xref: /freebsd/sys/dev/dc/if_dc.c (revision 3193579b66fd7067f898dbc54bdea81a0e6f9bd0)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ee.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /*
37  * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
38  * series chips and several workalikes including the following:
39  *
40  * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com)
41  * Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
42  * Lite-On 82c168/82c169 PNIC (www.litecom.com)
43  * ASIX Electronics AX88140A (www.asix.com.tw)
44  * ASIX Electronics AX88141 (www.asix.com.tw)
45  * ADMtek AL981 (www.admtek.com.tw)
46  * ADMtek AN985 (www.admtek.com.tw)
47  * Netgear FA511 (www.netgear.com) Appears to be rebadged ADMTek AN985
48  * Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
49  * Accton EN1217 (www.accton.com)
50  * Xircom X3201 (www.xircom.com)
51  * Abocom FE2500
52  * Conexant LANfinity (www.conexant.com)
53  * 3Com OfficeConnect 10/100B 3CSOHO100B (www.3com.com)
54  *
55  * Datasheets for the 21143 are available at developer.intel.com.
56  * Datasheets for the clone parts can be found at their respective sites.
57  * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
58  * The PNIC II is essentially a Macronix 98715A chip; the only difference
59  * worth noting is that its multicast hash table is only 128 bits wide
60  * instead of 512.
61  *
62  * Written by Bill Paul <wpaul@ee.columbia.edu>
63  * Electrical Engineering Department
64  * Columbia University, New York City
65  */
66 /*
67  * The Intel 21143 is the successor to the DEC 21140. It is basically
68  * the same as the 21140 but with a few new features. The 21143 supports
69  * three kinds of media attachments:
70  *
71  * o MII port, for 10Mbps and 100Mbps support and NWAY
72  *   autonegotiation provided by an external PHY.
73  * o SYM port, for symbol mode 100Mbps support.
74  * o 10baseT port.
75  * o AUI/BNC port.
76  *
77  * The 100Mbps SYM port and 10baseT port can be used together in
78  * combination with the internal NWAY support to create a 10/100
79  * autosensing configuration.
80  *
81  * Note that not all tulip workalikes are handled in this driver: we only
82  * deal with those which are relatively well behaved. The Winbond is
83  * handled separately due to its different register offsets and the
84  * special handling needed for its various bugs. The PNIC is handled
85  * here, but I'm not thrilled about it.
86  *
87  * All of the workalike chips use some form of MII transceiver support
88  * with the exception of the Macronix chips, which also have a SYM port.
89  * The ASIX AX88140A is also documented to have a SYM port, but all
90  * the cards I've seen use an MII transceiver, probably because the
91  * AX88140A doesn't support internal NWAY.
92  */
93 
94 #include <sys/param.h>
95 #include <sys/endian.h>
96 #include <sys/systm.h>
97 #include <sys/sockio.h>
98 #include <sys/mbuf.h>
99 #include <sys/malloc.h>
100 #include <sys/kernel.h>
101 #include <sys/socket.h>
102 #include <sys/sysctl.h>
103 
104 #include <net/if.h>
105 #include <net/if_arp.h>
106 #include <net/ethernet.h>
107 #include <net/if_dl.h>
108 #include <net/if_media.h>
109 #include <net/if_types.h>
110 #include <net/if_vlan_var.h>
111 
112 #include <net/bpf.h>
113 
114 #include <machine/bus_pio.h>
115 #include <machine/bus_memio.h>
116 #include <machine/bus.h>
117 #include <machine/resource.h>
118 #include <sys/bus.h>
119 #include <sys/rman.h>
120 
121 #include <dev/mii/mii.h>
122 #include <dev/mii/miivar.h>
123 
124 #include <dev/pci/pcireg.h>
125 #include <dev/pci/pcivar.h>
126 
127 #define DC_USEIOSPACE
128 #ifdef __alpha__
129 #define SRM_MEDIA
130 #endif
131 
132 #include <pci/if_dcreg.h>
133 
134 MODULE_DEPEND(dc, pci, 1, 1, 1);
135 MODULE_DEPEND(dc, ether, 1, 1, 1);
136 MODULE_DEPEND(dc, miibus, 1, 1, 1);
137 
138 /* "controller miibus0" required.  See GENERIC if you get errors here. */
139 #include "miibus_if.h"
140 
141 /*
142  * Various supported device vendors/types and their names.
143  */
144 static struct dc_type dc_devs[] = {
145 	{ DC_VENDORID_DEC, DC_DEVICEID_21143,
146 		"Intel 21143 10/100BaseTX" },
147 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009,
148 		"Davicom DM9009 10/100BaseTX" },
149 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100,
150 		"Davicom DM9100 10/100BaseTX" },
151 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
152 		"Davicom DM9102 10/100BaseTX" },
153 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
154 		"Davicom DM9102A 10/100BaseTX" },
155 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AL981,
156 		"ADMtek AL981 10/100BaseTX" },
157 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AN985,
158 		"ADMtek AN985 10/100BaseTX" },
159 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511,
160 		"ADMtek ADM9511 10/100BaseTX" },
161 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513,
162 		"ADMtek ADM9513 10/100BaseTX" },
163  	{ DC_VENDORID_ADMTEK, DC_DEVICEID_FA511,
164  		"Netgear FA511 10/100BaseTX" },
165 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
166 		"ASIX AX88140A 10/100BaseTX" },
167 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
168 		"ASIX AX88141 10/100BaseTX" },
169 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
170 		"Macronix 98713 10/100BaseTX" },
171 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
172 		"Macronix 98713A 10/100BaseTX" },
173 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
174 		"Compex RL100-TX 10/100BaseTX" },
175 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
176 		"Compex RL100-TX 10/100BaseTX" },
177 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
178 		"Macronix 98715/98715A 10/100BaseTX" },
179 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
180 		"Macronix 98715AEC-C 10/100BaseTX" },
181 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
182 		"Macronix 98725 10/100BaseTX" },
183 	{ DC_VENDORID_MX, DC_DEVICEID_98727,
184 		"Macronix 98727/98732 10/100BaseTX" },
185 	{ DC_VENDORID_LO, DC_DEVICEID_82C115,
186 		"LC82C115 PNIC II 10/100BaseTX" },
187 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
188 		"82c168 PNIC 10/100BaseTX" },
189 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
190 		"82c169 PNIC 10/100BaseTX" },
191 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN1217,
192 		"Accton EN1217 10/100BaseTX" },
193 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN2242,
194 		"Accton EN2242 MiniPCI 10/100BaseTX" },
195 	{ DC_VENDORID_XIRCOM, DC_DEVICEID_X3201,
196 	  	"Xircom X3201 10/100BaseTX" },
197 	{ DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500,
198 		"Abocom FE2500 10/100BaseTX" },
199 	{ DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112,
200 		"Conexant LANfinity MiniPCI 10/100BaseTX" },
201 	{ DC_VENDORID_HAWKING, DC_DEVICEID_HAWKING_PN672TX,
202 		"Hawking CB102 CardBus 10/100" },
203 	{ DC_VENDORID_PLANEX, DC_DEVICEID_FNW3602T,
204 		"PlaneX FNW-3602-T CardBus 10/100" },
205 	{ DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB,
206 		"3Com OfficeConnect 10/100B" },
207 	{ DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN120,
208 		"Microsoft MN-120 CardBus 10/100" },
209 	{ DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130,
210 		"Microsoft MN-130 10/100" },
211 	{ DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130_FAKE,
212 		"Microsoft MN-130 10/100" },
213 	{ 0, 0, NULL }
214 };
215 
216 static int dc_probe		(device_t);
217 static int dc_attach		(device_t);
218 static int dc_detach		(device_t);
219 static int dc_suspend		(device_t);
220 static int dc_resume		(device_t);
221 #ifndef BURN_BRIDGES
222 static void dc_acpi		(device_t);
223 #endif
224 static struct dc_type *dc_devtype	(device_t);
225 static int dc_newbuf		(struct dc_softc *, int, int);
226 static int dc_encap		(struct dc_softc *, struct mbuf **);
227 static void dc_pnic_rx_bug_war	(struct dc_softc *, int);
228 static int dc_rx_resync		(struct dc_softc *);
229 static void dc_rxeof		(struct dc_softc *);
230 static void dc_txeof		(struct dc_softc *);
231 static void dc_tick		(void *);
232 static void dc_tx_underrun	(struct dc_softc *);
233 static void dc_intr		(void *);
234 static void dc_start		(struct ifnet *);
235 static int dc_ioctl		(struct ifnet *, u_long, caddr_t);
236 static void dc_init		(void *);
237 static void dc_stop		(struct dc_softc *);
238 static void dc_watchdog		(struct ifnet *);
239 static void dc_shutdown		(device_t);
240 static int dc_ifmedia_upd	(struct ifnet *);
241 static void dc_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
242 
243 static void dc_delay		(struct dc_softc *);
244 static void dc_eeprom_idle	(struct dc_softc *);
245 static void dc_eeprom_putbyte	(struct dc_softc *, int);
246 static void dc_eeprom_getword	(struct dc_softc *, int, u_int16_t *);
247 static void dc_eeprom_getword_pnic
248 				(struct dc_softc *, int, u_int16_t *);
249 static void dc_eeprom_getword_xircom
250 				(struct dc_softc *, int, u_int16_t *);
251 static void dc_eeprom_width	(struct dc_softc *);
252 static void dc_read_eeprom	(struct dc_softc *, caddr_t, int, int, int);
253 
254 static void dc_mii_writebit	(struct dc_softc *, int);
255 static int dc_mii_readbit	(struct dc_softc *);
256 static void dc_mii_sync		(struct dc_softc *);
257 static void dc_mii_send		(struct dc_softc *, u_int32_t, int);
258 static int dc_mii_readreg	(struct dc_softc *, struct dc_mii_frame *);
259 static int dc_mii_writereg	(struct dc_softc *, struct dc_mii_frame *);
260 static int dc_miibus_readreg	(device_t, int, int);
261 static int dc_miibus_writereg	(device_t, int, int, int);
262 static void dc_miibus_statchg	(device_t);
263 static void dc_miibus_mediainit	(device_t);
264 
265 static void dc_setcfg		(struct dc_softc *, int);
266 static uint32_t dc_mchash_le	(struct dc_softc *, const uint8_t *);
267 static uint32_t dc_mchash_be	(const uint8_t *);
268 static void dc_setfilt_21143	(struct dc_softc *);
269 static void dc_setfilt_asix	(struct dc_softc *);
270 static void dc_setfilt_admtek	(struct dc_softc *);
271 static void dc_setfilt_xircom	(struct dc_softc *);
272 
273 static void dc_setfilt		(struct dc_softc *);
274 
275 static void dc_reset		(struct dc_softc *);
276 static int dc_list_rx_init	(struct dc_softc *);
277 static int dc_list_tx_init	(struct dc_softc *);
278 
279 static void dc_read_srom	(struct dc_softc *, int);
280 static void dc_parse_21143_srom	(struct dc_softc *);
281 static void dc_decode_leaf_sia	(struct dc_softc *, struct dc_eblock_sia *);
282 static void dc_decode_leaf_mii	(struct dc_softc *, struct dc_eblock_mii *);
283 static void dc_decode_leaf_sym	(struct dc_softc *, struct dc_eblock_sym *);
284 static void dc_apply_fixup	(struct dc_softc *, int);
285 
286 static void dc_dma_map_txbuf	(void *, bus_dma_segment_t *, int, bus_size_t,
287 				    int);
288 static void dc_dma_map_rxbuf	(void *, bus_dma_segment_t *, int, bus_size_t,
289 				    int);
290 
291 #ifdef DC_USEIOSPACE
292 #define DC_RES			SYS_RES_IOPORT
293 #define DC_RID			DC_PCI_CFBIO
294 #else
295 #define DC_RES			SYS_RES_MEMORY
296 #define DC_RID			DC_PCI_CFBMA
297 #endif
298 
299 static device_method_t dc_methods[] = {
300 	/* Device interface */
301 	DEVMETHOD(device_probe,		dc_probe),
302 	DEVMETHOD(device_attach,	dc_attach),
303 	DEVMETHOD(device_detach,	dc_detach),
304 	DEVMETHOD(device_suspend,	dc_suspend),
305 	DEVMETHOD(device_resume,	dc_resume),
306 	DEVMETHOD(device_shutdown,	dc_shutdown),
307 
308 	/* bus interface */
309 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
310 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
311 
312 	/* MII interface */
313 	DEVMETHOD(miibus_readreg,	dc_miibus_readreg),
314 	DEVMETHOD(miibus_writereg,	dc_miibus_writereg),
315 	DEVMETHOD(miibus_statchg,	dc_miibus_statchg),
316 	DEVMETHOD(miibus_mediainit,	dc_miibus_mediainit),
317 
318 	{ 0, 0 }
319 };
320 
321 static driver_t dc_driver = {
322 	"dc",
323 	dc_methods,
324 	sizeof(struct dc_softc)
325 };
326 
327 static devclass_t dc_devclass;
328 #ifdef __i386__
329 static int dc_quick = 1;
330 SYSCTL_INT(_hw, OID_AUTO, dc_quick, CTLFLAG_RW, &dc_quick, 0,
331     "do not m_devget() in dc driver");
332 #endif
333 
334 DRIVER_MODULE(dc, pci, dc_driver, dc_devclass, 0, 0);
335 DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, 0, 0);
336 
337 #define DC_SETBIT(sc, reg, x)				\
338 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
339 
340 #define DC_CLRBIT(sc, reg, x)				\
341 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
342 
343 #define SIO_SET(x)	DC_SETBIT(sc, DC_SIO, (x))
344 #define SIO_CLR(x)	DC_CLRBIT(sc, DC_SIO, (x))
345 
346 #define IS_MPSAFE 	0
347 
348 static void
349 dc_delay(struct dc_softc *sc)
350 {
351 	int idx;
352 
353 	for (idx = (300 / 33) + 1; idx > 0; idx--)
354 		CSR_READ_4(sc, DC_BUSCTL);
355 }
356 
357 static void
358 dc_eeprom_width(struct dc_softc *sc)
359 {
360 	int i;
361 
362 	/* Force EEPROM to idle state. */
363 	dc_eeprom_idle(sc);
364 
365 	/* Enter EEPROM access mode. */
366 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
367 	dc_delay(sc);
368 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
369 	dc_delay(sc);
370 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
371 	dc_delay(sc);
372 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
373 	dc_delay(sc);
374 
375 	for (i = 3; i--;) {
376 		if (6 & (1 << i))
377 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
378 		else
379 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
380 		dc_delay(sc);
381 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
382 		dc_delay(sc);
383 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
384 		dc_delay(sc);
385 	}
386 
387 	for (i = 1; i <= 12; i++) {
388 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
389 		dc_delay(sc);
390 		if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) {
391 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
392 			dc_delay(sc);
393 			break;
394 		}
395 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
396 		dc_delay(sc);
397 	}
398 
399 	/* Turn off EEPROM access mode. */
400 	dc_eeprom_idle(sc);
401 
402 	if (i < 4 || i > 12)
403 		sc->dc_romwidth = 6;
404 	else
405 		sc->dc_romwidth = i;
406 
407 	/* Enter EEPROM access mode. */
408 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
409 	dc_delay(sc);
410 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
411 	dc_delay(sc);
412 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
413 	dc_delay(sc);
414 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
415 	dc_delay(sc);
416 
417 	/* Turn off EEPROM access mode. */
418 	dc_eeprom_idle(sc);
419 }
420 
421 static void
422 dc_eeprom_idle(struct dc_softc *sc)
423 {
424 	int i;
425 
426 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
427 	dc_delay(sc);
428 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
429 	dc_delay(sc);
430 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
431 	dc_delay(sc);
432 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
433 	dc_delay(sc);
434 
435 	for (i = 0; i < 25; i++) {
436 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
437 		dc_delay(sc);
438 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
439 		dc_delay(sc);
440 	}
441 
442 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
443 	dc_delay(sc);
444 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
445 	dc_delay(sc);
446 	CSR_WRITE_4(sc, DC_SIO, 0x00000000);
447 }
448 
449 /*
450  * Send a read command and address to the EEPROM, check for ACK.
451  */
452 static void
453 dc_eeprom_putbyte(struct dc_softc *sc, int addr)
454 {
455 	int d, i;
456 
457 	d = DC_EECMD_READ >> 6;
458 	for (i = 3; i--; ) {
459 		if (d & (1 << i))
460 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
461 		else
462 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
463 		dc_delay(sc);
464 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
465 		dc_delay(sc);
466 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
467 		dc_delay(sc);
468 	}
469 
470 	/*
471 	 * Feed in each bit and strobe the clock.
472 	 */
473 	for (i = sc->dc_romwidth; i--;) {
474 		if (addr & (1 << i)) {
475 			SIO_SET(DC_SIO_EE_DATAIN);
476 		} else {
477 			SIO_CLR(DC_SIO_EE_DATAIN);
478 		}
479 		dc_delay(sc);
480 		SIO_SET(DC_SIO_EE_CLK);
481 		dc_delay(sc);
482 		SIO_CLR(DC_SIO_EE_CLK);
483 		dc_delay(sc);
484 	}
485 }
486 
487 /*
488  * Read a word of data stored in the EEPROM at address 'addr.'
