1613 		reg = (p[0] | (p[1] << 8)) << 16;
1614 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1615 	}
1616 
1617 	for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) {
1618 		reg = (p[0] | (p[1] << 8)) << 16;
1619 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1620 	}
1621 }
1622 
1623 static int
1624 dc_decode_leaf_sia(struct dc_softc *sc, struct dc_eblock_sia *l)
1625 {
1626 	struct dc_mediainfo *m;
1627 
1628 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1629 	if (m == NULL) {
1630 		device_printf(sc->dc_dev, "Could not allocate mediainfo\n");
1631 		return (ENOMEM);
1632 	}
1633 	switch (l->dc_sia_code & ~DC_SIA_CODE_EXT) {
1634 	case DC_SIA_CODE_10BT:
1635 		m->dc_media = IFM_10_T;
1636 		break;
1637 	case DC_SIA_CODE_10BT_FDX:
1638 		m->dc_media = IFM_10_T | IFM_FDX;
1639 		break;
1640 	case DC_SIA_CODE_10B2:
1641 		m->dc_media = IFM_10_2;
1642 		break;
1643 	case DC_SIA_CODE_10B5:
1644 		m->dc_media = IFM_10_5;
1645 		break;
1646 	default:
1647 		break;
1648 	}
1649 
1650 	/*
1651 	 * We need to ignore CSR13, CSR14, CSR15 for SIA mode.
1652 	 * Things apparently already work for cards that do
1653 	 * supply Media Specific Data.
1654 	 */
1655 	if (l->dc_sia_code & DC_SIA_CODE_EXT) {
1656 		m->dc_gp_len = 2;
1657 		m->dc_gp_ptr =
1658 		(uint8_t *)&l->dc_un.dc_sia_ext.dc_sia_gpio_ctl;
1659 	} else {
1660 		m->dc_gp_len = 2;
1661 		m->dc_gp_ptr =
1662 		(uint8_t *)&l->dc_un.dc_sia_noext.dc_sia_gpio_ctl;
1663 	}
1664 
1665 	m->dc_next = sc->dc_mi;
1666 	sc->dc_mi = m;
1667 
1668 	sc->dc_pmode = DC_PMODE_SIA;
1669 	return (0);
1670 }
1671 
1672 static int
1673 dc_decode_leaf_sym(struct dc_softc *sc, struct dc_eblock_sym *l)
1674 {
1675 	struct dc_mediainfo *m;
1676 
1677 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1678 	if (m == NULL) {
1679 		device_printf(sc->dc_dev, "Could not allocate mediainfo\n");
1680 		return (ENOMEM);
1681 	}
1682 	if (l->dc_sym_code == DC_SYM_CODE_100BT)
1683 		m->dc_media = IFM_100_TX;
1684 
1685 	if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX)
1686 		m->dc_media = IFM_100_TX | IFM_FDX;
1687 
1688 	m->dc_gp_len = 2;
1689 	m->dc_gp_ptr = (uint8_t *)&l->dc_sym_gpio_ctl;
1690 
1691 	m->dc_next = sc->dc_mi;
1692 	sc->dc_mi = m;
1693 
1694 	sc->dc_pmode = DC_PMODE_SYM;
1695 	return (0);
1696 }
1697 
1698 static int
1699 dc_decode_leaf_mii(struct dc_softc *sc, struct dc_eblock_mii *l)
1700 {
1701 	struct dc_mediainfo *m;
1702 	uint8_t *p;
1703 
1704 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1705 	if (m == NULL) {
1706 		device_printf(sc->dc_dev, "Could not allocate mediainfo\n");
1707 		return (ENOMEM);
1708 	}
1709 	/* We abuse IFM_AUTO to represent MII. */
1710 	m->dc_media = IFM_AUTO;
1711 	m->dc_gp_len = l->dc_gpr_len;
1712 
1713 	p = (uint8_t *)l;
1714 	p += sizeof(struct dc_eblock_mii);
1715 	m->dc_gp_ptr = p;
1716 	p += 2 * l->dc_gpr_len;
1717 	m->dc_reset_len = *p;
1718 	p++;
1719 	m->dc_reset_ptr = p;
1720 
1721 	m->dc_next = sc->dc_mi;
1722 	sc->dc_mi = m;
1723 	return (0);
1724 }
1725 
1726 static int
1727 dc_read_srom(struct dc_softc *sc, int bits)
1728 {
1729 	int size;
1730 
1731 	size = DC_ROM_SIZE(bits);
1732 	sc->dc_srom = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
1733 	if (sc->dc_srom == NULL) {
1734 		device_printf(sc->dc_dev, "Could not allocate SROM buffer\n");
1735 		return (ENOMEM);
1736 	}
1737 	dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (size / 2), 0);
1738 	return (0);
1739 }
1740 
1741 static int
1742 dc_parse_21143_srom(struct dc_softc *sc)
1743 {
1744 	struct dc_leaf_hdr *lhdr;
1745 	struct dc_eblock_hdr *hdr;
1746 	int error, have_mii, i, loff;
1747 	char *ptr;
1748 
1749 	have_mii = 0;
1750 	loff = sc->dc_srom[27];
1751 	lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]);
1752 
1753 	ptr = (char *)lhdr;
1754 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1755 	/*
1756 	 * Look if we got a MII media block.
1757 	 */
1758 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1759 		hdr = (struct dc_eblock_hdr *)ptr;
1760 		if (hdr->dc_type == DC_EBLOCK_MII)
1761 		    have_mii++;
1762 
1763 		ptr += (hdr->dc_len & 0x7F);
1764 		ptr++;
1765 	}
1766 
1767 	/*
1768 	 * Do the same thing again. Only use SIA and SYM media
1769 	 * blocks if no MII media block is available.
1770 	 */
1771 	ptr = (char *)lhdr;
1772 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1773 	error = 0;
1774 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1775 		hdr = (struct dc_eblock_hdr *)ptr;
1776 		switch (hdr->dc_type) {
1777 		case DC_EBLOCK_MII:
1778 			error = dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr);
1779 			break;
1780 		case DC_EBLOCK_SIA:
1781 			if (! have_mii)
1782 				error = dc_decode_leaf_sia(sc,
1783 				    (struct dc_eblock_sia *)hdr);
1784 			break;
1785 		case DC_EBLOCK_SYM:
1786 			if (! have_mii)
1787 				error = dc_decode_leaf_sym(sc,
1788 				    (struct dc_eblock_sym *)hdr);
1789 			break;
1790 		default:
1791 			/* Don't care. Yet. */
1792 			break;
1793 		}
1794 		ptr += (hdr->dc_len & 0x7F);
1795 		ptr++;
1796 	}
1797 	return (error);
1798 }
1799 
1800 static void
1801 dc_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1802 {
1803 	bus_addr_t *paddr;
1804 
1805 	KASSERT(nseg == 1,
1806 	    ("%s: wrong number of segments (%d)", __func__, nseg));
1807 	paddr = arg;
1808 	*paddr = segs->ds_addr;
1809 }
1810 
1811 static int
1812 dc_dma_alloc(struct dc_softc *sc)
1813 {
1814 	int error, i;
1815 
1816 	error = bus_dma_tag_create(bus_get_dma_tag(sc->dc_dev), 1, 0,
1817 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1818 	    BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0,
1819 	    NULL, NULL, &sc->dc_ptag);
1820 	if (error) {
1821 		device_printf(sc->dc_dev,
1822 		    "failed to allocate parent DMA tag\n");
1823 		goto fail;
1824 	}
1825 
1826 	/* Allocate a busdma tag and DMA safe memory for TX/RX descriptors. */
1827 	error = bus_dma_tag_create(sc->dc_ptag, DC_LIST_ALIGN, 0,
1828 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, DC_RX_LIST_SZ, 1,
1829 	    DC_RX_LIST_SZ, 0, NULL, NULL, &sc->dc_rx_ltag);
1830 	if (error) {
1831 		device_printf(sc->dc_dev, "failed to create RX list DMA tag\n");
1832 		goto fail;
1833 	}
1834 
1835 	error = bus_dma_tag_create(sc->dc_ptag, DC_LIST_ALIGN, 0,
1836 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, DC_TX_LIST_SZ, 1,
1837 	    DC_TX_LIST_SZ, 0, NULL, NULL, &sc->dc_tx_ltag);
1838 	if (error) {
1839 		device_printf(sc->dc_dev, "failed to create TX list DMA tag\n");
1840 		goto fail;
1841 	}
1842 
1843 	/* RX descriptor list. */
1844 	error = bus_dmamem_alloc(sc->dc_rx_ltag,
1845 	    (void **)&sc->dc_ldata.dc_rx_list, BUS_DMA_NOWAIT |
1846 	    BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->dc_rx_lmap);
1847 	if (error) {
1848 		device_printf(sc->dc_dev,
1849 		    "failed to allocate DMA'able memory for RX list\n");
1850 		goto fail;
1851 	}
1852 	error = bus_dmamap_load(sc->dc_rx_ltag, sc->dc_rx_lmap,
1853 	    sc->dc_ldata.dc_rx_list, DC_RX_LIST_SZ, dc_dma_map_addr,
1854 	    &sc->dc_ldata.dc_rx_list_paddr, BUS_DMA_NOWAIT);
1855 	if (error) {
1856 		device_printf(sc->dc_dev,
1857 		    "failed to load DMA'able memory for RX list\n");
1858 		goto fail;
1859 	}
1860 	/* TX descriptor list. */
1861 	error = bus_dmamem_alloc(sc->dc_tx_ltag,
1862 	    (void **)&sc->dc_ldata.dc_tx_list, BUS_DMA_NOWAIT |
1863 	    BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->dc_tx_lmap);
1864 	if (error) {
1865 		device_printf(sc->dc_dev,
1866 		    "failed to allocate DMA'able memory for TX list\n");
1867 		goto fail;
1868 	}
1869 	error = bus_dmamap_load(sc->dc_tx_ltag, sc->dc_tx_lmap,
1870 	    sc->dc_ldata.dc_tx_list, DC_TX_LIST_SZ, dc_dma_map_addr,
1871 	    &sc->dc_ldata.dc_tx_list_paddr, BUS_DMA_NOWAIT);
1872 	if (error) {
1873 		device_printf(sc->dc_dev,
1874 		    "cannot load DMA'able memory for TX list\n");
1875 		goto fail;
1876 	}
1877 
1878 	/*
1879 	 * Allocate a busdma tag and DMA safe memory for the multicast
1880 	 * setup frame.
