xref: /freebsd/sys/dev/dc/if_dc.c (revision 262e143bd46171a6415a5b28af260a5efa2a3db8)
1 /*-
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ee.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /*
37  * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
38  * series chips and several workalikes including the following:
39  *
40  * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com)
41  * Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
42  * Lite-On 82c168/82c169 PNIC (www.litecom.com)
43  * ASIX Electronics AX88140A (www.asix.com.tw)
44  * ASIX Electronics AX88141 (www.asix.com.tw)
45  * ADMtek AL981 (www.admtek.com.tw)
46  * ADMtek AN985 (www.admtek.com.tw)
47  * Netgear FA511 (www.netgear.com) Appears to be rebadged ADMTek AN985
48  * Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
49  * Accton EN1217 (www.accton.com)
50  * Xircom X3201 (www.xircom.com)
51  * Abocom FE2500
52  * Conexant LANfinity (www.conexant.com)
53  * 3Com OfficeConnect 10/100B 3CSOHO100B (www.3com.com)
54  *
55  * Datasheets for the 21143 are available at developer.intel.com.
56  * Datasheets for the clone parts can be found at their respective sites.
57  * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
58  * The PNIC II is essentially a Macronix 98715A chip; the only difference
59  * worth noting is that its multicast hash table is only 128 bits wide
60  * instead of 512.
61  *
62  * Written by Bill Paul <wpaul@ee.columbia.edu>
63  * Electrical Engineering Department
64  * Columbia University, New York City
65  */
66 /*
67  * The Intel 21143 is the successor to the DEC 21140. It is basically
68  * the same as the 21140 but with a few new features. The 21143 supports
69  * three kinds of media attachments:
70  *
71  * o MII port, for 10Mbps and 100Mbps support and NWAY
72  *   autonegotiation provided by an external PHY.
73  * o SYM port, for symbol mode 100Mbps support.
74  * o 10baseT port.
75  * o AUI/BNC port.
76  *
77  * The 100Mbps SYM port and 10baseT port can be used together in
78  * combination with the internal NWAY support to create a 10/100
79  * autosensing configuration.
80  *
81  * Note that not all tulip workalikes are handled in this driver: we only
82  * deal with those which are relatively well behaved. The Winbond is
83  * handled separately due to its different register offsets and the
84  * special handling needed for its various bugs. The PNIC is handled
85  * here, but I'm not thrilled about it.
86  *
87  * All of the workalike chips use some form of MII transceiver support
88  * with the exception of the Macronix chips, which also have a SYM port.
89  * The ASIX AX88140A is also documented to have a SYM port, but all
90  * the cards I've seen use an MII transceiver, probably because the
91  * AX88140A doesn't support internal NWAY.
92  */
93 
94 #ifdef HAVE_KERNEL_OPTION_HEADERS
95 #include "opt_device_polling.h"
96 #endif
97 
98 #include <sys/param.h>
99 #include <sys/endian.h>
100 #include <sys/systm.h>
101 #include <sys/sockio.h>
102 #include <sys/mbuf.h>
103 #include <sys/malloc.h>
104 #include <sys/kernel.h>
105 #include <sys/module.h>
106 #include <sys/socket.h>
107 #include <sys/sysctl.h>
108 
109 #include <net/if.h>
110 #include <net/if_arp.h>
111 #include <net/ethernet.h>
112 #include <net/if_dl.h>
113 #include <net/if_media.h>
114 #include <net/if_types.h>
115 #include <net/if_vlan_var.h>
116 
117 #include <net/bpf.h>
118 
119 #include <machine/bus.h>
120 #include <machine/resource.h>
121 #include <sys/bus.h>
122 #include <sys/rman.h>
123 
124 #include <dev/mii/mii.h>
125 #include <dev/mii/miivar.h>
126 
127 #include <dev/pci/pcireg.h>
128 #include <dev/pci/pcivar.h>
129 
130 #define DC_USEIOSPACE
131 #ifdef __alpha__
132 #define SRM_MEDIA
133 #endif
134 
135 #include <dev/dc/if_dcreg.h>
136 
137 #ifdef __sparc64__
138 #include <dev/ofw/openfirm.h>
139 #include <machine/ofw_machdep.h>
140 #endif
141 
142 MODULE_DEPEND(dc, pci, 1, 1, 1);
143 MODULE_DEPEND(dc, ether, 1, 1, 1);
144 MODULE_DEPEND(dc, miibus, 1, 1, 1);
145 
146 /*
147  * "device miibus" is required in kernel config.  See GENERIC if you get
148  * errors here.
149  */
150 #include "miibus_if.h"
151 
152 /*
153  * Various supported device vendors/types and their names.
154  */
155 static struct dc_type dc_devs[] = {
156 	{ DC_VENDORID_DEC, DC_DEVICEID_21143,
157 		"Intel 21143 10/100BaseTX" },
158 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009,
159 		"Davicom DM9009 10/100BaseTX" },
160 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100,
161 		"Davicom DM9100 10/100BaseTX" },
162 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
163 		"Davicom DM9102 10/100BaseTX" },
164 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
165 		"Davicom DM9102A 10/100BaseTX" },
166 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AL981,
167 		"ADMtek AL981 10/100BaseTX" },
168 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AN985,
169 		"ADMtek AN985 10/100BaseTX" },
170 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511,
171 		"ADMtek ADM9511 10/100BaseTX" },
172 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513,
173 		"ADMtek ADM9513 10/100BaseTX" },
174 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_FA511,
175 		"Netgear FA511 10/100BaseTX" },
176 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
177 		"ASIX AX88140A 10/100BaseTX" },
178 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
179 		"ASIX AX88141 10/100BaseTX" },
180 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
181 		"Macronix 98713 10/100BaseTX" },
182 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
183 		"Macronix 98713A 10/100BaseTX" },
184 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
185 		"Compex RL100-TX 10/100BaseTX" },
186 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
187 		"Compex RL100-TX 10/100BaseTX" },
188 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
189 		"Macronix 98715/98715A 10/100BaseTX" },
190 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
191 		"Macronix 98715AEC-C 10/100BaseTX" },
192 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
193 		"Macronix 98725 10/100BaseTX" },
194 	{ DC_VENDORID_MX, DC_DEVICEID_98727,
195 		"Macronix 98727/98732 10/100BaseTX" },
196 	{ DC_VENDORID_LO, DC_DEVICEID_82C115,
197 		"LC82C115 PNIC II 10/100BaseTX" },
198 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
199 		"82c168 PNIC 10/100BaseTX" },
200 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
201 		"82c169 PNIC 10/100BaseTX" },
202 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN1217,
203 		"Accton EN1217 10/100BaseTX" },
204 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN2242,
205 		"Accton EN2242 MiniPCI 10/100BaseTX" },
206 	{ DC_VENDORID_XIRCOM, DC_DEVICEID_X3201,
207 	  	"Xircom X3201 10/100BaseTX" },
208 	{ DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500,
209 		"Abocom FE2500 10/100BaseTX" },
210 	{ DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500MX,
211 		"Abocom FE2500MX 10/100BaseTX" },
212 	{ DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112,
213 		"Conexant LANfinity MiniPCI 10/100BaseTX" },
214 	{ DC_VENDORID_HAWKING, DC_DEVICEID_HAWKING_PN672TX,
215 		"Hawking CB102 CardBus 10/100" },
216 	{ DC_VENDORID_PLANEX, DC_DEVICEID_FNW3602T,
217 		"PlaneX FNW-3602-T CardBus 10/100" },
218 	{ DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB,
219 		"3Com OfficeConnect 10/100B" },
220 	{ DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN120,
221 		"Microsoft MN-120 CardBus 10/100" },
222 	{ DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130,
223 		"Microsoft MN-130 10/100" },
224 	{ DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130_FAKE,
225 		"Microsoft MN-130 10/100" },
226 	{ 0, 0, NULL }
227 };
228 
229 static int dc_probe(device_t);
230 static int dc_attach(device_t);
231 static int dc_detach(device_t);
232 static int dc_suspend(device_t);
233 static int dc_resume(device_t);
234 static struct dc_type *dc_devtype(device_t);
235 static int dc_newbuf(struct dc_softc *, int, int);
236 static int dc_encap(struct dc_softc *, struct mbuf **);
237 static void dc_pnic_rx_bug_war(struct dc_softc *, int);
238 static int dc_rx_resync(struct dc_softc *);
239 static void dc_rxeof(struct dc_softc *);
240 static void dc_txeof(struct dc_softc *);
241 static void dc_tick(void *);
242 static void dc_tx_underrun(struct dc_softc *);
243 static void dc_intr(void *);
244 static void dc_start(struct ifnet *);
245 static void dc_start_locked(struct ifnet *);
246 static int dc_ioctl(struct ifnet *, u_long, caddr_t);
247 static void dc_init(void *);
248 static void dc_init_locked(struct dc_softc *);
249 static void dc_stop(struct dc_softc *);
250 static void dc_watchdog(struct ifnet *);
251 static void dc_shutdown(device_t);
252 static int dc_ifmedia_upd(struct ifnet *);
253 static void dc_ifmedia_sts(struct ifnet *, struct ifmediareq *);
254 
255 static void dc_delay(struct dc_softc *);
256 static void dc_eeprom_idle(struct dc_softc *);
257 static void dc_eeprom_putbyte(struct dc_softc *, int);
258 static void dc_eeprom_getword(struct dc_softc *, int, u_int16_t *);
259 static void dc_eeprom_getword_pnic(struct dc_softc *, int, u_int16_t *);
260 static void dc_eeprom_getword_xircom(struct dc_softc *, int, u_int16_t *);
261 static void dc_eeprom_width(struct dc_softc *);
262 static void dc_read_eeprom(struct dc_softc *, caddr_t, int, int, int);
263 
264 static void dc_mii_writebit(struct dc_softc *, int);
265 static int dc_mii_readbit(struct dc_softc *);
266 static void dc_mii_sync(struct dc_softc *);
267 static void dc_mii_send(struct dc_softc *, u_int32_t, int);
268 static int dc_mii_readreg(struct dc_softc *, struct dc_mii_frame *);
269 static int dc_mii_writereg(struct dc_softc *, struct dc_mii_frame *);
270 static int dc_miibus_readreg(device_t, int, int);
271 static int dc_miibus_writereg(device_t, int, int, int);
272 static void dc_miibus_statchg(device_t);
273 static void dc_miibus_mediainit(device_t);
274 
275 static void dc_setcfg(struct dc_softc *, int);
276 static uint32_t dc_mchash_le(struct dc_softc *, const uint8_t *);
277 static uint32_t dc_mchash_be(const uint8_t *);
278 static void dc_setfilt_21143(struct dc_softc *);
279 static void dc_setfilt_asix(struct dc_softc *);
280 static void dc_setfilt_admtek(struct dc_softc *);
281 static void dc_setfilt_xircom(struct dc_softc *);
282 
283 static void dc_setfilt(struct dc_softc *);
284 
285 static void dc_reset(struct dc_softc *);
286 static int dc_list_rx_init(struct dc_softc *);
287 static int dc_list_tx_init(struct dc_softc *);
288 
289 static void dc_read_srom(struct dc_softc *, int);
290 static void dc_parse_21143_srom(struct dc_softc *);
291 static void dc_decode_leaf_sia(struct dc_softc *, struct dc_eblock_sia *);
292 static void dc_decode_leaf_mii(struct dc_softc *, struct dc_eblock_mii *);
293 static void dc_decode_leaf_sym(struct dc_softc *, struct dc_eblock_sym *);
294 static void dc_apply_fixup(struct dc_softc *, int);
295 
296 static void dc_dma_map_txbuf(void *, bus_dma_segment_t *, int, bus_size_t, int);
297 static void dc_dma_map_rxbuf(void *, bus_dma_segment_t *, int, bus_size_t, int);
298 
299 #ifdef DC_USEIOSPACE
300 #define DC_RES			SYS_RES_IOPORT
301 #define DC_RID			DC_PCI_CFBIO
302 #else
303 #define DC_RES			SYS_RES_MEMORY
304 #define DC_RID			DC_PCI_CFBMA
305 #endif
306 
307 static device_method_t dc_methods[] = {
308 	/* Device interface */
309 	DEVMETHOD(device_probe,		dc_probe),
310 	DEVMETHOD(device_attach,	dc_attach),
311 	DEVMETHOD(device_detach,	dc_detach),
312 	DEVMETHOD(device_suspend,	dc_suspend),
313 	DEVMETHOD(device_resume,	dc_resume),
314 	DEVMETHOD(device_shutdown,	dc_shutdown),
315 
316 	/* bus interface */
317 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
318 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
319 
320 	/* MII interface */
321 	DEVMETHOD(miibus_readreg,	dc_miibus_readreg),
322 	DEVMETHOD(miibus_writereg,	dc_miibus_writereg),
323 	DEVMETHOD(miibus_statchg,	dc_miibus_statchg),
324 	DEVMETHOD(miibus_mediainit,	dc_miibus_mediainit),
325 
326 	{ 0, 0 }
327 };
328 
329 static driver_t dc_driver = {
330 	"dc",
331 	dc_methods,
332 	sizeof(struct dc_softc)
333 };
334 
335 static devclass_t dc_devclass;
336 #ifdef __i386__
337 static int dc_quick = 1;
338 SYSCTL_INT(_hw, OID_AUTO, dc_quick, CTLFLAG_RW, &dc_quick, 0,
339     "do not m_devget() in dc driver");
340 #endif
341 
342 DRIVER_MODULE(dc, cardbus, dc_driver, dc_devclass, 0, 0);
343 DRIVER_MODULE(dc, pci, dc_driver, dc_devclass, 0, 0);
344 DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, 0, 0);
345 
346 #define DC_SETBIT(sc, reg, x)				\
347 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
348 
349 #define DC_CLRBIT(sc, reg, x)				\
350 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
351 
352 #define SIO_SET(x)	DC_SETBIT(sc, DC_SIO, (x))
353 #define SIO_CLR(x)	DC_CLRBIT(sc, DC_SIO, (x))
354 
355 static void
356 dc_delay(struct dc_softc *sc)
357 {
358 	int idx;
359 
360 	for (idx = (300 / 33) + 1; idx > 0; idx--)
361 		CSR_READ_4(sc, DC_BUSCTL);
362 }
363 
364 static void
365 dc_eeprom_width(struct dc_softc *sc)
366 {
367 	int i;
368 
369 	/* Force EEPROM to idle state. */
370 	dc_eeprom_idle(sc);
371 
372 	/* Enter EEPROM access mode. */
373 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
374 	dc_delay(sc);
375 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
376 	dc_delay(sc);
377 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
378 	dc_delay(sc);
379 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
380 	dc_delay(sc);
381 
382 	for (i = 3; i--;) {
383 		if (6 & (1 << i))
384 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
385 		else
386 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
387 		dc_delay(sc);
388 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
389 		dc_delay(sc);
390 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
391 		dc_delay(sc);
392 	}
393 
394 	for (i = 1; i <= 12; i++) {
395 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
396 		dc_delay(sc);
397 		if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) {
398 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
399 			dc_delay(sc);
400 			break;
401 		}
402 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
403 		dc_delay(sc);
404 	}
405 
406 	/* Turn off EEPROM access mode. */
407 	dc_eeprom_idle(sc);
408 
409 	if (i < 4 || i > 12)
410 		sc->dc_romwidth = 6;
411 	else
412 		sc->dc_romwidth = i;
413 
414 	/* Enter EEPROM access mode. */
415 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
416 	dc_delay(sc);
417 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
418 	dc_delay(sc);
419 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
420 	dc_delay(sc);
421 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
422 	dc_delay(sc);
423 
424 	/* Turn off EEPROM access mode. */
425 	dc_eeprom_idle(sc);
426 }
427 
428 static void
429 dc_eeprom_idle(struct dc_softc *sc)
430 {
431 	int i;
432 
433 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
434 	dc_delay(sc);
435 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
436 	dc_delay(sc);
437 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
438 	dc_delay(sc);
439 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
440 	dc_delay(sc);
441 
442 	for (i = 0; i < 25; i++) {
443 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
444 		dc_delay(sc);
445 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
446 		dc_delay(sc);
447 	}
448 
449 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
450 	dc_delay(sc);
451 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
452 	dc_delay(sc);
453 	CSR_WRITE_4(sc, DC_SIO, 0x00000000);
454 }
455 
456 /*
457  * Send a read command and address to the EEPROM, check for ACK.
458  */
459 static void
460 dc_eeprom_putbyte(struct dc_softc *sc, int addr)
461 {
462 	int d, i;
463 
464 	d = DC_EECMD_READ >> 6;
465 	for (i = 3; i--; ) {
466 		if (d & (1 << i))
467 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
468 		else
469 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
470 		dc_delay(sc);
471 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
472 		dc_delay(sc);
473 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
474 		dc_delay(sc);
475 	}
476 
477 	/*
478 	 * Feed in each bit and strobe the clock.
479 	 */
480 	for (i = sc->dc_romwidth; i--;) {
481 		if (addr & (1 << i)) {
482 			SIO_SET(DC_SIO_EE_DATAIN);
483 		} else {
484 			SIO_CLR(DC_SIO_EE_DATAIN);
485 		}
486 		dc_delay(sc);
487 		SIO_SET(DC_SIO_EE_CLK);
488 		dc_delay(sc);
489 		SIO_CLR(DC_SIO_EE_CLK);
490 		dc_delay(sc);
491 	}
492 }
493 
494 /*
495  * Read a word of data stored in the EEPROM at address 'addr.'