489  * The PNIC 82c168/82c169 has its own non-standard way to read
490  * the EEPROM.
491  */
492 static void
493 dc_eeprom_getword_pnic(struct dc_softc *sc, int addr, u_int16_t *dest)
494 {
495 	int i;
496 	u_int32_t r;
497 
498 	CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ | addr);
499 
500 	for (i = 0; i < DC_TIMEOUT; i++) {
501 		DELAY(1);
502 		r = CSR_READ_4(sc, DC_SIO);
503 		if (!(r & DC_PN_SIOCTL_BUSY)) {
504 			*dest = (u_int16_t)(r & 0xFFFF);
505 			return;
506 		}
507 	}
508 }
509 
510 /*
511  * Read a word of data stored in the EEPROM at address 'addr.'
512  * The Xircom X3201 has its own non-standard way to read
513  * the EEPROM, too.
514  */
515 static void
516 dc_eeprom_getword_xircom(struct dc_softc *sc, int addr, u_int16_t *dest)
517 {
518 
519 	SIO_SET(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
520 
521 	addr *= 2;
522 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
523 	*dest = (u_int16_t)CSR_READ_4(sc, DC_SIO) & 0xff;
524 	addr += 1;
525 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
526 	*dest |= ((u_int16_t)CSR_READ_4(sc, DC_SIO) & 0xff) << 8;
527 
528 	SIO_CLR(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
529 }
530 
531 /*
532  * Read a word of data stored in the EEPROM at address 'addr.'
533  */
534 static void
535 dc_eeprom_getword(struct dc_softc *sc, int addr, u_int16_t *dest)
536 {
537 	int i;
538 	u_int16_t word = 0;
539 
540 	/* Force EEPROM to idle state. */
541 	dc_eeprom_idle(sc);
542 
543 	/* Enter EEPROM access mode. */
544 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
545 	dc_delay(sc);
546 	DC_SETBIT(sc, DC_SIO,  DC_SIO_ROMCTL_READ);
547 	dc_delay(sc);
548 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
549 	dc_delay(sc);
550 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
551 	dc_delay(sc);
552 
553 	/*
554 	 * Send address of word we want to read.
555 	 */
556 	dc_eeprom_putbyte(sc, addr);
557 
558 	/*
559 	 * Start reading bits from EEPROM.
560 	 */
561 	for (i = 0x8000; i; i >>= 1) {
562 		SIO_SET(DC_SIO_EE_CLK);
563 		dc_delay(sc);
564 		if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
565 			word |= i;
566 		dc_delay(sc);
567 		SIO_CLR(DC_SIO_EE_CLK);
568 		dc_delay(sc);
569 	}
570 
571 	/* Turn off EEPROM access mode. */
572 	dc_eeprom_idle(sc);
573 
574 	*dest = word;
575 }
576 
577 /*
578  * Read a sequence of words from the EEPROM.
579  */
580 static void
581 dc_read_eeprom(struct dc_softc *sc, caddr_t dest, int off, int cnt, int swap)
582 {
583 	int i;
584 	u_int16_t word = 0, *ptr;
585 
586 	for (i = 0; i < cnt; i++) {
587 		if (DC_IS_PNIC(sc))
588 			dc_eeprom_getword_pnic(sc, off + i, &word);
589 		else if (DC_IS_XIRCOM(sc))
590 			dc_eeprom_getword_xircom(sc, off + i, &word);
591 		else
592 			dc_eeprom_getword(sc, off + i, &word);
593 		ptr = (u_int16_t *)(dest + (i * 2));
594 		if (swap)
595 			*ptr = ntohs(word);
596 		else
597 			*ptr = word;
598 	}
599 }
600 
601 /*
602  * The following two routines are taken from the Macronix 98713
603  * Application Notes pp.19-21.
604  */
605 /*
606  * Write a bit to the MII bus.
607  */
608 static void
609 dc_mii_writebit(struct dc_softc *sc, int bit)
610 {
611 
612 	if (bit)
613 		CSR_WRITE_4(sc, DC_SIO,
614 		    DC_SIO_ROMCTL_WRITE | DC_SIO_MII_DATAOUT);
615 	else
616 		CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
617 
618 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
619 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
620 }
621 
622 /*
623  * Read a bit from the MII bus.
624  */
625 static int
626 dc_mii_readbit(struct dc_softc *sc)
627 {
628 
629 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_READ | DC_SIO_MII_DIR);
630 	CSR_READ_4(sc, DC_SIO);
631 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
632 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
633 	if (CSR_READ_4(sc, DC_SIO) & DC_SIO_MII_DATAIN)
634 		return (1);
635 
636 	return (0);
637 }
638 
639 /*
640  * Sync the PHYs by setting data bit and strobing the clock 32 times.
641  */
642 static void
643 dc_mii_sync(struct dc_softc *sc)
644 {
645 	int i;
646 
647 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
648 
649 	for (i = 0; i < 32; i++)
650 		dc_mii_writebit(sc, 1);
651 }
652 
653 /*
654  * Clock a series of bits through the MII.
655  */
656 static void
657 dc_mii_send(struct dc_softc *sc, u_int32_t bits, int cnt)
658 {
659 	int i;
660 
661 	for (i = (0x1 << (cnt - 1)); i; i >>= 1)
662 		dc_mii_writebit(sc, bits & i);
663 }
664 
665 /*
666  * Read an PHY register through the MII.
667  */
668 static int
669 dc_mii_readreg(struct dc_softc *sc, struct dc_mii_frame *frame)
670 {
671 	int i, ack;
672 
673 	DC_LOCK(sc);
674 
675 	/*
676 	 * Set up frame for RX.
677 	 */
678 	frame->mii_stdelim = DC_MII_STARTDELIM;
679 	frame->mii_opcode = DC_MII_READOP;
680 	frame->mii_turnaround = 0;
681 	frame->mii_data = 0;
682 
683 	/*
684 	 * Sync the PHYs.
685 	 */
686 	dc_mii_sync(sc);
687 
688 	/*
689 	 * Send command/address info.
690 	 */
691 	dc_mii_send(sc, frame->mii_stdelim, 2);
692 	dc_mii_send(sc, frame->mii_opcode, 2);
693 	dc_mii_send(sc, frame->mii_phyaddr, 5);
694 	dc_mii_send(sc, frame->mii_regaddr, 5);
695 
696 #ifdef notdef
697 	/* Idle bit */
698 	dc_mii_writebit(sc, 1);
699 	dc_mii_writebit(sc, 0);
700 #endif
701 
702 	/* Check for ack. */
703 	ack = dc_mii_readbit(sc);
704 
705 	/*
706 	 * Now try reading data bits. If the ack failed, we still
707 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
708 	 */
709 	if (ack) {
710 		for (i = 0; i < 16; i++)
711 			dc_mii_readbit(sc);
712 		goto fail;
713 	}
714 
715 	for (i = 0x8000; i; i >>= 1) {
716 		if (!ack) {
717 			if (dc_mii_readbit(sc))
718 				frame->mii_data |= i;
719 		}
720 	}
721 
722 fail:
723 
724 	dc_mii_writebit(sc, 0);
725 	dc_mii_writebit(sc, 0);
726 
727 	DC_UNLOCK(sc);
728 
729 	if (ack)
730 		return (1);
731 	return (0);
732 }
733 
734 /*
735  * Write to a PHY register through the MII.
736  */
737 static int
738 dc_mii_writereg(struct dc_softc *sc, struct dc_mii_frame *frame)
739 {
740 
741 	DC_LOCK(sc);
742 	/*
743 	 * Set up frame for TX.
744 	 */
745 
746 	frame->mii_stdelim = DC_MII_STARTDELIM;
747 	frame->mii_opcode = DC_MII_WRITEOP;
748 	frame->mii_turnaround = DC_MII_TURNAROUND;
749 
750 	/*
751 	 * Sync the PHYs.
752 	 */
753 	dc_mii_sync(sc);
754 
755 	dc_mii_send(sc, frame->mii_stdelim, 2);
756 	dc_mii_send(sc, frame->mii_opcode, 2);
757 	dc_mii_send(sc, frame->mii_phyaddr, 5);
758 	dc_mii_send(sc, frame->mii_regaddr, 5);
759 	dc_mii_send(sc, frame->mii_turnaround, 2);
760 	dc_mii_send(sc, frame->mii_data, 16);
761 
762 	/* Idle bit. */
763 	dc_mii_writebit(sc, 0);
764 	dc_mii_writebit(sc, 0);
765 
766 	DC_UNLOCK(sc);
767 
768 	return (0);
769 }
770 
771 static int
772 dc_miibus_readreg(device_t dev, int phy, int reg)
773 {
774 	struct dc_mii_frame frame;
775 	struct dc_softc	 *sc;
776 	int i, rval, phy_reg = 0;
777 
778 	sc = device_get_softc(dev);
779 	bzero(&frame, sizeof(frame));
780 
781 	/*
782 	 * Note: both the AL981 and AN985 have internal PHYs,
783 	 * however the AL981 provides direct access to the PHY
784 	 * registers while the AN985 uses a serial MII interface.
785 	 * The AN985's MII interface is also buggy in that you
786 	 * can read from any MII address (0 to 31), but only address 1
787 	 * behaves normally. To deal with both cases, we pretend
788 	 * that the PHY is at MII address 1.
789 	 */
790 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
791 		return (0);
792 
793 	/*
794 	 * Note: the ukphy probes of the RS7112 report a PHY at
795 	 * MII address 0 (possibly HomePNA?) and 1 (ethernet)
796 	 * so we only respond to correct one.
797 	 */
798 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
799 		return (0);
800 
801 	if (sc->dc_pmode != DC_PMODE_MII) {
802 		if (phy == (MII_NPHY - 1)) {
803 			switch (reg) {
804 			case MII_BMSR:
805 			/*
806 			 * Fake something to make the probe
807 			 * code think there's a PHY here.
808 			 */
809 				return (BMSR_MEDIAMASK);
810 				break;
811 			case MII_PHYIDR1:
812 				if (DC_IS_PNIC(sc))
813 					return (DC_VENDORID_LO);
814 				return (DC_VENDORID_DEC);
815 				break;
816 			case MII_PHYIDR2:
817 				if (DC_IS_PNIC(sc))
818 					return (DC_DEVICEID_82C168);
819 				return (DC_DEVICEID_21143);
820 				break;
821 			default:
822 				return (0);
823 				break;
824 			}
825 		} else
826 			return (0);
827 	}
828 
829 	if (DC_IS_PNIC(sc)) {
830 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
831 		    (phy << 23) | (reg << 18));
832 		for (i = 0; i < DC_TIMEOUT; i++) {
833 			DELAY(1);
834 			rval = CSR_READ_4(sc, DC_PN_MII);
835 			if (!(rval & DC_PN_MII_BUSY)) {
836 				rval &= 0xFFFF;
837 				return (rval == 0xFFFF ? 0 : rval);
838 			}
839 		}
840 		return (0);
841 	}
842 
843 	if (DC_IS_COMET(sc)) {
844 		switch (reg) {
845 		case MII_BMCR:
846 			phy_reg = DC_AL_BMCR;
847 			break;
848 		case MII_BMSR:
849 			phy_reg = DC_AL_BMSR;
850 			break;
851 		case MII_PHYIDR1:
852 			phy_reg = DC_AL_VENID;
853 			break;
854 		case MII_PHYIDR2:
855 			phy_reg = DC_AL_DEVID;
856 			break;
857 		case MII_ANAR:
858 			phy_reg = DC_AL_ANAR;
859 			break;
860 		case MII_ANLPAR:
861 			phy_reg = DC_AL_LPAR;
862 			break;
863 		case MII_ANER:
864 			phy_reg = DC_AL_ANER;
865 			break;
866 		default:
867 			printf("dc%d: phy_read: bad phy register %x\n",
868 			    sc->dc_unit, reg);
869 			return (0);
870 			break;
871 		}
872 
873 		rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
874 
875 		if (rval == 0xFFFF)
876 			return (0);
877 		return (rval);
878 	}
879 
880 	frame.mii_phyaddr = phy;
881 	frame.mii_regaddr = reg;
882 	if (sc->dc_type == DC_TYPE_98713) {
883 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
884 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
885 	}
886 	dc_mii_readreg(sc, &frame);
887 	if (sc->dc_type == DC_TYPE_98713)
888 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
889 
890 	return (frame.mii_data);
891 }
892 
893 static int
894 dc_miibus_writereg(device_t dev, int phy, int reg, int data)
895 {
896 	struct dc_softc *sc;
897 	struct dc_mii_frame frame;
898 	int i, phy_reg = 0;
899 
900 	sc = device_get_softc(dev);
901 	bzero(&frame, sizeof(frame));
902 
903 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
904 		return (0);
905 
906 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
907 		return (0);
908 
909 	if (DC_IS_PNIC(sc)) {
910 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
911 		    (phy << 23) | (reg << 10) | data);
912 		for (i = 0; i < DC_TIMEOUT; i++) {
913 			if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
914 				break;
915 		}
916 		return (0);
917 	}
918 
919 	if (DC_IS_COMET(sc)) {
920 		switch (reg) {
921 		case MII_BMCR:
922 			phy_reg = DC_AL_BMCR;
923 			break;
924 		case MII_BMSR:
925 			phy_reg = DC_AL_BMSR;
926 			break;
927 		case MII_PHYIDR1:
928 			phy_reg = DC_AL_VENID;
929 			break;
930 		case MII_PHYIDR2:
931 			phy_reg = DC_AL_DEVID;
932 			break;
933 		case MII_ANAR:
934 			phy_reg = DC_AL_ANAR;
935 			break;
936 		case MII_ANLPAR:
937 			phy_reg = DC_AL_LPAR;
938 			break;
939 		case MII_ANER:
940 			phy_reg = DC_AL_ANER;
941 			break;
942 		default:
943 			printf("dc%d: phy_write: bad phy register %x\n",
944 			    sc->dc_unit, reg);
945 			return (0);
946 			break;
947 		}
948 
949 		CSR_WRITE_4(sc, phy_reg, data);
950 		return (0);
951 	}
952 
953 	frame.mii_phyaddr = phy;
954 	frame.mii_regaddr = reg;
955 	frame.mii_data = data;
956 
957 	if (sc->dc_type == DC_TYPE_98713) {
958 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
959 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
960 	}
961 	dc_mii_writereg(sc, &frame);
962 	if (sc->dc_type == DC_TYPE_98713)
963 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
964 
965 	return (0);
966 }
967 
968 static void
969 dc_miibus_statchg(device_t dev)
970 {
971 	struct dc_softc *sc;
972 	struct mii_data *mii;
973 	struct ifmedia *ifm;
974 
975 	sc = device_get_softc(dev);
976 	if (DC_IS_ADMTEK(sc))
977 		return;
978 
979 	mii = device_get_softc(sc->dc_miibus);
980 	ifm = &mii->mii_media;
981 	if (DC_IS_DAVICOM(sc) &&
982 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
983 		dc_setcfg(sc, ifm->ifm_media);
984 		sc->dc_if_media = ifm->ifm_media;
985 	} else {
986 		dc_setcfg(sc, mii->mii_media_active);
987 		sc->dc_if_media = mii->mii_media_active;
988 	}
989 }
990 
991 /*
992  * Special support for DM9102A cards with HomePNA PHYs. Note:
993  * with the Davicom DM9102A/DM9801 eval board that I have, it seems
994  * to be impossible to talk to the management interface of the DM9801
995  * PHY (its MDIO pin is not connected to anything). Consequently,
996  * the driver has to just 'know' about the additional mode and deal
997  * with it itself. *sigh*
998  */
999 static void
1000 dc_miibus_mediainit(device_t dev)
1001 {
1002 	struct dc_softc *sc;
1003 	struct mii_data *mii;
1004 	struct ifmedia *ifm;
1005 	int rev;
1006 
1007 	rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF;
1008 
1009 	sc = device_get_softc(dev);
1010 	mii = device_get_softc(sc->dc_miibus);
1011 	ifm = &mii->mii_media;
1012 
1013 	if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A)
1014 		ifmedia_add(ifm, IFM_ETHER | IFM_HPNA_1, 0, NULL);
1015 }
1016 
1017 #define DC_POLY		0xEDB88320
1018 #define DC_BITS_512	9
1019 #define DC_BITS_128	7
1020 #define DC_BITS_64	6
1021 
1022 static uint32_t
1023 dc_mchash_le(struct dc_softc *sc, const uint8_t *addr)
1024 {
1025 	uint32_t crc;
1026 	int idx, bit;
1027 	uint8_t data;
1028 
1029 	/* Compute CRC for the address value. */
1030 	crc = 0xFFFFFFFF; /* initial value */
1031 
1032 	for (idx = 0; idx < 6; idx++) {
1033 		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1)
1034 			crc = (crc >> 1) ^ (((crc ^ data) & 1) ? DC_POLY : 0);
1035 	}
1036 
1037 	/*
1038 	 * The hash table on the PNIC II and the MX98715AEC-C/D/E
1039 	 * chips is only 128 bits wide.