1881 	 */
1882 	error = bus_dma_tag_create(sc->dc_ptag, DC_LIST_ALIGN, 0,
1883 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1884 	    DC_SFRAME_LEN + DC_MIN_FRAMELEN, 1, DC_SFRAME_LEN + DC_MIN_FRAMELEN,
1885 	    0, NULL, NULL, &sc->dc_stag);
1886 	if (error) {
1887 		device_printf(sc->dc_dev,
1888 		    "failed to create DMA tag for setup frame\n");
1889 		goto fail;
1890 	}
1891 	error = bus_dmamem_alloc(sc->dc_stag, (void **)&sc->dc_cdata.dc_sbuf,
1892 	    BUS_DMA_NOWAIT, &sc->dc_smap);
1893 	if (error) {
1894 		device_printf(sc->dc_dev,
1895 		    "failed to allocate DMA'able memory for setup frame\n");
1896 		goto fail;
1897 	}
1898 	error = bus_dmamap_load(sc->dc_stag, sc->dc_smap, sc->dc_cdata.dc_sbuf,
1899 	    DC_SFRAME_LEN, dc_dma_map_addr, &sc->dc_saddr, BUS_DMA_NOWAIT);
1900 	if (error) {
1901 		device_printf(sc->dc_dev,
1902 		    "cannot load DMA'able memory for setup frame\n");
1903 		goto fail;
1904 	}
1905 
1906 	/* Allocate a busdma tag for RX mbufs. */
1907 	error = bus_dma_tag_create(sc->dc_ptag, DC_RXBUF_ALIGN, 0,
1908 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1909 	    MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &sc->dc_rx_mtag);
1910 	if (error) {
1911 		device_printf(sc->dc_dev, "failed to create RX mbuf tag\n");
1912 		goto fail;
1913 	}
1914 
1915 	/* Allocate a busdma tag for TX mbufs. */
1916 	error = bus_dma_tag_create(sc->dc_ptag, 1, 0,
1917 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1918 	    MCLBYTES * DC_MAXFRAGS, DC_MAXFRAGS, MCLBYTES,
1919 	    0, NULL, NULL, &sc->dc_tx_mtag);
1920 	if (error) {
1921 		device_printf(sc->dc_dev, "failed to create TX mbuf tag\n");
1922 		goto fail;
1923 	}
1924 
1925 	/* Create the TX/RX busdma maps. */
1926 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
1927 		error = bus_dmamap_create(sc->dc_tx_mtag, 0,
1928 		    &sc->dc_cdata.dc_tx_map[i]);
1929 		if (error) {
1930 			device_printf(sc->dc_dev,
1931 			    "failed to create TX mbuf dmamap\n");
1932 			goto fail;
1933 		}
1934 	}
1935 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
1936 		error = bus_dmamap_create(sc->dc_rx_mtag, 0,
1937 		    &sc->dc_cdata.dc_rx_map[i]);
1938 		if (error) {
1939 			device_printf(sc->dc_dev,
1940 			    "failed to create RX mbuf dmamap\n");
1941 			goto fail;
1942 		}
1943 	}
1944 	error = bus_dmamap_create(sc->dc_rx_mtag, 0, &sc->dc_sparemap);
1945 	if (error) {
1946 		device_printf(sc->dc_dev,
1947 		    "failed to create spare RX mbuf dmamap\n");
1948 		goto fail;
1949 	}
1950 
1951 fail:
1952 	return (error);
1953 }
1954 
1955 static void
1956 dc_dma_free(struct dc_softc *sc)
1957 {
1958 	int i;
1959 
1960 	/* RX buffers. */
1961 	if (sc->dc_rx_mtag != NULL) {
1962 		for (i = 0; i < DC_RX_LIST_CNT; i++) {
1963 			if (sc->dc_cdata.dc_rx_map[i] != NULL)
1964 				bus_dmamap_destroy(sc->dc_rx_mtag,
1965 				    sc->dc_cdata.dc_rx_map[i]);
1966 		}
1967 		if (sc->dc_sparemap != NULL)
1968 			bus_dmamap_destroy(sc->dc_rx_mtag, sc->dc_sparemap);
1969 		bus_dma_tag_destroy(sc->dc_rx_mtag);
1970 	}
1971 
1972 	/* TX buffers. */
1973 	if (sc->dc_rx_mtag != NULL) {
1974 		for (i = 0; i < DC_TX_LIST_CNT; i++) {
1975 			if (sc->dc_cdata.dc_tx_map[i] != NULL)
1976 				bus_dmamap_destroy(sc->dc_tx_mtag,
1977 				    sc->dc_cdata.dc_tx_map[i]);
1978 		}
1979 		bus_dma_tag_destroy(sc->dc_tx_mtag);
1980 	}
1981 
1982 	/* RX descriptor list. */
1983 	if (sc->dc_rx_ltag) {
1984 		if (sc->dc_ldata.dc_rx_list_paddr != 0)
1985 			bus_dmamap_unload(sc->dc_rx_ltag, sc->dc_rx_lmap);
1986 		if (sc->dc_ldata.dc_rx_list != NULL)
1987 			bus_dmamem_free(sc->dc_rx_ltag, sc->dc_ldata.dc_rx_list,
1988 			    sc->dc_rx_lmap);
1989 		bus_dma_tag_destroy(sc->dc_rx_ltag);
1990 	}
1991 
1992 	/* TX descriptor list. */
1993 	if (sc->dc_tx_ltag) {
1994 		if (sc->dc_ldata.dc_tx_list_paddr != 0)
1995 			bus_dmamap_unload(sc->dc_tx_ltag, sc->dc_tx_lmap);
1996 		if (sc->dc_ldata.dc_tx_list != NULL)
1997 			bus_dmamem_free(sc->dc_tx_ltag, sc->dc_ldata.dc_tx_list,
1998 			    sc->dc_tx_lmap);
1999 		bus_dma_tag_destroy(sc->dc_tx_ltag);
2000 	}
2001 
2002 	/* multicast setup frame. */
2003 	if (sc->dc_stag) {
2004 		if (sc->dc_saddr != 0)
2005 			bus_dmamap_unload(sc->dc_stag, sc->dc_smap);
2006 		if (sc->dc_cdata.dc_sbuf != NULL)
2007 			bus_dmamem_free(sc->dc_stag, sc->dc_cdata.dc_sbuf,
2008 			    sc->dc_smap);
2009 		bus_dma_tag_destroy(sc->dc_stag);
2010 	}
2011 }
2012 
2013 /*
2014  * Attach the interface. Allocate softc structures, do ifmedia
2015  * setup and ethernet/BPF attach.
2016  */
2017 static int
2018 dc_attach(device_t dev)
2019 {
2020 	uint32_t eaddr[(ETHER_ADDR_LEN+3)/4];
2021 	uint32_t command;
2022 	struct dc_softc *sc;
2023 	struct ifnet *ifp;
2024 	struct dc_mediainfo *m;
2025 	uint32_t reg, revision;
2026 	uint16_t *srom;
2027 	int error, mac_offset, n, phy, rid, tmp;
2028 	uint8_t *mac;
2029 
2030 	sc = device_get_softc(dev);
2031 	sc->dc_dev = dev;
2032 
2033 	mtx_init(&sc->dc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
2034 	    MTX_DEF);
2035 
2036 	/*
2037 	 * Map control/status registers.
2038 	 */
2039 	pci_enable_busmaster(dev);
2040 
2041 	rid = DC_RID;
2042 	sc->dc_res = bus_alloc_resource_any(dev, DC_RES, &rid, RF_ACTIVE);
2043 
2044 	if (sc->dc_res == NULL) {
2045 		device_printf(dev, "couldn't map ports/memory\n");
2046 		error = ENXIO;
2047 		goto fail;
2048 	}
2049 
2050 	sc->dc_btag = rman_get_bustag(sc->dc_res);
2051 	sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
2052 
2053 	/* Allocate interrupt. */
2054 	rid = 0;
2055 	sc->dc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
2056 	    RF_SHAREABLE | RF_ACTIVE);
2057 
2058 	if (sc->dc_irq == NULL) {
2059 		device_printf(dev, "couldn't map interrupt\n");
2060 		error = ENXIO;
2061 		goto fail;
2062 	}
2063 
2064 	/* Need this info to decide on a chip type. */
2065 	sc->dc_info = dc_devtype(dev);
2066 	revision = pci_get_revid(dev);
2067 
2068 	error = 0;
2069 	/* Get the eeprom width, but PNIC and XIRCOM have diff eeprom */
2070 	if (sc->dc_info->dc_devid !=
2071 	    DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168) &&
2072 	    sc->dc_info->dc_devid !=
2073 	    DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201))
2074 		dc_eeprom_width(sc);
2075 
2076 	switch (sc->dc_info->dc_devid) {
2077 	case DC_DEVID(DC_VENDORID_DEC, DC_DEVICEID_21143):
2078 		sc->dc_type = DC_TYPE_21143;
2079 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
2080 		sc->dc_flags |= DC_REDUCED_MII_POLL;
2081 		/* Save EEPROM contents so we can parse them later. */
2082 		error = dc_read_srom(sc, sc->dc_romwidth);
2083 		if (error != 0)
2084 			goto fail;
2085 		break;
2086 	case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009):
2087 	case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100):
2088 	case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102):
2089 		sc->dc_type = DC_TYPE_DM9102;
2090 		sc->dc_flags |= DC_TX_COALESCE | DC_TX_INTR_ALWAYS;
2091 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_TX_STORENFWD;
2092 		sc->dc_flags |= DC_TX_ALIGN;
2093 		sc->dc_pmode = DC_PMODE_MII;
2094 
2095 		/* Increase the latency timer value. */
2096 		pci_write_config(dev, PCIR_LATTIMER, 0x80, 1);
2097 		break;
2098 	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AL981):
2099 		sc->dc_type = DC_TYPE_AL981;
2100 		sc->dc_flags |= DC_TX_USE_TX_INTR;
2101 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
2102 		sc->dc_pmode = DC_PMODE_MII;
2103 		error = dc_read_srom(sc, sc->dc_romwidth);
2104 		if (error != 0)
2105 			goto fail;
2106 		break;
2107 	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN983):
2108 	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN985):
2109 	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511):
2110 	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513):
2111 	case DC_DEVID(DC_VENDORID_DLINK, DC_DEVICEID_DRP32TXD):
2112 	case DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500):
2113 	case DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500MX):
2114 	case DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN2242):
2115 	case DC_DEVID(DC_VENDORID_HAWKING, DC_DEVICEID_HAWKING_PN672TX):
2116 	case DC_DEVID(DC_VENDORID_PLANEX, DC_DEVICEID_FNW3602T):
2117 	case DC_DEVID(DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB):
2118 	case DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN120):
2119 	case DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130):
2120 	case DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB08):
2121 	case DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB09):
2122 		sc->dc_type = DC_TYPE_AN983;
2123 		sc->dc_flags |= DC_64BIT_HASH;
2124 		sc->dc_flags |= DC_TX_USE_TX_INTR;
2125 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
2126 		sc->dc_pmode = DC_PMODE_MII;
2127 		/* Don't read SROM for - auto-loaded on reset */
2128 		break;
2129 	case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713):
2130 	case DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP):
2131 		if (revision < DC_REVISION_98713A) {
2132 			sc->dc_type = DC_TYPE_98713;
2133 		}
2134 		if (revision >= DC_REVISION_98713A) {
2135 			sc->dc_type = DC_TYPE_98713A;
2136 			sc->dc_flags |= DC_21143_NWAY;
2137 		}
2138 		sc->dc_flags |= DC_REDUCED_MII_POLL;
2139 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
2140 		break;
2141 	case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5):
2142 	case DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN1217):
2143 		/*
2144 		 * Macronix MX98715AEC-C/D/E parts have only a
2145 		 * 128-bit hash table. We need to deal with these
2146 		 * in the same manner as the PNIC II so that we
2147 		 * get the right number of bits out of the
2148 		 * CRC routine.
2149 		 */
2150 		if (revision >= DC_REVISION_98715AEC_C &&
2151 		    revision < DC_REVISION_98725)
2152 			sc->dc_flags |= DC_128BIT_HASH;
2153 		sc->dc_type = DC_TYPE_987x5;
2154 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
2155 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
2156 		break;
2157 	case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98727):
2158 		sc->dc_type = DC_TYPE_987x5;
2159 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
2160 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
2161 		break;
2162 	case DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C115):
2163 		sc->dc_type = DC_TYPE_PNICII;
2164 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR | DC_128BIT_HASH;
2165 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
2166 		break;
2167 	case DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168):
2168 		sc->dc_type = DC_TYPE_PNIC;
2169 		sc->dc_flags |= DC_TX_STORENFWD | DC_TX_INTR_ALWAYS;
2170 		sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
2171 		sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_NOWAIT);
2172 		if (sc->dc_pnic_rx_buf == NULL) {
2173 			device_printf(sc->dc_dev,
2174 			    "Could not allocate PNIC RX buffer\n");
2175 			error = ENOMEM;
2176 			goto fail;
2177 		}
2178 		if (revision < DC_REVISION_82C169)
2179 			sc->dc_pmode = DC_PMODE_SYM;
2180 		break;
2181 	case DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A):
2182 		sc->dc_type = DC_TYPE_ASIX;
2183 		sc->dc_flags |= DC_TX_USE_TX_INTR | DC_TX_INTR_FIRSTFRAG;
2184 		sc->dc_flags |= DC_REDUCED_MII_POLL;
2185 		sc->dc_pmode = DC_PMODE_MII;
2186 		break;
2187 	case DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201):
2188 		sc->dc_type = DC_TYPE_XIRCOM;
2189 		sc->dc_flags |= DC_TX_INTR_ALWAYS | DC_TX_COALESCE |
2190 				DC_TX_ALIGN;
2191 		/*
2192 		 * We don't actually need to coalesce, but we're doing
2193 		 * it to obtain a double word aligned buffer.
2194 		 * The DC_TX_COALESCE flag is required.
