1 /*- 2 * Copyright (c) 1997, 1998, 1999 3 * Bill Paul <wpaul@ee.columbia.edu>. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by Bill Paul. 16 * 4. Neither the name of the author nor the names of any co-contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 30 * THE POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 #include <sys/cdefs.h> 34 __FBSDID("$FreeBSD$"); 35 36 /* 37 * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143 38 * series chips and several workalikes including the following: 39 * 40 * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com) 41 * Macronix/Lite-On 82c115 PNIC II (www.macronix.com) 42 * Lite-On 82c168/82c169 PNIC (www.litecom.com) 43 * ASIX Electronics AX88140A (www.asix.com.tw) 44 * ASIX Electronics AX88141 (www.asix.com.tw) 45 * ADMtek AL981 (www.admtek.com.tw) 46 * ADMtek AN985 (www.admtek.com.tw) 47 * Netgear FA511 (www.netgear.com) Appears to be rebadged ADMTek AN985 48 * Davicom DM9100, DM9102, DM9102A (www.davicom8.com) 49 * Accton EN1217 (www.accton.com) 50 * Xircom X3201 (www.xircom.com) 51 * Abocom FE2500 52 * Conexant LANfinity (www.conexant.com) 53 * 3Com OfficeConnect 10/100B 3CSOHO100B (www.3com.com) 54 * 55 * Datasheets for the 21143 are available at developer.intel.com. 56 * Datasheets for the clone parts can be found at their respective sites. 57 * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.) 58 * The PNIC II is essentially a Macronix 98715A chip; the only difference 59 * worth noting is that its multicast hash table is only 128 bits wide 60 * instead of 512. 61 * 62 * Written by Bill Paul <wpaul@ee.columbia.edu> 63 * Electrical Engineering Department 64 * Columbia University, New York City 65 */ 66 /* 67 * The Intel 21143 is the successor to the DEC 21140. It is basically 68 * the same as the 21140 but with a few new features. The 21143 supports 69 * three kinds of media attachments: 70 * 71 * o MII port, for 10Mbps and 100Mbps support and NWAY 72 * autonegotiation provided by an external PHY. 73 * o SYM port, for symbol mode 100Mbps support. 74 * o 10baseT port. 75 * o AUI/BNC port. 76 * 77 * The 100Mbps SYM port and 10baseT port can be used together in 78 * combination with the internal NWAY support to create a 10/100 79 * autosensing configuration. 80 * 81 * Note that not all tulip workalikes are handled in this driver: we only 82 * deal with those which are relatively well behaved. The Winbond is 83 * handled separately due to its different register offsets and the 84 * special handling needed for its various bugs. The PNIC is handled 85 * here, but I'm not thrilled about it. 86 * 87 * All of the workalike chips use some form of MII transceiver support 88 * with the exception of the Macronix chips, which also have a SYM port. 89 * The ASIX AX88140A is also documented to have a SYM port, but all 90 * the cards I've seen use an MII transceiver, probably because the 91 * AX88140A doesn't support internal NWAY. 92 */ 93 94 #ifdef HAVE_KERNEL_OPTION_HEADERS 95 #include "opt_device_polling.h" 96 #endif 97 98 #include <sys/param.h> 99 #include <sys/endian.h> 100 #include <sys/systm.h> 101 #include <sys/sockio.h> 102 #include <sys/mbuf.h> 103 #include <sys/malloc.h> 104 #include <sys/kernel.h> 105 #include <sys/module.h> 106 #include <sys/socket.h> 107 108 #include <net/if.h> 109 #include <net/if_arp.h> 110 #include <net/ethernet.h> 111 #include <net/if_dl.h> 112 #include <net/if_media.h> 113 #include <net/if_types.h> 114 #include <net/if_vlan_var.h> 115 116 #include <net/bpf.h> 117 118 #include <machine/bus.h> 119 #include <machine/resource.h> 120 #include <sys/bus.h> 121 #include <sys/rman.h> 122 123 #include <dev/mii/mii.h> 124 #include <dev/mii/miivar.h> 125 126 #include <dev/pci/pcireg.h> 127 #include <dev/pci/pcivar.h> 128 129 #define DC_USEIOSPACE 130 131 #include <dev/dc/if_dcreg.h> 132 133 #ifdef __sparc64__ 134 #include <dev/ofw/openfirm.h> 135 #include <machine/ofw_machdep.h> 136 #endif 137 138 MODULE_DEPEND(dc, pci, 1, 1, 1); 139 MODULE_DEPEND(dc, ether, 1, 1, 1); 140 MODULE_DEPEND(dc, miibus, 1, 1, 1); 141 142 /* 143 * "device miibus" is required in kernel config. See GENERIC if you get 144 * errors here. 145 */ 146 #include "miibus_if.h" 147 148 /* 149 * Various supported device vendors/types and their names. 150 */ 151 static struct dc_type dc_devs[] = { 152 { DC_DEVID(DC_VENDORID_DEC, DC_DEVICEID_21143), 0, 153 "Intel 21143 10/100BaseTX" }, 154 { DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009), 0, 155 "Davicom DM9009 10/100BaseTX" }, 156 { DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100), 0, 157 "Davicom DM9100 10/100BaseTX" }, 158 { DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102), DC_REVISION_DM9102A, 159 "Davicom DM9102A 10/100BaseTX" }, 160 { DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102), 0, 161 "Davicom DM9102 10/100BaseTX" }, 162 { DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AL981), 0, 163 "ADMtek AL981 10/100BaseTX" }, 164 { DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN985), 0, 165 "ADMtek AN985 10/100BaseTX" }, 166 { DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511), 0, 167 "ADMtek ADM9511 10/100BaseTX" }, 168 { DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513), 0, 169 "ADMtek ADM9513 10/100BaseTX" }, 170 { DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_FA511), 0, 171 "Netgear FA511 10/100BaseTX" }, 172 { DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A), DC_REVISION_88141, 173 "ASIX AX88141 10/100BaseTX" }, 174 { DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A), 0, 175 "ASIX AX88140A 10/100BaseTX" }, 176 { DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713), DC_REVISION_98713A, 177 "Macronix 98713A 10/100BaseTX" }, 178 { DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713), 0, 179 "Macronix 98713 10/100BaseTX" }, 180 { DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP), DC_REVISION_98713A, 181 "Compex RL100-TX 10/100BaseTX" }, 182 { DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP), 0, 183 "Compex RL100-TX 10/100BaseTX" }, 184 { DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), DC_REVISION_98725, 185 "Macronix 98725 10/100BaseTX" }, 186 { DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), DC_REVISION_98715AEC_C, 187 "Macronix 98715AEC-C 10/100BaseTX" }, 188 { DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), 0, 189 "Macronix 98715/98715A 10/100BaseTX" }, 190 { DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98727), 0, 191 "Macronix 98727/98732 10/100BaseTX" }, 192 { DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C115), 0, 193 "LC82C115 PNIC II 10/100BaseTX" }, 194 { DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168), DC_REVISION_82C169, 195 "82c169 PNIC 10/100BaseTX" }, 196 { DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168), 0, 197 "82c168 PNIC 10/100BaseTX" }, 198 { DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN1217), 0, 199 "Accton EN1217 10/100BaseTX" }, 200 { DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN2242), 0, 201 "Accton EN2242 MiniPCI 10/100BaseTX" }, 202 { DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201), 0, 203 "Xircom X3201 10/100BaseTX" }, 204 { DC_DEVID(DC_VENDORID_DLINK, DC_DEVICEID_DRP32TXD), 0, 205 "Neteasy DRP-32TXD Cardbus 10/100" }, 206 { DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500), 0, 207 "Abocom FE2500 10/100BaseTX" }, 208 { DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500MX), 0, 209 "Abocom FE2500MX 10/100BaseTX" }, 210 { DC_DEVID(DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112), 0, 211 "Conexant LANfinity MiniPCI 10/100BaseTX" }, 212 { DC_DEVID(DC_VENDORID_HAWKING, DC_DEVICEID_HAWKING_PN672TX), 0, 213 "Hawking CB102 CardBus 10/100" }, 214 { DC_DEVID(DC_VENDORID_PLANEX, DC_DEVICEID_FNW3602T), 0, 215 "PlaneX FNW-3602-T CardBus 10/100" }, 216 { DC_DEVID(DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB), 0, 217 "3Com OfficeConnect 10/100B" }, 218 { DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN120), 0, 219 "Microsoft MN-120 CardBus 10/100" }, 220 { DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130), 0, 221 "Microsoft MN-130 10/100" }, 222 { DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB08), 0, 223 "Linksys PCMPC200 CardBus 10/100" }, 224 { DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB09), 0, 225 "Linksys PCMPC200 CardBus 10/100" }, 226 { 0, 0, NULL } 227 }; 228 229 static int dc_probe(device_t); 230 static int dc_attach(device_t); 231 static int dc_detach(device_t); 232 static int dc_suspend(device_t); 233 static int dc_resume(device_t); 234 static struct dc_type *dc_devtype(device_t); 235 static int dc_newbuf(struct dc_softc *, int, int); 236 static int dc_encap(struct dc_softc *, struct mbuf **); 237 static void dc_pnic_rx_bug_war(struct dc_softc *, int); 238 static int dc_rx_resync(struct dc_softc *); 239 static void dc_rxeof(struct dc_softc *); 240 static void dc_txeof(struct dc_softc *); 241 static void dc_tick(void *); 242 static void dc_tx_underrun(struct dc_softc *); 243 static void dc_intr(void *); 244 static void dc_start(struct ifnet *); 245 static void dc_start_locked(struct ifnet *); 246 static int dc_ioctl(struct ifnet *, u_long, caddr_t); 247 static void dc_init(void *); 248 static void dc_init_locked(struct dc_softc *); 249 static void dc_stop(struct dc_softc *); 250 static void dc_watchdog(void *); 251 static int dc_shutdown(device_t); 252 static int dc_ifmedia_upd(struct ifnet *); 253 static void dc_ifmedia_sts(struct ifnet *, struct ifmediareq *); 254 255 static void dc_delay(struct dc_softc *); 256 static void dc_eeprom_idle(struct dc_softc *); 257 static void dc_eeprom_putbyte(struct dc_softc *, int); 258 static void dc_eeprom_getword(struct dc_softc *, int, u_int16_t *); 259 static void dc_eeprom_getword_pnic(struct dc_softc *, int, u_int16_t *); 260 static void dc_eeprom_getword_xircom(struct dc_softc *, int, u_int16_t *); 261 static void dc_eeprom_width(struct dc_softc *); 262 static void dc_read_eeprom(struct dc_softc *, caddr_t, int, int, int); 263 264 static void dc_mii_writebit(struct dc_softc *, int); 265 static int dc_mii_readbit(struct dc_softc *); 266 static void dc_mii_sync(struct dc_softc *); 267 static void dc_mii_send(struct dc_softc *, u_int32_t, int); 268 static int dc_mii_readreg(struct dc_softc *, struct dc_mii_frame *); 269 static int dc_mii_writereg(struct dc_softc *, struct dc_mii_frame *); 270 static int dc_miibus_readreg(device_t, int, int); 271 static int dc_miibus_writereg(device_t, int, int, int); 272 static void dc_miibus_statchg(device_t); 273 static void dc_miibus_mediainit(device_t); 274 275 static void dc_setcfg(struct dc_softc *, int); 276 static uint32_t dc_mchash_le(struct dc_softc *, const uint8_t *); 277 static uint32_t dc_mchash_be(const uint8_t *); 278 static void dc_setfilt_21143(struct dc_softc *); 279 static void dc_setfilt_asix(struct dc_softc *); 280 static void dc_setfilt_admtek(struct dc_softc *); 281 static void dc_setfilt_xircom(struct dc_softc *); 282 283 static void dc_setfilt(struct dc_softc *); 284 285 static void dc_reset(struct dc_softc *); 286 static int dc_list_rx_init(struct dc_softc *); 287 static int dc_list_tx_init(struct dc_softc *); 288 289 static void dc_read_srom(struct dc_softc *, int); 290 static void dc_parse_21143_srom(struct dc_softc *); 291 static void dc_decode_leaf_sia(struct dc_softc *, struct dc_eblock_sia *); 292 static void dc_decode_leaf_mii(struct dc_softc *, struct dc_eblock_mii *); 293 static void dc_decode_leaf_sym(struct dc_softc *, struct dc_eblock_sym *); 294 static void dc_apply_fixup(struct dc_softc *, int); 295 296 static void dc_dma_map_txbuf(void *, bus_dma_segment_t *, int, bus_size_t, int); 297 298 #ifdef DC_USEIOSPACE 299 #define DC_RES SYS_RES_IOPORT 300 #define DC_RID DC_PCI_CFBIO 301 #else 302 #define DC_RES SYS_RES_MEMORY 303 #define DC_RID DC_PCI_CFBMA 304 #endif 305 306 static device_method_t dc_methods[] = { 307 /* Device interface */ 308 DEVMETHOD(device_probe, dc_probe), 309 DEVMETHOD(device_attach, dc_attach), 310 DEVMETHOD(device_detach, dc_detach), 311 DEVMETHOD(device_suspend, dc_suspend), 312 DEVMETHOD(device_resume, dc_resume), 313 DEVMETHOD(device_shutdown, dc_shutdown), 314 315 /* bus interface */ 316 DEVMETHOD(bus_print_child, bus_generic_print_child), 317 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 318 319 /* MII interface */ 320 DEVMETHOD(miibus_readreg, dc_miibus_readreg), 321 DEVMETHOD(miibus_writereg, dc_miibus_writereg), 322 DEVMETHOD(miibus_statchg, dc_miibus_statchg), 323 DEVMETHOD(miibus_mediainit, dc_miibus_mediainit), 324 325 { 0, 0 } 326 }; 327 328 static driver_t dc_driver = { 329 "dc", 330 dc_methods, 331 sizeof(struct dc_softc) 332 }; 333 334 static devclass_t dc_devclass; 335 336 DRIVER_MODULE(dc, cardbus, dc_driver, dc_devclass, 0, 0); 337 DRIVER_MODULE(dc, pci, dc_driver, dc_devclass, 0, 0); 338 DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, 0, 0); 339 340 #define DC_SETBIT(sc, reg, x) \ 341 CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x)) 342 343 #define DC_CLRBIT(sc, reg, x) \ 344 CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x)) 345 346 #define SIO_SET(x) DC_SETBIT(sc, DC_SIO, (x)) 347 #define SIO_CLR(x) DC_CLRBIT(sc, DC_SIO, (x)) 348 349 static void 350 dc_delay(struct dc_softc *sc) 351 { 352 int idx; 353 354 for (idx = (300 / 33) + 1; idx > 0; idx--) 355 CSR_READ_4(sc, DC_BUSCTL); 356 } 357 358 static void 359 dc_eeprom_width(struct dc_softc *sc) 360 { 361 int i; 362 363 /* Force EEPROM to idle state. */ 364 dc_eeprom_idle(sc); 365 366 /* Enter EEPROM access mode. */ 367 CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL); 368 dc_delay(sc); 369 DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ); 370 dc_delay(sc); 371 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); 372 dc_delay(sc); 373 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS); 374 dc_delay(sc); 375 376 for (i = 3; i--;) { 377 if (6 & (1 << i)) 378 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN); 379 else 380 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN); 381 dc_delay(sc); 382 