1040 	 */
1041 	if (sc->dc_flags & DC_128BIT_HASH)
1042 		return (crc & ((1 << DC_BITS_128) - 1));
1043 
1044 	/* The hash table on the MX98715BEC is only 64 bits wide. */
1045 	if (sc->dc_flags & DC_64BIT_HASH)
1046 		return (crc & ((1 << DC_BITS_64) - 1));
1047 
1048 	/* Xircom's hash filtering table is different (read: weird) */
1049 	/* Xircom uses the LEAST significant bits */
1050 	if (DC_IS_XIRCOM(sc)) {
1051 		if ((crc & 0x180) == 0x180)
1052 			return ((crc & 0x0F) + (crc & 0x70) * 3 + (14 << 4));
1053 		else
1054 			return ((crc & 0x1F) + ((crc >> 1) & 0xF0) * 3 +
1055 			    (12 << 4));
1056 	}
1057 
1058 	return (crc & ((1 << DC_BITS_512) - 1));
1059 }
1060 
1061 /*
1062  * Calculate CRC of a multicast group address, return the lower 6 bits.
1063  */
1064 static uint32_t
1065 dc_mchash_be(const uint8_t *addr)
1066 {
1067 	uint32_t crc, carry;
1068 	int idx, bit;
1069 	uint8_t data;
1070 
1071 	/* Compute CRC for the address value. */
1072 	crc = 0xFFFFFFFF; /* initial value */
1073 
1074 	for (idx = 0; idx < 6; idx++) {
1075 		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1) {
1076 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01);
1077 			data >>= 1;
1078 			crc <<= 1;
1079 			if (carry)
1080 				crc = (crc ^ 0x04c11db6) | carry;
1081 		}
1082 	}
1083 
1084 	/* Return the filter bit position. */
1085 	return ((crc >> 26) & 0x0000003F);
1086 }
1087 
1088 /*
1089  * 21143-style RX filter setup routine. Filter programming is done by
1090  * downloading a special setup frame into the TX engine. 21143, Macronix,
1091  * PNIC, PNIC II and Davicom chips are programmed this way.
1092  *
1093  * We always program the chip using 'hash perfect' mode, i.e. one perfect
1094  * address (our node address) and a 512-bit hash filter for multicast
1095  * frames. We also sneak the broadcast address into the hash filter since
1096  * we need that too.
1097  */
1098 static void
1099 dc_setfilt_21143(struct dc_softc *sc)
1100 {
1101 	struct dc_desc *sframe;
1102 	u_int32_t h, *sp;
1103 	struct ifmultiaddr *ifma;
1104 	struct ifnet *ifp;
1105 	int i;
1106 
1107 	ifp = &sc->arpcom.ac_if;
1108 
1109 	i = sc->dc_cdata.dc_tx_prod;
1110 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1111 	sc->dc_cdata.dc_tx_cnt++;
1112 	sframe = &sc->dc_ldata->dc_tx_list[i];
1113 	sp = sc->dc_cdata.dc_sbuf;
1114 	bzero(sp, DC_SFRAME_LEN);
1115 
1116 	sframe->dc_data = htole32(sc->dc_saddr);
1117 	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
1118 	    DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
1119 
1120 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
1121 
1122 	/* If we want promiscuous mode, set the allframes bit. */
1123 	if (ifp->if_flags & IFF_PROMISC)
1124 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1125 	else
1126 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1127 
1128 	if (ifp->if_flags & IFF_ALLMULTI)
1129 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1130 	else
1131 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1132 
1133 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1134 		if (ifma->ifma_addr->sa_family != AF_LINK)
1135 			continue;
1136 		h = dc_mchash_le(sc,
1137 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1138 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1139 	}
1140 
1141 	if (ifp->if_flags & IFF_BROADCAST) {
1142 		h = dc_mchash_le(sc, ifp->if_broadcastaddr);
1143 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1144 	}
1145 
1146 	/* Set our MAC address */
1147 	sp[39] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
1148 	sp[40] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
1149 	sp[41] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
1150 
1151 	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1152 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1153 
1154 	/*
1155 	 * The PNIC takes an exceedingly long time to process its
1156 	 * setup frame; wait 10ms after posting the setup frame
1157 	 * before proceeding, just so it has time to swallow its
1158 	 * medicine.
1159 	 */
1160 	DELAY(10000);
1161 
1162 	ifp->if_timer = 5;
1163 }
1164 
1165 static void
1166 dc_setfilt_admtek(struct dc_softc *sc)
1167 {
1168 	struct ifnet *ifp;
1169 	struct ifmultiaddr *ifma;
1170 	int h = 0;
1171 	u_int32_t hashes[2] = { 0, 0 };
1172 
1173 	ifp = &sc->arpcom.ac_if;
1174 
1175 	/* Init our MAC address. */
1176 	CSR_WRITE_4(sc, DC_AL_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1177 	CSR_WRITE_4(sc, DC_AL_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1178 
1179 	/* If we want promiscuous mode, set the allframes bit. */
1180 	if (ifp->if_flags & IFF_PROMISC)
1181 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1182 	else
1183 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1184 
1185 	if (ifp->if_flags & IFF_ALLMULTI)
1186 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1187 	else
1188 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1189 
1190 	/* First, zot all the existing hash bits. */
1191 	CSR_WRITE_4(sc, DC_AL_MAR0, 0);
1192 	CSR_WRITE_4(sc, DC_AL_MAR1, 0);
1193 
1194 	/*
1195 	 * If we're already in promisc or allmulti mode, we
1196 	 * don't have to bother programming the multicast filter.
1197 	 */
1198 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
1199 		return;
1200 
1201 	/* Now program new ones. */
1202 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1203 		if (ifma->ifma_addr->sa_family != AF_LINK)
1204 			continue;
1205 		if (DC_IS_CENTAUR(sc))
1206 			h = dc_mchash_le(sc,
1207 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1208 		else
1209 			h = dc_mchash_be(
1210 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1211 		if (h < 32)
1212 			hashes[0] |= (1 << h);
1213 		else
1214 			hashes[1] |= (1 << (h - 32));
1215 	}
1216 
1217 	CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]);
1218 	CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]);
1219 }
1220 
1221 static void
1222 dc_setfilt_asix(struct dc_softc *sc)
1223 {
1224 	struct ifnet *ifp;
1225 	struct ifmultiaddr *ifma;
1226 	int h = 0;
1227 	u_int32_t hashes[2] = { 0, 0 };
1228 
1229 	ifp = &sc->arpcom.ac_if;
1230 
1231 	/* Init our MAC address */
1232 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
1233 	CSR_WRITE_4(sc, DC_AX_FILTDATA,
1234 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1235 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
1236 	CSR_WRITE_4(sc, DC_AX_FILTDATA,
1237 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1238 
1239 	/* If we want promiscuous mode, set the allframes bit. */
1240 	if (ifp->if_flags & IFF_PROMISC)
1241 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1242 	else
1243 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1244 
1245 	if (ifp->if_flags & IFF_ALLMULTI)
1246 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1247 	else
1248 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1249 
1250 	/*
1251 	 * The ASIX chip has a special bit to enable reception
1252 	 * of broadcast frames.
1253 	 */
1254 	if (ifp->if_flags & IFF_BROADCAST)
1255 		DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1256 	else
1257 		DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1258 
1259 	/* first, zot all the existing hash bits */
1260 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1261 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1262 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1263 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1264 
1265 	/*
1266 	 * If we're already in promisc or allmulti mode, we
1267 	 * don't have to bother programming the multicast filter.
1268 	 */
1269 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
1270 		return;
1271 
1272 	/* now program new ones */
1273 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1274 		if (ifma->ifma_addr->sa_family != AF_LINK)
1275 			continue;
1276 		h = dc_mchash_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1277 		if (h < 32)
1278 			hashes[0] |= (1 << h);
1279 		else
1280 			hashes[1] |= (1 << (h - 32));
1281 	}
1282 
1283 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1284 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
1285 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1286 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
1287 }
1288 
1289 static void
1290 dc_setfilt_xircom(struct dc_softc *sc)
1291 {
1292 	struct ifnet *ifp;
1293 	struct ifmultiaddr *ifma;
1294 	struct dc_desc *sframe;
1295 	u_int32_t h, *sp;
1296 	int i;
1297 
1298 	ifp = &sc->arpcom.ac_if;
1299 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1300 
1301 	i = sc->dc_cdata.dc_tx_prod;
1302 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1303 	sc->dc_cdata.dc_tx_cnt++;
1304 	sframe = &sc->dc_ldata->dc_tx_list[i];
1305 	sp = sc->dc_cdata.dc_sbuf;
1306 	bzero(sp, DC_SFRAME_LEN);
1307 
1308 	sframe->dc_data = htole32(sc->dc_saddr);
1309 	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
1310 	    DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
1311 
1312 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
1313 
1314 	/* If we want promiscuous mode, set the allframes bit. */
1315 	if (ifp->if_flags & IFF_PROMISC)
1316 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1317 	else
1318 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1319 
1320 	if (ifp->if_flags & IFF_ALLMULTI)
1321 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1322 	else
1323 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1324 
1325 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1326 		if (ifma->ifma_addr->sa_family != AF_LINK)
1327 			continue;
1328 		h = dc_mchash_le(sc,
1329 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1330 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1331 	}
1332 
1333 	if (ifp->if_flags & IFF_BROADCAST) {
1334 		h = dc_mchash_le(sc, ifp->if_broadcastaddr);
1335 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1336 	}
1337 
1338 	/* Set our MAC address */
1339 	sp[0] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
1340 	sp[1] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
1341 	sp[2] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
1342 
1343 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
1344 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
1345 	ifp->if_flags |= IFF_RUNNING;
1346 	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1347 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1348 
1349 	/*
1350 	 * Wait some time...
1351 	 */
1352 	DELAY(1000);
1353 
1354 	ifp->if_timer = 5;
1355 }
1356 
1357 static void
1358 dc_setfilt(struct dc_softc *sc)
1359 {
1360 
1361 	if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
1362 	    DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc))
1363 		dc_setfilt_21143(sc);
1364 
1365 	if (DC_IS_ASIX(sc))
1366 		dc_setfilt_asix(sc);
1367 
1368 	if (DC_IS_ADMTEK(sc))
1369 		dc_setfilt_admtek(sc);
1370 
1371 	if (DC_IS_XIRCOM(sc))
1372 		dc_setfilt_xircom(sc);
1373 }
1374 
1375 /*
1376  * In order to fiddle with the 'full-duplex' and '100Mbps' bits in
1377  * the netconfig register, we first have to put the transmit and/or
1378  * receive logic in the idle state.
1379  */
1380 static void
1381 dc_setcfg(struct dc_softc *sc, int media)
1382 {
1383 	int i, restart = 0, watchdogreg;
1384 	u_int32_t isr;
1385 
1386 	if (IFM_SUBTYPE(media) == IFM_NONE)
1387 		return;
1388 
1389 	if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON)) {
1390 		restart = 1;
1391 		DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1392 
1393 		for (i = 0; i < DC_TIMEOUT; i++) {
1394 			isr = CSR_READ_4(sc, DC_ISR);
1395 			if (isr & DC_ISR_TX_IDLE &&
1396 			    ((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
1397 			    (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT))
1398 				break;
1399 			DELAY(10);
1400 		}
1401 
1402 		if (i == DC_TIMEOUT)
1403 			printf("dc%d: failed to force tx and "
1404 				"rx to idle state\n", sc->dc_unit);
1405 	}
1406 
1407 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
1408 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1409 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1410 		if (sc->dc_pmode == DC_PMODE_MII) {
1411 			if (DC_IS_INTEL(sc)) {
1412 			/* There's a write enable bit here that reads as 1. */
1413 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1414 				watchdogreg &= ~DC_WDOG_CTLWREN;
1415 				watchdogreg |= DC_WDOG_JABBERDIS;
1416 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1417 			} else {
1418 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1419 			}
1420 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1421 			    DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
1422 			if (sc->dc_type == DC_TYPE_98713)
1423 				DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1424 				    DC_NETCFG_SCRAMBLER));
1425 			if (!DC_IS_DAVICOM(sc))
1426 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1427 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1428 			if (DC_IS_INTEL(sc))
1429 				dc_apply_fixup(sc, IFM_AUTO);
1430 		} else {
1431 			if (DC_IS_PNIC(sc)) {
1432 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
1433 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1434 				DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1435 			}
1436 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1437 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1438 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1439 			if (DC_IS_INTEL(sc))
1440 				dc_apply_fixup(sc,
1441 				    (media & IFM_GMASK) == IFM_FDX ?
1442 				    IFM_100_TX | IFM_FDX : IFM_100_TX);
1443 		}
1444 	}
1445 
1446 	if (IFM_SUBTYPE(media) == IFM_10_T) {
1447 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1448 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1449 		if (sc->dc_pmode == DC_PMODE_MII) {
1450 			/* There's a write enable bit here that reads as 1. */
1451 			if (DC_IS_INTEL(sc)) {
1452 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1453 				watchdogreg &= ~DC_WDOG_CTLWREN;
1454 				watchdogreg |= DC_WDOG_JABBERDIS;
1455 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1456 			} else {
1457 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1458 			}
1459 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1460 			    DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
1461 			if (sc->dc_type == DC_TYPE_98713)
1462 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1463 			if (!DC_IS_DAVICOM(sc))
1464 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1465 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1466 			if (DC_IS_INTEL(sc))
1467 				dc_apply_fixup(sc, IFM_AUTO);
1468 		} else {
1469 			if (DC_IS_PNIC(sc)) {
1470 				DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
1471 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1472 				DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1473 			}
1474 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1475 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1476 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1477 			if (DC_IS_INTEL(sc)) {
1478 				DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET);
1479 				DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1480 				if ((media & IFM_GMASK) == IFM_FDX)
1481 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D);
1482 				else
1483 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F);
1484 				DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1485 				DC_CLRBIT(sc, DC_10BTCTRL,
1486 				    DC_TCTL_AUTONEGENBL);
1487 				dc_apply_fixup(sc,
1488 				    (media & IFM_GMASK) == IFM_FDX ?
1489 				    IFM_10_T | IFM_FDX : IFM_10_T);
1490 				DELAY(20000);
1491 			}
1492 		}
1493 	}
1494 
1495 	/*
1496 	 * If this is a Davicom DM9102A card with a DM9801 HomePNA
1497 	 * PHY and we want HomePNA mode, set the portsel bit to turn
1498 	 * on the external MII port.
1499 	 */
1500 	if (DC_IS_DAVICOM(sc)) {
1501 		if (IFM_SUBTYPE(media) == IFM_HPNA_1) {
1502 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1503 			sc->dc_link = 1;
1504 		} else {
1505 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1506 		}
1507 	}
1508 
1509 	if ((media & IFM_GMASK) == IFM_FDX) {
1510 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1511 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1512 			DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1513 	} else {
1514 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1515 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1516 			DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1517 	}
1518 
1519 	if (restart)
1520 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON | DC_NETCFG_RX_ON);
1521 }
1522 
1523 static void
1524 dc_reset(struct dc_softc *sc)
1525 {
1526 	int i;
1527 
1528 	DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1529 
1530 	for (i = 0; i < DC_TIMEOUT; i++) {
1531 		DELAY(10);
1532 		if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
1533 			break;
1534 	}
1535 
1536 	if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_CONEXANT(sc) ||
1537 	    DC_IS_XIRCOM(sc) || DC_IS_INTEL(sc)) {
1538 		DELAY(10000);
1539 		DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1540 		i = 0;
1541 	}
1542 
1543 	if (i == DC_TIMEOUT)
1544 		printf("dc%d: reset never completed!\n", sc->dc_unit);
1545 
1546 	/* Wait a little while for the chip to get its brains in order. */
1547 	DELAY(1000);
1548 
1549 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
1550 	CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
1551 	CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
1552 
1553 	/*
1554 	 * Bring the SIA out of reset. In some cases, it looks
1555 	 * like failing to unreset the SIA soon enough gets it
1556 	 * into a state where it will never come out of reset
1557 	 * until we reset the whole chip again.
1558 	 */
1559 	if (DC_IS_INTEL(sc)) {
1560 		DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1561 		CSR_WRITE_4(sc, DC_10BTCTRL, 0);
1562 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
1563 	}
1564 }
1565 
1566 static struct dc_type *
1567 dc_devtype(device_t dev)
1568 {
1569 	struct dc_type *t;
1570 	u_int32_t rev;
1571 
1572 	t = dc_devs;
1573 
1574 	while (t->dc_name != NULL) {
1575 		if ((pci_get_vendor(dev) == t->dc_vid) &&
1576 		    (pci_get_device(dev) == t->dc_did)) {
1577 			/* Check the PCI revision */
1578 			rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF;
1579 			if (t->dc_did == DC_DEVICEID_98713 &&
1580 			    rev >= DC_REVISION_98713A)
1581 				t++;
1582 			if (t->dc_did == DC_DEVICEID_98713_CP &&
1583 			    rev >= DC_REVISION_98713A)
1584 				t++;
1585 			if (t->dc_did == DC_DEVICEID_987x5 &&
1586 			    rev >= DC_REVISION_98715AEC_C)
1587 				t++;
1588 			if (t->dc_did == DC_DEVICEID_987x5 &&
1589 			    rev >= DC_REVISION_98725)
1590 				t++;
1591 			if (t->dc_did == DC_DEVICEID_AX88140A &&
1592 			    rev >= DC_REVISION_88141)
1593 				t++;
1594 			if (t->dc_did == DC_DEVICEID_82C168 &&
1595 			    rev >= DC_REVISION_82C169)
1596 				t++;
1597 			if (t->dc_did == DC_DEVICEID_DM9102 &&
1598 			    rev >= DC_REVISION_DM9102A)
1599 				t++;
1600 			/*
1601 			 * The Microsoft MN-130 has a device ID of 0x0002,
1602 			 * which happens to be the same as the PNIC 82c168.