496  * The PNIC 82c168/82c169 has its own non-standard way to read
497  * the EEPROM.
498  */
499 static void
500 dc_eeprom_getword_pnic(struct dc_softc *sc, int addr, u_int16_t *dest)
501 {
502 	int i;
503 	u_int32_t r;
504 
505 	CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ | addr);
506 
507 	for (i = 0; i < DC_TIMEOUT; i++) {
508 		DELAY(1);
509 		r = CSR_READ_4(sc, DC_SIO);
510 		if (!(r & DC_PN_SIOCTL_BUSY)) {
511 			*dest = (u_int16_t)(r & 0xFFFF);
512 			return;
513 		}
514 	}
515 }
516 
517 /*
518  * Read a word of data stored in the EEPROM at address 'addr.'
519  * The Xircom X3201 has its own non-standard way to read
520  * the EEPROM, too.
521  */
522 static void
523 dc_eeprom_getword_xircom(struct dc_softc *sc, int addr, u_int16_t *dest)
524 {
525 
526 	SIO_SET(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
527 
528 	addr *= 2;
529 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
530 	*dest = (u_int16_t)CSR_READ_4(sc, DC_SIO) & 0xff;
531 	addr += 1;
532 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
533 	*dest |= ((u_int16_t)CSR_READ_4(sc, DC_SIO) & 0xff) << 8;
534 
535 	SIO_CLR(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
536 }
537 
538 /*
539  * Read a word of data stored in the EEPROM at address 'addr.'
540  */
541 static void
542 dc_eeprom_getword(struct dc_softc *sc, int addr, u_int16_t *dest)
543 {
544 	int i;
545 	u_int16_t word = 0;
546 
547 	/* Force EEPROM to idle state. */
548 	dc_eeprom_idle(sc);
549 
550 	/* Enter EEPROM access mode. */
551 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
552 	dc_delay(sc);
553 	DC_SETBIT(sc, DC_SIO,  DC_SIO_ROMCTL_READ);
554 	dc_delay(sc);
555 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
556 	dc_delay(sc);
557 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
558 	dc_delay(sc);
559 
560 	/*
561 	 * Send address of word we want to read.
562 	 */
563 	dc_eeprom_putbyte(sc, addr);
564 
565 	/*
566 	 * Start reading bits from EEPROM.
567 	 */
568 	for (i = 0x8000; i; i >>= 1) {
569 		SIO_SET(DC_SIO_EE_CLK);
570 		dc_delay(sc);
571 		if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
572 			word |= i;
573 		dc_delay(sc);
574 		SIO_CLR(DC_SIO_EE_CLK);
575 		dc_delay(sc);
576 	}
577 
578 	/* Turn off EEPROM access mode. */
579 	dc_eeprom_idle(sc);
580 
581 	*dest = word;
582 }
583 
584 /*
585  * Read a sequence of words from the EEPROM.
586  */
587 static void
588 dc_read_eeprom(struct dc_softc *sc, caddr_t dest, int off, int cnt, int be)
589 {
590 	int i;
591 	u_int16_t word = 0, *ptr;
592 
593 	for (i = 0; i < cnt; i++) {
594 		if (DC_IS_PNIC(sc))
595 			dc_eeprom_getword_pnic(sc, off + i, &word);
596 		else if (DC_IS_XIRCOM(sc))
597 			dc_eeprom_getword_xircom(sc, off + i, &word);
598 		else
599 			dc_eeprom_getword(sc, off + i, &word);
600 		ptr = (u_int16_t *)(dest + (i * 2));
601 		if (be)
602 			*ptr = be16toh(word);
603 		else
604 			*ptr = le16toh(word);
605 	}
606 }
607 
608 /*
609  * The following two routines are taken from the Macronix 98713
610  * Application Notes pp.19-21.
611  */
612 /*
613  * Write a bit to the MII bus.
614  */
615 static void
616 dc_mii_writebit(struct dc_softc *sc, int bit)
617 {
618 
619 	if (bit)
620 		CSR_WRITE_4(sc, DC_SIO,
621 		    DC_SIO_ROMCTL_WRITE | DC_SIO_MII_DATAOUT);
622 	else
623 		CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
624 
625 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
626 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
627 }
628 
629 /*
630  * Read a bit from the MII bus.
631  */
632 static int
633 dc_mii_readbit(struct dc_softc *sc)
634 {
635 
636 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_READ | DC_SIO_MII_DIR);
637 	CSR_READ_4(sc, DC_SIO);
638 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
639 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
640 	if (CSR_READ_4(sc, DC_SIO) & DC_SIO_MII_DATAIN)
641 		return (1);
642 
643 	return (0);
644 }
645 
646 /*
647  * Sync the PHYs by setting data bit and strobing the clock 32 times.
648  */
649 static void
650 dc_mii_sync(struct dc_softc *sc)
651 {
652 	int i;
653 
654 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
655 
656 	for (i = 0; i < 32; i++)
657 		dc_mii_writebit(sc, 1);
658 }
659 
660 /*
661  * Clock a series of bits through the MII.
662  */
663 static void
664 dc_mii_send(struct dc_softc *sc, u_int32_t bits, int cnt)
665 {
666 	int i;
667 
668 	for (i = (0x1 << (cnt - 1)); i; i >>= 1)
669 		dc_mii_writebit(sc, bits & i);
670 }
671 
672 /*
673  * Read an PHY register through the MII.
674  */
675 static int
676 dc_mii_readreg(struct dc_softc *sc, struct dc_mii_frame *frame)
677 {
678 	int i, ack;
679 
680 	/*
681 	 * Set up frame for RX.
682 	 */
683 	frame->mii_stdelim = DC_MII_STARTDELIM;
684 	frame->mii_opcode = DC_MII_READOP;
685 	frame->mii_turnaround = 0;
686 	frame->mii_data = 0;
687 
688 	/*
689 	 * Sync the PHYs.
690 	 */
691 	dc_mii_sync(sc);
692 
693 	/*
694 	 * Send command/address info.
695 	 */
696 	dc_mii_send(sc, frame->mii_stdelim, 2);
697 	dc_mii_send(sc, frame->mii_opcode, 2);
698 	dc_mii_send(sc, frame->mii_phyaddr, 5);
699 	dc_mii_send(sc, frame->mii_regaddr, 5);
700 
701 #ifdef notdef
702 	/* Idle bit */
703 	dc_mii_writebit(sc, 1);
704 	dc_mii_writebit(sc, 0);
705 #endif
706 
707 	/* Check for ack. */
708 	ack = dc_mii_readbit(sc);
709 
710 	/*
711 	 * Now try reading data bits. If the ack failed, we still
712 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
713 	 */
714 	if (ack) {
715 		for (i = 0; i < 16; i++)
716 			dc_mii_readbit(sc);
717 		goto fail;
718 	}
719 
720 	for (i = 0x8000; i; i >>= 1) {
721 		if (!ack) {
722 			if (dc_mii_readbit(sc))
723 				frame->mii_data |= i;
724 		}
725 	}
726 
727 fail:
728 
729 	dc_mii_writebit(sc, 0);
730 	dc_mii_writebit(sc, 0);
731 
732 	if (ack)
733 		return (1);
734 	return (0);
735 }
736 
737 /*
738  * Write to a PHY register through the MII.
739  */
740 static int
741 dc_mii_writereg(struct dc_softc *sc, struct dc_mii_frame *frame)
742 {
743 
744 	/*
745 	 * Set up frame for TX.
746 	 */
747 
748 	frame->mii_stdelim = DC_MII_STARTDELIM;
749 	frame->mii_opcode = DC_MII_WRITEOP;
750 	frame->mii_turnaround = DC_MII_TURNAROUND;
751 
752 	/*
753 	 * Sync the PHYs.
754 	 */
755 	dc_mii_sync(sc);
756 
757 	dc_mii_send(sc, frame->mii_stdelim, 2);
758 	dc_mii_send(sc, frame->mii_opcode, 2);
759 	dc_mii_send(sc, frame->mii_phyaddr, 5);
760 	dc_mii_send(sc, frame->mii_regaddr, 5);
761 	dc_mii_send(sc, frame->mii_turnaround, 2);
762 	dc_mii_send(sc, frame->mii_data, 16);
763 
764 	/* Idle bit. */
765 	dc_mii_writebit(sc, 0);
766 	dc_mii_writebit(sc, 0);
767 
768 	return (0);
769 }
770 
771 static int
772 dc_miibus_readreg(device_t dev, int phy, int reg)
773 {
774 	struct dc_mii_frame frame;
775 	struct dc_softc	 *sc;
776 	int i, rval, phy_reg = 0;
777 
778 	sc = device_get_softc(dev);
779 	bzero(&frame, sizeof(frame));
780 
781 	/*
782 	 * Note: both the AL981 and AN985 have internal PHYs,
783 	 * however the AL981 provides direct access to the PHY
784 	 * registers while the AN985 uses a serial MII interface.
785 	 * The AN985's MII interface is also buggy in that you
786 	 * can read from any MII address (0 to 31), but only address 1
787 	 * behaves normally. To deal with both cases, we pretend
788 	 * that the PHY is at MII address 1.
789 	 */
790 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
791 		return (0);
792 
793 	/*
794 	 * Note: the ukphy probes of the RS7112 report a PHY at
795 	 * MII address 0 (possibly HomePNA?) and 1 (ethernet)
796 	 * so we only respond to correct one.
797 	 */
798 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
799 		return (0);
800 
801 	if (sc->dc_pmode != DC_PMODE_MII) {
802 		if (phy == (MII_NPHY - 1)) {
803 			switch (reg) {
804 			case MII_BMSR:
805 			/*
806 			 * Fake something to make the probe
807 			 * code think there's a PHY here.
808 			 */
809 				return (BMSR_MEDIAMASK);
810 				break;
811 			case MII_PHYIDR1:
812 				if (DC_IS_PNIC(sc))
813 					return (DC_VENDORID_LO);
814 				return (DC_VENDORID_DEC);
815 				break;
816 			case MII_PHYIDR2:
817 				if (DC_IS_PNIC(sc))
818 					return (DC_DEVICEID_82C168);
819 				return (DC_DEVICEID_21143);
820 				break;
821 			default:
822 				return (0);
823 				break;
824 			}
825 		} else
826 			return (0);
827 	}
828 
829 	if (DC_IS_PNIC(sc)) {
830 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
831 		    (phy << 23) | (reg << 18));
832 		for (i = 0; i < DC_TIMEOUT; i++) {
833 			DELAY(1);
834 			rval = CSR_READ_4(sc, DC_PN_MII);
835 			if (!(rval & DC_PN_MII_BUSY)) {
836 				rval &= 0xFFFF;
837 				return (rval == 0xFFFF ? 0 : rval);
838 			}
839 		}
840 		return (0);
841 	}
842 
843 	if (DC_IS_COMET(sc)) {
844 		switch (reg) {
845 		case MII_BMCR:
846 			phy_reg = DC_AL_BMCR;
847 			break;
848 		case MII_BMSR:
849 			phy_reg = DC_AL_BMSR;
850 			break;
851 		case MII_PHYIDR1:
852 			phy_reg = DC_AL_VENID;
853 			break;
854 		case MII_PHYIDR2:
855 			phy_reg = DC_AL_DEVID;
856 			break;
857 		case MII_ANAR:
858 			phy_reg = DC_AL_ANAR;
859 			break;
860 		case MII_ANLPAR:
861 			phy_reg = DC_AL_LPAR;
862 			break;
863 		case MII_ANER:
864 			phy_reg = DC_AL_ANER;
865 			break;
866 		default:
867 			device_printf(dev, "phy_read: bad phy register %x\n",
868 			    reg);
869 			return (0);
870 			break;
871 		}
872 
873 		rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
874 
875 		if (rval == 0xFFFF)
876 			return (0);
877 		return (rval);
878 	}
879 
880 	frame.mii_phyaddr = phy;
881 	frame.mii_regaddr = reg;
882 	if (sc->dc_type == DC_TYPE_98713) {
883 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
884 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
885 	}
886 	dc_mii_readreg(sc, &frame);
887 	if (sc->dc_type == DC_TYPE_98713)
888 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
889 
890 	return (frame.mii_data);
891 }
892 
893 static int
894 dc_miibus_writereg(device_t dev, int phy, int reg, int data)
895 {
896 	struct dc_softc *sc;
897 	struct dc_mii_frame frame;
898 	int i, phy_reg = 0;
899 
900 	sc = device_get_softc(dev);
901 	bzero(&frame, sizeof(frame));
902 
903 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
904 		return (0);
905 
906 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
907 		return (0);
908 
909 	if (DC_IS_PNIC(sc)) {
910 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
911 		    (phy << 23) | (reg << 10) | data);
912 		for (i = 0; i < DC_TIMEOUT; i++) {
913 			if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
914 				break;
915 		}
916 		return (0);
917 	}
918 
919 	if (DC_IS_COMET(sc)) {
920 		switch (reg) {
921 		case MII_BMCR:
922 			phy_reg = DC_AL_BMCR;
923 			break;
924 		case MII_BMSR:
925 			phy_reg = DC_AL_BMSR;
926 			break;
927 		case MII_PHYIDR1:
928 			phy_reg = DC_AL_VENID;
929 			break;
930 		case MII_PHYIDR2:
931 			phy_reg = DC_AL_DEVID;
932 			break;
933 		case MII_ANAR:
934 			phy_reg = DC_AL_ANAR;
935 			break;
936 		case MII_ANLPAR:
937 			phy_reg = DC_AL_LPAR;
938 			break;
939 		case MII_ANER:
940 			phy_reg = DC_AL_ANER;
941 			break;
942 		default:
943 			device_printf(dev, "phy_write: bad phy register %x\n",
944 			    reg);
945 			return (0);
946 			break;
947 		}
948 
949 		CSR_WRITE_4(sc, phy_reg, data);
950 		return (0);
951 	}
952 
953 	frame.mii_phyaddr = phy;
954 	frame.mii_regaddr = reg;
955 	frame.mii_data = data;
956 
957 	if (sc->dc_type == DC_TYPE_98713) {
958 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
959 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
960 	}
961 	dc_mii_writereg(sc, &frame);
962 	if (sc->dc_type == DC_TYPE_98713)
963 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
964 
965 	return (0);
966 }
967 
968 static void
969 dc_miibus_statchg(device_t dev)
970 {
971 	struct dc_softc *sc;
972 	struct mii_data *mii;
973 	struct ifmedia *ifm;
974 
975 	sc = device_get_softc(dev);
976 	if (DC_IS_ADMTEK(sc))
977 		return;
978 
979 	mii = device_get_softc(sc->dc_miibus);
980 	ifm = &mii->mii_media;
981 	if (DC_IS_DAVICOM(sc) &&
982 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
983 		dc_setcfg(sc, ifm->ifm_media);
984 		sc->dc_if_media = ifm->ifm_media;
985 	} else {
986 		dc_setcfg(sc, mii->mii_media_active);
987 		sc->dc_if_media = mii->mii_media_active;
988 	}
989 }
990 
991 /*
992  * Special support for DM9102A cards with HomePNA PHYs. Note:
993  * with the Davicom DM9102A/DM9801 eval board that I have, it seems
994  * to be impossible to talk to the management interface of the DM9801
995  * PHY (its MDIO pin is not connected to anything). Consequently,
996  * the driver has to just 'know' about the additional mode and deal
997  * with it itself. *sigh*
998  */
999 static void
1000 dc_miibus_mediainit(device_t dev)
1001 {
1002 	struct dc_softc *sc;
1003 	struct mii_data *mii;
1004 	struct ifmedia *ifm;
1005 	int rev;
1006 
1007 	rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF;
1008 
1009 	sc = device_get_softc(dev);
1010 	mii = device_get_softc(sc->dc_miibus);
1011 	ifm = &mii->mii_media;
1012 
1013 	if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A)
1014 		ifmedia_add(ifm, IFM_ETHER | IFM_HPNA_1, 0, NULL);
1015 }
1016 
1017 #define DC_BITS_512	9
1018 #define DC_BITS_128	7
1019 #define DC_BITS_64	6
1020 
1021 static uint32_t
1022 dc_mchash_le(struct dc_softc *sc, const uint8_t *addr)
1023 {
1024 	uint32_t crc;
1025 
1026 	/* Compute CRC for the address value. */
1027 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
1028 
1029 	/*
1030 	 * The hash table on the PNIC II and the MX98715AEC-C/D/E
1031 	 * chips is only 128 bits wide.
1032 	 */
1033 	if (sc->dc_flags & DC_128BIT_HASH)
1034 		return (crc & ((1 << DC_BITS_128) - 1));
1035 
1036 	/* The hash table on the MX98715BEC is only 64 bits wide. */
1037 	if (sc->dc_flags & DC_64BIT_HASH)
1038 		return (crc & ((1 << DC_BITS_64) - 1));
1039 
1040 	/* Xircom's hash filtering table is different (read: weird) */
1041 	/* Xircom uses the LEAST significant bits */
1042 	if (DC_IS_XIRCOM(sc)) {
1043 		if ((crc & 0x180) == 0x180)
1044 			return ((crc & 0x0F) + (crc & 0x70) * 3 + (14 << 4));
1045 		else
1046 			return ((crc & 0x1F) + ((crc >> 1) & 0xF0) * 3 +
1047 			    (12 << 4));
1048 	}
1049 
1050 	return (crc & ((1 << DC_BITS_512) - 1));
1051 }
1052 
1053 /*
1054  * Calculate CRC of a multicast group address, return the lower 6 bits.
