xref: /freebsd/sys/dev/dc/if_dc.c (revision 13014ca04aad1931d41958b56f71a2c65b9a7a2c)
1 /*-
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ee.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /*
37  * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
38  * series chips and several workalikes including the following:
39  *
40  * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com)
41  * Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
42  * Lite-On 82c168/82c169 PNIC (www.litecom.com)
43  * ASIX Electronics AX88140A (www.asix.com.tw)
44  * ASIX Electronics AX88141 (www.asix.com.tw)
45  * ADMtek AL981 (www.admtek.com.tw)
46  * ADMtek AN985 (www.admtek.com.tw)
47  * Netgear FA511 (www.netgear.com) Appears to be rebadged ADMTek AN985
48  * Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
49  * Accton EN1217 (www.accton.com)
50  * Xircom X3201 (www.xircom.com)
51  * Abocom FE2500
52  * Conexant LANfinity (www.conexant.com)
53  * 3Com OfficeConnect 10/100B 3CSOHO100B (www.3com.com)
54  *
55  * Datasheets for the 21143 are available at developer.intel.com.
56  * Datasheets for the clone parts can be found at their respective sites.
57  * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
58  * The PNIC II is essentially a Macronix 98715A chip; the only difference
59  * worth noting is that its multicast hash table is only 128 bits wide
60  * instead of 512.
61  *
62  * Written by Bill Paul <wpaul@ee.columbia.edu>
63  * Electrical Engineering Department
64  * Columbia University, New York City
65  */
66 /*
67  * The Intel 21143 is the successor to the DEC 21140. It is basically
68  * the same as the 21140 but with a few new features. The 21143 supports
69  * three kinds of media attachments:
70  *
71  * o MII port, for 10Mbps and 100Mbps support and NWAY
72  *   autonegotiation provided by an external PHY.
73  * o SYM port, for symbol mode 100Mbps support.
74  * o 10baseT port.
75  * o AUI/BNC port.
76  *
77  * The 100Mbps SYM port and 10baseT port can be used together in
78  * combination with the internal NWAY support to create a 10/100
79  * autosensing configuration.
80  *
81  * Note that not all tulip workalikes are handled in this driver: we only
82  * deal with those which are relatively well behaved. The Winbond is
83  * handled separately due to its different register offsets and the
84  * special handling needed for its various bugs. The PNIC is handled
85  * here, but I'm not thrilled about it.
86  *
87  * All of the workalike chips use some form of MII transceiver support
88  * with the exception of the Macronix chips, which also have a SYM port.
89  * The ASIX AX88140A is also documented to have a SYM port, but all
90  * the cards I've seen use an MII transceiver, probably because the
91  * AX88140A doesn't support internal NWAY.
92  */
93 
94 #ifdef HAVE_KERNEL_OPTION_HEADERS
95 #include "opt_device_polling.h"
96 #endif
97 
98 #include <sys/param.h>
99 #include <sys/endian.h>
100 #include <sys/systm.h>
101 #include <sys/sockio.h>
102 #include <sys/mbuf.h>
103 #include <sys/malloc.h>
104 #include <sys/kernel.h>
105 #include <sys/module.h>
106 #include <sys/socket.h>
107 
108 #include <net/if.h>
109 #include <net/if_arp.h>
110 #include <net/ethernet.h>
111 #include <net/if_dl.h>
112 #include <net/if_media.h>
113 #include <net/if_types.h>
114 #include <net/if_vlan_var.h>
115 
116 #include <net/bpf.h>
117 
118 #include <machine/bus.h>
119 #include <machine/resource.h>
120 #include <sys/bus.h>
121 #include <sys/rman.h>
122 
123 #include <dev/mii/mii.h>
124 #include <dev/mii/miivar.h>
125 
126 #include <dev/pci/pcireg.h>
127 #include <dev/pci/pcivar.h>
128 
129 #define DC_USEIOSPACE
130 
131 #include <dev/dc/if_dcreg.h>
132 
133 #ifdef __sparc64__
134 #include <dev/ofw/openfirm.h>
135 #include <machine/ofw_machdep.h>
136 #endif
137 
138 MODULE_DEPEND(dc, pci, 1, 1, 1);
139 MODULE_DEPEND(dc, ether, 1, 1, 1);
140 MODULE_DEPEND(dc, miibus, 1, 1, 1);
141 
142 /*
143  * "device miibus" is required in kernel config.  See GENERIC if you get
144  * errors here.
145  */
146 #include "miibus_if.h"
147 
148 /*
149  * Various supported device vendors/types and their names.
150  */
151 static const struct dc_type dc_devs[] = {
152 	{ DC_DEVID(DC_VENDORID_DEC, DC_DEVICEID_21143), 0,
153 		"Intel 21143 10/100BaseTX" },
154 	{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009), 0,
155 		"Davicom DM9009 10/100BaseTX" },
156 	{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100), 0,
157 		"Davicom DM9100 10/100BaseTX" },
158 	{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102), DC_REVISION_DM9102A,
159 		"Davicom DM9102A 10/100BaseTX" },
160 	{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102), 0,
161 		"Davicom DM9102 10/100BaseTX" },
162 	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AL981), 0,
163 		"ADMtek AL981 10/100BaseTX" },
164 	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN985), 0,
165 		"ADMtek AN985 10/100BaseTX" },
166 	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511), 0,
167 		"ADMtek ADM9511 10/100BaseTX" },
168 	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513), 0,
169 		"ADMtek ADM9513 10/100BaseTX" },
170 	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_FA511), 0,
171 		"Netgear FA511 10/100BaseTX" },
172 	{ DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A), DC_REVISION_88141,
173 		"ASIX AX88141 10/100BaseTX" },
174 	{ DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A), 0,
175 		"ASIX AX88140A 10/100BaseTX" },
176 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713), DC_REVISION_98713A,
177 		"Macronix 98713A 10/100BaseTX" },
178 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713), 0,
179 		"Macronix 98713 10/100BaseTX" },
180 	{ DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP), DC_REVISION_98713A,
181 		"Compex RL100-TX 10/100BaseTX" },
182 	{ DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP), 0,
183 		"Compex RL100-TX 10/100BaseTX" },
184 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), DC_REVISION_98725,
185 		"Macronix 98725 10/100BaseTX" },
186 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), DC_REVISION_98715AEC_C,
187 		"Macronix 98715AEC-C 10/100BaseTX" },
188 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), 0,
189 		"Macronix 98715/98715A 10/100BaseTX" },
190 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98727), 0,
191 		"Macronix 98727/98732 10/100BaseTX" },
192 	{ DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C115), 0,
193 		"LC82C115 PNIC II 10/100BaseTX" },
194 	{ DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168), DC_REVISION_82C169,
195 		"82c169 PNIC 10/100BaseTX" },
196 	{ DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168), 0,
197 		"82c168 PNIC 10/100BaseTX" },
198 	{ DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN1217), 0,
199 		"Accton EN1217 10/100BaseTX" },
200 	{ DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN2242), 0,
201 		"Accton EN2242 MiniPCI 10/100BaseTX" },
202 	{ DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201), 0,
203 		"Xircom X3201 10/100BaseTX" },
204 	{ DC_DEVID(DC_VENDORID_DLINK, DC_DEVICEID_DRP32TXD), 0,
205 		"Neteasy DRP-32TXD Cardbus 10/100" },
206 	{ DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500), 0,
207 		"Abocom FE2500 10/100BaseTX" },
208 	{ DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500MX), 0,
209 		"Abocom FE2500MX 10/100BaseTX" },
210 	{ DC_DEVID(DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112), 0,
211 		"Conexant LANfinity MiniPCI 10/100BaseTX" },
212 	{ DC_DEVID(DC_VENDORID_HAWKING, DC_DEVICEID_HAWKING_PN672TX), 0,
213 		"Hawking CB102 CardBus 10/100" },
214 	{ DC_DEVID(DC_VENDORID_PLANEX, DC_DEVICEID_FNW3602T), 0,
215 		"PlaneX FNW-3602-T CardBus 10/100" },
216 	{ DC_DEVID(DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB), 0,
217 		"3Com OfficeConnect 10/100B" },
218 	{ DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN120), 0,
219 		"Microsoft MN-120 CardBus 10/100" },
220 	{ DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130), 0,
221 		"Microsoft MN-130 10/100" },
222 	{ DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB08), 0,
223 		"Linksys PCMPC200 CardBus 10/100" },
224 	{ DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB09), 0,
225 		"Linksys PCMPC200 CardBus 10/100" },
226 	{ 0, 0, NULL }
227 };
228 
229 static int dc_probe(device_t);
230 static int dc_attach(device_t);
231 static int dc_detach(device_t);
232 static int dc_suspend(device_t);
233 static int dc_resume(device_t);
234 static const struct dc_type *dc_devtype(device_t);
235 static int dc_newbuf(struct dc_softc *, int, int);
236 static int dc_encap(struct dc_softc *, struct mbuf **);
237 static void dc_pnic_rx_bug_war(struct dc_softc *, int);
238 static int dc_rx_resync(struct dc_softc *);
239 static void dc_rxeof(struct dc_softc *);
240 static void dc_txeof(struct dc_softc *);
241 static void dc_tick(void *);
242 static void dc_tx_underrun(struct dc_softc *);
243 static void dc_intr(void *);
244 static void dc_start(struct ifnet *);
245 static void dc_start_locked(struct ifnet *);
246 static int dc_ioctl(struct ifnet *, u_long, caddr_t);
247 static void dc_init(void *);
248 static void dc_init_locked(struct dc_softc *);
249 static void dc_stop(struct dc_softc *);
250 static void dc_watchdog(void *);
251 static int dc_shutdown(device_t);
252 static int dc_ifmedia_upd(struct ifnet *);
253 static void dc_ifmedia_sts(struct ifnet *, struct ifmediareq *);
254 
255 static void dc_delay(struct dc_softc *);
256 static void dc_eeprom_idle(struct dc_softc *);
257 static void dc_eeprom_putbyte(struct dc_softc *, int);
258 static void dc_eeprom_getword(struct dc_softc *, int, u_int16_t *);
259 static void dc_eeprom_getword_pnic(struct dc_softc *, int, u_int16_t *);
260 static void dc_eeprom_getword_xircom(struct dc_softc *, int, u_int16_t *);
261 static void dc_eeprom_width(struct dc_softc *);
262 static void dc_read_eeprom(struct dc_softc *, caddr_t, int, int, int);
263 
264 static void dc_mii_writebit(struct dc_softc *, int);
265 static int dc_mii_readbit(struct dc_softc *);
266 static void dc_mii_sync(struct dc_softc *);
267 static void dc_mii_send(struct dc_softc *, u_int32_t, int);
268 static int dc_mii_readreg(struct dc_softc *, struct dc_mii_frame *);
269 static int dc_mii_writereg(struct dc_softc *, struct dc_mii_frame *);
270 static int dc_miibus_readreg(device_t, int, int);
271 static int dc_miibus_writereg(device_t, int, int, int);
272 static void dc_miibus_statchg(device_t);
273 static void dc_miibus_mediainit(device_t);
274 
275 static void dc_setcfg(struct dc_softc *, int);
276 static uint32_t dc_mchash_le(struct dc_softc *, const uint8_t *);
277 static uint32_t dc_mchash_be(const uint8_t *);
278 static void dc_setfilt_21143(struct dc_softc *);
279 static void dc_setfilt_asix(struct dc_softc *);
280 static void dc_setfilt_admtek(struct dc_softc *);
281 static void dc_setfilt_xircom(struct dc_softc *);
282 
283 static void dc_setfilt(struct dc_softc *);
284 
285 static void dc_reset(struct dc_softc *);
286 static int dc_list_rx_init(struct dc_softc *);
287 static int dc_list_tx_init(struct dc_softc *);
288 
289 static void dc_read_srom(struct dc_softc *, int);
290 static void dc_parse_21143_srom(struct dc_softc *);
291 static void dc_decode_leaf_sia(struct dc_softc *, struct dc_eblock_sia *);
292 static void dc_decode_leaf_mii(struct dc_softc *, struct dc_eblock_mii *);
293 static void dc_decode_leaf_sym(struct dc_softc *, struct dc_eblock_sym *);
294 static void dc_apply_fixup(struct dc_softc *, int);
295 
296 #ifdef DC_USEIOSPACE
297 #define DC_RES			SYS_RES_IOPORT
298 #define DC_RID			DC_PCI_CFBIO
299 #else
300 #define DC_RES			SYS_RES_MEMORY
301 #define DC_RID			DC_PCI_CFBMA
302 #endif
303 
304 static device_method_t dc_methods[] = {
305 	/* Device interface */
306 	DEVMETHOD(device_probe,		dc_probe),
307 	DEVMETHOD(device_attach,	dc_attach),
308 	DEVMETHOD(device_detach,	dc_detach),
309 	DEVMETHOD(device_suspend,	dc_suspend),
310 	DEVMETHOD(device_resume,	dc_resume),
311 	DEVMETHOD(device_shutdown,	dc_shutdown),
312 
313 	/* bus interface */
314 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
315 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
316 
317 	/* MII interface */
318 	DEVMETHOD(miibus_readreg,	dc_miibus_readreg),
319 	DEVMETHOD(miibus_writereg,	dc_miibus_writereg),
320 	DEVMETHOD(miibus_statchg,	dc_miibus_statchg),
321 	DEVMETHOD(miibus_mediainit,	dc_miibus_mediainit),
322 
323 	{ 0, 0 }
324 };
325 
326 static driver_t dc_driver = {
327 	"dc",
328 	dc_methods,
329 	sizeof(struct dc_softc)
330 };
331 
332 static devclass_t dc_devclass;
333 
334 DRIVER_MODULE(dc, cardbus, dc_driver, dc_devclass, 0, 0);
335 DRIVER_MODULE(dc, pci, dc_driver, dc_devclass, 0, 0);
336 DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, 0, 0);
337 
338 #define DC_SETBIT(sc, reg, x)				\
339 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
340 
341 #define DC_CLRBIT(sc, reg, x)				\
342 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
343 
344 #define SIO_SET(x)	DC_SETBIT(sc, DC_SIO, (x))
345 #define SIO_CLR(x)	DC_CLRBIT(sc, DC_SIO, (x))
346 
347 static void
348 dc_delay(struct dc_softc *sc)
349 {
350 	int idx;
351 
352 	for (idx = (300 / 33) + 1; idx > 0; idx--)
353 		CSR_READ_4(sc, DC_BUSCTL);
354 }
355 
356 static void
357 dc_eeprom_width(struct dc_softc *sc)
358 {
359 	int i;
360 
361 	/* Force EEPROM to idle state. */
362 	dc_eeprom_idle(sc);
363 
364 	/* Enter EEPROM access mode. */
365 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
366 	dc_delay(sc);
367 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
368 	dc_delay(sc);
369 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
370 	dc_delay(sc);
371 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
372 	dc_delay(sc);
373 
374 	for (i = 3; i--;) {
375 		if (6 & (1 << i))
376 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
377 		else
378 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
379 		dc_delay(sc);
380 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
381 		dc_delay(sc);
382 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
383 		dc_delay(sc);
384 	}
385 
386 	for (i = 1; i <= 12; i++) {
387 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
388 		dc_delay(sc);
389 		if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) {
390 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
391 			dc_delay(sc);
392 			break;
393 		}
394 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
395 		dc_delay(sc);
396 	}
397 
398 	/* Turn off EEPROM access mode. */
399 	dc_eeprom_idle(sc);
400 
401 	if (i < 4 || i > 12)
402 		sc->dc_romwidth = 6;
403 	else
404 		sc->dc_romwidth = i;
405 
406 	/* Enter EEPROM access mode. */
407 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
408 	dc_delay(sc);
409 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
410 	dc_delay(sc);
411 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
412 	dc_delay(sc);
413 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
414 	dc_delay(sc);
415 
416 	/* Turn off EEPROM access mode. */
417 	dc_eeprom_idle(sc);
418 }
419 
420 static void
421 dc_eeprom_idle(struct dc_softc *sc)
422 {
423 	int i;
424 
425 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
426 	dc_delay(sc);
427 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
428 	dc_delay(sc);
429 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
430 	dc_delay(sc);
431 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
432 	dc_delay(sc);
433 
434 	for (i = 0; i < 25; i++) {
435 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
436 		dc_delay(sc);
437 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
438 		dc_delay(sc);
439 	}
440 
441 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
442 	dc_delay(sc);
443 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
444 	dc_delay(sc);
445 	CSR_WRITE_4(sc, DC_SIO, 0x00000000);
446 }
447 
448 /*
449  * Send a read command and address to the EEPROM, check for ACK.
450  */
451 static void
452 dc_eeprom_putbyte(struct dc_softc *sc, int addr)
453 {
454 	int d, i;
455 
456 	d = DC_EECMD_READ >> 6;
457 	for (i = 3; i--; ) {
458 		if (d & (1 << i))
459 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
460 		else
461 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
462 		dc_delay(sc);
463 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
464 		dc_delay(sc);
465 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
466 		dc_delay(sc);
467 	}
468 
469 	/*
470 	 * Feed in each bit and strobe the clock.