2195 		 */
2196 		sc->dc_pmode = DC_PMODE_MII;
2197 		break;
2198 	case DC_DEVID(DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112):
2199 		sc->dc_type = DC_TYPE_CONEXANT;
2200 		sc->dc_flags |= DC_TX_INTR_ALWAYS;
2201 		sc->dc_flags |= DC_REDUCED_MII_POLL;
2202 		sc->dc_pmode = DC_PMODE_MII;
2203 		error = dc_read_srom(sc, sc->dc_romwidth);
2204 		if (error != 0)
2205 			goto fail;
2206 		break;
2207 	case DC_DEVID(DC_VENDORID_ULI, DC_DEVICEID_M5261):
2208 	case DC_DEVID(DC_VENDORID_ULI, DC_DEVICEID_M5263):
2209 		if (sc->dc_info->dc_devid ==
2210 		    DC_DEVID(DC_VENDORID_ULI, DC_DEVICEID_M5261))
2211 			sc->dc_type = DC_TYPE_ULI_M5261;
2212 		else
2213 			sc->dc_type = DC_TYPE_ULI_M5263;
2214 		/* TX buffers should be aligned on 4 byte boundary. */
2215 		sc->dc_flags |= DC_TX_INTR_ALWAYS | DC_TX_COALESCE |
2216 		    DC_TX_ALIGN;
2217 		sc->dc_pmode = DC_PMODE_MII;
2218 		error = dc_read_srom(sc, sc->dc_romwidth);
2219 		if (error != 0)
2220 			goto fail;
2221 		break;
2222 	default:
2223 		device_printf(dev, "unknown device: %x\n",
2224 		    sc->dc_info->dc_devid);
2225 		break;
2226 	}
2227 
2228 	/* Save the cache line size. */
2229 	if (DC_IS_DAVICOM(sc))
2230 		sc->dc_cachesize = 0;
2231 	else
2232 		sc->dc_cachesize = pci_get_cachelnsz(dev);
2233 
2234 	/* Reset the adapter. */
2235 	dc_reset(sc);
2236 
2237 	/* Take 21143 out of snooze mode */
2238 	if (DC_IS_INTEL(sc) || DC_IS_XIRCOM(sc)) {
2239 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
2240 		command &= ~(DC_CFDD_SNOOZE_MODE | DC_CFDD_SLEEP_MODE);
2241 		pci_write_config(dev, DC_PCI_CFDD, command, 4);
2242 	}
2243 
2244 	/*
2245 	 * Try to learn something about the supported media.
2246 	 * We know that ASIX and ADMtek and Davicom devices
2247 	 * will *always* be using MII media, so that's a no-brainer.
2248 	 * The tricky ones are the Macronix/PNIC II and the
2249 	 * Intel 21143.
2250 	 */
2251 	if (DC_IS_INTEL(sc)) {
2252 		error = dc_parse_21143_srom(sc);
2253 		if (error != 0)
2254 			goto fail;
2255 	} else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
2256 		if (sc->dc_type == DC_TYPE_98713)
2257 			sc->dc_pmode = DC_PMODE_MII;
2258 		else
2259 			sc->dc_pmode = DC_PMODE_SYM;
2260 	} else if (!sc->dc_pmode)
2261 		sc->dc_pmode = DC_PMODE_MII;
2262 
2263 	/*
2264 	 * Get station address from the EEPROM.
2265 	 */
2266 	switch(sc->dc_type) {
2267 	case DC_TYPE_98713:
2268 	case DC_TYPE_98713A:
2269 	case DC_TYPE_987x5:
2270 	case DC_TYPE_PNICII:
2271 		dc_read_eeprom(sc, (caddr_t)&mac_offset,
2272 		    (DC_EE_NODEADDR_OFFSET / 2), 1, 0);
2273 		dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
2274 		break;
2275 	case DC_TYPE_PNIC:
2276 		dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
2277 		break;
2278 	case DC_TYPE_DM9102:
2279 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2280 #ifdef __sparc64__
2281 		/*
2282 		 * If this is an onboard dc(4) the station address read from
2283 		 * the EEPROM is all zero and we have to get it from the FCode.
2284 		 */
2285 		if (eaddr[0] == 0 && (eaddr[1] & ~0xffff) == 0)
2286 			OF_getetheraddr(dev, (caddr_t)&eaddr);
2287 #endif
2288 		break;
2289 	case DC_TYPE_21143:
2290 	case DC_TYPE_ASIX:
2291 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2292 		break;
2293 	case DC_TYPE_AL981:
2294 	case DC_TYPE_AN983:
2295 		reg = CSR_READ_4(sc, DC_AL_PAR0);
2296 		mac = (uint8_t *)&eaddr[0];
2297 		mac[0] = (reg >> 0) & 0xff;
2298 		mac[1] = (reg >> 8) & 0xff;
2299 		mac[2] = (reg >> 16) & 0xff;
2300 		mac[3] = (reg >> 24) & 0xff;
2301 		reg = CSR_READ_4(sc, DC_AL_PAR1);
2302 		mac[4] = (reg >> 0) & 0xff;
2303 		mac[5] = (reg >> 8) & 0xff;
2304 		break;
2305 	case DC_TYPE_CONEXANT:
2306 		bcopy(sc->dc_srom + DC_CONEXANT_EE_NODEADDR, &eaddr,
2307 		    ETHER_ADDR_LEN);
2308 		break;
2309 	case DC_TYPE_XIRCOM:
2310 		/* The MAC comes from the CIS. */
2311 		mac = pci_get_ether(dev);
2312 		if (!mac) {
2313 			device_printf(dev, "No station address in CIS!\n");
2314 			error = ENXIO;
2315 			goto fail;
2316 		}
2317 		bcopy(mac, eaddr, ETHER_ADDR_LEN);
2318 		break;
2319 	case DC_TYPE_ULI_M5261:
2320 	case DC_TYPE_ULI_M5263:
2321 		srom = (uint16_t *)sc->dc_srom;
2322 		if (srom == NULL || *srom == 0xFFFF || *srom == 0) {
2323 			/*
2324 			 * No valid SROM present, read station address
2325 			 * from ID Table.
2326 			 */
2327 			device_printf(dev,
2328 			    "Reading station address from ID Table.\n");
2329 			CSR_WRITE_4(sc, DC_BUSCTL, 0x10000);
2330 			CSR_WRITE_4(sc, DC_SIARESET, 0x01C0);
2331 			CSR_WRITE_4(sc, DC_10BTCTRL, 0x0000);
2332 			CSR_WRITE_4(sc, DC_10BTCTRL, 0x0010);
2333 			CSR_WRITE_4(sc, DC_10BTCTRL, 0x0000);
2334 			CSR_WRITE_4(sc, DC_SIARESET, 0x0000);
2335 			CSR_WRITE_4(sc, DC_SIARESET, 0x01B0);
2336 			mac = (uint8_t *)eaddr;
2337 			for (n = 0; n < ETHER_ADDR_LEN; n++)
2338 				mac[n] = (uint8_t)CSR_READ_4(sc, DC_10BTCTRL);
2339 			CSR_WRITE_4(sc, DC_SIARESET, 0x0000);
2340 			CSR_WRITE_4(sc, DC_BUSCTL, 0x0000);
2341 			DELAY(10);
2342 		} else
2343 			dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3,
2344 			    0);
2345 		break;
2346 	default:
2347 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2348 		break;
2349 	}
2350 
2351 	bcopy(eaddr, sc->dc_eaddr, sizeof(eaddr));
2352 	/*
2353 	 * If we still have invalid station address, see whether we can
2354 	 * find station address for chip 0.  Some multi-port controllers
2355 	 * just store station address for chip 0 if they have a shared
2356 	 * SROM.
2357 	 */
2358 	if ((sc->dc_eaddr[0] == 0 && (sc->dc_eaddr[1] & ~0xffff) == 0) ||
2359 	    (sc->dc_eaddr[0] == 0xffffffff &&
2360 	    (sc->dc_eaddr[1] & 0xffff) == 0xffff)) {
2361 		error = dc_check_multiport(sc);
2362 		if (error == 0) {
2363 			bcopy(sc->dc_eaddr, eaddr, sizeof(eaddr));
2364 			/* Extract media information. */
2365 			if (DC_IS_INTEL(sc) && sc->dc_srom != NULL) {
2366 				while (sc->dc_mi != NULL) {
2367 					m = sc->dc_mi->dc_next;
2368 					free(sc->dc_mi, M_DEVBUF);
2369 					sc->dc_mi = m;
2370 				}
2371 				error = dc_parse_21143_srom(sc);
2372 				if (error != 0)
2373 					goto fail;
2374 			}
2375 		} else if (error == ENOMEM)
2376 			goto fail;
2377 		else
2378 			error = 0;
2379 	}
2380 
2381 	if ((error = dc_dma_alloc(sc)) != 0)
2382 		goto fail;
2383 
2384 	ifp = sc->dc_ifp = if_alloc(IFT_ETHER);
2385 	if (ifp == NULL) {
2386 		device_printf(dev, "can not if_alloc()\n");
2387 		error = ENOSPC;
2388 		goto fail;
2389 	}
2390 	ifp->if_softc = sc;
2391 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2392 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2393 	ifp->if_ioctl = dc_ioctl;
2394 	ifp->if_start = dc_start;
2395 	ifp->if_init = dc_init;
2396 	IFQ_SET_MAXLEN(&ifp->if_snd, DC_TX_LIST_CNT - 1);
2397 	ifp->if_snd.ifq_drv_maxlen = DC_TX_LIST_CNT - 1;
2398 	IFQ_SET_READY(&ifp->if_snd);
2399 
2400 	/*
2401 	 * Do MII setup. If this is a 21143, check for a PHY on the
2402 	 * MII bus after applying any necessary fixups to twiddle the
2403 	 * GPIO bits. If we don't end up finding a PHY, restore the
2404 	 * old selection (SIA only or SIA/SYM) and attach the dcphy
2405 	 * driver instead.
2406 	 */
2407 	tmp = 0;
2408 	if (DC_IS_INTEL(sc)) {
2409 		dc_apply_fixup(sc, IFM_AUTO);
2410 		tmp = sc->dc_pmode;
2411 		sc->dc_pmode = DC_PMODE_MII;
2412 	}
2413 
2414 	/*
2415 	 * Setup General Purpose port mode and data so the tulip can talk
2416 	 * to the MII.  This needs to be done before mii_attach so that
2417 	 * we can actually see them.
2418 	 */
2419 	if (DC_IS_XIRCOM(sc)) {
2420 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
2421 		    DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2422 		DELAY(10);
2423 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
2424 		    DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2425 		DELAY(10);
2426 	}
2427 
2428 	phy = MII_PHY_ANY;
2429 	/*
2430 	 * Note: both the AL981 and AN983 have internal PHYs, however the
2431 	 * AL981 provides direct access to the PHY registers while the AN983
2432 	 * uses a serial MII interface. The AN983's MII interface is also
2433 	 * buggy in that you can read from any MII address (0 to 31), but
2434 	 * only address 1 behaves normally. To deal with both cases, we
2435 	 * pretend that the PHY is at MII address 1.
2436 	 */
2437 	if (DC_IS_ADMTEK(sc))
2438 		phy = DC_ADMTEK_PHYADDR;
2439 
2440 	/*
2441 	 * Note: the ukphy probes of the RS7112 report a PHY at MII address
2442 	 * 0 (possibly HomePNA?) and 1 (ethernet) so we only respond to the
2443 	 * correct one.
2444 	 */
2445 	if (DC_IS_CONEXANT(sc))
2446 		phy = DC_CONEXANT_PHYADDR;
2447 
2448 	error = mii_attach(dev, &sc->dc_miibus, ifp, dc_ifmedia_upd,
2449 	    dc_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
2450 
2451 	if (error && DC_IS_INTEL(sc)) {
2452 		sc->dc_pmode = tmp;
2453 		if (sc->dc_pmode != DC_PMODE_SIA)
2454 			sc->dc_pmode = DC_PMODE_SYM;
2455 		sc->dc_flags |= DC_21143_NWAY;
2456 		/*
2457 		 * For non-MII cards, we need to have the 21143
2458 		 * drive the LEDs. Except there are some systems
2459 		 * like the NEC VersaPro NoteBook PC which have no
2460 		 * LEDs, and twiddling these bits has adverse effects
2461 		 * on them. (I.e. you suddenly can't get a link.)
2462 		 */
2463 		if (!(pci_get_subvendor(dev) == 0x1033 &&
2464 		    pci_get_subdevice(dev) == 0x8028))
2465 			sc->dc_flags |= DC_TULIP_LEDS;
2466 		error = mii_attach(dev, &sc->dc_miibus, ifp, dc_ifmedia_upd,
2467 		    dc_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY,
2468 		    MII_OFFSET_ANY, 0);
2469 	}
2470 
2471 	if (error) {
2472 		device_printf(dev, "attaching PHYs failed\n");
2473 		goto fail;
2474 	}
2475 
2476 	if (DC_IS_ADMTEK(sc)) {
2477 		/*
2478 		 * Set automatic TX underrun recovery for the ADMtek chips
2479 		 */
2480 		DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR);
2481 	}
2482 
2483 	/*
2484 	 * Tell the upper layer(s) we support long frames.