1055  */
1056 static uint32_t
1057 dc_mchash_be(const uint8_t *addr)
1058 {
1059 	uint32_t crc;
1060 
1061 	/* Compute CRC for the address value. */
1062 	crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
1063 
1064 	/* Return the filter bit position. */
1065 	return ((crc >> 26) & 0x0000003F);
1066 }
1067 
1068 /*
1069  * 21143-style RX filter setup routine. Filter programming is done by
1070  * downloading a special setup frame into the TX engine. 21143, Macronix,
1071  * PNIC, PNIC II and Davicom chips are programmed this way.
1072  *
1073  * We always program the chip using 'hash perfect' mode, i.e. one perfect
1074  * address (our node address) and a 512-bit hash filter for multicast
1075  * frames. We also sneak the broadcast address into the hash filter since
1076  * we need that too.
1077  */
1078 static void
1079 dc_setfilt_21143(struct dc_softc *sc)
1080 {
1081 	uint16_t eaddr[(ETHER_ADDR_LEN+1)/2];
1082 	struct dc_desc *sframe;
1083 	u_int32_t h, *sp;
1084 	struct ifmultiaddr *ifma;
1085 	struct ifnet *ifp;
1086 	int i;
1087 
1088 	ifp = sc->dc_ifp;
1089 
1090 	i = sc->dc_cdata.dc_tx_prod;
1091 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1092 	sc->dc_cdata.dc_tx_cnt++;
1093 	sframe = &sc->dc_ldata->dc_tx_list[i];
1094 	sp = sc->dc_cdata.dc_sbuf;
1095 	bzero(sp, DC_SFRAME_LEN);
1096 
1097 	sframe->dc_data = htole32(sc->dc_saddr);
1098 	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
1099 	    DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
1100 
1101 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
1102 
1103 	/* If we want promiscuous mode, set the allframes bit. */
1104 	if (ifp->if_flags & IFF_PROMISC)
1105 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1106 	else
1107 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1108 
1109 	if (ifp->if_flags & IFF_ALLMULTI)
1110 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1111 	else
1112 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1113 
1114 	IF_ADDR_LOCK(ifp);
1115 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1116 		if (ifma->ifma_addr->sa_family != AF_LINK)
1117 			continue;
1118 		h = dc_mchash_le(sc,
1119 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1120 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1121 	}
1122 	IF_ADDR_UNLOCK(ifp);
1123 
1124 	if (ifp->if_flags & IFF_BROADCAST) {
1125 		h = dc_mchash_le(sc, ifp->if_broadcastaddr);
1126 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1127 	}
1128 
1129 	/* Set our MAC address. */
1130 	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1131 	sp[39] = DC_SP_MAC(eaddr[0]);
1132 	sp[40] = DC_SP_MAC(eaddr[1]);
1133 	sp[41] = DC_SP_MAC(eaddr[2]);
1134 
1135 	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1136 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1137 
1138 	/*
1139 	 * The PNIC takes an exceedingly long time to process its
1140 	 * setup frame; wait 10ms after posting the setup frame
1141 	 * before proceeding, just so it has time to swallow its
1142 	 * medicine.
1143 	 */
1144 	DELAY(10000);
1145 
1146 	ifp->if_timer = 5;
1147 }
1148 
1149 static void
1150 dc_setfilt_admtek(struct dc_softc *sc)
1151 {
1152 	uint32_t eaddr[(ETHER_ADDR_LEN+3)/4];
1153 	struct ifnet *ifp;
1154 	struct ifmultiaddr *ifma;
1155 	int h = 0;
1156 	u_int32_t hashes[2] = { 0, 0 };
1157 
1158 	ifp = sc->dc_ifp;
1159 
1160 	/* Init our MAC address. */
1161 	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1162 	CSR_WRITE_4(sc, DC_AL_PAR0, eaddr[0]);
1163 	CSR_WRITE_4(sc, DC_AL_PAR1, eaddr[1]);
1164 
1165 	/* If we want promiscuous mode, set the allframes bit. */
1166 	if (ifp->if_flags & IFF_PROMISC)
1167 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1168 	else
1169 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1170 
1171 	if (ifp->if_flags & IFF_ALLMULTI)
1172 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1173 	else
1174 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1175 
1176 	/* First, zot all the existing hash bits. */
1177 	CSR_WRITE_4(sc, DC_AL_MAR0, 0);
1178 	CSR_WRITE_4(sc, DC_AL_MAR1, 0);
1179 
1180 	/*
1181 	 * If we're already in promisc or allmulti mode, we
1182 	 * don't have to bother programming the multicast filter.
1183 	 */
1184 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
1185 		return;
1186 
1187 	/* Now program new ones. */
1188 	IF_ADDR_LOCK(ifp);
1189 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1190 		if (ifma->ifma_addr->sa_family != AF_LINK)
1191 			continue;
1192 		if (DC_IS_CENTAUR(sc))
1193 			h = dc_mchash_le(sc,
1194 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1195 		else
1196 			h = dc_mchash_be(
1197 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1198 		if (h < 32)
1199 			hashes[0] |= (1 << h);
1200 		else
1201 			hashes[1] |= (1 << (h - 32));
1202 	}
1203 	IF_ADDR_UNLOCK(ifp);
1204 
1205 	CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]);
1206 	CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]);
1207 }
1208 
1209 static void
1210 dc_setfilt_asix(struct dc_softc *sc)
1211 {
1212 	uint32_t eaddr[(ETHER_ADDR_LEN+3)/4];
1213 	struct ifnet *ifp;
1214 	struct ifmultiaddr *ifma;
1215 	int h = 0;
1216 	u_int32_t hashes[2] = { 0, 0 };
1217 
1218 	ifp = sc->dc_ifp;
1219 
1220 	/* Init our MAC address. */
1221 	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1222 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
1223 	CSR_WRITE_4(sc, DC_AX_FILTDATA, eaddr[0]);
1224 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
1225 	CSR_WRITE_4(sc, DC_AX_FILTDATA, eaddr[1]);
1226 
1227 	/* If we want promiscuous mode, set the allframes bit. */
1228 	if (ifp->if_flags & IFF_PROMISC)
1229 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1230 	else
1231 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1232 
1233 	if (ifp->if_flags & IFF_ALLMULTI)
1234 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1235 	else
1236 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1237 
1238 	/*
1239 	 * The ASIX chip has a special bit to enable reception
1240 	 * of broadcast frames.
1241 	 */
1242 	if (ifp->if_flags & IFF_BROADCAST)
1243 		DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1244 	else
1245 		DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1246 
1247 	/* first, zot all the existing hash bits */
1248 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1249 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1250 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1251 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1252 
1253 	/*
1254 	 * If we're already in promisc or allmulti mode, we
1255 	 * don't have to bother programming the multicast filter.
1256 	 */
1257 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
1258 		return;
1259 
1260 	/* now program new ones */
1261 	IF_ADDR_LOCK(ifp);
1262 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1263 		if (ifma->ifma_addr->sa_family != AF_LINK)
1264 			continue;
1265 		h = dc_mchash_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1266 		if (h < 32)
1267 			hashes[0] |= (1 << h);
1268 		else
1269 			hashes[1] |= (1 << (h - 32));
1270 	}
1271 	IF_ADDR_UNLOCK(ifp);
1272 
1273 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1274 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
1275 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1276 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
1277 }
1278 
1279 static void
1280 dc_setfilt_xircom(struct dc_softc *sc)
1281 {
1282 	uint16_t eaddr[(ETHER_ADDR_LEN+1)/2];
1283 	struct ifnet *ifp;
1284 	struct ifmultiaddr *ifma;
1285 	struct dc_desc *sframe;
1286 	u_int32_t h, *sp;
1287 	int i;
1288 
1289 	ifp = sc->dc_ifp;
1290 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1291 
1292 	i = sc->dc_cdata.dc_tx_prod;
1293 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1294 	sc->dc_cdata.dc_tx_cnt++;
1295 	sframe = &sc->dc_ldata->dc_tx_list[i];
1296 	sp = sc->dc_cdata.dc_sbuf;
1297 	bzero(sp, DC_SFRAME_LEN);
1298 
1299 	sframe->dc_data = htole32(sc->dc_saddr);
1300 	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
1301 	    DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
1302 
1303 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
1304 
1305 	/* If we want promiscuous mode, set the allframes bit. */
1306 	if (ifp->if_flags & IFF_PROMISC)
1307 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1308 	else
1309 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1310 
1311 	if (ifp->if_flags & IFF_ALLMULTI)
1312 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1313 	else
1314 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1315 
1316 	IF_ADDR_LOCK(ifp);
1317 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1318 		if (ifma->ifma_addr->sa_family != AF_LINK)
1319 			continue;
1320 		h = dc_mchash_le(sc,
1321 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1322 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1323 	}
1324 	IF_ADDR_UNLOCK(ifp);
1325 
1326 	if (ifp->if_flags & IFF_BROADCAST) {
1327 		h = dc_mchash_le(sc, ifp->if_broadcastaddr);
1328 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1329 	}
1330 
1331 	/* Set our MAC address. */
1332 	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1333 	sp[0] = DC_SP_MAC(eaddr[0]);
1334 	sp[1] = DC_SP_MAC(eaddr[1]);
1335 	sp[2] = DC_SP_MAC(eaddr[2]);
1336 
1337 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
1338 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
1339 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1340 	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1341 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1342 
1343 	/*
1344 	 * Wait some time...
1345 	 */
1346 	DELAY(1000);
1347 
1348 	ifp->if_timer = 5;
1349 }
1350 
1351 static void
1352 dc_setfilt(struct dc_softc *sc)
1353 {
1354 
1355 	if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
1356 	    DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc))
1357 		dc_setfilt_21143(sc);
1358 
1359 	if (DC_IS_ASIX(sc))
1360 		dc_setfilt_asix(sc);
1361 
1362 	if (DC_IS_ADMTEK(sc))
1363 		dc_setfilt_admtek(sc);
1364 
1365 	if (DC_IS_XIRCOM(sc))
1366 		dc_setfilt_xircom(sc);
1367 }
1368 
1369 /*
1370  * In order to fiddle with the 'full-duplex' and '100Mbps' bits in
1371  * the netconfig register, we first have to put the transmit and/or
1372  * receive logic in the idle state.
1373  */
1374 static void
1375 dc_setcfg(struct dc_softc *sc, int media)
1376 {
1377 	int i, restart = 0, watchdogreg;
1378 	u_int32_t isr;
1379 
1380 	if (IFM_SUBTYPE(media) == IFM_NONE)
1381 		return;
1382 
1383 	if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON)) {
1384 		restart = 1;
1385 		DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1386 
1387 		for (i = 0; i < DC_TIMEOUT; i++) {
1388 			isr = CSR_READ_4(sc, DC_ISR);
1389 			if (isr & DC_ISR_TX_IDLE &&
1390 			    ((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
1391 			    (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT))
1392 				break;
1393 			DELAY(10);
1394 		}
1395 
1396 		if (i == DC_TIMEOUT)
1397 			if_printf(sc->dc_ifp,
1398 			    "failed to force tx and rx to idle state\n");
1399 	}
1400 
1401 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
1402 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1403 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1404 		if (sc->dc_pmode == DC_PMODE_MII) {
1405 			if (DC_IS_INTEL(sc)) {
1406 			/* There's a write enable bit here that reads as 1. */
1407 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1408 				watchdogreg &= ~DC_WDOG_CTLWREN;
1409 				watchdogreg |= DC_WDOG_JABBERDIS;
1410 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1411 			} else {
1412 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1413 			}
1414 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1415 			    DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
1416 			if (sc->dc_type == DC_TYPE_98713)
1417 				DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1418 				    DC_NETCFG_SCRAMBLER));
1419 			if (!DC_IS_DAVICOM(sc))
1420 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1421 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1422 			if (DC_IS_INTEL(sc))
1423 				dc_apply_fixup(sc, IFM_AUTO);
1424 		} else {
1425 			if (DC_IS_PNIC(sc)) {
1426 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
1427 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1428 				DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1429 			}
1430 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1431 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1432 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1433 			if (DC_IS_INTEL(sc))
1434 				dc_apply_fixup(sc,
1435 				    (media & IFM_GMASK) == IFM_FDX ?
1436 				    IFM_100_TX | IFM_FDX : IFM_100_TX);
1437 		}
1438 	}
1439 
1440 	if (IFM_SUBTYPE(media) == IFM_10_T) {
1441 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1442 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1443 		if (sc->dc_pmode == DC_PMODE_MII) {
1444 			/* There's a write enable bit here that reads as 1. */
1445 			if (DC_IS_INTEL(sc)) {
1446 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1447 				watchdogreg &= ~DC_WDOG_CTLWREN;
1448 				watchdogreg |= DC_WDOG_JABBERDIS;
1449 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1450 			} else {
1451 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1452 			}
1453 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1454 			    DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
1455 			if (sc->dc_type == DC_TYPE_98713)
1456 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1457 			if (!DC_IS_DAVICOM(sc))
1458 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1459 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1460 			if (DC_IS_INTEL(sc))
1461 				dc_apply_fixup(sc, IFM_AUTO);
1462 		} else {
1463 			if (DC_IS_PNIC(sc)) {
1464 				DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
1465 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1466 				DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1467 			}
1468 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1469 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1470 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1471 			if (DC_IS_INTEL(sc)) {
1472 				DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET);
1473 				DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1474 				if ((media & IFM_GMASK) == IFM_FDX)
1475 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D);
1476 				else
1477 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F);
1478 				DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1479 				DC_CLRBIT(sc, DC_10BTCTRL,
1480 				    DC_TCTL_AUTONEGENBL);
1481 				dc_apply_fixup(sc,
1482 				    (media & IFM_GMASK) == IFM_FDX ?
1483 				    IFM_10_T | IFM_FDX : IFM_10_T);
1484 				DELAY(20000);
1485 			}
1486 		}
1487 	}
1488 
1489 	/*
1490 	 * If this is a Davicom DM9102A card with a DM9801 HomePNA
1491 	 * PHY and we want HomePNA mode, set the portsel bit to turn
1492 	 * on the external MII port.
1493 	 */
1494 	if (DC_IS_DAVICOM(sc)) {
1495 		if (IFM_SUBTYPE(media) == IFM_HPNA_1) {
1496 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1497 			sc->dc_link = 1;
1498 		} else {
1499 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1500 		}
1501 	}
1502 
1503 	if ((media & IFM_GMASK) == IFM_FDX) {
1504 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1505 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1506 			DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1507 	} else {
1508 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1509 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1510 			DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1511 	}
1512 
1513 	if (restart)
1514 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON | DC_NETCFG_RX_ON);
1515 }
1516 
1517 static void
1518 dc_reset(struct dc_softc *sc)
1519 {
1520 	int i;
1521 
1522 	DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1523 
1524 	for (i = 0; i < DC_TIMEOUT; i++) {
1525 		DELAY(10);
1526 		if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
1527 			break;
1528 	}
1529 
1530 	if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_CONEXANT(sc) ||
1531 	    DC_IS_XIRCOM(sc) || DC_IS_INTEL(sc)) {
1532 		DELAY(10000);
1533 		DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1534 		i = 0;
1535 	}
1536 
1537 	if (i == DC_TIMEOUT)
1538 		if_printf(sc->dc_ifp, "reset never completed!\n");
1539 
1540 	/* Wait a little while for the chip to get its brains in order. */
1541 	DELAY(1000);
1542 
1543 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
1544 	CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
1545 	CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
1546 
1547 	/*
1548 	 * Bring the SIA out of reset. In some cases, it looks
1549 	 * like failing to unreset the SIA soon enough gets it
1550 	 * into a state where it will never come out of reset
1551 	 * until we reset the whole chip again.
1552 	 */
1553 	if (DC_IS_INTEL(sc)) {
1554 		DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1555 		CSR_WRITE_4(sc, DC_10BTCTRL, 0);
1556 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
1557 	}
1558 }
1559 
1560 static struct dc_type *
1561 dc_devtype(device_t dev)
1562 {
1563 	struct dc_type *t;
1564 	u_int32_t rev;
1565 
1566 	t = dc_devs;
1567 
1568 	while (t->dc_name != NULL) {
1569 		if ((pci_get_vendor(dev) == t->dc_vid) &&
1570 		    (pci_get_device(dev) == t->dc_did)) {
1571 			/* Check the PCI revision */
1572 			rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF;
1573 			if (t->dc_did == DC_DEVICEID_98713 &&
1574 			    rev >= DC_REVISION_98713A)
1575 				t++;
1576 			if (t->dc_did == DC_DEVICEID_98713_CP &&
1577 			    rev >= DC_REVISION_98713A)
1578 				t++;
1579 			if (t->dc_did == DC_DEVICEID_987x5 &&
1580 			    rev >= DC_REVISION_98715AEC_C)
1581 				t++;
1582 			if (t->dc_did == DC_DEVICEID_987x5 &&
1583 			    rev >= DC_REVISION_98725)
1584 				t++;
1585 			if (t->dc_did == DC_DEVICEID_AX88140A &&
1586 			    rev >= DC_REVISION_88141)
1587 				t++;
1588 			if (t->dc_did == DC_DEVICEID_82C168 &&
1589 			    rev >= DC_REVISION_82C169)
1590 				t++;
1591 			if (t->dc_did == DC_DEVICEID_DM9102 &&
1592 			    rev >= DC_REVISION_DM9102A)
1593 				t++;
1594 			/*
1595 			 * The Microsoft MN-130 has a device ID of 0x0002,
1596 			 * which happens to be the same as the PNIC 82c168.