1603 			 * To keep dc_attach() from getting confused, we
1604 			 * pretend its ID is something different.
1605 			 * XXX: ideally, dc_attach() should be checking
1606 			 * vendorid+deviceid together to avoid such
1607 			 * collisions.
1608 			 */
1609 			if (t->dc_vid == DC_VENDORID_MICROSOFT &&
1610 			    t->dc_did == DC_DEVICEID_MSMN130)
1611 				t++;
1612 			return (t);
1613 		}
1614 		t++;
1615 	}
1616 
1617 	return (NULL);
1618 }
1619 
1620 /*
1621  * Probe for a 21143 or clone chip. Check the PCI vendor and device
1622  * IDs against our list and return a device name if we find a match.
1623  * We do a little bit of extra work to identify the exact type of
1624  * chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
1625  * but different revision IDs. The same is true for 98715/98715A
1626  * chips and the 98725, as well as the ASIX and ADMtek chips. In some
1627  * cases, the exact chip revision affects driver behavior.
1628  */
1629 static int
1630 dc_probe(device_t dev)
1631 {
1632 	struct dc_type *t;
1633 
1634 	t = dc_devtype(dev);
1635 
1636 	if (t != NULL) {
1637 		device_set_desc(dev, t->dc_name);
1638 		return (0);
1639 	}
1640 
1641 	return (ENXIO);
1642 }
1643 
1644 #ifndef BURN_BRIDGES
1645 static void
1646 dc_acpi(device_t dev)
1647 {
1648 	int unit;
1649 	u_int32_t iobase, membase, irq;
1650 
1651 	unit = device_get_unit(dev);
1652 
1653 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1654 		/* Save important PCI config data. */
1655 		iobase = pci_read_config(dev, DC_PCI_CFBIO, 4);
1656 		membase = pci_read_config(dev, DC_PCI_CFBMA, 4);
1657 		irq = pci_read_config(dev, DC_PCI_CFIT, 4);
1658 
1659 		/* Reset the power state. */
1660 		printf("dc%d: chip is in D%d power mode "
1661 		    "-- setting to D0\n", unit,
1662 		    pci_get_powerstate(dev));
1663 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1664 
1665 		/* Restore PCI config data. */
1666 		pci_write_config(dev, DC_PCI_CFBIO, iobase, 4);
1667 		pci_write_config(dev, DC_PCI_CFBMA, membase, 4);
1668 		pci_write_config(dev, DC_PCI_CFIT, irq, 4);
1669 	}
1670 }
1671 #endif
1672 
1673 static void
1674 dc_apply_fixup(struct dc_softc *sc, int media)
1675 {
1676 	struct dc_mediainfo *m;
1677 	u_int8_t *p;
1678 	int i;
1679 	u_int32_t reg;
1680 
1681 	m = sc->dc_mi;
1682 
1683 	while (m != NULL) {
1684 		if (m->dc_media == media)
1685 			break;
1686 		m = m->dc_next;
1687 	}
1688 
1689 	if (m == NULL)
1690 		return;
1691 
1692 	for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) {
1693 		reg = (p[0] | (p[1] << 8)) << 16;
1694 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1695 	}
1696 
1697 	for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) {
1698 		reg = (p[0] | (p[1] << 8)) << 16;
1699 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1700 	}
1701 }
1702 
1703 static void
1704 dc_decode_leaf_sia(struct dc_softc *sc, struct dc_eblock_sia *l)
1705 {
1706 	struct dc_mediainfo *m;
1707 
1708 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1709 	switch (l->dc_sia_code & ~DC_SIA_CODE_EXT) {
1710 	case DC_SIA_CODE_10BT:
1711 		m->dc_media = IFM_10_T;
1712 		break;
1713 	case DC_SIA_CODE_10BT_FDX:
1714 		m->dc_media = IFM_10_T | IFM_FDX;
1715 		break;
1716 	case DC_SIA_CODE_10B2:
1717 		m->dc_media = IFM_10_2;
1718 		break;
1719 	case DC_SIA_CODE_10B5:
1720 		m->dc_media = IFM_10_5;
1721 		break;
1722 	default:
1723 		break;
1724 	}
1725 
1726 	/*
1727 	 * We need to ignore CSR13, CSR14, CSR15 for SIA mode.
1728 	 * Things apparently already work for cards that do
1729 	 * supply Media Specific Data.
1730 	 */
1731 	if (l->dc_sia_code & DC_SIA_CODE_EXT) {
1732 		m->dc_gp_len = 2;
1733 		m->dc_gp_ptr =
1734 		(u_int8_t *)&l->dc_un.dc_sia_ext.dc_sia_gpio_ctl;
1735 	} else {
1736 		m->dc_gp_len = 2;
1737 		m->dc_gp_ptr =
1738 		(u_int8_t *)&l->dc_un.dc_sia_noext.dc_sia_gpio_ctl;
1739 	}
1740 
1741 	m->dc_next = sc->dc_mi;
1742 	sc->dc_mi = m;
1743 
1744 	sc->dc_pmode = DC_PMODE_SIA;
1745 }
1746 
1747 static void
1748 dc_decode_leaf_sym(struct dc_softc *sc, struct dc_eblock_sym *l)
1749 {
1750 	struct dc_mediainfo *m;
1751 
1752 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1753 	if (l->dc_sym_code == DC_SYM_CODE_100BT)
1754 		m->dc_media = IFM_100_TX;
1755 
1756 	if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX)
1757 		m->dc_media = IFM_100_TX | IFM_FDX;
1758 
1759 	m->dc_gp_len = 2;
1760 	m->dc_gp_ptr = (u_int8_t *)&l->dc_sym_gpio_ctl;
1761 
1762 	m->dc_next = sc->dc_mi;
1763 	sc->dc_mi = m;
1764 
1765 	sc->dc_pmode = DC_PMODE_SYM;
1766 }
1767 
1768 static void
1769 dc_decode_leaf_mii(struct dc_softc *sc, struct dc_eblock_mii *l)
1770 {
1771 	struct dc_mediainfo *m;
1772 	u_int8_t *p;
1773 
1774 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1775 	/* We abuse IFM_AUTO to represent MII. */
1776 	m->dc_media = IFM_AUTO;
1777 	m->dc_gp_len = l->dc_gpr_len;
1778 
1779 	p = (u_int8_t *)l;
1780 	p += sizeof(struct dc_eblock_mii);
1781 	m->dc_gp_ptr = p;
1782 	p += 2 * l->dc_gpr_len;
1783 	m->dc_reset_len = *p;
1784 	p++;
1785 	m->dc_reset_ptr = p;
1786 
1787 	m->dc_next = sc->dc_mi;
1788 	sc->dc_mi = m;
1789 }
1790 
1791 static void
1792 dc_read_srom(struct dc_softc *sc, int bits)
1793 {
1794 	int size;
1795 
1796 	size = 2 << bits;
1797 	sc->dc_srom = malloc(size, M_DEVBUF, M_NOWAIT);
1798 	dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (size / 2), 0);
1799 }
1800 
1801 static void
1802 dc_parse_21143_srom(struct dc_softc *sc)
1803 {
1804 	struct dc_leaf_hdr *lhdr;
1805 	struct dc_eblock_hdr *hdr;
1806 	int have_mii, i, loff;
1807 	char *ptr;
1808 
1809 	have_mii = 0;
1810 	loff = sc->dc_srom[27];
1811 	lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]);
1812 
1813 	ptr = (char *)lhdr;
1814 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1815 	/*
1816 	 * Look if we got a MII media block.
1817 	 */
1818 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1819 		hdr = (struct dc_eblock_hdr *)ptr;
1820 		if (hdr->dc_type == DC_EBLOCK_MII)
1821 		    have_mii++;
1822 
1823 		ptr += (hdr->dc_len & 0x7F);
1824 		ptr++;
1825 	}
1826 
1827 	/*
1828 	 * Do the same thing again. Only use SIA and SYM media
1829 	 * blocks if no MII media block is available.
1830 	 */
1831 	ptr = (char *)lhdr;
1832 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1833 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1834 		hdr = (struct dc_eblock_hdr *)ptr;
1835 		switch (hdr->dc_type) {
1836 		case DC_EBLOCK_MII:
1837 			dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr);
1838 			break;
1839 		case DC_EBLOCK_SIA:
1840 			if (! have_mii)
1841 				dc_decode_leaf_sia(sc,
1842 				    (struct dc_eblock_sia *)hdr);
1843 			break;
1844 		case DC_EBLOCK_SYM:
1845 			if (! have_mii)
1846 				dc_decode_leaf_sym(sc,
1847 				    (struct dc_eblock_sym *)hdr);
1848 			break;
1849 		default:
1850 			/* Don't care. Yet. */
1851 			break;
1852 		}
1853 		ptr += (hdr->dc_len & 0x7F);
1854 		ptr++;
1855 	}
1856 }
1857 
1858 static void
1859 dc_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1860 {
1861 	u_int32_t *paddr;
1862 
1863 	KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
1864 	paddr = arg;
1865 	*paddr = segs->ds_addr;
1866 }
1867 
1868 /*
1869  * Attach the interface. Allocate softc structures, do ifmedia
1870  * setup and ethernet/BPF attach.
1871  */
1872 static int
1873 dc_attach(device_t dev)
1874 {
1875 	int tmp = 0;
1876 	u_char eaddr[ETHER_ADDR_LEN];
1877 	u_int32_t command;
1878 	struct dc_softc *sc;
1879 	struct ifnet *ifp;
1880 	u_int32_t revision;
1881 	int unit, error = 0, rid, mac_offset;
1882 	int i;
1883 	u_int8_t *mac;
1884 
1885 	sc = device_get_softc(dev);
1886 	unit = device_get_unit(dev);
1887 
1888 	mtx_init(&sc->dc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1889 	    MTX_DEF | MTX_RECURSE);
1890 #ifndef BURN_BRIDGES
1891 	/*
1892 	 * Handle power management nonsense.
1893 	 */
1894 	dc_acpi(dev);
1895 #endif
1896 	/*
1897 	 * Map control/status registers.
1898 	 */
1899 	pci_enable_busmaster(dev);
1900 
1901 	rid = DC_RID;
1902 	sc->dc_res = bus_alloc_resource(dev, DC_RES, &rid,
1903 	    0, ~0, 1, RF_ACTIVE);
1904 
1905 	if (sc->dc_res == NULL) {
1906 		printf("dc%d: couldn't map ports/memory\n", unit);
1907 		error = ENXIO;
1908 		goto fail;
1909 	}
1910 
1911 	sc->dc_btag = rman_get_bustag(sc->dc_res);
1912 	sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
1913 
1914 	/* Allocate interrupt. */
1915 	rid = 0;
1916 	sc->dc_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1917 	    RF_SHAREABLE | RF_ACTIVE);
1918 
1919 	if (sc->dc_irq == NULL) {
1920 		printf("dc%d: couldn't map interrupt\n", unit);
1921 		error = ENXIO;
1922 		goto fail;
1923 	}
1924 
1925 	/* Need this info to decide on a chip type. */
1926 	sc->dc_info = dc_devtype(dev);
1927 	revision = pci_read_config(dev, DC_PCI_CFRV, 4) & 0x000000FF;
1928 
1929 	/* Get the eeprom width, but PNIC and XIRCOM have diff eeprom */
1930 	if (sc->dc_info->dc_did != DC_DEVICEID_82C168 &&
1931 	   sc->dc_info->dc_did != DC_DEVICEID_X3201)
1932 		dc_eeprom_width(sc);
1933 
1934 	switch (sc->dc_info->dc_did) {
1935 	case DC_DEVICEID_21143:
1936 		sc->dc_type = DC_TYPE_21143;
1937 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1938 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1939 		/* Save EEPROM contents so we can parse them later. */
1940 		dc_read_srom(sc, sc->dc_romwidth);
1941 		break;
1942 	case DC_DEVICEID_DM9009:
1943 	case DC_DEVICEID_DM9100:
1944 	case DC_DEVICEID_DM9102:
1945 		sc->dc_type = DC_TYPE_DM9102;
1946 		sc->dc_flags |= DC_TX_COALESCE | DC_TX_INTR_ALWAYS;
1947 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_TX_STORENFWD;
1948 		sc->dc_flags |= DC_TX_ALIGN;
1949 		sc->dc_pmode = DC_PMODE_MII;
1950 		/* Increase the latency timer value. */
1951 		command = pci_read_config(dev, DC_PCI_CFLT, 4);
1952 		command &= 0xFFFF00FF;
1953 		command |= 0x00008000;
1954 		pci_write_config(dev, DC_PCI_CFLT, command, 4);
1955 		break;
1956 	case DC_DEVICEID_AL981:
1957 		sc->dc_type = DC_TYPE_AL981;
1958 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1959 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1960 		sc->dc_pmode = DC_PMODE_MII;
1961 		dc_read_srom(sc, sc->dc_romwidth);
1962 		break;
1963 	case DC_DEVICEID_AN985:
1964 	case DC_DEVICEID_ADM9511:
1965 	case DC_DEVICEID_ADM9513:
1966 	case DC_DEVICEID_FA511:
1967 	case DC_DEVICEID_FE2500:
1968 	case DC_DEVICEID_EN2242:
1969 	case DC_DEVICEID_HAWKING_PN672TX:
1970 	case DC_DEVICEID_3CSOHOB:
1971 	case DC_DEVICEID_MSMN120:
1972 	case DC_DEVICEID_MSMN130_FAKE: /* XXX avoid collision with PNIC*/
1973 		sc->dc_type = DC_TYPE_AN985;
1974 		sc->dc_flags |= DC_64BIT_HASH;
1975 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1976 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1977 		sc->dc_pmode = DC_PMODE_MII;
1978 		/* Don't read SROM for - auto-loaded on reset */
1979 		break;
1980 	case DC_DEVICEID_98713:
1981 	case DC_DEVICEID_98713_CP:
1982 		if (revision < DC_REVISION_98713A) {
1983 			sc->dc_type = DC_TYPE_98713;
1984 		}
1985 		if (revision >= DC_REVISION_98713A) {
1986 			sc->dc_type = DC_TYPE_98713A;
1987 			sc->dc_flags |= DC_21143_NWAY;
1988 		}
1989 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1990 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1991 		break;
1992 	case DC_DEVICEID_987x5:
1993 	case DC_DEVICEID_EN1217:
1994 		/*
1995 		 * Macronix MX98715AEC-C/D/E parts have only a
1996 		 * 128-bit hash table. We need to deal with these
1997 		 * in the same manner as the PNIC II so that we
1998 		 * get the right number of bits out of the
1999 		 * CRC routine.
2000 		 */
2001 		if (revision >= DC_REVISION_98715AEC_C &&
2002 		    revision < DC_REVISION_98725)
2003 			sc->dc_flags |= DC_128BIT_HASH;
2004 		sc->dc_type = DC_TYPE_987x5;
2005 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
2006 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
2007 		break;
2008 	case DC_DEVICEID_98727:
2009 		sc->dc_type = DC_TYPE_987x5;
2010 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
2011 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
2012 		break;
2013 	case DC_DEVICEID_82C115:
2014 		sc->dc_type = DC_TYPE_PNICII;
2015 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR | DC_128BIT_HASH;
2016 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
2017 		break;
2018 	case DC_DEVICEID_82C168:
2019 		sc->dc_type = DC_TYPE_PNIC;
2020 		sc->dc_flags |= DC_TX_STORENFWD | DC_TX_INTR_ALWAYS;
2021 		sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
2022 		sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_NOWAIT);
2023 		if (revision < DC_REVISION_82C169)
2024 			sc->dc_pmode = DC_PMODE_SYM;
2025 		break;
2026 	case DC_DEVICEID_AX88140A:
2027 		sc->dc_type = DC_TYPE_ASIX;
2028 		sc->dc_flags |= DC_TX_USE_TX_INTR | DC_TX_INTR_FIRSTFRAG;
2029 		sc->dc_flags |= DC_REDUCED_MII_POLL;
2030 		sc->dc_pmode = DC_PMODE_MII;
2031 		break;
2032 	case DC_DEVICEID_X3201:
2033 		sc->dc_type = DC_TYPE_XIRCOM;
2034 		sc->dc_flags |= DC_TX_INTR_ALWAYS | DC_TX_COALESCE |
2035 				DC_TX_ALIGN;
2036 		/*
2037 		 * We don't actually need to coalesce, but we're doing
2038 		 * it to obtain a double word aligned buffer.
2039 		 * The DC_TX_COALESCE flag is required.