471 	 */
472 	for (i = sc->dc_romwidth; i--;) {
473 		if (addr & (1 << i)) {
474 			SIO_SET(DC_SIO_EE_DATAIN);
475 		} else {
476 			SIO_CLR(DC_SIO_EE_DATAIN);
477 		}
478 		dc_delay(sc);
479 		SIO_SET(DC_SIO_EE_CLK);
480 		dc_delay(sc);
481 		SIO_CLR(DC_SIO_EE_CLK);
482 		dc_delay(sc);
483 	}
484 }
485 
486 /*
487  * Read a word of data stored in the EEPROM at address 'addr.'
488  * The PNIC 82c168/82c169 has its own non-standard way to read
489  * the EEPROM.
490  */
491 static void
492 dc_eeprom_getword_pnic(struct dc_softc *sc, int addr, u_int16_t *dest)
493 {
494 	int i;
495 	u_int32_t r;
496 
497 	CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ | addr);
498 
499 	for (i = 0; i < DC_TIMEOUT; i++) {
500 		DELAY(1);
501 		r = CSR_READ_4(sc, DC_SIO);
502 		if (!(r & DC_PN_SIOCTL_BUSY)) {
503 			*dest = (u_int16_t)(r & 0xFFFF);
504 			return;
505 		}
506 	}
507 }
508 
509 /*
510  * Read a word of data stored in the EEPROM at address 'addr.'
511  * The Xircom X3201 has its own non-standard way to read
512  * the EEPROM, too.
513  */
514 static void
515 dc_eeprom_getword_xircom(struct dc_softc *sc, int addr, u_int16_t *dest)
516 {
517 
518 	SIO_SET(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
519 
520 	addr *= 2;
521 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
522 	*dest = (u_int16_t)CSR_READ_4(sc, DC_SIO) & 0xff;
523 	addr += 1;
524 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
525 	*dest |= ((u_int16_t)CSR_READ_4(sc, DC_SIO) & 0xff) << 8;
526 
527 	SIO_CLR(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
528 }
529 
530 /*
531  * Read a word of data stored in the EEPROM at address 'addr.'
532  */
533 static void
534 dc_eeprom_getword(struct dc_softc *sc, int addr, u_int16_t *dest)
535 {
536 	int i;
537 	u_int16_t word = 0;
538 
539 	/* Force EEPROM to idle state. */
540 	dc_eeprom_idle(sc);
541 
542 	/* Enter EEPROM access mode. */
543 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
544 	dc_delay(sc);
545 	DC_SETBIT(sc, DC_SIO,  DC_SIO_ROMCTL_READ);
546 	dc_delay(sc);
547 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
548 	dc_delay(sc);
549 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
550 	dc_delay(sc);
551 
552 	/*
553 	 * Send address of word we want to read.
554 	 */
555 	dc_eeprom_putbyte(sc, addr);
556 
557 	/*
558 	 * Start reading bits from EEPROM.
559 	 */
560 	for (i = 0x8000; i; i >>= 1) {
561 		SIO_SET(DC_SIO_EE_CLK);
562 		dc_delay(sc);
563 		if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
564 			word |= i;
565 		dc_delay(sc);
566 		SIO_CLR(DC_SIO_EE_CLK);
567 		dc_delay(sc);
568 	}
569 
570 	/* Turn off EEPROM access mode. */
571 	dc_eeprom_idle(sc);
572 
573 	*dest = word;
574 }
575 
576 /*
577  * Read a sequence of words from the EEPROM.
578  */
579 static void
580 dc_read_eeprom(struct dc_softc *sc, caddr_t dest, int off, int cnt, int be)
581 {
582 	int i;
583 	u_int16_t word = 0, *ptr;
584 
585 	for (i = 0; i < cnt; i++) {
586 		if (DC_IS_PNIC(sc))
587 			dc_eeprom_getword_pnic(sc, off + i, &word);
588 		else if (DC_IS_XIRCOM(sc))
589 			dc_eeprom_getword_xircom(sc, off + i, &word);
590 		else
591 			dc_eeprom_getword(sc, off + i, &word);
592 		ptr = (u_int16_t *)(dest + (i * 2));
593 		if (be)
594 			*ptr = be16toh(word);
595 		else
596 			*ptr = le16toh(word);
597 	}
598 }
599 
600 /*
601  * The following two routines are taken from the Macronix 98713
602  * Application Notes pp.19-21.
603  */
604 /*
605  * Write a bit to the MII bus.
606  */
607 static void
608 dc_mii_writebit(struct dc_softc *sc, int bit)
609 {
610 
611 	if (bit)
612 		CSR_WRITE_4(sc, DC_SIO,
613 		    DC_SIO_ROMCTL_WRITE | DC_SIO_MII_DATAOUT);
614 	else
615 		CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
616 
617 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
618 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
619 }
620 
621 /*
622  * Read a bit from the MII bus.
623  */
624 static int
625 dc_mii_readbit(struct dc_softc *sc)
626 {
627 
628 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_READ | DC_SIO_MII_DIR);
629 	CSR_READ_4(sc, DC_SIO);
630 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
631 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
632 	if (CSR_READ_4(sc, DC_SIO) & DC_SIO_MII_DATAIN)
633 		return (1);
634 
635 	return (0);
636 }
637 
638 /*
639  * Sync the PHYs by setting data bit and strobing the clock 32 times.
640  */
641 static void
642 dc_mii_sync(struct dc_softc *sc)
643 {
644 	int i;
645 
646 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
647 
648 	for (i = 0; i < 32; i++)
649 		dc_mii_writebit(sc, 1);
650 }
651 
652 /*
653  * Clock a series of bits through the MII.
654  */
655 static void
656 dc_mii_send(struct dc_softc *sc, u_int32_t bits, int cnt)
657 {
658 	int i;
659 
660 	for (i = (0x1 << (cnt - 1)); i; i >>= 1)
661 		dc_mii_writebit(sc, bits & i);
662 }
663 
664 /*
665  * Read an PHY register through the MII.
666  */
667 static int
668 dc_mii_readreg(struct dc_softc *sc, struct dc_mii_frame *frame)
669 {
670 	int i, ack;
671 
672 	/*
673 	 * Set up frame for RX.
674 	 */
675 	frame->mii_stdelim = DC_MII_STARTDELIM;
676 	frame->mii_opcode = DC_MII_READOP;
677 	frame->mii_turnaround = 0;
678 	frame->mii_data = 0;
679 
680 	/*
681 	 * Sync the PHYs.
682 	 */
683 	dc_mii_sync(sc);
684 
685 	/*
686 	 * Send command/address info.
687 	 */
688 	dc_mii_send(sc, frame->mii_stdelim, 2);
689 	dc_mii_send(sc, frame->mii_opcode, 2);
690 	dc_mii_send(sc, frame->mii_phyaddr, 5);
691 	dc_mii_send(sc, frame->mii_regaddr, 5);
692 
693 #ifdef notdef
694 	/* Idle bit */
695 	dc_mii_writebit(sc, 1);
696 	dc_mii_writebit(sc, 0);
697 #endif
698 
699 	/* Check for ack. */
700 	ack = dc_mii_readbit(sc);
701 
702 	/*
703 	 * Now try reading data bits. If the ack failed, we still
704 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
705 	 */
706 	if (ack) {
707 		for (i = 0; i < 16; i++)
708 			dc_mii_readbit(sc);
709 		goto fail;
710 	}
711 
712 	for (i = 0x8000; i; i >>= 1) {
713 		if (!ack) {
714 			if (dc_mii_readbit(sc))
715 				frame->mii_data |= i;
716 		}
717 	}
718 
719 fail:
720 
721 	dc_mii_writebit(sc, 0);
722 	dc_mii_writebit(sc, 0);
723 
724 	if (ack)
725 		return (1);
726 	return (0);
727 }
728 
729 /*
730  * Write to a PHY register through the MII.
731  */
732 static int
733 dc_mii_writereg(struct dc_softc *sc, struct dc_mii_frame *frame)
734 {
735 
736 	/*
737 	 * Set up frame for TX.
738 	 */
739 
740 	frame->mii_stdelim = DC_MII_STARTDELIM;
741 	frame->mii_opcode = DC_MII_WRITEOP;
742 	frame->mii_turnaround = DC_MII_TURNAROUND;
743 
744 	/*
745 	 * Sync the PHYs.
746 	 */
747 	dc_mii_sync(sc);
748 
749 	dc_mii_send(sc, frame->mii_stdelim, 2);
750 	dc_mii_send(sc, frame->mii_opcode, 2);
751 	dc_mii_send(sc, frame->mii_phyaddr, 5);
752 	dc_mii_send(sc, frame->mii_regaddr, 5);
753 	dc_mii_send(sc, frame->mii_turnaround, 2);
754 	dc_mii_send(sc, frame->mii_data, 16);
755 
756 	/* Idle bit. */
757 	dc_mii_writebit(sc, 0);
758 	dc_mii_writebit(sc, 0);
759 
760 	return (0);
761 }
762 
763 static int
764 dc_miibus_readreg(device_t dev, int phy, int reg)
765 {
766 	struct dc_mii_frame frame;
767 	struct dc_softc	 *sc;
768 	int i, rval, phy_reg = 0;
769 
770 	sc = device_get_softc(dev);
771 	bzero(&frame, sizeof(frame));
772 
773 	/*
774 	 * Note: both the AL981 and AN985 have internal PHYs,
775 	 * however the AL981 provides direct access to the PHY
776 	 * registers while the AN985 uses a serial MII interface.
777 	 * The AN985's MII interface is also buggy in that you
778 	 * can read from any MII address (0 to 31), but only address 1
779 	 * behaves normally. To deal with both cases, we pretend
780 	 * that the PHY is at MII address 1.
781 	 */
782 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
783 		return (0);
784 
785 	/*
786 	 * Note: the ukphy probes of the RS7112 report a PHY at
787 	 * MII address 0 (possibly HomePNA?) and 1 (ethernet)
788 	 * so we only respond to correct one.
789 	 */
790 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
791 		return (0);
792 
793 	if (sc->dc_pmode != DC_PMODE_MII) {
794 		if (phy == (MII_NPHY - 1)) {
795 			switch (reg) {
796 			case MII_BMSR:
797 			/*
798 			 * Fake something to make the probe
799 			 * code think there's a PHY here.
800 			 */
801 				return (BMSR_MEDIAMASK);
802 				break;
803 			case MII_PHYIDR1:
804 				if (DC_IS_PNIC(sc))
805 					return (DC_VENDORID_LO);
806 				return (DC_VENDORID_DEC);
807 				break;
808 			case MII_PHYIDR2:
809 				if (DC_IS_PNIC(sc))
810 					return (DC_DEVICEID_82C168);
811 				return (DC_DEVICEID_21143);
812 				break;
813 			default:
814 				return (0);
815 				break;
816 			}
817 		} else
818 			return (0);
819 	}
820 
821 	if (DC_IS_PNIC(sc)) {
822 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
823 		    (phy << 23) | (reg << 18));
824 		for (i = 0; i < DC_TIMEOUT; i++) {
825 			DELAY(1);
826 			rval = CSR_READ_4(sc, DC_PN_MII);
827 			if (!(rval & DC_PN_MII_BUSY)) {
828 				rval &= 0xFFFF;
829 				return (rval == 0xFFFF ? 0 : rval);
830 			}
831 		}
832 		return (0);
833 	}
834 
835 	if (DC_IS_COMET(sc)) {
836 		switch (reg) {
837 		case MII_BMCR:
838 			phy_reg = DC_AL_BMCR;
839 			break;
840 		case MII_BMSR:
841 			phy_reg = DC_AL_BMSR;
842 			break;
843 		case MII_PHYIDR1:
844 			phy_reg = DC_AL_VENID;
845 			break;
846 		case MII_PHYIDR2:
847 			phy_reg = DC_AL_DEVID;
848 			break;
849 		case MII_ANAR:
850 			phy_reg = DC_AL_ANAR;
851 			break;
852 		case MII_ANLPAR:
853 			phy_reg = DC_AL_LPAR;
854 			break;
855 		case MII_ANER:
856 			phy_reg = DC_AL_ANER;
857 			break;
858 		default:
859 			device_printf(dev, "phy_read: bad phy register %x\n",
860 			    reg);
861 			return (0);
862 			break;
863 		}
864 
865 		rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
866 
867 		if (rval == 0xFFFF)
868 			return (0);
869 		return (rval);
870 	}
871 
872 	frame.mii_phyaddr = phy;
873 	frame.mii_regaddr = reg;
874 	if (sc->dc_type == DC_TYPE_98713) {
875 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
876 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
877 	}
878 	dc_mii_readreg(sc, &frame);
879 	if (sc->dc_type == DC_TYPE_98713)
880 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
881 
882 	return (frame.mii_data);
883 }
884 
885 static int
886 dc_miibus_writereg(device_t dev, int phy, int reg, int data)
887 {
888 	struct dc_softc *sc;
889 	struct dc_mii_frame frame;
890 	int i, phy_reg = 0;
891 
892 	sc = device_get_softc(dev);
893 	bzero(&frame, sizeof(frame));
894 
895 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
896 		return (0);
897 
898 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
899 		return (0);
900 
901 	if (DC_IS_PNIC(sc)) {
902 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
903 		    (phy << 23) | (reg << 10) | data);
904 		for (i = 0; i < DC_TIMEOUT; i++) {
905 			if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
906 				break;
907 		}
908 		return (0);
909 	}
910 
911 	if (DC_IS_COMET(sc)) {
912 		switch (reg) {
913 		case MII_BMCR:
914 			phy_reg = DC_AL_BMCR;
915 			break;
916 		case MII_BMSR:
917 			phy_reg = DC_AL_BMSR;
918 			break;
919 		case MII_PHYIDR1:
920 			phy_reg = DC_AL_VENID;
921 			break;
922 		case MII_PHYIDR2:
923 			phy_reg = DC_AL_DEVID;
924 			break;
925 		case MII_ANAR:
926 			phy_reg = DC_AL_ANAR;
927 			break;
928 		case MII_ANLPAR:
929 			phy_reg = DC_AL_LPAR;
930 			break;
931 		case MII_ANER:
932 			phy_reg = DC_AL_ANER;
933 			break;
934 		default:
935 			device_printf(dev, "phy_write: bad phy register %x\n",
936 			    reg);
937 			return (0);
938 			break;
939 		}
940 
941 		CSR_WRITE_4(sc, phy_reg, data);
942 		return (0);
943 	}
944 
945 	frame.mii_phyaddr = phy;
946 	frame.mii_regaddr = reg;
947 	frame.mii_data = data;
948 
949 	if (sc->dc_type == DC_TYPE_98713) {
950 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
951 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
952 	}
953 	dc_mii_writereg(sc, &frame);
954 	if (sc->dc_type == DC_TYPE_98713)
955 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
956 
957 	return (0);
958 }
959 
960 static void
961 dc_miibus_statchg(device_t dev)
962 {
963 	struct dc_softc *sc;
964 	struct mii_data *mii;
965 	struct ifmedia *ifm;
966 
967 	sc = device_get_softc(dev);
968 	if (DC_IS_ADMTEK(sc))
969 		return;
970 
971 	mii = device_get_softc(sc->dc_miibus);
972 	ifm = &mii->mii_media;
973 	if (DC_IS_DAVICOM(sc) &&
974 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
975 		dc_setcfg(sc, ifm->ifm_media);
976 		sc->dc_if_media = ifm->ifm_media;
977 	} else {
978 		dc_setcfg(sc, mii->mii_media_active);
979 		sc->dc_if_media = mii->mii_media_active;
980 	}
981 }
982 
983 /*
984  * Special support for DM9102A cards with HomePNA PHYs. Note:
985  * with the Davicom DM9102A/DM9801 eval board that I have, it seems
986  * to be impossible to talk to the management interface of the DM9801
987  * PHY (its MDIO pin is not connected to anything). Consequently,
988  * the driver has to just 'know' about the additional mode and deal
989  * with it itself. *sigh*
990  */
991 static void
992 dc_miibus_mediainit(device_t dev)
993 {
994 	struct dc_softc *sc;
995 	struct mii_data *mii;
996 	struct ifmedia *ifm;
997 	int rev;
998 
999 	rev = pci_get_revid(dev);
1000 
1001 	sc = device_get_softc(dev);
1002 	mii = device_get_softc(sc->dc_miibus);
1003 	ifm = &mii->mii_media;
1004 
1005 	if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A)
1006 		ifmedia_add(ifm, IFM_ETHER | IFM_HPNA_1, 0, NULL);
1007 }
1008 
1009 #define DC_BITS_512	9
1010 #define DC_BITS_128	7
1011 #define DC_BITS_64	6
1012 
1013 static uint32_t
1014 dc_mchash_le(struct dc_softc *sc, const uint8_t *addr)
1015 {
1016 	uint32_t crc;
1017 
1018 	/* Compute CRC for the address value. */
1019 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
1020 
1021 	/*
1022 	 * The hash table on the PNIC II and the MX98715AEC-C/D/E
1023 	 * chips is only 128 bits wide.
