xref: /freebsd/sys/dev/dc/if_dc.c (revision 10f0bcab61ef441cb5af32fb706688d8cbd55dc0)
1 /*-
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ee.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /*
37  * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
38  * series chips and several workalikes including the following:
39  *
40  * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com)
41  * Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
42  * Lite-On 82c168/82c169 PNIC (www.litecom.com)
43  * ASIX Electronics AX88140A (www.asix.com.tw)
44  * ASIX Electronics AX88141 (www.asix.com.tw)
45  * ADMtek AL981 (www.admtek.com.tw)
46  * ADMtek AN985 (www.admtek.com.tw)
47  * Netgear FA511 (www.netgear.com) Appears to be rebadged ADMTek AN985
48  * Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
49  * Accton EN1217 (www.accton.com)
50  * Xircom X3201 (www.xircom.com)
51  * Abocom FE2500
52  * Conexant LANfinity (www.conexant.com)
53  * 3Com OfficeConnect 10/100B 3CSOHO100B (www.3com.com)
54  *
55  * Datasheets for the 21143 are available at developer.intel.com.
56  * Datasheets for the clone parts can be found at their respective sites.
57  * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
58  * The PNIC II is essentially a Macronix 98715A chip; the only difference
59  * worth noting is that its multicast hash table is only 128 bits wide
60  * instead of 512.
61  *
62  * Written by Bill Paul <wpaul@ee.columbia.edu>
63  * Electrical Engineering Department
64  * Columbia University, New York City
65  */
66 /*
67  * The Intel 21143 is the successor to the DEC 21140. It is basically
68  * the same as the 21140 but with a few new features. The 21143 supports
69  * three kinds of media attachments:
70  *
71  * o MII port, for 10Mbps and 100Mbps support and NWAY
72  *   autonegotiation provided by an external PHY.
73  * o SYM port, for symbol mode 100Mbps support.
74  * o 10baseT port.
75  * o AUI/BNC port.
76  *
77  * The 100Mbps SYM port and 10baseT port can be used together in
78  * combination with the internal NWAY support to create a 10/100
79  * autosensing configuration.
80  *
81  * Note that not all tulip workalikes are handled in this driver: we only
82  * deal with those which are relatively well behaved. The Winbond is
83  * handled separately due to its different register offsets and the
84  * special handling needed for its various bugs. The PNIC is handled
85  * here, but I'm not thrilled about it.
86  *
87  * All of the workalike chips use some form of MII transceiver support
88  * with the exception of the Macronix chips, which also have a SYM port.
89  * The ASIX AX88140A is also documented to have a SYM port, but all
90  * the cards I've seen use an MII transceiver, probably because the
91  * AX88140A doesn't support internal NWAY.
92  */
93 
94 #ifdef HAVE_KERNEL_OPTION_HEADERS
95 #include "opt_device_polling.h"
96 #endif
97 
98 #include <sys/param.h>
99 #include <sys/endian.h>
100 #include <sys/systm.h>
101 #include <sys/sockio.h>
102 #include <sys/mbuf.h>
103 #include <sys/malloc.h>
104 #include <sys/kernel.h>
105 #include <sys/module.h>
106 #include <sys/socket.h>
107 
108 #include <net/if.h>
109 #include <net/if_arp.h>
110 #include <net/ethernet.h>
111 #include <net/if_dl.h>
112 #include <net/if_media.h>
113 #include <net/if_types.h>
114 #include <net/if_vlan_var.h>
115 
116 #include <net/bpf.h>
117 
118 #include <machine/bus.h>
119 #include <machine/resource.h>
120 #include <sys/bus.h>
121 #include <sys/rman.h>
122 
123 #include <dev/mii/mii.h>
124 #include <dev/mii/miivar.h>
125 
126 #include <dev/pci/pcireg.h>
127 #include <dev/pci/pcivar.h>
128 
129 #define DC_USEIOSPACE
130 
131 #include <dev/dc/if_dcreg.h>
132 
133 #ifdef __sparc64__
134 #include <dev/ofw/openfirm.h>
135 #include <machine/ofw_machdep.h>
136 #endif
137 
138 MODULE_DEPEND(dc, pci, 1, 1, 1);
139 MODULE_DEPEND(dc, ether, 1, 1, 1);
140 MODULE_DEPEND(dc, miibus, 1, 1, 1);
141 
142 /*
143  * "device miibus" is required in kernel config.  See GENERIC if you get
144  * errors here.
145  */
146 #include "miibus_if.h"
147 
148 /*
149  * Various supported device vendors/types and their names.