2040 		 */
2041 		sc->dc_pmode = DC_PMODE_MII;
2042 		break;
2043 	case DC_DEVICEID_RS7112:
2044 		sc->dc_type = DC_TYPE_CONEXANT;
2045 		sc->dc_flags |= DC_TX_INTR_ALWAYS;
2046 		sc->dc_flags |= DC_REDUCED_MII_POLL;
2047 		sc->dc_pmode = DC_PMODE_MII;
2048 		dc_read_srom(sc, sc->dc_romwidth);
2049 		break;
2050 	default:
2051 		printf("dc%d: unknown device: %x\n", sc->dc_unit,
2052 		    sc->dc_info->dc_did);
2053 		break;
2054 	}
2055 
2056 	/* Save the cache line size. */
2057 	if (DC_IS_DAVICOM(sc))
2058 		sc->dc_cachesize = 0;
2059 	else
2060 		sc->dc_cachesize = pci_read_config(dev,
2061 		    DC_PCI_CFLT, 4) & 0xFF;
2062 
2063 	/* Reset the adapter. */
2064 	dc_reset(sc);
2065 
2066 	/* Take 21143 out of snooze mode */
2067 	if (DC_IS_INTEL(sc) || DC_IS_XIRCOM(sc)) {
2068 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
2069 		command &= ~(DC_CFDD_SNOOZE_MODE | DC_CFDD_SLEEP_MODE);
2070 		pci_write_config(dev, DC_PCI_CFDD, command, 4);
2071 	}
2072 
2073 	/*
2074 	 * Try to learn something about the supported media.
2075 	 * We know that ASIX and ADMtek and Davicom devices
2076 	 * will *always* be using MII media, so that's a no-brainer.
2077 	 * The tricky ones are the Macronix/PNIC II and the
2078 	 * Intel 21143.
2079 	 */
2080 	if (DC_IS_INTEL(sc))
2081 		dc_parse_21143_srom(sc);
2082 	else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
2083 		if (sc->dc_type == DC_TYPE_98713)
2084 			sc->dc_pmode = DC_PMODE_MII;
2085 		else
2086 			sc->dc_pmode = DC_PMODE_SYM;
2087 	} else if (!sc->dc_pmode)
2088 		sc->dc_pmode = DC_PMODE_MII;
2089 
2090 	/*
2091 	 * Get station address from the EEPROM.
2092 	 */
2093 	switch(sc->dc_type) {
2094 	case DC_TYPE_98713:
2095 	case DC_TYPE_98713A:
2096 	case DC_TYPE_987x5:
2097 	case DC_TYPE_PNICII:
2098 		dc_read_eeprom(sc, (caddr_t)&mac_offset,
2099 		    (DC_EE_NODEADDR_OFFSET / 2), 1, 0);
2100 		dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
2101 		break;
2102 	case DC_TYPE_PNIC:
2103 		dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
2104 		break;
2105 	case DC_TYPE_DM9102:
2106 	case DC_TYPE_21143:
2107 	case DC_TYPE_ASIX:
2108 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2109 		break;
2110 	case DC_TYPE_AL981:
2111 	case DC_TYPE_AN985:
2112 		*(u_int32_t *)(&eaddr[0]) = CSR_READ_4(sc, DC_AL_PAR0);
2113 		*(u_int16_t *)(&eaddr[4]) = CSR_READ_4(sc, DC_AL_PAR1);
2114 		break;
2115 	case DC_TYPE_CONEXANT:
2116 		bcopy(sc->dc_srom + DC_CONEXANT_EE_NODEADDR, &eaddr,
2117 		    ETHER_ADDR_LEN);
2118 		break;
2119 	case DC_TYPE_XIRCOM:
2120 		/* The MAC comes from the CIS. */
2121 		mac = pci_get_ether(dev);
2122 		if (!mac) {
2123 			device_printf(dev, "No station address in CIS!\n");
2124 			error = ENXIO;
2125 			goto fail;
2126 		}
2127 		bcopy(mac, eaddr, ETHER_ADDR_LEN);
2128 		break;
2129 	default:
2130 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2131 		break;
2132 	}
2133 
2134 	/*
2135 	 * A 21143 or clone chip was detected. Inform the world.
2136 	 */
2137 	printf("dc%d: Ethernet address: %6D\n", unit, eaddr, ":");
2138 
2139 	sc->dc_unit = unit;
2140 	bcopy(eaddr, &sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
2141 
2142 	/* Allocate a busdma tag and DMA safe memory for TX/RX descriptors. */
2143 	error = bus_dma_tag_create(NULL, PAGE_SIZE, 0, BUS_SPACE_MAXADDR_32BIT,
2144 	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct dc_list_data), 1,
2145 	    sizeof(struct dc_list_data), 0, NULL, NULL, &sc->dc_ltag);
2146 	if (error) {
2147 		printf("dc%d: failed to allocate busdma tag\n", unit);
2148 		error = ENXIO;
2149 		goto fail;
2150 	}
2151 	error = bus_dmamem_alloc(sc->dc_ltag, (void **)&sc->dc_ldata,
2152 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->dc_lmap);
2153 	if (error) {
2154 		printf("dc%d: failed to allocate DMA safe memory\n", unit);
2155 		error = ENXIO;
2156 		goto fail;
2157 	}
2158 	error = bus_dmamap_load(sc->dc_ltag, sc->dc_lmap, sc->dc_ldata,
2159 	    sizeof(struct dc_list_data), dc_dma_map_addr, &sc->dc_laddr,
2160 	    BUS_DMA_NOWAIT);
2161 	if (error) {
2162 		printf("dc%d: cannot get address of the descriptors\n", unit);
2163 		error = ENXIO;
2164 		goto fail;
2165 	}
2166 
2167 	/*
2168 	 * Allocate a busdma tag and DMA safe memory for the multicast
2169 	 * setup frame.
2170 	 */
2171 	error = bus_dma_tag_create(NULL, PAGE_SIZE, 0, BUS_SPACE_MAXADDR_32BIT,
2172 	    BUS_SPACE_MAXADDR, NULL, NULL, DC_SFRAME_LEN + DC_MIN_FRAMELEN, 1,
2173 	    DC_SFRAME_LEN + DC_MIN_FRAMELEN, 0, NULL, NULL, &sc->dc_stag);
2174 	if (error) {
2175 		printf("dc%d: failed to allocate busdma tag\n", unit);
2176 		error = ENXIO;
2177 		goto fail;
2178 	}
2179 	error = bus_dmamem_alloc(sc->dc_stag, (void **)&sc->dc_cdata.dc_sbuf,
2180 	    BUS_DMA_NOWAIT, &sc->dc_smap);
2181 	if (error) {
2182 		printf("dc%d: failed to allocate DMA safe memory\n", unit);
2183 		error = ENXIO;
2184 		goto fail;
2185 	}
2186 	error = bus_dmamap_load(sc->dc_stag, sc->dc_smap, sc->dc_cdata.dc_sbuf,
2187 	    DC_SFRAME_LEN, dc_dma_map_addr, &sc->dc_saddr, BUS_DMA_NOWAIT);
2188 	if (error) {
2189 		printf("dc%d: cannot get address of the descriptors\n", unit);
2190 		error = ENXIO;
2191 		goto fail;
2192 	}
2193 
2194 	/* Allocate a busdma tag for mbufs. */
2195 	error = bus_dma_tag_create(NULL, PAGE_SIZE, 0, BUS_SPACE_MAXADDR_32BIT,
2196 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * DC_TX_LIST_CNT,
2197 	    DC_TX_LIST_CNT, MCLBYTES, 0, NULL, NULL, &sc->dc_mtag);
2198 	if (error) {
2199 		printf("dc%d: failed to allocate busdma tag\n", unit);
2200 		error = ENXIO;
2201 		goto fail;
2202 	}
2203 
2204 	/* Create the TX/RX busdma maps. */
2205 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2206 		error = bus_dmamap_create(sc->dc_mtag, 0,
2207 		    &sc->dc_cdata.dc_tx_map[i]);
2208 		if (error) {
2209 			printf("dc%d: failed to init TX ring\n", unit);
2210 			error = ENXIO;
2211 			goto fail;
2212 		}
2213 	}
2214 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2215 		error = bus_dmamap_create(sc->dc_mtag, 0,
2216 		    &sc->dc_cdata.dc_rx_map[i]);
2217 		if (error) {
2218 			printf("dc%d: failed to init RX ring\n", unit);
2219 			error = ENXIO;
2220 			goto fail;
2221 		}
2222 	}
2223 	error = bus_dmamap_create(sc->dc_mtag, 0, &sc->dc_sparemap);
2224 	if (error) {
2225 		printf("dc%d: failed to init RX ring\n", unit);
2226 		error = ENXIO;
2227 		goto fail;
2228 	}
2229 
2230 	ifp = &sc->arpcom.ac_if;
2231 	ifp->if_softc = sc;
2232 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2233 	/* XXX: bleah, MTU gets overwritten in ether_ifattach() */
2234 	ifp->if_mtu = ETHERMTU;
2235 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2236 	ifp->if_ioctl = dc_ioctl;
2237 	ifp->if_start = dc_start;
2238 	ifp->if_watchdog = dc_watchdog;
2239 	ifp->if_init = dc_init;
2240 	ifp->if_baudrate = 10000000;
2241 	ifp->if_snd.ifq_maxlen = DC_TX_LIST_CNT - 1;
2242 
2243 	/*
2244 	 * Do MII setup. If this is a 21143, check for a PHY on the
2245 	 * MII bus after applying any necessary fixups to twiddle the
2246 	 * GPIO bits. If we don't end up finding a PHY, restore the
2247 	 * old selection (SIA only or SIA/SYM) and attach the dcphy
2248 	 * driver instead.
2249 	 */
2250 	if (DC_IS_INTEL(sc)) {
2251 		dc_apply_fixup(sc, IFM_AUTO);
2252 		tmp = sc->dc_pmode;
2253 		sc->dc_pmode = DC_PMODE_MII;
2254 	}
2255 
2256 	error = mii_phy_probe(dev, &sc->dc_miibus,
2257 	    dc_ifmedia_upd, dc_ifmedia_sts);
2258 
2259 	if (error && DC_IS_INTEL(sc)) {
2260 		sc->dc_pmode = tmp;
2261 		if (sc->dc_pmode != DC_PMODE_SIA)
2262 			sc->dc_pmode = DC_PMODE_SYM;
2263 		sc->dc_flags |= DC_21143_NWAY;
2264 		mii_phy_probe(dev, &sc->dc_miibus,
2265 		    dc_ifmedia_upd, dc_ifmedia_sts);
2266 		/*
2267 		 * For non-MII cards, we need to have the 21143
2268 		 * drive the LEDs. Except there are some systems
2269 		 * like the NEC VersaPro NoteBook PC which have no
2270 		 * LEDs, and twiddling these bits has adverse effects
2271 		 * on them. (I.e. you suddenly can't get a link.)
2272 		 */
2273 		if (pci_read_config(dev, DC_PCI_CSID, 4) != 0x80281033)
2274 			sc->dc_flags |= DC_TULIP_LEDS;
2275 		error = 0;
2276 	}
2277 
2278 	if (error) {
2279 		printf("dc%d: MII without any PHY!\n", sc->dc_unit);
2280 		goto fail;
2281 	}
2282 
2283 	if (DC_IS_XIRCOM(sc)) {
2284 		/*
2285 		 * setup General Purpose Port mode and data so the tulip
2286 		 * can talk to the MII.
2287 		 */
2288 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
2289 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2290 		DELAY(10);
2291 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
2292 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2293 		DELAY(10);
2294 	}
2295 
2296 	if (DC_IS_ADMTEK(sc)) {
2297 		/*
2298 		 * Set automatic TX underrun recovery for the ADMtek chips
2299 		 */
2300 		DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR);
2301 	}
2302 
2303 	/*
2304 	 * Tell the upper layer(s) we support long frames.
2305 	 */
2306 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2307 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
2308 
2309 	callout_init(&sc->dc_stat_ch, IS_MPSAFE ? CALLOUT_MPSAFE : 0);
2310 
2311 #ifdef SRM_MEDIA
2312 	sc->dc_srm_media = 0;
2313 
2314 	/* Remember the SRM console media setting */
2315 	if (DC_IS_INTEL(sc)) {
2316 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
2317 		command &= ~(DC_CFDD_SNOOZE_MODE | DC_CFDD_SLEEP_MODE);
2318 		switch ((command >> 8) & 0xff) {
2319 		case 3:
2320 			sc->dc_srm_media = IFM_10_T;
2321 			break;
2322 		case 4:
2323 			sc->dc_srm_media = IFM_10_T | IFM_FDX;
2324 			break;
2325 		case 5:
2326 			sc->dc_srm_media = IFM_100_TX;
2327 			break;
2328 		case 6:
2329 			sc->dc_srm_media = IFM_100_TX | IFM_FDX;
2330 			break;
2331 		}
2332 		if (sc->dc_srm_media)
2333 			sc->dc_srm_media |= IFM_ACTIVE | IFM_ETHER;
2334 	}
2335 #endif
2336 
2337 	/*
2338 	 * Call MI attach routine.
2339 	 */
2340 	ether_ifattach(ifp, eaddr);
2341 
2342 	/* Hook interrupt last to avoid having to lock softc */
2343 	error = bus_setup_intr(dev, sc->dc_irq, INTR_TYPE_NET |
2344 	    (IS_MPSAFE ? INTR_MPSAFE : 0),
2345 	    dc_intr, sc, &sc->dc_intrhand);
2346 
2347 	if (error) {
2348 		printf("dc%d: couldn't set up irq\n", unit);
2349 		ether_ifdetach(ifp);
2350 		goto fail;
2351 	}
2352 
2353 fail:
2354 	if (error)
2355 		dc_detach(dev);
2356 	return (error);
2357 }
2358 
2359 /*
2360  * Shutdown hardware and free up resources. This can be called any
2361  * time after the mutex has been initialized. It is called in both
2362  * the error case in attach and the normal detach case so it needs
2363  * to be careful about only freeing resources that have actually been
2364  * allocated.
2365  */
2366 static int
2367 dc_detach(device_t dev)
2368 {
2369 	struct dc_softc *sc;
2370 	struct ifnet *ifp;
2371 	struct dc_mediainfo *m;
2372 	int i;
2373 
2374 	sc = device_get_softc(dev);
2375 	KASSERT(mtx_initialized(&sc->dc_mtx), ("dc mutex not initialized"));
2376 	DC_LOCK(sc);
2377 
2378 	ifp = &sc->arpcom.ac_if;
2379 
2380 	/* These should only be active if attach succeeded */
2381 	if (device_is_attached(dev)) {
2382 		dc_stop(sc);
2383 		ether_ifdetach(ifp);
2384 	}
2385 	if (sc->dc_miibus)
2386 		device_delete_child(dev, sc->dc_miibus);
2387 	bus_generic_detach(dev);
2388 
2389 	if (sc->dc_intrhand)
2390 		bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2391 	if (sc->dc_irq)
2392 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2393 	if (sc->dc_res)
2394 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2395 
2396 	if (sc->dc_cdata.dc_sbuf != NULL)
2397 		bus_dmamem_free(sc->dc_stag, sc->dc_cdata.dc_sbuf, sc->dc_smap);
2398 	if (sc->dc_ldata != NULL)
2399 		bus_dmamem_free(sc->dc_ltag, sc->dc_ldata, sc->dc_lmap);
2400 	for (i = 0; i < DC_TX_LIST_CNT; i++)
2401 		bus_dmamap_destroy(sc->dc_mtag, sc->dc_cdata.dc_tx_map[i]);
2402 	for (i = 0; i < DC_RX_LIST_CNT; i++)
2403 		bus_dmamap_destroy(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i]);
2404 	bus_dmamap_destroy(sc->dc_mtag, sc->dc_sparemap);
2405 	if (sc->dc_stag)
2406 		bus_dma_tag_destroy(sc->dc_stag);
2407 	if (sc->dc_mtag)
2408 		bus_dma_tag_destroy(sc->dc_mtag);
2409 	if (sc->dc_ltag)
2410 		bus_dma_tag_destroy(sc->dc_ltag);
2411 
2412 	free(sc->dc_pnic_rx_buf, M_DEVBUF);
2413 
2414 	while (sc->dc_mi != NULL) {
2415 		m = sc->dc_mi->dc_next;
2416 		free(sc->dc_mi, M_DEVBUF);
2417 		sc->dc_mi = m;
2418 	}
2419 	free(sc->dc_srom, M_DEVBUF);
2420 
2421 	DC_UNLOCK(sc);
2422 	mtx_destroy(&sc->dc_mtx);
2423 
2424 	return (0);
2425 }
2426 
2427 /*
2428  * Initialize the transmit descriptors.
2429  */
2430 static int
2431 dc_list_tx_init(struct dc_softc *sc)
2432 {
2433 	struct dc_chain_data *cd;
2434 	struct dc_list_data *ld;
2435 	int i, nexti;
2436 
2437 	cd = &sc->dc_cdata;
2438 	ld = sc->dc_ldata;
2439 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2440 		if (i == DC_TX_LIST_CNT - 1)
2441 			nexti = 0;
2442 		else
2443 			nexti = i + 1;
2444 		ld->dc_tx_list[i].dc_next = htole32(DC_TXDESC(sc, nexti));
2445 		cd->dc_tx_chain[i] = NULL;
2446 		ld->dc_tx_list[i].dc_data = 0;
2447 		ld->dc_tx_list[i].dc_ctl = 0;
2448 	}
2449 
2450 	cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
2451 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
2452 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2453 	return (0);
2454 }
2455 
2456 
2457 /*
2458  * Initialize the RX descriptors and allocate mbufs for them. Note that
2459  * we arrange the descriptors in a closed ring, so that the last descriptor
2460  * points back to the first.