1597 			 * To keep dc_attach() from getting confused, we
1598 			 * pretend its ID is something different.
1599 			 * XXX: ideally, dc_attach() should be checking
1600 			 * vendorid+deviceid together to avoid such
1601 			 * collisions.
1602 			 */
1603 			if (t->dc_vid == DC_VENDORID_MICROSOFT &&
1604 			    t->dc_did == DC_DEVICEID_MSMN130)
1605 				t++;
1606 			return (t);
1607 		}
1608 		t++;
1609 	}
1610 
1611 	return (NULL);
1612 }
1613 
1614 /*
1615  * Probe for a 21143 or clone chip. Check the PCI vendor and device
1616  * IDs against our list and return a device name if we find a match.
1617  * We do a little bit of extra work to identify the exact type of
1618  * chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
1619  * but different revision IDs. The same is true for 98715/98715A
1620  * chips and the 98725, as well as the ASIX and ADMtek chips. In some
1621  * cases, the exact chip revision affects driver behavior.
1622  */
1623 static int
1624 dc_probe(device_t dev)
1625 {
1626 	struct dc_type *t;
1627 
1628 	t = dc_devtype(dev);
1629 
1630 	if (t != NULL) {
1631 		device_set_desc(dev, t->dc_name);
1632 		return (BUS_PROBE_DEFAULT);
1633 	}
1634 
1635 	return (ENXIO);
1636 }
1637 
1638 static void
1639 dc_apply_fixup(struct dc_softc *sc, int media)
1640 {
1641 	struct dc_mediainfo *m;
1642 	u_int8_t *p;
1643 	int i;
1644 	u_int32_t reg;
1645 
1646 	m = sc->dc_mi;
1647 
1648 	while (m != NULL) {
1649 		if (m->dc_media == media)
1650 			break;
1651 		m = m->dc_next;
1652 	}
1653 
1654 	if (m == NULL)
1655 		return;
1656 
1657 	for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) {
1658 		reg = (p[0] | (p[1] << 8)) << 16;
1659 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1660 	}
1661 
1662 	for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) {
1663 		reg = (p[0] | (p[1] << 8)) << 16;
1664 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1665 	}
1666 }
1667 
1668 static void
1669 dc_decode_leaf_sia(struct dc_softc *sc, struct dc_eblock_sia *l)
1670 {
1671 	struct dc_mediainfo *m;
1672 
1673 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1674 	switch (l->dc_sia_code & ~DC_SIA_CODE_EXT) {
1675 	case DC_SIA_CODE_10BT:
1676 		m->dc_media = IFM_10_T;
1677 		break;
1678 	case DC_SIA_CODE_10BT_FDX:
1679 		m->dc_media = IFM_10_T | IFM_FDX;
1680 		break;
1681 	case DC_SIA_CODE_10B2:
1682 		m->dc_media = IFM_10_2;
1683 		break;
1684 	case DC_SIA_CODE_10B5:
1685 		m->dc_media = IFM_10_5;
1686 		break;
1687 	default:
1688 		break;
1689 	}
1690 
1691 	/*
1692 	 * We need to ignore CSR13, CSR14, CSR15 for SIA mode.
1693 	 * Things apparently already work for cards that do
1694 	 * supply Media Specific Data.
1695 	 */
1696 	if (l->dc_sia_code & DC_SIA_CODE_EXT) {
1697 		m->dc_gp_len = 2;
1698 		m->dc_gp_ptr =
1699 		(u_int8_t *)&l->dc_un.dc_sia_ext.dc_sia_gpio_ctl;
1700 	} else {
1701 		m->dc_gp_len = 2;
1702 		m->dc_gp_ptr =
1703 		(u_int8_t *)&l->dc_un.dc_sia_noext.dc_sia_gpio_ctl;
1704 	}
1705 
1706 	m->dc_next = sc->dc_mi;
1707 	sc->dc_mi = m;
1708 
1709 	sc->dc_pmode = DC_PMODE_SIA;
1710 }
1711 
1712 static void
1713 dc_decode_leaf_sym(struct dc_softc *sc, struct dc_eblock_sym *l)
1714 {
1715 	struct dc_mediainfo *m;
1716 
1717 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1718 	if (l->dc_sym_code == DC_SYM_CODE_100BT)
1719 		m->dc_media = IFM_100_TX;
1720 
1721 	if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX)
1722 		m->dc_media = IFM_100_TX | IFM_FDX;
1723 
1724 	m->dc_gp_len = 2;
1725 	m->dc_gp_ptr = (u_int8_t *)&l->dc_sym_gpio_ctl;
1726 
1727 	m->dc_next = sc->dc_mi;
1728 	sc->dc_mi = m;
1729 
1730 	sc->dc_pmode = DC_PMODE_SYM;
1731 }
1732 
1733 static void
1734 dc_decode_leaf_mii(struct dc_softc *sc, struct dc_eblock_mii *l)
1735 {
1736 	struct dc_mediainfo *m;
1737 	u_int8_t *p;
1738 
1739 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1740 	/* We abuse IFM_AUTO to represent MII. */
1741 	m->dc_media = IFM_AUTO;
1742 	m->dc_gp_len = l->dc_gpr_len;
1743 
1744 	p = (u_int8_t *)l;
1745 	p += sizeof(struct dc_eblock_mii);
1746 	m->dc_gp_ptr = p;
1747 	p += 2 * l->dc_gpr_len;
1748 	m->dc_reset_len = *p;
1749 	p++;
1750 	m->dc_reset_ptr = p;
1751 
1752 	m->dc_next = sc->dc_mi;
1753 	sc->dc_mi = m;
1754 }
1755 
1756 static void
1757 dc_read_srom(struct dc_softc *sc, int bits)
1758 {
1759 	int size;
1760 
1761 	size = 2 << bits;
1762 	sc->dc_srom = malloc(size, M_DEVBUF, M_NOWAIT);
1763 	dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (size / 2), 0);
1764 }
1765 
1766 static void
1767 dc_parse_21143_srom(struct dc_softc *sc)
1768 {
1769 	struct dc_leaf_hdr *lhdr;
1770 	struct dc_eblock_hdr *hdr;
1771 	int have_mii, i, loff;
1772 	char *ptr;
1773 
1774 	have_mii = 0;
1775 	loff = sc->dc_srom[27];
1776 	lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]);
1777 
1778 	ptr = (char *)lhdr;
1779 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1780 	/*
1781 	 * Look if we got a MII media block.
1782 	 */
1783 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1784 		hdr = (struct dc_eblock_hdr *)ptr;
1785 		if (hdr->dc_type == DC_EBLOCK_MII)
1786 		    have_mii++;
1787 
1788 		ptr += (hdr->dc_len & 0x7F);
1789 		ptr++;
1790 	}
1791 
1792 	/*
1793 	 * Do the same thing again. Only use SIA and SYM media
1794 	 * blocks if no MII media block is available.
1795 	 */
1796 	ptr = (char *)lhdr;
1797 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1798 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1799 		hdr = (struct dc_eblock_hdr *)ptr;
1800 		switch (hdr->dc_type) {
1801 		case DC_EBLOCK_MII:
1802 			dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr);
1803 			break;
1804 		case DC_EBLOCK_SIA:
1805 			if (! have_mii)
1806 				dc_decode_leaf_sia(sc,
1807 				    (struct dc_eblock_sia *)hdr);
1808 			break;
1809 		case DC_EBLOCK_SYM:
1810 			if (! have_mii)
1811 				dc_decode_leaf_sym(sc,
1812 				    (struct dc_eblock_sym *)hdr);
1813 			break;
1814 		default:
1815 			/* Don't care. Yet. */
1816 			break;
1817 		}
1818 		ptr += (hdr->dc_len & 0x7F);
1819 		ptr++;
1820 	}
1821 }
1822 
1823 static void
1824 dc_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1825 {
1826 	u_int32_t *paddr;
1827 
1828 	KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
1829 	paddr = arg;
1830 	*paddr = segs->ds_addr;
1831 }
1832 
1833 /*
1834  * Attach the interface. Allocate softc structures, do ifmedia
1835  * setup and ethernet/BPF attach.
1836  */
1837 static int
1838 dc_attach(device_t dev)
1839 {
1840 	int tmp = 0;
1841 	uint32_t eaddr[(ETHER_ADDR_LEN+3)/4];
1842 	u_int32_t command;
1843 	struct dc_softc *sc;
1844 	struct ifnet *ifp;
1845 	u_int32_t revision;
1846 	int error = 0, rid, mac_offset;
1847 	int i;
1848 	u_int8_t *mac;
1849 
1850 	sc = device_get_softc(dev);
1851 
1852 	mtx_init(&sc->dc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1853 	    MTX_DEF);
1854 
1855 	/*
1856 	 * Map control/status registers.
1857 	 */
1858 	pci_enable_busmaster(dev);
1859 
1860 	rid = DC_RID;
1861 	sc->dc_res = bus_alloc_resource_any(dev, DC_RES, &rid, RF_ACTIVE);
1862 
1863 	if (sc->dc_res == NULL) {
1864 		device_printf(dev, "couldn't map ports/memory\n");
1865 		error = ENXIO;
1866 		goto fail;
1867 	}
1868 
1869 	sc->dc_btag = rman_get_bustag(sc->dc_res);
1870 	sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
1871 
1872 	/* Allocate interrupt. */
1873 	rid = 0;
1874 	sc->dc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1875 	    RF_SHAREABLE | RF_ACTIVE);
1876 
1877 	if (sc->dc_irq == NULL) {
1878 		device_printf(dev, "couldn't map interrupt\n");
1879 		error = ENXIO;
1880 		goto fail;
1881 	}
1882 
1883 	/* Need this info to decide on a chip type. */
1884 	sc->dc_info = dc_devtype(dev);
1885 	revision = pci_read_config(dev, DC_PCI_CFRV, 4) & 0x000000FF;
1886 
1887 	/* Get the eeprom width, but PNIC and XIRCOM have diff eeprom */
1888 	if (sc->dc_info->dc_did != DC_DEVICEID_82C168 &&
1889 	   sc->dc_info->dc_did != DC_DEVICEID_X3201)
1890 		dc_eeprom_width(sc);
1891 
1892 	switch (sc->dc_info->dc_did) {
1893 	case DC_DEVICEID_21143:
1894 		sc->dc_type = DC_TYPE_21143;
1895 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1896 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1897 		/* Save EEPROM contents so we can parse them later. */
1898 		dc_read_srom(sc, sc->dc_romwidth);
1899 		break;
1900 	case DC_DEVICEID_DM9009:
1901 	case DC_DEVICEID_DM9100:
1902 	case DC_DEVICEID_DM9102:
1903 		sc->dc_type = DC_TYPE_DM9102;
1904 		sc->dc_flags |= DC_TX_COALESCE | DC_TX_INTR_ALWAYS;
1905 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_TX_STORENFWD;
1906 		sc->dc_flags |= DC_TX_ALIGN;
1907 		sc->dc_pmode = DC_PMODE_MII;
1908 		/* Increase the latency timer value. */
1909 		command = pci_read_config(dev, DC_PCI_CFLT, 4);
1910 		command &= 0xFFFF00FF;
1911 		command |= 0x00008000;
1912 		pci_write_config(dev, DC_PCI_CFLT, command, 4);
1913 		break;
1914 	case DC_DEVICEID_AL981:
1915 		sc->dc_type = DC_TYPE_AL981;
1916 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1917 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1918 		sc->dc_pmode = DC_PMODE_MII;
1919 		dc_read_srom(sc, sc->dc_romwidth);
1920 		break;
1921 	case DC_DEVICEID_AN985:
1922 	case DC_DEVICEID_ADM9511:
1923 	case DC_DEVICEID_ADM9513:
1924 	case DC_DEVICEID_FA511:
1925 	case DC_DEVICEID_FE2500:
1926 	case DC_DEVICEID_EN2242:
1927 	case DC_DEVICEID_HAWKING_PN672TX:
1928 	case DC_DEVICEID_3CSOHOB:
1929 	case DC_DEVICEID_MSMN120:
1930 	case DC_DEVICEID_MSMN130_FAKE: /* XXX avoid collision with PNIC*/
1931 		sc->dc_type = DC_TYPE_AN985;
1932 		sc->dc_flags |= DC_64BIT_HASH;
1933 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1934 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1935 		sc->dc_pmode = DC_PMODE_MII;
1936 		/* Don't read SROM for - auto-loaded on reset */
1937 		break;
1938 	case DC_DEVICEID_98713:
1939 	case DC_DEVICEID_98713_CP:
1940 		if (revision < DC_REVISION_98713A) {
1941 			sc->dc_type = DC_TYPE_98713;
1942 		}
1943 		if (revision >= DC_REVISION_98713A) {
1944 			sc->dc_type = DC_TYPE_98713A;
1945 			sc->dc_flags |= DC_21143_NWAY;
1946 		}
1947 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1948 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1949 		break;
1950 	case DC_DEVICEID_987x5:
1951 	case DC_DEVICEID_EN1217:
1952 		/*
1953 		 * Macronix MX98715AEC-C/D/E parts have only a
1954 		 * 128-bit hash table. We need to deal with these
1955 		 * in the same manner as the PNIC II so that we
1956 		 * get the right number of bits out of the
1957 		 * CRC routine.
1958 		 */
1959 		if (revision >= DC_REVISION_98715AEC_C &&
1960 		    revision < DC_REVISION_98725)
1961 			sc->dc_flags |= DC_128BIT_HASH;
1962 		sc->dc_type = DC_TYPE_987x5;
1963 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1964 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
1965 		break;
1966 	case DC_DEVICEID_98727:
1967 		sc->dc_type = DC_TYPE_987x5;
1968 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1969 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
1970 		break;
1971 	case DC_DEVICEID_82C115:
1972 		sc->dc_type = DC_TYPE_PNICII;
1973 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR | DC_128BIT_HASH;
1974 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
1975 		break;
1976 	case DC_DEVICEID_82C168:
1977 		sc->dc_type = DC_TYPE_PNIC;
1978 		sc->dc_flags |= DC_TX_STORENFWD | DC_TX_INTR_ALWAYS;
1979 		sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
1980 		sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_NOWAIT);
1981 		if (revision < DC_REVISION_82C169)
1982 			sc->dc_pmode = DC_PMODE_SYM;
1983 		break;
1984 	case DC_DEVICEID_AX88140A:
1985 		sc->dc_type = DC_TYPE_ASIX;
1986 		sc->dc_flags |= DC_TX_USE_TX_INTR | DC_TX_INTR_FIRSTFRAG;
1987 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1988 		sc->dc_pmode = DC_PMODE_MII;
1989 		break;
1990 	case DC_DEVICEID_X3201:
1991 		sc->dc_type = DC_TYPE_XIRCOM;
1992 		sc->dc_flags |= DC_TX_INTR_ALWAYS | DC_TX_COALESCE |
1993 				DC_TX_ALIGN;
1994 		/*
1995 		 * We don't actually need to coalesce, but we're doing
1996 		 * it to obtain a double word aligned buffer.
1997 		 * The DC_TX_COALESCE flag is required.
1998 		 */
1999 		sc->dc_pmode = DC_PMODE_MII;
2000 		break;
2001 	case DC_DEVICEID_RS7112:
2002 		sc->dc_type = DC_TYPE_CONEXANT;
2003 		sc->dc_flags |= DC_TX_INTR_ALWAYS;
2004 		sc->dc_flags |= DC_REDUCED_MII_POLL;
2005 		sc->dc_pmode = DC_PMODE_MII;
2006 		dc_read_srom(sc, sc->dc_romwidth);
2007 		break;
2008 	default:
2009 		device_printf(dev, "unknown device: %x\n", sc->dc_info->dc_did);
2010 		break;
2011 	}
2012 
2013 	/* Save the cache line size. */
2014 	if (DC_IS_DAVICOM(sc))
2015 		sc->dc_cachesize = 0;
2016 	else
2017 		sc->dc_cachesize = pci_read_config(dev,
2018 		    DC_PCI_CFLT, 4) & 0xFF;
2019 
2020 	/* Reset the adapter. */
2021 	dc_reset(sc);
2022 
2023 	/* Take 21143 out of snooze mode */
2024 	if (DC_IS_INTEL(sc) || DC_IS_XIRCOM(sc)) {
2025 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
2026 		command &= ~(DC_CFDD_SNOOZE_MODE | DC_CFDD_SLEEP_MODE);
2027 		pci_write_config(dev, DC_PCI_CFDD, command, 4);
2028 	}
2029 
2030 	/*
2031 	 * Try to learn something about the supported media.