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK); 383 dc_delay(sc); 384 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); 385 dc_delay(sc); 386 } 387 388 for (i = 1; i <= 12; i++) { 389 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK); 390 dc_delay(sc); 391 if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) { 392 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); 393 dc_delay(sc); 394 break; 395 } 396 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); 397 dc_delay(sc); 398 } 399 400 /* Turn off EEPROM access mode. */ 401 dc_eeprom_idle(sc); 402 403 if (i < 4 || i > 12) 404 sc->dc_romwidth = 6; 405 else 406 sc->dc_romwidth = i; 407 408 /* Enter EEPROM access mode. */ 409 CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL); 410 dc_delay(sc); 411 DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ); 412 dc_delay(sc); 413 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); 414 dc_delay(sc); 415 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS); 416 dc_delay(sc); 417 418 /* Turn off EEPROM access mode. */ 419 dc_eeprom_idle(sc); 420 } 421 422 static void 423 dc_eeprom_idle(struct dc_softc *sc) 424 { 425 int i; 426 427 CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL); 428 dc_delay(sc); 429 DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ); 430 dc_delay(sc); 431 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); 432 dc_delay(sc); 433 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS); 434 dc_delay(sc); 435 436 for (i = 0; i < 25; i++) { 437 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); 438 dc_delay(sc); 439 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK); 440 dc_delay(sc); 441 } 442 443 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); 444 dc_delay(sc); 445 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS); 446 dc_delay(sc); 447 CSR_WRITE_4(sc, DC_SIO, 0x00000000); 448 } 449 450 /* 451 * Send a read command and address to the EEPROM, check for ACK. 452 */ 453 static void 454 dc_eeprom_putbyte(struct dc_softc *sc, int addr) 455 { 456 int d, i; 457 458 d = DC_EECMD_READ >> 6; 459 for (i = 3; i--; ) { 460 if (d & (1 << i)) 461 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN); 462 else 463 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN); 464 dc_delay(sc); 465 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK); 466 dc_delay(sc); 467 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); 468 dc_delay(sc); 469 } 470 471 /* 472 * Feed in each bit and strobe the clock. 473 */ 474 for (i = sc->dc_romwidth; i--;) { 475 if (addr & (1 << i)) { 476 SIO_SET(DC_SIO_EE_DATAIN); 477 } else { 478 SIO_CLR(DC_SIO_EE_DATAIN); 479 } 480 dc_delay(sc); 481 SIO_SET(DC_SIO_EE_CLK); 482 dc_delay(sc); 483 SIO_CLR(DC_SIO_EE_CLK); 484 dc_delay(sc); 485 } 486 } 487 488 /* 489 * Read a word of data stored in the EEPROM at address 'addr.' 490 * The PNIC 82c168/82c169 has its own non-standard way to read 491 * the EEPROM. 492 */ 493 static void 494 dc_eeprom_getword_pnic(struct dc_softc *sc, int addr, u_int16_t *dest) 495 { 496 int i; 497 u_int32_t r; 498 499 CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ | addr); 500 501 for (i = 0; i < DC_TIMEOUT; i++) { 502 DELAY(1); 503 r = CSR_READ_4(sc, DC_SIO); 504 if (!(r & DC_PN_SIOCTL_BUSY)) { 505 *dest = (u_int16_t)(r & 0xFFFF); 506 return; 507 } 508 } 509 } 510 511 /* 512 * Read a word of data stored in the EEPROM at address 'addr.' 513 * The Xircom X3201 has its own non-standard way to read 514 * the EEPROM, too. 515 */ 516 static void 517 dc_eeprom_getword_xircom(struct dc_softc *sc, int addr, u_int16_t *dest) 518 { 519 520 SIO_SET(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ); 521 522 addr *= 2; 523 CSR_WRITE_4(sc, DC_ROM, addr | 0x160); 524 *dest = (u_int16_t)CSR_READ_4(sc, DC_SIO) & 0xff; 525 addr += 1; 526 CSR_WRITE_4(sc, DC_ROM, addr | 0x160); 527 *dest |= ((u_int16_t)CSR_READ_4(sc, DC_SIO) & 0xff) << 8; 528 529 SIO_CLR(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ); 530 } 531 532 /* 533 * Read a word of data stored in the EEPROM at address 'addr.' 534 */ 535 static void 536 dc_eeprom_getword(struct dc_softc *sc, int addr, u_int16_t *dest) 537 { 538 int i; 539 u_int16_t word = 0; 540 541 /* Force EEPROM to idle state. */ 542 dc_eeprom_idle(sc); 543 544 /* Enter EEPROM access mode. */ 545 CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL); 546 dc_delay(sc); 547 DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ); 548 dc_delay(sc); 549 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); 550 dc_delay(sc); 551 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS); 552 dc_delay(sc); 553 554 /* 555 * Send address of word we want to read. 556 */ 557 dc_eeprom_putbyte(sc, addr); 558 559 /* 560 * Start reading bits from EEPROM. 561 */ 562 for (i = 0x8000; i; i >>= 1) { 563 SIO_SET(DC_SIO_EE_CLK); 564 dc_delay(sc); 565 if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT) 566 word |= i; 567 dc_delay(sc); 568 SIO_CLR(DC_SIO_EE_CLK); 569 dc_delay(sc); 570 } 571 572 /* Turn off EEPROM access mode. */ 573 dc_eeprom_idle(sc); 574 575 *dest = word; 576 } 577 578 /* 579 * Read a sequence of words from the EEPROM. 580 */ 581 static void 582 dc_read_eeprom(struct dc_softc *sc, caddr_t dest, int off, int cnt, int be) 583 { 584 int i; 585 u_int16_t word = 0, *ptr; 586 587 for (i = 0; i < cnt; i++) { 588 if (DC_IS_PNIC(sc)) 589 dc_eeprom_getword_pnic(sc, off + i, &word); 590 else if (DC_IS_XIRCOM(sc)) 591 dc_eeprom_getword_xircom(sc, off + i, &word); 592 else 593 dc_eeprom_getword(sc, off + i, &word); 594 ptr = (u_int16_t *)(dest + (i * 2)); 595 if (be) 596 *ptr = be16toh(word); 597 else 598 *ptr = le16toh(word); 599 } 600 } 601 602 /* 603 * The following two routines are taken from the Macronix 98713 604 * Application Notes pp.19-21. 605 */ 606 /* 607 * Write a bit to the MII bus. 608 */ 609 static void 610 dc_mii_writebit(struct dc_softc *sc, int bit) 611 { 612 613 if (bit) 614 CSR_WRITE_4(sc, DC_SIO, 615 DC_SIO_ROMCTL_WRITE | DC_SIO_MII_DATAOUT); 616 else 617 CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE); 618 619 DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK); 620 DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK); 621 } 622 623 /* 624 * Read a bit from the MII bus. 625 */ 626 static int 627 dc_mii_readbit(struct dc_softc *sc) 628 { 629 630 CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_READ | DC_SIO_MII_DIR); 631 CSR_READ_4(sc, DC_SIO); 632 DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK); 633 DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK); 634 if (CSR_READ_4(sc, DC_SIO) & DC_SIO_MII_DATAIN) 635 return (1); 636 637 return (0); 638 } 639 640 /* 641 * Sync the PHYs by setting data bit and strobing the clock 32 times. 642 */ 643 static void 644 dc_mii_sync(struct dc_softc *sc) 645 { 646 int i; 647 648 CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE); 649 650 for (i = 0; i < 32; i++) 651 dc_mii_writebit(sc, 1); 652 } 653 654 /* 655 * Clock a series of bits through the MII. 656 */ 657 static void 658 dc_mii_send(struct dc_softc *sc, u_int32_t bits, int cnt) 659 { 660 int i; 661 662 for (i = (0x1 << (cnt - 1)); i; i >>= 1) 663 dc_mii_writebit(sc, bits & i); 664 } 665 666 /* 667 * Read an PHY register through the MII. 668 */ 669 static int 670 dc_mii_readreg(struct dc_softc *sc, struct dc_mii_frame *frame) 671 { 672 int i, ack; 673 674 /* 675 * Set up frame for RX. 676 */ 677 frame->mii_stdelim = DC_MII_STARTDELIM; 678 frame->mii_opcode = DC_MII_READOP; 679 frame->mii_turnaround = 0; 680 frame->mii_data = 0; 681 682 /* 683 * Sync the PHYs. 684 */ 685 dc_mii_sync(sc); 686 687 /* 688 * Send command/address info. 689 */ 690 dc_mii_send(sc, frame->mii_stdelim, 2); 691 dc_mii_send(sc, frame->mii_opcode, 2); 692 dc_mii_send(sc, frame->mii_phyaddr, 5); 693 dc_mii_send(sc, frame->mii_regaddr, 5); 694 695 #ifdef notdef 696 /* Idle bit */ 697 dc_mii_writebit(sc, 1); 698 dc_mii_writebit(sc, 0); 699 #endif 700 701 /* Check for ack. */ 702 ack = dc_mii_readbit(sc); 703 704 /* 705 * Now try reading data bits. If the ack failed, we still 706 * need to clock through 16 cycles to keep the PHY(s) in sync. 707 */ 708 if (ack) { 709 for (i = 0; i < 16; i++) 710 dc_mii_readbit(sc); 711 goto fail; 712 } 713 714 for (i = 0x8000; i; i >>= 1) { 715 if (!ack) { 716 if (dc_mii_readbit(sc)) 717 frame->mii_data |= i; 718 } 719 } 720 721 fail: 722 723 dc_mii_writebit(sc, 0); 724 dc_mii_writebit(sc, 0); 725 726 if (ack) 727 return (1); 728 return (0); 729 } 730 731 /* 732 * Write to a PHY register through the MII. 733 */ 734 static int 735 dc_mii_writereg(struct dc_softc *sc, struct dc_mii_frame *frame) 736 { 737 738 /* 739 * Set up frame for TX. 740 */ 741 742 frame->mii_stdelim = DC_MII_STARTDELIM; 743 frame->mii_opcode = DC_MII_WRITEOP; 744 frame->mii_turnaround = DC_MII_TURNAROUND; 745 746 /* 747 * Sync the PHYs. 748 */ 749 dc_mii_sync(sc); 750 751 dc_mii_send(sc, frame->mii_stdelim, 2); 752 dc_mii_send(sc, frame->mii_opcode, 2); 753 dc_mii_send(sc, frame->mii_phyaddr, 5); 754 dc_mii_send(sc, frame->mii_regaddr, 5); 755 dc_mii_send(sc, frame->mii_turnaround, 2); 756 dc_mii_send(sc, frame->mii_data, 16); 757 758 /* Idle bit. */ 759 dc_mii_writebit(sc, 0); 760 dc_mii_writebit(sc, 0); 761 762 return (0); 763 } 764 765 static int 766 dc_miibus_readreg(device_t dev, int phy, int reg) 767 { 768 struct dc_mii_frame frame; 769 struct dc_softc *sc; 770 int i, rval, phy_reg = 0; 771 772 sc = device_get_softc(dev); 773 bzero(&frame, sizeof(frame)); 774 775 /* 776 * Note: both the AL981 and AN985 have internal PHYs, 777 * however the AL981 provides direct access to the PHY 778 * registers while the AN985 uses a serial MII interface. 779 * The AN985's MII interface is also buggy in that you 780 * can read from any MII address (0 to 31), but only address 1 781 * behaves normally. To deal with both cases, we pretend 782 * that the PHY is at MII address 1. 783 */ 784 if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR) 785 return (0); 786 787 /* 788 * Note: the ukphy probes of the RS7112 report a PHY at 789 * MII address 0 (possibly HomePNA?) and 1 (ethernet) 790 * so we only respond to correct one. 791 */ 792 if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR) 793 return (0); 794 795 if (sc->dc_pmode != DC_PMODE_MII) { 796 if (phy == (MII_NPHY - 1)) { 797 switch (reg) { 798 case MII_BMSR: 799 /* 800 * Fake something to make the probe 801 * code think there's a PHY here. 802 */ 803 return (BMSR_MEDIAMASK); 804 break; 805 case MII_PHYIDR1: 806 if (DC_IS_PNIC(sc)) 807 return (DC_VENDORID_LO); 808 return (DC_VENDORID_DEC); 809 break; 810 case MII_PHYIDR2: 811 if (DC_IS_PNIC(sc)) 812 return (DC_DEVICEID_82C168); 813 return (DC_DEVICEID_21143); 814 break; 815 default: 816 return (0); 817 break; 818 } 819 } else 820 return (0); 821 } 822 823 if (DC_IS_PNIC(sc)) { 824 CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ | 825 (phy << 23) | (reg << 18)); 826 for (i = 0; i < DC_TIMEOUT; i++) { 827 DELAY(1); 828 rval = CSR_READ_4(sc, DC_PN_MII); 829 if (!(rval & DC_PN_MII_BUSY)) { 830 rval &= 0xFFFF; 831 return (rval == 0xFFFF ? 0 : rval); 832 } 833 } 834 return (0); 835 } 836 837 if (DC_IS_COMET(sc)) { 838 switch (reg) { 839 case MII_BMCR: 840 phy_reg = DC_AL_BMCR; 841 break; 842 case MII_BMSR: 843 phy_reg = DC_AL_BMSR; 844 break; 845 case MII_PHYIDR1: 846 phy_reg = DC_AL_VENID; 847 break; 848 case MII_PHYIDR2: 849 phy_reg = DC_AL_DEVID; 850 break; 851 case MII_ANAR: 852 phy_reg = DC_AL_ANAR; 853 break; 854 case MII_ANLPAR: 855 phy_reg = DC_AL_LPAR; 856 break; 857 case MII_ANER: 858 phy_reg = DC_AL_ANER; 859 break; 860 default: 861 device_printf(dev, "phy_read: bad phy register %x\n", 862 reg); 863 return (0); 864 break; 865 } 866 867 rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF; 868 869 if (rval == 0xFFFF) 870 return (0); 871 return (rval); 872 } 873 874 frame.mii_phyaddr = phy; 875 frame.mii_regaddr = reg; 876 if (sc->dc_type == DC_TYPE_98713) { 877 phy_reg = CSR_READ_4(sc, DC_NETCFG); 878 CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL); 879 } 880 dc_mii_readreg(sc, &frame); 881 if (sc->dc_type == DC_TYPE_98713) 882 CSR_WRITE_4(sc, DC_NETCFG, phy_reg); 883 884 return (frame.mii_data); 885 } 886 887 static int 888 dc_miibus_writereg(device_t dev, int phy, int reg, int data) 889 { 890 struct dc_softc *sc; 891 struct dc_mii_frame frame; 892 int i, phy_reg = 0; 893 894 sc = device_get_softc(dev); 895 bzero(&frame, sizeof(frame)); 896 897 if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR) 898 return (0); 899 900 if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR) 901 return (0); 902 903 if (DC_IS_PNIC(sc)) { 904 CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE | 905 (phy << 23) | (reg << 10) | data); 906 for (i = 0; i < DC_TIMEOUT; i++) { 907 if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY)) 908 break; 909 } 910 return (0); 911 } 912 913 if (DC_IS_COMET(sc)) { 914 switch (reg) { 915 case MII_BMCR: 916 phy_reg = DC_AL_BMCR; 917 break; 918 case MII_BMSR: 919 phy_reg = DC_AL_BMSR; 920 break; 921 case MII_PHYIDR1: 922 phy_reg = DC_AL_VENID; 923 break; 924 case MII_PHYIDR2: 925 phy_reg = DC_AL_DEVID; 926 break; 927 case MII_ANAR: 928 phy_reg = DC_AL_ANAR; 929 break; 930 case MII_ANLPAR: 931 phy_reg = DC_AL_LPAR; 932 break; 933 case MII_ANER: 934 phy_reg = DC_AL_ANER; 935 break; 936 default: 937 device_printf(dev, "phy_write: bad phy register %x\n", 938 reg); 939 return (0); 940 break; 941 } 942 943 CSR_WRITE_4(sc, phy_reg, data); 944 return (0); 945 } 946 947 frame.mii_phyaddr = phy; 948 frame.mii_regaddr = reg; 949 frame.mii_data = data; 950 951 if (sc->dc_type == DC_TYPE_98713) { 952 phy_reg = CSR_READ_4(sc, DC_NETCFG); 953 CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL); 954 } 955 dc_mii_writereg(sc, &frame); 956 if (sc->dc_type == DC_TYPE_98713) 957 CSR_WRITE_4(sc, DC_NETCFG, phy_reg); 958 959 return (0); 960 } 961 962 static void 963 dc_miibus_statchg(device_t dev) 964 { 965 struct dc_softc *sc; 966 struct mii_data *mii; 967 struct ifmedia *ifm; 968 969 sc = device_get_softc(dev); 970 if (DC_IS_ADMTEK(sc)) 971 return; 972 973 mii = device_get_softc(sc->dc_miibus); 974 