150  */
151 static const struct dc_type dc_devs[] = {
152 	{ DC_DEVID(DC_VENDORID_DEC, DC_DEVICEID_21143), 0,
153 		"Intel 21143 10/100BaseTX" },
154 	{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009), 0,
155 		"Davicom DM9009 10/100BaseTX" },
156 	{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100), 0,
157 		"Davicom DM9100 10/100BaseTX" },
158 	{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102), DC_REVISION_DM9102A,
159 		"Davicom DM9102A 10/100BaseTX" },
160 	{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102), 0,
161 		"Davicom DM9102 10/100BaseTX" },
162 	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AL981), 0,
163 		"ADMtek AL981 10/100BaseTX" },
164 	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN985), 0,
165 		"ADMtek AN985 10/100BaseTX" },
166 	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511), 0,
167 		"ADMtek ADM9511 10/100BaseTX" },
168 	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513), 0,
169 		"ADMtek ADM9513 10/100BaseTX" },
170 	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_FA511), 0,
171 		"Netgear FA511 10/100BaseTX" },
172 	{ DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A), DC_REVISION_88141,
173 		"ASIX AX88141 10/100BaseTX" },
174 	{ DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A), 0,
175 		"ASIX AX88140A 10/100BaseTX" },
176 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713), DC_REVISION_98713A,
177 		"Macronix 98713A 10/100BaseTX" },
178 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713), 0,
179 		"Macronix 98713 10/100BaseTX" },
180 	{ DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP), DC_REVISION_98713A,
181 		"Compex RL100-TX 10/100BaseTX" },
182 	{ DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP), 0,
183 		"Compex RL100-TX 10/100BaseTX" },
184 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), DC_REVISION_98725,
185 		"Macronix 98725 10/100BaseTX" },
186 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), DC_REVISION_98715AEC_C,
187 		"Macronix 98715AEC-C 10/100BaseTX" },
188 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), 0,
189 		"Macronix 98715/98715A 10/100BaseTX" },
190 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98727), 0,
191 		"Macronix 98727/98732 10/100BaseTX" },
192 	{ DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C115), 0,
193 		"LC82C115 PNIC II 10/100BaseTX" },
194 	{ DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168), DC_REVISION_82C169,
195 		"82c169 PNIC 10/100BaseTX" },
196 	{ DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168), 0,
197 		"82c168 PNIC 10/100BaseTX" },
198 	{ DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN1217), 0,
199 		"Accton EN1217 10/100BaseTX" },
200 	{ DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN2242), 0,
201 		"Accton EN2242 MiniPCI 10/100BaseTX" },
202 	{ DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201), 0,
203 		"Xircom X3201 10/100BaseTX" },
204 	{ DC_DEVID(DC_VENDORID_DLINK, DC_DEVICEID_DRP32TXD), 0,
205 		"Neteasy DRP-32TXD Cardbus 10/100" },
206 	{ DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500), 0,
207 		"Abocom FE2500 10/100BaseTX" },
208 	{ DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500MX), 0,
209 		"Abocom FE2500MX 10/100BaseTX" },
210 	{ DC_DEVID(DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112), 0,
211 		"Conexant LANfinity MiniPCI 10/100BaseTX" },
212 	{ DC_DEVID(DC_VENDORID_HAWKING, DC_DEVICEID_HAWKING_PN672TX), 0,
213 		"Hawking CB102 CardBus 10/100" },
214 	{ DC_DEVID(DC_VENDORID_PLANEX, DC_DEVICEID_FNW3602T), 0,
215 		"PlaneX FNW-3602-T CardBus 10/100" },
216 	{ DC_DEVID(DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB), 0,
217 		"3Com OfficeConnect 10/100B" },
218 	{ DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN120), 0,
219 		"Microsoft MN-120 CardBus 10/100" },
220 	{ DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130), 0,
221 		"Microsoft MN-130 10/100" },
222 	{ DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB08), 0,
223 		"Linksys PCMPC200 CardBus 10/100" },
224 	{ DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB09), 0,
225 		"Linksys PCMPC200 CardBus 10/100" },
226 	{ 0, 0, NULL }
227 };
228 
229 static int dc_probe(device_t);
230 static int dc_attach(device_t);
231 static int dc_detach(device_t);
232 static int dc_suspend(device_t);
233 static int dc_resume(device_t);
234 static const struct dc_type *dc_devtype(device_t);
235 static int dc_newbuf(struct dc_softc *, int, int);
236 static int dc_encap(struct dc_softc *, struct mbuf **);
237 static void dc_pnic_rx_bug_war(struct dc_softc *, int);
238 static int dc_rx_resync(struct dc_softc *);
239 static void dc_rxeof(struct dc_softc *);
240 static void dc_txeof(struct dc_softc *);
241 static void dc_tick(void *);
242 static void dc_tx_underrun(struct dc_softc *);
243 static void dc_intr(void *);
244 static void dc_start(struct ifnet *);
245 static void dc_start_locked(struct ifnet *);
246 static int dc_ioctl(struct ifnet *, u_long, caddr_t);
247 static void dc_init(void *);
248 static void dc_init_locked(struct dc_softc *);
249 static void dc_stop(struct dc_softc *);
250 static void dc_watchdog(void *);
251 static int dc_shutdown(device_t);
252 static int dc_ifmedia_upd(struct ifnet *);
253 static void dc_ifmedia_sts(struct ifnet *, struct ifmediareq *);
254 
255 static void dc_delay(struct dc_softc *);
256 static void dc_eeprom_idle(struct dc_softc *);
257 static void dc_eeprom_putbyte(struct dc_softc *, int);
258 static void dc_eeprom_getword(struct dc_softc *, int, u_int16_t *);
259 static void dc_eeprom_getword_pnic(struct dc_softc *, int, u_int16_t *);
260 static void dc_eeprom_getword_xircom(struct dc_softc *, int, u_int16_t *);
261 static void dc_eeprom_width(struct dc_softc *);
262 static void dc_read_eeprom(struct dc_softc *, caddr_t, int, int, int);
263 
264 static void dc_mii_writebit(struct dc_softc *, int);