2032 	 * We know that ASIX and ADMtek and Davicom devices
2033 	 * will *always* be using MII media, so that's a no-brainer.
2034 	 * The tricky ones are the Macronix/PNIC II and the
2035 	 * Intel 21143.
2036 	 */
2037 	if (DC_IS_INTEL(sc))
2038 		dc_parse_21143_srom(sc);
2039 	else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
2040 		if (sc->dc_type == DC_TYPE_98713)
2041 			sc->dc_pmode = DC_PMODE_MII;
2042 		else
2043 			sc->dc_pmode = DC_PMODE_SYM;
2044 	} else if (!sc->dc_pmode)
2045 		sc->dc_pmode = DC_PMODE_MII;
2046 
2047 	/*
2048 	 * Get station address from the EEPROM.
2049 	 */
2050 	switch(sc->dc_type) {
2051 	case DC_TYPE_98713:
2052 	case DC_TYPE_98713A:
2053 	case DC_TYPE_987x5:
2054 	case DC_TYPE_PNICII:
2055 		dc_read_eeprom(sc, (caddr_t)&mac_offset,
2056 		    (DC_EE_NODEADDR_OFFSET / 2), 1, 0);
2057 		dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
2058 		break;
2059 	case DC_TYPE_PNIC:
2060 		dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
2061 		break;
2062 	case DC_TYPE_DM9102:
2063 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2064 #ifdef __sparc64__
2065 		/*
2066 		 * If this is an onboard dc(4) the station address read from
2067 		 * the EEPROM is all zero and we have to get it from the FCode.
2068 		 */
2069 		if (eaddr[0] == 0 && (eaddr[1] & ~0xffff) == 0)
2070 			OF_getetheraddr(dev, (caddr_t)&eaddr);
2071 #endif
2072 		break;
2073 	case DC_TYPE_21143:
2074 	case DC_TYPE_ASIX:
2075 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2076 		break;
2077 	case DC_TYPE_AL981:
2078 	case DC_TYPE_AN985:
2079 		eaddr[0] = CSR_READ_4(sc, DC_AL_PAR0);
2080 		eaddr[1] = CSR_READ_4(sc, DC_AL_PAR1);
2081 		break;
2082 	case DC_TYPE_CONEXANT:
2083 		bcopy(sc->dc_srom + DC_CONEXANT_EE_NODEADDR, &eaddr,
2084 		    ETHER_ADDR_LEN);
2085 		break;
2086 	case DC_TYPE_XIRCOM:
2087 		/* The MAC comes from the CIS. */
2088 		mac = pci_get_ether(dev);
2089 		if (!mac) {
2090 			device_printf(dev, "No station address in CIS!\n");
2091 			error = ENXIO;
2092 			goto fail;
2093 		}
2094 		bcopy(mac, eaddr, ETHER_ADDR_LEN);
2095 		break;
2096 	default:
2097 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2098 		break;
2099 	}
2100 
2101 	/* Allocate a busdma tag and DMA safe memory for TX/RX descriptors. */
2102 	error = bus_dma_tag_create(NULL, PAGE_SIZE, 0, BUS_SPACE_MAXADDR_32BIT,
2103 	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct dc_list_data), 1,
2104 	    sizeof(struct dc_list_data), 0, NULL, NULL, &sc->dc_ltag);
2105 	if (error) {
2106 		device_printf(dev, "failed to allocate busdma tag\n");
2107 		error = ENXIO;
2108 		goto fail;
2109 	}
2110 	error = bus_dmamem_alloc(sc->dc_ltag, (void **)&sc->dc_ldata,
2111 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->dc_lmap);
2112 	if (error) {
2113 		device_printf(dev, "failed to allocate DMA safe memory\n");
2114 		error = ENXIO;
2115 		goto fail;
2116 	}
2117 	error = bus_dmamap_load(sc->dc_ltag, sc->dc_lmap, sc->dc_ldata,
2118 	    sizeof(struct dc_list_data), dc_dma_map_addr, &sc->dc_laddr,
2119 	    BUS_DMA_NOWAIT);
2120 	if (error) {
2121 		device_printf(dev, "cannot get address of the descriptors\n");
2122 		error = ENXIO;
2123 		goto fail;
2124 	}
2125 
2126 	/*
2127 	 * Allocate a busdma tag and DMA safe memory for the multicast
2128 	 * setup frame.
2129 	 */
2130 	error = bus_dma_tag_create(NULL, PAGE_SIZE, 0, BUS_SPACE_MAXADDR_32BIT,
2131 	    BUS_SPACE_MAXADDR, NULL, NULL, DC_SFRAME_LEN + DC_MIN_FRAMELEN, 1,
2132 	    DC_SFRAME_LEN + DC_MIN_FRAMELEN, 0, NULL, NULL, &sc->dc_stag);
2133 	if (error) {
2134 		device_printf(dev, "failed to allocate busdma tag\n");
2135 		error = ENXIO;
2136 		goto fail;
2137 	}
2138 	error = bus_dmamem_alloc(sc->dc_stag, (void **)&sc->dc_cdata.dc_sbuf,
2139 	    BUS_DMA_NOWAIT, &sc->dc_smap);
2140 	if (error) {
2141 		device_printf(dev, "failed to allocate DMA safe memory\n");
2142 		error = ENXIO;
2143 		goto fail;
2144 	}
2145 	error = bus_dmamap_load(sc->dc_stag, sc->dc_smap, sc->dc_cdata.dc_sbuf,
2146 	    DC_SFRAME_LEN, dc_dma_map_addr, &sc->dc_saddr, BUS_DMA_NOWAIT);
2147 	if (error) {
2148 		device_printf(dev, "cannot get address of the descriptors\n");
2149 		error = ENXIO;
2150 		goto fail;
2151 	}
2152 
2153 	/* Allocate a busdma tag for mbufs. */
2154 	error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
2155 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, DC_TX_LIST_CNT, MCLBYTES,
2156 	    0, NULL, NULL, &sc->dc_mtag);
2157 	if (error) {
2158 		device_printf(dev, "failed to allocate busdma tag\n");
2159 		error = ENXIO;
2160 		goto fail;
2161 	}
2162 
2163 	/* Create the TX/RX busdma maps. */
2164 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2165 		error = bus_dmamap_create(sc->dc_mtag, 0,
2166 		    &sc->dc_cdata.dc_tx_map[i]);
2167 		if (error) {
2168 			device_printf(dev, "failed to init TX ring\n");
2169 			error = ENXIO;
2170 			goto fail;
2171 		}
2172 	}
2173 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2174 		error = bus_dmamap_create(sc->dc_mtag, 0,
2175 		    &sc->dc_cdata.dc_rx_map[i]);
2176 		if (error) {
2177 			device_printf(dev, "failed to init RX ring\n");
2178 			error = ENXIO;
2179 			goto fail;
2180 		}
2181 	}
2182 	error = bus_dmamap_create(sc->dc_mtag, 0, &sc->dc_sparemap);
2183 	if (error) {
2184 		device_printf(dev, "failed to init RX ring\n");
2185 		error = ENXIO;
2186 		goto fail;
2187 	}
2188 
2189 	ifp = sc->dc_ifp = if_alloc(IFT_ETHER);
2190 	if (ifp == NULL) {
2191 		device_printf(dev, "can not if_alloc()\n");
2192 		error = ENOSPC;
2193 		goto fail;
2194 	}
2195 	ifp->if_softc = sc;
2196 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2197 	/* XXX: bleah, MTU gets overwritten in ether_ifattach() */
2198 	ifp->if_mtu = ETHERMTU;
2199 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2200 	ifp->if_ioctl = dc_ioctl;
2201 	ifp->if_start = dc_start;
2202 	ifp->if_watchdog = dc_watchdog;
2203 	ifp->if_init = dc_init;
2204 	ifp->if_baudrate = 10000000;
2205 	IFQ_SET_MAXLEN(&ifp->if_snd, DC_TX_LIST_CNT - 1);
2206 	ifp->if_snd.ifq_drv_maxlen = DC_TX_LIST_CNT - 1;
2207 	IFQ_SET_READY(&ifp->if_snd);
2208 
2209 	/*
2210 	 * Do MII setup. If this is a 21143, check for a PHY on the
2211 	 * MII bus after applying any necessary fixups to twiddle the
2212 	 * GPIO bits. If we don't end up finding a PHY, restore the
2213 	 * old selection (SIA only or SIA/SYM) and attach the dcphy
2214 	 * driver instead.
2215 	 */
2216 	if (DC_IS_INTEL(sc)) {
2217 		dc_apply_fixup(sc, IFM_AUTO);
2218 		tmp = sc->dc_pmode;
2219 		sc->dc_pmode = DC_PMODE_MII;
2220 	}
2221 
2222 	/*
2223 	 * Setup General Purpose port mode and data so the tulip can talk
2224 	 * to the MII.  This needs to be done before mii_phy_probe so that
2225 	 * we can actually see them.
2226 	 */
2227 	if (DC_IS_XIRCOM(sc)) {
2228 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
2229 		    DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2230 		DELAY(10);
2231 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
2232 		    DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2233 		DELAY(10);
2234 	}
2235 
2236 	error = mii_phy_probe(dev, &sc->dc_miibus,
2237 	    dc_ifmedia_upd, dc_ifmedia_sts);
2238 
2239 	if (error && DC_IS_INTEL(sc)) {
2240 		sc->dc_pmode = tmp;
2241 		if (sc->dc_pmode != DC_PMODE_SIA)
2242 			sc->dc_pmode = DC_PMODE_SYM;
2243 		sc->dc_flags |= DC_21143_NWAY;
2244 		mii_phy_probe(dev, &sc->dc_miibus,
2245 		    dc_ifmedia_upd, dc_ifmedia_sts);
2246 		/*
2247 		 * For non-MII cards, we need to have the 21143
2248 		 * drive the LEDs. Except there are some systems
2249 		 * like the NEC VersaPro NoteBook PC which have no
2250 		 * LEDs, and twiddling these bits has adverse effects
2251 		 * on them. (I.e. you suddenly can't get a link.)
2252 		 */
2253 		if (pci_read_config(dev, DC_PCI_CSID, 4) != 0x80281033)
2254 			sc->dc_flags |= DC_TULIP_LEDS;
2255 		error = 0;
2256 	}
2257 
2258 	if (error) {
2259 		device_printf(dev, "MII without any PHY!\n");
2260 		goto fail;
2261 	}
2262 
2263 	if (DC_IS_ADMTEK(sc)) {
2264 		/*
2265 		 * Set automatic TX underrun recovery for the ADMtek chips
2266 		 */
2267 		DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR);
2268 	}
2269 
2270 	/*
2271 	 * Tell the upper layer(s) we support long frames.
2272 	 */
2273 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2274 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
2275 	ifp->if_capenable = ifp->if_capabilities;
2276 #ifdef DEVICE_POLLING
2277 	ifp->if_capabilities |= IFCAP_POLLING;
2278 #endif
2279 
2280 	callout_init_mtx(&sc->dc_stat_ch, &sc->dc_mtx, 0);
2281 
2282 #ifdef SRM_MEDIA
2283 	sc->dc_srm_media = 0;
2284 
2285 	/* Remember the SRM console media setting */
2286 	if (DC_IS_INTEL(sc)) {
2287 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
2288 		command &= ~(DC_CFDD_SNOOZE_MODE | DC_CFDD_SLEEP_MODE);
2289 		switch ((command >> 8) & 0xff) {
2290 		case 3:
2291 			sc->dc_srm_media = IFM_10_T;
2292 			break;
2293 		case 4:
2294 			sc->dc_srm_media = IFM_10_T | IFM_FDX;
2295 			break;
2296 		case 5:
2297 			sc->dc_srm_media = IFM_100_TX;
2298 			break;
2299 		case 6:
2300 			sc->dc_srm_media = IFM_100_TX | IFM_FDX;
2301 			break;
2302 		}
2303 		if (sc->dc_srm_media)
2304 			sc->dc_srm_media |= IFM_ACTIVE | IFM_ETHER;
2305 	}
2306 #endif
2307 
2308 	/*
2309 	 * Call MI attach routine.
2310 	 */
2311 	ether_ifattach(ifp, (caddr_t)eaddr);
2312 
2313 	/* Hook interrupt last to avoid having to lock softc */
2314 	error = bus_setup_intr(dev, sc->dc_irq, INTR_TYPE_NET | INTR_MPSAFE,
2315 	    dc_intr, sc, &sc->dc_intrhand);
2316 
2317 	if (error) {
2318 		device_printf(dev, "couldn't set up irq\n");
2319 		ether_ifdetach(ifp);
2320 		goto fail;
2321 	}
2322 
2323 fail:
2324 	if (error)
2325 		dc_detach(dev);
2326 	return (error);
2327 }
2328 
2329 /*
2330  * Shutdown hardware and free up resources. This can be called any
2331  * time after the mutex has been initialized. It is called in both
2332  * the error case in attach and the normal detach case so it needs
2333  * to be careful about only freeing resources that have actually been
2334  * allocated.
2335  */
2336 static int
2337 dc_detach(device_t dev)
2338 {
2339 	struct dc_softc *sc;
2340 	struct ifnet *ifp;
2341 	struct dc_mediainfo *m;
2342 	int i;
2343 
2344 	sc = device_get_softc(dev);
2345 	KASSERT(mtx_initialized(&sc->dc_mtx), ("dc mutex not initialized"));
2346 
2347 	ifp = sc->dc_ifp;
2348 
2349 #ifdef DEVICE_POLLING
2350 	if (ifp->if_capenable & IFCAP_POLLING)
2351 		ether_poll_deregister(ifp);
2352 #endif
2353 
2354 	/* These should only be active if attach succeeded */
2355 	if (device_is_attached(dev)) {
2356 		DC_LOCK(sc);
2357 		dc_stop(sc);
2358 		DC_UNLOCK(sc);
2359 		callout_drain(&sc->dc_stat_ch);
2360 		ether_ifdetach(ifp);
2361 	}
2362 	if (sc->dc_miibus)
2363 		device_delete_child(dev, sc->dc_miibus);
2364 	bus_generic_detach(dev);
2365 
2366 	if (sc->dc_intrhand)
2367 		bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2368 	if (sc->dc_irq)
2369 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2370 	if (sc->dc_res)
2371 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2372 
2373 	if (ifp)
2374 		if_free(ifp);
2375 
2376 	if (sc->dc_cdata.dc_sbuf != NULL)
2377 		bus_dmamem_free(sc->dc_stag, sc->dc_cdata.dc_sbuf, sc->dc_smap);
2378 	if (sc->dc_ldata != NULL)
2379 		bus_dmamem_free(sc->dc_ltag, sc->dc_ldata, sc->dc_lmap);
2380 	if (sc->dc_mtag) {
2381 		for (i = 0; i < DC_TX_LIST_CNT; i++)
2382 			if (sc->dc_cdata.dc_tx_map[i] != NULL)
2383 				bus_dmamap_destroy(sc->dc_mtag,
2384 				    sc->dc_cdata.dc_tx_map[i]);
2385 		for (i = 0; i < DC_RX_LIST_CNT; i++)
2386 			if (sc->dc_cdata.dc_rx_map[i] != NULL)
2387 				bus_dmamap_destroy(sc->dc_mtag,
2388 				    sc->dc_cdata.dc_rx_map[i]);
2389 		bus_dmamap_destroy(sc->dc_mtag, sc->dc_sparemap);
2390 	}
2391 	if (sc->dc_stag)
2392 		bus_dma_tag_destroy(sc->dc_stag);
2393 	if (sc->dc_mtag)
2394 		bus_dma_tag_destroy(sc->dc_mtag);
2395 	if (sc->dc_ltag)
2396 		bus_dma_tag_destroy(sc->dc_ltag);
2397 
2398 	free(sc->dc_pnic_rx_buf, M_DEVBUF);
2399 
2400 	while (sc->dc_mi != NULL) {
2401 		m = sc->dc_mi->dc_next;
2402 		free(sc->dc_mi, M_DEVBUF);
2403 		sc->dc_mi = m;
2404 	}
2405 	free(sc->dc_srom, M_DEVBUF);
2406 
2407 	mtx_destroy(&sc->dc_mtx);
2408 
2409 	return (0);
2410 }
2411 
2412 /*
2413  * Initialize the transmit descriptors.
2414  */
2415 static int
2416 dc_list_tx_init(struct dc_softc *sc)
2417 {
2418 	struct dc_chain_data *cd;
2419 	struct dc_list_data *ld;
2420 	int i, nexti;
2421 
2422 	cd = &sc->dc_cdata;
2423 	ld = sc->dc_ldata;
2424 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2425 		if (i == DC_TX_LIST_CNT - 1)
2426 			nexti = 0;
2427 		else
2428 			nexti = i + 1;
2429 		ld->dc_tx_list[i].dc_next = htole32(DC_TXDESC(sc, nexti));
2430 		cd->dc_tx_chain[i] = NULL;
2431 		ld->dc_tx_list[i].dc_data = 0;
2432 		ld->dc_tx_list[i].dc_ctl = 0;
2433 	}
2434 
2435 	cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
2436 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
2437 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2438 	return (0);
2439 }
2440 
2441 
2442 /*
2443  * Initialize the RX descriptors and allocate mbufs for them. Note that
2444  * we arrange the descriptors in a closed ring, so that the last descriptor
2445  * points back to the first.