ifm = &mii->mii_media; 975 if (DC_IS_DAVICOM(sc) && 976 IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) { 977 dc_setcfg(sc, ifm->ifm_media); 978 sc->dc_if_media = ifm->ifm_media; 979 } else { 980 dc_setcfg(sc, mii->mii_media_active); 981 sc->dc_if_media = mii->mii_media_active; 982 } 983 } 984 985 /* 986 * Special support for DM9102A cards with HomePNA PHYs. Note: 987 * with the Davicom DM9102A/DM9801 eval board that I have, it seems 988 * to be impossible to talk to the management interface of the DM9801 989 * PHY (its MDIO pin is not connected to anything). Consequently, 990 * the driver has to just 'know' about the additional mode and deal 991 * with it itself. *sigh* 992 */ 993 static void 994 dc_miibus_mediainit(device_t dev) 995 { 996 struct dc_softc *sc; 997 struct mii_data *mii; 998 struct ifmedia *ifm; 999 int rev; 1000 1001 rev = pci_get_revid(dev); 1002 1003 sc = device_get_softc(dev); 1004 mii = device_get_softc(sc->dc_miibus); 1005 ifm = &mii->mii_media; 1006 1007 if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A) 1008 ifmedia_add(ifm, IFM_ETHER | IFM_HPNA_1, 0, NULL); 1009 } 1010 1011 #define DC_BITS_512 9 1012 #define DC_BITS_128 7 1013 #define DC_BITS_64 6 1014 1015 static uint32_t 1016 dc_mchash_le(struct dc_softc *sc, const uint8_t *addr) 1017 { 1018 uint32_t crc; 1019 1020 /* Compute CRC for the address value. */ 1021 crc = ether_crc32_le(addr, ETHER_ADDR_LEN); 1022 1023 /* 1024 * The hash table on the PNIC II and the MX98715AEC-C/D/E 1025 * chips is only 128 bits wide. 1026 */ 1027 if (sc->dc_flags & DC_128BIT_HASH) 1028 return (crc & ((1 << DC_BITS_128) - 1)); 1029 1030 /* The hash table on the MX98715BEC is only 64 bits wide. */ 1031 if (sc->dc_flags & DC_64BIT_HASH) 1032 return (crc & ((1 << DC_BITS_64) - 1)); 1033 1034 /* Xircom's hash filtering table is different (read: weird) */ 1035 /* Xircom uses the LEAST significant bits */ 1036 if (DC_IS_XIRCOM(sc)) { 1037 if ((crc & 0x180) == 0x180) 1038 return ((crc & 0x0F) + (crc & 0x70) * 3 + (14 << 4)); 1039 else 1040 return ((crc & 0x1F) + ((crc >> 1) & 0xF0) * 3 + 1041 (12 << 4)); 1042 } 1043 1044 return (crc & ((1 << DC_BITS_512) - 1)); 1045 } 1046 1047 /* 1048 * Calculate CRC of a multicast group address, return the lower 6 bits. 1049 */ 1050 static uint32_t 1051 dc_mchash_be(const uint8_t *addr) 1052 { 1053 uint32_t crc; 1054 1055 /* Compute CRC for the address value. */ 1056 crc = ether_crc32_be(addr, ETHER_ADDR_LEN); 1057 1058 /* Return the filter bit position. */ 1059 return ((crc >> 26) & 0x0000003F); 1060 } 1061 1062 /* 1063 * 21143-style RX filter setup routine. Filter programming is done by 1064 * downloading a special setup frame into the TX engine. 21143, Macronix, 1065 * PNIC, PNIC II and Davicom chips are programmed this way. 1066 * 1067 * We always program the chip using 'hash perfect' mode, i.e. one perfect 1068 * address (our node address) and a 512-bit hash filter for multicast 1069 * frames. We also sneak the broadcast address into the hash filter since 1070 * we need that too. 1071 */ 1072 static void 1073 dc_setfilt_21143(struct dc_softc *sc) 1074 { 1075 uint16_t eaddr[(ETHER_ADDR_LEN+1)/2]; 1076 struct dc_desc *sframe; 1077 u_int32_t h, *sp; 1078 struct ifmultiaddr *ifma; 1079 struct ifnet *ifp; 1080 int i; 1081 1082 ifp = sc->dc_ifp; 1083 1084 i = sc->dc_cdata.dc_tx_prod; 1085 DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT); 1086 sc->dc_cdata.dc_tx_cnt++; 1087 sframe = &sc->dc_ldata->dc_tx_list[i]; 1088 sp = sc->dc_cdata.dc_sbuf; 1089 bzero(sp, DC_SFRAME_LEN); 1090 1091 sframe->dc_data = htole32(sc->dc_saddr); 1092 sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP | 1093 DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT); 1094 1095 sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf; 1096 1097 /* If we want promiscuous mode, set the allframes bit. */ 1098 if (ifp->if_flags & IFF_PROMISC) 1099 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC); 1100 else 1101 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC); 1102 1103 if (ifp->if_flags & IFF_ALLMULTI) 1104 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI); 1105 else 1106 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI); 1107 1108 IF_ADDR_LOCK(ifp); 1109 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1110 if (ifma->ifma_addr->sa_family != AF_LINK) 1111 continue; 1112 h = dc_mchash_le(sc, 1113 LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); 1114 sp[h >> 4] |= htole32(1 << (h & 0xF)); 1115 } 1116 IF_ADDR_UNLOCK(ifp); 1117 1118 if (ifp->if_flags & IFF_BROADCAST) { 1119 h = dc_mchash_le(sc, ifp->if_broadcastaddr); 1120 sp[h >> 4] |= htole32(1 << (h & 0xF)); 1121 } 1122 1123 /* Set our MAC address. */ 1124 bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN); 1125 sp[39] = DC_SP_MAC(eaddr[0]); 1126 sp[40] = DC_SP_MAC(eaddr[1]); 1127 sp[41] = DC_SP_MAC(eaddr[2]); 1128 1129 sframe->dc_status = htole32(DC_TXSTAT_OWN); 1130 CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF); 1131 1132 /* 1133 * The PNIC takes an exceedingly long time to process its 1134 * setup frame; wait 10ms after posting the setup frame 1135 * before proceeding, just so it has time to swallow its 1136 * medicine. 1137 */ 1138 DELAY(10000); 1139 1140 sc->dc_wdog_timer = 5; 1141 } 1142 1143 static void 1144 dc_setfilt_admtek(struct dc_softc *sc) 1145 { 1146 uint32_t eaddr[(ETHER_ADDR_LEN+3)/4]; 1147 struct ifnet *ifp; 1148 struct ifmultiaddr *ifma; 1149 int h = 0; 1150 u_int32_t hashes[2] = { 0, 0 }; 1151 1152 ifp = sc->dc_ifp; 1153 1154 /* Init our MAC address. */ 1155 bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN); 1156 CSR_WRITE_4(sc, DC_AL_PAR0, eaddr[0]); 1157 CSR_WRITE_4(sc, DC_AL_PAR1, eaddr[1]); 1158 1159 /* If we want promiscuous mode, set the allframes bit. */ 1160 if (ifp->if_flags & IFF_PROMISC) 1161 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC); 1162 else 1163 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC); 1164 1165 if (ifp->if_flags & IFF_ALLMULTI) 1166 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI); 1167 else 1168 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI); 1169 1170 /* First, zot all the existing hash bits. */ 1171 CSR_WRITE_4(sc, DC_AL_MAR0, 0); 1172 CSR_WRITE_4(sc, DC_AL_MAR1, 0); 1173 1174 /* 1175 * If we're already in promisc or allmulti mode, we 1176 * don't have to bother programming the multicast filter. 1177 */ 1178 if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) 1179 return; 1180 1181 /* Now program new ones. */ 1182 IF_ADDR_LOCK(ifp); 1183 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1184 if (ifma->ifma_addr->sa_family != AF_LINK) 1185 continue; 1186 if (DC_IS_CENTAUR(sc)) 1187 h = dc_mchash_le(sc, 1188 LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); 1189 else 1190 h = dc_mchash_be( 1191 LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); 1192 if (h < 32) 1193 hashes[0] |= (1 << h); 1194 else 1195 hashes[1] |= (1 << (h - 32)); 1196 } 1197 IF_ADDR_UNLOCK(ifp); 1198 1199 CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]); 1200 CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]); 1201 } 1202 1203 static void 1204 dc_setfilt_asix(struct dc_softc *sc) 1205 { 1206 uint32_t eaddr[(ETHER_ADDR_LEN+3)/4]; 1207 struct ifnet *ifp; 1208 struct ifmultiaddr *ifma; 1209 int h = 0; 1210 u_int32_t hashes[2] = { 0, 0 }; 1211 1212 ifp = sc->dc_ifp; 1213 1214 /* Init our MAC address. */ 1215 bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN); 1216 CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0); 1217 CSR_WRITE_4(sc, DC_AX_FILTDATA, eaddr[0]); 1218 CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1); 1219 CSR_WRITE_4(sc, DC_AX_FILTDATA, eaddr[1]); 1220 1221 /* If we want promiscuous mode, set the allframes bit. */ 1222 if (ifp->if_flags & IFF_PROMISC) 1223 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC); 1224 else 1225 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC); 1226 1227 if (ifp->if_flags & IFF_ALLMULTI) 1228 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI); 1229 else 1230 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI); 1231 1232 /* 1233 * The ASIX chip has a special bit to enable reception 1234 * of broadcast frames. 1235 */ 1236 if (ifp->if_flags & IFF_BROADCAST) 1237 DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD); 1238 else 1239 DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD); 1240 1241 /* first, zot all the existing hash bits */ 1242 CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0); 1243 CSR_WRITE_4(sc, DC_AX_FILTDATA, 0); 1244 CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1); 1245 CSR_WRITE_4(sc, DC_AX_FILTDATA, 0); 1246 1247 /* 1248 * If we're already in promisc or allmulti mode, we 1249 * don't have to bother programming the multicast filter. 1250 */ 1251 if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) 1252 return; 1253 1254 /* now program new ones */ 1255 IF_ADDR_LOCK(ifp); 1256 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1257 if (ifma->ifma_addr->sa_family != AF_LINK) 1258 continue; 1259 h = dc_mchash_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); 1260 if (h < 32) 1261 hashes[0] |= (1 << h); 1262 else 1263 hashes[1] |= (1 << (h - 32)); 1264 } 1265 IF_ADDR_UNLOCK(ifp); 1266 1267 CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0); 1268 CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]); 1269 CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1); 1270 CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]); 1271 } 1272 1273 static void 1274 dc_setfilt_xircom(struct dc_softc *sc) 1275 { 1276 uint16_t eaddr[(ETHER_ADDR_LEN+1)/2]; 1277 struct ifnet *ifp; 1278 struct ifmultiaddr *ifma; 1279 struct dc_desc *sframe; 1280 u_int32_t h, *sp; 1281 int i; 1282 1283 ifp = sc->dc_ifp; 1284 DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON)); 1285 1286 i = sc->dc_cdata.dc_tx_prod; 1287 DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT); 1288 sc->dc_cdata.dc_tx_cnt++; 1289 sframe = &sc->dc_ldata->dc_tx_list[i]; 1290 sp = sc->dc_cdata.dc_sbuf; 1291 bzero(sp, DC_SFRAME_LEN); 1292 1293 sframe->dc_data = htole32(sc->dc_saddr); 1294 sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP | 1295 DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT); 1296 1297 sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf; 1298 1299 /* If we want promiscuous mode, set the allframes bit. */ 1300 if (ifp->if_flags & IFF_PROMISC) 1301 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC); 1302 else 1303 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC); 1304 1305 if (ifp->if_flags & IFF_ALLMULTI) 1306 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI); 1307 else 1308 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI); 1309 1310 IF_ADDR_LOCK(ifp); 1311 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1312 if (ifma->ifma_addr->sa_family != AF_LINK) 1313 continue; 1314 h = dc_mchash_le(sc, 1315 LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); 1316 sp[h >> 4] |= htole32(1 << (h & 0xF)); 1317 } 1318 IF_ADDR_UNLOCK(ifp); 1319 1320 if (ifp->if_flags & IFF_BROADCAST) { 1321 h = dc_mchash_le(sc, ifp->if_broadcastaddr); 1322 sp[h >> 4] |= htole32(1 << (h & 0xF)); 1323 } 1324 1325 /* Set our MAC address. */ 1326 bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN); 1327 sp[0] = DC_SP_MAC(eaddr[0]); 1328 sp[1] = DC_SP_MAC(eaddr[1]); 1329 sp[2] = DC_SP_MAC(eaddr[2]); 1330 1331 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON); 1332 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON); 1333 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1334 sframe->dc_status = htole32(DC_TXSTAT_OWN); 1335 CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF); 1336 1337 /* 1338 * Wait some time... 1339 */ 1340 DELAY(1000); 1341 1342 sc->dc_wdog_timer = 5; 1343 } 1344 1345 static void 1346 dc_setfilt(struct dc_softc *sc) 1347 { 1348 1349 if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) || 1350 DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc)) 1351 dc_setfilt_21143(sc); 1352 1353 if (DC_IS_ASIX(sc)) 1354 dc_setfilt_asix(sc); 1355 1356 if (DC_IS_ADMTEK(sc)) 1357 dc_setfilt_admtek(sc); 1358 1359 if (DC_IS_XIRCOM(sc)) 1360 dc_setfilt_xircom(sc); 1361 } 1362 1363 /* 1364 * In order to fiddle with the 'full-duplex' and '100Mbps' bits in 1365 * the netconfig register, we first have to put the transmit and/or 1366 * receive logic in the idle state. 1367 */ 1368 static void 1369 dc_setcfg(struct dc_softc *sc, int media) 1370 { 1371 int i, restart = 0, watchdogreg; 1372 u_int32_t isr; 1373 1374 if (IFM_SUBTYPE(media) == IFM_NONE) 1375 return; 1376 1377 if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON)) { 1378 restart = 1; 1379 DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON)); 1380 1381 for (i = 0; i < DC_TIMEOUT; i++) { 1382 isr = CSR_READ_4(sc, DC_ISR); 1383 if (isr & DC_ISR_TX_IDLE && 1384 ((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED || 1385 (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT)) 1386 break; 1387 DELAY(10); 1388 } 1389 1390 if (i == DC_TIMEOUT) { 1391 if (!(isr & DC_ISR_TX_IDLE) && !DC_IS_ASIX(sc)) 1392 device_printf(sc->dc_dev, 1393 "%s: failed to force tx to idle state\n", 1394 __func__); 1395 if (!((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED || 1396 (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT) && 1397 !