265 static int dc_mii_readbit(struct dc_softc *);
266 static void dc_mii_sync(struct dc_softc *);
267 static void dc_mii_send(struct dc_softc *, u_int32_t, int);
268 static int dc_mii_readreg(struct dc_softc *, struct dc_mii_frame *);
269 static int dc_mii_writereg(struct dc_softc *, struct dc_mii_frame *);
270 static int dc_miibus_readreg(device_t, int, int);
271 static int dc_miibus_writereg(device_t, int, int, int);
272 static void dc_miibus_statchg(device_t);
273 static void dc_miibus_mediainit(device_t);
274 
275 static void dc_setcfg(struct dc_softc *, int);
276 static uint32_t dc_mchash_le(struct dc_softc *, const uint8_t *);
277 static uint32_t dc_mchash_be(const uint8_t *);
278 static void dc_setfilt_21143(struct dc_softc *);
279 static void dc_setfilt_asix(struct dc_softc *);
280 static void dc_setfilt_admtek(struct dc_softc *);
281 static void dc_setfilt_xircom(struct dc_softc *);
282 
283 static void dc_setfilt(struct dc_softc *);
284 
285 static void dc_reset(struct dc_softc *);
286 static int dc_list_rx_init(struct dc_softc *);
287 static int dc_list_tx_init(struct dc_softc *);
288 
289 static void dc_read_srom(struct dc_softc *, int);
290 static void dc_parse_21143_srom(struct dc_softc *);
291 static void dc_decode_leaf_sia(struct dc_softc *, struct dc_eblock_sia *);
292 static void dc_decode_leaf_mii(struct dc_softc *, struct dc_eblock_mii *);
293 static void dc_decode_leaf_sym(struct dc_softc *, struct dc_eblock_sym *);
294 static void dc_apply_fixup(struct dc_softc *, int);
295 
296 #ifdef DC_USEIOSPACE
297 #define DC_RES			SYS_RES_IOPORT
298 #define DC_RID			DC_PCI_CFBIO
299 #else
300 #define DC_RES			SYS_RES_MEMORY
301 #define DC_RID			DC_PCI_CFBMA
302 #endif
303 
304 static device_method_t dc_methods[] = {
305 	/* Device interface */
306 	DEVMETHOD(device_probe,		dc_probe),
307 	DEVMETHOD(device_attach,	dc_attach),
308 	DEVMETHOD(device_detach,	dc_detach),
309 	DEVMETHOD(device_suspend,	dc_suspend),
310 	DEVMETHOD(device_resume,	dc_resume),
311 	DEVMETHOD(device_shutdown,	dc_shutdown),
312 
313 	/* bus interface */
314 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
315 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
316 
317 	/* MII interface */
318 	DEVMETHOD(miibus_readreg,	dc_miibus_readreg),
319 	DEVMETHOD(miibus_writereg,	dc_miibus_writereg),
320 	DEVMETHOD(miibus_statchg,	dc_miibus_statchg),
321 	DEVMETHOD(miibus_mediainit,	dc_miibus_mediainit),
322 
323 	{ 0, 0 }
324 };
325 
326 static driver_t dc_driver = {
327 	"dc",
328 	dc_methods,
329 	sizeof(struct dc_softc)
330 };
331 
332 static devclass_t dc_devclass;
333 
334 DRIVER_MODULE(dc, cardbus, dc_driver, dc_devclass, 0, 0);
335 DRIVER_MODULE(dc, pci, dc_driver, dc_devclass, 0, 0);
336 DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, 0, 0);
337 
338 #define DC_SETBIT(sc, reg, x)				\
339 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
340 
341 #define DC_CLRBIT(sc, reg, x)				\
342 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
343 
344 #define SIO_SET(x)	DC_SETBIT(sc, DC_SIO, (x))
345 #define SIO_CLR(x)	DC_CLRBIT(sc, DC_SIO, (x))
346 
347 static void
348 dc_delay(struct dc_softc *sc)
349 {
350 	int idx;
351 
352 	for (idx = (300 / 33) + 1; idx > 0; idx--)
353 		CSR_READ_4(sc, DC_BUSCTL);
354 }
355 
356 static void
357 dc_eeprom_width(struct dc_softc *sc)
358 {
359 	int i;
360 
361 	/* Force EEPROM to idle state. */
362 	dc_eeprom_idle(sc);
363 
364 	/* Enter EEPROM access mode. */
365 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
366 	dc_delay(sc);
367 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
368 	dc_delay(sc);
369 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
370 	dc_delay(sc);
371 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
372 	dc_delay(sc);
373 
374 	for (i = 3; i--;) {
375 		if (6 & (1 << i))
376 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
377 		else
378 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
379 		dc_delay(sc);
380 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
381 		dc_delay(sc);
382 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
383 		dc_delay(sc);
384 	}
385 
386 	for (i = 1; i <= 12; i++) {
387 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
388 		dc_delay(sc);
389 		if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) {
390 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
391 			dc_delay(sc);
392 			break;
393 		}
394 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
395 		dc_delay(sc);
396 	}
397 
398 	/* Turn off EEPROM access mode. */
399 	dc_eeprom_idle(sc);
400 
401 	if (i < 4 || i > 12)
402 		sc->dc_romwidth = 6;
403 	else
404 		sc->dc_romwidth = i;
405 
406 	/* Enter EEPROM access mode. */
407 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
408 	dc_delay(sc);
409 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
410 	dc_delay(sc);
411 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
412 	dc_delay(sc);
413 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
414 	dc_delay(sc);
415 
416 	/* Turn off EEPROM access mode. */
417 	dc_eeprom_idle(sc);
418 }
419 
420 static void
421 dc_eeprom_idle(struct dc_softc *sc)
422 {
423 	int i;
424 
425 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
426 	dc_delay(sc);
427 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
428 	dc_delay(sc);
429 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
430 	dc_delay(sc);
431 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
432 	dc_delay(sc);
433 
434 	for (i = 0; i < 25; i++) {
435 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
436 		dc_delay(sc);
437 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
438 		dc_delay(sc);
439 	}
440 
441 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
442 	dc_delay(sc);
443 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
444 	dc_delay(sc);
445 	CSR_WRITE_4(sc, DC_SIO, 0x00000000);
446 }
447 
448 /*
449  * Send a read command and address to the EEPROM, check for ACK.