2461  */
2462 static int
2463 dc_list_rx_init(struct dc_softc *sc)
2464 {
2465 	struct dc_chain_data *cd;
2466 	struct dc_list_data *ld;
2467 	int i, nexti;
2468 
2469 	cd = &sc->dc_cdata;
2470 	ld = sc->dc_ldata;
2471 
2472 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2473 		if (dc_newbuf(sc, i, 1) != 0)
2474 			return (ENOBUFS);
2475 		if (i == DC_RX_LIST_CNT - 1)
2476 			nexti = 0;
2477 		else
2478 			nexti = i + 1;
2479 		ld->dc_rx_list[i].dc_next = htole32(DC_RXDESC(sc, nexti));
2480 	}
2481 
2482 	cd->dc_rx_prod = 0;
2483 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
2484 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2485 	return (0);
2486 }
2487 
2488 static void
2489 dc_dma_map_rxbuf(arg, segs, nseg, mapsize, error)
2490 	void *arg;
2491 	bus_dma_segment_t *segs;
2492 	int nseg;
2493 	bus_size_t mapsize;
2494 	int error;
2495 {
2496 	struct dc_softc *sc;
2497 	struct dc_desc *c;
2498 
2499 	sc = arg;
2500 	c = &sc->dc_ldata->dc_rx_list[sc->dc_cdata.dc_rx_cur];
2501 	if (error) {
2502 		sc->dc_cdata.dc_rx_err = error;
2503 		return;
2504 	}
2505 
2506 	KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
2507 	sc->dc_cdata.dc_rx_err = 0;
2508 	c->dc_data = htole32(segs->ds_addr);
2509 }
2510 
2511 /*
2512  * Initialize an RX descriptor and attach an MBUF cluster.
2513  */
2514 static int
2515 dc_newbuf(struct dc_softc *sc, int i, int alloc)
2516 {
2517 	struct mbuf *m_new;
2518 	bus_dmamap_t tmp;
2519 	int error;
2520 
2521 	if (alloc) {
2522 		m_new = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2523 		if (m_new == NULL)
2524 			return (ENOBUFS);
2525 	} else {
2526 		m_new = sc->dc_cdata.dc_rx_chain[i];
2527 		m_new->m_data = m_new->m_ext.ext_buf;
2528 	}
2529 	m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2530 	m_adj(m_new, sizeof(u_int64_t));
2531 
2532 	/*
2533 	 * If this is a PNIC chip, zero the buffer. This is part
2534 	 * of the workaround for the receive bug in the 82c168 and
2535 	 * 82c169 chips.
2536 	 */
2537 	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
2538 		bzero(mtod(m_new, char *), m_new->m_len);
2539 
2540 	/* No need to remap the mbuf if we're reusing it. */
2541 	if (alloc) {
2542 		sc->dc_cdata.dc_rx_cur = i;
2543 		error = bus_dmamap_load_mbuf(sc->dc_mtag, sc->dc_sparemap,
2544 		    m_new, dc_dma_map_rxbuf, sc, 0);
2545 		if (error) {
2546 			m_freem(m_new);
2547 			return (error);
2548 		}
2549 		if (sc->dc_cdata.dc_rx_err != 0) {
2550 			m_freem(m_new);
2551 			return (sc->dc_cdata.dc_rx_err);
2552 		}
2553 		bus_dmamap_unload(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i]);
2554 		tmp = sc->dc_cdata.dc_rx_map[i];
2555 		sc->dc_cdata.dc_rx_map[i] = sc->dc_sparemap;
2556 		sc->dc_sparemap = tmp;
2557 		sc->dc_cdata.dc_rx_chain[i] = m_new;
2558 	}
2559 
2560 	sc->dc_ldata->dc_rx_list[i].dc_ctl = htole32(DC_RXCTL_RLINK | DC_RXLEN);
2561 	sc->dc_ldata->dc_rx_list[i].dc_status = htole32(DC_RXSTAT_OWN);
2562 	bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i],
2563 	    BUS_DMASYNC_PREREAD);
2564 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
2565 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2566 	return (0);
2567 }
2568 
2569 /*
2570  * Grrrrr.
2571  * The PNIC chip has a terrible bug in it that manifests itself during
2572  * periods of heavy activity. The exact mode of failure if difficult to
2573  * pinpoint: sometimes it only happens in promiscuous mode, sometimes it
2574  * will happen on slow machines. The bug is that sometimes instead of
2575  * uploading one complete frame during reception, it uploads what looks
2576  * like the entire contents of its FIFO memory. The frame we want is at
2577  * the end of the whole mess, but we never know exactly how much data has
2578  * been uploaded, so salvaging the frame is hard.
2579  *
2580  * There is only one way to do it reliably, and it's disgusting.
2581  * Here's what we know:
2582  *
2583  * - We know there will always be somewhere between one and three extra
2584  *   descriptors uploaded.
2585  *
2586  * - We know the desired received frame will always be at the end of the
2587  *   total data upload.
2588  *
2589  * - We know the size of the desired received frame because it will be
2590  *   provided in the length field of the status word in the last descriptor.
2591  *
2592  * Here's what we do:
2593  *
2594  * - When we allocate buffers for the receive ring, we bzero() them.
2595  *   This means that we know that the buffer contents should be all
2596  *   zeros, except for data uploaded by the chip.
2597  *
2598  * - We also force the PNIC chip to upload frames that include the
2599  *   ethernet CRC at the end.
2600  *
2601  * - We gather all of the bogus frame data into a single buffer.
2602  *
2603  * - We then position a pointer at the end of this buffer and scan
2604  *   backwards until we encounter the first non-zero byte of data.
2605  *   This is the end of the received frame. We know we will encounter
2606  *   some data at the end of the frame because the CRC will always be
2607  *   there, so even if the sender transmits a packet of all zeros,
2608  *   we won't be fooled.
2609  *
2610  * - We know the size of the actual received frame, so we subtract
2611  *   that value from the current pointer location. This brings us
2612  *   to the start of the actual received packet.
2613  *
2614  * - We copy this into an mbuf and pass it on, along with the actual
2615  *   frame length.
2616  *
2617  * The performance hit is tremendous, but it beats dropping frames all
2618  * the time.
2619  */
2620 
2621 #define DC_WHOLEFRAME	(DC_RXSTAT_FIRSTFRAG | DC_RXSTAT_LASTFRAG)
2622 static void
2623 dc_pnic_rx_bug_war(struct dc_softc *sc, int idx)
2624 {
2625 	struct dc_desc *cur_rx;
2626 	struct dc_desc *c = NULL;
2627 	struct mbuf *m = NULL;
2628 	unsigned char *ptr;
2629 	int i, total_len;
2630 	u_int32_t rxstat = 0;
2631 
2632 	i = sc->dc_pnic_rx_bug_save;
2633 	cur_rx = &sc->dc_ldata->dc_rx_list[idx];
2634 	ptr = sc->dc_pnic_rx_buf;
2635 	bzero(ptr, DC_RXLEN * 5);
2636 
2637 	/* Copy all the bytes from the bogus buffers. */
2638 	while (1) {
2639 		c = &sc->dc_ldata->dc_rx_list[i];
2640 		rxstat = le32toh(c->dc_status);
2641 		m = sc->dc_cdata.dc_rx_chain[i];
2642 		bcopy(mtod(m, char *), ptr, DC_RXLEN);
2643 		ptr += DC_RXLEN;
2644 		/* If this is the last buffer, break out. */
2645 		if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
2646 			break;
2647 		dc_newbuf(sc, i, 0);
2648 		DC_INC(i, DC_RX_LIST_CNT);
2649 	}
2650 
2651 	/* Find the length of the actual receive frame. */
2652 	total_len = DC_RXBYTES(rxstat);
2653 
2654 	/* Scan backwards until we hit a non-zero byte. */
2655 	while (*ptr == 0x00)
2656 		ptr--;
2657 
2658 	/* Round off. */
2659 	if ((uintptr_t)(ptr) & 0x3)
2660 		ptr -= 1;
2661 
2662 	/* Now find the start of the frame. */
2663 	ptr -= total_len;
2664 	if (ptr < sc->dc_pnic_rx_buf)
2665 		ptr = sc->dc_pnic_rx_buf;
2666 
2667 	/*
2668 	 * Now copy the salvaged frame to the last mbuf and fake up
2669 	 * the status word to make it look like a successful
2670 	 * frame reception.
2671 	 */
2672 	dc_newbuf(sc, i, 0);
2673 	bcopy(ptr, mtod(m, char *), total_len);
2674 	cur_rx->dc_status = htole32(rxstat | DC_RXSTAT_FIRSTFRAG);
2675 }
2676 
2677 /*
2678  * This routine searches the RX ring for dirty descriptors in the
2679  * event that the rxeof routine falls out of sync with the chip's
2680  * current descriptor pointer. This may happen sometimes as a result
2681  * of a "no RX buffer available" condition that happens when the chip
2682  * consumes all of the RX buffers before the driver has a chance to
2683  * process the RX ring. This routine may need to be called more than
2684  * once to bring the driver back in sync with the chip, however we
2685  * should still be getting RX DONE interrupts to drive the search
2686  * for new packets in the RX ring, so we should catch up eventually.
2687  */
2688 static int
2689 dc_rx_resync(struct dc_softc *sc)
2690 {
2691 	struct dc_desc *cur_rx;
2692 	int i, pos;
2693 
2694 	pos = sc->dc_cdata.dc_rx_prod;
2695 
2696 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2697 		cur_rx = &sc->dc_ldata->dc_rx_list[pos];
2698 		if (!(le32toh(cur_rx->dc_status) & DC_RXSTAT_OWN))
2699 			break;
2700 		DC_INC(pos, DC_RX_LIST_CNT);
2701 	}
2702 
2703 	/* If the ring really is empty, then just return. */
2704 	if (i == DC_RX_LIST_CNT)
2705 		return (0);
2706 
2707 	/* We've fallen behing the chip: catch it. */
2708 	sc->dc_cdata.dc_rx_prod = pos;
2709 
2710 	return (EAGAIN);
2711 }
2712 
2713 /*
2714  * A frame has been uploaded: pass the resulting mbuf chain up to
2715  * the higher level protocols.
2716  */
2717 static void
2718 dc_rxeof(struct dc_softc *sc)
2719 {
2720 	struct mbuf *m;
2721 	struct ifnet *ifp;
2722 	struct dc_desc *cur_rx;
2723 	int i, total_len = 0;
2724 	u_int32_t rxstat;
2725 
2726 	DC_LOCK_ASSERT(sc);
2727 
2728 	ifp = &sc->arpcom.ac_if;
2729 	i = sc->dc_cdata.dc_rx_prod;
2730 
2731 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap, BUS_DMASYNC_POSTREAD);
2732 	while (!(le32toh(sc->dc_ldata->dc_rx_list[i].dc_status) &
2733 	    DC_RXSTAT_OWN)) {
2734 #ifdef DEVICE_POLLING
2735 		if (ifp->if_flags & IFF_POLLING) {
2736 			if (sc->rxcycles <= 0)
2737 				break;
2738 			sc->rxcycles--;
2739 		}
2740 #endif
2741 		cur_rx = &sc->dc_ldata->dc_rx_list[i];
2742 		rxstat = le32toh(cur_rx->dc_status);
2743 		m = sc->dc_cdata.dc_rx_chain[i];
2744 		bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i],
2745 		    BUS_DMASYNC_POSTREAD);
2746 		total_len = DC_RXBYTES(rxstat);
2747 
2748 		if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2749 			if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
2750 				if (rxstat & DC_RXSTAT_FIRSTFRAG)
2751 					sc->dc_pnic_rx_bug_save = i;
2752 				if ((rxstat & DC_RXSTAT_LASTFRAG) == 0) {
2753 					DC_INC(i, DC_RX_LIST_CNT);
2754 					continue;
2755 				}
2756 				dc_pnic_rx_bug_war(sc, i);
2757 				rxstat = le32toh(cur_rx->dc_status);
2758 				total_len = DC_RXBYTES(rxstat);
2759 			}
2760 		}
2761 
2762 		/*
2763 		 * If an error occurs, update stats, clear the
2764 		 * status word and leave the mbuf cluster in place:
2765 		 * it should simply get re-used next time this descriptor
2766 		 * comes up in the ring.  However, don't report long
2767 		 * frames as errors since they could be vlans.
2768 		 */
2769 		if ((rxstat & DC_RXSTAT_RXERR)) {
2770 			if (!(rxstat & DC_RXSTAT_GIANT) ||
2771 			    (rxstat & (DC_RXSTAT_CRCERR | DC_RXSTAT_DRIBBLE |
2772 				       DC_RXSTAT_MIIERE | DC_RXSTAT_COLLSEEN |
2773 				       DC_RXSTAT_RUNT   | DC_RXSTAT_DE))) {
2774 				ifp->if_ierrors++;
2775 				if (rxstat & DC_RXSTAT_COLLSEEN)
2776 					ifp->if_collisions++;
2777 				dc_newbuf(sc, i, 0);
2778 				if (rxstat & DC_RXSTAT_CRCERR) {
2779 					DC_INC(i, DC_RX_LIST_CNT);
2780 					continue;
2781 				} else {
2782 					dc_init(sc);
2783 					return;
2784 				}
2785 			}
2786 		}
2787 
2788 		/* No errors; receive the packet. */
2789 		total_len -= ETHER_CRC_LEN;
2790 #ifdef __i386__
2791 		/*
2792 		 * On the x86 we do not have alignment problems, so try to
2793 		 * allocate a new buffer for the receive ring, and pass up
2794 		 * the one where the packet is already, saving the expensive
2795 		 * copy done in m_devget().
2796 		 * If we are on an architecture with alignment problems, or
2797 		 * if the allocation fails, then use m_devget and leave the
2798 		 * existing buffer in the receive ring.
2799 		 */
2800 		if (dc_quick && dc_newbuf(sc, i, 1) == 0) {
2801 			m->m_pkthdr.rcvif = ifp;
2802 			m->m_pkthdr.len = m->m_len = total_len;
2803 			DC_INC(i, DC_RX_LIST_CNT);
2804 		} else
2805 #endif
2806 		{
2807 			struct mbuf *m0;
2808 
2809 			m0 = m_devget(mtod(m, char *), total_len,
2810 				ETHER_ALIGN, ifp, NULL);
2811 			dc_newbuf(sc, i, 0);
2812 			DC_INC(i, DC_RX_LIST_CNT);
2813 			if (m0 == NULL) {
2814 				ifp->if_ierrors++;
2815 				continue;
2816 			}
2817 			m = m0;
2818 		}
2819 
2820 		ifp->if_ipackets++;
2821 		DC_UNLOCK(sc);
2822 		(*ifp->if_input)(ifp, m);
2823 		DC_LOCK(sc);
2824 	}
2825 
2826 	sc->dc_cdata.dc_rx_prod = i;
2827 }
2828 
2829 /*
2830  * A frame was downloaded to the chip. It's safe for us to clean up
2831  * the list buffers.
2832  */
2833 
2834 static void
2835 dc_txeof(struct dc_softc *sc)
2836 {
2837 	struct dc_desc *cur_tx = NULL;
2838 	struct ifnet *ifp;
2839 	int idx;
2840 	u_int32_t ctl, txstat;
2841 
2842 	ifp = &sc->arpcom.ac_if;
2843 
2844 	/*
2845 	 * Go through our tx list and free mbufs for those
2846 	 * frames that have been transmitted.
2847 	 */
2848 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap, BUS_DMASYNC_POSTREAD);
2849 	idx = sc->dc_cdata.dc_tx_cons;
2850 	while (idx != sc->dc_cdata.dc_tx_prod) {
2851 
2852 		cur_tx = &sc->dc_ldata->dc_tx_list[idx];
2853 		txstat = le32toh(cur_tx->dc_status);
2854 		ctl = le32toh(cur_tx->dc_ctl);
2855 
2856 		if (txstat & DC_TXSTAT_OWN)
2857 			break;
2858 
2859 		if (!(ctl & DC_TXCTL_FIRSTFRAG) || ctl & DC_TXCTL_SETUP) {
2860 			if (ctl & DC_TXCTL_SETUP) {
2861 				/*
2862 				 * Yes, the PNIC is so brain damaged
2863 				 * that it will sometimes generate a TX
2864 				 * underrun error while DMAing the RX
2865 				 * filter setup frame. If we detect this,
2866 				 * we have to send the setup frame again,
2867 				 * or else the filter won't be programmed
2868 				 * correctly.
2869 				 */
2870 				if (DC_IS_PNIC(sc)) {
2871 					if (txstat & DC_TXSTAT_ERRSUM)
2872 						dc_setfilt(sc);
2873 				}
2874 				sc->dc_cdata.dc_tx_chain[idx] = NULL;
2875 			}
2876 			sc->dc_cdata.dc_tx_cnt--;
2877 			DC_INC(idx, DC_TX_LIST_CNT);
2878 			continue;
2879 		}
2880 
2881 		if (DC_IS_XIRCOM(sc) || DC_IS_CONEXANT(sc)) {
2882 			/*
2883 			 * XXX: Why does my Xircom taunt me so?