1024 	 */
1025 	if (sc->dc_flags & DC_128BIT_HASH)
1026 		return (crc & ((1 << DC_BITS_128) - 1));
1027 
1028 	/* The hash table on the MX98715BEC is only 64 bits wide. */
1029 	if (sc->dc_flags & DC_64BIT_HASH)
1030 		return (crc & ((1 << DC_BITS_64) - 1));
1031 
1032 	/* Xircom's hash filtering table is different (read: weird) */
1033 	/* Xircom uses the LEAST significant bits */
1034 	if (DC_IS_XIRCOM(sc)) {
1035 		if ((crc & 0x180) == 0x180)
1036 			return ((crc & 0x0F) + (crc & 0x70) * 3 + (14 << 4));
1037 		else
1038 			return ((crc & 0x1F) + ((crc >> 1) & 0xF0) * 3 +
1039 			    (12 << 4));
1040 	}
1041 
1042 	return (crc & ((1 << DC_BITS_512) - 1));
1043 }
1044 
1045 /*
1046  * Calculate CRC of a multicast group address, return the lower 6 bits.
1047  */
1048 static uint32_t
1049 dc_mchash_be(const uint8_t *addr)
1050 {
1051 	uint32_t crc;
1052 
1053 	/* Compute CRC for the address value. */
1054 	crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
1055 
1056 	/* Return the filter bit position. */
1057 	return ((crc >> 26) & 0x0000003F);
1058 }
1059 
1060 /*
1061  * 21143-style RX filter setup routine. Filter programming is done by
1062  * downloading a special setup frame into the TX engine. 21143, Macronix,
1063  * PNIC, PNIC II and Davicom chips are programmed this way.
1064  *
1065  * We always program the chip using 'hash perfect' mode, i.e. one perfect
1066  * address (our node address) and a 512-bit hash filter for multicast
1067  * frames. We also sneak the broadcast address into the hash filter since
1068  * we need that too.
1069  */
1070 static void
1071 dc_setfilt_21143(struct dc_softc *sc)
1072 {
1073 	uint16_t eaddr[(ETHER_ADDR_LEN+1)/2];
1074 	struct dc_desc *sframe;
1075 	u_int32_t h, *sp;
1076 	struct ifmultiaddr *ifma;
1077 	struct ifnet *ifp;
1078 	int i;
1079 
1080 	ifp = sc->dc_ifp;
1081 
1082 	i = sc->dc_cdata.dc_tx_prod;
1083 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1084 	sc->dc_cdata.dc_tx_cnt++;
1085 	sframe = &sc->dc_ldata->dc_tx_list[i];
1086 	sp = sc->dc_cdata.dc_sbuf;
1087 	bzero(sp, DC_SFRAME_LEN);
1088 
1089 	sframe->dc_data = htole32(sc->dc_saddr);
1090 	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
1091 	    DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
1092 
1093 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
1094 
1095 	/* If we want promiscuous mode, set the allframes bit. */
1096 	if (ifp->if_flags & IFF_PROMISC)
1097 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1098 	else
1099 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1100 
1101 	if (ifp->if_flags & IFF_ALLMULTI)
1102 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1103 	else
1104 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1105 
1106 	IF_ADDR_LOCK(ifp);
1107 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1108 		if (ifma->ifma_addr->sa_family != AF_LINK)
1109 			continue;
1110 		h = dc_mchash_le(sc,
1111 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1112 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1113 	}
1114 	IF_ADDR_UNLOCK(ifp);
1115 
1116 	if (ifp->if_flags & IFF_BROADCAST) {
1117 		h = dc_mchash_le(sc, ifp->if_broadcastaddr);
1118 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1119 	}
1120 
1121 	/* Set our MAC address. */
1122 	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1123 	sp[39] = DC_SP_MAC(eaddr[0]);
1124 	sp[40] = DC_SP_MAC(eaddr[1]);
1125 	sp[41] = DC_SP_MAC(eaddr[2]);
1126 
1127 	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1128 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1129 
1130 	/*
1131 	 * The PNIC takes an exceedingly long time to process its
1132 	 * setup frame; wait 10ms after posting the setup frame
1133 	 * before proceeding, just so it has time to swallow its
1134 	 * medicine.
1135 	 */
1136 	DELAY(10000);
1137 
1138 	sc->dc_wdog_timer = 5;
1139 }
1140 
1141 static void
1142 dc_setfilt_admtek(struct dc_softc *sc)
1143 {
1144 	uint8_t eaddr[ETHER_ADDR_LEN];
1145 	struct ifnet *ifp;
1146 	struct ifmultiaddr *ifma;
1147 	int h = 0;
1148 	u_int32_t hashes[2] = { 0, 0 };
1149 
1150 	ifp = sc->dc_ifp;
1151 
1152 	/* Init our MAC address. */
1153 	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1154 	CSR_WRITE_4(sc, DC_AL_PAR0, eaddr[3] << 24 | eaddr[2] << 16 |
1155 	    eaddr[1] << 8 | eaddr[0]);
1156 	CSR_WRITE_4(sc, DC_AL_PAR1, eaddr[5] << 8 | eaddr[4]);
1157 
1158 	/* If we want promiscuous mode, set the allframes bit. */
1159 	if (ifp->if_flags & IFF_PROMISC)
1160 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1161 	else
1162 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1163 
1164 	if (ifp->if_flags & IFF_ALLMULTI)
1165 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1166 	else
1167 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1168 
1169 	/* First, zot all the existing hash bits. */
1170 	CSR_WRITE_4(sc, DC_AL_MAR0, 0);
1171 	CSR_WRITE_4(sc, DC_AL_MAR1, 0);
1172 
1173 	/*
1174 	 * If we're already in promisc or allmulti mode, we
1175 	 * don't have to bother programming the multicast filter.
1176 	 */
1177 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
1178 		return;
1179 
1180 	/* Now program new ones. */
1181 	IF_ADDR_LOCK(ifp);
1182 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1183 		if (ifma->ifma_addr->sa_family != AF_LINK)
1184 			continue;
1185 		if (DC_IS_CENTAUR(sc))
1186 			h = dc_mchash_le(sc,
1187 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1188 		else
1189 			h = dc_mchash_be(
1190 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1191 		if (h < 32)
1192 			hashes[0] |= (1 << h);
1193 		else
1194 			hashes[1] |= (1 << (h - 32));
1195 	}
1196 	IF_ADDR_UNLOCK(ifp);
1197 
1198 	CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]);
1199 	CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]);
1200 }
1201 
1202 static void
1203 dc_setfilt_asix(struct dc_softc *sc)
1204 {
1205 	uint32_t eaddr[(ETHER_ADDR_LEN+3)/4];
1206 	struct ifnet *ifp;
1207 	struct ifmultiaddr *ifma;
1208 	int h = 0;
1209 	u_int32_t hashes[2] = { 0, 0 };
1210 
1211 	ifp = sc->dc_ifp;
1212 
1213 	/* Init our MAC address. */
1214 	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1215 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
1216 	CSR_WRITE_4(sc, DC_AX_FILTDATA, eaddr[0]);
1217 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
1218 	CSR_WRITE_4(sc, DC_AX_FILTDATA, eaddr[1]);
1219 
1220 	/* If we want promiscuous mode, set the allframes bit. */
1221 	if (ifp->if_flags & IFF_PROMISC)
1222 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1223 	else
1224 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1225 
1226 	if (ifp->if_flags & IFF_ALLMULTI)
1227 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1228 	else
1229 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1230 
1231 	/*
1232 	 * The ASIX chip has a special bit to enable reception
1233 	 * of broadcast frames.
1234 	 */
1235 	if (ifp->if_flags & IFF_BROADCAST)
1236 		DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1237 	else
1238 		DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1239 
1240 	/* first, zot all the existing hash bits */
1241 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1242 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1243 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1244 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1245 
1246 	/*
1247 	 * If we're already in promisc or allmulti mode, we
1248 	 * don't have to bother programming the multicast filter.
1249 	 */
1250 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
1251 		return;
1252 
1253 	/* now program new ones */
1254 	IF_ADDR_LOCK(ifp);
1255 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1256 		if (ifma->ifma_addr->sa_family != AF_LINK)
1257 			continue;
1258 		h = dc_mchash_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1259 		if (h < 32)
1260 			hashes[0] |= (1 << h);
1261 		else
1262 			hashes[1] |= (1 << (h - 32));
1263 	}
1264 	IF_ADDR_UNLOCK(ifp);
1265 
1266 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1267 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
1268 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1269 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
1270 }
1271 
1272 static void
1273 dc_setfilt_xircom(struct dc_softc *sc)
1274 {
1275 	uint16_t eaddr[(ETHER_ADDR_LEN+1)/2];
1276 	struct ifnet *ifp;
1277 	struct ifmultiaddr *ifma;
1278 	struct dc_desc *sframe;
1279 	u_int32_t h, *sp;
1280 	int i;
1281 
1282 	ifp = sc->dc_ifp;
1283 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1284 
1285 	i = sc->dc_cdata.dc_tx_prod;
1286 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1287 	sc->dc_cdata.dc_tx_cnt++;
1288 	sframe = &sc->dc_ldata->dc_tx_list[i];
1289 	sp = sc->dc_cdata.dc_sbuf;
1290 	bzero(sp, DC_SFRAME_LEN);
1291 
1292 	sframe->dc_data = htole32(sc->dc_saddr);
1293 	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
1294 	    DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
1295 
1296 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
1297 
1298 	/* If we want promiscuous mode, set the allframes bit. */
1299 	if (ifp->if_flags & IFF_PROMISC)
1300 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1301 	else
1302 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1303 
1304 	if (ifp->if_flags & IFF_ALLMULTI)
1305 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1306 	else
1307 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1308 
1309 	IF_ADDR_LOCK(ifp);
1310 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1311 		if (ifma->ifma_addr->sa_family != AF_LINK)
1312 			continue;
1313 		h = dc_mchash_le(sc,
1314 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1315 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1316 	}
1317 	IF_ADDR_UNLOCK(ifp);
1318 
1319 	if (ifp->if_flags & IFF_BROADCAST) {
1320 		h = dc_mchash_le(sc, ifp->if_broadcastaddr);
1321 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1322 	}
1323 
1324 	/* Set our MAC address. */
1325 	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1326 	sp[0] = DC_SP_MAC(eaddr[0]);
1327 	sp[1] = DC_SP_MAC(eaddr[1]);
1328 	sp[2] = DC_SP_MAC(eaddr[2]);
1329 
1330 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
1331 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
1332 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1333 	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1334 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1335 
1336 	/*
1337 	 * Wait some time...
1338 	 */
1339 	DELAY(1000);
1340 
1341 	sc->dc_wdog_timer = 5;
1342 }
1343 
1344 static void
1345 dc_setfilt(struct dc_softc *sc)
1346 {
1347 
1348 	if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
1349 	    DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc))
1350 		dc_setfilt_21143(sc);
1351 
1352 	if (DC_IS_ASIX(sc))
1353 		dc_setfilt_asix(sc);
1354 
1355 	if (DC_IS_ADMTEK(sc))
1356 		dc_setfilt_admtek(sc);
1357 
1358 	if (DC_IS_XIRCOM(sc))
1359 		dc_setfilt_xircom(sc);
1360 }
1361 
1362 /*
1363  * In order to fiddle with the 'full-duplex' and '100Mbps' bits in
1364  * the netconfig register, we first have to put the transmit and/or
1365  * receive logic in the idle state.
1366  */
1367 static void
1368 dc_setcfg(struct dc_softc *sc, int media)
1369 {
1370 	int i, restart = 0, watchdogreg;
1371 	u_int32_t isr;
1372 
1373 	if (IFM_SUBTYPE(media) == IFM_NONE)
1374 		return;
1375 
1376 	if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON)) {
1377 		restart = 1;
1378 		DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1379 
1380 		for (i = 0; i < DC_TIMEOUT; i++) {
1381 			isr = CSR_READ_4(sc, DC_ISR);
1382 			if (isr & DC_ISR_TX_IDLE &&
1383 			    ((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
1384 			    (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT))
1385 				break;
1386 			DELAY(10);
1387 		}
1388 
1389 		if (i == DC_TIMEOUT) {
1390 			if (!(isr & DC_ISR_TX_IDLE) && !DC_IS_ASIX(sc))
1391 				device_printf(sc->dc_dev,
1392 				    "%s: failed to force tx to idle state\n",
1393 				    __func__);
1394 			if (!((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
1395 			    (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT) &&
1396 			    !DC_HAS_BROKEN_RXSTATE(sc))
1397 				device_printf(sc->dc_dev,
1398 				    "%s: failed to force rx to idle state\n",
1399 				    __func__);
1400 		}
1401 	}
1402 
1403 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
1404 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1405 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1406 		if (sc->dc_pmode == DC_PMODE_MII) {
1407 			if (DC_IS_INTEL(sc)) {
1408 			/* There's a write enable bit here that reads as 1. */
1409 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1410 				watchdogreg &= ~DC_WDOG_CTLWREN;
1411 				watchdogreg |= DC_WDOG_JABBERDIS;
1412 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1413 			} else {
1414 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1415 			}
1416 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1417 			    DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
1418 			if (sc->dc_type == DC_TYPE_98713)
1419 				DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1420 				    DC_NETCFG_SCRAMBLER));
1421 			if (!DC_IS_DAVICOM(sc))
1422 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1423 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1424 			if (DC_IS_INTEL(sc))
1425 				dc_apply_fixup(sc, IFM_AUTO);
1426 		} else {
1427 			if (DC_IS_PNIC(sc)) {
1428 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
1429 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1430 				DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1431 			}
1432 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1433 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1434 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1435 			if (DC_IS_INTEL(sc))
1436 				dc_apply_fixup(sc,
1437 				    (media & IFM_GMASK) == IFM_FDX ?
1438 				    IFM_100_TX | IFM_FDX : IFM_100_TX);
1439 		}
1440 	}
1441 
1442 	if (IFM_SUBTYPE(media) == IFM_10_T) {
1443 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1444 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1445 		if (sc->dc_pmode == DC_PMODE_MII) {
1446 			/* There's a write enable bit here that reads as 1. */
1447 			if (DC_IS_INTEL(sc)) {
1448 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1449 				watchdogreg &= ~DC_WDOG_CTLWREN;
1450 				watchdogreg |= DC_WDOG_JABBERDIS;
1451 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1452 			} else {
1453 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1454 			}
1455 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1456 			    DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
1457 			if (sc->dc_type == DC_TYPE_98713)
1458 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1459 			if (!DC_IS_DAVICOM(sc))
1460 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1461 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1462 			if (DC_IS_INTEL(sc))
1463 				dc_apply_fixup(sc, IFM_AUTO);
1464 		} else {
1465 			if (DC_IS_PNIC(sc)) {
1466 				DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
1467 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1468 				DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1469 			}
1470 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1471 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1472 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1473 			if (DC_IS_INTEL(sc)) {
1474 				DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET);
1475 				DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1476 				if ((media & IFM_GMASK) == IFM_FDX)
1477 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D);
1478 				else
1479 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F);
1480 				DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1481 				DC_CLRBIT(sc, DC_10BTCTRL,
1482 				    DC_TCTL_AUTONEGENBL);
1483 				dc_apply_fixup(sc,
1484 				    (media & IFM_GMASK) == IFM_FDX ?
1485 				    IFM_10_T | IFM_FDX : IFM_10_T);
1486 				DELAY(20000);
1487 			}
1488 		}
1489 	}
1490 
1491 	/*
1492 	 * If this is a Davicom DM9102A card with a DM9801 HomePNA
1493 	 * PHY and we want HomePNA mode, set the portsel bit to turn
1494 	 * on the external MII port.
1495 	 */
1496 	if (DC_IS_DAVICOM(sc)) {
1497 		if (IFM_SUBTYPE(media) == IFM_HPNA_1) {
1498 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1499 			sc->dc_link = 1;
1500 		} else {
1501 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1502 		}
1503 	}
1504 
1505 	if ((media & IFM_GMASK) == IFM_FDX) {
1506 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1507 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1508 			DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1509 	} else {
1510 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1511 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1512 			DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1513 	}
1514 
1515 	if (restart)
1516 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON | DC_NETCFG_RX_ON);
1517 }
1518 
1519 static void
1520 dc_reset(struct dc_softc *sc)
1521 {
1522 	int i;
1523 
1524 	DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1525 
1526 	for (i = 0; i < DC_TIMEOUT; i++) {
1527 		DELAY(10);
1528 		if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
1529 			break;
1530 	}
1531 
1532 	if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_CONEXANT(sc) ||
1533 	    DC_IS_XIRCOM(sc) || DC_IS_INTEL(sc)) {
1534 		DELAY(10000);
1535 		DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1536 		i = 0;
1537 	}
1538 
1539 	if (i == DC_TIMEOUT)
1540 		device_printf(sc->dc_dev, "reset never completed!\n");
1541 
1542 	/* Wait a little while for the chip to get its brains in order. */
1543 	DELAY(1000);
1544 
1545 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
1546 	CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
1547 	CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
1548 
1549 	/*
1550 	 * Bring the SIA out of reset. In some cases, it looks
1551 	 * like failing to unreset the SIA soon enough gets it
1552 	 * into a state where it will never come out of reset
1553 	 * until we reset the whole chip again.