450  */
451 static void
452 dc_eeprom_putbyte(struct dc_softc *sc, int addr)
453 {
454 	int d, i;
455 
456 	d = DC_EECMD_READ >> 6;
457 	for (i = 3; i--; ) {
458 		if (d & (1 << i))
459 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
460 		else
461 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
462 		dc_delay(sc);
463 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
464 		dc_delay(sc);
465 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
466 		dc_delay(sc);
467 	}
468 
469 	/*
470 	 * Feed in each bit and strobe the clock.
471 	 */
472 	for (i = sc->dc_romwidth; i--;) {
473 		if (addr & (1 << i)) {
474 			SIO_SET(DC_SIO_EE_DATAIN);
475 		} else {
476 			SIO_CLR(DC_SIO_EE_DATAIN);
477 		}
478 		dc_delay(sc);
479 		SIO_SET(DC_SIO_EE_CLK);
480 		dc_delay(sc);
481 		SIO_CLR(DC_SIO_EE_CLK);
482 		dc_delay(sc);
483 	}
484 }
485 
486 /*
487  * Read a word of data stored in the EEPROM at address 'addr.'
488  * The PNIC 82c168/82c169 has its own non-standard way to read
489  * the EEPROM.
490  */
491 static void
492 dc_eeprom_getword_pnic(struct dc_softc *sc, int addr, u_int16_t *dest)
493 {
494 	int i;
495 	u_int32_t r;
496 
497 	CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ | addr);
498 
499 	for (i = 0; i < DC_TIMEOUT; i++) {
500 		DELAY(1);
501 		r = CSR_READ_4(sc, DC_SIO);
502 		if (!(r & DC_PN_SIOCTL_BUSY)) {
503 			*dest = (u_int16_t)(r & 0xFFFF);
504 			return;
505 		}
506 	}
507 }
508 
509 /*
510  * Read a word of data stored in the EEPROM at address 'addr.'
511  * The Xircom X3201 has its own non-standard way to read
512  * the EEPROM, too.
513  */
514 static void
515 dc_eeprom_getword_xircom(struct dc_softc *sc, int addr, u_int16_t *dest)
516 {
517 
518 	SIO_SET(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
519 
520 	addr *= 2;
521 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
522 	*dest = (u_int16_t)CSR_READ_4(sc, DC_SIO) & 0xff;
523 	addr += 1;
524 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
525 	*dest |= ((u_int16_t)CSR_READ_4(sc, DC_SIO) & 0xff) << 8;
526 
527 	SIO_CLR(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
528 }
529 
530 /*
531  * Read a word of data stored in the EEPROM at address 'addr.'
532  */
533 static void
534 dc_eeprom_getword(struct dc_softc *sc, int addr, u_int16_t *dest)
535 {
536 	int i;
537 	u_int16_t word = 0;
538 
539 	/* Force EEPROM to idle state. */
540 	dc_eeprom_idle(sc);
541 
542 	/* Enter EEPROM access mode. */
543 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
544 	dc_delay(sc);
545 	DC_SETBIT(sc, DC_SIO,  DC_SIO_ROMCTL_READ);
546 	dc_delay(sc);
547 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
548 	dc_delay(sc);
549 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
550 	dc_delay(sc);
551 
552 	/*
553 	 * Send address of word we want to read.
554 	 */
555 	dc_eeprom_putbyte(sc, addr);
556 
557 	/*
558 	 * Start reading bits from EEPROM.
559 	 */
560 	for (i = 0x8000; i; i >>= 1) {
561 		SIO_SET(DC_SIO_EE_CLK);
562 		dc_delay(sc);
563 		if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
564 			word |= i;
565 		dc_delay(sc);
566 		SIO_CLR(DC_SIO_EE_CLK);
567 		dc_delay(sc);
568 	}
569 
570 	/* Turn off EEPROM access mode. */
571 	dc_eeprom_idle(sc);
572 
573 	*dest = word;
574 }
575 
576 /*
577  * Read a sequence of words from the EEPROM.
578  */
579 static void
580 dc_read_eeprom(struct dc_softc *sc, caddr_t dest, int off, int cnt, int be)
581 {
582 	int i;
583 	u_int16_t word = 0, *ptr;
584 
585 	for (i = 0; i < cnt; i++) {
586 		if (DC_IS_PNIC(sc))
587 			dc_eeprom_getword_pnic(sc, off + i, &word);
588 		else if (DC_IS_XIRCOM(sc))
589 			dc_eeprom_getword_xircom(sc, off + i, &word);
590 		else
591 			dc_eeprom_getword(sc, off + i, &word);
592 		ptr = (u_int16_t *)(dest + (i * 2));
593 		if (be)
594 			*ptr = be16toh(word);
595 		else
596 			*ptr = le16toh(word);
597 	}
598 }
599 
600 /*
601  * The following two routines are taken from the Macronix 98713
602  * Application Notes pp.19-21.
603  */
604 /*
605  * Write a bit to the MII bus.