(DC_IS_CENTAUR(sc) || DC_IS_CONEXANT(sc) || 1398 (DC_IS_DAVICOM(sc) && pci_get_revid(sc->dc_dev) >= 1399 DC_REVISION_DM9102A))) 1400 device_printf(sc->dc_dev, 1401 "%s: failed to force rx to idle state\n", 1402 __func__); 1403 } 1404 } 1405 1406 if (IFM_SUBTYPE(media) == IFM_100_TX) { 1407 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL); 1408 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT); 1409 if (sc->dc_pmode == DC_PMODE_MII) { 1410 if (DC_IS_INTEL(sc)) { 1411 /* There's a write enable bit here that reads as 1. */ 1412 watchdogreg = CSR_READ_4(sc, DC_WATCHDOG); 1413 watchdogreg &= ~DC_WDOG_CTLWREN; 1414 watchdogreg |= DC_WDOG_JABBERDIS; 1415 CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg); 1416 } else { 1417 DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS); 1418 } 1419 DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS | 1420 DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER)); 1421 if (sc->dc_type == DC_TYPE_98713) 1422 DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS | 1423 DC_NETCFG_SCRAMBLER)); 1424 if (!DC_IS_DAVICOM(sc)) 1425 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL); 1426 DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF); 1427 if (DC_IS_INTEL(sc)) 1428 dc_apply_fixup(sc, IFM_AUTO); 1429 } else { 1430 if (DC_IS_PNIC(sc)) { 1431 DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL); 1432 DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP); 1433 DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL); 1434 } 1435 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL); 1436 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS); 1437 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER); 1438 if (DC_IS_INTEL(sc)) 1439 dc_apply_fixup(sc, 1440 (media & IFM_GMASK) == IFM_FDX ? 1441 IFM_100_TX | IFM_FDX : IFM_100_TX); 1442 } 1443 } 1444 1445 if (IFM_SUBTYPE(media) == IFM_10_T) { 1446 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL); 1447 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT); 1448 if (sc->dc_pmode == DC_PMODE_MII) { 1449 /* There's a write enable bit here that reads as 1. */ 1450 if (DC_IS_INTEL(sc)) { 1451 watchdogreg = CSR_READ_4(sc, DC_WATCHDOG); 1452 watchdogreg &= ~DC_WDOG_CTLWREN; 1453 watchdogreg |= DC_WDOG_JABBERDIS; 1454 CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg); 1455 } else { 1456 DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS); 1457 } 1458 DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS | 1459 DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER)); 1460 if (sc->dc_type == DC_TYPE_98713) 1461 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS); 1462 if (!DC_IS_DAVICOM(sc)) 1463 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL); 1464 DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF); 1465 if (DC_IS_INTEL(sc)) 1466 dc_apply_fixup(sc, IFM_AUTO); 1467 } else { 1468 if (DC_IS_PNIC(sc)) { 1469 DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL); 1470 DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP); 1471 DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL); 1472 } 1473 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL); 1474 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS); 1475 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER); 1476 if (DC_IS_INTEL(sc)) { 1477 DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET); 1478 DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF); 1479 if ((media & IFM_GMASK) == IFM_FDX) 1480 DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D); 1481 else 1482 DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F); 1483 DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET); 1484 DC_CLRBIT(sc, DC_10BTCTRL, 1485 DC_TCTL_AUTONEGENBL); 1486 dc_apply_fixup(sc, 1487 (media & IFM_GMASK) == IFM_FDX ? 1488 IFM_10_T | IFM_FDX : IFM_10_T); 1489 DELAY(20000); 1490 } 1491 } 1492 } 1493 1494 /* 1495 * If this is a Davicom DM9102A card with a DM9801 HomePNA 1496 * PHY and we want HomePNA mode, set the portsel bit to turn 1497 * on the external MII port. 1498 */ 1499 if (DC_IS_DAVICOM(sc)) { 1500 if (IFM_SUBTYPE(media) == IFM_HPNA_1) { 1501 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL); 1502 sc->dc_link = 1; 1503 } else { 1504 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL); 1505 } 1506 } 1507 1508 if ((media & IFM_GMASK) == IFM_FDX) { 1509 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX); 1510 if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc)) 1511 DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX); 1512 } else { 1513 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX); 1514 if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc)) 1515 DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX); 1516 } 1517 1518 if (restart) 1519 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON | DC_NETCFG_RX_ON); 1520 } 1521 1522 static void 1523 dc_reset(struct dc_softc *sc) 1524 { 1525 int i; 1526 1527 DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET); 1528 1529 for (i = 0; i < DC_TIMEOUT; i++) { 1530 DELAY(10); 1531 if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET)) 1532 break; 1533 } 1534 1535 if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_CONEXANT(sc) || 1536 DC_IS_XIRCOM(sc) || DC_IS_INTEL(sc)) { 1537 DELAY(10000); 1538 DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET); 1539 i = 0; 1540 } 1541 1542 if (i == DC_TIMEOUT) 1543 device_printf(sc->dc_dev, "reset never completed!\n"); 1544 1545 /* Wait a little while for the chip to get its brains in order. */ 1546 DELAY(1000); 1547 1548 CSR_WRITE_4(sc, DC_IMR, 0x00000000); 1549 CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000); 1550 CSR_WRITE_4(sc, DC_NETCFG, 0x00000000); 1551 1552 /* 1553 * Bring the SIA out of reset. In some cases, it looks 1554 * like failing to unreset the SIA soon enough gets it 1555 * into a state where it will never come out of reset 1556 * until we reset the whole chip again. 1557 */ 1558 if (DC_IS_INTEL(sc)) { 1559 DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET); 1560 CSR_WRITE_4(sc, DC_10BTCTRL, 0); 1561 CSR_WRITE_4(sc, DC_WATCHDOG, 0); 1562 } 1563 } 1564 1565 static struct dc_type * 1566 dc_devtype(device_t dev) 1567 { 1568 struct dc_type *t; 1569 u_int32_t devid; 1570 u_int8_t rev; 1571 1572 t = dc_devs; 1573 devid = pci_get_devid(dev); 1574 rev = pci_get_revid(dev); 1575 1576 while (t->dc_name != NULL) { 1577 if (devid == t->dc_devid && rev >= t->dc_minrev) 1578 return (t); 1579 t++; 1580 } 1581 1582 return (NULL); 1583 } 1584 1585 /* 1586 * Probe for a 21143 or clone chip. Check the PCI vendor and device 1587 * IDs against our list and return a device name if we find a match. 1588 * We do a little bit of extra work to identify the exact type of 1589 * chip. The MX98713 and MX98713A have the same PCI vendor/device ID, 1590 * but different revision IDs. The same is true for 98715/98715A 1591 * chips and the 98725, as well as the ASIX and ADMtek chips. In some 1592 * cases, the exact chip revision affects driver behavior. 1593 */ 1594 static int 1595 dc_probe(device_t dev) 1596 { 1597 struct dc_type *t; 1598 1599 t = dc_devtype(dev); 1600 1601 if (t != NULL) { 1602 device_set_desc(dev, t->dc_name); 1603 return (BUS_PROBE_DEFAULT); 1604 } 1605 1606 return (ENXIO); 1607 } 1608 1609 static void 1610 dc_apply_fixup(struct dc_softc *sc, int media) 1611 { 1612 struct dc_mediainfo *m; 1613 u_int8_t *p; 1614 int i; 1615 u_int32_t reg; 1616 1617 m = sc->dc_mi; 1618 1619 while (m != NULL) { 1620 if (m->dc_media == media) 1621 break; 1622 m = m->dc_next; 1623 } 1624 1625 if (m == NULL) 1626 return; 1627 1628 for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) { 1629 reg = (p[0] | (p[1] << 8)) << 16; 1630 CSR_WRITE_4(sc, DC_WATCHDOG, reg); 1631 } 1632 1633 for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) { 1634 reg = (p[0] | (p[1] << 8)) << 16; 1635 CSR_WRITE_4(sc, DC_WATCHDOG, reg); 1636 } 1637 } 1638 1639 static void 1640 dc_decode_leaf_sia(struct dc_softc *sc, struct dc_eblock_sia *l) 1641 { 1642 struct dc_mediainfo *m; 1643 1644 m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO); 1645 switch (l->dc_sia_code & ~DC_SIA_CODE_EXT) { 1646 case DC_SIA_CODE_10BT: 1647 m->dc_media = IFM_10_T; 1648 break; 1649 case DC_SIA_CODE_10BT_FDX: 1650 m->dc_media = IFM_10_T | IFM_FDX; 1651 break; 1652 case DC_SIA_CODE_10B2: 1653 m->dc_media = IFM_10_2; 1654 break; 1655 case DC_SIA_CODE_10B5: 1656 m->dc_media = IFM_10_5; 1657 break; 1658 default: 1659 break; 1660 } 1661 1662 /* 1663 * We need to ignore CSR13, CSR14, CSR15 for SIA mode. 1664 * Things apparently already work for cards that do 1665 * supply Media Specific Data. 1666 */ 1667 if (l->dc_sia_code & DC_SIA_CODE_EXT) { 1668 m->dc_gp_len = 2; 1669 m->dc_gp_ptr = 1670 (u_int8_t *)&l->dc_un.dc_sia_ext.dc_sia_gpio_ctl; 1671 } else { 1672 m->dc_gp_len = 2; 1673 m->dc_gp_ptr = 1674 (u_int8_t *)&l->dc_un.dc_sia_noext.dc_sia_gpio_ctl; 1675 } 1676 1677 m->dc_next = sc->dc_mi; 1678 sc->dc_mi = m; 1679 1680 sc->dc_pmode = DC_PMODE_SIA; 1681 } 1682 1683 static void 1684 dc_decode_leaf_sym(struct dc_softc *sc, struct dc_eblock_sym *l) 1685 { 1686 struct dc_mediainfo *m; 1687 1688 m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO); 1689 if (l->dc_sym_code == DC_SYM_CODE_100BT) 1690 m->dc_media = IFM_100_TX; 1691 1692 if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX) 1693 m->dc_media = IFM_100_TX | IFM_FDX; 1694 1695 m->dc_gp_len = 2; 1696 m->dc_gp_ptr = (u_int8_t *)&l->dc_sym_gpio_ctl; 1697 1698 m->dc_next = sc->dc_mi; 1699 sc->dc_mi = m; 1700 1701 sc->dc_pmode = DC_PMODE_SYM; 1702 } 1703 1704 static void 1705 dc_decode_leaf_mii(struct dc_softc *sc, struct dc_eblock_mii *l) 1706 { 1707 struct dc_mediainfo *m; 1708 u_int8_t *p; 1709 1710 m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO); 1711 /* We abuse IFM_AUTO to represent MII. */ 1712 m->dc_media = IFM_AUTO; 1713 m->dc_gp_len = l->dc_gpr_len; 1714 1715 p = (u_int8_t *)l; 1716 p += sizeof(struct dc_eblock_mii); 1717 m->dc_gp_ptr = p; 1718 p += 2 * l->dc_gpr_len; 1719 m->dc_reset_len = *p; 1720 p++; 1721 m->dc_reset_ptr = p; 1722 1723 m->dc_next = sc->dc_mi; 1724 sc->dc_mi = m; 1725 } 1726 1727 static void 1728 dc_read_srom(struct dc_softc *sc, int bits) 1729 { 1730 int size; 1731 1732 size = 2 << bits; 1733 sc->dc_srom = malloc(size, M_DEVBUF, M_NOWAIT); 1734 dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (size / 2), 0); 1735 } 1736 1737 static void 1738 dc_parse_21143_srom(struct dc_softc *sc) 1739 { 1740 struct dc_leaf_hdr *lhdr; 1741 struct dc_eblock_hdr *hdr; 1742 int have_mii, i, loff; 1743 char *ptr; 1744 1745 have_mii = 0; 1746 loff = sc->dc_srom[27]; 1747 lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]); 1748 1749 ptr = (char *)lhdr; 1750 ptr += sizeof(struct dc_leaf_hdr) - 1; 1751 /* 1752 * Look if we got a MII media block. 1753 */ 1754 for (i = 0; i < lhdr->dc_mcnt; i++) { 1755 hdr = (struct dc_eblock_hdr *)ptr; 1756 if (hdr->dc_type == DC_EBLOCK_MII) 1757 have_mii++; 1758 1759 ptr += (hdr->dc_len & 0x7F); 1760 ptr++; 1761 } 1762 1763 /* 1764 * Do the same thing again. Only use SIA and SYM media 1765 * blocks if no MII media block is available. 1766 */ 1767 ptr = (char *)lhdr; 1768 ptr += sizeof(struct dc_leaf_hdr) - 1; 1769 for (i = 0; i < lhdr->dc_mcnt; i++) { 1770 hdr = (struct dc_eblock_hdr *)ptr; 1771 switch (hdr->dc_type) { 1772 case DC_EBLOCK_MII: 1773 dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr); 1774 break; 1775 case DC_EBLOCK_SIA: 1776 if (! have_mii) 1777 dc_decode_leaf_sia(sc, 1778 (struct dc_eblock_sia *)hdr); 1779 break; 1780 case DC_EBLOCK_SYM: 1781 if (! have_mii) 1782 dc_decode_leaf_sym(sc, 1783 (struct dc_eblock_sym *)hdr); 1784 break; 1785 default: 1786 /* Don't care. Yet. */ 1787 break; 1788 } 1789 ptr += (hdr->dc_len & 0x7F); 1790 ptr++; 1791 } 1792 } 1793 1794 static void 1795 dc_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 1796 { 1797 u_int32_t *paddr; 1798 1799 KASSERT(nseg == 1, ("wrong number of segments, should be 1")); 1800 paddr = arg; 1801 *paddr = segs->ds_addr; 1802 } 1803 1804 /* 1805 * Attach the interface. Allocate softc structures, do ifmedia 1806 * setup and ethernet/BPF attach. 1807 */ 1808 static int 1809 dc_attach(device_t dev) 1810 { 1811 int tmp = 0; 1812 uint32_t eaddr[(ETHER_ADDR_LEN+3)/4]; 1813 u_int32_t command; 1814 struct dc_softc *sc; 1815 struct ifnet *ifp; 1816 u_int32_t revision; 1817 int error = 0, rid, mac_offset; 1818 int i; 1819 u_int8_t *mac; 1820 1821 sc = device_get_softc(dev); 1822 sc->dc_dev = dev; 1823 1824 mtx_init(&sc->dc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 1825 MTX_DEF); 1826 1827 /* 1828 * Map control/status registers. 1829 */ 1830 pci_enable_busmaster(dev); 1831 1832 rid = DC_RID; 1833 sc->dc_res = bus_alloc_resource_any(dev, DC_RES, &rid, RF_ACTIVE); 1834 1835 if (sc->dc_res == NULL) { 1836 device_printf(dev, "couldn't map ports/memory\n"); 1837 error = ENXIO; 1838 goto fail; 1839 } 1840 1841 sc->dc_btag = rman_get_bustag(sc->dc_res); 1842 sc->dc_bhandle = rman_get_bushandle(sc->dc_res); 1843 1844 /* Allocate interrupt. */ 1845 rid = 0; 1846 sc->dc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, 1847 RF_SHAREABLE | RF_ACTIVE); 1848 1849 if (sc->dc_irq == NULL) { 1850 device_printf(dev, "couldn't map interrupt\n"); 1851 error = ENXIO; 1852 goto fail; 1853 } 1854 1855 /* Need this info to decide on a chip type. */ 1856 sc->dc_info = dc_devtype(dev); 1857 revision = pci_get_revid(dev); 1858 1859 /* Get the eeprom width, but PNIC and XIRCOM have diff eeprom */ 1860 if (sc->dc_info->dc_devid != 1861 DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168) && 1862 sc->dc_info->dc_devid != 1863 DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201)) 1864 dc_eeprom_width(sc); 1865 1866 switch (sc->dc_info->dc_devid) { 1867 case DC_DEVID(DC_VENDORID_DEC, DC_DEVICEID_21143): 1868 sc->dc_type = DC_TYPE_21143; 1869 sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR; 1870 sc->dc_flags |= DC_REDUCED_MII_POLL; 1871 /* Save EEPROM contents so we can parse them later. */ 1872 dc_read_srom(sc, sc->dc_romwidth); 1873 break; 1874 case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009): 1875 case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100): 1876 case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102): 1877 sc->dc_type = DC_TYPE_DM9102; 1878 sc->dc_flags |= DC_TX_COALESCE | DC_TX_INTR_ALWAYS; 1879 sc->dc_flags |= DC_REDUCED_MII_POLL | DC_TX_STORENFWD; 1880 sc->dc_flags |= DC_TX_ALIGN; 1881 sc->dc_pmode = DC_PMODE_MII; 1882 1883 /* Increase the latency timer value. */ 1884 pci_write_config(dev, PCIR_LATTIMER, 0x80, 1); 1885 break; 1886 case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AL981): 1887 sc->dc_type = DC_TYPE_AL981; 1888 sc->dc_flags |= DC_TX_USE_TX_INTR; 1889 sc->dc_flags |= DC_TX_ADMTEK_WAR; 1890 sc->dc_pmode = DC_PMODE_MII; 1891 dc_read_srom(sc, sc->dc_romwidth); 1892 break; 1893 case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN985): 1894 case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511): 1895 case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513): 1896 case DC_DEVID(DC_VENDORID_DLINK, DC_DEVICEID_DRP32TXD): 1897 case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_FA511): 1898 case DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500): 1899 case DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500MX): 1900 case DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN2242): 1901 case DC_DEVID(DC_VENDORID_HAWKING, DC_DEVICEID_HAWKING_PN672TX): 1902 case DC_DEVID(DC_VENDORID_PLANEX, DC_DEVICEID_FNW3602T): 1903 case DC_DEVID(DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB): 1904 case DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN120): 1905 case DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130): 1906 case DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB08): 1907 case DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB09): 1908 sc->dc_type = DC_TYPE_AN985; 1909 sc->dc_flags |= DC_64BIT_HASH; 1910 sc->dc_flags |= DC_TX_USE_TX_INTR; 1911 sc->dc_flags |= DC_TX_ADMTEK_WAR; 1912 sc->dc_pmode = DC_PMODE_MII; 1913 /* Don't read SROM for - auto-loaded on reset */ 1914 break; 1915 case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713): 1916 case DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP): 1917 if (revision < DC_REVISION_98713A) { 1918 sc->dc_type = DC_TYPE_98713; 1919 } 1920 if (revision >= DC_REVISION_98713A) { 1921 sc->dc_type = DC_TYPE_98713A; 1922 sc->dc_flags |= DC_21143_NWAY; 1923 } 1924 sc->dc_flags |= DC_REDUCED_MII_POLL; 1925 sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR; 1926 break; 1927 case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5): 1928 case DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN1217): 1929 /* 1930 * Macronix MX98715AEC-C/D/E parts have only a 1931 * 128-bit hash table. We need to deal with these 1932 * in the same manner as the PNIC II so that we 1933 * get the right number of bits out of the 1934 * CRC routine. 