1554 	 */
1555 	if (DC_IS_INTEL(sc)) {
1556 		DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1557 		CSR_WRITE_4(sc, DC_10BTCTRL, 0);
1558 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
1559 	}
1560 }
1561 
1562 static const struct dc_type *
1563 dc_devtype(device_t dev)
1564 {
1565 	const struct dc_type *t;
1566 	u_int32_t devid;
1567 	u_int8_t rev;
1568 
1569 	t = dc_devs;
1570 	devid = pci_get_devid(dev);
1571 	rev = pci_get_revid(dev);
1572 
1573 	while (t->dc_name != NULL) {
1574 		if (devid == t->dc_devid && rev >= t->dc_minrev)
1575 			return (t);
1576 		t++;
1577 	}
1578 
1579 	return (NULL);
1580 }
1581 
1582 /*
1583  * Probe for a 21143 or clone chip. Check the PCI vendor and device
1584  * IDs against our list and return a device name if we find a match.
1585  * We do a little bit of extra work to identify the exact type of
1586  * chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
1587  * but different revision IDs. The same is true for 98715/98715A
1588  * chips and the 98725, as well as the ASIX and ADMtek chips. In some
1589  * cases, the exact chip revision affects driver behavior.
1590  */
1591 static int
1592 dc_probe(device_t dev)
1593 {
1594 	const struct dc_type *t;
1595 
1596 	t = dc_devtype(dev);
1597 
1598 	if (t != NULL) {
1599 		device_set_desc(dev, t->dc_name);
1600 		return (BUS_PROBE_DEFAULT);
1601 	}
1602 
1603 	return (ENXIO);
1604 }
1605 
1606 static void
1607 dc_apply_fixup(struct dc_softc *sc, int media)
1608 {
1609 	struct dc_mediainfo *m;
1610 	u_int8_t *p;
1611 	int i;
1612 	u_int32_t reg;
1613 
1614 	m = sc->dc_mi;
1615 
1616 	while (m != NULL) {
1617 		if (m->dc_media == media)
1618 			break;
1619 		m = m->dc_next;
1620 	}
1621 
1622 	if (m == NULL)
1623 		return;
1624 
1625 	for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) {
1626 		reg = (p[0] | (p[1] << 8)) << 16;
1627 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1628 	}
1629 
1630 	for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) {
1631 		reg = (p[0] | (p[1] << 8)) << 16;
1632 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1633 	}
1634 }
1635 
1636 static void
1637 dc_decode_leaf_sia(struct dc_softc *sc, struct dc_eblock_sia *l)
1638 {
1639 	struct dc_mediainfo *m;
1640 
1641 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1642 	switch (l->dc_sia_code & ~DC_SIA_CODE_EXT) {
1643 	case DC_SIA_CODE_10BT:
1644 		m->dc_media = IFM_10_T;
1645 		break;
1646 	case DC_SIA_CODE_10BT_FDX:
1647 		m->dc_media = IFM_10_T | IFM_FDX;
1648 		break;
1649 	case DC_SIA_CODE_10B2:
1650 		m->dc_media = IFM_10_2;
1651 		break;
1652 	case DC_SIA_CODE_10B5:
1653 		m->dc_media = IFM_10_5;
1654 		break;
1655 	default:
1656 		break;
1657 	}
1658 
1659 	/*
1660 	 * We need to ignore CSR13, CSR14, CSR15 for SIA mode.
1661 	 * Things apparently already work for cards that do
1662 	 * supply Media Specific Data.
1663 	 */
1664 	if (l->dc_sia_code & DC_SIA_CODE_EXT) {
1665 		m->dc_gp_len = 2;
1666 		m->dc_gp_ptr =
1667 		(u_int8_t *)&l->dc_un.dc_sia_ext.dc_sia_gpio_ctl;
1668 	} else {
1669 		m->dc_gp_len = 2;
1670 		m->dc_gp_ptr =
1671 		(u_int8_t *)&l->dc_un.dc_sia_noext.dc_sia_gpio_ctl;
1672 	}
1673 
1674 	m->dc_next = sc->dc_mi;
1675 	sc->dc_mi = m;
1676 
1677 	sc->dc_pmode = DC_PMODE_SIA;
1678 }
1679 
1680 static void
1681 dc_decode_leaf_sym(struct dc_softc *sc, struct dc_eblock_sym *l)
1682 {
1683 	struct dc_mediainfo *m;
1684 
1685 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1686 	if (l->dc_sym_code == DC_SYM_CODE_100BT)
1687 		m->dc_media = IFM_100_TX;
1688 
1689 	if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX)
1690 		m->dc_media = IFM_100_TX | IFM_FDX;
1691 
1692 	m->dc_gp_len = 2;
1693 	m->dc_gp_ptr = (u_int8_t *)&l->dc_sym_gpio_ctl;
1694 
1695 	m->dc_next = sc->dc_mi;
1696 	sc->dc_mi = m;
1697 
1698 	sc->dc_pmode = DC_PMODE_SYM;
1699 }
1700 
1701 static void
1702 dc_decode_leaf_mii(struct dc_softc *sc, struct dc_eblock_mii *l)
1703 {
1704 	struct dc_mediainfo *m;
1705 	u_int8_t *p;
1706 
1707 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1708 	/* We abuse IFM_AUTO to represent MII. */
1709 	m->dc_media = IFM_AUTO;
1710 	m->dc_gp_len = l->dc_gpr_len;
1711 
1712 	p = (u_int8_t *)l;
1713 	p += sizeof(struct dc_eblock_mii);
1714 	m->dc_gp_ptr = p;
1715 	p += 2 * l->dc_gpr_len;
1716 	m->dc_reset_len = *p;
1717 	p++;
1718 	m->dc_reset_ptr = p;
1719 
1720 	m->dc_next = sc->dc_mi;
1721 	sc->dc_mi = m;
1722 }
1723 
1724 static void
1725 dc_read_srom(struct dc_softc *sc, int bits)
1726 {
1727 	int size;
1728 
1729 	size = 2 << bits;
1730 	sc->dc_srom = malloc(size, M_DEVBUF, M_NOWAIT);
1731 	dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (size / 2), 0);
1732 }
1733 
1734 static void
1735 dc_parse_21143_srom(struct dc_softc *sc)
1736 {
1737 	struct dc_leaf_hdr *lhdr;
1738 	struct dc_eblock_hdr *hdr;
1739 	int have_mii, i, loff;
1740 	char *ptr;
1741 
1742 	have_mii = 0;
1743 	loff = sc->dc_srom[27];
1744 	lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]);
1745 
1746 	ptr = (char *)lhdr;
1747 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1748 	/*
1749 	 * Look if we got a MII media block.
1750 	 */
1751 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1752 		hdr = (struct dc_eblock_hdr *)ptr;
1753 		if (hdr->dc_type == DC_EBLOCK_MII)
1754 		    have_mii++;
1755 
1756 		ptr += (hdr->dc_len & 0x7F);
1757 		ptr++;
1758 	}
1759 
1760 	/*
1761 	 * Do the same thing again. Only use SIA and SYM media
1762 	 * blocks if no MII media block is available.
1763 	 */
1764 	ptr = (char *)lhdr;
1765 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1766 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1767 		hdr = (struct dc_eblock_hdr *)ptr;
1768 		switch (hdr->dc_type) {
1769 		case DC_EBLOCK_MII:
1770 			dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr);
1771 			break;
1772 		case DC_EBLOCK_SIA:
1773 			if (! have_mii)
1774 				dc_decode_leaf_sia(sc,
1775 				    (struct dc_eblock_sia *)hdr);
1776 			break;
1777 		case DC_EBLOCK_SYM:
1778 			if (! have_mii)
1779 				dc_decode_leaf_sym(sc,
1780 				    (struct dc_eblock_sym *)hdr);
1781 			break;
1782 		default:
1783 			/* Don't care. Yet. */
1784 			break;
1785 		}
1786 		ptr += (hdr->dc_len & 0x7F);
1787 		ptr++;
1788 	}
1789 }
1790 
1791 static void
1792 dc_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1793 {
1794 	u_int32_t *paddr;
1795 
1796 	KASSERT(nseg == 1,
1797 	    ("%s: wrong number of segments (%d)", __func__, nseg));
1798 	paddr = arg;
1799 	*paddr = segs->ds_addr;
1800 }
1801 
1802 /*
1803  * Attach the interface. Allocate softc structures, do ifmedia
1804  * setup and ethernet/BPF attach.
1805  */
1806 static int
1807 dc_attach(device_t dev)
1808 {
1809 	int tmp = 0;
1810 	uint32_t eaddr[(ETHER_ADDR_LEN+3)/4];
1811 	u_int32_t command;
1812 	struct dc_softc *sc;
1813 	struct ifnet *ifp;
1814 	u_int32_t reg, revision;
1815 	int error = 0, rid, mac_offset;
1816 	int i;
1817 	u_int8_t *mac;
1818 
1819 	sc = device_get_softc(dev);
1820 	sc->dc_dev = dev;
1821 
1822 	mtx_init(&sc->dc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1823 	    MTX_DEF);
1824 
1825 	/*
1826 	 * Map control/status registers.
1827 	 */
1828 	pci_enable_busmaster(dev);
1829 
1830 	rid = DC_RID;
1831 	sc->dc_res = bus_alloc_resource_any(dev, DC_RES, &rid, RF_ACTIVE);
1832 
1833 	if (sc->dc_res == NULL) {
1834 		device_printf(dev, "couldn't map ports/memory\n");
1835 		error = ENXIO;
1836 		goto fail;
1837 	}
1838 
1839 	sc->dc_btag = rman_get_bustag(sc->dc_res);
1840 	sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
1841 
1842 	/* Allocate interrupt. */
1843 	rid = 0;
1844 	sc->dc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1845 	    RF_SHAREABLE | RF_ACTIVE);
1846 
1847 	if (sc->dc_irq == NULL) {
1848 		device_printf(dev, "couldn't map interrupt\n");
1849 		error = ENXIO;
1850 		goto fail;
1851 	}
1852 
1853 	/* Need this info to decide on a chip type. */
1854 	sc->dc_info = dc_devtype(dev);
1855 	revision = pci_get_revid(dev);
1856 
1857 	/* Get the eeprom width, but PNIC and XIRCOM have diff eeprom */
1858 	if (sc->dc_info->dc_devid !=
1859 	    DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168) &&
1860 	    sc->dc_info->dc_devid !=
1861 	    DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201))
1862 		dc_eeprom_width(sc);
1863 
1864 	switch (sc->dc_info->dc_devid) {
1865 	case DC_DEVID(DC_VENDORID_DEC, DC_DEVICEID_21143):
1866 		sc->dc_type = DC_TYPE_21143;
1867 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1868 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1869 		/* Save EEPROM contents so we can parse them later. */
1870 		dc_read_srom(sc, sc->dc_romwidth);
1871 		break;
1872 	case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009):
1873 	case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100):
1874 	case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102):
1875 		sc->dc_type = DC_TYPE_DM9102;
1876 		sc->dc_flags |= DC_TX_COALESCE | DC_TX_INTR_ALWAYS;
1877 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_TX_STORENFWD;
1878 		sc->dc_flags |= DC_TX_ALIGN;
1879 		sc->dc_pmode = DC_PMODE_MII;
1880 
1881 		/* Increase the latency timer value. */
1882 		pci_write_config(dev, PCIR_LATTIMER, 0x80, 1);
1883 		break;
1884 	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AL981):
1885 		sc->dc_type = DC_TYPE_AL981;
1886 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1887 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1888 		sc->dc_pmode = DC_PMODE_MII;
1889 		dc_read_srom(sc, sc->dc_romwidth);
1890 		break;
1891 	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN985):
1892 	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511):
1893 	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513):
1894 	case DC_DEVID(DC_VENDORID_DLINK, DC_DEVICEID_DRP32TXD):
1895 	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_FA511):
1896 	case DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500):
1897 	case DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500MX):
1898 	case DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN2242):
1899 	case DC_DEVID(DC_VENDORID_HAWKING, DC_DEVICEID_HAWKING_PN672TX):
1900 	case DC_DEVID(DC_VENDORID_PLANEX, DC_DEVICEID_FNW3602T):
1901 	case DC_DEVID(DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB):
1902 	case DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN120):
1903 	case DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130):
1904 	case DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB08):
1905 	case DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB09):
1906 		sc->dc_type = DC_TYPE_AN985;
1907 		sc->dc_flags |= DC_64BIT_HASH;
1908 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1909 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1910 		sc->dc_pmode = DC_PMODE_MII;
1911 		/* Don't read SROM for - auto-loaded on reset */
1912 		break;
1913 	case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713):
1914 	case DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP):
1915 		if (revision < DC_REVISION_98713A) {
1916 			sc->dc_type = DC_TYPE_98713;
1917 		}
1918 		if (revision >= DC_REVISION_98713A) {
1919 			sc->dc_type = DC_TYPE_98713A;
1920 			sc->dc_flags |= DC_21143_NWAY;
1921 		}
1922 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1923 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1924 		break;
1925 	case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5):
1926 	case DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN1217):
1927 		/*
1928 		 * Macronix MX98715AEC-C/D/E parts have only a
1929 		 * 128-bit hash table. We need to deal with these
1930 		 * in the same manner as the PNIC II so that we
1931 		 * get the right number of bits out of the
1932 		 * CRC routine.
1933 		 */
1934 		if (revision >= DC_REVISION_98715AEC_C &&
1935 		    revision < DC_REVISION_98725)
1936 			sc->dc_flags |= DC_128BIT_HASH;
1937 		sc->dc_type = DC_TYPE_987x5;
1938 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1939 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
1940 		break;
1941 	case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98727):
1942 		sc->dc_type = DC_TYPE_987x5;
1943 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1944 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
1945 		break;
1946 	case DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C115):
1947 		sc->dc_type = DC_TYPE_PNICII;
1948 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR | DC_128BIT_HASH;
1949 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
1950 		break;
1951 	case DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168):
1952 		sc->dc_type = DC_TYPE_PNIC;
1953 		sc->dc_flags |= DC_TX_STORENFWD | DC_TX_INTR_ALWAYS;
1954 		sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
1955 		sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_NOWAIT);
1956 		if (revision < DC_REVISION_82C169)
1957 			sc->dc_pmode = DC_PMODE_SYM;
1958 		break;
1959 	case DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A):
1960 		sc->dc_type = DC_TYPE_ASIX;
1961 		sc->dc_flags |= DC_TX_USE_TX_INTR | DC_TX_INTR_FIRSTFRAG;
1962 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1963 		sc->dc_pmode = DC_PMODE_MII;
1964 		break;
1965 	case DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201):
1966 		sc->dc_type = DC_TYPE_XIRCOM;
1967 		sc->dc_flags |= DC_TX_INTR_ALWAYS | DC_TX_COALESCE |
1968 				DC_TX_ALIGN;
1969 		/*
1970 		 * We don't actually need to coalesce, but we're doing
1971 		 * it to obtain a double word aligned buffer.
1972 		 * The DC_TX_COALESCE flag is required.
1973 		 */
1974 		sc->dc_pmode = DC_PMODE_MII;
1975 		break;
1976 	case DC_DEVID(DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112):
1977 		sc->dc_type = DC_TYPE_CONEXANT;
1978 		sc->dc_flags |= DC_TX_INTR_ALWAYS;
1979 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1980 		sc->dc_pmode = DC_PMODE_MII;
1981 		dc_read_srom(sc, sc->dc_romwidth);
1982 		break;
1983 	default:
1984 		device_printf(dev, "unknown device: %x\n",
1985 		    sc->dc_info->dc_devid);
1986 		break;
1987 	}
1988 
1989 	/* Save the cache line size. */
1990 	if (DC_IS_DAVICOM(sc))
1991 		sc->dc_cachesize = 0;
1992 	else
1993 		sc->dc_cachesize = pci_get_cachelnsz(dev);
1994 
1995 	/* Reset the adapter. */
1996 	dc_reset(sc);
1997 
1998 	/* Take 21143 out of snooze mode */
1999 	if (DC_IS_INTEL(sc) || DC_IS_XIRCOM(sc)) {
2000 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
2001 		command &= ~(DC_CFDD_SNOOZE_MODE | DC_CFDD_SLEEP_MODE);
2002 		pci_write_config(dev, DC_PCI_CFDD, command, 4);
2003 	}
2004 
2005 	/*
2006 	 * Try to learn something about the supported media.
2007 	 * We know that ASIX and ADMtek and Davicom devices
2008 	 * will *always* be using MII media, so that's a no-brainer.