2485 	 */
2486 	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
2487 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
2488 	ifp->if_capenable = ifp->if_capabilities;
2489 #ifdef DEVICE_POLLING
2490 	ifp->if_capabilities |= IFCAP_POLLING;
2491 #endif
2492 
2493 	callout_init_mtx(&sc->dc_stat_ch, &sc->dc_mtx, 0);
2494 	callout_init_mtx(&sc->dc_wdog_ch, &sc->dc_mtx, 0);
2495 
2496 	/*
2497 	 * Call MI attach routine.
2498 	 */
2499 	ether_ifattach(ifp, (caddr_t)eaddr);
2500 
2501 	/* Hook interrupt last to avoid having to lock softc */
2502 	error = bus_setup_intr(dev, sc->dc_irq, INTR_TYPE_NET | INTR_MPSAFE,
2503 	    NULL, dc_intr, sc, &sc->dc_intrhand);
2504 
2505 	if (error) {
2506 		device_printf(dev, "couldn't set up irq\n");
2507 		ether_ifdetach(ifp);
2508 		goto fail;
2509 	}
2510 
2511 fail:
2512 	if (error)
2513 		dc_detach(dev);
2514 	return (error);
2515 }
2516 
2517 /*
2518  * Shutdown hardware and free up resources. This can be called any
2519  * time after the mutex has been initialized. It is called in both
2520  * the error case in attach and the normal detach case so it needs
2521  * to be careful about only freeing resources that have actually been
2522  * allocated.
2523  */
2524 static int
2525 dc_detach(device_t dev)
2526 {
2527 	struct dc_softc *sc;
2528 	struct ifnet *ifp;
2529 	struct dc_mediainfo *m;
2530 
2531 	sc = device_get_softc(dev);
2532 	KASSERT(mtx_initialized(&sc->dc_mtx), ("dc mutex not initialized"));
2533 
2534 	ifp = sc->dc_ifp;
2535 
2536 #ifdef DEVICE_POLLING
2537 	if (ifp != NULL && ifp->if_capenable & IFCAP_POLLING)
2538 		ether_poll_deregister(ifp);
2539 #endif
2540 
2541 	/* These should only be active if attach succeeded */
2542 	if (device_is_attached(dev)) {
2543 		DC_LOCK(sc);
2544 		dc_stop(sc);
2545 		DC_UNLOCK(sc);
2546 		callout_drain(&sc->dc_stat_ch);
2547 		callout_drain(&sc->dc_wdog_ch);
2548 		ether_ifdetach(ifp);
2549 	}
2550 	if (sc->dc_miibus)
2551 		device_delete_child(dev, sc->dc_miibus);
2552 	bus_generic_detach(dev);
2553 
2554 	if (sc->dc_intrhand)
2555 		bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2556 	if (sc->dc_irq)
2557 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2558 	if (sc->dc_res)
2559 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2560 
2561 	if (ifp != NULL)
2562 		if_free(ifp);
2563 
2564 	dc_dma_free(sc);
2565 
2566 	free(sc->dc_pnic_rx_buf, M_DEVBUF);
2567 
2568 	while (sc->dc_mi != NULL) {
2569 		m = sc->dc_mi->dc_next;
2570 		free(sc->dc_mi, M_DEVBUF);
2571 		sc->dc_mi = m;
2572 	}
2573 	free(sc->dc_srom, M_DEVBUF);
2574 
2575 	mtx_destroy(&sc->dc_mtx);
2576 
2577 	return (0);
2578 }
2579 
2580 /*
2581  * Initialize the transmit descriptors.
2582  */
2583 static int
2584 dc_list_tx_init(struct dc_softc *sc)
2585 {
2586 	struct dc_chain_data *cd;
2587 	struct dc_list_data *ld;
2588 	int i, nexti;
2589 
2590 	cd = &sc->dc_cdata;
2591 	ld = &sc->dc_ldata;
2592 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2593 		if (i == DC_TX_LIST_CNT - 1)
2594 			nexti = 0;
2595 		else
2596 			nexti = i + 1;
2597 		ld->dc_tx_list[i].dc_status = 0;
2598 		ld->dc_tx_list[i].dc_ctl = 0;
2599 		ld->dc_tx_list[i].dc_data = 0;
2600 		ld->dc_tx_list[i].dc_next = htole32(DC_TXDESC(sc, nexti));
2601 		cd->dc_tx_chain[i] = NULL;
2602 	}
2603 
2604 	cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
2605 	cd->dc_tx_pkts = 0;
2606 	bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap,
2607 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2608 	return (0);
2609 }
2610 
2611 /*
2612  * Initialize the RX descriptors and allocate mbufs for them. Note that
2613  * we arrange the descriptors in a closed ring, so that the last descriptor
2614  * points back to the first.
2615  */
2616 static int
2617 dc_list_rx_init(struct dc_softc *sc)
2618 {
2619 	struct dc_chain_data *cd;
2620 	struct dc_list_data *ld;
2621 	int i, nexti;
2622 
2623 	cd = &sc->dc_cdata;
2624 	ld = &sc->dc_ldata;
2625 
2626 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2627 		if (dc_newbuf(sc, i) != 0)
2628 			return (ENOBUFS);
2629 		if (i == DC_RX_LIST_CNT - 1)
2630 			nexti = 0;
2631 		else
2632 			nexti = i + 1;
2633 		ld->dc_rx_list[i].dc_next = htole32(DC_RXDESC(sc, nexti));
2634 	}
2635 
2636 	cd->dc_rx_prod = 0;
2637 	bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_rx_lmap,
2638 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2639 	return (0);
2640 }
2641 
2642 /*
2643  * Initialize an RX descriptor and attach an MBUF cluster.
2644  */
2645 static int
2646 dc_newbuf(struct dc_softc *sc, int i)
2647 {
2648 	struct mbuf *m;
2649 	bus_dmamap_t map;
2650 	bus_dma_segment_t segs[1];
2651 	int error, nseg;
2652 
2653 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2654 	if (m == NULL)
2655 		return (ENOBUFS);
2656 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2657 	m_adj(m, sizeof(u_int64_t));
2658 
2659 	/*
2660 	 * If this is a PNIC chip, zero the buffer. This is part
2661 	 * of the workaround for the receive bug in the 82c168 and
2662 	 * 82c169 chips.
2663 	 */
2664 	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
2665 		bzero(mtod(m, char *), m->m_len);
2666 
2667 	error = bus_dmamap_load_mbuf_sg(sc->dc_rx_mtag, sc->dc_sparemap,
2668 	    m, segs, &nseg, 0);
2669 	if (error) {
2670 		m_freem(m);
2671 		return (error);
2672 	}
2673 	KASSERT(nseg == 1, ("%s: wrong number of segments (%d)", __func__,
2674 	    nseg));
2675 	if (sc->dc_cdata.dc_rx_chain[i] != NULL)
2676 		bus_dmamap_unload(sc->dc_rx_mtag, sc->dc_cdata.dc_rx_map[i]);
2677 
2678 	map = sc->dc_cdata.dc_rx_map[i];
2679 	sc->dc_cdata.dc_rx_map[i] = sc->dc_sparemap;
2680 	sc->dc_sparemap = map;
2681 	sc->dc_cdata.dc_rx_chain[i] = m;
2682 	bus_dmamap_sync(sc->dc_rx_mtag, sc->dc_cdata.dc_rx_map[i],
2683 	    BUS_DMASYNC_PREREAD);
2684 
2685 	sc->dc_ldata.dc_rx_list[i].dc_ctl = htole32(DC_RXCTL_RLINK | DC_RXLEN);
2686 	sc->dc_ldata.dc_rx_list[i].dc_data =
2687 	    htole32(DC_ADDR_LO(segs[0].ds_addr));
2688 	sc->dc_ldata.dc_rx_list[i].dc_status = htole32(DC_RXSTAT_OWN);
2689 	bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_rx_lmap,
2690 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2691 	return (0);
2692 }
2693 
2694 /*
2695  * Grrrrr.
2696  * The PNIC chip has a terrible bug in it that manifests itself during
2697  * periods of heavy activity. The exact mode of failure if difficult to
2698  * pinpoint: sometimes it only happens in promiscuous mode, sometimes it
2699  * will happen on slow machines. The bug is that sometimes instead of
2700  * uploading one complete frame during reception, it uploads what looks
2701  * like the entire contents of its FIFO memory. The frame we want is at
2702  * the end of the whole mess, but we never know exactly how much data has
2703  * been uploaded, so salvaging the frame is hard.
2704  *
2705  * There is only one way to do it reliably, and it's disgusting.
2706  * Here's what we know:
2707  *
2708  * - We know there will always be somewhere between one and three extra
2709  *   descriptors uploaded.
2710  *
2711  * - We know the desired received frame will always be at the end of the
2712  *   total data upload.
2713  *
2714  * - We know the size of the desired received frame because it will be
2715  *   provided in the length field of the status word in the last descriptor.
2716  *
2717  * Here's what we do:
2718  *
2719  * - When we allocate buffers for the receive ring, we bzero() them.
2720  *   This means that we know that the buffer contents should be all
2721  *   zeros, except for data uploaded by the chip.
2722  *
2723  * - We also force the PNIC chip to upload frames that include the
2724  *   ethernet CRC at the end.
2725  *
2726  * - We gather all of the bogus frame data into a single buffer.
2727  *
2728  * - We then position a pointer at the end of this buffer and scan
2729  *   backwards until we encounter the first non-zero byte of data.
2730  *   This is the end of the received frame. We know we will encounter
2731  *   some data at the end of the frame because the CRC will always be
2732  *   there, so even if the sender transmits a packet of all zeros,
2733  *   we won't be fooled.
2734  *
2735  * - We know the size of the actual received frame, so we subtract
2736  *   that value from the current pointer location. This brings us
2737  *   to the start of the actual received packet.
2738  *
2739  * - We copy this into an mbuf and pass it on, along with the actual
2740  *   frame length.
2741  *
2742  * The performance hit is tremendous, but it beats dropping frames all
2743  * the time.
2744  */
2745 
2746 #define	DC_WHOLEFRAME	(DC_RXSTAT_FIRSTFRAG | DC_RXSTAT_LASTFRAG)
2747 static void
2748 dc_pnic_rx_bug_war(struct dc_softc *sc, int idx)
2749 {
2750 	struct dc_desc *cur_rx;
2751 	struct dc_desc *c = NULL;
2752 	struct mbuf *m = NULL;
2753 	unsigned char *ptr;
2754 	int i, total_len;
2755 	uint32_t rxstat = 0;
2756 
2757 	i = sc->dc_pnic_rx_bug_save;
2758 	cur_rx = &sc->dc_ldata.dc_rx_list[idx];
2759 	ptr = sc->dc_pnic_rx_buf;
2760 	bzero(ptr, DC_RXLEN * 5);
2761 
2762 	/* Copy all the bytes from the bogus buffers. */
2763 	while (1) {
2764 		c = &sc->dc_ldata.dc_rx_list[i];
2765 		rxstat = le32toh(c->dc_status);
2766 		m = sc->dc_cdata.dc_rx_chain[i];
2767 		bcopy(mtod(m, char *), ptr, DC_RXLEN);
2768 		ptr += DC_RXLEN;
2769 		/* If this is the last buffer, break out. */
2770 		if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
2771 			break;
2772 		dc_discard_rxbuf(sc, i);
2773 		DC_INC(i, DC_RX_LIST_CNT);
2774 	}
2775 
2776 	/* Find the length of the actual receive frame. */
2777 	total_len = DC_RXBYTES(rxstat);
2778 
2779 	/* Scan backwards until we hit a non-zero byte. */
2780 	while (*ptr == 0x00)
2781 		ptr--;
2782 
2783 	/* Round off. */
2784 	if ((uintptr_t)(ptr) & 0x3)
2785 		ptr -= 1;
2786 
2787 	/* Now find the start of the frame. */
2788 	ptr -= total_len;
2789 	if (ptr < sc->dc_pnic_rx_buf)
2790 		ptr = sc->dc_pnic_rx_buf;
2791 
2792 	/*
2793 	 * Now copy the salvaged frame to the last mbuf and fake up
2794 	 * the status word to make it look like a successful
2795 	 * frame reception.
2796 	 */
2797 	bcopy(ptr, mtod(m, char *), total_len);
2798 	cur_rx->dc_status = htole32(rxstat | DC_RXSTAT_FIRSTFRAG);
2799 }
2800 
2801 /*
2802  * This routine searches the RX ring for dirty descriptors in the
2803  * event that the rxeof routine falls out of sync with the chip's
2804  * current descriptor pointer. This may happen sometimes as a result
2805  * of a "no RX buffer available" condition that happens when the chip
2806  * consumes all of the RX buffers before the driver has a chance to
2807  * process the RX ring. This routine may need to be called more than
2808  * once to bring the driver back in sync with the chip, however we
2809  * should still be getting RX DONE interrupts to drive the search
2810  * for new packets in the RX ring, so we should catch up eventually.