606  */
607 static void
608 dc_mii_writebit(struct dc_softc *sc, int bit)
609 {
610 
611 	if (bit)
612 		CSR_WRITE_4(sc, DC_SIO,
613 		    DC_SIO_ROMCTL_WRITE | DC_SIO_MII_DATAOUT);
614 	else
615 		CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
616 
617 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
618 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
619 }
620 
621 /*
622  * Read a bit from the MII bus.
623  */
624 static int
625 dc_mii_readbit(struct dc_softc *sc)
626 {
627 
628 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_READ | DC_SIO_MII_DIR);
629 	CSR_READ_4(sc, DC_SIO);
630 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
631 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
632 	if (CSR_READ_4(sc, DC_SIO) & DC_SIO_MII_DATAIN)
633 		return (1);
634 
635 	return (0);
636 }
637 
638 /*
639  * Sync the PHYs by setting data bit and strobing the clock 32 times.
640  */
641 static void
642 dc_mii_sync(struct dc_softc *sc)
643 {
644 	int i;
645 
646 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
647 
648 	for (i = 0; i < 32; i++)
649 		dc_mii_writebit(sc, 1);
650 }
651 
652 /*
653  * Clock a series of bits through the MII.
654  */
655 static void
656 dc_mii_send(struct dc_softc *sc, u_int32_t bits, int cnt)
657 {
658 	int i;
659 
660 	for (i = (0x1 << (cnt - 1)); i; i >>= 1)
661 		dc_mii_writebit(sc, bits & i);
662 }
663 
664 /*
665  * Read an PHY register through the MII.
666  */
667 static int
668 dc_mii_readreg(struct dc_softc *sc, struct dc_mii_frame *frame)
669 {
670 	int i, ack;
671 
672 	/*
673 	 * Set up frame for RX.
674 	 */
675 	frame->mii_stdelim = DC_MII_STARTDELIM;
676 	frame->mii_opcode = DC_MII_READOP;
677 	frame->mii_turnaround = 0;
678 	frame->mii_data = 0;
679 
680 	/*
681 	 * Sync the PHYs.
682 	 */
683 	dc_mii_sync(sc);
684 
685 	/*
686 	 * Send command/address info.
687 	 */
688 	dc_mii_send(sc, frame->mii_stdelim, 2);
689 	dc_mii_send(sc, frame->mii_opcode, 2);
690 	dc_mii_send(sc, frame->mii_phyaddr, 5);
691 	dc_mii_send(sc, frame->mii_regaddr, 5);
692 
693 #ifdef notdef
694 	/* Idle bit */
695 	dc_mii_writebit(sc, 1);
696 	dc_mii_writebit(sc, 0);
697 #endif
698 
699 	/* Check for ack. */
700 	ack = dc_mii_readbit(sc);
701 
702 	/*
703 	 * Now try reading data bits. If the ack failed, we still
704 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
705 	 */
706 	if (ack) {
707 		for (i = 0; i < 16; i++)
708 			dc_mii_readbit(sc);
709 		goto fail;
710 	}
711 
712 	for (i = 0x8000; i; i >>= 1) {
713 		if (!ack) {
714 			if (dc_mii_readbit(sc))
715 				frame->mii_data |= i;
716 		}
717 	}
718 
719 fail:
720 
721 	dc_mii_writebit(sc, 0);
722 	dc_mii_writebit(sc, 0);
723 
724 	if (ack)
725 		return (1);
726 	return (0);
727 }
728 
729 /*
730  * Write to a PHY register through the MII.
731  */
732 static int
733 dc_mii_writereg(struct dc_softc *sc, struct dc_mii_frame *frame)
734 {
735 
736 	/*
737 	 * Set up frame for TX.
738 	 */
739 
740 	frame->mii_stdelim = DC_MII_STARTDELIM;
741 	frame->mii_opcode = DC_MII_WRITEOP;
742 	frame->mii_turnaround = DC_MII_TURNAROUND;
743 
744 	/*
745 	 * Sync the PHYs.
746 	 */
747 	dc_mii_sync(sc);
748 
749 	dc_mii_send(sc, frame->mii_stdelim, 2);
750 	dc_mii_send(sc, frame->mii_opcode, 2);
751 	dc_mii_send(sc, frame->mii_phyaddr, 5);
752 	dc_mii_send(sc, frame->mii_regaddr, 5);
753 	dc_mii_send(sc, frame->mii_turnaround, 2);
754 	dc_mii_send(sc, frame->mii_data, 16);
755 
756 	/* Idle bit. */
757 	dc_mii_writebit(sc, 0);
758 	dc_mii_writebit(sc, 0);
759 
760 	return (0);
761 }
762 
763 static int
764 dc_miibus_readreg(device_t dev, int phy, int reg)
765 {
766 	struct dc_mii_frame frame;
767 	struct dc_softc	 *sc;
768 	int i, rval, phy_reg = 0;
769 
770 	sc = device_get_softc(dev);
771 	bzero(&frame, sizeof(frame));
772 
773 	/*
774 	 * Note: both the AL981 and AN985 have internal PHYs,
775 	 * however the AL981 provides direct access to the PHY
776 	 * registers while the AN985 uses a serial MII interface.
777 	 * The AN985's MII interface is also buggy in that you
778 	 * can read from any MII address (0 to 31), but only address 1
779 	 * behaves normally. To deal with both cases, we pretend
780 	 * that the PHY is at MII address 1.
781 	 */
782 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
783 		return (0);
784 
785 	/*
786 	 * Note: the ukphy probes of the RS7112 report a PHY at
787 	 * MII address 0 (possibly HomePNA?) and 1 (ethernet)
788 	 * so we only respond to correct one.