2009 	 * The tricky ones are the Macronix/PNIC II and the
2010 	 * Intel 21143.
2011 	 */
2012 	if (DC_IS_INTEL(sc))
2013 		dc_parse_21143_srom(sc);
2014 	else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
2015 		if (sc->dc_type == DC_TYPE_98713)
2016 			sc->dc_pmode = DC_PMODE_MII;
2017 		else
2018 			sc->dc_pmode = DC_PMODE_SYM;
2019 	} else if (!sc->dc_pmode)
2020 		sc->dc_pmode = DC_PMODE_MII;
2021 
2022 	/*
2023 	 * Get station address from the EEPROM.
2024 	 */
2025 	switch(sc->dc_type) {
2026 	case DC_TYPE_98713:
2027 	case DC_TYPE_98713A:
2028 	case DC_TYPE_987x5:
2029 	case DC_TYPE_PNICII:
2030 		dc_read_eeprom(sc, (caddr_t)&mac_offset,
2031 		    (DC_EE_NODEADDR_OFFSET / 2), 1, 0);
2032 		dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
2033 		break;
2034 	case DC_TYPE_PNIC:
2035 		dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
2036 		break;
2037 	case DC_TYPE_DM9102:
2038 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2039 #ifdef __sparc64__
2040 		/*
2041 		 * If this is an onboard dc(4) the station address read from
2042 		 * the EEPROM is all zero and we have to get it from the FCode.
2043 		 */
2044 		if (eaddr[0] == 0 && (eaddr[1] & ~0xffff) == 0)
2045 			OF_getetheraddr(dev, (caddr_t)&eaddr);
2046 #endif
2047 		break;
2048 	case DC_TYPE_21143:
2049 	case DC_TYPE_ASIX:
2050 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2051 		break;
2052 	case DC_TYPE_AL981:
2053 	case DC_TYPE_AN985:
2054 		reg = CSR_READ_4(sc, DC_AL_PAR0);
2055 		mac = (uint8_t *)&eaddr[0];
2056 		mac[0] = (reg >> 0) & 0xff;
2057 		mac[1] = (reg >> 8) & 0xff;
2058 		mac[2] = (reg >> 16) & 0xff;
2059 		mac[3] = (reg >> 24) & 0xff;
2060 		reg = CSR_READ_4(sc, DC_AL_PAR1);
2061 		mac[4] = (reg >> 0) & 0xff;
2062 		mac[5] = (reg >> 8) & 0xff;
2063 		break;
2064 	case DC_TYPE_CONEXANT:
2065 		bcopy(sc->dc_srom + DC_CONEXANT_EE_NODEADDR, &eaddr,
2066 		    ETHER_ADDR_LEN);
2067 		break;
2068 	case DC_TYPE_XIRCOM:
2069 		/* The MAC comes from the CIS. */
2070 		mac = pci_get_ether(dev);
2071 		if (!mac) {
2072 			device_printf(dev, "No station address in CIS!\n");
2073 			error = ENXIO;
2074 			goto fail;
2075 		}
2076 		bcopy(mac, eaddr, ETHER_ADDR_LEN);
2077 		break;
2078 	default:
2079 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2080 		break;
2081 	}
2082 
2083 	/* Allocate a busdma tag and DMA safe memory for TX/RX descriptors. */
2084 	error = bus_dma_tag_create(bus_get_dma_tag(dev), PAGE_SIZE, 0,
2085 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
2086 	    sizeof(struct dc_list_data), 1, sizeof(struct dc_list_data),
2087 	    0, NULL, NULL, &sc->dc_ltag);
2088 	if (error) {
2089 		device_printf(dev, "failed to allocate busdma tag\n");
2090 		error = ENXIO;
2091 		goto fail;
2092 	}
2093 	error = bus_dmamem_alloc(sc->dc_ltag, (void **)&sc->dc_ldata,
2094 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->dc_lmap);
2095 	if (error) {
2096 		device_printf(dev, "failed to allocate DMA safe memory\n");
2097 		error = ENXIO;
2098 		goto fail;
2099 	}
2100 	error = bus_dmamap_load(sc->dc_ltag, sc->dc_lmap, sc->dc_ldata,
2101 	    sizeof(struct dc_list_data), dc_dma_map_addr, &sc->dc_laddr,
2102 	    BUS_DMA_NOWAIT);
2103 	if (error) {
2104 		device_printf(dev, "cannot get address of the descriptors\n");
2105 		error = ENXIO;
2106 		goto fail;
2107 	}
2108 
2109 	/*
2110 	 * Allocate a busdma tag and DMA safe memory for the multicast
2111 	 * setup frame.
2112 	 */
2113 	error = bus_dma_tag_create(bus_get_dma_tag(dev), PAGE_SIZE, 0,
2114 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
2115 	    DC_SFRAME_LEN + DC_MIN_FRAMELEN, 1, DC_SFRAME_LEN + DC_MIN_FRAMELEN,
2116 	    0, NULL, NULL, &sc->dc_stag);
2117 	if (error) {
2118 		device_printf(dev, "failed to allocate busdma tag\n");
2119 		error = ENXIO;
2120 		goto fail;
2121 	}
2122 	error = bus_dmamem_alloc(sc->dc_stag, (void **)&sc->dc_cdata.dc_sbuf,
2123 	    BUS_DMA_NOWAIT, &sc->dc_smap);
2124 	if (error) {
2125 		device_printf(dev, "failed to allocate DMA safe memory\n");
2126 		error = ENXIO;
2127 		goto fail;
2128 	}
2129 	error = bus_dmamap_load(sc->dc_stag, sc->dc_smap, sc->dc_cdata.dc_sbuf,
2130 	    DC_SFRAME_LEN, dc_dma_map_addr, &sc->dc_saddr, BUS_DMA_NOWAIT);
2131 	if (error) {
2132 		device_printf(dev, "cannot get address of the descriptors\n");
2133 		error = ENXIO;
2134 		goto fail;
2135 	}
2136 
2137 	/* Allocate a busdma tag for mbufs. */
2138 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0,
2139 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
2140 	    MCLBYTES * DC_MAXFRAGS, DC_MAXFRAGS, MCLBYTES,
2141 	    0, NULL, NULL, &sc->dc_mtag);
2142 	if (error) {
2143 		device_printf(dev, "failed to allocate busdma tag\n");
2144 		error = ENXIO;
2145 		goto fail;
2146 	}
2147 
2148 	/* Create the TX/RX busdma maps. */
2149 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2150 		error = bus_dmamap_create(sc->dc_mtag, 0,
2151 		    &sc->dc_cdata.dc_tx_map[i]);
2152 		if (error) {
2153 			device_printf(dev, "failed to init TX ring\n");
2154 			error = ENXIO;
2155 			goto fail;
2156 		}
2157 	}
2158 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2159 		error = bus_dmamap_create(sc->dc_mtag, 0,
2160 		    &sc->dc_cdata.dc_rx_map[i]);
2161 		if (error) {
2162 			device_printf(dev, "failed to init RX ring\n");
2163 			error = ENXIO;
2164 			goto fail;
2165 		}
2166 	}
2167 	error = bus_dmamap_create(sc->dc_mtag, 0, &sc->dc_sparemap);
2168 	if (error) {
2169 		device_printf(dev, "failed to init RX ring\n");
2170 		error = ENXIO;
2171 		goto fail;
2172 	}
2173 
2174 	ifp = sc->dc_ifp = if_alloc(IFT_ETHER);
2175 	if (ifp == NULL) {
2176 		device_printf(dev, "can not if_alloc()\n");
2177 		error = ENOSPC;
2178 		goto fail;
2179 	}
2180 	ifp->if_softc = sc;
2181 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2182 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2183 	ifp->if_ioctl = dc_ioctl;
2184 	ifp->if_start = dc_start;
2185 	ifp->if_init = dc_init;
2186 	IFQ_SET_MAXLEN(&ifp->if_snd, DC_TX_LIST_CNT - 1);
2187 	ifp->if_snd.ifq_drv_maxlen = DC_TX_LIST_CNT - 1;
2188 	IFQ_SET_READY(&ifp->if_snd);
2189 
2190 	/*
2191 	 * Do MII setup. If this is a 21143, check for a PHY on the
2192 	 * MII bus after applying any necessary fixups to twiddle the
2193 	 * GPIO bits. If we don't end up finding a PHY, restore the
2194 	 * old selection (SIA only or SIA/SYM) and attach the dcphy
2195 	 * driver instead.
2196 	 */
2197 	if (DC_IS_INTEL(sc)) {
2198 		dc_apply_fixup(sc, IFM_AUTO);
2199 		tmp = sc->dc_pmode;
2200 		sc->dc_pmode = DC_PMODE_MII;
2201 	}
2202 
2203 	/*
2204 	 * Setup General Purpose port mode and data so the tulip can talk
2205 	 * to the MII.  This needs to be done before mii_phy_probe so that
2206 	 * we can actually see them.
2207 	 */
2208 	if (DC_IS_XIRCOM(sc)) {
2209 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
2210 		    DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2211 		DELAY(10);
2212 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
2213 		    DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2214 		DELAY(10);
2215 	}
2216 
2217 	error = mii_phy_probe(dev, &sc->dc_miibus,
2218 	    dc_ifmedia_upd, dc_ifmedia_sts);
2219 
2220 	if (error && DC_IS_INTEL(sc)) {
2221 		sc->dc_pmode = tmp;
2222 		if (sc->dc_pmode != DC_PMODE_SIA)
2223 			sc->dc_pmode = DC_PMODE_SYM;
2224 		sc->dc_flags |= DC_21143_NWAY;
2225 		mii_phy_probe(dev, &sc->dc_miibus,
2226 		    dc_ifmedia_upd, dc_ifmedia_sts);
2227 		/*
2228 		 * For non-MII cards, we need to have the 21143
2229 		 * drive the LEDs. Except there are some systems
2230 		 * like the NEC VersaPro NoteBook PC which have no
2231 		 * LEDs, and twiddling these bits has adverse effects
2232 		 * on them. (I.e. you suddenly can't get a link.)
2233 		 */
2234 		if (!(pci_get_subvendor(dev) == 0x1033 &&
2235 		    pci_get_subdevice(dev) == 0x8028))
2236 			sc->dc_flags |= DC_TULIP_LEDS;
2237 		error = 0;
2238 	}
2239 
2240 	if (error) {
2241 		device_printf(dev, "MII without any PHY!\n");
2242 		goto fail;
2243 	}
2244 
2245 	if (DC_IS_ADMTEK(sc)) {
2246 		/*
2247 		 * Set automatic TX underrun recovery for the ADMtek chips
2248 		 */
2249 		DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR);
2250 	}
2251 
2252 	/*
2253 	 * Tell the upper layer(s) we support long frames.
2254 	 */
2255 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2256 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
2257 	ifp->if_capenable = ifp->if_capabilities;
2258 #ifdef DEVICE_POLLING
2259 	ifp->if_capabilities |= IFCAP_POLLING;
2260 #endif
2261 
2262 	callout_init_mtx(&sc->dc_stat_ch, &sc->dc_mtx, 0);
2263 	callout_init_mtx(&sc->dc_wdog_ch, &sc->dc_mtx, 0);
2264 
2265 	/*
2266 	 * Call MI attach routine.
2267 	 */
2268 	ether_ifattach(ifp, (caddr_t)eaddr);
2269 
2270 	/* Hook interrupt last to avoid having to lock softc */
2271 	error = bus_setup_intr(dev, sc->dc_irq, INTR_TYPE_NET | INTR_MPSAFE,
2272 	    NULL, dc_intr, sc, &sc->dc_intrhand);
2273 
2274 	if (error) {
2275 		device_printf(dev, "couldn't set up irq\n");
2276 		ether_ifdetach(ifp);
2277 		goto fail;
2278 	}
2279 
2280 fail:
2281 	if (error)
2282 		dc_detach(dev);
2283 	return (error);
2284 }
2285 
2286 /*
2287  * Shutdown hardware and free up resources. This can be called any
2288  * time after the mutex has been initialized. It is called in both
2289  * the error case in attach and the normal detach case so it needs
2290  * to be careful about only freeing resources that have actually been
2291  * allocated.
2292  */
2293 static int
2294 dc_detach(device_t dev)
2295 {
2296 	struct dc_softc *sc;
2297 	struct ifnet *ifp;
2298 	struct dc_mediainfo *m;
2299 	int i;
2300 
2301 	sc = device_get_softc(dev);
2302 	KASSERT(mtx_initialized(&sc->dc_mtx), ("dc mutex not initialized"));
2303 
2304 	ifp = sc->dc_ifp;
2305 
2306 #ifdef DEVICE_POLLING
2307 	if (ifp->if_capenable & IFCAP_POLLING)
2308 		ether_poll_deregister(ifp);
2309 #endif
2310 
2311 	/* These should only be active if attach succeeded */
2312 	if (device_is_attached(dev)) {
2313 		DC_LOCK(sc);
2314 		dc_stop(sc);
2315 		DC_UNLOCK(sc);
2316 		callout_drain(&sc->dc_stat_ch);
2317 		callout_drain(&sc->dc_wdog_ch);
2318 		ether_ifdetach(ifp);
2319 	}
2320 	if (sc->dc_miibus)
2321 		device_delete_child(dev, sc->dc_miibus);
2322 	bus_generic_detach(dev);
2323 
2324 	if (sc->dc_intrhand)
2325 		bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2326 	if (sc->dc_irq)
2327 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2328 	if (sc->dc_res)
2329 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2330 
2331 	if (ifp)
2332 		if_free(ifp);
2333 
2334 	if (sc->dc_cdata.dc_sbuf != NULL)
2335 		bus_dmamem_free(sc->dc_stag, sc->dc_cdata.dc_sbuf, sc->dc_smap);
2336 	if (sc->dc_ldata != NULL)
2337 		bus_dmamem_free(sc->dc_ltag, sc->dc_ldata, sc->dc_lmap);
2338 	if (sc->dc_mtag) {
2339 		for (i = 0; i < DC_TX_LIST_CNT; i++)
2340 			if (sc->dc_cdata.dc_tx_map[i] != NULL)
2341 				bus_dmamap_destroy(sc->dc_mtag,
2342 				    sc->dc_cdata.dc_tx_map[i]);
2343 		for (i = 0; i < DC_RX_LIST_CNT; i++)
2344 			if (sc->dc_cdata.dc_rx_map[i] != NULL)
2345 				bus_dmamap_destroy(sc->dc_mtag,
2346 				    sc->dc_cdata.dc_rx_map[i]);
2347 		bus_dmamap_destroy(sc->dc_mtag, sc->dc_sparemap);
2348 	}
2349 	if (sc->dc_stag)
2350 		bus_dma_tag_destroy(sc->dc_stag);
2351 	if (sc->dc_mtag)
2352 		bus_dma_tag_destroy(sc->dc_mtag);
2353 	if (sc->dc_ltag)
2354 		bus_dma_tag_destroy(sc->dc_ltag);
2355 
2356 	free(sc->dc_pnic_rx_buf, M_DEVBUF);
2357 
2358 	while (sc->dc_mi != NULL) {
2359 		m = sc->dc_mi->dc_next;
2360 		free(sc->dc_mi, M_DEVBUF);
2361 		sc->dc_mi = m;
2362 	}
2363 	free(sc->dc_srom, M_DEVBUF);
2364 
2365 	mtx_destroy(&sc->dc_mtx);
2366 
2367 	return (0);
2368 }
2369 
2370 /*
2371  * Initialize the transmit descriptors.
2372  */
2373 static int
2374 dc_list_tx_init(struct dc_softc *sc)
2375 {
2376 	struct dc_chain_data *cd;
2377 	struct dc_list_data *ld;
2378 	int i, nexti;
2379 
2380 	cd = &sc->dc_cdata;
2381 	ld = sc->dc_ldata;
2382 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2383 		if (i == DC_TX_LIST_CNT - 1)
2384 			nexti = 0;
2385 		else
2386 			nexti = i + 1;
2387 		ld->dc_tx_list[i].dc_next = htole32(DC_TXDESC(sc, nexti));
2388 		cd->dc_tx_chain[i] = NULL;
2389 		ld->dc_tx_list[i].dc_data = 0;
2390 		ld->dc_tx_list[i].dc_ctl = 0;
2391 	}
2392 
2393 	cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
2394 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
2395 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2396 	return (0);
2397 }
2398 
2399 
2400 /*
2401  * Initialize the RX descriptors and allocate mbufs for them. Note that
2402  * we arrange the descriptors in a closed ring, so that the last descriptor
2403  * points back to the first.