2811  */
2812 static int
2813 dc_rx_resync(struct dc_softc *sc)
2814 {
2815 	struct dc_desc *cur_rx;
2816 	int i, pos;
2817 
2818 	pos = sc->dc_cdata.dc_rx_prod;
2819 
2820 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2821 		cur_rx = &sc->dc_ldata.dc_rx_list[pos];
2822 		if (!(le32toh(cur_rx->dc_status) & DC_RXSTAT_OWN))
2823 			break;
2824 		DC_INC(pos, DC_RX_LIST_CNT);
2825 	}
2826 
2827 	/* If the ring really is empty, then just return. */
2828 	if (i == DC_RX_LIST_CNT)
2829 		return (0);
2830 
2831 	/* We've fallen behing the chip: catch it. */
2832 	sc->dc_cdata.dc_rx_prod = pos;
2833 
2834 	return (EAGAIN);
2835 }
2836 
2837 static void
2838 dc_discard_rxbuf(struct dc_softc *sc, int i)
2839 {
2840 	struct mbuf *m;
2841 
2842 	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2843 		m = sc->dc_cdata.dc_rx_chain[i];
2844 		bzero(mtod(m, char *), m->m_len);
2845 	}
2846 
2847 	sc->dc_ldata.dc_rx_list[i].dc_ctl = htole32(DC_RXCTL_RLINK | DC_RXLEN);
2848 	sc->dc_ldata.dc_rx_list[i].dc_status = htole32(DC_RXSTAT_OWN);
2849 	bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_rx_lmap, BUS_DMASYNC_PREREAD |
2850 	    BUS_DMASYNC_PREWRITE);
2851 }
2852 
2853 /*
2854  * A frame has been uploaded: pass the resulting mbuf chain up to
2855  * the higher level protocols.
2856  */
2857 static int
2858 dc_rxeof(struct dc_softc *sc)
2859 {
2860 	struct mbuf *m;
2861 	struct ifnet *ifp;
2862 	struct dc_desc *cur_rx;
2863 	int i, total_len, rx_npkts;
2864 	uint32_t rxstat;
2865 
2866 	DC_LOCK_ASSERT(sc);
2867 
2868 	ifp = sc->dc_ifp;
2869 	rx_npkts = 0;
2870 
2871 	bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_rx_lmap, BUS_DMASYNC_POSTREAD |
2872 	    BUS_DMASYNC_POSTWRITE);
2873 	for (i = sc->dc_cdata.dc_rx_prod;
2874 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
2875 	    DC_INC(i, DC_RX_LIST_CNT)) {
2876 #ifdef DEVICE_POLLING
2877 		if (ifp->if_capenable & IFCAP_POLLING) {
2878 			if (sc->rxcycles <= 0)
2879 				break;
2880 			sc->rxcycles--;
2881 		}
2882 #endif
2883 		cur_rx = &sc->dc_ldata.dc_rx_list[i];
2884 		rxstat = le32toh(cur_rx->dc_status);
2885 		if ((rxstat & DC_RXSTAT_OWN) != 0)
2886 			break;
2887 		m = sc->dc_cdata.dc_rx_chain[i];
2888 		bus_dmamap_sync(sc->dc_rx_mtag, sc->dc_cdata.dc_rx_map[i],
2889 		    BUS_DMASYNC_POSTREAD);
2890 		total_len = DC_RXBYTES(rxstat);
2891 		rx_npkts++;
2892 
2893 		if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2894 			if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
2895 				if (rxstat & DC_RXSTAT_FIRSTFRAG)
2896 					sc->dc_pnic_rx_bug_save = i;
2897 				if ((rxstat & DC_RXSTAT_LASTFRAG) == 0)
2898 					continue;
2899 				dc_pnic_rx_bug_war(sc, i);
2900 				rxstat = le32toh(cur_rx->dc_status);
2901 				total_len = DC_RXBYTES(rxstat);
2902 			}
2903 		}
2904 
2905 		/*
2906 		 * If an error occurs, update stats, clear the
2907 		 * status word and leave the mbuf cluster in place:
2908 		 * it should simply get re-used next time this descriptor
2909 		 * comes up in the ring.  However, don't report long
2910 		 * frames as errors since they could be vlans.
2911 		 */
2912 		if ((rxstat & DC_RXSTAT_RXERR)) {
2913 			if (!(rxstat & DC_RXSTAT_GIANT) ||
2914 			    (rxstat & (DC_RXSTAT_CRCERR | DC_RXSTAT_DRIBBLE |
2915 				       DC_RXSTAT_MIIERE | DC_RXSTAT_COLLSEEN |
2916 				       DC_RXSTAT_RUNT   | DC_RXSTAT_DE))) {
2917 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2918 				if (rxstat & DC_RXSTAT_COLLSEEN)
2919 					if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
2920 				dc_discard_rxbuf(sc, i);
2921 				if (rxstat & DC_RXSTAT_CRCERR)
2922 					continue;
2923 				else {
2924 					ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2925 					dc_init_locked(sc);
2926 					return (rx_npkts);
2927 				}
2928 			}
2929 		}
2930 
2931 		/* No errors; receive the packet. */
2932 		total_len -= ETHER_CRC_LEN;
2933 #ifdef __NO_STRICT_ALIGNMENT
2934 		/*
2935 		 * On architectures without alignment problems we try to
2936 		 * allocate a new buffer for the receive ring, and pass up
2937 		 * the one where the packet is already, saving the expensive
2938 		 * copy done in m_devget().
2939 		 * If we are on an architecture with alignment problems, or
2940 		 * if the allocation fails, then use m_devget and leave the
2941 		 * existing buffer in the receive ring.
2942 		 */
2943 		if (dc_newbuf(sc, i) != 0) {
2944 			dc_discard_rxbuf(sc, i);
2945 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2946 			continue;
2947 		}
2948 		m->m_pkthdr.rcvif = ifp;
2949 		m->m_pkthdr.len = m->m_len = total_len;
2950 #else
2951 		{
2952 			struct mbuf *m0;
2953 
2954 			m0 = m_devget(mtod(m, char *), total_len,
2955 				ETHER_ALIGN, ifp, NULL);
2956 			dc_discard_rxbuf(sc, i);
2957 			if (m0 == NULL) {
2958 				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2959 				continue;
2960 			}
2961 			m = m0;
2962 		}
2963 #endif
2964 
2965 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2966 		DC_UNLOCK(sc);
2967 		(*ifp->if_input)(ifp, m);
2968 		DC_LOCK(sc);
2969 	}
2970 
2971 	sc->dc_cdata.dc_rx_prod = i;
2972 	return (rx_npkts);
2973 }
2974 
2975 /*
2976  * A frame was downloaded to the chip. It's safe for us to clean up
2977  * the list buffers.
2978  */
2979 static void
2980 dc_txeof(struct dc_softc *sc)
2981 {
2982 	struct dc_desc *cur_tx;
2983 	struct ifnet *ifp;
2984 	int idx, setup;
2985 	uint32_t ctl, txstat;
2986 
2987 	if (sc->dc_cdata.dc_tx_cnt == 0)
2988 		return;
2989 
2990 	ifp = sc->dc_ifp;
2991 
2992 	/*
2993 	 * Go through our tx list and free mbufs for those
2994 	 * frames that have been transmitted.
2995 	 */
2996 	bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap, BUS_DMASYNC_POSTREAD |
2997 	    BUS_DMASYNC_POSTWRITE);
2998 	setup = 0;
2999 	for (idx = sc->dc_cdata.dc_tx_cons; idx != sc->dc_cdata.dc_tx_prod;
3000 	    DC_INC(idx, DC_TX_LIST_CNT), sc->dc_cdata.dc_tx_cnt--) {
3001 		cur_tx = &sc->dc_ldata.dc_tx_list[idx];
3002 		txstat = le32toh(cur_tx->dc_status);
3003 		ctl = le32toh(cur_tx->dc_ctl);
3004 
3005 		if (txstat & DC_TXSTAT_OWN)
3006 			break;
3007 
3008 		if (sc->dc_cdata.dc_tx_chain[idx] == NULL)
3009 			continue;
3010 
3011 		if (ctl & DC_TXCTL_SETUP) {
3012 			cur_tx->dc_ctl = htole32(ctl & ~DC_TXCTL_SETUP);
3013 			setup++;
3014 			bus_dmamap_sync(sc->dc_stag, sc->dc_smap,
3015 			    BUS_DMASYNC_POSTWRITE);
3016 			/*
3017 			 * Yes, the PNIC is so brain damaged
3018 			 * that it will sometimes generate a TX
3019 			 * underrun error while DMAing the RX
3020 			 * filter setup frame. If we detect this,
3021 			 * we have to send the setup frame again,
3022 			 * or else the filter won't be programmed
3023 			 * correctly.
3024 			 */
3025 			if (DC_IS_PNIC(sc)) {
3026 				if (txstat & DC_TXSTAT_ERRSUM)
3027 					dc_setfilt(sc);
3028 			}
3029 			sc->dc_cdata.dc_tx_chain[idx] = NULL;
3030 			continue;
3031 		}
3032 
3033 		if (DC_IS_XIRCOM(sc) || DC_IS_CONEXANT(sc)) {
3034 			/*
3035 			 * XXX: Why does my Xircom taunt me so?
3036 			 * For some reason it likes setting the CARRLOST flag
3037 			 * even when the carrier is there. wtf?!?
3038 			 * Who knows, but Conexant chips have the
3039 			 * same problem. Maybe they took lessons
3040 			 * from Xircom.
3041 			 */
3042 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
3043 			    sc->dc_pmode == DC_PMODE_MII &&
3044 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
3045 			    DC_TXSTAT_NOCARRIER)))
3046 				txstat &= ~DC_TXSTAT_ERRSUM;
3047 		} else {
3048 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
3049 			    sc->dc_pmode == DC_PMODE_MII &&
3050 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
3051 			    DC_TXSTAT_NOCARRIER | DC_TXSTAT_CARRLOST)))
3052 				txstat &= ~DC_TXSTAT_ERRSUM;
3053 		}
3054 
3055 		if (txstat & DC_TXSTAT_ERRSUM) {
3056 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3057 			if (txstat & DC_TXSTAT_EXCESSCOLL)
3058 				if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
3059 			if (txstat & DC_TXSTAT_LATECOLL)
3060 				if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
3061 			if (!(txstat & DC_TXSTAT_UNDERRUN)) {
3062 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3063 				dc_init_locked(sc);
3064 				return;
3065 			}
3066 		} else
3067 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
3068 		if_inc_counter(ifp, IFCOUNTER_COLLISIONS, (txstat & DC_TXSTAT_COLLCNT) >> 3);
3069 
3070 		bus_dmamap_sync(sc->dc_tx_mtag, sc->dc_cdata.dc_tx_map[idx],
3071 		    BUS_DMASYNC_POSTWRITE);
3072 		bus_dmamap_unload(sc->dc_tx_mtag, sc->dc_cdata.dc_tx_map[idx]);
3073 		m_freem(sc->dc_cdata.dc_tx_chain[idx]);
3074 		sc->dc_cdata.dc_tx_chain[idx] = NULL;
3075 	}
3076 	sc->dc_cdata.dc_tx_cons = idx;
3077 
3078 	if (sc->dc_cdata.dc_tx_cnt <= DC_TX_LIST_CNT - DC_TX_LIST_RSVD) {
3079 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3080 		if (sc->dc_cdata.dc_tx_cnt == 0)
3081 			sc->dc_wdog_timer = 0;
3082 	}
3083 	if (setup > 0)
3084 		bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap,
3085 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3086 }
3087 
3088 static void
3089 dc_tick(void *xsc)
3090 {
3091 	struct dc_softc *sc;
3092 	struct mii_data *mii;
3093 	struct ifnet *ifp;
3094 	uint32_t r;
3095 
3096 	sc = xsc;
3097 	DC_LOCK_ASSERT(sc);
3098 	ifp = sc->dc_ifp;
3099 	mii = device_get_softc(sc->dc_miibus);
3100 
3101 	/*
3102 	 * Reclaim transmitted frames for controllers that do
3103 	 * not generate TX completion interrupt for every frame.