2446  */
2447 static int
2448 dc_list_rx_init(struct dc_softc *sc)
2449 {
2450 	struct dc_chain_data *cd;
2451 	struct dc_list_data *ld;
2452 	int i, nexti;
2453 
2454 	cd = &sc->dc_cdata;
2455 	ld = sc->dc_ldata;
2456 
2457 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2458 		if (dc_newbuf(sc, i, 1) != 0)
2459 			return (ENOBUFS);
2460 		if (i == DC_RX_LIST_CNT - 1)
2461 			nexti = 0;
2462 		else
2463 			nexti = i + 1;
2464 		ld->dc_rx_list[i].dc_next = htole32(DC_RXDESC(sc, nexti));
2465 	}
2466 
2467 	cd->dc_rx_prod = 0;
2468 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
2469 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2470 	return (0);
2471 }
2472 
2473 static void
2474 dc_dma_map_rxbuf(arg, segs, nseg, mapsize, error)
2475 	void *arg;
2476 	bus_dma_segment_t *segs;
2477 	int nseg;
2478 	bus_size_t mapsize;
2479 	int error;
2480 {
2481 	struct dc_softc *sc;
2482 	struct dc_desc *c;
2483 
2484 	sc = arg;
2485 	c = &sc->dc_ldata->dc_rx_list[sc->dc_cdata.dc_rx_cur];
2486 	if (error) {
2487 		sc->dc_cdata.dc_rx_err = error;
2488 		return;
2489 	}
2490 
2491 	KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
2492 	sc->dc_cdata.dc_rx_err = 0;
2493 	c->dc_data = htole32(segs->ds_addr);
2494 }
2495 
2496 /*
2497  * Initialize an RX descriptor and attach an MBUF cluster.
2498  */
2499 static int
2500 dc_newbuf(struct dc_softc *sc, int i, int alloc)
2501 {
2502 	struct mbuf *m_new;
2503 	bus_dmamap_t tmp;
2504 	int error;
2505 
2506 	if (alloc) {
2507 		m_new = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2508 		if (m_new == NULL)
2509 			return (ENOBUFS);
2510 	} else {
2511 		m_new = sc->dc_cdata.dc_rx_chain[i];
2512 		m_new->m_data = m_new->m_ext.ext_buf;
2513 	}
2514 	m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2515 	m_adj(m_new, sizeof(u_int64_t));
2516 
2517 	/*
2518 	 * If this is a PNIC chip, zero the buffer. This is part
2519 	 * of the workaround for the receive bug in the 82c168 and
2520 	 * 82c169 chips.
2521 	 */
2522 	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
2523 		bzero(mtod(m_new, char *), m_new->m_len);
2524 
2525 	/* No need to remap the mbuf if we're reusing it. */
2526 	if (alloc) {
2527 		sc->dc_cdata.dc_rx_cur = i;
2528 		error = bus_dmamap_load_mbuf(sc->dc_mtag, sc->dc_sparemap,
2529 		    m_new, dc_dma_map_rxbuf, sc, 0);
2530 		if (error) {
2531 			m_freem(m_new);
2532 			return (error);
2533 		}
2534 		if (sc->dc_cdata.dc_rx_err != 0) {
2535 			m_freem(m_new);
2536 			return (sc->dc_cdata.dc_rx_err);
2537 		}
2538 		bus_dmamap_unload(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i]);
2539 		tmp = sc->dc_cdata.dc_rx_map[i];
2540 		sc->dc_cdata.dc_rx_map[i] = sc->dc_sparemap;
2541 		sc->dc_sparemap = tmp;
2542 		sc->dc_cdata.dc_rx_chain[i] = m_new;
2543 	}
2544 
2545 	sc->dc_ldata->dc_rx_list[i].dc_ctl = htole32(DC_RXCTL_RLINK | DC_RXLEN);
2546 	sc->dc_ldata->dc_rx_list[i].dc_status = htole32(DC_RXSTAT_OWN);
2547 	bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i],
2548 	    BUS_DMASYNC_PREREAD);
2549 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
2550 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2551 	return (0);
2552 }
2553 
2554 /*
2555  * Grrrrr.
2556  * The PNIC chip has a terrible bug in it that manifests itself during
2557  * periods of heavy activity. The exact mode of failure if difficult to
2558  * pinpoint: sometimes it only happens in promiscuous mode, sometimes it
2559  * will happen on slow machines. The bug is that sometimes instead of
2560  * uploading one complete frame during reception, it uploads what looks
2561  * like the entire contents of its FIFO memory. The frame we want is at
2562  * the end of the whole mess, but we never know exactly how much data has
2563  * been uploaded, so salvaging the frame is hard.
2564  *
2565  * There is only one way to do it reliably, and it's disgusting.
2566  * Here's what we know:
2567  *
2568  * - We know there will always be somewhere between one and three extra
2569  *   descriptors uploaded.
2570  *
2571  * - We know the desired received frame will always be at the end of the
2572  *   total data upload.
2573  *
2574  * - We know the size of the desired received frame because it will be
2575  *   provided in the length field of the status word in the last descriptor.
2576  *
2577  * Here's what we do:
2578  *
2579  * - When we allocate buffers for the receive ring, we bzero() them.
2580  *   This means that we know that the buffer contents should be all
2581  *   zeros, except for data uploaded by the chip.
2582  *
2583  * - We also force the PNIC chip to upload frames that include the
2584  *   ethernet CRC at the end.
2585  *
2586  * - We gather all of the bogus frame data into a single buffer.
2587  *
2588  * - We then position a pointer at the end of this buffer and scan
2589  *   backwards until we encounter the first non-zero byte of data.
2590  *   This is the end of the received frame. We know we will encounter
2591  *   some data at the end of the frame because the CRC will always be
2592  *   there, so even if the sender transmits a packet of all zeros,
2593  *   we won't be fooled.
2594  *
2595  * - We know the size of the actual received frame, so we subtract
2596  *   that value from the current pointer location. This brings us
2597  *   to the start of the actual received packet.
2598  *
2599  * - We copy this into an mbuf and pass it on, along with the actual
2600  *   frame length.
2601  *
2602  * The performance hit is tremendous, but it beats dropping frames all
2603  * the time.
2604  */
2605 
2606 #define DC_WHOLEFRAME	(DC_RXSTAT_FIRSTFRAG | DC_RXSTAT_LASTFRAG)
2607 static void
2608 dc_pnic_rx_bug_war(struct dc_softc *sc, int idx)
2609 {
2610 	struct dc_desc *cur_rx;
2611 	struct dc_desc *c = NULL;
2612 	struct mbuf *m = NULL;
2613 	unsigned char *ptr;
2614 	int i, total_len;
2615 	u_int32_t rxstat = 0;
2616 
2617 	i = sc->dc_pnic_rx_bug_save;
2618 	cur_rx = &sc->dc_ldata->dc_rx_list[idx];
2619 	ptr = sc->dc_pnic_rx_buf;
2620 	bzero(ptr, DC_RXLEN * 5);
2621 
2622 	/* Copy all the bytes from the bogus buffers. */
2623 	while (1) {
2624 		c = &sc->dc_ldata->dc_rx_list[i];
2625 		rxstat = le32toh(c->dc_status);
2626 		m = sc->dc_cdata.dc_rx_chain[i];
2627 		bcopy(mtod(m, char *), ptr, DC_RXLEN);
2628 		ptr += DC_RXLEN;
2629 		/* If this is the last buffer, break out. */
2630 		if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
2631 			break;
2632 		dc_newbuf(sc, i, 0);
2633 		DC_INC(i, DC_RX_LIST_CNT);
2634 	}
2635 
2636 	/* Find the length of the actual receive frame. */
2637 	total_len = DC_RXBYTES(rxstat);
2638 
2639 	/* Scan backwards until we hit a non-zero byte. */
2640 	while (*ptr == 0x00)
2641 		ptr--;
2642 
2643 	/* Round off. */
2644 	if ((uintptr_t)(ptr) & 0x3)
2645 		ptr -= 1;
2646 
2647 	/* Now find the start of the frame. */
2648 	ptr -= total_len;
2649 	if (ptr < sc->dc_pnic_rx_buf)
2650 		ptr = sc->dc_pnic_rx_buf;
2651 
2652 	/*
2653 	 * Now copy the salvaged frame to the last mbuf and fake up
2654 	 * the status word to make it look like a successful
2655 	 * frame reception.
2656 	 */
2657 	dc_newbuf(sc, i, 0);
2658 	bcopy(ptr, mtod(m, char *), total_len);
2659 	cur_rx->dc_status = htole32(rxstat | DC_RXSTAT_FIRSTFRAG);
2660 }
2661 
2662 /*
2663  * This routine searches the RX ring for dirty descriptors in the
2664  * event that the rxeof routine falls out of sync with the chip's
2665  * current descriptor pointer. This may happen sometimes as a result
2666  * of a "no RX buffer available" condition that happens when the chip
2667  * consumes all of the RX buffers before the driver has a chance to
2668  * process the RX ring. This routine may need to be called more than
2669  * once to bring the driver back in sync with the chip, however we
2670  * should still be getting RX DONE interrupts to drive the search
2671  * for new packets in the RX ring, so we should catch up eventually.
2672  */
2673 static int
2674 dc_rx_resync(struct dc_softc *sc)
2675 {
2676 	struct dc_desc *cur_rx;
2677 	int i, pos;
2678 
2679 	pos = sc->dc_cdata.dc_rx_prod;
2680 
2681 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2682 		cur_rx = &sc->dc_ldata->dc_rx_list[pos];
2683 		if (!(le32toh(cur_rx->dc_status) & DC_RXSTAT_OWN))
2684 			break;
2685 		DC_INC(pos, DC_RX_LIST_CNT);
2686 	}
2687 
2688 	/* If the ring really is empty, then just return. */
2689 	if (i == DC_RX_LIST_CNT)
2690 		return (0);
2691 
2692 	/* We've fallen behing the chip: catch it. */
2693 	sc->dc_cdata.dc_rx_prod = pos;
2694 
2695 	return (EAGAIN);
2696 }
2697 
2698 /*
2699  * A frame has been uploaded: pass the resulting mbuf chain up to
2700  * the higher level protocols.
2701  */
2702 static void
2703 dc_rxeof(struct dc_softc *sc)
2704 {
2705 	struct mbuf *m;
2706 	struct ifnet *ifp;
2707 	struct dc_desc *cur_rx;
2708 	int i, total_len = 0;
2709 	u_int32_t rxstat;
2710 
2711 	DC_LOCK_ASSERT(sc);
2712 
2713 	ifp = sc->dc_ifp;
2714 	i = sc->dc_cdata.dc_rx_prod;
2715 
2716 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap, BUS_DMASYNC_POSTREAD);
2717 	while (!(le32toh(sc->dc_ldata->dc_rx_list[i].dc_status) &
2718 	    DC_RXSTAT_OWN)) {
2719 #ifdef DEVICE_POLLING
2720 		if (ifp->if_capenable & IFCAP_POLLING) {
2721 			if (sc->rxcycles <= 0)
2722 				break;
2723 			sc->rxcycles--;
2724 		}
2725 #endif
2726 		cur_rx = &sc->dc_ldata->dc_rx_list[i];
2727 		rxstat = le32toh(cur_rx->dc_status);
2728 		m = sc->dc_cdata.dc_rx_chain[i];
2729 		bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i],
2730 		    BUS_DMASYNC_POSTREAD);
2731 		total_len = DC_RXBYTES(rxstat);
2732 
2733 		if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2734 			if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
2735 				if (rxstat & DC_RXSTAT_FIRSTFRAG)
2736 					sc->dc_pnic_rx_bug_save = i;
2737 				if ((rxstat & DC_RXSTAT_LASTFRAG) == 0) {
2738 					DC_INC(i, DC_RX_LIST_CNT);
2739 					continue;
2740 				}
2741 				dc_pnic_rx_bug_war(sc, i);
2742 				rxstat = le32toh(cur_rx->dc_status);
2743 				total_len = DC_RXBYTES(rxstat);
2744 			}
2745 		}
2746 
2747 		/*
2748 		 * If an error occurs, update stats, clear the
2749 		 * status word and leave the mbuf cluster in place:
2750 		 * it should simply get re-used next time this descriptor
2751 		 * comes up in the ring.  However, don't report long
2752 		 * frames as errors since they could be vlans.
2753 		 */
2754 		if ((rxstat & DC_RXSTAT_RXERR)) {
2755 			if (!(rxstat & DC_RXSTAT_GIANT) ||
2756 			    (rxstat & (DC_RXSTAT_CRCERR | DC_RXSTAT_DRIBBLE |
2757 				       DC_RXSTAT_MIIERE | DC_RXSTAT_COLLSEEN |
2758 				       DC_RXSTAT_RUNT   | DC_RXSTAT_DE))) {
2759 				ifp->if_ierrors++;
2760 				if (rxstat & DC_RXSTAT_COLLSEEN)
2761 					ifp->if_collisions++;
2762 				dc_newbuf(sc, i, 0);
2763 				if (rxstat & DC_RXSTAT_CRCERR) {
2764 					DC_INC(i, DC_RX_LIST_CNT);
2765 					continue;
2766 				} else {
2767 					dc_init_locked(sc);
2768 					return;
2769 				}
2770 			}
2771 		}
2772 
2773 		/* No errors; receive the packet. */
2774 		total_len -= ETHER_CRC_LEN;
2775 #ifdef __i386__
2776 		/*
2777 		 * On the x86 we do not have alignment problems, so try to
2778 		 * allocate a new buffer for the receive ring, and pass up
2779 		 * the one where the packet is already, saving the expensive
2780 		 * copy done in m_devget().
2781 		 * If we are on an architecture with alignment problems, or
2782 		 * if the allocation fails, then use m_devget and leave the
2783 		 * existing buffer in the receive ring.
2784 		 */
2785 		if (dc_quick && dc_newbuf(sc, i, 1) == 0) {
2786 			m->m_pkthdr.rcvif = ifp;
2787 			m->m_pkthdr.len = m->m_len = total_len;
2788 			DC_INC(i, DC_RX_LIST_CNT);
2789 		} else
2790 #endif
2791 		{
2792 			struct mbuf *m0;
2793 
2794 			m0 = m_devget(mtod(m, char *), total_len,
2795 				ETHER_ALIGN, ifp, NULL);
2796 			dc_newbuf(sc, i, 0);
2797 			DC_INC(i, DC_RX_LIST_CNT);
2798 			if (m0 == NULL) {
2799 				ifp->if_ierrors++;
2800 				continue;
2801 			}
2802 			m = m0;
2803 		}
2804 
2805 		ifp->if_ipackets++;
2806 		DC_UNLOCK(sc);
2807 		(*ifp->if_input)(ifp, m);
2808 		DC_LOCK(sc);
2809 	}
2810 
2811 	sc->dc_cdata.dc_rx_prod = i;
2812 }
2813 
2814 /*
2815  * A frame was downloaded to the chip. It's safe for us to clean up
2816  * the list buffers.
2817  */
2818 
2819 static void
2820 dc_txeof(struct dc_softc *sc)
2821 {
2822 	struct dc_desc *cur_tx = NULL;
2823 	struct ifnet *ifp;
2824 	int idx;
2825 	u_int32_t ctl, txstat;
2826 
2827 	ifp = sc->dc_ifp;
2828 
2829 	/*
2830 	 * Go through our tx list and free mbufs for those
2831 	 * frames that have been transmitted.
2832 	 */
2833 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap, BUS_DMASYNC_POSTREAD);
2834 	idx = sc->dc_cdata.dc_tx_cons;
2835 	while (idx != sc->dc_cdata.dc_tx_prod) {
2836 
2837 		cur_tx = &sc->dc_ldata->dc_tx_list[idx];
2838 		txstat = le32toh(cur_tx->dc_status);
2839 		ctl = le32toh(cur_tx->dc_ctl);
2840 
2841 		if (txstat & DC_TXSTAT_OWN)
2842 			break;
2843 
2844 		if (!(ctl & DC_TXCTL_LASTFRAG) || ctl & DC_TXCTL_SETUP) {
2845 			if (ctl & DC_TXCTL_SETUP) {
2846 				/*
2847 				 * Yes, the PNIC is so brain damaged
2848 				 * that it will sometimes generate a TX
2849 				 * underrun error while DMAing the RX
2850 				 * filter setup frame. If we detect this,
2851 				 * we have to send the setup frame again,
2852 				 * or else the filter won't be programmed
2853 				 * correctly.
2854 				 */
2855 				if (DC_IS_PNIC(sc)) {
2856 					if (txstat & DC_TXSTAT_ERRSUM)
2857 						dc_setfilt(sc);
2858 				}
2859 				sc->dc_cdata.dc_tx_chain[idx] = NULL;
2860 			}
2861 			sc->dc_cdata.dc_tx_cnt--;
2862 			DC_INC(idx, DC_TX_LIST_CNT);
2863 			continue;
2864 		}
2865 
2866 		if (DC_IS_XIRCOM(sc) || DC_IS_CONEXANT(sc)) {
2867 			/*
2868 			 * XXX: Why does my Xircom taunt me so?
2869 			 * For some reason it likes setting the CARRLOST flag
2870 			 * even when the carrier is there. wtf?!?