2884 			 * For some reason it likes setting the CARRLOST flag
2885 			 * even when the carrier is there. wtf?!?
2886 			 * Who knows, but Conexant chips have the
2887 			 * same problem. Maybe they took lessons
2888 			 * from Xircom.
2889 			 */
2890 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2891 			    sc->dc_pmode == DC_PMODE_MII &&
2892 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
2893 			    DC_TXSTAT_NOCARRIER)))
2894 				txstat &= ~DC_TXSTAT_ERRSUM;
2895 		} else {
2896 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2897 			    sc->dc_pmode == DC_PMODE_MII &&
2898 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
2899 			    DC_TXSTAT_NOCARRIER | DC_TXSTAT_CARRLOST)))
2900 				txstat &= ~DC_TXSTAT_ERRSUM;
2901 		}
2902 
2903 		if (txstat & DC_TXSTAT_ERRSUM) {
2904 			ifp->if_oerrors++;
2905 			if (txstat & DC_TXSTAT_EXCESSCOLL)
2906 				ifp->if_collisions++;
2907 			if (txstat & DC_TXSTAT_LATECOLL)
2908 				ifp->if_collisions++;
2909 			if (!(txstat & DC_TXSTAT_UNDERRUN)) {
2910 				dc_init(sc);
2911 				return;
2912 			}
2913 		}
2914 
2915 		ifp->if_collisions += (txstat & DC_TXSTAT_COLLCNT) >> 3;
2916 
2917 		ifp->if_opackets++;
2918 		if (sc->dc_cdata.dc_tx_chain[idx] != NULL) {
2919 			bus_dmamap_sync(sc->dc_mtag,
2920 			    sc->dc_cdata.dc_tx_map[idx],
2921 			    BUS_DMASYNC_POSTWRITE);
2922 			bus_dmamap_unload(sc->dc_mtag,
2923 			    sc->dc_cdata.dc_tx_map[idx]);
2924 			m_freem(sc->dc_cdata.dc_tx_chain[idx]);
2925 			sc->dc_cdata.dc_tx_chain[idx] = NULL;
2926 		}
2927 
2928 		sc->dc_cdata.dc_tx_cnt--;
2929 		DC_INC(idx, DC_TX_LIST_CNT);
2930 	}
2931 
2932 	if (idx != sc->dc_cdata.dc_tx_cons) {
2933 	    	/* Some buffers have been freed. */
2934 		sc->dc_cdata.dc_tx_cons = idx;
2935 		ifp->if_flags &= ~IFF_OACTIVE;
2936 	}
2937 	ifp->if_timer = (sc->dc_cdata.dc_tx_cnt == 0) ? 0 : 5;
2938 }
2939 
2940 static void
2941 dc_tick(void *xsc)
2942 {
2943 	struct dc_softc *sc;
2944 	struct mii_data *mii;
2945 	struct ifnet *ifp;
2946 	u_int32_t r;
2947 
2948 	sc = xsc;
2949 	DC_LOCK(sc);
2950 	ifp = &sc->arpcom.ac_if;
2951 	mii = device_get_softc(sc->dc_miibus);
2952 
2953 	if (sc->dc_flags & DC_REDUCED_MII_POLL) {
2954 		if (sc->dc_flags & DC_21143_NWAY) {
2955 			r = CSR_READ_4(sc, DC_10BTSTAT);
2956 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2957 			    IFM_100_TX && (r & DC_TSTAT_LS100)) {
2958 				sc->dc_link = 0;
2959 				mii_mediachg(mii);
2960 			}
2961 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2962 			    IFM_10_T && (r & DC_TSTAT_LS10)) {
2963 				sc->dc_link = 0;
2964 				mii_mediachg(mii);
2965 			}
2966 			if (sc->dc_link == 0)
2967 				mii_tick(mii);
2968 		} else {
2969 			r = CSR_READ_4(sc, DC_ISR);
2970 			if ((r & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT &&
2971 			    sc->dc_cdata.dc_tx_cnt == 0) {
2972 				mii_tick(mii);
2973 				if (!(mii->mii_media_status & IFM_ACTIVE))
2974 					sc->dc_link = 0;
2975 			}
2976 		}
2977 	} else
2978 		mii_tick(mii);
2979 
2980 	/*
2981 	 * When the init routine completes, we expect to be able to send
2982 	 * packets right away, and in fact the network code will send a
2983 	 * gratuitous ARP the moment the init routine marks the interface
2984 	 * as running. However, even though the MAC may have been initialized,
2985 	 * there may be a delay of a few seconds before the PHY completes
2986 	 * autonegotiation and the link is brought up. Any transmissions
2987 	 * made during that delay will be lost. Dealing with this is tricky:
2988 	 * we can't just pause in the init routine while waiting for the
2989 	 * PHY to come ready since that would bring the whole system to
2990 	 * a screeching halt for several seconds.
2991 	 *
2992 	 * What we do here is prevent the TX start routine from sending
2993 	 * any packets until a link has been established. After the
2994 	 * interface has been initialized, the tick routine will poll
2995 	 * the state of the PHY until the IFM_ACTIVE flag is set. Until
2996 	 * that time, packets will stay in the send queue, and once the
2997 	 * link comes up, they will be flushed out to the wire.
2998 	 */
2999 	if (!sc->dc_link && mii->mii_media_status & IFM_ACTIVE &&
3000 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
3001 		sc->dc_link++;
3002 		if (ifp->if_snd.ifq_head != NULL)
3003 			dc_start(ifp);
3004 	}
3005 
3006 	if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link)
3007 		callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
3008 	else
3009 		callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
3010 
3011 	DC_UNLOCK(sc);
3012 }
3013 
3014 /*
3015  * A transmit underrun has occurred.  Back off the transmit threshold,
3016  * or switch to store and forward mode if we have to.
3017  */
3018 static void
3019 dc_tx_underrun(struct dc_softc *sc)
3020 {
3021 	u_int32_t isr;
3022 	int i;
3023 
3024 	if (DC_IS_DAVICOM(sc))
3025 		dc_init(sc);
3026 
3027 	if (DC_IS_INTEL(sc)) {
3028 		/*
3029 		 * The real 21143 requires that the transmitter be idle
3030 		 * in order to change the transmit threshold or store
3031 		 * and forward state.
3032 		 */
3033 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3034 
3035 		for (i = 0; i < DC_TIMEOUT; i++) {
3036 			isr = CSR_READ_4(sc, DC_ISR);
3037 			if (isr & DC_ISR_TX_IDLE)
3038 				break;
3039 			DELAY(10);
3040 		}
3041 		if (i == DC_TIMEOUT) {
3042 			printf("dc%d: failed to force tx to idle state\n",
3043 			    sc->dc_unit);
3044 			dc_init(sc);
3045 		}
3046 	}
3047 
3048 	printf("dc%d: TX underrun -- ", sc->dc_unit);
3049 	sc->dc_txthresh += DC_TXTHRESH_INC;
3050 	if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3051 		printf("using store and forward mode\n");
3052 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3053 	} else {
3054 		printf("increasing TX threshold\n");
3055 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3056 		DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3057 	}
3058 
3059 	if (DC_IS_INTEL(sc))
3060 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3061 }
3062 
3063 #ifdef DEVICE_POLLING
3064 static poll_handler_t dc_poll;
3065 
3066 static void
3067 dc_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
3068 {
3069 	struct dc_softc *sc = ifp->if_softc;
3070 
3071 	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
3072 		/* Re-enable interrupts. */
3073 		CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3074 		return;
3075 	}
3076 	DC_LOCK(sc);
3077 	sc->rxcycles = count;
3078 	dc_rxeof(sc);
3079 	dc_txeof(sc);
3080 	if (ifp->if_snd.ifq_head != NULL && !(ifp->if_flags & IFF_OACTIVE))
3081 		dc_start(ifp);
3082 
3083 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
3084 		u_int32_t	status;
3085 
3086 		status = CSR_READ_4(sc, DC_ISR);
3087 		status &= (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF |
3088 			DC_ISR_TX_NOBUF | DC_ISR_TX_IDLE | DC_ISR_TX_UNDERRUN |
3089 			DC_ISR_BUS_ERR);
3090 		if (!status) {
3091 			DC_UNLOCK(sc);
3092 			return;
3093 		}
3094 		/* ack what we have */
3095 		CSR_WRITE_4(sc, DC_ISR, status);
3096 
3097 		if (status & (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF)) {
3098 			u_int32_t r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
3099 			ifp->if_ierrors += (r & 0xffff) + ((r >> 17) & 0x7ff);
3100 
3101 			if (dc_rx_resync(sc))
3102 				dc_rxeof(sc);
3103 		}
3104 		/* restart transmit unit if necessary */
3105 		if (status & DC_ISR_TX_IDLE && sc->dc_cdata.dc_tx_cnt)
3106 			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3107 
3108 		if (status & DC_ISR_TX_UNDERRUN)
3109 			dc_tx_underrun(sc);
3110 
3111 		if (status & DC_ISR_BUS_ERR) {
3112 			printf("dc_poll: dc%d bus error\n", sc->dc_unit);
3113 			dc_reset(sc);
3114 			dc_init(sc);
3115 		}
3116 	}
3117 	DC_UNLOCK(sc);
3118 }
3119 #endif /* DEVICE_POLLING */
3120 
3121 static void
3122 dc_intr(void *arg)
3123 {
3124 	struct dc_softc *sc;
3125 	struct ifnet *ifp;
3126 	u_int32_t status;
3127 
3128 	sc = arg;
3129 
3130 	if (sc->suspended)
3131 		return;
3132 
3133 	if ((CSR_READ_4(sc, DC_ISR) & DC_INTRS) == 0)
3134 		return;
3135 
3136 	DC_LOCK(sc);
3137 	ifp = &sc->arpcom.ac_if;
3138 #ifdef DEVICE_POLLING
3139 	if (ifp->if_flags & IFF_POLLING)
3140 		goto done;
3141 	if (ether_poll_register(dc_poll, ifp)) { /* ok, disable interrupts */
3142 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3143 		goto done;
3144 	}
3145 #endif
3146 
3147 	/* Suppress unwanted interrupts */
3148 	if (!(ifp->if_flags & IFF_UP)) {
3149 		if (CSR_READ_4(sc, DC_ISR) & DC_INTRS)
3150 			dc_stop(sc);
3151 		DC_UNLOCK(sc);
3152 		return;
3153 	}
3154 
3155 	/* Disable interrupts. */
3156 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3157 
3158 	while (((status = CSR_READ_4(sc, DC_ISR)) & DC_INTRS)
3159 	      && status != 0xFFFFFFFF) {
3160 
3161 		CSR_WRITE_4(sc, DC_ISR, status);
3162 
3163 		if (status & DC_ISR_RX_OK) {
3164 			int		curpkts;
3165 			curpkts = ifp->if_ipackets;
3166 			dc_rxeof(sc);
3167 			if (curpkts == ifp->if_ipackets) {
3168 				while (dc_rx_resync(sc))
3169 					dc_rxeof(sc);
3170 			}
3171 		}
3172 
3173 		if (status & (DC_ISR_TX_OK | DC_ISR_TX_NOBUF))
3174 			dc_txeof(sc);
3175 
3176 		if (status & DC_ISR_TX_IDLE) {
3177 			dc_txeof(sc);
3178 			if (sc->dc_cdata.dc_tx_cnt) {
3179 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3180 				CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3181 			}
3182 		}
3183 
3184 		if (status & DC_ISR_TX_UNDERRUN)
3185 			dc_tx_underrun(sc);
3186 
3187 		if ((status & DC_ISR_RX_WATDOGTIMEO)
3188 		    || (status & DC_ISR_RX_NOBUF)) {
3189 			int		curpkts;
3190 			curpkts = ifp->if_ipackets;
3191 			dc_rxeof(sc);
3192 			if (curpkts == ifp->if_ipackets) {
3193 				while (dc_rx_resync(sc))
3194 					dc_rxeof(sc);
3195 			}
3196 		}
3197 
3198 		if (status & DC_ISR_BUS_ERR) {
3199 			dc_reset(sc);
3200 			dc_init(sc);
3201 		}
3202 	}
3203 
3204 	/* Re-enable interrupts. */
3205 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3206 
3207 	if (ifp->if_snd.ifq_head != NULL)
3208 		dc_start(ifp);
3209 
3210 #ifdef DEVICE_POLLING
3211 done:
3212 #endif
3213 
3214 	DC_UNLOCK(sc);
3215 }
3216 
3217 static void
3218 dc_dma_map_txbuf(arg, segs, nseg, mapsize, error)
3219 	void *arg;
3220 	bus_dma_segment_t *segs;
3221 	int nseg;
3222 	bus_size_t mapsize;
3223 	int error;
3224 {
3225 	struct dc_softc *sc;
3226 	struct dc_desc *f;
3227 	int cur, first, frag, i;
3228 
3229 	sc = arg;
3230 	if (error) {
3231 		sc->dc_cdata.dc_tx_err = error;
3232 		return;
3233 	}
3234 
3235 	first = cur = frag = sc->dc_cdata.dc_tx_prod;
3236 	for (i = 0; i < nseg; i++) {
3237 		if ((sc->dc_flags & DC_TX_ADMTEK_WAR) &&
3238 		    (frag == (DC_TX_LIST_CNT - 1)) &&
3239 		    (first != sc->dc_cdata.dc_tx_first)) {
3240 			bus_dmamap_unload(sc->dc_mtag,
3241 			    sc->dc_cdata.dc_tx_map[first]);
3242 			sc->dc_cdata.dc_tx_err = ENOBUFS;
3243 			return;
3244 		}
3245 
3246 		f = &sc->dc_ldata->dc_tx_list[frag];
3247 		f->dc_ctl = htole32(DC_TXCTL_TLINK | segs[i].ds_len);
3248 		if (i == 0) {
3249 			f->dc_status = 0;
3250 			f->dc_ctl |= htole32(DC_TXCTL_FIRSTFRAG);
3251 		} else
3252 			f->dc_status = htole32(DC_TXSTAT_OWN);
3253 		f->dc_data = htole32(segs[i].ds_addr);
3254 		cur = frag;
3255 		DC_INC(frag, DC_TX_LIST_CNT);
3256 	}
3257 
3258 	sc->dc_cdata.dc_tx_err = 0;
3259 	sc->dc_cdata.dc_tx_prod = frag;
3260 	sc->dc_cdata.dc_tx_cnt += nseg;
3261 	sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_LASTFRAG);
3262 	if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
3263 		sc->dc_ldata->dc_tx_list[first].dc_ctl |=
3264 		    htole32(DC_TXCTL_FINT);
3265 	if (sc->dc_flags & DC_TX_INTR_ALWAYS)
3266 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
3267 	if (sc->dc_flags & DC_TX_USE_TX_INTR && sc->dc_cdata.dc_tx_cnt > 64)
3268 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
3269 	sc->dc_ldata->dc_tx_list[first].dc_status = htole32(DC_TXSTAT_OWN);
3270 }
3271 
3272 /*
3273  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
3274  * pointers to the fragment pointers.
3275  */
3276 static int
3277 dc_encap(struct dc_softc *sc, struct mbuf **m_head)
3278 {
3279 	struct mbuf *m;
3280 	int error, idx, chainlen = 0;
3281 
3282 	/*
3283 	 * If there's no way we can send any packets, return now.
3284 	 */
3285 	if (DC_TX_LIST_CNT - sc->dc_cdata.dc_tx_cnt < 6)
3286 		return (ENOBUFS);
3287 
3288 	/*
3289 	 * Count the number of frags in this chain to see if
3290 	 * we need to m_defrag.  Since the descriptor list is shared
3291 	 * by all packets, we'll m_defrag long chains so that they
3292 	 * do not use up the entire list, even if they would fit.
3293 	 */
3294 	for (m = *m_head; m != NULL; m = m->m_next)
3295 		chainlen++;
3296 
3297 	if ((chainlen > DC_TX_LIST_CNT / 4) ||
3298 	    ((DC_TX_LIST_CNT - (chainlen + sc->dc_cdata.dc_tx_cnt)) < 6)) {
3299 		m = m_defrag(*m_head, M_DONTWAIT);
3300 		if (m == NULL)
3301 			return (ENOBUFS);
3302 		*m_head = m;
3303 	}
3304 
3305 	/*
3306 	 * Start packing the mbufs in this chain into
3307 	 * the fragment pointers. Stop when we run out
3308 	 * of fragments or hit the end of the mbuf chain.
3309 	 */
3310 	idx = sc->dc_cdata.dc_tx_prod;
3311 	error = bus_dmamap_load_mbuf(sc->dc_mtag, sc->dc_cdata.dc_tx_map[idx],
3312 	    *m_head, dc_dma_map_txbuf, sc, 0);
3313 	if (error)
3314 		return (error);
3315 	if (sc->dc_cdata.dc_tx_err != 0)
3316 		return (sc->dc_cdata.dc_tx_err);
3317 	sc->dc_cdata.dc_tx_chain[idx] = *m_head;
3318 	bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_tx_map[idx],
3319 	    BUS_DMASYNC_PREWRITE);
3320 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
3321 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
3322 	return (0);
3323 }
3324 
3325 /*
3326  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3327  * to the mbuf data regions directly in the transmit lists. We also save a
3328  * copy of the pointers since the transmit list fragment pointers are
3329  * physical addresses.