3104 	 */
3105 	if (sc->dc_flags & DC_TX_USE_TX_INTR)
3106 		dc_txeof(sc);
3107 
3108 	if (sc->dc_flags & DC_REDUCED_MII_POLL) {
3109 		if (sc->dc_flags & DC_21143_NWAY) {
3110 			r = CSR_READ_4(sc, DC_10BTSTAT);
3111 			if (IFM_SUBTYPE(mii->mii_media_active) ==
3112 			    IFM_100_TX && (r & DC_TSTAT_LS100)) {
3113 				sc->dc_link = 0;
3114 				mii_mediachg(mii);
3115 			}
3116 			if (IFM_SUBTYPE(mii->mii_media_active) ==
3117 			    IFM_10_T && (r & DC_TSTAT_LS10)) {
3118 				sc->dc_link = 0;
3119 				mii_mediachg(mii);
3120 			}
3121 			if (sc->dc_link == 0)
3122 				mii_tick(mii);
3123 		} else {
3124 			/*
3125 			 * For NICs which never report DC_RXSTATE_WAIT, we
3126 			 * have to bite the bullet...
3127 			 */
3128 			if ((DC_HAS_BROKEN_RXSTATE(sc) || (CSR_READ_4(sc,
3129 			    DC_ISR) & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT) &&
3130 			    sc->dc_cdata.dc_tx_cnt == 0)
3131 				mii_tick(mii);
3132 		}
3133 	} else
3134 		mii_tick(mii);
3135 
3136 	/*
3137 	 * When the init routine completes, we expect to be able to send
3138 	 * packets right away, and in fact the network code will send a
3139 	 * gratuitous ARP the moment the init routine marks the interface
3140 	 * as running. However, even though the MAC may have been initialized,
3141 	 * there may be a delay of a few seconds before the PHY completes
3142 	 * autonegotiation and the link is brought up. Any transmissions
3143 	 * made during that delay will be lost. Dealing with this is tricky:
3144 	 * we can't just pause in the init routine while waiting for the
3145 	 * PHY to come ready since that would bring the whole system to
3146 	 * a screeching halt for several seconds.
3147 	 *
3148 	 * What we do here is prevent the TX start routine from sending
3149 	 * any packets until a link has been established. After the
3150 	 * interface has been initialized, the tick routine will poll
3151 	 * the state of the PHY until the IFM_ACTIVE flag is set. Until
3152 	 * that time, packets will stay in the send queue, and once the
3153 	 * link comes up, they will be flushed out to the wire.
3154 	 */
3155 	if (sc->dc_link != 0 && !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3156 		dc_start_locked(ifp);
3157 
3158 	if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link)
3159 		callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
3160 	else
3161 		callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
3162 }
3163 
3164 /*
3165  * A transmit underrun has occurred.  Back off the transmit threshold,
3166  * or switch to store and forward mode if we have to.
3167  */
3168 static void
3169 dc_tx_underrun(struct dc_softc *sc)
3170 {
3171 	uint32_t netcfg, isr;
3172 	int i, reinit;
3173 
3174 	reinit = 0;
3175 	netcfg = CSR_READ_4(sc, DC_NETCFG);
3176 	device_printf(sc->dc_dev, "TX underrun -- ");
3177 	if ((sc->dc_flags & DC_TX_STORENFWD) == 0) {
3178 		if (sc->dc_txthresh + DC_TXTHRESH_INC > DC_TXTHRESH_MAX) {
3179 			printf("using store and forward mode\n");
3180 			netcfg |= DC_NETCFG_STORENFWD;
3181 		} else {
3182 			printf("increasing TX threshold\n");
3183 			sc->dc_txthresh += DC_TXTHRESH_INC;
3184 			netcfg &= ~DC_NETCFG_TX_THRESH;
3185 			netcfg |= sc->dc_txthresh;
3186 		}
3187 
3188 		if (DC_IS_INTEL(sc)) {
3189 			/*
3190 			 * The real 21143 requires that the transmitter be idle
3191 			 * in order to change the transmit threshold or store
3192 			 * and forward state.
3193 			 */
3194 			CSR_WRITE_4(sc, DC_NETCFG, netcfg & ~DC_NETCFG_TX_ON);
3195 
3196 			for (i = 0; i < DC_TIMEOUT; i++) {
3197 				isr = CSR_READ_4(sc, DC_ISR);
3198 				if (isr & DC_ISR_TX_IDLE)
3199 					break;
3200 				DELAY(10);
3201 			}
3202 			if (i == DC_TIMEOUT) {
3203 				device_printf(sc->dc_dev,
3204 				    "%s: failed to force tx to idle state\n",
3205 				    __func__);
3206 				reinit++;
3207 			}
3208 		}
3209 	} else {
3210 		printf("resetting\n");
3211 		reinit++;
3212 	}
3213 
3214 	if (reinit == 0) {
3215 		CSR_WRITE_4(sc, DC_NETCFG, netcfg);
3216 		if (DC_IS_INTEL(sc))
3217 			CSR_WRITE_4(sc, DC_NETCFG, netcfg | DC_NETCFG_TX_ON);
3218 	} else {
3219 		sc->dc_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3220 		dc_init_locked(sc);
3221 	}
3222 }
3223 
3224 #ifdef DEVICE_POLLING
3225 static poll_handler_t dc_poll;
3226 
3227 static int
3228 dc_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
3229 {
3230 	struct dc_softc *sc = ifp->if_softc;
3231 	int rx_npkts = 0;
3232 
3233 	DC_LOCK(sc);
3234 
3235 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3236 		DC_UNLOCK(sc);
3237 		return (rx_npkts);
3238 	}
3239 
3240 	sc->rxcycles = count;
3241 	rx_npkts = dc_rxeof(sc);
3242 	dc_txeof(sc);
3243 	if (!IFQ_IS_EMPTY(&ifp->if_snd) &&
3244 	    !(ifp->if_drv_flags & IFF_DRV_OACTIVE))
3245 		dc_start_locked(ifp);
3246 
3247 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
3248 		uint32_t	status;
3249 
3250 		status = CSR_READ_4(sc, DC_ISR);
3251 		status &= (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF |
3252 			DC_ISR_TX_NOBUF | DC_ISR_TX_IDLE | DC_ISR_TX_UNDERRUN |
3253 			DC_ISR_BUS_ERR);
3254 		if (!status) {
3255 			DC_UNLOCK(sc);
3256 			return (rx_npkts);
3257 		}
3258 		/* ack what we have */
3259 		CSR_WRITE_4(sc, DC_ISR, status);
3260 
3261 		if (status & (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF)) {
3262 			uint32_t r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
3263 			if_inc_counter(ifp, IFCOUNTER_IERRORS, (r & 0xffff) + ((r >> 17) & 0x7ff));
3264 
3265 			if (dc_rx_resync(sc))
3266 				dc_rxeof(sc);
3267 		}
3268 		/* restart transmit unit if necessary */
3269 		if (status & DC_ISR_TX_IDLE && sc->dc_cdata.dc_tx_cnt)
3270 			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3271 
3272 		if (status & DC_ISR_TX_UNDERRUN)
3273 			dc_tx_underrun(sc);
3274 
3275 		if (status & DC_ISR_BUS_ERR) {
3276 			if_printf(ifp, "%s: bus error\n", __func__);
3277 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3278 			dc_init_locked(sc);
3279 		}
3280 	}
3281 	DC_UNLOCK(sc);
3282 	return (rx_npkts);
3283 }
3284 #endif /* DEVICE_POLLING */
3285 
3286 static void
3287 dc_intr(void *arg)
3288 {
3289 	struct dc_softc *sc;
3290 	struct ifnet *ifp;
3291 	uint32_t r, status;
3292 	int n;
3293 
3294 	sc = arg;
3295 
3296 	if (sc->suspended)
3297 		return;
3298 
3299 	DC_LOCK(sc);
3300 	status = CSR_READ_4(sc, DC_ISR);
3301 	if (status == 0xFFFFFFFF || (status & DC_INTRS) == 0) {
3302 		DC_UNLOCK(sc);
3303 		return;
3304 	}
3305 	ifp = sc->dc_ifp;
3306 #ifdef DEVICE_POLLING
3307 	if (ifp->if_capenable & IFCAP_POLLING) {
3308 		DC_UNLOCK(sc);
3309 		return;
3310 	}
3311 #endif
3312 	/* Disable interrupts. */
3313 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3314 
3315 	for (n = 16; n > 0; n--) {
3316 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
3317 			break;
3318 		/* Ack interrupts. */
3319 		CSR_WRITE_4(sc, DC_ISR, status);
3320 
3321 		if (status & DC_ISR_RX_OK) {
3322 			if (dc_rxeof(sc) == 0) {
3323 				while (dc_rx_resync(sc))
3324 					dc_rxeof(sc);
3325 			}
3326 		}
3327 
3328 		if (status & (DC_ISR_TX_OK | DC_ISR_TX_NOBUF))
3329 			dc_txeof(sc);
3330 
3331 		if (status & DC_ISR_TX_IDLE) {
3332 			dc_txeof(sc);
3333 			if (sc->dc_cdata.dc_tx_cnt) {
3334 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3335 				CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3336 			}
3337 		}
3338 
3339 		if (status & DC_ISR_TX_UNDERRUN)
3340 			dc_tx_underrun(sc);
3341 
3342 		if ((status & DC_ISR_RX_WATDOGTIMEO)
3343 		    || (status & DC_ISR_RX_NOBUF)) {
3344 			r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
3345 			if_inc_counter(ifp, IFCOUNTER_IERRORS, (r & 0xffff) + ((r >> 17) & 0x7ff));
3346 			if (dc_rxeof(sc) == 0) {
3347 				while (dc_rx_resync(sc))
3348 					dc_rxeof(sc);
3349 			}
3350 		}
3351 
3352 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3353 			dc_start_locked(ifp);
3354 
3355 		if (status & DC_ISR_BUS_ERR) {
3356 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3357 			dc_init_locked(sc);
3358 			DC_UNLOCK(sc);
3359 			return;
3360 		}
3361 		status = CSR_READ_4(sc, DC_ISR);
3362 		if (status == 0xFFFFFFFF || (status & DC_INTRS) == 0)
3363 			break;
3364 	}
3365 
3366 	/* Re-enable interrupts. */
3367 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3368 		CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3369 
3370 	DC_UNLOCK(sc);
3371 }
3372 
3373 /*
3374  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
3375  * pointers to the fragment pointers.
3376  */
3377 static int
3378 dc_encap(struct dc_softc *sc, struct mbuf **m_head)
3379 {
3380 	bus_dma_segment_t segs[DC_MAXFRAGS];
3381 	bus_dmamap_t map;
3382 	struct dc_desc *f;
3383 	struct mbuf *m;
3384 	int cur, defragged, error, first, frag, i, idx, nseg;
3385 
3386 	m = NULL;
3387 	defragged = 0;
3388 	if (sc->dc_flags & DC_TX_COALESCE &&
3389 	    ((*m_head)->m_next != NULL || sc->dc_flags & DC_TX_ALIGN)) {
3390 		m = m_defrag(*m_head, M_NOWAIT);
3391 		defragged = 1;
3392 	} else {
3393 		/*
3394 		 * Count the number of frags in this chain to see if we
3395 		 * need to m_collapse.  Since the descriptor list is shared
3396 		 * by all packets, we'll m_collapse long chains so that they
3397 		 * do not use up the entire list, even if they would fit.