789 	 */
790 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
791 		return (0);
792 
793 	if (sc->dc_pmode != DC_PMODE_MII) {
794 		if (phy == (MII_NPHY - 1)) {
795 			switch (reg) {
796 			case MII_BMSR:
797 			/*
798 			 * Fake something to make the probe
799 			 * code think there's a PHY here.
800 			 */
801 				return (BMSR_MEDIAMASK);
802 				break;
803 			case MII_PHYIDR1:
804 				if (DC_IS_PNIC(sc))
805 					return (DC_VENDORID_LO);
806 				return (DC_VENDORID_DEC);
807 				break;
808 			case MII_PHYIDR2:
809 				if (DC_IS_PNIC(sc))
810 					return (DC_DEVICEID_82C168);
811 				return (DC_DEVICEID_21143);
812 				break;
813 			default:
814 				return (0);
815 				break;
816 			}
817 		} else
818 			return (0);
819 	}
820 
821 	if (DC_IS_PNIC(sc)) {
822 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
823 		    (phy << 23) | (reg << 18));
824 		for (i = 0; i < DC_TIMEOUT; i++) {
825 			DELAY(1);
826 			rval = CSR_READ_4(sc, DC_PN_MII);
827 			if (!(rval & DC_PN_MII_BUSY)) {
828 				rval &= 0xFFFF;
829 				return (rval == 0xFFFF ? 0 : rval);
830 			}
831 		}
832 		return (0);
833 	}
834 
835 	if (DC_IS_COMET(sc)) {
836 		switch (reg) {
837 		case MII_BMCR:
838 			phy_reg = DC_AL_BMCR;
839 			break;
840 		case MII_BMSR:
841 			phy_reg = DC_AL_BMSR;
842 			break;
843 		case MII_PHYIDR1:
844 			phy_reg = DC_AL_VENID;
845 			break;
846 		case MII_PHYIDR2:
847 			phy_reg = DC_AL_DEVID;
848 			break;
849 		case MII_ANAR:
850 			phy_reg = DC_AL_ANAR;
851 			break;
852 		case MII_ANLPAR:
853 			phy_reg = DC_AL_LPAR;
854 			break;
855 		case MII_ANER:
856 			phy_reg = DC_AL_ANER;
857 			break;
858 		default:
859 			device_printf(dev, "phy_read: bad phy register %x\n",
860 			    reg);
861 			return (0);
862 			break;
863 		}
864 
865 		rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
866 
867 		if (rval == 0xFFFF)
868 			return (0);
869 		return (rval);
870 	}
871 
872 	frame.mii_phyaddr = phy;
873 	frame.mii_regaddr = reg;
874 	if (sc->dc_type == DC_TYPE_98713) {
875 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
876 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
877 	}
878 	dc_mii_readreg(sc, &frame);
879 	if (sc->dc_type == DC_TYPE_98713)
880 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
881 
882 	return (frame.mii_data);
883 }
884 
885 static int
886 dc_miibus_writereg(device_t dev, int phy, int reg, int data)
887 {
888 	struct dc_softc *sc;
889 	struct dc_mii_frame frame;
890 	int i, phy_reg = 0;
891 
892 	sc = device_get_softc(dev);
893 	bzero(&frame, sizeof(frame));
894 
895 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
896 		return (0);
897 
898 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
899 		return (0);
900 
901 	if (DC_IS_PNIC(sc)) {
902 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
903 		    (phy << 23) | (reg << 10) | data);
904 		for (i = 0; i < DC_TIMEOUT; i++) {
905 			if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
906 				break;
907 		}
908 		return (0);
909 	}
910 
911 	if (DC_IS_COMET(sc)) {
912 		switch (reg) {
913 		case MII_BMCR:
914 			phy_reg = DC_AL_BMCR;
915 			break;
916 		case MII_BMSR:
917 			phy_reg = DC_AL_BMSR;
918 			break;
919 		case MII_PHYIDR1:
920 			phy_reg = DC_AL_VENID;
921 			break;
922 		case MII_PHYIDR2:
923 			phy_reg = DC_AL_DEVID;
924 			break;
925 		case MII_ANAR:
926 			phy_reg = DC_AL_ANAR;
927 			break;
928 		case MII_ANLPAR:
929 			phy_reg = DC_AL_LPAR;
930 			break;
931 		case MII_ANER:
932 			phy_reg = DC_AL_ANER;
933 			break;
934 		default:
935 			device_printf(dev, "phy_write: bad phy register %x\n",
936 			    reg);
937 			return (0);
938 			break;
939 		}
940 
941 		CSR_WRITE_4(sc, phy_reg, data);
942 		return (0);
943 	}
944 
945 	frame.mii_phyaddr = phy;
946 	frame.mii_regaddr = reg;
947 	frame.mii_data = data;
948 
949 	if (sc->dc_type == DC_TYPE_98713) {
950 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
951 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
952 	}
953 	dc_mii_writereg(sc, &frame);
954 	if (sc->dc_type == DC_TYPE_98713)
955 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
956 
957 	return (0);
958 }
959 
960 static void
961 dc_miibus_statchg(device_t dev)
962 {
963 	struct dc_softc *sc;
964 	struct mii_data *mii;
965 	struct ifmedia *ifm;
966 
967 	sc = device_get_softc(dev);
968 	if (DC_IS_ADMTEK(sc))
969 		return;
970 
971 	mii = device_get_softc(sc->dc_miibus);
972 	ifm = &mii->mii_media;
973 	if (DC_IS_DAVICOM(sc) &&
974 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
975 		dc_setcfg(sc, ifm->ifm_media);
976 		sc->dc_if_media = ifm->ifm_media;
977 	} else {
978 		dc_setcfg(sc, mii->mii_media_active);
979 		sc->dc_if_media = mii->mii_media_active;
980 	}
981 }
982 
983 /*
984  * Special support for DM9102A cards with HomePNA PHYs. Note:
985  * with the Davicom DM9102A/DM9801 eval board that I have, it seems