1935 */ 1936 if (revision >= DC_REVISION_98715AEC_C && 1937 revision < DC_REVISION_98725) 1938 sc->dc_flags |= DC_128BIT_HASH; 1939 sc->dc_type = DC_TYPE_987x5; 1940 sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR; 1941 sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY; 1942 break; 1943 case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98727): 1944 sc->dc_type = DC_TYPE_987x5; 1945 sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR; 1946 sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY; 1947 break; 1948 case DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C115): 1949 sc->dc_type = DC_TYPE_PNICII; 1950 sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR | DC_128BIT_HASH; 1951 sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY; 1952 break; 1953 case DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168): 1954 sc->dc_type = DC_TYPE_PNIC; 1955 sc->dc_flags |= DC_TX_STORENFWD | DC_TX_INTR_ALWAYS; 1956 sc->dc_flags |= DC_PNIC_RX_BUG_WAR; 1957 sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_NOWAIT); 1958 if (revision < DC_REVISION_82C169) 1959 sc->dc_pmode = DC_PMODE_SYM; 1960 break; 1961 case DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A): 1962 sc->dc_type = DC_TYPE_ASIX; 1963 sc->dc_flags |= DC_TX_USE_TX_INTR | DC_TX_INTR_FIRSTFRAG; 1964 sc->dc_flags |= DC_REDUCED_MII_POLL; 1965 sc->dc_pmode = DC_PMODE_MII; 1966 break; 1967 case DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201): 1968 sc->dc_type = DC_TYPE_XIRCOM; 1969 sc->dc_flags |= DC_TX_INTR_ALWAYS | DC_TX_COALESCE | 1970 DC_TX_ALIGN; 1971 /* 1972 * We don't actually need to coalesce, but we're doing 1973 * it to obtain a double word aligned buffer. 1974 * The DC_TX_COALESCE flag is required. 1975 */ 1976 sc->dc_pmode = DC_PMODE_MII; 1977 break; 1978 case DC_DEVID(DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112): 1979 sc->dc_type = DC_TYPE_CONEXANT; 1980 sc->dc_flags |= DC_TX_INTR_ALWAYS; 1981 sc->dc_flags |= DC_REDUCED_MII_POLL; 1982 sc->dc_pmode = DC_PMODE_MII; 1983 dc_read_srom(sc, sc->dc_romwidth); 1984 break; 1985 default: 1986 device_printf(dev, "unknown device: %x\n", 1987 sc->dc_info->dc_devid); 1988 break; 1989 } 1990 1991 /* Save the cache line size. */ 1992 if (DC_IS_DAVICOM(sc)) 1993 sc->dc_cachesize = 0; 1994 else 1995 sc->dc_cachesize = pci_get_cachelnsz(dev); 1996 1997 /* Reset the adapter. */ 1998 dc_reset(sc); 1999 2000 /* Take 21143 out of snooze mode */ 2001 if (DC_IS_INTEL(sc) || DC_IS_XIRCOM(sc)) { 2002 command = pci_read_config(dev, DC_PCI_CFDD, 4); 2003 command &= ~(DC_CFDD_SNOOZE_MODE | DC_CFDD_SLEEP_MODE); 2004 pci_write_config(dev, DC_PCI_CFDD, command, 4); 2005 } 2006 2007 /* 2008 * Try to learn something about the supported media. 2009 * We know that ASIX and ADMtek and Davicom devices 2010 * will *always* be using MII media, so that's a no-brainer. 2011 * The tricky ones are the Macronix/PNIC II and the 2012 * Intel 21143. 2013 */ 2014 if (DC_IS_INTEL(sc)) 2015 dc_parse_21143_srom(sc); 2016 else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) { 2017 if (sc->dc_type == DC_TYPE_98713) 2018 sc->dc_pmode = DC_PMODE_MII; 2019 else 2020 sc->dc_pmode = DC_PMODE_SYM; 2021 } else if (!sc->dc_pmode) 2022 sc->dc_pmode = DC_PMODE_MII; 2023 2024 /* 2025 * Get station address from the EEPROM. 2026 */ 2027 switch(sc->dc_type) { 2028 case DC_TYPE_98713: 2029 case DC_TYPE_98713A: 2030 case DC_TYPE_987x5: 2031 case DC_TYPE_PNICII: 2032 dc_read_eeprom(sc, (caddr_t)&mac_offset, 2033 (DC_EE_NODEADDR_OFFSET / 2), 1, 0); 2034 dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0); 2035 break; 2036 case DC_TYPE_PNIC: 2037 dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1); 2038 break; 2039 case DC_TYPE_DM9102: 2040 dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0); 2041 #ifdef __sparc64__ 2042 /* 2043 * If this is an onboard dc(4) the station address read from 2044 * the EEPROM is all zero and we have to get it from the FCode. 2045 */ 2046 if (eaddr[0] == 0 && (eaddr[1] & ~0xffff) == 0) 2047 OF_getetheraddr(dev, (caddr_t)&eaddr); 2048 #endif 2049 break; 2050 case DC_TYPE_21143: 2051 case DC_TYPE_ASIX: 2052 dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0); 2053 break; 2054 case DC_TYPE_AL981: 2055 case DC_TYPE_AN985: 2056 eaddr[0] = CSR_READ_4(sc, DC_AL_PAR0); 2057 eaddr[1] = CSR_READ_4(sc, DC_AL_PAR1); 2058 break; 2059 case DC_TYPE_CONEXANT: 2060 bcopy(sc->dc_srom + DC_CONEXANT_EE_NODEADDR, &eaddr, 2061 ETHER_ADDR_LEN); 2062 break; 2063 case DC_TYPE_XIRCOM: 2064 /* The MAC comes from the CIS. */ 2065 mac = pci_get_ether(dev); 2066 if (!mac) { 2067 device_printf(dev, "No station address in CIS!\n"); 2068 error = ENXIO; 2069 goto fail; 2070 } 2071 bcopy(mac, eaddr, ETHER_ADDR_LEN); 2072 break; 2073 default: 2074 dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0); 2075 break; 2076 } 2077 2078 /* Allocate a busdma tag and DMA safe memory for TX/RX descriptors. */ 2079 error = bus_dma_tag_create(bus_get_dma_tag(dev), PAGE_SIZE, 0, 2080 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 2081 sizeof(struct dc_list_data), 1, sizeof(struct dc_list_data), 2082 0, NULL, NULL, &sc->dc_ltag); 2083 if (error) { 2084 device_printf(dev, "failed to allocate busdma tag\n"); 2085 error = ENXIO; 2086 goto fail; 2087 } 2088 error = bus_dmamem_alloc(sc->dc_ltag, (void **)&sc->dc_ldata, 2089 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->dc_lmap); 2090 if (error) { 2091 device_printf(dev, "failed to allocate DMA safe memory\n"); 2092 error = ENXIO; 2093 goto fail; 2094 } 2095 error = bus_dmamap_load(sc->dc_ltag, sc->dc_lmap, sc->dc_ldata, 2096 sizeof(struct dc_list_data), dc_dma_map_addr, &sc->dc_laddr, 2097 BUS_DMA_NOWAIT); 2098 if (error) { 2099 device_printf(dev, "cannot get address of the descriptors\n"); 2100 error = ENXIO; 2101 goto fail; 2102 } 2103 2104 /* 2105 * Allocate a busdma tag and DMA safe memory for the multicast 2106 * setup frame. 2107 */ 2108 error = bus_dma_tag_create(bus_get_dma_tag(dev), PAGE_SIZE, 0, 2109 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 2110 DC_SFRAME_LEN + DC_MIN_FRAMELEN, 1, DC_SFRAME_LEN + DC_MIN_FRAMELEN, 2111 0, NULL, NULL, &sc->dc_stag); 2112 if (error) { 2113 device_printf(dev, "failed to allocate busdma tag\n"); 2114 error = ENXIO; 2115 goto fail; 2116 } 2117 error = bus_dmamem_alloc(sc->dc_stag, (void **)&sc->dc_cdata.dc_sbuf, 2118 BUS_DMA_NOWAIT, &sc->dc_smap); 2119 if (error) { 2120 device_printf(dev, "failed to allocate DMA safe memory\n"); 2121 error = ENXIO; 2122 goto fail; 2123 } 2124 error = bus_dmamap_load(sc->dc_stag, sc->dc_smap, sc->dc_cdata.dc_sbuf, 2125 DC_SFRAME_LEN, dc_dma_map_addr, &sc->dc_saddr, BUS_DMA_NOWAIT); 2126 if (error) { 2127 device_printf(dev, "cannot get address of the descriptors\n"); 2128 error = ENXIO; 2129 goto fail; 2130 } 2131 2132 /* Allocate a busdma tag for mbufs. */ 2133 error = bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0, 2134 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 2135 MCLBYTES, DC_TX_LIST_CNT, MCLBYTES, 2136 0, NULL, NULL, &sc->dc_mtag); 2137 if (error) { 2138 device_printf(dev, "failed to allocate busdma tag\n"); 2139 error = ENXIO; 2140 goto fail; 2141 } 2142 2143 /* Create the TX/RX busdma maps. */ 2144 for (i = 0; i < DC_TX_LIST_CNT; i++) { 2145 error = bus_dmamap_create(sc->dc_mtag, 0, 2146 &sc->dc_cdata.dc_tx_map[i]); 2147 if (error) { 2148 device_printf(dev, "failed to init TX ring\n"); 2149 error = ENXIO; 2150 goto fail; 2151 } 2152 } 2153 for (i = 0; i < DC_RX_LIST_CNT; i++) { 2154 error = bus_dmamap_create(sc->dc_mtag, 0, 2155 &sc->dc_cdata.dc_rx_map[i]); 2156 if (error) { 2157 device_printf(dev, "failed to init RX ring\n"); 2158 error = ENXIO; 2159 goto fail; 2160 } 2161 } 2162 error = bus_dmamap_create(sc->dc_mtag, 0, &sc->dc_sparemap); 2163 if (error) { 2164 device_printf(dev, "failed to init RX ring\n"); 2165 error = ENXIO; 2166 goto fail; 2167 } 2168 2169 ifp = sc->dc_ifp = if_alloc(IFT_ETHER); 2170 if (ifp == NULL) { 2171 device_printf(dev, "can not if_alloc()\n"); 2172 error = ENOSPC; 2173 goto fail; 2174 } 2175 ifp->if_softc = sc; 2176 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 2177 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 2178 ifp->if_ioctl = dc_ioctl; 2179 ifp->if_start = dc_start; 2180 ifp->if_init = dc_init; 2181 IFQ_SET_MAXLEN(&ifp->if_snd, DC_TX_LIST_CNT - 1); 2182 ifp->if_snd.ifq_drv_maxlen = DC_TX_LIST_CNT - 1; 2183 IFQ_SET_READY(&ifp->if_snd); 2184 2185 /* 2186 * Do MII setup. If this is a 21143, check for a PHY on the 2187 * MII bus after applying any necessary fixups to twiddle the 2188 * GPIO bits. If we don't end up finding a PHY, restore the 2189 * old selection (SIA only or SIA/SYM) and attach the dcphy 2190 * driver instead. 2191 */ 2192 if (DC_IS_INTEL(sc)) { 2193 dc_apply_fixup(sc, IFM_AUTO); 2194 tmp = sc->dc_pmode; 2195 sc->dc_pmode = DC_PMODE_MII; 2196 } 2197 2198 /* 2199 * Setup General Purpose port mode and data so the tulip can talk 2200 * to the MII. This needs to be done before mii_phy_probe so that 2201 * we can actually see them. 2202 */ 2203 if (DC_IS_XIRCOM(sc)) { 2204 CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN | 2205 DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT); 2206 DELAY(10); 2207 CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN | 2208 DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT); 2209 DELAY(10); 2210 } 2211 2212 error = mii_phy_probe(dev, &sc->dc_miibus, 2213 dc_ifmedia_upd, dc_ifmedia_sts); 2214 2215 if (error && DC_IS_INTEL(sc)) { 2216 sc->dc_pmode = tmp; 2217 if (sc->dc_pmode != DC_PMODE_SIA) 2218 sc->dc_pmode = DC_PMODE_SYM; 2219 sc->dc_flags |= DC_21143_NWAY; 2220 mii_phy_probe(dev, &sc->dc_miibus, 2221 dc_ifmedia_upd, dc_ifmedia_sts); 2222 /* 2223 * For non-MII cards, we need to have the 21143 2224 * drive the LEDs. Except there are some systems 2225 * like the NEC VersaPro NoteBook PC which have no 2226 * LEDs, and twiddling these bits has adverse effects 2227 * on them. (I.e. you suddenly can't get a link.) 2228 */ 2229 if (!(pci_get_subvendor(dev) == 0x1033 && 2230 pci_get_subdevice(dev) == 0x8028)) 2231 sc->dc_flags |= DC_TULIP_LEDS; 2232 error = 0; 2233 } 2234 2235 if (error) { 2236 device_printf(dev, "MII without any PHY!\n"); 2237 goto fail; 2238 } 2239 2240 if (DC_IS_ADMTEK(sc)) { 2241 /* 2242 * Set automatic TX underrun recovery for the ADMtek chips 2243 */ 2244 DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR); 2245 } 2246 2247 /* 2248 * Tell the upper layer(s) we support long frames. 2249 */ 2250 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); 2251 ifp->if_capabilities |= IFCAP_VLAN_MTU; 2252 ifp->if_capenable = ifp->if_capabilities; 2253 #ifdef DEVICE_POLLING 2254 ifp->if_capabilities |= IFCAP_POLLING; 2255 #endif 2256 2257 callout_init_mtx(&sc->dc_stat_ch, &sc->dc_mtx, 0); 2258 callout_init_mtx(&sc->dc_wdog_ch, &sc->dc_mtx, 0); 2259 2260 /* 2261 * Call MI attach routine. 2262 */ 2263 ether_ifattach(ifp, (caddr_t)eaddr); 2264 2265 /* Hook interrupt last to avoid having to lock softc */ 2266 error = bus_setup_intr(dev, sc->dc_irq, INTR_TYPE_NET | INTR_MPSAFE, 2267 NULL, dc_intr, sc, &sc->dc_intrhand); 2268 2269 if (error) { 2270 device_printf(dev, "couldn't set up irq\n"); 2271 ether_ifdetach(ifp); 2272 goto fail; 2273 } 2274 2275 fail: 2276 if (error) 2277 dc_detach(dev); 2278 return (error); 2279 } 2280 2281 /* 2282 * Shutdown hardware and free up resources. This can be called any 2283 * time after the mutex has been initialized. It is called in both 2284 * the error case in attach and the normal detach case so it needs 2285 * to be careful about only freeing resources that have actually been 2286 * allocated. 