3398 		 */
3399 		i = 0;
3400 		for (m = *m_head; m != NULL; m = m->m_next)
3401 			i++;
3402 		if (i > DC_TX_LIST_CNT / 4 ||
3403 		    DC_TX_LIST_CNT - i + sc->dc_cdata.dc_tx_cnt <=
3404 		    DC_TX_LIST_RSVD) {
3405 			m = m_collapse(*m_head, M_NOWAIT, DC_MAXFRAGS);
3406 			defragged = 1;
3407 		}
3408 	}
3409 	if (defragged != 0) {
3410 		if (m == NULL) {
3411 			m_freem(*m_head);
3412 			*m_head = NULL;
3413 			return (ENOBUFS);
3414 		}
3415 		*m_head = m;
3416 	}
3417 
3418 	idx = sc->dc_cdata.dc_tx_prod;
3419 	error = bus_dmamap_load_mbuf_sg(sc->dc_tx_mtag,
3420 	    sc->dc_cdata.dc_tx_map[idx], *m_head, segs, &nseg, 0);
3421 	if (error == EFBIG) {
3422 		if (defragged != 0 || (m = m_collapse(*m_head, M_NOWAIT,
3423 		    DC_MAXFRAGS)) == NULL) {
3424 			m_freem(*m_head);
3425 			*m_head = NULL;
3426 			return (defragged != 0 ? error : ENOBUFS);
3427 		}
3428 		*m_head = m;
3429 		error = bus_dmamap_load_mbuf_sg(sc->dc_tx_mtag,
3430 		    sc->dc_cdata.dc_tx_map[idx], *m_head, segs, &nseg, 0);
3431 		if (error != 0) {
3432 			m_freem(*m_head);
3433 			*m_head = NULL;
3434 			return (error);
3435 		}
3436 	} else if (error != 0)
3437 		return (error);
3438 	KASSERT(nseg <= DC_MAXFRAGS,
3439 	    ("%s: wrong number of segments (%d)", __func__, nseg));
3440 	if (nseg == 0) {
3441 		m_freem(*m_head);
3442 		*m_head = NULL;
3443 		return (EIO);
3444 	}
3445 
3446 	/* Check descriptor overruns. */
3447 	if (sc->dc_cdata.dc_tx_cnt + nseg > DC_TX_LIST_CNT - DC_TX_LIST_RSVD) {
3448 		bus_dmamap_unload(sc->dc_tx_mtag, sc->dc_cdata.dc_tx_map[idx]);
3449 		return (ENOBUFS);
3450 	}
3451 	bus_dmamap_sync(sc->dc_tx_mtag, sc->dc_cdata.dc_tx_map[idx],
3452 	    BUS_DMASYNC_PREWRITE);
3453 
3454 	first = cur = frag = sc->dc_cdata.dc_tx_prod;
3455 	for (i = 0; i < nseg; i++) {
3456 		if ((sc->dc_flags & DC_TX_ADMTEK_WAR) &&
3457 		    (frag == (DC_TX_LIST_CNT - 1)) &&
3458 		    (first != sc->dc_cdata.dc_tx_first)) {
3459 			bus_dmamap_unload(sc->dc_tx_mtag,
3460 			    sc->dc_cdata.dc_tx_map[first]);
3461 			m_freem(*m_head);
3462 			*m_head = NULL;
3463 			return (ENOBUFS);
3464 		}
3465 
3466 		f = &sc->dc_ldata.dc_tx_list[frag];
3467 		f->dc_ctl = htole32(DC_TXCTL_TLINK | segs[i].ds_len);
3468 		if (i == 0) {
3469 			f->dc_status = 0;
3470 			f->dc_ctl |= htole32(DC_TXCTL_FIRSTFRAG);
3471 		} else
3472 			f->dc_status = htole32(DC_TXSTAT_OWN);
3473 		f->dc_data = htole32(DC_ADDR_LO(segs[i].ds_addr));
3474 		cur = frag;
3475 		DC_INC(frag, DC_TX_LIST_CNT);
3476 	}
3477 
3478 	sc->dc_cdata.dc_tx_prod = frag;
3479 	sc->dc_cdata.dc_tx_cnt += nseg;
3480 	sc->dc_cdata.dc_tx_chain[cur] = *m_head;
3481 	sc->dc_ldata.dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_LASTFRAG);
3482 	if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
3483 		sc->dc_ldata.dc_tx_list[first].dc_ctl |=
3484 		    htole32(DC_TXCTL_FINT);
3485 	if (sc->dc_flags & DC_TX_INTR_ALWAYS)
3486 		sc->dc_ldata.dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
3487 	if (sc->dc_flags & DC_TX_USE_TX_INTR &&
3488 	    ++sc->dc_cdata.dc_tx_pkts >= 8) {
3489 		sc->dc_cdata.dc_tx_pkts = 0;
3490 		sc->dc_ldata.dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
3491 	}
3492 	sc->dc_ldata.dc_tx_list[first].dc_status = htole32(DC_TXSTAT_OWN);
3493 
3494 	bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap,
3495 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3496 
3497 	/*
3498 	 * Swap the last and the first dmamaps to ensure the map for
3499 	 * this transmission is placed at the last descriptor.
3500 	 */
3501 	map = sc->dc_cdata.dc_tx_map[cur];
3502 	sc->dc_cdata.dc_tx_map[cur] = sc->dc_cdata.dc_tx_map[first];
3503 	sc->dc_cdata.dc_tx_map[first] = map;
3504 
3505 	return (0);
3506 }
3507 
3508 static void
3509 dc_start(struct ifnet *ifp)
3510 {
3511 	struct dc_softc *sc;
3512 
3513 	sc = ifp->if_softc;
3514 	DC_LOCK(sc);
3515 	dc_start_locked(ifp);
3516 	DC_UNLOCK(sc);
3517 }
3518 
3519 /*
3520  * Main transmit routine
3521  * To avoid having to do mbuf copies, we put pointers to the mbuf data
3522  * regions directly in the transmit lists.  We also save a copy of the
3523  * pointers since the transmit list fragment pointers are physical
3524  * addresses.
3525  */
3526 static void
3527 dc_start_locked(struct ifnet *ifp)
3528 {
3529 	struct dc_softc *sc;
3530 	struct mbuf *m_head;
3531 	int queued;
3532 
3533 	sc = ifp->if_softc;
3534 
3535 	DC_LOCK_ASSERT(sc);
3536 
3537 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
3538 	    IFF_DRV_RUNNING || sc->dc_link == 0)
3539 		return;
3540 
3541 	sc->dc_cdata.dc_tx_first = sc->dc_cdata.dc_tx_prod;
3542 
3543 	for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
3544 		/*
3545 		 * If there's no way we can send any packets, return now.
3546 		 */
3547 		if (sc->dc_cdata.dc_tx_cnt > DC_TX_LIST_CNT - DC_TX_LIST_RSVD) {
3548 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3549 			break;
3550 		}
3551 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
3552 		if (m_head == NULL)
3553 			break;
3554 
3555 		if (dc_encap(sc, &m_head)) {
3556 			if (m_head == NULL)
3557 				break;
3558 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
3559 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3560 			break;
3561 		}
3562 
3563 		queued++;
3564 		/*
3565 		 * If there's a BPF listener, bounce a copy of this frame
3566 		 * to him.
3567 		 */
3568 		BPF_MTAP(ifp, m_head);
3569 	}
3570 
3571 	if (queued > 0) {
3572 		/* Transmit */
3573 		if (!(sc->dc_flags & DC_TX_POLL))
3574 			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3575 
3576 		/*
3577 		 * Set a timeout in case the chip goes out to lunch.
3578 		 */
3579 		sc->dc_wdog_timer = 5;
3580 	}
3581 }
3582 
3583 static void
3584 dc_init(void *xsc)
3585 {
3586 	struct dc_softc *sc = xsc;
3587 
3588 	DC_LOCK(sc);
3589 	dc_init_locked(sc);
3590 	DC_UNLOCK(sc);
3591 }
3592 
3593 static void
3594 dc_init_locked(struct dc_softc *sc)
3595 {
3596 	struct ifnet *ifp = sc->dc_ifp;
3597 	struct mii_data *mii;
3598 	struct ifmedia *ifm;
3599 
3600 	DC_LOCK_ASSERT(sc);
3601 
3602 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
3603 		return;
3604 
3605 	mii = device_get_softc(sc->dc_miibus);
3606 
3607 	/*
3608 	 * Cancel pending I/O and free all RX/TX buffers.
3609 	 */
3610 	dc_stop(sc);
3611 	dc_reset(sc);
3612 	if (DC_IS_INTEL(sc)) {
3613 		ifm = &mii->mii_media;
3614 		dc_apply_fixup(sc, ifm->ifm_media);
3615 	}
3616 
3617 	/*
3618 	 * Set cache alignment and burst length.
3619 	 */
3620 	if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc) || DC_IS_ULI(sc))
3621 		CSR_WRITE_4(sc, DC_BUSCTL, 0);
3622 	else
3623 		CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME | DC_BUSCTL_MRLE);
3624 	/*
3625 	 * Evenly share the bus between receive and transmit process.
3626 	 */
3627 	if (DC_IS_INTEL(sc))
3628 		DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION);
3629 	if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
3630 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
3631 	} else {
3632 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
3633 	}
3634 	if (sc->dc_flags & DC_TX_POLL)
3635 		DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
3636 	switch(sc->dc_cachesize) {
3637 	case 32:
3638 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
3639 		break;
3640 	case 16:
3641 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
3642 		break;
3643 	case 8:
3644 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
3645 		break;
3646 	case 0:
3647 	default:
3648 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
3649 		break;
3650 	}
3651 
3652 	if (sc->dc_flags & DC_TX_STORENFWD)
3653 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3654 	else {
3655 		if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3656 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3657 		} else {
3658 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3659 			DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3660 		}
3661 	}
3662 
3663 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
3664 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
3665 
3666 	if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
3667 		/*
3668 		 * The app notes for the 98713 and 98715A say that
3669 		 * in order to have the chips operate properly, a magic
3670 		 * number must be written to CSR16. Macronix does not
3671 		 * document the meaning of these bits so there's no way
3672 		 * to know exactly what they do. The 98713 has a magic
3673 		 * number all its own; the rest all use a different one.
3674 		 */
3675 		DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
3676 		if (sc->dc_type == DC_TYPE_98713)
3677 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
3678 		else
3679 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
3680 	}
3681 
3682 	if (DC_IS_XIRCOM(sc)) {
3683 		/*
3684 		 * setup General Purpose Port mode and data so the tulip
3685 		 * can talk to the MII.
3686 		 */
3687 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
3688 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3689 		DELAY(10);
3690 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
3691 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3692 		DELAY(10);
3693 	}
3694 
3695 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3696 	DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN);
3697 
3698 	/* Init circular RX list. */
3699 	if (dc_list_rx_init(sc) == ENOBUFS) {
3700 		device_printf(sc->dc_dev,
3701 		    "initialization failed: no memory for rx buffers\n");
3702 		dc_stop(sc);
3703 		return;
3704 	}
3705 
3706 	/*
3707 	 * Init TX descriptors.
3708 	 */
3709 	dc_list_tx_init(sc);
3710 
3711 	/*
3712 	 * Load the address of the RX list.
3713 	 */
3714 	CSR_WRITE_4(sc, DC_RXADDR, DC_RXDESC(sc, 0));
3715 	CSR_WRITE_4(sc, DC_TXADDR, DC_TXDESC(sc, 0));
3716 
3717 	/*
3718 	 * Enable interrupts.
3719 	 */
3720 #ifdef DEVICE_POLLING
3721 	/*
3722 	 * ... but only if we are not polling, and make sure they are off in
3723 	 * the case of polling. Some cards (e.g. fxp) turn interrupts on
3724 	 * after a reset.
3725 	 */
3726 	if (ifp->if_capenable & IFCAP_POLLING)
3727 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3728 	else
3729 #endif
3730 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3731 	CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
3732 
3733 	/* Initialize TX jabber and RX watchdog timer. */
3734 	if (DC_IS_ULI(sc))
3735 		CSR_WRITE_4(sc, DC_WATCHDOG, DC_WDOG_JABBERCLK |
3736 		    DC_WDOG_HOSTUNJAB);
3737 
3738 	/* Enable transmitter. */
3739 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3740 
3741 	/*
3742 	 * If this is an Intel 21143 and we're not using the
3743 	 * MII port, program the LED control pins so we get
3744 	 * link and activity indications.
3745 	 */
3746 	if (sc->dc_flags & DC_TULIP_LEDS) {
3747 		CSR_WRITE_4(sc, DC_WATCHDOG,
3748 		    DC_WDOG_CTLWREN | DC_WDOG_LINK | DC_WDOG_ACTIVITY);
3749 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
3750 	}
3751 
3752 	/*
3753 	 * Load the RX/multicast filter. We do this sort of late
3754 	 * because the filter programming scheme on the 21143 and
3755 	 * some clones requires DMAing a setup frame via the TX
3756 	 * engine, and we need the transmitter enabled for that.
3757 	 */
3758 	dc_setfilt(sc);
3759 
3760 	/* Enable receiver. */
3761 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
3762 	CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
3763 
3764 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3765 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3766 
3767 	dc_ifmedia_upd_locked(sc);
3768 
3769 	/* Clear missed frames and overflow counter. */
3770 	CSR_READ_4(sc, DC_FRAMESDISCARDED);
3771 
3772 	/* Don't start the ticker if this is a homePNA link. */
3773 	if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_HPNA_1)
3774 		sc->dc_link = 1;
3775 	else {
3776 		if (sc->dc_flags & DC_21143_NWAY)
3777 			callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
3778 		else
3779 			callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
3780 	}
3781 
3782 	sc->dc_wdog_timer = 0;
3783 	callout_reset(&sc->dc_wdog_ch, hz, dc_watchdog, sc);
3784 }
3785 
3786 /*
3787  * Set media options.