2871 			 * Who knows, but Conexant chips have the
2872 			 * same problem. Maybe they took lessons
2873 			 * from Xircom.
2874 			 */
2875 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2876 			    sc->dc_pmode == DC_PMODE_MII &&
2877 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
2878 			    DC_TXSTAT_NOCARRIER)))
2879 				txstat &= ~DC_TXSTAT_ERRSUM;
2880 		} else {
2881 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2882 			    sc->dc_pmode == DC_PMODE_MII &&
2883 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
2884 			    DC_TXSTAT_NOCARRIER | DC_TXSTAT_CARRLOST)))
2885 				txstat &= ~DC_TXSTAT_ERRSUM;
2886 		}
2887 
2888 		if (txstat & DC_TXSTAT_ERRSUM) {
2889 			ifp->if_oerrors++;
2890 			if (txstat & DC_TXSTAT_EXCESSCOLL)
2891 				ifp->if_collisions++;
2892 			if (txstat & DC_TXSTAT_LATECOLL)
2893 				ifp->if_collisions++;
2894 			if (!(txstat & DC_TXSTAT_UNDERRUN)) {
2895 				dc_init_locked(sc);
2896 				return;
2897 			}
2898 		}
2899 
2900 		ifp->if_collisions += (txstat & DC_TXSTAT_COLLCNT) >> 3;
2901 
2902 		ifp->if_opackets++;
2903 		if (sc->dc_cdata.dc_tx_chain[idx] != NULL) {
2904 			bus_dmamap_sync(sc->dc_mtag,
2905 			    sc->dc_cdata.dc_tx_map[idx],
2906 			    BUS_DMASYNC_POSTWRITE);
2907 			bus_dmamap_unload(sc->dc_mtag,
2908 			    sc->dc_cdata.dc_tx_map[idx]);
2909 			m_freem(sc->dc_cdata.dc_tx_chain[idx]);
2910 			sc->dc_cdata.dc_tx_chain[idx] = NULL;
2911 		}
2912 
2913 		sc->dc_cdata.dc_tx_cnt--;
2914 		DC_INC(idx, DC_TX_LIST_CNT);
2915 	}
2916 
2917 	if (idx != sc->dc_cdata.dc_tx_cons) {
2918 	    	/* Some buffers have been freed. */
2919 		sc->dc_cdata.dc_tx_cons = idx;
2920 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2921 	}
2922 	ifp->if_timer = (sc->dc_cdata.dc_tx_cnt == 0) ? 0 : 5;
2923 }
2924 
2925 static void
2926 dc_tick(void *xsc)
2927 {
2928 	struct dc_softc *sc;
2929 	struct mii_data *mii;
2930 	struct ifnet *ifp;
2931 	u_int32_t r;
2932 
2933 	sc = xsc;
2934 	DC_LOCK_ASSERT(sc);
2935 	ifp = sc->dc_ifp;
2936 	mii = device_get_softc(sc->dc_miibus);
2937 
2938 	if (sc->dc_flags & DC_REDUCED_MII_POLL) {
2939 		if (sc->dc_flags & DC_21143_NWAY) {
2940 			r = CSR_READ_4(sc, DC_10BTSTAT);
2941 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2942 			    IFM_100_TX && (r & DC_TSTAT_LS100)) {
2943 				sc->dc_link = 0;
2944 				mii_mediachg(mii);
2945 			}
2946 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2947 			    IFM_10_T && (r & DC_TSTAT_LS10)) {
2948 				sc->dc_link = 0;
2949 				mii_mediachg(mii);
2950 			}
2951 			if (sc->dc_link == 0)
2952 				mii_tick(mii);
2953 		} else {
2954 			r = CSR_READ_4(sc, DC_ISR);
2955 			if ((r & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT &&
2956 			    sc->dc_cdata.dc_tx_cnt == 0) {
2957 				mii_tick(mii);
2958 				if (!(mii->mii_media_status & IFM_ACTIVE))
2959 					sc->dc_link = 0;
2960 			}
2961 		}
2962 	} else
2963 		mii_tick(mii);
2964 
2965 	/*
2966 	 * When the init routine completes, we expect to be able to send
2967 	 * packets right away, and in fact the network code will send a
2968 	 * gratuitous ARP the moment the init routine marks the interface
2969 	 * as running. However, even though the MAC may have been initialized,
2970 	 * there may be a delay of a few seconds before the PHY completes
2971 	 * autonegotiation and the link is brought up. Any transmissions
2972 	 * made during that delay will be lost. Dealing with this is tricky:
2973 	 * we can't just pause in the init routine while waiting for the
2974 	 * PHY to come ready since that would bring the whole system to
2975 	 * a screeching halt for several seconds.
2976 	 *
2977 	 * What we do here is prevent the TX start routine from sending
2978 	 * any packets until a link has been established. After the
2979 	 * interface has been initialized, the tick routine will poll
2980 	 * the state of the PHY until the IFM_ACTIVE flag is set. Until
2981 	 * that time, packets will stay in the send queue, and once the
2982 	 * link comes up, they will be flushed out to the wire.
2983 	 */
2984 	if (!sc->dc_link && mii->mii_media_status & IFM_ACTIVE &&
2985 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2986 		sc->dc_link++;
2987 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2988 			dc_start_locked(ifp);
2989 	}
2990 
2991 	if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link)
2992 		callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
2993 	else
2994 		callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
2995 }
2996 
2997 /*
2998  * A transmit underrun has occurred.  Back off the transmit threshold,
2999  * or switch to store and forward mode if we have to.
3000  */
3001 static void
3002 dc_tx_underrun(struct dc_softc *sc)
3003 {
3004 	u_int32_t isr;
3005 	int i;
3006 
3007 	if (DC_IS_DAVICOM(sc))
3008 		dc_init_locked(sc);
3009 
3010 	if (DC_IS_INTEL(sc)) {
3011 		/*
3012 		 * The real 21143 requires that the transmitter be idle
3013 		 * in order to change the transmit threshold or store
3014 		 * and forward state.
3015 		 */
3016 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3017 
3018 		for (i = 0; i < DC_TIMEOUT; i++) {
3019 			isr = CSR_READ_4(sc, DC_ISR);
3020 			if (isr & DC_ISR_TX_IDLE)
3021 				break;
3022 			DELAY(10);
3023 		}
3024 		if (i == DC_TIMEOUT) {
3025 			if_printf(sc->dc_ifp,
3026 			    "failed to force tx to idle state\n");
3027 			dc_init_locked(sc);
3028 		}
3029 	}
3030 
3031 	if_printf(sc->dc_ifp, "TX underrun -- ");
3032 	sc->dc_txthresh += DC_TXTHRESH_INC;
3033 	if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3034 		printf("using store and forward mode\n");
3035 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3036 	} else {
3037 		printf("increasing TX threshold\n");
3038 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3039 		DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3040 	}
3041 
3042 	if (DC_IS_INTEL(sc))
3043 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3044 }
3045 
3046 #ifdef DEVICE_POLLING
3047 static poll_handler_t dc_poll;
3048 
3049 static void
3050 dc_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
3051 {
3052 	struct dc_softc *sc = ifp->if_softc;
3053 
3054 	DC_LOCK(sc);
3055 
3056 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3057 		DC_UNLOCK(sc);
3058 		return;
3059 	}
3060 
3061 	sc->rxcycles = count;
3062 	dc_rxeof(sc);
3063 	dc_txeof(sc);
3064 	if (!IFQ_IS_EMPTY(&ifp->if_snd) &&
3065 	    !(ifp->if_drv_flags & IFF_DRV_OACTIVE))
3066 		dc_start_locked(ifp);
3067 
3068 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
3069 		u_int32_t	status;
3070 
3071 		status = CSR_READ_4(sc, DC_ISR);
3072 		status &= (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF |
3073 			DC_ISR_TX_NOBUF | DC_ISR_TX_IDLE | DC_ISR_TX_UNDERRUN |
3074 			DC_ISR_BUS_ERR);
3075 		if (!status) {
3076 			DC_UNLOCK(sc);
3077 			return;
3078 		}
3079 		/* ack what we have */
3080 		CSR_WRITE_4(sc, DC_ISR, status);
3081 
3082 		if (status & (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF)) {
3083 			u_int32_t r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
3084 			ifp->if_ierrors += (r & 0xffff) + ((r >> 17) & 0x7ff);
3085 
3086 			if (dc_rx_resync(sc))
3087 				dc_rxeof(sc);
3088 		}
3089 		/* restart transmit unit if necessary */
3090 		if (status & DC_ISR_TX_IDLE && sc->dc_cdata.dc_tx_cnt)
3091 			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3092 
3093 		if (status & DC_ISR_TX_UNDERRUN)
3094 			dc_tx_underrun(sc);
3095 
3096 		if (status & DC_ISR_BUS_ERR) {
3097 			if_printf(ifp, "dc_poll: bus error\n");
3098 			dc_reset(sc);
3099 			dc_init_locked(sc);
3100 		}
3101 	}
3102 	DC_UNLOCK(sc);
3103 }
3104 #endif /* DEVICE_POLLING */
3105 
3106 static void
3107 dc_intr(void *arg)
3108 {
3109 	struct dc_softc *sc;
3110 	struct ifnet *ifp;
3111 	u_int32_t status;
3112 
3113 	sc = arg;
3114 
3115 	if (sc->suspended)
3116 		return;
3117 
3118 	if ((CSR_READ_4(sc, DC_ISR) & DC_INTRS) == 0)
3119 		return;
3120 
3121 	DC_LOCK(sc);
3122 	ifp = sc->dc_ifp;
3123 #ifdef DEVICE_POLLING
3124 	if (ifp->if_capenable & IFCAP_POLLING) {
3125 		DC_UNLOCK(sc);
3126 		return;
3127 	}
3128 #endif
3129 
3130 	/* Suppress unwanted interrupts */
3131 	if (!(ifp->if_flags & IFF_UP)) {
3132 		if (CSR_READ_4(sc, DC_ISR) & DC_INTRS)
3133 			dc_stop(sc);
3134 		DC_UNLOCK(sc);
3135 		return;
3136 	}
3137 
3138 	/* Disable interrupts. */
3139 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3140 
3141 	while (((status = CSR_READ_4(sc, DC_ISR)) & DC_INTRS)
3142 	      && status != 0xFFFFFFFF) {
3143 
3144 		CSR_WRITE_4(sc, DC_ISR, status);
3145 
3146 		if (status & DC_ISR_RX_OK) {
3147 			int		curpkts;
3148 			curpkts = ifp->if_ipackets;
3149 			dc_rxeof(sc);
3150 			if (curpkts == ifp->if_ipackets) {
3151 				while (dc_rx_resync(sc))
3152 					dc_rxeof(sc);
3153 			}
3154 		}
3155 
3156 		if (status & (DC_ISR_TX_OK | DC_ISR_TX_NOBUF))
3157 			dc_txeof(sc);
3158 
3159 		if (status & DC_ISR_TX_IDLE) {
3160 			dc_txeof(sc);
3161 			if (sc->dc_cdata.dc_tx_cnt) {
3162 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3163 				CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3164 			}
3165 		}
3166 
3167 		if (status & DC_ISR_TX_UNDERRUN)
3168 			dc_tx_underrun(sc);
3169 
3170 		if ((status & DC_ISR_RX_WATDOGTIMEO)
3171 		    || (status & DC_ISR_RX_NOBUF)) {
3172 			int		curpkts;
3173 			curpkts = ifp->if_ipackets;
3174 			dc_rxeof(sc);
3175 			if (curpkts == ifp->if_ipackets) {
3176 				while (dc_rx_resync(sc))
3177 					dc_rxeof(sc);
3178 			}
3179 		}
3180 
3181 		if (status & DC_ISR_BUS_ERR) {
3182 			dc_reset(sc);
3183 			dc_init_locked(sc);
3184 		}
3185 	}
3186 
3187 	/* Re-enable interrupts. */
3188 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3189 
3190 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3191 		dc_start_locked(ifp);
3192 
3193 	DC_UNLOCK(sc);
3194 }
3195 
3196 static void
3197 dc_dma_map_txbuf(arg, segs, nseg, mapsize, error)
3198 	void *arg;
3199 	bus_dma_segment_t *segs;
3200 	int nseg;
3201 	bus_size_t mapsize;
3202 	int error;
3203 {
3204 	struct dc_softc *sc;
3205 	struct dc_desc *f;
3206 	int cur, first, frag, i;
3207 
3208 	sc = arg;
3209 	if (error) {
3210 		sc->dc_cdata.dc_tx_err = error;
3211 		return;
3212 	}
3213 
3214 	first = cur = frag = sc->dc_cdata.dc_tx_prod;
3215 	for (i = 0; i < nseg; i++) {
3216 		if ((sc->dc_flags & DC_TX_ADMTEK_WAR) &&
3217 		    (frag == (DC_TX_LIST_CNT - 1)) &&
3218 		    (first != sc->dc_cdata.dc_tx_first)) {
3219 			bus_dmamap_unload(sc->dc_mtag,
3220 			    sc->dc_cdata.dc_tx_map[first]);
3221 			sc->dc_cdata.dc_tx_err = ENOBUFS;
3222 			return;
3223 		}
3224 
3225 		f = &sc->dc_ldata->dc_tx_list[frag];
3226 		f->dc_ctl = htole32(DC_TXCTL_TLINK | segs[i].ds_len);
3227 		if (i == 0) {
3228 			f->dc_status = 0;
3229 			f->dc_ctl |= htole32(DC_TXCTL_FIRSTFRAG);
3230 		} else
3231 			f->dc_status = htole32(DC_TXSTAT_OWN);
3232 		f->dc_data = htole32(segs[i].ds_addr);
3233 		cur = frag;
3234 		DC_INC(frag, DC_TX_LIST_CNT);
3235 	}
3236 
3237 	sc->dc_cdata.dc_tx_err = 0;
3238 	sc->dc_cdata.dc_tx_prod = frag;
3239 	sc->dc_cdata.dc_tx_cnt += nseg;
3240 	sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_LASTFRAG);
3241 	sc->dc_cdata.dc_tx_chain[cur] = sc->dc_cdata.dc_tx_mapping;
3242 	if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
3243 		sc->dc_ldata->dc_tx_list[first].dc_ctl |=
3244 		    htole32(DC_TXCTL_FINT);
3245 	if (sc->dc_flags & DC_TX_INTR_ALWAYS)
3246 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
3247 	if (sc->dc_flags & DC_TX_USE_TX_INTR && sc->dc_cdata.dc_tx_cnt > 64)
3248 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
3249 	sc->dc_ldata->dc_tx_list[first].dc_status = htole32(DC_TXSTAT_OWN);
3250 }
3251 
3252 /*
3253  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
3254  * pointers to the fragment pointers.
3255  */
3256 static int
3257 dc_encap(struct dc_softc *sc, struct mbuf **m_head)
3258 {
3259 	struct mbuf *m;
3260 	int error, idx, chainlen = 0;
3261 
3262 	/*
3263 	 * If there's no way we can send any packets, return now.
3264 	 */
3265 	if (DC_TX_LIST_CNT - sc->dc_cdata.dc_tx_cnt < 6)
3266 		return (ENOBUFS);
3267 
3268 	/*
3269 	 * Count the number of frags in this chain to see if
3270 	 * we need to m_defrag.  Since the descriptor list is shared
3271 	 * by all packets, we'll m_defrag long chains so that they
3272 	 * do not use up the entire list, even if they would fit.
3273 	 */
3274 	for (m = *m_head; m != NULL; m = m->m_next)
3275 		chainlen++;
3276 
3277 	if ((chainlen > DC_TX_LIST_CNT / 4) ||
3278 	    ((DC_TX_LIST_CNT - (chainlen + sc->dc_cdata.dc_tx_cnt)) < 6)) {
3279 		m = m_defrag(*m_head, M_DONTWAIT);
3280 		if (m == NULL)
3281 			return (ENOBUFS);
3282 		*m_head = m;
3283 	}
3284 
3285 	/*
3286 	 * Start packing the mbufs in this chain into
3287 	 * the fragment pointers. Stop when we run out
3288 	 * of fragments or hit the end of the mbuf chain.
3289 	 */
3290 	idx = sc->dc_cdata.dc_tx_prod;
3291 	sc->dc_cdata.dc_tx_mapping = *m_head;
3292 	error = bus_dmamap_load_mbuf(sc->dc_mtag, sc->dc_cdata.dc_tx_map[idx],
3293 	    *m_head, dc_dma_map_txbuf, sc, 0);
3294 	if (error)
3295 		return (error);
3296 	if (sc->dc_cdata.dc_tx_err != 0)
3297 		return (sc->dc_cdata.dc_tx_err);
3298 	bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_tx_map[idx],
3299 	    BUS_DMASYNC_PREWRITE);
3300 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
3301 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
3302 	return (0);
3303 }
3304 
3305 /*
3306  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3307  * to the mbuf data regions directly in the transmit lists. We also save a
3308  * copy of the pointers since the transmit list fragment pointers are
3309  * physical addresses.