3330  */
3331 
3332 static void
3333 dc_start(struct ifnet *ifp)
3334 {
3335 	struct dc_softc *sc;
3336 	struct mbuf *m_head = NULL, *m;
3337 	int idx;
3338 
3339 	sc = ifp->if_softc;
3340 
3341 	DC_LOCK(sc);
3342 
3343 	if (!sc->dc_link && ifp->if_snd.ifq_len < 10) {
3344 		DC_UNLOCK(sc);
3345 		return;
3346 	}
3347 
3348 	if (ifp->if_flags & IFF_OACTIVE) {
3349 		DC_UNLOCK(sc);
3350 		return;
3351 	}
3352 
3353 	idx = sc->dc_cdata.dc_tx_first = sc->dc_cdata.dc_tx_prod;
3354 
3355 	while (sc->dc_cdata.dc_tx_chain[idx] == NULL) {
3356 		IF_DEQUEUE(&ifp->if_snd, m_head);
3357 		if (m_head == NULL)
3358 			break;
3359 
3360 		if (sc->dc_flags & DC_TX_COALESCE &&
3361 		    (m_head->m_next != NULL ||
3362 		     sc->dc_flags & DC_TX_ALIGN)) {
3363 			m = m_defrag(m_head, M_DONTWAIT);
3364 			if (m == NULL) {
3365 				IF_PREPEND(&ifp->if_snd, m_head);
3366 				ifp->if_flags |= IFF_OACTIVE;
3367 				break;
3368 			} else {
3369 				m_head = m;
3370 			}
3371 		}
3372 
3373 		if (dc_encap(sc, &m_head)) {
3374 			IF_PREPEND(&ifp->if_snd, m_head);
3375 			ifp->if_flags |= IFF_OACTIVE;
3376 			break;
3377 		}
3378 		idx = sc->dc_cdata.dc_tx_prod;
3379 
3380 		/*
3381 		 * If there's a BPF listener, bounce a copy of this frame
3382 		 * to him.
3383 		 */
3384 		BPF_MTAP(ifp, m_head);
3385 
3386 		if (sc->dc_flags & DC_TX_ONE) {
3387 			ifp->if_flags |= IFF_OACTIVE;
3388 			break;
3389 		}
3390 	}
3391 
3392 	/* Transmit */
3393 	if (!(sc->dc_flags & DC_TX_POLL))
3394 		CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3395 
3396 	/*
3397 	 * Set a timeout in case the chip goes out to lunch.
3398 	 */
3399 	ifp->if_timer = 5;
3400 
3401 	DC_UNLOCK(sc);
3402 }
3403 
3404 static void
3405 dc_init(void *xsc)
3406 {
3407 	struct dc_softc *sc = xsc;
3408 	struct ifnet *ifp = &sc->arpcom.ac_if;
3409 	struct mii_data *mii;
3410 
3411 	DC_LOCK(sc);
3412 
3413 	mii = device_get_softc(sc->dc_miibus);
3414 
3415 	/*
3416 	 * Cancel pending I/O and free all RX/TX buffers.
3417 	 */
3418 	dc_stop(sc);
3419 	dc_reset(sc);
3420 
3421 	/*
3422 	 * Set cache alignment and burst length.
3423 	 */
3424 	if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc))
3425 		CSR_WRITE_4(sc, DC_BUSCTL, 0);
3426 	else
3427 		CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME | DC_BUSCTL_MRLE);
3428 	/*
3429 	 * Evenly share the bus between receive and transmit process.
3430 	 */
3431 	if (DC_IS_INTEL(sc))
3432 		DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION);
3433 	if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
3434 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
3435 	} else {
3436 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
3437 	}
3438 	if (sc->dc_flags & DC_TX_POLL)
3439 		DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
3440 	switch(sc->dc_cachesize) {
3441 	case 32:
3442 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
3443 		break;
3444 	case 16:
3445 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
3446 		break;
3447 	case 8:
3448 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
3449 		break;
3450 	case 0:
3451 	default:
3452 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
3453 		break;
3454 	}
3455 
3456 	if (sc->dc_flags & DC_TX_STORENFWD)
3457 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3458 	else {
3459 		if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3460 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3461 		} else {
3462 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3463 			DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3464 		}
3465 	}
3466 
3467 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
3468 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
3469 
3470 	if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
3471 		/*
3472 		 * The app notes for the 98713 and 98715A say that
3473 		 * in order to have the chips operate properly, a magic
3474 		 * number must be written to CSR16. Macronix does not
3475 		 * document the meaning of these bits so there's no way
3476 		 * to know exactly what they do. The 98713 has a magic
3477 		 * number all its own; the rest all use a different one.
3478 		 */
3479 		DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
3480 		if (sc->dc_type == DC_TYPE_98713)
3481 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
3482 		else
3483 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
3484 	}
3485 
3486 	if (DC_IS_XIRCOM(sc)) {
3487 		/*
3488 		 * setup General Purpose Port mode and data so the tulip
3489 		 * can talk to the MII.
3490 		 */
3491 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
3492 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3493 		DELAY(10);
3494 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
3495 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3496 		DELAY(10);
3497 	}
3498 
3499 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3500 	DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN);
3501 
3502 	/* Init circular RX list. */
3503 	if (dc_list_rx_init(sc) == ENOBUFS) {
3504 		printf("dc%d: initialization failed: no "
3505 		    "memory for rx buffers\n", sc->dc_unit);
3506 		dc_stop(sc);
3507 		DC_UNLOCK(sc);
3508 		return;
3509 	}
3510 
3511 	/*
3512 	 * Init TX descriptors.
3513 	 */
3514 	dc_list_tx_init(sc);
3515 
3516 	/*
3517 	 * Load the address of the RX list.
3518 	 */
3519 	CSR_WRITE_4(sc, DC_RXADDR, DC_RXDESC(sc, 0));
3520 	CSR_WRITE_4(sc, DC_TXADDR, DC_TXDESC(sc, 0));
3521 
3522 	/*
3523 	 * Enable interrupts.
3524 	 */
3525 #ifdef DEVICE_POLLING
3526 	/*
3527 	 * ... but only if we are not polling, and make sure they are off in
3528 	 * the case of polling. Some cards (e.g. fxp) turn interrupts on
3529 	 * after a reset.
3530 	 */
3531 	if (ifp->if_flags & IFF_POLLING)
3532 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3533 	else
3534 #endif
3535 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3536 	CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
3537 
3538 	/* Enable transmitter. */
3539 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3540 
3541 	/*
3542 	 * If this is an Intel 21143 and we're not using the
3543 	 * MII port, program the LED control pins so we get
3544 	 * link and activity indications.
3545 	 */
3546 	if (sc->dc_flags & DC_TULIP_LEDS) {
3547 		CSR_WRITE_4(sc, DC_WATCHDOG,
3548 		    DC_WDOG_CTLWREN | DC_WDOG_LINK | DC_WDOG_ACTIVITY);
3549 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
3550 	}
3551 
3552 	/*
3553 	 * Load the RX/multicast filter. We do this sort of late
3554 	 * because the filter programming scheme on the 21143 and
3555 	 * some clones requires DMAing a setup frame via the TX
3556 	 * engine, and we need the transmitter enabled for that.
3557 	 */
3558 	dc_setfilt(sc);
3559 
3560 	/* Enable receiver. */
3561 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
3562 	CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
3563 
3564 	mii_mediachg(mii);
3565 	dc_setcfg(sc, sc->dc_if_media);
3566 
3567 	ifp->if_flags |= IFF_RUNNING;
3568 	ifp->if_flags &= ~IFF_OACTIVE;
3569 
3570 	/* Don't start the ticker if this is a homePNA link. */
3571 	if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_HPNA_1)
3572 		sc->dc_link = 1;
3573 	else {
3574 		if (sc->dc_flags & DC_21143_NWAY)
3575 			callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
3576 		else
3577 			callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
3578 	}
3579 
3580 #ifdef SRM_MEDIA
3581 	if(sc->dc_srm_media) {
3582 		struct ifreq ifr;
3583 
3584 		ifr.ifr_media = sc->dc_srm_media;
3585 		ifmedia_ioctl(ifp, &ifr, &mii->mii_media, SIOCSIFMEDIA);
3586 		sc->dc_srm_media = 0;
3587 	}
3588 #endif
3589 	DC_UNLOCK(sc);
3590 }
3591 
3592 /*
3593  * Set media options.
3594  */
3595 static int
3596 dc_ifmedia_upd(struct ifnet *ifp)
3597 {
3598 	struct dc_softc *sc;
3599 	struct mii_data *mii;
3600 	struct ifmedia *ifm;
3601 
3602 	sc = ifp->if_softc;
3603 	mii = device_get_softc(sc->dc_miibus);
3604 	mii_mediachg(mii);
3605 	ifm = &mii->mii_media;
3606 
3607 	if (DC_IS_DAVICOM(sc) &&
3608 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1)
3609 		dc_setcfg(sc, ifm->ifm_media);
3610 	else
3611 		sc->dc_link = 0;
3612 
3613 	return (0);
3614 }
3615 
3616 /*
3617  * Report current media status.
3618  */
3619 static void
3620 dc_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3621 {
3622 	struct dc_softc *sc;
3623 	struct mii_data *mii;
3624 	struct ifmedia *ifm;
3625 
3626 	sc = ifp->if_softc;
3627 	mii = device_get_softc(sc->dc_miibus);
3628 	mii_pollstat(mii);
3629 	ifm = &mii->mii_media;
3630 	if (DC_IS_DAVICOM(sc)) {
3631 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
3632 			ifmr->ifm_active = ifm->ifm_media;
3633 			ifmr->ifm_status = 0;
3634 			return;
3635 		}
3636 	}
3637 	ifmr->ifm_active = mii->mii_media_active;
3638 	ifmr->ifm_status = mii->mii_media_status;
3639 }
3640 
3641 static int
3642 dc_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
3643 {
3644 	struct dc_softc *sc = ifp->if_softc;
3645 	struct ifreq *ifr = (struct ifreq *)data;
3646 	struct mii_data *mii;
3647 	int error = 0;
3648 
3649 	DC_LOCK(sc);
3650 
3651 	switch (command) {
3652 	case SIOCSIFFLAGS:
3653 		if (ifp->if_flags & IFF_UP) {
3654 			int need_setfilt = (ifp->if_flags ^ sc->dc_if_flags) &
3655 				(IFF_PROMISC | IFF_ALLMULTI);
3656 
3657 			if (ifp->if_flags & IFF_RUNNING) {
3658 				if (need_setfilt)
3659 					dc_setfilt(sc);
3660 			} else {
3661 				sc->dc_txthresh = 0;
3662 				dc_init(sc);
3663 			}
3664 		} else {
3665 			if (ifp->if_flags & IFF_RUNNING)
3666 				dc_stop(sc);
3667 		}
3668 		sc->dc_if_flags = ifp->if_flags;
3669 		error = 0;
3670 		break;
3671 	case SIOCADDMULTI:
3672 	case SIOCDELMULTI:
3673 		dc_setfilt(sc);
3674 		error = 0;
3675 		break;
3676 	case SIOCGIFMEDIA:
3677 	case SIOCSIFMEDIA:
3678 		mii = device_get_softc(sc->dc_miibus);
3679 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
3680 #ifdef SRM_MEDIA
3681 		if (sc->dc_srm_media)
3682 			sc->dc_srm_media = 0;
3683 #endif
3684 		break;
3685 	default:
3686 		error = ether_ioctl(ifp, command, data);
3687 		break;
3688 	}
3689 
3690 	DC_UNLOCK(sc);
3691 
3692 	return (error);
3693 }
3694 
3695 static void
3696 dc_watchdog(struct ifnet *ifp)
3697 {
3698 	struct dc_softc *sc;
3699 
3700 	sc = ifp->if_softc;
3701 
3702 	DC_LOCK(sc);
3703 
3704 	ifp->if_oerrors++;
3705 	printf("dc%d: watchdog timeout\n", sc->dc_unit);
3706 
3707 	dc_stop(sc);
3708 	dc_reset(sc);
3709 	dc_init(sc);
3710 
3711 	if (ifp->if_snd.ifq_head != NULL)
3712 		dc_start(ifp);
3713 
3714 	DC_UNLOCK(sc);
3715 }
3716 
3717 /*
3718  * Stop the adapter and free any mbufs allocated to the
3719  * RX and TX lists.
3720  */
3721 static void
3722 dc_stop(struct dc_softc *sc)
3723 {
3724 	struct ifnet *ifp;
3725 	struct dc_list_data *ld;
3726 	struct dc_chain_data *cd;
3727 	int i;
3728 	u_int32_t ctl;
3729 
3730 	DC_LOCK(sc);
3731 
3732 	ifp = &sc->arpcom.ac_if;
3733 	ifp->if_timer = 0;
3734 	ld = sc->dc_ldata;
3735 	cd = &sc->dc_cdata;
3736 
3737 	callout_stop(&sc->dc_stat_ch);
3738 
3739 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3740 #ifdef DEVICE_POLLING
3741 	ether_poll_deregister(ifp);
3742 #endif
3743 
3744 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ON | DC_NETCFG_TX_ON));
3745 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3746 	CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
3747 	CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
3748 	sc->dc_link = 0;
3749 
3750 	/*
3751 	 * Free data in the RX lists.
3752 	 */
3753 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
3754 		if (cd->dc_rx_chain[i] != NULL) {
3755 			m_freem(cd->dc_rx_chain[i]);
3756 			cd->dc_rx_chain[i] = NULL;
3757 		}
3758 	}
3759 	bzero(&ld->dc_rx_list, sizeof(ld->dc_rx_list));
3760 
3761 	/*
3762 	 * Free the TX list buffers.
3763 	 */
3764 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
3765 		if (cd->dc_tx_chain[i] != NULL) {
3766 			ctl = le32toh(ld->dc_tx_list[i].dc_ctl);
3767 			if ((ctl & DC_TXCTL_SETUP) ||
3768 			    !(ctl & DC_TXCTL_FIRSTFRAG)) {
3769 				cd->dc_tx_chain[i] = NULL;
3770 				continue;
3771 			}
3772 			bus_dmamap_unload(sc->dc_mtag, cd->dc_tx_map[i]);
3773 			m_freem(cd->dc_tx_chain[i]);
3774 			cd->dc_tx_chain[i] = NULL;
3775 		}
3776 	}
3777 	bzero(&ld->dc_tx_list, sizeof(ld->dc_tx_list));
3778 
3779 	DC_UNLOCK(sc);
3780 }
3781 
3782 /*
3783  * Device suspend routine.  Stop the interface and save some PCI
3784  * settings in case the BIOS doesn't restore them properly on
3785  * resume.
3786  */
3787 static int
3788 dc_suspend(device_t dev)
3789 {
3790 	struct dc_softc *sc;
3791 	int i, s;
3792 
3793 	s = splimp();
3794 
3795 	sc = device_get_softc(dev);
3796 
3797 	dc_stop(sc);
3798 
3799 	for (i = 0; i < 5; i++)
3800 		sc->saved_maps[i] = pci_read_config(dev, PCIR_BAR(i), 4);
3801 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
3802 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
3803 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
3804 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
3805 
3806 	sc->suspended = 1;
3807 
3808 	splx(s);
3809 	return (0);
3810 }
3811 
3812 /*
3813  * Device resume routine.  Restore some PCI settings in case the BIOS
3814  * doesn't, re-enable busmastering, and restart the interface if
3815  * appropriate.
3816  */
3817 static int
3818 dc_resume(device_t dev)
3819 {
3820 	struct dc_softc *sc;
3821 	struct ifnet *ifp;
3822 	int i, s;
3823 
3824 	s = splimp();
3825 
3826 	sc = device_get_softc(dev);
3827 	ifp = &sc->arpcom.ac_if;
3828 #ifndef BURN_BRIDGES
3829 	dc_acpi(dev);
3830 #endif
3831 	/* better way to do this? */
3832 	for (i = 0; i < 5; i++)
3833 		pci_write_config(dev, PCIR_BAR(i), sc->saved_maps[i], 4);
3834 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
3835 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
3836 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
3837 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
3838 
3839 	/* reenable busmastering */
3840 	pci_enable_busmaster(dev);
3841 	pci_enable_io(dev, DC_RES);
3842 
3843 	/* reinitialize interface if necessary */
3844 	if (ifp->if_flags & IFF_UP)
3845 		dc_init(sc);
3846 
3847 	sc->suspended = 0;
3848 
3849 	splx(s);
3850 	return (0);
3851 }
3852 
3853 /*
3854  * Stop all chip I/O so that the kernel's probe routines don't
3855  * get confused by errant DMAs when rebooting.
3856  */
3857 static void
3858 dc_shutdown(device_t dev)
3859 {
3860 	struct dc_softc *sc;
3861 
3862 	sc = device_get_softc(dev);
3863 
3864 	dc_stop(sc);
3865 }
3866