3788  */
3789 static int
3790 dc_ifmedia_upd(struct ifnet *ifp)
3791 {
3792 	struct dc_softc *sc;
3793 	int error;
3794 
3795 	sc = ifp->if_softc;
3796 	DC_LOCK(sc);
3797 	error = dc_ifmedia_upd_locked(sc);
3798 	DC_UNLOCK(sc);
3799 	return (error);
3800 }
3801 
3802 static int
3803 dc_ifmedia_upd_locked(struct dc_softc *sc)
3804 {
3805 	struct mii_data *mii;
3806 	struct ifmedia *ifm;
3807 	int error;
3808 
3809 	DC_LOCK_ASSERT(sc);
3810 
3811 	sc->dc_link = 0;
3812 	mii = device_get_softc(sc->dc_miibus);
3813 	error = mii_mediachg(mii);
3814 	if (error == 0) {
3815 		ifm = &mii->mii_media;
3816 		if (DC_IS_INTEL(sc))
3817 			dc_setcfg(sc, ifm->ifm_media);
3818 		else if (DC_IS_DAVICOM(sc) &&
3819 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1)
3820 			dc_setcfg(sc, ifm->ifm_media);
3821 	}
3822 
3823 	return (error);
3824 }
3825 
3826 /*
3827  * Report current media status.
3828  */
3829 static void
3830 dc_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3831 {
3832 	struct dc_softc *sc;
3833 	struct mii_data *mii;
3834 	struct ifmedia *ifm;
3835 
3836 	sc = ifp->if_softc;
3837 	mii = device_get_softc(sc->dc_miibus);
3838 	DC_LOCK(sc);
3839 	mii_pollstat(mii);
3840 	ifm = &mii->mii_media;
3841 	if (DC_IS_DAVICOM(sc)) {
3842 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
3843 			ifmr->ifm_active = ifm->ifm_media;
3844 			ifmr->ifm_status = 0;
3845 			DC_UNLOCK(sc);
3846 			return;
3847 		}
3848 	}
3849 	ifmr->ifm_active = mii->mii_media_active;
3850 	ifmr->ifm_status = mii->mii_media_status;
3851 	DC_UNLOCK(sc);
3852 }
3853 
3854 static int
3855 dc_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
3856 {
3857 	struct dc_softc *sc = ifp->if_softc;
3858 	struct ifreq *ifr = (struct ifreq *)data;
3859 	struct mii_data *mii;
3860 	int error = 0;
3861 
3862 	switch (command) {
3863 	case SIOCSIFFLAGS:
3864 		DC_LOCK(sc);
3865 		if (ifp->if_flags & IFF_UP) {
3866 			int need_setfilt = (ifp->if_flags ^ sc->dc_if_flags) &
3867 				(IFF_PROMISC | IFF_ALLMULTI);
3868 
3869 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3870 				if (need_setfilt)
3871 					dc_setfilt(sc);
3872 			} else {
3873 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3874 				dc_init_locked(sc);
3875 			}
3876 		} else {
3877 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3878 				dc_stop(sc);
3879 		}
3880 		sc->dc_if_flags = ifp->if_flags;
3881 		DC_UNLOCK(sc);
3882 		break;
3883 	case SIOCADDMULTI:
3884 	case SIOCDELMULTI:
3885 		DC_LOCK(sc);
3886 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3887 			dc_setfilt(sc);
3888 		DC_UNLOCK(sc);
3889 		break;
3890 	case SIOCGIFMEDIA:
3891 	case SIOCSIFMEDIA:
3892 		mii = device_get_softc(sc->dc_miibus);
3893 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
3894 		break;
3895 	case SIOCSIFCAP:
3896 #ifdef DEVICE_POLLING
3897 		if (ifr->ifr_reqcap & IFCAP_POLLING &&
3898 		    !(ifp->if_capenable & IFCAP_POLLING)) {
3899 			error = ether_poll_register(dc_poll, ifp);
3900 			if (error)
3901 				return(error);
3902 			DC_LOCK(sc);
3903 			/* Disable interrupts */
3904 			CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3905 			ifp->if_capenable |= IFCAP_POLLING;
3906 			DC_UNLOCK(sc);
3907 			return (error);
3908 		}
3909 		if (!(ifr->ifr_reqcap & IFCAP_POLLING) &&
3910 		    ifp->if_capenable & IFCAP_POLLING) {
3911 			error = ether_poll_deregister(ifp);
3912 			/* Enable interrupts. */
3913 			DC_LOCK(sc);
3914 			CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3915 			ifp->if_capenable &= ~IFCAP_POLLING;
3916 			DC_UNLOCK(sc);
3917 			return (error);
3918 		}
3919 #endif /* DEVICE_POLLING */
3920 		break;
3921 	default:
3922 		error = ether_ioctl(ifp, command, data);
3923 		break;
3924 	}
3925 
3926 	return (error);
3927 }
3928 
3929 static void
3930 dc_watchdog(void *xsc)
3931 {
3932 	struct dc_softc *sc = xsc;
3933 	struct ifnet *ifp;
3934 
3935 	DC_LOCK_ASSERT(sc);
3936 
3937 	if (sc->dc_wdog_timer == 0 || --sc->dc_wdog_timer != 0) {
3938 		callout_reset(&sc->dc_wdog_ch, hz, dc_watchdog, sc);
3939 		return;
3940 	}
3941 
3942 	ifp = sc->dc_ifp;
3943 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3944 	device_printf(sc->dc_dev, "watchdog timeout\n");
3945 
3946 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3947 	dc_init_locked(sc);
3948 
3949 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3950 		dc_start_locked(ifp);
3951 }
3952 
3953 /*
3954  * Stop the adapter and free any mbufs allocated to the
3955  * RX and TX lists.
3956  */
3957 static void
3958 dc_stop(struct dc_softc *sc)
3959 {
3960 	struct ifnet *ifp;
3961 	struct dc_list_data *ld;
3962 	struct dc_chain_data *cd;
3963 	int i;
3964 	uint32_t ctl, netcfg;
3965 
3966 	DC_LOCK_ASSERT(sc);
3967 
3968 	ifp = sc->dc_ifp;
3969 	ld = &sc->dc_ldata;
3970 	cd = &sc->dc_cdata;
3971 
3972 	callout_stop(&sc->dc_stat_ch);
3973 	callout_stop(&sc->dc_wdog_ch);
3974 	sc->dc_wdog_timer = 0;
3975 	sc->dc_link = 0;
3976 
3977 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3978 
3979 	netcfg = CSR_READ_4(sc, DC_NETCFG);
3980 	if (netcfg & (DC_NETCFG_RX_ON | DC_NETCFG_TX_ON))
3981 		CSR_WRITE_4(sc, DC_NETCFG,
3982 		   netcfg & ~(DC_NETCFG_RX_ON | DC_NETCFG_TX_ON));
3983 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3984 	/* Wait the completion of TX/RX SM. */
3985 	if (netcfg & (DC_NETCFG_RX_ON | DC_NETCFG_TX_ON))
3986 		dc_netcfg_wait(sc);
3987 
3988 	CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
3989 	CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
3990 
3991 	/*
3992 	 * Free data in the RX lists.
3993 	 */
3994 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
3995 		if (cd->dc_rx_chain[i] != NULL) {
3996 			bus_dmamap_sync(sc->dc_rx_mtag,
3997 			    cd->dc_rx_map[i], BUS_DMASYNC_POSTREAD);
3998 			bus_dmamap_unload(sc->dc_rx_mtag,
3999 			    cd->dc_rx_map[i]);
4000 			m_freem(cd->dc_rx_chain[i]);
4001 			cd->dc_rx_chain[i] = NULL;
4002 		}
4003 	}
4004 	bzero(ld->dc_rx_list, DC_RX_LIST_SZ);
4005 	bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_rx_lmap,
4006 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4007 
4008 	/*
4009 	 * Free the TX list buffers.
4010 	 */
4011 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
4012 		if (cd->dc_tx_chain[i] != NULL) {
4013 			ctl = le32toh(ld->dc_tx_list[i].dc_ctl);
4014 			if (ctl & DC_TXCTL_SETUP) {
4015 				bus_dmamap_sync(sc->dc_stag, sc->dc_smap,
4016 				    BUS_DMASYNC_POSTWRITE);
4017 			} else {
4018 				bus_dmamap_sync(sc->dc_tx_mtag,
4019 				    cd->dc_tx_map[i], BUS_DMASYNC_POSTWRITE);
4020 				bus_dmamap_unload(sc->dc_tx_mtag,
4021 				    cd->dc_tx_map[i]);
4022 				m_freem(cd->dc_tx_chain[i]);
4023 			}
4024 			cd->dc_tx_chain[i] = NULL;
4025 		}
4026 	}
4027 	bzero(ld->dc_tx_list, DC_TX_LIST_SZ);
4028 	bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap,
4029 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4030 }
4031 
4032 /*
4033  * Device suspend routine.  Stop the interface and save some PCI
4034  * settings in case the BIOS doesn't restore them properly on
4035  * resume.
4036  */
4037 static int
4038 dc_suspend(device_t dev)
4039 {
4040 	struct dc_softc *sc;
4041 
4042 	sc = device_get_softc(dev);
4043 	DC_LOCK(sc);
4044 	dc_stop(sc);
4045 	sc->suspended = 1;
4046 	DC_UNLOCK(sc);
4047 
4048 	return (0);
4049 }
4050 
4051 /*
4052  * Device resume routine.  Restore some PCI settings in case the BIOS
4053  * doesn't, re-enable busmastering, and restart the interface if
4054  * appropriate.
4055  */
4056 static int
4057 dc_resume(device_t dev)
4058 {
4059 	struct dc_softc *sc;
4060 	struct ifnet *ifp;
4061 
4062 	sc = device_get_softc(dev);
4063 	ifp = sc->dc_ifp;
4064 
4065 	/* reinitialize interface if necessary */
4066 	DC_LOCK(sc);
4067 	if (ifp->if_flags & IFF_UP)
4068 		dc_init_locked(sc);
4069 
4070 	sc->suspended = 0;
4071 	DC_UNLOCK(sc);
4072 
4073 	return (0);
4074 }
4075 
4076 /*
4077  * Stop all chip I/O so that the kernel's probe routines don't
4078  * get confused by errant DMAs when rebooting.
4079  */
4080 static int
4081 dc_shutdown(device_t dev)
4082 {
4083 	struct dc_softc *sc;
4084 
4085 	sc = device_get_softc(dev);
4086 
4087 	DC_LOCK(sc);
4088 	dc_stop(sc);
4089 	DC_UNLOCK(sc);
4090 
4091 	return (0);
4092 }
4093 
4094 static int
4095 dc_check_multiport(struct dc_softc *sc)
4096 {
4097 	struct dc_softc *dsc;
4098 	devclass_t dc;
4099 	device_t child;
4100 	uint8_t *eaddr;
4101 	int unit;
4102 
4103 	dc = devclass_find("dc");
4104 	for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
4105 		child = devclass_get_device(dc, unit);
4106 		if (child == NULL)
4107 			continue;
4108 		if (child == sc->dc_dev)
4109 			continue;
4110 		if (device_get_parent(child) != device_get_parent(sc->dc_dev))
4111 			continue;
4112 		if (unit > device_get_unit(sc->dc_dev))
4113 			continue;
4114 		if (device_is_attached(child) == 0)
4115 			continue;
4116 		dsc = device_get_softc(child);
4117 		device_printf(sc->dc_dev,
4118 		    "Using station address of %s as base\n",
4119 		    device_get_nameunit(child));
4120 		bcopy(dsc->dc_eaddr, sc->dc_eaddr, ETHER_ADDR_LEN);
4121 		eaddr = (uint8_t *)sc->dc_eaddr;
4122 		eaddr[5]++;
4123 		/* Prepare SROM to parse again. */
4124 		if (DC_IS_INTEL(sc) && dsc->dc_srom != NULL &&
4125 		    sc->dc_romwidth != 0) {
4126 			free(sc->dc_srom, M_DEVBUF);
4127 			sc->dc_romwidth = dsc->dc_romwidth;
4128 			sc->dc_srom = malloc(DC_ROM_SIZE(sc->dc_romwidth),
4129 			    M_DEVBUF, M_NOWAIT);
4130 			if (sc->dc_srom == NULL) {
4131 				device_printf(sc->dc_dev,
4132 				    "Could not allocate SROM buffer\n");
4133 				return (ENOMEM);
4134 			}
4135 			bcopy(dsc->dc_srom, sc->dc_srom,
4136 			    DC_ROM_SIZE(sc->dc_romwidth));
4137 		}
4138 		return (0);
4139 	}
4140 	return (ENOENT);
4141 }
4142