986  * to be impossible to talk to the management interface of the DM9801
987  * PHY (its MDIO pin is not connected to anything). Consequently,
988  * the driver has to just 'know' about the additional mode and deal
989  * with it itself. *sigh*
990  */
991 static void
992 dc_miibus_mediainit(device_t dev)
993 {
994 	struct dc_softc *sc;
995 	struct mii_data *mii;
996 	struct ifmedia *ifm;
997 	int rev;
998 
999 	rev = pci_get_revid(dev);
1000 
1001 	sc = device_get_softc(dev);
1002 	mii = device_get_softc(sc->dc_miibus);
1003 	ifm = &mii->mii_media;
1004 
1005 	if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A)
1006 		ifmedia_add(ifm, IFM_ETHER | IFM_HPNA_1, 0, NULL);
1007 }
1008 
1009 #define DC_BITS_512	9
1010 #define DC_BITS_128	7
1011 #define DC_BITS_64	6
1012 
1013 static uint32_t
1014 dc_mchash_le(struct dc_softc *sc, const uint8_t *addr)
1015 {
1016 	uint32_t crc;
1017 
1018 	/* Compute CRC for the address value. */
1019 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
1020 
1021 	/*
1022 	 * The hash table on the PNIC II and the MX98715AEC-C/D/E
1023 	 * chips is only 128 bits wide.
1024 	 */
1025 	if (sc->dc_flags & DC_128BIT_HASH)
1026 		return (crc & ((1 << DC_BITS_128) - 1));
1027 
1028 	/* The hash table on the MX98715BEC is only 64 bits wide. */
1029 	if (sc->dc_flags & DC_64BIT_HASH)
1030 		return (crc & ((1 << DC_BITS_64) - 1));
1031 
1032 	/* Xircom's hash filtering table is different (read: weird) */
1033 	/* Xircom uses the LEAST significant bits */
1034 	if (DC_IS_XIRCOM(sc)) {
1035 		if ((crc & 0x180) == 0x180)
1036 			return ((crc & 0x0F) + (crc & 0x70) * 3 + (14 << 4));
1037 		else
1038 			return ((crc & 0x1F) + ((crc >> 1) & 0xF0) * 3 +
1039 			    (12 << 4));
1040 	}
1041 
1042 	return (crc & ((1 << DC_BITS_512) - 1));
1043 }
1044 
1045 /*
1046  * Calculate CRC of a multicast group address, return the lower 6 bits.
1047  */
1048 static uint32_t
1049 dc_mchash_be(const uint8_t *addr)
1050 {
1051 	uint32_t crc;
1052 
1053 	/* Compute CRC for the address value. */
1054 	crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
1055 
1056 	/* Return the filter bit position. */
1057 	return ((crc >> 26) & 0x0000003F);
1058 }
1059 
1060 /*
1061  * 21143-style RX filter setup routine. Filter programming is done by
1062  * downloading a special setup frame into the TX engine. 21143, Macronix,
1063  * PNIC, PNIC II and Davicom chips are programmed this way.
1064  *
1065  * We always program the chip using 'hash perfect' mode, i.e. one perfect
1066  * address (our node address) and a 512-bit hash filter for multicast
1067  * frames. We also sneak the broadcast address into the hash filter since
1068  * we need that too.
1069  */
1070 static void
1071 dc_setfilt_21143(struct dc_softc *sc)
1072 {
1073 	uint16_t eaddr[(ETHER_ADDR_LEN+1)/2];
1074 	struct dc_desc *sframe;
1075 	u_int32_t h, *sp;
1076 	struct ifmultiaddr *ifma;
1077 	struct ifnet *ifp;
1078 	int i;
1079 
1080 	ifp = sc->dc_ifp;
1081 
1082 	i = sc->dc_cdata.dc_tx_prod;
1083 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1084 	sc->dc_cdata.dc_tx_cnt++;
1085 	sframe = &sc->dc_ldata->dc_tx_list[i];
1086 	sp = sc->dc_cdata.dc_sbuf;
1087 	bzero(sp, DC_SFRAME_LEN);
1088 
1089 	sframe->dc_data = htole32(sc->dc_saddr);
1090 	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
1091 	    DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
1092 
1093 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
1094 
1095 	/* If we want promiscuous mode, set the allframes bit. */
1096 	if (ifp->if_flags & IFF_PROMISC)
1097 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1098 	else
1099 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1100 
1101 	if (ifp->if_flags & IFF_ALLMULTI)
1102 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1103 	else
1104 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1105 
1106 	IF_ADDR_LOCK(ifp);
1107 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1108 		if (ifma->ifma_addr->sa_family != AF_LINK)
1109 			continue;
1110 		h = dc_mchash_le(sc,
1111 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1112 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1113 	}
1114 	IF_ADDR_UNLOCK(ifp);
1115 
1116 	if (ifp->if_flags & IFF_BROADCAST) {
1117 		h = dc_mchash_le(sc, ifp->if_broadcastaddr);
1118 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1119 	}
1120 
1121 	/* Set our MAC address. */
1122 	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1123 	sp[39] = DC_SP_MAC(eaddr[0]);
1124 	sp[40] = DC_SP_MAC(eaddr[1]);
1125 	sp[41] = DC_SP_MAC(eaddr[2]);
1126 
1127 	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1128 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1129 
1130 	/*
1131 	 * The PNIC takes an exceedingly long time to process its
1132 	 * setup frame; wait 10ms after posting the setup frame
1133 	 * before proceeding, just so it has time to swallow its
1134 	 * medicine.