2287 */ 2288 static int 2289 dc_detach(device_t dev) 2290 { 2291 struct dc_softc *sc; 2292 struct ifnet *ifp; 2293 struct dc_mediainfo *m; 2294 int i; 2295 2296 sc = device_get_softc(dev); 2297 KASSERT(mtx_initialized(&sc->dc_mtx), ("dc mutex not initialized")); 2298 2299 ifp = sc->dc_ifp; 2300 2301 #ifdef DEVICE_POLLING 2302 if (ifp->if_capenable & IFCAP_POLLING) 2303 ether_poll_deregister(ifp); 2304 #endif 2305 2306 /* These should only be active if attach succeeded */ 2307 if (device_is_attached(dev)) { 2308 DC_LOCK(sc); 2309 dc_stop(sc); 2310 DC_UNLOCK(sc); 2311 callout_drain(&sc->dc_stat_ch); 2312 callout_drain(&sc->dc_wdog_ch); 2313 ether_ifdetach(ifp); 2314 } 2315 if (sc->dc_miibus) 2316 device_delete_child(dev, sc->dc_miibus); 2317 bus_generic_detach(dev); 2318 2319 if (sc->dc_intrhand) 2320 bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand); 2321 if (sc->dc_irq) 2322 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq); 2323 if (sc->dc_res) 2324 bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res); 2325 2326 if (ifp) 2327 if_free(ifp); 2328 2329 if (sc->dc_cdata.dc_sbuf != NULL) 2330 bus_dmamem_free(sc->dc_stag, sc->dc_cdata.dc_sbuf, sc->dc_smap); 2331 if (sc->dc_ldata != NULL) 2332 bus_dmamem_free(sc->dc_ltag, sc->dc_ldata, sc->dc_lmap); 2333 if (sc->dc_mtag) { 2334 for (i = 0; i < DC_TX_LIST_CNT; i++) 2335 if (sc->dc_cdata.dc_tx_map[i] != NULL) 2336 bus_dmamap_destroy(sc->dc_mtag, 2337 sc->dc_cdata.dc_tx_map[i]); 2338 for (i = 0; i < DC_RX_LIST_CNT; i++) 2339 if (sc->dc_cdata.dc_rx_map[i] != NULL) 2340 bus_dmamap_destroy(sc->dc_mtag, 2341 sc->dc_cdata.dc_rx_map[i]); 2342 bus_dmamap_destroy(sc->dc_mtag, sc->dc_sparemap); 2343 } 2344 if (sc->dc_stag) 2345 bus_dma_tag_destroy(sc->dc_stag); 2346 if (sc->dc_mtag) 2347 bus_dma_tag_destroy(sc->dc_mtag); 2348 if (sc->dc_ltag) 2349 bus_dma_tag_destroy(sc->dc_ltag); 2350 2351 free(sc->dc_pnic_rx_buf, M_DEVBUF); 2352 2353 while (sc->dc_mi != NULL) { 2354 m = sc->dc_mi->dc_next; 2355 free(sc->dc_mi, M_DEVBUF); 2356 sc->dc_mi = m; 2357 } 2358 free(sc->dc_srom, M_DEVBUF); 2359 2360 mtx_destroy(&sc->dc_mtx); 2361 2362 return (0); 2363 } 2364 2365 /* 2366 * Initialize the transmit descriptors. 2367 */ 2368 static int 2369 dc_list_tx_init(struct dc_softc *sc) 2370 { 2371 struct dc_chain_data *cd; 2372 struct dc_list_data *ld; 2373 int i, nexti; 2374 2375 cd = &sc->dc_cdata; 2376 ld = sc->dc_ldata; 2377 for (i = 0; i < DC_TX_LIST_CNT; i++) { 2378 if (i == DC_TX_LIST_CNT - 1) 2379 nexti = 0; 2380 else 2381 nexti = i + 1; 2382 ld->dc_tx_list[i].dc_next = htole32(DC_TXDESC(sc, nexti)); 2383 cd->dc_tx_chain[i] = NULL; 2384 ld->dc_tx_list[i].dc_data = 0; 2385 ld->dc_tx_list[i].dc_ctl = 0; 2386 } 2387 2388 cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0; 2389 bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap, 2390 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); 2391 return (0); 2392 } 2393 2394 2395 /* 2396 * Initialize the RX descriptors and allocate mbufs for them. Note that 2397 * we arrange the descriptors in a closed ring, so that the last descriptor 2398 * points back to the first. 2399 */ 2400 static int 2401 dc_list_rx_init(struct dc_softc *sc) 2402 { 2403 struct dc_chain_data *cd; 2404 struct dc_list_data *ld; 2405 int i, nexti; 2406 2407 cd = &sc->dc_cdata; 2408 ld = sc->dc_ldata; 2409 2410 for (i = 0; i < DC_RX_LIST_CNT; i++) { 2411 if (dc_newbuf(sc, i, 1) != 0) 2412 return (ENOBUFS); 2413 if (i == DC_RX_LIST_CNT - 1) 2414 nexti = 0; 2415 else 2416 nexti = i + 1; 2417 ld->dc_rx_list[i].dc_next = htole32(DC_RXDESC(sc, nexti)); 2418 } 2419 2420 cd->dc_rx_prod = 0; 2421 bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap, 2422 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); 2423 return (0); 2424 } 2425 2426 /* 2427 * Initialize an RX descriptor and attach an MBUF cluster. 2428 */ 2429 static int 2430 dc_newbuf(struct dc_softc *sc, int i, int alloc) 2431 { 2432 struct mbuf *m_new; 2433 bus_dmamap_t tmp; 2434 bus_dma_segment_t segs[1]; 2435 int error, nseg; 2436 2437 if (alloc) { 2438 m_new = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 2439 if (m_new == NULL) 2440 return (ENOBUFS); 2441 } else { 2442 m_new = sc->dc_cdata.dc_rx_chain[i]; 2443 m_new->m_data = m_new->m_ext.ext_buf; 2444 } 2445 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; 2446 m_adj(m_new, sizeof(u_int64_t)); 2447 2448 /* 2449 * If this is a PNIC chip, zero the buffer. This is part 2450 * of the workaround for the receive bug in the 82c168 and 2451 * 82c169 chips. 2452 */ 2453 if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) 2454 bzero(mtod(m_new, char *), m_new->m_len); 2455 2456 /* No need to remap the mbuf if we're reusing it. */ 2457 if (alloc) { 2458 error = bus_dmamap_load_mbuf_sg(sc->dc_mtag, sc->dc_sparemap, 2459 m_new, segs, &nseg, 0); 2460 KASSERT(nseg == 1, ("wrong number of segments, should be 1")); 2461 if (error) { 2462 m_freem(m_new); 2463 return (error); 2464 } 2465 sc->dc_ldata->dc_rx_list[i].dc_data = htole32(segs->ds_addr); 2466 bus_dmamap_unload(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i]); 2467 tmp = sc->dc_cdata.dc_rx_map[i]; 2468 sc->dc_cdata.dc_rx_map[i] = sc->dc_sparemap; 2469 sc->dc_sparemap = tmp; 2470 sc->dc_cdata.dc_rx_chain[i] = m_new; 2471 } 2472 2473 sc->dc_ldata->dc_rx_list[i].dc_ctl = htole32(DC_RXCTL_RLINK | DC_RXLEN); 2474 sc->dc_ldata->dc_rx_list[i].dc_status = htole32(DC_RXSTAT_OWN); 2475 bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i], 2476 BUS_DMASYNC_PREREAD); 2477 bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap, 2478 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); 2479 return (0); 2480 } 2481 2482 /* 2483 * Grrrrr. 2484 * The PNIC chip has a terrible bug in it that manifests itself during 2485 * periods of heavy activity. The exact mode of failure if difficult to 2486 * pinpoint: sometimes it only happens in promiscuous mode, sometimes it 2487 * will happen on slow machines. The bug is that sometimes instead of 2488 * uploading one complete frame during reception, it uploads what looks 2489 * like the entire contents of its FIFO memory. The frame we want is at 2490 * the end of the whole mess, but we never know exactly how much data has 2491 * been uploaded, so salvaging the frame is hard. 2492 * 2493 * There is only one way to do it reliably, and it's disgusting. 2494 * Here's what we know: 2495 * 2496 * - We know there will always be somewhere between one and three extra 2497 * descriptors uploaded. 2498 * 2499 * - We know the desired received frame will always be at the end of the 2500 * total data upload. 2501 * 2502 * - We know the size of the desired received frame because it will be 2503 * provided in the length field of the status word in the last descriptor. 2504 * 2505 * Here's what we do: 2506 * 2507 * - When we allocate buffers for the receive ring, we bzero() them. 2508 * This means that we know that the buffer contents should be all 2509 * zeros, except for data uploaded by the chip. 2510 * 2511 * - We also force the PNIC chip to upload frames that include the 2512 * ethernet CRC at the end. 2513 * 2514 * - We gather all of the bogus frame data into a single buffer. 2515 * 2516 * - We then position a pointer at the end of this buffer and scan 2517 * backwards until we encounter the first non-zero byte of data. 2518 * This is the end of the received frame. We know we will encounter 2519 * some data at the end of the frame because the CRC will always be 2520 * there, so even if the sender transmits a packet of all zeros, 2521 * we won't be fooled. 2522 * 2523 * - We know the size of the actual received frame, so we subtract 2524 * that value from the current pointer location. This brings us 2525 * to the start of the actual received packet. 2526 * 2527 * - We copy this into an mbuf and pass it on, along with the actual 2528 * frame length. 2529 * 2530 * The performance hit is tremendous, but it beats dropping frames all 2531 * the time. 2532 */ 2533 2534 #define DC_WHOLEFRAME (DC_RXSTAT_FIRSTFRAG | DC_RXSTAT_LASTFRAG) 2535 static void 2536 dc_pnic_rx_bug_war(struct dc_softc *sc, int idx) 2537 { 2538 struct dc_desc *cur_rx; 2539 struct dc_desc *c = NULL; 2540 struct mbuf *m = NULL; 2541 unsigned char *ptr; 2542 int i, total_len; 2543 u_int32_t rxstat = 0; 2544 2545 i = sc->dc_pnic_rx_bug_save; 2546 cur_rx = &sc->dc_ldata->dc_rx_list[idx]; 2547 ptr = sc->dc_pnic_rx_buf; 2548 bzero(ptr, DC_RXLEN * 5); 2549 2550 /* Copy all the bytes from the bogus buffers. */ 2551 while (1) { 2552 c = &sc->dc_ldata->dc_rx_list[i]; 2553 rxstat = le32toh(c->dc_status); 2554 m = sc->dc_cdata.dc_rx_chain[i]; 2555 bcopy(mtod(m, char *), ptr, DC_RXLEN); 2556 ptr += DC_RXLEN; 2557 /* If this is the last buffer, break out. */ 2558 if (i == idx || rxstat & DC_RXSTAT_LASTFRAG) 2559 break; 2560 dc_newbuf(sc, i, 0); 2561 DC_INC(i, DC_RX_LIST_CNT); 2562 } 2563 2564 /* Find the length of the actual receive frame. */ 2565 total_len = DC_RXBYTES(rxstat); 2566 2567 /* Scan backwards until we hit a non-zero byte. */ 2568 while (*ptr == 0x00) 2569 ptr--; 2570 2571 /* Round off. */ 2572 if ((uintptr_t)(ptr) & 0x3) 2573 ptr -= 1; 2574 2575 /* Now find the start of the frame. */ 2576 ptr -= total_len; 2577 if (ptr < sc->dc_pnic_rx_buf) 2578 ptr = sc->dc_pnic_rx_buf; 2579 2580 /* 2581 * Now copy the salvaged frame to the last mbuf and fake up 2582 * the status word to make it look like a successful 2583 * frame reception. 2584 */ 2585 dc_newbuf(sc, i, 0); 2586 bcopy(ptr, mtod(m, char *), total_len); 2587 cur_rx->dc_status = htole32(rxstat | DC_RXSTAT_FIRSTFRAG); 2588 } 2589 2590 /* 2591 * This routine searches the RX ring for dirty descriptors in the 2592 * event that the rxeof routine falls out of sync with the chip's 2593 * current descriptor pointer. This may happen sometimes as a result 2594 * of a "no RX buffer available" condition that happens when the chip 2595 * consumes all of the RX buffers before the driver has a chance to 2596 * process the RX ring. This routine may need to be called more than 2597 * once to bring the driver back in sync with the chip, however we 2598 * should still be getting RX DONE interrupts to drive the search 2599 * for new packets in the RX ring, so we should catch up eventually. 2600 */ 2601 static int 2602 dc_rx_resync(struct dc_softc *sc) 2603 { 2604 struct dc_desc *cur_rx; 2605 int i, pos; 2606 2607 pos = sc->dc_cdata.dc_rx_prod; 2608 2609 for (i = 0; i < DC_RX_LIST_CNT; i++) { 2610 cur_rx = &sc->dc_ldata->dc_rx_list[pos]; 2611 if (!(le32toh(cur_rx->dc_status) & DC_RXSTAT_OWN)) 2612 break; 2613 DC_INC(pos, DC_RX_LIST_CNT); 2614 } 2615 2616 /* If the ring really is empty, then just return. */ 2617 if (i == DC_RX_LIST_CNT) 2618 return (0); 2619 2620 /* We've fallen behing the chip: catch it. */ 2621 sc->dc_cdata.dc_rx_prod = pos; 2622 2623 return (EAGAIN); 2624 } 2625 2626 /* 2627 * A frame has been uploaded: pass the resulting mbuf chain up to 2628 * the higher level protocols. 2629 */ 2630 static void 2631 dc_rxeof(struct dc_softc *sc) 2632 { 2633 struct mbuf *m, *m0; 2634 struct ifnet *ifp; 2635 struct dc_desc *cur_rx; 2636 int i, total_len = 0; 2637 u_int32_t rxstat; 2638 2639 DC_LOCK_ASSERT(sc); 2640 2641 ifp = sc->dc_ifp; 2642 i = sc->dc_cdata.dc_rx_prod; 2643 2644 bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap, BUS_DMASYNC_POSTREAD); 2645 while (!(le32toh(sc->dc_ldata->dc_rx_list[i].dc_status) & 2646 DC_RXSTAT_OWN)) { 2647 #ifdef DEVICE_POLLING 2648 if (ifp->if_capenable & IFCAP_POLLING) { 2649 if (sc->rxcycles <= 0) 2650 break; 2651 sc->rxcycles--; 2652 } 2653 #endif 2654 cur_rx = &sc->dc_ldata->dc_rx_list[i]; 2655 rxstat = le32toh(cur_rx->dc_status); 2656 m = sc->dc_cdata.dc_rx_chain[i]; 2657 bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i], 2658 BUS_DMASYNC_POSTREAD); 2659 total_len = DC_RXBYTES(rxstat); 2660 2661 if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) { 2662 if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) { 2663 if (rxstat & DC_RXSTAT_FIRSTFRAG) 2664 sc->dc_pnic_rx_bug_save = i; 2665 if ((rxstat & DC_RXSTAT_LASTFRAG) == 0) { 2666 DC_INC(i, DC_RX_LIST_CNT); 2667 continue; 2668 } 2669 dc_pnic_rx_bug_war(sc, i); 2670 rxstat = le32toh(cur_rx->dc_status); 2671 total_len = DC_RXBYTES(rxstat); 2672 } 2673 } 2674 2675 /* 2676 * If an error occurs, update stats, clear the 2677 * status word and leave the mbuf cluster in place: 2678 * it should simply get re-used next time this descriptor 2679 * comes up in the ring. However, don't report long 2680 * frames as errors since they could be vlans. 2681 */ 2682 if ((rxstat & DC_RXSTAT_RXERR)) { 2683 if (!(rxstat & DC_RXSTAT_GIANT) || 2684 (rxstat & (DC_RXSTAT_CRCERR | DC_RXSTAT_DRIBBLE | 2685 DC_RXSTAT_MIIERE | DC_RXSTAT_COLLSEEN | 2686 DC_RXSTAT_RUNT | DC_RXSTAT_DE))) { 2687 ifp->if_ierrors++; 2688 if (rxstat & DC_RXSTAT_COLLSEEN) 2689 ifp->if_collisions++; 2690 dc_newbuf(sc, i, 0); 2691 if (rxstat & DC_RXSTAT_CRCERR) { 2692 DC_INC(i, DC_RX_LIST_CNT); 2693 continue; 2694 } else { 2695 dc_init_locked(sc); 2696 return; 2697 } 2698 } 2699 } 2700 2701 /* No errors; receive the packet. */ 2702 total_len -= ETHER_CRC_LEN; 2703 #ifdef __NO_STRICT_ALIGNMENT 2704 /* 2705 * On architectures without alignment problems we try to 2706 * allocate a new buffer for the receive ring, and pass up 2707 * the one where the packet is already, saving the expensive 2708 * copy done in m_devget(). 2709 * If we are on an architecture with alignment problems, or 2710 * if the allocation fails, then use m_devget and leave the 2711 * existing buffer in the receive ring. 2712 */ 2713 if (dc_newbuf(sc, i, 1) == 0) { 2714 m->m_pkthdr.rcvif = ifp; 2715 m->m_pkthdr.len = m->m_len = total_len; 2716 DC_INC(i, DC_RX_LIST_CNT); 2717 } else 2718 #endif 2719 { 2720 m0 = m_devget(mtod(m, char *), total_len, 2721 ETHER_ALIGN, ifp, NULL); 2722 dc_newbuf(sc, i, 0); 2723 DC_INC(i, DC_RX_LIST_CNT); 2724 if (m0 == NULL) { 2725 ifp->if_ierrors++; 2726 continue; 2727 } 2728 m = m0; 2729 } 2730 2731 ifp->if_ipackets++; 2732 DC_UNLOCK(sc); 2733 (*ifp->if_input)(ifp, m); 2734 DC_LOCK(sc); 2735 } 2736 2737 sc->dc_cdata.dc_rx_prod = i; 2738 } 2739 2740 /* 2741 * A frame was downloaded to the chip. It's safe for us to clean up 2742 * the list buffers. 2743 */ 2744 2745 static void 2746 dc_txeof(struct dc_softc *sc) 2747 { 2748 struct dc_desc *cur_tx = NULL; 2749 struct ifnet *ifp; 2750 int idx; 2751 u_int32_t ctl, txstat; 2752 2753 ifp = sc->dc_ifp; 2754 2755 /* 2756 * Go through our tx list and free mbufs for those 2757 * frames that have been transmitted. 