3310  */
3311 
3312 static void
3313 dc_start(struct ifnet *ifp)
3314 {
3315 	struct dc_softc *sc;
3316 
3317 	sc = ifp->if_softc;
3318 	DC_LOCK(sc);
3319 	dc_start_locked(ifp);
3320 	DC_UNLOCK(sc);
3321 }
3322 
3323 static void
3324 dc_start_locked(struct ifnet *ifp)
3325 {
3326 	struct dc_softc *sc;
3327 	struct mbuf *m_head = NULL, *m;
3328 	unsigned int queued = 0;
3329 	int idx;
3330 
3331 	sc = ifp->if_softc;
3332 
3333 	DC_LOCK_ASSERT(sc);
3334 
3335 	if (!sc->dc_link && ifp->if_snd.ifq_len < 10)
3336 		return;
3337 
3338 	if (ifp->if_drv_flags & IFF_DRV_OACTIVE)
3339 		return;
3340 
3341 	idx = sc->dc_cdata.dc_tx_first = sc->dc_cdata.dc_tx_prod;
3342 
3343 	while (sc->dc_cdata.dc_tx_chain[idx] == NULL) {
3344 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
3345 		if (m_head == NULL)
3346 			break;
3347 
3348 		if (sc->dc_flags & DC_TX_COALESCE &&
3349 		    (m_head->m_next != NULL ||
3350 		     sc->dc_flags & DC_TX_ALIGN)) {
3351 			m = m_defrag(m_head, M_DONTWAIT);
3352 			if (m == NULL) {
3353 				IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
3354 				ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3355 				break;
3356 			} else {
3357 				m_head = m;
3358 			}
3359 		}
3360 
3361 		if (dc_encap(sc, &m_head)) {
3362 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
3363 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3364 			break;
3365 		}
3366 		idx = sc->dc_cdata.dc_tx_prod;
3367 
3368 		queued++;
3369 		/*
3370 		 * If there's a BPF listener, bounce a copy of this frame
3371 		 * to him.
3372 		 */
3373 		BPF_MTAP(ifp, m_head);
3374 
3375 		if (sc->dc_flags & DC_TX_ONE) {
3376 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3377 			break;
3378 		}
3379 	}
3380 
3381 	if (queued > 0) {
3382 		/* Transmit */
3383 		if (!(sc->dc_flags & DC_TX_POLL))
3384 			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3385 
3386 		/*
3387 		 * Set a timeout in case the chip goes out to lunch.
3388 		 */
3389 		ifp->if_timer = 5;
3390 	}
3391 }
3392 
3393 static void
3394 dc_init(void *xsc)
3395 {
3396 	struct dc_softc *sc = xsc;
3397 
3398 	DC_LOCK(sc);
3399 	dc_init_locked(sc);
3400 #ifdef SRM_MEDIA
3401 	if(sc->dc_srm_media) {
3402 		struct ifreq ifr;
3403 		struct mii_data *mii;
3404 
3405 		ifr.ifr_media = sc->dc_srm_media;
3406 		sc->dc_srm_media = 0;
3407 		DC_UNLOCK(sc);
3408 		mii = device_get_softc(sc->dc_miibus);
3409 		ifmedia_ioctl(sc->dc_ifp, &ifr, &mii->mii_media, SIOCSIFMEDIA);
3410 	} else
3411 #endif
3412 		DC_UNLOCK(sc);
3413 }
3414 
3415 static void
3416 dc_init_locked(struct dc_softc *sc)
3417 {
3418 	struct ifnet *ifp = sc->dc_ifp;
3419 	struct mii_data *mii;
3420 
3421 	DC_LOCK_ASSERT(sc);
3422 
3423 	mii = device_get_softc(sc->dc_miibus);
3424 
3425 	/*
3426 	 * Cancel pending I/O and free all RX/TX buffers.
3427 	 */
3428 	dc_stop(sc);
3429 	dc_reset(sc);
3430 
3431 	/*
3432 	 * Set cache alignment and burst length.
3433 	 */
3434 	if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc))
3435 		CSR_WRITE_4(sc, DC_BUSCTL, 0);
3436 	else
3437 		CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME | DC_BUSCTL_MRLE);
3438 	/*
3439 	 * Evenly share the bus between receive and transmit process.
3440 	 */
3441 	if (DC_IS_INTEL(sc))
3442 		DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION);
3443 	if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
3444 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
3445 	} else {
3446 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
3447 	}
3448 	if (sc->dc_flags & DC_TX_POLL)
3449 		DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
3450 	switch(sc->dc_cachesize) {
3451 	case 32:
3452 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
3453 		break;
3454 	case 16:
3455 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
3456 		break;
3457 	case 8:
3458 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
3459 		break;
3460 	case 0:
3461 	default:
3462 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
3463 		break;
3464 	}
3465 
3466 	if (sc->dc_flags & DC_TX_STORENFWD)
3467 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3468 	else {
3469 		if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3470 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3471 		} else {
3472 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3473 			DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3474 		}
3475 	}
3476 
3477 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
3478 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
3479 
3480 	if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
3481 		/*
3482 		 * The app notes for the 98713 and 98715A say that
3483 		 * in order to have the chips operate properly, a magic
3484 		 * number must be written to CSR16. Macronix does not
3485 		 * document the meaning of these bits so there's no way
3486 		 * to know exactly what they do. The 98713 has a magic
3487 		 * number all its own; the rest all use a different one.
3488 		 */
3489 		DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
3490 		if (sc->dc_type == DC_TYPE_98713)
3491 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
3492 		else
3493 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
3494 	}
3495 
3496 	if (DC_IS_XIRCOM(sc)) {
3497 		/*
3498 		 * setup General Purpose Port mode and data so the tulip
3499 		 * can talk to the MII.
3500 		 */
3501 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
3502 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3503 		DELAY(10);
3504 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
3505 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3506 		DELAY(10);
3507 	}
3508 
3509 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3510 	DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN);
3511 
3512 	/* Init circular RX list. */
3513 	if (dc_list_rx_init(sc) == ENOBUFS) {
3514 		if_printf(ifp,
3515 		    "initialization failed: no memory for rx buffers\n");
3516 		dc_stop(sc);
3517 		return;
3518 	}
3519 
3520 	/*
3521 	 * Init TX descriptors.
3522 	 */
3523 	dc_list_tx_init(sc);
3524 
3525 	/*
3526 	 * Load the address of the RX list.
3527 	 */
3528 	CSR_WRITE_4(sc, DC_RXADDR, DC_RXDESC(sc, 0));
3529 	CSR_WRITE_4(sc, DC_TXADDR, DC_TXDESC(sc, 0));
3530 
3531 	/*
3532 	 * Enable interrupts.
3533 	 */
3534 #ifdef DEVICE_POLLING
3535 	/*
3536 	 * ... but only if we are not polling, and make sure they are off in
3537 	 * the case of polling. Some cards (e.g. fxp) turn interrupts on
3538 	 * after a reset.
3539 	 */
3540 	if (ifp->if_capenable & IFCAP_POLLING)
3541 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3542 	else
3543 #endif
3544 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3545 	CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
3546 
3547 	/* Enable transmitter. */
3548 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3549 
3550 	/*
3551 	 * If this is an Intel 21143 and we're not using the
3552 	 * MII port, program the LED control pins so we get
3553 	 * link and activity indications.
3554 	 */
3555 	if (sc->dc_flags & DC_TULIP_LEDS) {
3556 		CSR_WRITE_4(sc, DC_WATCHDOG,
3557 		    DC_WDOG_CTLWREN | DC_WDOG_LINK | DC_WDOG_ACTIVITY);
3558 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
3559 	}
3560 
3561 	/*
3562 	 * Load the RX/multicast filter. We do this sort of late
3563 	 * because the filter programming scheme on the 21143 and
3564 	 * some clones requires DMAing a setup frame via the TX
3565 	 * engine, and we need the transmitter enabled for that.
3566 	 */
3567 	dc_setfilt(sc);
3568 
3569 	/* Enable receiver. */
3570 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
3571 	CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
3572 
3573 	mii_mediachg(mii);
3574 	dc_setcfg(sc, sc->dc_if_media);
3575 
3576 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3577 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3578 
3579 	/* Don't start the ticker if this is a homePNA link. */
3580 	if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_HPNA_1)
3581 		sc->dc_link = 1;
3582 	else {
3583 		if (sc->dc_flags & DC_21143_NWAY)
3584 			callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
3585 		else
3586 			callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
3587 	}
3588 }
3589 
3590 /*
3591  * Set media options.
3592  */
3593 static int
3594 dc_ifmedia_upd(struct ifnet *ifp)
3595 {
3596 	struct dc_softc *sc;
3597 	struct mii_data *mii;
3598 	struct ifmedia *ifm;
3599 
3600 	sc = ifp->if_softc;
3601 	mii = device_get_softc(sc->dc_miibus);
3602 	DC_LOCK(sc);
3603 	mii_mediachg(mii);
3604 	ifm = &mii->mii_media;
3605 
3606 	if (DC_IS_DAVICOM(sc) &&
3607 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1)
3608 		dc_setcfg(sc, ifm->ifm_media);
3609 	else
3610 		sc->dc_link = 0;
3611 	DC_UNLOCK(sc);
3612 
3613 	return (0);
3614 }
3615 
3616 /*
3617  * Report current media status.
3618  */
3619 static void
3620 dc_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3621 {
3622 	struct dc_softc *sc;
3623 	struct mii_data *mii;
3624 	struct ifmedia *ifm;
3625 
3626 	sc = ifp->if_softc;
3627 	mii = device_get_softc(sc->dc_miibus);
3628 	DC_LOCK(sc);
3629 	mii_pollstat(mii);
3630 	ifm = &mii->mii_media;
3631 	if (DC_IS_DAVICOM(sc)) {
3632 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
3633 			ifmr->ifm_active = ifm->ifm_media;
3634 			ifmr->ifm_status = 0;
3635 			return;
3636 		}
3637 	}
3638 	ifmr->ifm_active = mii->mii_media_active;
3639 	ifmr->ifm_status = mii->mii_media_status;
3640 	DC_UNLOCK(sc);
3641 }
3642 
3643 static int
3644 dc_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
3645 {
3646 	struct dc_softc *sc = ifp->if_softc;
3647 	struct ifreq *ifr = (struct ifreq *)data;
3648 	struct mii_data *mii;
3649 	int error = 0;
3650 
3651 	switch (command) {
3652 	case SIOCSIFFLAGS:
3653 		DC_LOCK(sc);
3654 		if (ifp->if_flags & IFF_UP) {
3655 			int need_setfilt = (ifp->if_flags ^ sc->dc_if_flags) &
3656 				(IFF_PROMISC | IFF_ALLMULTI);
3657 
3658 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3659 				if (need_setfilt)
3660 					dc_setfilt(sc);
3661 			} else {
3662 				sc->dc_txthresh = 0;
3663 				dc_init_locked(sc);
3664 			}
3665 		} else {
3666 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3667 				dc_stop(sc);
3668 		}
3669 		sc->dc_if_flags = ifp->if_flags;
3670 		DC_UNLOCK(sc);
3671 		error = 0;
3672 		break;
3673 	case SIOCADDMULTI:
3674 	case SIOCDELMULTI:
3675 		DC_LOCK(sc);
3676 		dc_setfilt(sc);
3677 		DC_UNLOCK(sc);
3678 		error = 0;
3679 		break;
3680 	case SIOCGIFMEDIA:
3681 	case SIOCSIFMEDIA:
3682 		mii = device_get_softc(sc->dc_miibus);
3683 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
3684 #ifdef SRM_MEDIA
3685 		DC_LOCK(sc);
3686 		if (sc->dc_srm_media)
3687 			sc->dc_srm_media = 0;
3688 		DC_UNLOCK(sc);
3689 #endif
3690 		break;
3691 	case SIOCSIFCAP:
3692 #ifdef DEVICE_POLLING
3693 		if (ifr->ifr_reqcap & IFCAP_POLLING &&
3694 		    !(ifp->if_capenable & IFCAP_POLLING)) {
3695 			error = ether_poll_register(dc_poll, ifp);
3696 			if (error)
3697 				return(error);
3698 			DC_LOCK(sc);
3699 			/* Disable interrupts */
3700 			CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3701 			ifp->if_capenable |= IFCAP_POLLING;
3702 			DC_UNLOCK(sc);
3703 			return (error);
3704 
3705 		}
3706 		if (!(ifr->ifr_reqcap & IFCAP_POLLING) &&
3707 		    ifp->if_capenable & IFCAP_POLLING) {
3708 			error = ether_poll_deregister(ifp);
3709 			/* Enable interrupts. */
3710 			DC_LOCK(sc);
3711 			CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3712 			ifp->if_capenable &= ~IFCAP_POLLING;
3713 			DC_UNLOCK(sc);
3714 			return (error);
3715 		}
3716 #endif /* DEVICE_POLLING */
3717 		break;
3718 	default:
3719 		error = ether_ioctl(ifp, command, data);
3720 		break;
3721 	}
3722 
3723 	return (error);
3724 }
3725 
3726 static void
3727 dc_watchdog(struct ifnet *ifp)
3728 {
3729 	struct dc_softc *sc;
3730 
3731 	sc = ifp->if_softc;
3732 
3733 	DC_LOCK(sc);
3734 
3735 	ifp->if_oerrors++;
3736 	if_printf(ifp, "watchdog timeout\n");
3737 
3738 	dc_stop(sc);
3739 	dc_reset(sc);
3740 	dc_init_locked(sc);
3741 
3742 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3743 		dc_start_locked(ifp);
3744 
3745 	DC_UNLOCK(sc);
3746 }
3747 
3748 /*
3749  * Stop the adapter and free any mbufs allocated to the
3750  * RX and TX lists.
3751  */
3752 static void
3753 dc_stop(struct dc_softc *sc)
3754 {
3755 	struct ifnet *ifp;
3756 	struct dc_list_data *ld;
3757 	struct dc_chain_data *cd;
3758 	int i;
3759 	u_int32_t ctl;
3760 
3761 	DC_LOCK_ASSERT(sc);
3762 
3763 	ifp = sc->dc_ifp;
3764 	ifp->if_timer = 0;
3765 	ld = sc->dc_ldata;
3766 	cd = &sc->dc_cdata;
3767 
3768 	callout_stop(&sc->dc_stat_ch);
3769 
3770 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3771 
3772 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ON | DC_NETCFG_TX_ON));
3773 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3774 	CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
3775 	CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
3776 	sc->dc_link = 0;
3777 
3778 	/*
3779 	 * Free data in the RX lists.
3780 	 */
3781 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
3782 		if (cd->dc_rx_chain[i] != NULL) {
3783 			m_freem(cd->dc_rx_chain[i]);
3784 			cd->dc_rx_chain[i] = NULL;
3785 		}
3786 	}
3787 	bzero(&ld->dc_rx_list, sizeof(ld->dc_rx_list));
3788 
3789 	/*
3790 	 * Free the TX list buffers.
3791 	 */
3792 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
3793 		if (cd->dc_tx_chain[i] != NULL) {
3794 			ctl = le32toh(ld->dc_tx_list[i].dc_ctl);
3795 			if ((ctl & DC_TXCTL_SETUP) ||
3796 			    !(ctl & DC_TXCTL_LASTFRAG)) {
3797 				cd->dc_tx_chain[i] = NULL;
3798 				continue;
3799 			}
3800 			bus_dmamap_unload(sc->dc_mtag, cd->dc_tx_map[i]);
3801 			m_freem(cd->dc_tx_chain[i]);
3802 			cd->dc_tx_chain[i] = NULL;
3803 		}
3804 	}
3805 	bzero(&ld->dc_tx_list, sizeof(ld->dc_tx_list));
3806 }
3807 
3808 /*
3809  * Device suspend routine.  Stop the interface and save some PCI
3810  * settings in case the BIOS doesn't restore them properly on
3811  * resume.
3812  */
3813 static int
3814 dc_suspend(device_t dev)
3815 {
3816 	struct dc_softc *sc;
3817 
3818 	sc = device_get_softc(dev);
3819 	DC_LOCK(sc);
3820 	dc_stop(sc);
3821 	sc->suspended = 1;
3822 	DC_UNLOCK(sc);
3823 
3824 	return (0);
3825 }
3826 
3827 /*
3828  * Device resume routine.  Restore some PCI settings in case the BIOS
3829  * doesn't, re-enable busmastering, and restart the interface if
3830  * appropriate.
3831  */
3832 static int
3833 dc_resume(device_t dev)
3834 {
3835 	struct dc_softc *sc;
3836 	struct ifnet *ifp;
3837 
3838 	sc = device_get_softc(dev);
3839 	ifp = sc->dc_ifp;
3840 
3841 	/* reinitialize interface if necessary */
3842 	DC_LOCK(sc);
3843 	if (ifp->if_flags & IFF_UP)
3844 		dc_init_locked(sc);
3845 
3846 	sc->suspended = 0;
3847 	DC_UNLOCK(sc);
3848 
3849 	return (0);
3850 }
3851 
3852 /*
3853  * Stop all chip I/O so that the kernel's probe routines don't
3854  * get confused by errant DMAs when rebooting.
3855  */
3856 static void
3857 dc_shutdown(device_t dev)
3858 {
3859 	struct dc_softc *sc;
3860 
3861 	sc = device_get_softc(dev);
3862 
3863 	DC_LOCK(sc);
3864 	dc_stop(sc);
3865 	DC_UNLOCK(sc);
3866 }
3867