2404  */
2405 static int
2406 dc_list_rx_init(struct dc_softc *sc)
2407 {
2408 	struct dc_chain_data *cd;
2409 	struct dc_list_data *ld;
2410 	int i, nexti;
2411 
2412 	cd = &sc->dc_cdata;
2413 	ld = sc->dc_ldata;
2414 
2415 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2416 		if (dc_newbuf(sc, i, 1) != 0)
2417 			return (ENOBUFS);
2418 		if (i == DC_RX_LIST_CNT - 1)
2419 			nexti = 0;
2420 		else
2421 			nexti = i + 1;
2422 		ld->dc_rx_list[i].dc_next = htole32(DC_RXDESC(sc, nexti));
2423 	}
2424 
2425 	cd->dc_rx_prod = 0;
2426 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
2427 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2428 	return (0);
2429 }
2430 
2431 /*
2432  * Initialize an RX descriptor and attach an MBUF cluster.
2433  */
2434 static int
2435 dc_newbuf(struct dc_softc *sc, int i, int alloc)
2436 {
2437 	struct mbuf *m_new;
2438 	bus_dmamap_t tmp;
2439 	bus_dma_segment_t segs[1];
2440 	int error, nseg;
2441 
2442 	if (alloc) {
2443 		m_new = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2444 		if (m_new == NULL)
2445 			return (ENOBUFS);
2446 	} else {
2447 		m_new = sc->dc_cdata.dc_rx_chain[i];
2448 		m_new->m_data = m_new->m_ext.ext_buf;
2449 	}
2450 	m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2451 	m_adj(m_new, sizeof(u_int64_t));
2452 
2453 	/*
2454 	 * If this is a PNIC chip, zero the buffer. This is part
2455 	 * of the workaround for the receive bug in the 82c168 and
2456 	 * 82c169 chips.
2457 	 */
2458 	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
2459 		bzero(mtod(m_new, char *), m_new->m_len);
2460 
2461 	/* No need to remap the mbuf if we're reusing it. */
2462 	if (alloc) {
2463 		error = bus_dmamap_load_mbuf_sg(sc->dc_mtag, sc->dc_sparemap,
2464 		    m_new, segs, &nseg, 0);
2465 		if (error) {
2466 			m_freem(m_new);
2467 			return (error);
2468 		}
2469 		KASSERT(nseg == 1,
2470 		    ("%s: wrong number of segments (%d)", __func__, nseg));
2471 		sc->dc_ldata->dc_rx_list[i].dc_data = htole32(segs->ds_addr);
2472 		bus_dmamap_unload(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i]);
2473 		tmp = sc->dc_cdata.dc_rx_map[i];
2474 		sc->dc_cdata.dc_rx_map[i] = sc->dc_sparemap;
2475 		sc->dc_sparemap = tmp;
2476 		sc->dc_cdata.dc_rx_chain[i] = m_new;
2477 	}
2478 
2479 	sc->dc_ldata->dc_rx_list[i].dc_ctl = htole32(DC_RXCTL_RLINK | DC_RXLEN);
2480 	sc->dc_ldata->dc_rx_list[i].dc_status = htole32(DC_RXSTAT_OWN);
2481 	bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i],
2482 	    BUS_DMASYNC_PREREAD);
2483 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
2484 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2485 	return (0);
2486 }
2487 
2488 /*
2489  * Grrrrr.
2490  * The PNIC chip has a terrible bug in it that manifests itself during
2491  * periods of heavy activity. The exact mode of failure if difficult to
2492  * pinpoint: sometimes it only happens in promiscuous mode, sometimes it
2493  * will happen on slow machines. The bug is that sometimes instead of
2494  * uploading one complete frame during reception, it uploads what looks
2495  * like the entire contents of its FIFO memory. The frame we want is at
2496  * the end of the whole mess, but we never know exactly how much data has
2497  * been uploaded, so salvaging the frame is hard.
2498  *
2499  * There is only one way to do it reliably, and it's disgusting.
2500  * Here's what we know:
2501  *
2502  * - We know there will always be somewhere between one and three extra
2503  *   descriptors uploaded.
2504  *
2505  * - We know the desired received frame will always be at the end of the
2506  *   total data upload.
2507  *
2508  * - We know the size of the desired received frame because it will be
2509  *   provided in the length field of the status word in the last descriptor.
2510  *
2511  * Here's what we do:
2512  *
2513  * - When we allocate buffers for the receive ring, we bzero() them.
2514  *   This means that we know that the buffer contents should be all
2515  *   zeros, except for data uploaded by the chip.
2516  *
2517  * - We also force the PNIC chip to upload frames that include the
2518  *   ethernet CRC at the end.
2519  *
2520  * - We gather all of the bogus frame data into a single buffer.
2521  *
2522  * - We then position a pointer at the end of this buffer and scan
2523  *   backwards until we encounter the first non-zero byte of data.
2524  *   This is the end of the received frame. We know we will encounter
2525  *   some data at the end of the frame because the CRC will always be
2526  *   there, so even if the sender transmits a packet of all zeros,
2527  *   we won't be fooled.
2528  *
2529  * - We know the size of the actual received frame, so we subtract
2530  *   that value from the current pointer location. This brings us
2531  *   to the start of the actual received packet.
2532  *
2533  * - We copy this into an mbuf and pass it on, along with the actual
2534  *   frame length.
2535  *
2536  * The performance hit is tremendous, but it beats dropping frames all
2537  * the time.
2538  */
2539 
2540 #define DC_WHOLEFRAME	(DC_RXSTAT_FIRSTFRAG | DC_RXSTAT_LASTFRAG)
2541 static void
2542 dc_pnic_rx_bug_war(struct dc_softc *sc, int idx)
2543 {
2544 	struct dc_desc *cur_rx;
2545 	struct dc_desc *c = NULL;
2546 	struct mbuf *m = NULL;
2547 	unsigned char *ptr;
2548 	int i, total_len;
2549 	u_int32_t rxstat = 0;
2550 
2551 	i = sc->dc_pnic_rx_bug_save;
2552 	cur_rx = &sc->dc_ldata->dc_rx_list[idx];
2553 	ptr = sc->dc_pnic_rx_buf;
2554 	bzero(ptr, DC_RXLEN * 5);
2555 
2556 	/* Copy all the bytes from the bogus buffers. */
2557 	while (1) {
2558 		c = &sc->dc_ldata->dc_rx_list[i];
2559 		rxstat = le32toh(c->dc_status);
2560 		m = sc->dc_cdata.dc_rx_chain[i];
2561 		bcopy(mtod(m, char *), ptr, DC_RXLEN);
2562 		ptr += DC_RXLEN;
2563 		/* If this is the last buffer, break out. */
2564 		if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
2565 			break;
2566 		dc_newbuf(sc, i, 0);
2567 		DC_INC(i, DC_RX_LIST_CNT);
2568 	}
2569 
2570 	/* Find the length of the actual receive frame. */
2571 	total_len = DC_RXBYTES(rxstat);
2572 
2573 	/* Scan backwards until we hit a non-zero byte. */
2574 	while (*ptr == 0x00)
2575 		ptr--;
2576 
2577 	/* Round off. */
2578 	if ((uintptr_t)(ptr) & 0x3)
2579 		ptr -= 1;
2580 
2581 	/* Now find the start of the frame. */
2582 	ptr -= total_len;
2583 	if (ptr < sc->dc_pnic_rx_buf)
2584 		ptr = sc->dc_pnic_rx_buf;
2585 
2586 	/*
2587 	 * Now copy the salvaged frame to the last mbuf and fake up
2588 	 * the status word to make it look like a successful
2589 	 * frame reception.
2590 	 */
2591 	dc_newbuf(sc, i, 0);
2592 	bcopy(ptr, mtod(m, char *), total_len);
2593 	cur_rx->dc_status = htole32(rxstat | DC_RXSTAT_FIRSTFRAG);
2594 }
2595 
2596 /*
2597  * This routine searches the RX ring for dirty descriptors in the
2598  * event that the rxeof routine falls out of sync with the chip's
2599  * current descriptor pointer. This may happen sometimes as a result
2600  * of a "no RX buffer available" condition that happens when the chip
2601  * consumes all of the RX buffers before the driver has a chance to
2602  * process the RX ring. This routine may need to be called more than
2603  * once to bring the driver back in sync with the chip, however we
2604  * should still be getting RX DONE interrupts to drive the search
2605  * for new packets in the RX ring, so we should catch up eventually.
2606  */
2607 static int
2608 dc_rx_resync(struct dc_softc *sc)
2609 {
2610 	struct dc_desc *cur_rx;
2611 	int i, pos;
2612 
2613 	pos = sc->dc_cdata.dc_rx_prod;
2614 
2615 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2616 		cur_rx = &sc->dc_ldata->dc_rx_list[pos];
2617 		if (!(le32toh(cur_rx->dc_status) & DC_RXSTAT_OWN))
2618 			break;
2619 		DC_INC(pos, DC_RX_LIST_CNT);
2620 	}
2621 
2622 	/* If the ring really is empty, then just return. */
2623 	if (i == DC_RX_LIST_CNT)
2624 		return (0);
2625 
2626 	/* We've fallen behing the chip: catch it. */
2627 	sc->dc_cdata.dc_rx_prod = pos;
2628 
2629 	return (EAGAIN);
2630 }
2631 
2632 /*
2633  * A frame has been uploaded: pass the resulting mbuf chain up to
2634  * the higher level protocols.
2635  */
2636 static void
2637 dc_rxeof(struct dc_softc *sc)
2638 {
2639 	struct mbuf *m, *m0;
2640 	struct ifnet *ifp;
2641 	struct dc_desc *cur_rx;
2642 	int i, total_len = 0;
2643 	u_int32_t rxstat;
2644 
2645 	DC_LOCK_ASSERT(sc);
2646 
2647 	ifp = sc->dc_ifp;
2648 	i = sc->dc_cdata.dc_rx_prod;
2649 
2650 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap, BUS_DMASYNC_POSTREAD);
2651 	while (!(le32toh(sc->dc_ldata->dc_rx_list[i].dc_status) &
2652 	    DC_RXSTAT_OWN)) {
2653 #ifdef DEVICE_POLLING
2654 		if (ifp->if_capenable & IFCAP_POLLING) {
2655 			if (sc->rxcycles <= 0)
2656 				break;
2657 			sc->rxcycles--;
2658 		}
2659 #endif
2660 		cur_rx = &sc->dc_ldata->dc_rx_list[i];
2661 		rxstat = le32toh(cur_rx->dc_status);
2662 		m = sc->dc_cdata.dc_rx_chain[i];
2663 		bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i],
2664 		    BUS_DMASYNC_POSTREAD);
2665 		total_len = DC_RXBYTES(rxstat);
2666 
2667 		if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2668 			if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
2669 				if (rxstat & DC_RXSTAT_FIRSTFRAG)
2670 					sc->dc_pnic_rx_bug_save = i;
2671 				if ((rxstat & DC_RXSTAT_LASTFRAG) == 0) {
2672 					DC_INC(i, DC_RX_LIST_CNT);
2673 					continue;
2674 				}
2675 				dc_pnic_rx_bug_war(sc, i);
2676 				rxstat = le32toh(cur_rx->dc_status);
2677 				total_len = DC_RXBYTES(rxstat);
2678 			}
2679 		}
2680 
2681 		/*
2682 		 * If an error occurs, update stats, clear the
2683 		 * status word and leave the mbuf cluster in place:
2684 		 * it should simply get re-used next time this descriptor
2685 		 * comes up in the ring.  However, don't report long
2686 		 * frames as errors since they could be vlans.
2687 		 */
2688 		if ((rxstat & DC_RXSTAT_RXERR)) {
2689 			if (!(rxstat & DC_RXSTAT_GIANT) ||
2690 			    (rxstat & (DC_RXSTAT_CRCERR | DC_RXSTAT_DRIBBLE |
2691 				       DC_RXSTAT_MIIERE | DC_RXSTAT_COLLSEEN |
2692 				       DC_RXSTAT_RUNT   | DC_RXSTAT_DE))) {
2693 				ifp->if_ierrors++;
2694 				if (rxstat & DC_RXSTAT_COLLSEEN)
2695 					ifp->if_collisions++;
2696 				dc_newbuf(sc, i, 0);
2697 				if (rxstat & DC_RXSTAT_CRCERR) {
2698 					DC_INC(i, DC_RX_LIST_CNT);
2699 					continue;
2700 				} else {
2701 					dc_init_locked(sc);
2702 					return;
2703 				}
2704 			}
2705 		}
2706 
2707 		/* No errors; receive the packet. */
2708 		total_len -= ETHER_CRC_LEN;
2709 #ifdef __NO_STRICT_ALIGNMENT
2710 		/*
2711 		 * On architectures without alignment problems we try to
2712 		 * allocate a new buffer for the receive ring, and pass up
2713 		 * the one where the packet is already, saving the expensive
2714 		 * copy done in m_devget().
2715 		 * If we are on an architecture with alignment problems, or
2716 		 * if the allocation fails, then use m_devget and leave the
2717 		 * existing buffer in the receive ring.
2718 		 */
2719 		if (dc_newbuf(sc, i, 1) == 0) {
2720 			m->m_pkthdr.rcvif = ifp;
2721 			m->m_pkthdr.len = m->m_len = total_len;
2722 			DC_INC(i, DC_RX_LIST_CNT);
2723 		} else
2724 #endif
2725 		{
2726 			m0 = m_devget(mtod(m, char *), total_len,
2727 				ETHER_ALIGN, ifp, NULL);
2728 			dc_newbuf(sc, i, 0);
2729 			DC_INC(i, DC_RX_LIST_CNT);
2730 			if (m0 == NULL) {
2731 				ifp->if_ierrors++;
2732 				continue;
2733 			}
2734 			m = m0;
2735 		}
2736 
2737 		ifp->if_ipackets++;
2738 		DC_UNLOCK(sc);
2739 		(*ifp->if_input)(ifp, m);
2740 		DC_LOCK(sc);
2741 	}
2742 
2743 	sc->dc_cdata.dc_rx_prod = i;
2744 }
2745 
2746 /*
2747  * A frame was downloaded to the chip. It's safe for us to clean up
2748  * the list buffers.
2749  */
2750 static void
2751 dc_txeof(struct dc_softc *sc)
2752 {
2753 	struct dc_desc *cur_tx = NULL;
2754 	struct ifnet *ifp;
2755 	int idx;
2756 	u_int32_t ctl, txstat;
2757 
2758 	ifp = sc->dc_ifp;
2759 
2760 	/*
2761 	 * Go through our tx list and free mbufs for those
2762 	 * frames that have been transmitted.
2763 	 */
2764 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap, BUS_DMASYNC_POSTREAD);
2765 	idx = sc->dc_cdata.dc_tx_cons;
2766 	while (idx != sc->dc_cdata.dc_tx_prod) {
2767 
2768 		cur_tx = &sc->dc_ldata->dc_tx_list[idx];
2769 		txstat = le32toh(cur_tx->dc_status);
2770 		ctl = le32toh(cur_tx->dc_ctl);
2771 
2772 		if (txstat & DC_TXSTAT_OWN)
2773 			break;
2774 
2775 		if (!(ctl & DC_TXCTL_LASTFRAG) || ctl & DC_TXCTL_SETUP) {
2776 			if (ctl & DC_TXCTL_SETUP) {
2777 				/*
2778 				 * Yes, the PNIC is so brain damaged
2779 				 * that it will sometimes generate a TX
2780 				 * underrun error while DMAing the RX
2781 				 * filter setup frame. If we detect this,
2782 				 * we have to send the setup frame again,
2783 				 * or else the filter won't be programmed
2784 				 * correctly.
2785 				 */
2786 				if (DC_IS_PNIC(sc)) {
2787 					if (txstat & DC_TXSTAT_ERRSUM)
2788 						dc_setfilt(sc);
2789 				}
2790 				sc->dc_cdata.dc_tx_chain[idx] = NULL;
2791 			}
2792 			sc->dc_cdata.dc_tx_cnt--;
2793 			DC_INC(idx, DC_TX_LIST_CNT);
2794 			continue;
2795 		}
2796 
2797 		if (DC_IS_XIRCOM(sc) || DC_IS_CONEXANT(sc)) {
2798 			/*
2799 			 * XXX: Why does my Xircom taunt me so?
2800 			 * For some reason it likes setting the CARRLOST flag
2801 			 * even when the carrier is there. wtf?!?
2802 			 * Who knows, but Conexant chips have the
2803 			 * same problem. Maybe they took lessons
2804 			 * from Xircom.