2758 */ 2759 bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap, BUS_DMASYNC_POSTREAD); 2760 idx = sc->dc_cdata.dc_tx_cons; 2761 while (idx != sc->dc_cdata.dc_tx_prod) { 2762 2763 cur_tx = &sc->dc_ldata->dc_tx_list[idx]; 2764 txstat = le32toh(cur_tx->dc_status); 2765 ctl = le32toh(cur_tx->dc_ctl); 2766 2767 if (txstat & DC_TXSTAT_OWN) 2768 break; 2769 2770 if (!(ctl & DC_TXCTL_LASTFRAG) || ctl & DC_TXCTL_SETUP) { 2771 if (ctl & DC_TXCTL_SETUP) { 2772 /* 2773 * Yes, the PNIC is so brain damaged 2774 * that it will sometimes generate a TX 2775 * underrun error while DMAing the RX 2776 * filter setup frame. If we detect this, 2777 * we have to send the setup frame again, 2778 * or else the filter won't be programmed 2779 * correctly. 2780 */ 2781 if (DC_IS_PNIC(sc)) { 2782 if (txstat & DC_TXSTAT_ERRSUM) 2783 dc_setfilt(sc); 2784 } 2785 sc->dc_cdata.dc_tx_chain[idx] = NULL; 2786 } 2787 sc->dc_cdata.dc_tx_cnt--; 2788 DC_INC(idx, DC_TX_LIST_CNT); 2789 continue; 2790 } 2791 2792 if (DC_IS_XIRCOM(sc) || DC_IS_CONEXANT(sc)) { 2793 /* 2794 * XXX: Why does my Xircom taunt me so? 2795 * For some reason it likes setting the CARRLOST flag 2796 * even when the carrier is there. wtf?!? 2797 * Who knows, but Conexant chips have the 2798 * same problem. Maybe they took lessons 2799 * from Xircom. 2800 */ 2801 if (/*sc->dc_type == DC_TYPE_21143 &&*/ 2802 sc->dc_pmode == DC_PMODE_MII && 2803 ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM | 2804 DC_TXSTAT_NOCARRIER))) 2805 txstat &= ~DC_TXSTAT_ERRSUM; 2806 } else { 2807 if (/*sc->dc_type == DC_TYPE_21143 &&*/ 2808 sc->dc_pmode == DC_PMODE_MII && 2809 ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM | 2810 DC_TXSTAT_NOCARRIER | DC_TXSTAT_CARRLOST))) 2811 txstat &= ~DC_TXSTAT_ERRSUM; 2812 } 2813 2814 if (txstat & DC_TXSTAT_ERRSUM) { 2815 ifp->if_oerrors++; 2816 if (txstat & DC_TXSTAT_EXCESSCOLL) 2817 ifp->if_collisions++; 2818 if (txstat & DC_TXSTAT_LATECOLL) 2819 ifp->if_collisions++; 2820 if (!(txstat & DC_TXSTAT_UNDERRUN)) { 2821 dc_init_locked(sc); 2822 return; 2823 } 2824 } 2825 2826 ifp->if_collisions += (txstat & DC_TXSTAT_COLLCNT) >> 3; 2827 2828 ifp->if_opackets++; 2829 if (sc->dc_cdata.dc_tx_chain[idx] != NULL) { 2830 bus_dmamap_sync(sc->dc_mtag, 2831 sc->dc_cdata.dc_tx_map[idx], 2832 BUS_DMASYNC_POSTWRITE); 2833 bus_dmamap_unload(sc->dc_mtag, 2834 sc->dc_cdata.dc_tx_map[idx]); 2835 m_freem(sc->dc_cdata.dc_tx_chain[idx]); 2836 sc->dc_cdata.dc_tx_chain[idx] = NULL; 2837 } 2838 2839 sc->dc_cdata.dc_tx_cnt--; 2840 DC_INC(idx, DC_TX_LIST_CNT); 2841 } 2842 sc->dc_cdata.dc_tx_cons = idx; 2843 2844 if (DC_TX_LIST_CNT - sc->dc_cdata.dc_tx_cnt > DC_TX_LIST_RSVD) 2845 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2846 2847 if (sc->dc_cdata.dc_tx_cnt == 0) 2848 sc->dc_wdog_timer = 0; 2849 } 2850 2851 static void 2852 dc_tick(void *xsc) 2853 { 2854 struct dc_softc *sc; 2855 struct mii_data *mii; 2856 struct ifnet *ifp; 2857 u_int32_t r; 2858 2859 sc = xsc; 2860 DC_LOCK_ASSERT(sc); 2861 ifp = sc->dc_ifp; 2862 mii = device_get_softc(sc->dc_miibus); 2863 2864 if (sc->dc_flags & DC_REDUCED_MII_POLL) { 2865 if (sc->dc_flags & DC_21143_NWAY) { 2866 r = CSR_READ_4(sc, DC_10BTSTAT); 2867 if (IFM_SUBTYPE(mii->mii_media_active) == 2868 IFM_100_TX && (r & DC_TSTAT_LS100)) { 2869 sc->dc_link = 0; 2870 mii_mediachg(mii); 2871 } 2872 if (IFM_SUBTYPE(mii->mii_media_active) == 2873 IFM_10_T && (r & DC_TSTAT_LS10)) { 2874 sc->dc_link = 0; 2875 mii_mediachg(mii); 2876 } 2877 if (sc->dc_link == 0) 2878 mii_tick(mii); 2879 } else { 2880 r = CSR_READ_4(sc, DC_ISR); 2881 if ((r & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT && 2882 sc->dc_cdata.dc_tx_cnt == 0) { 2883 mii_tick(mii); 2884 if (!(mii->mii_media_status & IFM_ACTIVE)) 2885 sc->dc_link = 0; 2886 } 2887 } 2888 } else 2889 mii_tick(mii); 2890 2891 /* 2892 * When the init routine completes, we expect to be able to send 2893 * packets right away, and in fact the network code will send a 2894 * gratuitous ARP the moment the init routine marks the interface 2895 * as running. However, even though the MAC may have been initialized, 2896 * there may be a delay of a few seconds before the PHY completes 2897 * autonegotiation and the link is brought up. Any transmissions 2898 * made during that delay will be lost. Dealing with this is tricky: 2899 * we can't just pause in the init routine while waiting for the 2900 * PHY to come ready since that would bring the whole system to 2901 * a screeching halt for several seconds. 2902 * 2903 * What we do here is prevent the TX start routine from sending 2904 * any packets until a link has been established. After the 2905 * interface has been initialized, the tick routine will poll 2906 * the state of the PHY until the IFM_ACTIVE flag is set. Until 2907 * that time, packets will stay in the send queue, and once the 2908 * link comes up, they will be flushed out to the wire. 2909 */ 2910 if (!sc->dc_link && mii->mii_media_status & IFM_ACTIVE && 2911 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { 2912 sc->dc_link++; 2913 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 2914 dc_start_locked(ifp); 2915 } 2916 2917 if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link) 2918 callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc); 2919 else 2920 callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc); 2921 } 2922 2923 /* 2924 * A transmit underrun has occurred. Back off the transmit threshold, 2925 * or switch to store and forward mode if we have to. 2926 */ 2927 static void 2928 dc_tx_underrun(struct dc_softc *sc) 2929 { 2930 u_int32_t isr; 2931 int i; 2932 2933 if (DC_IS_DAVICOM(sc)) 2934 dc_init_locked(sc); 2935 2936 if (DC_IS_INTEL(sc)) { 2937 /* 2938 * The real 21143 requires that the transmitter be idle 2939 * in order to change the transmit threshold or store 2940 * and forward state. 2941 */ 2942 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON); 2943 2944 for (i = 0; i < DC_TIMEOUT; i++) { 2945 isr = CSR_READ_4(sc, DC_ISR); 2946 if (isr & DC_ISR_TX_IDLE) 2947 break; 2948 DELAY(10); 2949 } 2950 if (i == DC_TIMEOUT) { 2951 device_printf(sc->dc_dev, 2952 "%s: failed to force tx to idle state\n", 2953 __func__); 2954 dc_init_locked(sc); 2955 } 2956 } 2957 2958 device_printf(sc->dc_dev, "TX underrun -- "); 2959 sc->dc_txthresh += DC_TXTHRESH_INC; 2960 if (sc->dc_txthresh > DC_TXTHRESH_MAX) { 2961 printf("using store and forward mode\n"); 2962 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD); 2963 } else { 2964 printf("increasing TX threshold\n"); 2965 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH); 2966 DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh); 2967 } 2968 2969 if (DC_IS_INTEL(sc)) 2970 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON); 2971 } 2972 2973 #ifdef DEVICE_POLLING 2974 static poll_handler_t dc_poll; 2975 2976 static void 2977 dc_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) 2978 { 2979 struct dc_softc *sc = ifp->if_softc; 2980 2981 DC_LOCK(sc); 2982 2983 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 2984 DC_UNLOCK(sc); 2985 return; 2986 } 2987 2988 sc->rxcycles = count; 2989 dc_rxeof(sc); 2990 dc_txeof(sc); 2991 if (!IFQ_IS_EMPTY(&ifp->if_snd) && 2992 !(ifp->if_drv_flags & IFF_DRV_OACTIVE)) 2993 dc_start_locked(ifp); 2994 2995 if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */ 2996 u_int32_t status; 2997 2998 status = CSR_READ_4(sc, DC_ISR); 2999 status &= (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF | 3000 DC_ISR_TX_NOBUF | DC_ISR_TX_IDLE | DC_ISR_TX_UNDERRUN | 3001 DC_ISR_BUS_ERR); 3002 if (!status) { 3003 DC_UNLOCK(sc); 3004 return; 3005 } 3006 /* ack what we have */ 3007 CSR_WRITE_4(sc, DC_ISR, status); 3008 3009 if (status & (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF)) { 3010 u_int32_t r = CSR_READ_4(sc, DC_FRAMESDISCARDED); 3011 ifp->if_ierrors += (r & 0xffff) + ((r >> 17) & 0x7ff); 3012 3013 if (dc_rx_resync(sc)) 3014 dc_rxeof(sc); 3015 } 3016 /* restart transmit unit if necessary */ 3017 if (status & DC_ISR_TX_IDLE && sc->dc_cdata.dc_tx_cnt) 3018 CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF); 3019 3020 if (status & DC_ISR_TX_UNDERRUN) 3021 dc_tx_underrun(sc); 3022 3023 if (status & DC_ISR_BUS_ERR) { 3024 if_printf(ifp, "%s: bus error\n", __func__); 3025 dc_reset(sc); 3026 dc_init_locked(sc); 3027 } 3028 } 3029 DC_UNLOCK(sc); 3030 } 3031 #endif /* DEVICE_POLLING */ 3032 3033 static void 3034 dc_intr(void *arg) 3035 { 3036 struct dc_softc *sc; 3037 struct ifnet *ifp; 3038 u_int32_t status; 3039 3040 sc = arg; 3041 3042 if (sc->suspended) 3043 return; 3044 3045 if ((CSR_READ_4(sc, DC_ISR) & DC_INTRS) == 0) 3046 return; 3047 3048 DC_LOCK(sc); 3049 ifp = sc->dc_ifp; 3050 #ifdef DEVICE_POLLING 3051 if (ifp->if_capenable & IFCAP_POLLING) { 3052 DC_UNLOCK(sc); 3053 return; 3054 } 3055 #endif 3056 3057 /* Suppress unwanted interrupts */ 3058 if (!(ifp->if_flags & IFF_UP)) { 3059 if (CSR_READ_4(sc, DC_ISR) & DC_INTRS) 3060 dc_stop(sc); 3061 DC_UNLOCK(sc); 3062 return; 3063 } 3064 3065 /* Disable interrupts. */ 3066 CSR_WRITE_4(sc, DC_IMR, 0x00000000); 3067 3068 while (((status = CSR_READ_4(sc, DC_ISR)) & DC_INTRS) && 3069 status != 0xFFFFFFFF && 3070 (ifp->if_drv_flags & IFF_DRV_RUNNING)) { 3071 3072 CSR_WRITE_4(sc, DC_ISR, status); 3073 3074 if (status & DC_ISR_RX_OK) { 3075 int curpkts; 3076 curpkts = ifp->if_ipackets; 3077 dc_rxeof(sc); 3078 if (curpkts == ifp->if_ipackets) { 3079 while (dc_rx_resync(sc)) 3080 dc_rxeof(sc); 3081 } 3082 } 3083 3084 if (status & (DC_ISR_TX_OK | DC_ISR_TX_NOBUF)) 3085 dc_txeof(sc); 3086 3087 if (status & DC_ISR_TX_IDLE) { 3088 dc_txeof(sc); 3089 if (sc->dc_cdata.dc_tx_cnt) { 3090 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON); 3091 CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF); 3092 } 3093 } 3094 3095 if (status & DC_ISR_TX_UNDERRUN) 3096 dc_tx_underrun(sc); 3097 3098 if ((status & DC_ISR_RX_WATDOGTIMEO) 3099 || (status & DC_ISR_RX_NOBUF)) { 3100 int curpkts; 3101 curpkts = ifp->if_ipackets; 3102 dc_rxeof(sc); 3103 if (curpkts == ifp->if_ipackets) { 3104 while (dc_rx_resync(sc)) 3105 dc_rxeof(sc); 3106 } 3107 } 3108 3109 if (status & DC_ISR_BUS_ERR) { 3110 dc_reset(sc); 3111 dc_init_locked(sc); 3112 } 3113 } 3114 3115 /* Re-enable interrupts. */ 3116 CSR_WRITE_4(sc, DC_IMR, DC_INTRS); 3117 3118 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 3119 dc_start_locked(ifp); 3120 3121 DC_UNLOCK(sc); 3122 } 3123 3124 static void 3125 dc_dma_map_txbuf(arg, segs, nseg, mapsize, error) 3126 void *arg; 3127 bus_dma_segment_t *segs; 3128 int nseg; 3129 bus_size_t mapsize; 3130 int error; 3131 { 3132 struct dc_softc *sc; 3133 struct dc_desc *f; 3134 int cur, first, frag, i; 3135 3136 sc = arg; 3137 if (error) 3138 return; 3139 3140 first = cur = frag = sc->dc_cdata.dc_tx_prod; 3141 for (i = 0; i < nseg; i++) { 3142 if ((sc->dc_flags & DC_TX_ADMTEK_WAR) && 3143 (frag == (DC_TX_LIST_CNT - 1)) && 3144 (first != sc->dc_cdata.dc_tx_first)) { 3145 bus_dmamap_unload(sc->dc_mtag, 3146 sc->dc_cdata.dc_tx_map[first]); 3147 sc->dc_cdata.dc_tx_err = ENOBUFS; 3148 return; 3149 } 3150 3151 f = &sc->dc_ldata->dc_tx_list[frag]; 3152 f->dc_ctl = htole32(DC_TXCTL_TLINK | segs[i].ds_len); 3153 if (i == 0) { 3154 f->dc_status = 0; 3155 f->dc_ctl |= htole32(DC_TXCTL_FIRSTFRAG); 3156 } else 3157 f->dc_status = htole32(DC_TXSTAT_OWN); 3158 f->dc_data = htole32(segs[i].ds_addr); 3159 cur = frag; 3160 DC_INC(frag, DC_TX_LIST_CNT); 3161 } 3162 3163 sc->dc_cdata.dc_tx_err = 0; 3164 sc->dc_cdata.dc_tx_prod = frag; 3165 sc->dc_cdata.dc_tx_cnt += nseg; 3166 sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_LASTFRAG); 3167 sc->dc_cdata.dc_tx_chain[cur] = sc->dc_cdata.dc_tx_mapping; 3168 if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG) 3169 sc->dc_ldata->dc_tx_list[first].dc_ctl |= 3170 htole32(DC_TXCTL_FINT); 3171 if (sc->dc_flags & DC_TX_INTR_ALWAYS) 3172 sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT); 3173 if (sc->dc_flags & DC_TX_USE_TX_INTR && sc->dc_cdata.dc_tx_cnt > 64) 3174 sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT); 3175 sc->dc_ldata->dc_tx_list[first].dc_status = htole32(DC_TXSTAT_OWN); 3176 } 3177 3178 /* 3179 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data 3180 * pointers to the fragment pointers. 3181 */ 3182 static int 3183 dc_encap(struct dc_softc *sc, struct mbuf **m_head) 3184 { 3185 struct mbuf *m; 3186 int error, idx, chainlen = 0; 3187 3188 /* 3189 * If there's no way we can send any packets, return now. 3190 */ 3191 if (DC_TX_LIST_CNT - sc->dc_cdata.dc_tx_cnt <= DC_TX_LIST_RSVD) 3192 return (ENOBUFS); 3193 3194 /* 3195 * Count the number of frags in this chain to see if 3196 * we need to m_defrag. Since the descriptor list is shared 3197 * by all packets, we'll m_defrag long chains so that they 3198 * do not use up the entire list, even if they would fit. 3199 */ 3200 for (m = *m_head; m != NULL; m = m->m_next) 3201 chainlen++; 3202 3203 m = NULL; 3204 if ((sc->dc_flags & DC_TX_COALESCE && ((*m_head)->m_next != NULL || 3205 sc->dc_flags & DC_TX_ALIGN)) || (chainlen > DC_TX_LIST_CNT / 4) || 3206 (DC_TX_LIST_CNT - (chainlen + sc->dc_cdata.dc_tx_cnt) <= 3207 DC_TX_LIST_RSVD)) { 3208 m = m_defrag(*m_head, M_DONTWAIT); 3209 if (m == NULL) { 3210 m_freem(*m_head); 3211 *m_head = NULL; 3212 return (ENOBUFS); 3213 } 3214 *m_head = m; 3215 } 3216 idx = sc->dc_cdata.dc_tx_prod; 3217 sc->dc_cdata.dc_tx_mapping = *m_head; 3218 error = bus_dmamap_load_mbuf(sc->dc_mtag, sc->dc_cdata.dc_tx_map[idx], 3219 *m_head, dc_dma_map_txbuf, sc, 0); 3220 if (error != 0 || sc->dc_cdata.dc_tx_err != 0) { 3221 if (m != NULL) { 3222 m_freem(m); 3223 *m_head = NULL; 3224 } 3225 return (error != 0 ? error : sc->dc_cdata.dc_tx_err); 3226 } 3227 bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_tx_map[idx], 3228 BUS_DMASYNC_PREWRITE); 3229 bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap, 3230 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); 3231 return (0); 3232 } 3233 3234 /* 3235 * Main transmit routine. To avoid having to do mbuf copies, we put pointers 3236 * to the mbuf data regions directly in the transmit lists. We also save a 3237 * copy of the pointers since the transmit list fragment pointers are 3238 * physical addresses. 3239 */ 3240 3241 static void 3242 dc_start(struct ifnet *ifp) 3243 { 3244 struct dc_softc *sc; 3245 3246 sc = ifp->if_softc; 3247 DC_LOCK(sc); 3248 dc_start_locked(ifp); 3249 DC_UNLOCK(sc); 3250 } 3251 3252 static void 3253 dc_start_locked(struct ifnet *ifp) 3254 { 3255 struct dc_softc *sc; 3256 struct mbuf *m_head = NULL; 3257 unsigned int queued = 0; 3258 int idx; 3259 3260 sc = ifp->if_softc; 3261 3262 DC_LOCK_ASSERT(sc); 3263 3264 if (!sc->dc_link && ifp->if_snd.ifq_len < 10) 3265 return; 3266 3267 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) 3268 return; 3269 3270 idx = sc->dc_cdata.dc_tx_first = sc->dc_cdata.dc_tx_prod; 3271 3272 while (sc->dc_cdata.dc_tx_chain[idx] == NULL) { 3273 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); 3274 if (m_head == NULL) 3275 break; 3276 3277 if (dc_encap(sc, &m_head)) { 3278 if (m_head == NULL) 3279 break; 3280 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 3281 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 3282 break; 3283 } 3284 idx = sc->dc_cdata.dc_tx_prod; 3285 3286 queued++; 3287 /* 3288 * If there's a BPF listener, bounce a copy of this frame 3289 * to him. 3290 */ 3291 BPF_MTAP(ifp, m_head); 3292 3293 if (sc->dc_flags & DC_TX_ONE) { 3294 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 3295 break; 3296 } 3297 } 3298 3299 if (queued > 0) { 3300 /* Transmit */ 3301 if (!(sc->dc_flags & DC_TX_POLL)) 3302 CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF); 3303 3304 /* 3305 * Set a timeout in case the chip goes out to lunch. 3306 */ 3307 sc->dc_wdog_timer = 5; 3308 } 3309 } 3310 3311 static void 3312 dc_init(void *xsc) 3313 { 3314 struct dc_softc *sc = xsc; 3315 3316 DC_LOCK(sc); 3317 dc_init_locked(sc); 3318 DC_UNLOCK(sc); 3319 } 3320 3321 static void 3322 dc_init_locked(struct dc_softc *sc) 3323 { 3324 struct ifnet *ifp = sc->dc_ifp; 3325 struct mii_data *mii; 3326 3327 DC_LOCK_ASSERT(sc); 3328 3329 mii = device_get_softc(sc->dc_miibus); 3330 3331 /* 3332 * Cancel pending I/O and free all RX/TX buffers. 3333 */ 3334 dc_stop(sc); 3335 dc_reset(sc); 3336 3337 /* 3338 * Set cache alignment and burst length. 3339 */ 3340 if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc)) 3341 CSR_WRITE_4(sc, DC_BUSCTL, 0); 3342 else 3343 CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME | DC_BUSCTL_MRLE); 3344 /* 3345 * Evenly share the bus between receive and transmit process. 3346 */ 3347 if (DC_IS_INTEL(sc)) 3348 DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION); 3349 if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) { 3350 DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA); 3351 } else { 3352 DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG); 3353 } 3354 if (sc->dc_flags & DC_TX_POLL) 3355 DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1); 3356 switch(sc->dc_cachesize) { 3357 case 32: 3358 DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG); 3359 break; 3360 case 16: 3361 DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG); 3362 break; 3363 case 8: 3364 DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG); 3365 break; 3366 case 0: 3367 default: 3368 DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE); 3369 break; 3370 } 3371 3372 if (sc->dc_flags & DC_TX_STORENFWD) 3373 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD); 3374 else { 3375 if (sc->dc_txthresh > DC_TXTHRESH_MAX) { 3376 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD); 3377 } else { 3378 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD); 3379 DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh); 3380 } 3381 } 3382 3383 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC); 3384 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF); 3385 3386 if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) { 3387 /* 3388 * The app notes for the 98713 and 98715A say that 3389 * in order to have the chips operate properly, a magic 3390 * number must be written to CSR16. Macronix does not 3391 * document the meaning of these bits so there's no way 3392 * to know exactly what they do. The 98713 has a magic 3393 * number all its own; the rest all use a different one. 3394 */ 3395 DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000); 3396 if (sc->dc_type == DC_TYPE_98713) 3397 DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713); 3398 else 3399 DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715); 3400 } 3401 3402 if (DC_IS_XIRCOM(sc)) { 3403 /* 3404 * setup General Purpose Port mode and data so the tulip 3405 * can talk to the MII. 3406 */ 3407 CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN | 3408 DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT); 3409 DELAY(10); 3410 CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN | 3411 DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT); 3412 DELAY(10); 3413 } 3414 3415 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH); 3416 DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN); 3417 3418 /* Init circular RX list. */ 3419 if (dc_list_rx_init(sc) == ENOBUFS) { 3420 device_printf(sc->dc_dev, 3421 "initialization failed: no memory for rx buffers\n"); 3422 dc_stop(sc); 3423 return; 3424 } 3425 3426 /* 3427 * Init TX descriptors. 3428 */ 3429 dc_list_tx_init(sc); 3430 3431 /* 3432 * Load the address of the RX list. 3433 */ 3434 CSR_WRITE_4(sc, DC_RXADDR, DC_RXDESC(sc, 0)); 3435 CSR_WRITE_4(sc, DC_TXADDR, DC_TXDESC(sc, 0)); 3436 3437 /* 3438 * Enable interrupts. 3439 */ 3440 #ifdef DEVICE_POLLING 3441 /* 3442 * ... but only if we are not polling, and make sure they are off in 3443 * the case of polling. Some cards (e.g. fxp) turn interrupts on 3444 * after a reset. 3445 */ 3446 if (ifp->if_capenable & IFCAP_POLLING) 3447 CSR_WRITE_4(sc, DC_IMR, 0x00000000); 3448 else 3449 #endif 3450 CSR_WRITE_4(sc, DC_IMR, DC_INTRS); 3451 CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF); 3452 3453 /* Enable transmitter. */ 3454 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON); 3455 3456 /* 3457 * If this is an Intel 21143 and we're not using the 3458 * MII port, program the LED control pins so we get 3459 * link and activity indications. 3460 */ 3461 if (sc->dc_flags & DC_TULIP_LEDS) { 3462 CSR_WRITE_4(sc, DC_WATCHDOG, 3463 DC_WDOG_CTLWREN | DC_WDOG_LINK | DC_WDOG_ACTIVITY); 3464 CSR_WRITE_4(sc, DC_WATCHDOG, 0); 3465 } 3466 3467 /* 3468 * Load the RX/multicast filter. We do this sort of late 3469 * because the filter programming scheme on the 21143 and 3470 * some clones requires DMAing a setup frame via the TX 3471 * engine, and we need the transmitter enabled for that. 3472 */ 3473 dc_setfilt(sc); 3474 3475 /* Enable receiver. */ 3476 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON); 3477 CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF); 3478 3479 mii_mediachg(mii); 3480 dc_setcfg(sc, sc->dc_if_media); 3481 3482 ifp->if_drv_flags |= IFF_DRV_RUNNING; 3483 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3484 3485 /* Don't start the ticker if this is a homePNA link. */ 3486 if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_HPNA_1) 3487 sc->dc_link = 1; 3488 else { 3489 if (sc->dc_flags & DC_21143_NWAY) 3490 callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc); 3491 else 3492 callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc); 3493 } 3494 3495 sc->dc_wdog_timer = 0; 3496 callout_reset(&sc->dc_wdog_ch, hz, dc_watchdog, sc); 3497 } 3498 3499 /* 3500 * Set media options. 3501 */ 3502 static int 3503 dc_ifmedia_upd(struct ifnet *ifp) 3504 { 3505 struct dc_softc *sc; 3506 struct mii_data *mii; 3507 struct ifmedia *ifm; 3508 3509 sc = ifp->if_softc; 3510 mii = device_get_softc(sc->dc_miibus); 3511 DC_LOCK(sc); 3512 mii_mediachg(mii); 3513 ifm = &mii->mii_media; 3514 3515 if (DC_IS_DAVICOM(sc) && 3516 IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) 3517 dc_setcfg(sc, ifm->ifm_media); 3518 else 3519 sc->dc_link = 0; 3520 DC_UNLOCK(sc); 3521 3522 return (0); 3523 } 3524 3525 /* 3526 * Report current media status. 3527 */ 3528 static void 3529 dc_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 3530 { 3531 struct dc_softc *sc; 3532 struct mii_data *mii; 3533 struct ifmedia *ifm; 3534 3535 sc = ifp->if_softc; 3536 mii = device_get_softc(sc->dc_miibus); 3537 DC_LOCK(sc); 3538 mii_pollstat(mii); 3539 ifm = &mii->mii_media; 3540 if (DC_IS_DAVICOM(sc)) { 3541 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) { 3542 ifmr->ifm_active = ifm->ifm_media; 3543 ifmr->ifm_status = 0; 3544 DC_UNLOCK(sc); 3545 return; 3546 } 3547 } 3548 ifmr->ifm_active = mii->mii_media_active; 3549 ifmr->ifm_status = mii->mii_media_status; 3550 DC_UNLOCK(sc); 3551 } 3552 3553 static int 3554 dc_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 3555 { 3556 struct dc_softc *sc = ifp->if_softc; 3557 struct ifreq *ifr = (struct ifreq *)data; 3558 struct mii_data *mii; 3559 int error = 0; 3560 3561 switch (command) { 3562 case SIOCSIFFLAGS: 3563 DC_LOCK(sc); 3564 if (ifp->if_flags & IFF_UP) { 3565 int need_setfilt = (ifp->if_flags ^ sc->dc_if_flags) & 3566 (IFF_PROMISC | IFF_ALLMULTI); 3567 3568 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 3569 if (need_setfilt) 3570 dc_setfilt(sc); 3571 } else { 3572 sc->dc_txthresh = 0; 3573 dc_init_locked(sc); 3574 } 3575 } else { 3576 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 3577 dc_stop(sc); 3578 } 3579 sc->dc_if_flags = ifp->if_flags; 3580 DC_UNLOCK(sc); 3581 error = 0; 3582 break; 3583 case SIOCADDMULTI: 3584 case SIOCDELMULTI: 3585 DC_LOCK(sc); 3586 dc_setfilt(sc); 3587 DC_UNLOCK(sc); 3588 error = 0; 3589 break; 3590 case SIOCGIFMEDIA: 3591 case SIOCSIFMEDIA: 3592 mii = device_get_softc(sc->dc_miibus); 3593 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); 3594 break; 3595 case SIOCSIFCAP: 3596 #ifdef DEVICE_POLLING 3597 if (ifr->ifr_reqcap & IFCAP_POLLING && 3598 !(ifp->if_capenable & IFCAP_POLLING)) { 3599 error = ether_poll_register(dc_poll, ifp); 3600 if (error) 3601 return(error); 3602 DC_LOCK(sc); 3603 /* Disable interrupts */ 3604 CSR_WRITE_4(sc, DC_IMR, 0x00000000); 3605 ifp->if_capenable |= IFCAP_POLLING; 3606 DC_UNLOCK(sc); 3607 return (error); 3608 3609 } 3610 if (!(ifr->ifr_reqcap & IFCAP_POLLING) && 3611 ifp->if_capenable & IFCAP_POLLING) { 3612 error = ether_poll_deregister(ifp); 3613 /* Enable interrupts. */ 3614 DC_LOCK(sc); 3615 CSR_WRITE_4(sc, DC_IMR, DC_INTRS); 3616 ifp->if_capenable &= ~IFCAP_POLLING; 3617 DC_UNLOCK(sc); 3618 return (error); 3619 } 3620 #endif /* DEVICE_POLLING */ 3621 break; 3622 default: 3623 error = ether_ioctl(ifp, command, data); 3624 break; 3625 } 3626 3627 return (error); 3628 } 3629 3630 static void 3631 dc_watchdog(void *xsc) 3632 { 3633 struct dc_softc *sc = xsc; 3634 struct ifnet *ifp; 3635 3636 DC_LOCK_ASSERT(sc); 3637 3638 if (sc->dc_wdog_timer == 0 || --sc->dc_wdog_timer != 0) { 3639 callout_reset(&sc->dc_wdog_ch, hz, dc_watchdog, sc); 3640 return; 3641 } 3642 3643 ifp = sc->dc_ifp; 3644 ifp->if_oerrors++; 3645 device_printf(sc->dc_dev, "watchdog timeout\n"); 3646 3647 dc_stop(sc); 3648 dc_reset(sc); 3649 dc_init_locked(sc); 3650 3651 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 3652 dc_start_locked(ifp); 3653 } 3654 3655 /* 3656 * Stop the adapter and free any mbufs allocated to the 3657 * RX and TX lists. 3658 */ 3659 static void 3660 dc_stop(struct dc_softc *sc) 3661 { 3662 struct ifnet *ifp; 3663 struct dc_list_data *ld; 3664 struct dc_chain_data *cd; 3665 int i; 3666 u_int32_t ctl; 3667 3668 DC_LOCK_ASSERT(sc); 3669 3670 ifp = sc->dc_ifp; 3671 ld = sc->dc_ldata; 3672 cd = &sc->dc_cdata; 3673 3674 callout_stop(&sc->dc_stat_ch); 3675 callout_stop(&sc->dc_wdog_ch); 3676 sc->dc_wdog_timer = 0; 3677 3678 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 3679 3680 DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ON | DC_NETCFG_TX_ON)); 3681 CSR_WRITE_4(sc, DC_IMR, 0x00000000); 3682 CSR_WRITE_4(sc, DC_TXADDR, 0x00000000); 3683 CSR_WRITE_4(sc, DC_RXADDR, 0x00000000); 3684 sc->dc_link = 0; 3685 3686 /* 3687 * Free data in the RX lists. 3688 */ 3689 for (i = 0; i < DC_RX_LIST_CNT; i++) { 3690 if (cd->dc_rx_chain[i] != NULL) { 3691 m_freem(cd->dc_rx_chain[i]); 3692 cd->dc_rx_chain[i] = NULL; 3693 } 3694 } 3695 bzero(&ld->dc_rx_list, sizeof(ld->dc_rx_list)); 3696 3697 /* 3698 * Free the TX list buffers. 3699 */ 3700 for (i = 0; i < DC_TX_LIST_CNT; i++) { 3701 if (cd->dc_tx_chain[i] != NULL) { 3702 ctl = le32toh(ld->dc_tx_list[i].dc_ctl); 3703 if ((ctl & DC_TXCTL_SETUP) || 3704 !(ctl & DC_TXCTL_LASTFRAG)) { 3705 cd->dc_tx_chain[i] = NULL; 3706 continue; 3707 } 3708 bus_dmamap_unload(sc->dc_mtag, cd->dc_tx_map[i]); 3709 m_freem(cd->dc_tx_chain[i]); 3710 cd->dc_tx_chain[i] = NULL; 3711 } 3712 } 3713 bzero(&ld->dc_tx_list, sizeof(ld->dc_tx_list)); 3714 } 3715 3716 /* 3717 * Device suspend routine. Stop the interface and save some PCI 3718 * settings in case the BIOS doesn't restore them properly on 3719 * resume. 3720 */ 3721 static int 3722 dc_suspend(device_t dev) 3723 { 3724 struct dc_softc *sc; 3725 3726 sc = device_get_softc(dev); 3727 DC_LOCK(sc); 3728 dc_stop(sc); 3729 sc->suspended = 1; 3730 DC_UNLOCK(sc); 3731 3732 return (0); 3733 } 3734 3735 /* 3736 * Device resume routine. Restore some PCI settings in case the BIOS 3737 * doesn't, re-enable busmastering, and restart the interface if 3738 * appropriate. 3739 */ 3740 static int 3741 dc_resume(device_t dev) 3742 { 3743 struct dc_softc *sc; 3744 struct ifnet *ifp; 3745 3746 sc = device_get_softc(dev); 3747 ifp = sc->dc_ifp; 3748 3749 /* reinitialize interface if necessary */ 3750 DC_LOCK(sc); 3751 if (ifp->if_flags & IFF_UP) 3752 dc_init_locked(sc); 3753 3754 sc->suspended = 0; 3755 DC_UNLOCK(sc); 3756 3757 return (0); 3758 } 3759 3760 /* 3761 * Stop all chip I/O so that the kernel's probe routines don't 3762 * get confused by errant DMAs when rebooting. 3763 */ 3764 static int 3765 dc_shutdown(device_t dev) 3766 { 3767 struct dc_softc *sc; 3768 3769 sc = device_get_softc(dev); 3770 3771 DC_LOCK(sc); 3772 dc_stop(sc); 3773 DC_UNLOCK(sc); 3774 3775 return (0); 3776 } 3777