2805 			 */
2806 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2807 			    sc->dc_pmode == DC_PMODE_MII &&
2808 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
2809 			    DC_TXSTAT_NOCARRIER)))
2810 				txstat &= ~DC_TXSTAT_ERRSUM;
2811 		} else {
2812 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2813 			    sc->dc_pmode == DC_PMODE_MII &&
2814 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
2815 			    DC_TXSTAT_NOCARRIER | DC_TXSTAT_CARRLOST)))
2816 				txstat &= ~DC_TXSTAT_ERRSUM;
2817 		}
2818 
2819 		if (txstat & DC_TXSTAT_ERRSUM) {
2820 			ifp->if_oerrors++;
2821 			if (txstat & DC_TXSTAT_EXCESSCOLL)
2822 				ifp->if_collisions++;
2823 			if (txstat & DC_TXSTAT_LATECOLL)
2824 				ifp->if_collisions++;
2825 			if (!(txstat & DC_TXSTAT_UNDERRUN)) {
2826 				dc_init_locked(sc);
2827 				return;
2828 			}
2829 		}
2830 
2831 		ifp->if_collisions += (txstat & DC_TXSTAT_COLLCNT) >> 3;
2832 
2833 		ifp->if_opackets++;
2834 		if (sc->dc_cdata.dc_tx_chain[idx] != NULL) {
2835 			bus_dmamap_sync(sc->dc_mtag,
2836 			    sc->dc_cdata.dc_tx_map[idx],
2837 			    BUS_DMASYNC_POSTWRITE);
2838 			bus_dmamap_unload(sc->dc_mtag,
2839 			    sc->dc_cdata.dc_tx_map[idx]);
2840 			m_freem(sc->dc_cdata.dc_tx_chain[idx]);
2841 			sc->dc_cdata.dc_tx_chain[idx] = NULL;
2842 		}
2843 
2844 		sc->dc_cdata.dc_tx_cnt--;
2845 		DC_INC(idx, DC_TX_LIST_CNT);
2846 	}
2847 	sc->dc_cdata.dc_tx_cons = idx;
2848 
2849 	if (DC_TX_LIST_CNT - sc->dc_cdata.dc_tx_cnt > DC_TX_LIST_RSVD)
2850 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2851 
2852 	if (sc->dc_cdata.dc_tx_cnt == 0)
2853 		sc->dc_wdog_timer = 0;
2854 }
2855 
2856 static void
2857 dc_tick(void *xsc)
2858 {
2859 	struct dc_softc *sc;
2860 	struct mii_data *mii;
2861 	struct ifnet *ifp;
2862 	u_int32_t r;
2863 
2864 	sc = xsc;
2865 	DC_LOCK_ASSERT(sc);
2866 	ifp = sc->dc_ifp;
2867 	mii = device_get_softc(sc->dc_miibus);
2868 
2869 	if (sc->dc_flags & DC_REDUCED_MII_POLL) {
2870 		if (sc->dc_flags & DC_21143_NWAY) {
2871 			r = CSR_READ_4(sc, DC_10BTSTAT);
2872 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2873 			    IFM_100_TX && (r & DC_TSTAT_LS100)) {
2874 				sc->dc_link = 0;
2875 				mii_mediachg(mii);
2876 			}
2877 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2878 			    IFM_10_T && (r & DC_TSTAT_LS10)) {
2879 				sc->dc_link = 0;
2880 				mii_mediachg(mii);
2881 			}
2882 			if (sc->dc_link == 0)
2883 				mii_tick(mii);
2884 		} else {
2885 			/*
2886 			 * For NICs which never report DC_RXSTATE_WAIT, we
2887 			 * have to bite the bullet...
2888 			 */
2889 			if ((DC_HAS_BROKEN_RXSTATE(sc) || (CSR_READ_4(sc,
2890 			    DC_ISR) & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT) &&
2891 			    sc->dc_cdata.dc_tx_cnt == 0) {
2892 				mii_tick(mii);
2893 				if (!(mii->mii_media_status & IFM_ACTIVE))
2894 					sc->dc_link = 0;
2895 			}
2896 		}
2897 	} else
2898 		mii_tick(mii);
2899 
2900 	/*
2901 	 * When the init routine completes, we expect to be able to send
2902 	 * packets right away, and in fact the network code will send a
2903 	 * gratuitous ARP the moment the init routine marks the interface
2904 	 * as running. However, even though the MAC may have been initialized,
2905 	 * there may be a delay of a few seconds before the PHY completes
2906 	 * autonegotiation and the link is brought up. Any transmissions
2907 	 * made during that delay will be lost. Dealing with this is tricky:
2908 	 * we can't just pause in the init routine while waiting for the
2909 	 * PHY to come ready since that would bring the whole system to
2910 	 * a screeching halt for several seconds.
2911 	 *
2912 	 * What we do here is prevent the TX start routine from sending
2913 	 * any packets until a link has been established. After the
2914 	 * interface has been initialized, the tick routine will poll
2915 	 * the state of the PHY until the IFM_ACTIVE flag is set. Until
2916 	 * that time, packets will stay in the send queue, and once the
2917 	 * link comes up, they will be flushed out to the wire.
2918 	 */
2919 	if (!sc->dc_link && mii->mii_media_status & IFM_ACTIVE &&
2920 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2921 		sc->dc_link++;
2922 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2923 			dc_start_locked(ifp);
2924 	}
2925 
2926 	if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link)
2927 		callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
2928 	else
2929 		callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
2930 }
2931 
2932 /*
2933  * A transmit underrun has occurred.  Back off the transmit threshold,
2934  * or switch to store and forward mode if we have to.
2935  */
2936 static void
2937 dc_tx_underrun(struct dc_softc *sc)
2938 {
2939 	u_int32_t isr;
2940 	int i;
2941 
2942 	if (DC_IS_DAVICOM(sc))
2943 		dc_init_locked(sc);
2944 
2945 	if (DC_IS_INTEL(sc)) {
2946 		/*
2947 		 * The real 21143 requires that the transmitter be idle
2948 		 * in order to change the transmit threshold or store
2949 		 * and forward state.
2950 		 */
2951 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2952 
2953 		for (i = 0; i < DC_TIMEOUT; i++) {
2954 			isr = CSR_READ_4(sc, DC_ISR);
2955 			if (isr & DC_ISR_TX_IDLE)
2956 				break;
2957 			DELAY(10);
2958 		}
2959 		if (i == DC_TIMEOUT) {
2960 			device_printf(sc->dc_dev,
2961 			    "%s: failed to force tx to idle state\n",
2962 			    __func__);
2963 			dc_init_locked(sc);
2964 		}
2965 	}
2966 
2967 	device_printf(sc->dc_dev, "TX underrun -- ");
2968 	sc->dc_txthresh += DC_TXTHRESH_INC;
2969 	if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
2970 		printf("using store and forward mode\n");
2971 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
2972 	} else {
2973 		printf("increasing TX threshold\n");
2974 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
2975 		DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
2976 	}
2977 
2978 	if (DC_IS_INTEL(sc))
2979 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2980 }
2981 
2982 #ifdef DEVICE_POLLING
2983 static poll_handler_t dc_poll;
2984 
2985 static void
2986 dc_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2987 {
2988 	struct dc_softc *sc = ifp->if_softc;
2989 
2990 	DC_LOCK(sc);
2991 
2992 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2993 		DC_UNLOCK(sc);
2994 		return;
2995 	}
2996 
2997 	sc->rxcycles = count;
2998 	dc_rxeof(sc);
2999 	dc_txeof(sc);
3000 	if (!IFQ_IS_EMPTY(&ifp->if_snd) &&
3001 	    !(ifp->if_drv_flags & IFF_DRV_OACTIVE))
3002 		dc_start_locked(ifp);
3003 
3004 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
3005 		u_int32_t	status;
3006 
3007 		status = CSR_READ_4(sc, DC_ISR);
3008 		status &= (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF |
3009 			DC_ISR_TX_NOBUF | DC_ISR_TX_IDLE | DC_ISR_TX_UNDERRUN |
3010 			DC_ISR_BUS_ERR);
3011 		if (!status) {
3012 			DC_UNLOCK(sc);
3013 			return;
3014 		}
3015 		/* ack what we have */
3016 		CSR_WRITE_4(sc, DC_ISR, status);
3017 
3018 		if (status & (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF)) {
3019 			u_int32_t r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
3020 			ifp->if_ierrors += (r & 0xffff) + ((r >> 17) & 0x7ff);
3021 
3022 			if (dc_rx_resync(sc))
3023 				dc_rxeof(sc);
3024 		}
3025 		/* restart transmit unit if necessary */
3026 		if (status & DC_ISR_TX_IDLE && sc->dc_cdata.dc_tx_cnt)
3027 			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3028 
3029 		if (status & DC_ISR_TX_UNDERRUN)
3030 			dc_tx_underrun(sc);
3031 
3032 		if (status & DC_ISR_BUS_ERR) {
3033 			if_printf(ifp, "%s: bus error\n", __func__);
3034 			dc_reset(sc);
3035 			dc_init_locked(sc);
3036 		}
3037 	}
3038 	DC_UNLOCK(sc);
3039 }
3040 #endif /* DEVICE_POLLING */
3041 
3042 static void
3043 dc_intr(void *arg)
3044 {
3045 	struct dc_softc *sc;
3046 	struct ifnet *ifp;
3047 	u_int32_t status;
3048 
3049 	sc = arg;
3050 
3051 	if (sc->suspended)
3052 		return;
3053 
3054 	if ((CSR_READ_4(sc, DC_ISR) & DC_INTRS) == 0)
3055 		return;
3056 
3057 	DC_LOCK(sc);
3058 	ifp = sc->dc_ifp;
3059 #ifdef DEVICE_POLLING
3060 	if (ifp->if_capenable & IFCAP_POLLING) {
3061 		DC_UNLOCK(sc);
3062 		return;
3063 	}
3064 #endif
3065 
3066 	/* Suppress unwanted interrupts */
3067 	if (!(ifp->if_flags & IFF_UP)) {
3068 		if (CSR_READ_4(sc, DC_ISR) & DC_INTRS)
3069 			dc_stop(sc);
3070 		DC_UNLOCK(sc);
3071 		return;
3072 	}
3073 
3074 	/* Disable interrupts. */
3075 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3076 
3077 	while (((status = CSR_READ_4(sc, DC_ISR)) & DC_INTRS) &&
3078 	    status != 0xFFFFFFFF &&
3079 	    (ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3080 
3081 		CSR_WRITE_4(sc, DC_ISR, status);
3082 
3083 		if (status & DC_ISR_RX_OK) {
3084 			int		curpkts;
3085 			curpkts = ifp->if_ipackets;
3086 			dc_rxeof(sc);
3087 			if (curpkts == ifp->if_ipackets) {
3088 				while (dc_rx_resync(sc))
3089 					dc_rxeof(sc);
3090 			}
3091 		}
3092 
3093 		if (status & (DC_ISR_TX_OK | DC_ISR_TX_NOBUF))
3094 			dc_txeof(sc);
3095 
3096 		if (status & DC_ISR_TX_IDLE) {
3097 			dc_txeof(sc);
3098 			if (sc->dc_cdata.dc_tx_cnt) {
3099 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3100 				CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3101 			}
3102 		}
3103 
3104 		if (status & DC_ISR_TX_UNDERRUN)
3105 			dc_tx_underrun(sc);
3106 
3107 		if ((status & DC_ISR_RX_WATDOGTIMEO)
3108 		    || (status & DC_ISR_RX_NOBUF)) {
3109 			int		curpkts;
3110 			curpkts = ifp->if_ipackets;
3111 			dc_rxeof(sc);
3112 			if (curpkts == ifp->if_ipackets) {
3113 				while (dc_rx_resync(sc))
3114 					dc_rxeof(sc);
3115 			}
3116 		}
3117 
3118 		if (status & DC_ISR_BUS_ERR) {
3119 			dc_reset(sc);
3120 			dc_init_locked(sc);
3121 		}
3122 	}
3123 
3124 	/* Re-enable interrupts. */
3125 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3126 
3127 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3128 		dc_start_locked(ifp);
3129 
3130 	DC_UNLOCK(sc);
3131 }
3132 
3133 /*
3134  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
3135  * pointers to the fragment pointers.
3136  */
3137 static int
3138 dc_encap(struct dc_softc *sc, struct mbuf **m_head)
3139 {
3140 	bus_dma_segment_t segs[DC_MAXFRAGS];
3141 	struct dc_desc *f;
3142 	struct mbuf *m;
3143 	int cur, defragged, error, first, frag, i, idx, nseg;
3144 
3145 	/*
3146 	 * If there's no way we can send any packets, return now.
3147 	 */
3148 	if (DC_TX_LIST_CNT - sc->dc_cdata.dc_tx_cnt <= DC_TX_LIST_RSVD)
3149 		return (ENOBUFS);
3150 
3151 	m = NULL;
3152 	defragged = 0;
3153 	if (sc->dc_flags & DC_TX_COALESCE &&
3154 	    ((*m_head)->m_next != NULL || sc->dc_flags & DC_TX_ALIGN)) {
3155 		m = m_defrag(*m_head, M_DONTWAIT);
3156 		defragged = 1;
3157 	} else {
3158 		/*
3159 		 * Count the number of frags in this chain to see if we
3160 		 * need to m_collapse.  Since the descriptor list is shared
3161 		 * by all packets, we'll m_collapse long chains so that they
3162 		 * do not use up the entire list, even if they would fit.
3163 		 */
3164 		i = 0;
3165 		for (m = *m_head; m != NULL; m = m->m_next)
3166 			i++;
3167 		if (i > DC_TX_LIST_CNT / 4 ||
3168 		    DC_TX_LIST_CNT - i + sc->dc_cdata.dc_tx_cnt <=
3169 		    DC_TX_LIST_RSVD) {
3170 			m = m_collapse(*m_head, M_DONTWAIT, DC_MAXFRAGS);
3171 			defragged = 1;
3172 		}
3173 	}
3174 	if (defragged != 0) {
3175 		if (m == NULL) {
3176 			m_freem(*m_head);
3177 			*m_head = NULL;
3178 			return (ENOBUFS);
3179 		}
3180 		*m_head = m;
3181 	}
3182 
3183 	idx = sc->dc_cdata.dc_tx_prod;
3184 	error = bus_dmamap_load_mbuf_sg(sc->dc_mtag,
3185 	    sc->dc_cdata.dc_tx_map[idx], *m_head, segs, &nseg, 0);
3186 	if (error == EFBIG) {
3187 		if (defragged != 0 || (m = m_collapse(*m_head, M_DONTWAIT,
3188 		    DC_MAXFRAGS)) == NULL) {
3189 			m_freem(*m_head);
3190 			*m_head = NULL;
3191 			return (defragged != 0 ? error : ENOBUFS);
3192 		}
3193 		*m_head = m;
3194 		error = bus_dmamap_load_mbuf_sg(sc->dc_mtag,
3195 		    sc->dc_cdata.dc_tx_map[idx], *m_head, segs, &nseg, 0);
3196 		if (error != 0) {
3197 			m_freem(*m_head);
3198 			*m_head = NULL;
3199 			return (error);
3200 		}
3201 	} else if (error != 0)
3202 		return (error);
3203 	KASSERT(nseg <= DC_MAXFRAGS,
3204 	    ("%s: wrong number of segments (%d)", __func__, nseg));
3205 	if (nseg == 0) {
3206 		m_freem(*m_head);
3207 		*m_head = NULL;
3208 		return (EIO);
3209 	}
3210 
3211 	first = cur = frag = sc->dc_cdata.dc_tx_prod;
3212 	for (i = 0; i < nseg; i++) {
3213 		if ((sc->dc_flags & DC_TX_ADMTEK_WAR) &&
3214 		    (frag == (DC_TX_LIST_CNT - 1)) &&
3215 		    (first != sc->dc_cdata.dc_tx_first)) {
3216 			bus_dmamap_unload(sc->dc_mtag,
3217 			    sc->dc_cdata.dc_tx_map[first]);
3218 			m_freem(*m_head);
3219 			*m_head = NULL;
3220 			return (ENOBUFS);
3221 		}
3222 
3223 		f = &sc->dc_ldata->dc_tx_list[frag];
3224 		f->dc_ctl = htole32(DC_TXCTL_TLINK | segs[i].ds_len);
3225 		if (i == 0) {
3226 			f->dc_status = 0;
3227 			f->dc_ctl |= htole32(DC_TXCTL_FIRSTFRAG);
3228 		} else
3229 			f->dc_status = htole32(DC_TXSTAT_OWN);
3230 		f->dc_data = htole32(segs[i].ds_addr);
3231 		cur = frag;
3232 		DC_INC(frag, DC_TX_LIST_CNT);
3233 	}
3234 
3235 	sc->dc_cdata.dc_tx_prod = frag;
3236 	sc->dc_cdata.dc_tx_cnt += nseg;
3237 	sc->dc_cdata.dc_tx_chain[cur] = *m_head;
3238 	sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_LASTFRAG);
3239 	if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
3240 		sc->dc_ldata->dc_tx_list[first].dc_ctl |=
3241 		    htole32(DC_TXCTL_FINT);
3242 	if (sc->dc_flags & DC_TX_INTR_ALWAYS)
3243 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
3244 	if (sc->dc_flags & DC_TX_USE_TX_INTR && sc->dc_cdata.dc_tx_cnt > 64)
3245 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
3246 	sc->dc_ldata->dc_tx_list[first].dc_status = htole32(DC_TXSTAT_OWN);
3247 
3248 	bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_tx_map[idx],
3249 	    BUS_DMASYNC_PREWRITE);
3250 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
3251 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
3252 	return (0);
3253 }
3254 
3255 static void
3256 dc_start(struct ifnet *ifp)
3257 {
3258 	struct dc_softc *sc;
3259 
3260 	sc = ifp->if_softc;
3261 	DC_LOCK(sc);
3262 	dc_start_locked(ifp);
3263 	DC_UNLOCK(sc);
3264 }
3265 
3266 /*
3267  * Main transmit routine
3268  * To avoid having to do mbuf copies, we put pointers to the mbuf data
3269  * regions directly in the transmit lists.  We also save a copy of the
3270  * pointers since the transmit list fragment pointers are physical
3271  * addresses.
3272  */
3273 static void
3274 dc_start_locked(struct ifnet *ifp)
3275 {
3276 	struct dc_softc *sc;
3277 	struct mbuf *m_head = NULL;
3278 	unsigned int queued = 0;
3279 	int idx;
3280 
3281 	sc = ifp->if_softc;
3282 
3283 	DC_LOCK_ASSERT(sc);
3284 
3285 	if (!sc->dc_link && ifp->if_snd.ifq_len < 10)
3286 		return;
3287 
3288 	if (ifp->if_drv_flags & IFF_DRV_OACTIVE)
3289 		return;
3290 
3291 	idx = sc->dc_cdata.dc_tx_first = sc->dc_cdata.dc_tx_prod;
3292 
3293 	while (sc->dc_cdata.dc_tx_chain[idx] == NULL) {
3294 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
3295 		if (m_head == NULL)
3296 			break;
3297 
3298 		if (dc_encap(sc, &m_head)) {
3299 			if (m_head == NULL)
3300 				break;
3301 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
3302 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3303 			break;
3304 		}
3305 		idx = sc->dc_cdata.dc_tx_prod;
3306 
3307 		queued++;
3308 		/*
3309 		 * If there's a BPF listener, bounce a copy of this frame
3310 		 * to him.
3311 		 */
3312 		BPF_MTAP(ifp, m_head);
3313 
3314 		if (sc->dc_flags & DC_TX_ONE) {
3315 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3316 			break;
3317 		}
3318 	}
3319 
3320 	if (queued > 0) {
3321 		/* Transmit */
3322 		if (!(sc->dc_flags & DC_TX_POLL))
3323 			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3324 
3325 		/*
3326 		 * Set a timeout in case the chip goes out to lunch.
3327 		 */
3328 		sc->dc_wdog_timer = 5;
3329 	}
3330 }
3331 
3332 static void
3333 dc_init(void *xsc)
3334 {
3335 	struct dc_softc *sc = xsc;
3336 
3337 	DC_LOCK(sc);
3338 	dc_init_locked(sc);
3339 	DC_UNLOCK(sc);
3340 }
3341 
3342 static void
3343 dc_init_locked(struct dc_softc *sc)
3344 {
3345 	struct ifnet *ifp = sc->dc_ifp;
3346 	struct mii_data *mii;
3347 
3348 	DC_LOCK_ASSERT(sc);
3349 
3350 	mii = device_get_softc(sc->dc_miibus);
3351 
3352 	/*
3353 	 * Cancel pending I/O and free all RX/TX buffers.
3354 	 */
3355 	dc_stop(sc);
3356 	dc_reset(sc);
3357 
3358 	/*
3359 	 * Set cache alignment and burst length.
3360 	 */
3361 	if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc))
3362 		CSR_WRITE_4(sc, DC_BUSCTL, 0);
3363 	else
3364 		CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME | DC_BUSCTL_MRLE);
3365 	/*
3366 	 * Evenly share the bus between receive and transmit process.
3367 	 */
3368 	if (DC_IS_INTEL(sc))
3369 		DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION);
3370 	if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
3371 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
3372 	} else {
3373 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
3374 	}
3375 	if (sc->dc_flags & DC_TX_POLL)
3376 		DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
3377 	switch(sc->dc_cachesize) {
3378 	case 32:
3379 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
3380 		break;
3381 	case 16:
3382 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
3383 		break;
3384 	case 8:
3385 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
3386 		break;
3387 	case 0:
3388 	default:
3389 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
3390 		break;
3391 	}
3392 
3393 	if (sc->dc_flags & DC_TX_STORENFWD)
3394 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3395 	else {
3396 		if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3397 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3398 		} else {
3399 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3400 			DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3401 		}
3402 	}
3403 
3404 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
3405 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
3406 
3407 	if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
3408 		/*
3409 		 * The app notes for the 98713 and 98715A say that
3410 		 * in order to have the chips operate properly, a magic
3411 		 * number must be written to CSR16. Macronix does not
3412 		 * document the meaning of these bits so there's no way
3413 		 * to know exactly what they do. The 98713 has a magic
3414 		 * number all its own; the rest all use a different one.
3415 		 */
3416 		DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
3417 		if (sc->dc_type == DC_TYPE_98713)
3418 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
3419 		else
3420 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
3421 	}
3422 
3423 	if (DC_IS_XIRCOM(sc)) {
3424 		/*
3425 		 * setup General Purpose Port mode and data so the tulip
3426 		 * can talk to the MII.
3427 		 */
3428 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
3429 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3430 		DELAY(10);
3431 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
3432 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3433 		DELAY(10);
3434 	}
3435 
3436 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3437 	DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN);
3438 
3439 	/* Init circular RX list. */
3440 	if (dc_list_rx_init(sc) == ENOBUFS) {
3441 		device_printf(sc->dc_dev,
3442 		    "initialization failed: no memory for rx buffers\n");
3443 		dc_stop(sc);
3444 		return;
3445 	}
3446 
3447 	/*
3448 	 * Init TX descriptors.
3449 	 */
3450 	dc_list_tx_init(sc);
3451 
3452 	/*
3453 	 * Load the address of the RX list.
3454 	 */
3455 	CSR_WRITE_4(sc, DC_RXADDR, DC_RXDESC(sc, 0));
3456 	CSR_WRITE_4(sc, DC_TXADDR, DC_TXDESC(sc, 0));
3457 
3458 	/*
3459 	 * Enable interrupts.
3460 	 */
3461 #ifdef DEVICE_POLLING
3462 	/*
3463 	 * ... but only if we are not polling, and make sure they are off in
3464 	 * the case of polling. Some cards (e.g. fxp) turn interrupts on
3465 	 * after a reset.
3466 	 */
3467 	if (ifp->if_capenable & IFCAP_POLLING)
3468 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3469 	else
3470 #endif
3471 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3472 	CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
3473 
3474 	/* Enable transmitter. */
3475 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3476 
3477 	/*
3478 	 * If this is an Intel 21143 and we're not using the
3479 	 * MII port, program the LED control pins so we get
3480 	 * link and activity indications.
3481 	 */
3482 	if (sc->dc_flags & DC_TULIP_LEDS) {
3483 		CSR_WRITE_4(sc, DC_WATCHDOG,
3484 		    DC_WDOG_CTLWREN | DC_WDOG_LINK | DC_WDOG_ACTIVITY);
3485 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
3486 	}
3487 
3488 	/*
3489 	 * Load the RX/multicast filter. We do this sort of late
3490 	 * because the filter programming scheme on the 21143 and
3491 	 * some clones requires DMAing a setup frame via the TX
3492 	 * engine, and we need the transmitter enabled for that.
3493 	 */
3494 	dc_setfilt(sc);
3495 
3496 	/* Enable receiver. */
3497 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
3498 	CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
3499 
3500 	mii_mediachg(mii);
3501 	dc_setcfg(sc, sc->dc_if_media);
3502 
3503 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3504 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3505 
3506 	/* Don't start the ticker if this is a homePNA link. */
3507 	if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_HPNA_1)
3508 		sc->dc_link = 1;
3509 	else {
3510 		if (sc->dc_flags & DC_21143_NWAY)
3511 			callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
3512 		else
3513 			callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
3514 	}
3515 
3516 	sc->dc_wdog_timer = 0;
3517 	callout_reset(&sc->dc_wdog_ch, hz, dc_watchdog, sc);
3518 }
3519 
3520 /*
3521  * Set media options.
3522  */
3523 static int
3524 dc_ifmedia_upd(struct ifnet *ifp)
3525 {
3526 	struct dc_softc *sc;
3527 	struct mii_data *mii;
3528 	struct ifmedia *ifm;
3529 
3530 	sc = ifp->if_softc;
3531 	mii = device_get_softc(sc->dc_miibus);
3532 	DC_LOCK(sc);
3533 	mii_mediachg(mii);
3534 	ifm = &mii->mii_media;
3535 
3536 	if (DC_IS_DAVICOM(sc) &&
3537 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1)
3538 		dc_setcfg(sc, ifm->ifm_media);
3539 	else
3540 		sc->dc_link = 0;
3541 	DC_UNLOCK(sc);
3542 
3543 	return (0);
3544 }
3545 
3546 /*
3547  * Report current media status.
3548  */
3549 static void
3550 dc_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3551 {
3552 	struct dc_softc *sc;
3553 	struct mii_data *mii;
3554 	struct ifmedia *ifm;
3555 
3556 	sc = ifp->if_softc;
3557 	mii = device_get_softc(sc->dc_miibus);
3558 	DC_LOCK(sc);
3559 	mii_pollstat(mii);
3560 	ifm = &mii->mii_media;
3561 	if (DC_IS_DAVICOM(sc)) {
3562 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
3563 			ifmr->ifm_active = ifm->ifm_media;
3564 			ifmr->ifm_status = 0;
3565 			DC_UNLOCK(sc);
3566 			return;
3567 		}
3568 	}
3569 	ifmr->ifm_active = mii->mii_media_active;
3570 	ifmr->ifm_status = mii->mii_media_status;
3571 	DC_UNLOCK(sc);
3572 }
3573 
3574 static int
3575 dc_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
3576 {
3577 	struct dc_softc *sc = ifp->if_softc;
3578 	struct ifreq *ifr = (struct ifreq *)data;
3579 	struct mii_data *mii;
3580 	int error = 0;
3581 
3582 	switch (command) {
3583 	case SIOCSIFFLAGS:
3584 		DC_LOCK(sc);
3585 		if (ifp->if_flags & IFF_UP) {
3586 			int need_setfilt = (ifp->if_flags ^ sc->dc_if_flags) &
3587 				(IFF_PROMISC | IFF_ALLMULTI);
3588 
3589 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3590 				if (need_setfilt)
3591 					dc_setfilt(sc);
3592 			} else {
3593 				sc->dc_txthresh = 0;
3594 				dc_init_locked(sc);
3595 			}
3596 		} else {
3597 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3598 				dc_stop(sc);
3599 		}
3600 		sc->dc_if_flags = ifp->if_flags;
3601 		DC_UNLOCK(sc);
3602 		error = 0;
3603 		break;
3604 	case SIOCADDMULTI:
3605 	case SIOCDELMULTI:
3606 		DC_LOCK(sc);
3607 		dc_setfilt(sc);
3608 		DC_UNLOCK(sc);
3609 		error = 0;
3610 		break;
3611 	case SIOCGIFMEDIA:
3612 	case SIOCSIFMEDIA:
3613 		mii = device_get_softc(sc->dc_miibus);
3614 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
3615 		break;
3616 	case SIOCSIFCAP:
3617 #ifdef DEVICE_POLLING
3618 		if (ifr->ifr_reqcap & IFCAP_POLLING &&
3619 		    !(ifp->if_capenable & IFCAP_POLLING)) {
3620 			error = ether_poll_register(dc_poll, ifp);
3621 			if (error)
3622 				return(error);
3623 			DC_LOCK(sc);
3624 			/* Disable interrupts */
3625 			CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3626 			ifp->if_capenable |= IFCAP_POLLING;
3627 			DC_UNLOCK(sc);
3628 			return (error);
3629 		}
3630 		if (!(ifr->ifr_reqcap & IFCAP_POLLING) &&
3631 		    ifp->if_capenable & IFCAP_POLLING) {
3632 			error = ether_poll_deregister(ifp);
3633 			/* Enable interrupts. */
3634 			DC_LOCK(sc);
3635 			CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3636 			ifp->if_capenable &= ~IFCAP_POLLING;
3637 			DC_UNLOCK(sc);
3638 			return (error);
3639 		}
3640 #endif /* DEVICE_POLLING */
3641 		break;
3642 	default:
3643 		error = ether_ioctl(ifp, command, data);
3644 		break;
3645 	}
3646 
3647 	return (error);
3648 }
3649 
3650 static void
3651 dc_watchdog(void *xsc)
3652 {
3653 	struct dc_softc *sc = xsc;
3654 	struct ifnet *ifp;
3655 
3656 	DC_LOCK_ASSERT(sc);
3657 
3658 	if (sc->dc_wdog_timer == 0 || --sc->dc_wdog_timer != 0) {
3659 		callout_reset(&sc->dc_wdog_ch, hz, dc_watchdog, sc);
3660 		return;
3661 	}
3662 
3663 	ifp = sc->dc_ifp;
3664 	ifp->if_oerrors++;
3665 	device_printf(sc->dc_dev, "watchdog timeout\n");
3666 
3667 	dc_stop(sc);
3668 	dc_reset(sc);
3669 	dc_init_locked(sc);
3670 
3671 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3672 		dc_start_locked(ifp);
3673 }
3674 
3675 /*
3676  * Stop the adapter and free any mbufs allocated to the
3677  * RX and TX lists.
3678  */
3679 static void
3680 dc_stop(struct dc_softc *sc)
3681 {
3682 	struct ifnet *ifp;
3683 	struct dc_list_data *ld;
3684 	struct dc_chain_data *cd;
3685 	int i;
3686 	u_int32_t ctl;
3687 
3688 	DC_LOCK_ASSERT(sc);
3689 
3690 	ifp = sc->dc_ifp;
3691 	ld = sc->dc_ldata;
3692 	cd = &sc->dc_cdata;
3693 
3694 	callout_stop(&sc->dc_stat_ch);
3695 	callout_stop(&sc->dc_wdog_ch);
3696 	sc->dc_wdog_timer = 0;
3697 
3698 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3699 
3700 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ON | DC_NETCFG_TX_ON));
3701 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3702 	CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
3703 	CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
3704 	sc->dc_link = 0;
3705 
3706 	/*
3707 	 * Free data in the RX lists.
3708 	 */
3709 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
3710 		if (cd->dc_rx_chain[i] != NULL) {
3711 			m_freem(cd->dc_rx_chain[i]);
3712 			cd->dc_rx_chain[i] = NULL;
3713 		}
3714 	}
3715 	bzero(&ld->dc_rx_list, sizeof(ld->dc_rx_list));
3716 
3717 	/*
3718 	 * Free the TX list buffers.
3719 	 */
3720 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
3721 		if (cd->dc_tx_chain[i] != NULL) {
3722 			ctl = le32toh(ld->dc_tx_list[i].dc_ctl);
3723 			if ((ctl & DC_TXCTL_SETUP) ||
3724 			    !(ctl & DC_TXCTL_LASTFRAG)) {
3725 				cd->dc_tx_chain[i] = NULL;
3726 				continue;
3727 			}
3728 			bus_dmamap_unload(sc->dc_mtag, cd->dc_tx_map[i]);
3729 			m_freem(cd->dc_tx_chain[i]);
3730 			cd->dc_tx_chain[i] = NULL;
3731 		}
3732 	}
3733 	bzero(&ld->dc_tx_list, sizeof(ld->dc_tx_list));
3734 }
3735 
3736 /*
3737  * Device suspend routine.  Stop the interface and save some PCI
3738  * settings in case the BIOS doesn't restore them properly on
3739  * resume.
3740  */
3741 static int
3742 dc_suspend(device_t dev)
3743 {
3744 	struct dc_softc *sc;
3745 
3746 	sc = device_get_softc(dev);
3747 	DC_LOCK(sc);
3748 	dc_stop(sc);
3749 	sc->suspended = 1;
3750 	DC_UNLOCK(sc);
3751 
3752 	return (0);
3753 }
3754 
3755 /*
3756  * Device resume routine.  Restore some PCI settings in case the BIOS
3757  * doesn't, re-enable busmastering, and restart the interface if
3758  * appropriate.
3759  */
3760 static int
3761 dc_resume(device_t dev)
3762 {
3763 	struct dc_softc *sc;
3764 	struct ifnet *ifp;
3765 
3766 	sc = device_get_softc(dev);
3767 	ifp = sc->dc_ifp;
3768 
3769 	/* reinitialize interface if necessary */
3770 	DC_LOCK(sc);
3771 	if (ifp->if_flags & IFF_UP)
3772 		dc_init_locked(sc);
3773 
3774 	sc->suspended = 0;
3775 	DC_UNLOCK(sc);
3776 
3777 	return (0);
3778 }
3779 
3780 /*
3781  * Stop all chip I/O so that the kernel's probe routines don't
3782  * get confused by errant DMAs when rebooting.
3783  */
3784 static int
3785 dc_shutdown(device_t dev)
3786 {
3787 	struct dc_softc *sc;
3788 
3789 	sc = device_get_softc(dev);
3790 
3791 	DC_LOCK(sc);
3792 	dc_stop(sc);
3793 	DC_UNLOCK(sc);
3794 
3795 	return (0);
3796 }
3797