1135 	 */
1136 	DELAY(10000);
1137 
1138 	sc->dc_wdog_timer = 5;
1139 }
1140 
1141 static void
1142 dc_setfilt_admtek(struct dc_softc *sc)
1143 {
1144 	uint32_t eaddr[(ETHER_ADDR_LEN+3)/4];
1145 	struct ifnet *ifp;
1146 	struct ifmultiaddr *ifma;
1147 	int h = 0;
1148 	u_int32_t hashes[2] = { 0, 0 };
1149 
1150 	ifp = sc->dc_ifp;
1151 
1152 	/* Init our MAC address. */
1153 	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1154 	CSR_WRITE_4(sc, DC_AL_PAR0, eaddr[0]);
1155 	CSR_WRITE_4(sc, DC_AL_PAR1, eaddr[1]);
1156 
1157 	/* If we want promiscuous mode, set the allframes bit. */
1158 	if (ifp->if_flags & IFF_PROMISC)
1159 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1160 	else
1161 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1162 
1163 	if (ifp->if_flags & IFF_ALLMULTI)
1164 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1165 	else
1166 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1167 
1168 	/* First, zot all the existing hash bits. */
1169 	CSR_WRITE_4(sc, DC_AL_MAR0, 0);
1170 	CSR_WRITE_4(sc, DC_AL_MAR1, 0);
1171 
1172 	/*
1173 	 * If we're already in promisc or allmulti mode, we
1174 	 * don't have to bother programming the multicast filter.
1175 	 */
1176 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
1177 		return;
1178 
1179 	/* Now program new ones. */
1180 	IF_ADDR_LOCK(ifp);
1181 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1182 		if (ifma->ifma_addr->sa_family != AF_LINK)
1183 			continue;
1184 		if (DC_IS_CENTAUR(sc))
1185 			h = dc_mchash_le(sc,
1186 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1187 		else
1188 			h = dc_mchash_be(
1189 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1190 		if (h < 32)
1191 			hashes[0] |= (1 << h);
1192 		else
1193 			hashes[1] |= (1 << (h - 32));
1194 	}
1195 	IF_ADDR_UNLOCK(ifp);
1196 
1197 	CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]);
1198 	CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]);
1199 }
1200 
1201 static void
1202 dc_setfilt_asix(struct dc_softc *sc)
1203 {
1204 	uint32_t eaddr[(ETHER_ADDR_LEN+3)/4];
1205 	struct ifnet *ifp;
1206 	struct ifmultiaddr *ifma;
1207 	int h = 0;
1208 	u_int32_t hashes[2] = { 0, 0 };
1209 
1210 	ifp = sc->dc_ifp;
1211 
1212 	/* Init our MAC address. */
1213 	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1214 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
1215 	CSR_WRITE_4(sc, DC_AX_FILTDATA, eaddr[0]);
1216 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
1217 	CSR_WRITE_4(sc, DC_AX_FILTDATA, eaddr[1]);
1218 
1219 	/* If we want promiscuous mode, set the allframes bit. */
1220 	if (ifp->if_flags & IFF_PROMISC)
1221 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1222 	else
1223 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1224 
1225 	if (ifp->if_flags & IFF_ALLMULTI)
1226 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1227 	else
1228 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1229 
1230 	/*
1231 	 * The ASIX chip has a special bit to enable reception
1232 	 * of broadcast frames.
1233 	 */
1234 	if (ifp->if_flags & IFF_BROADCAST)
1235 		DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1236 	else
1237 		DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1238 
1239 	/* first, zot all the existing hash bits */
1240 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1241 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1242 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1243 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1244 
1245 	/*
1246 	 * If we're already in promisc or allmulti mode, we
1247 	 * don't have to bother programming the multicast filter.
1248 	 */
1249 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
1250 		return;
1251 
1252 	/* now program new ones */
1253 	IF_ADDR_LOCK(ifp);
1254 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1255 		if (ifma->ifma_addr->sa_family != AF_LINK)
1256 			continue;
1257 		h = dc_mchash_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1258 		if (h < 32)
1259 			hashes[0] |= (1 << h);
1260 		else
1261 			hashes[1] |= (1 << (h - 32));
1262 	}
1263 	IF_ADDR_UNLOCK(ifp);
1264 
1265 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1266 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
1267 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1268 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
1269 }
1270 
1271 static void
1272 dc_setfilt_xircom(struct dc_softc *sc)
1273 {
1274 	uint16_t eaddr[(ETHER_ADDR_LEN+1)/2];
1275 	struct ifnet *ifp;
1276 	struct ifmultiaddr *ifma;
1277 	struct dc_desc *sframe;
1278 	u_int32_t h, *sp;
1279 	int i;
1280 
1281 	ifp = sc->dc_ifp;
1282 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1283 
1284 	i = sc->dc_cdata.dc_tx_prod;
1285 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1286 	sc->dc_cdata.dc_tx_cnt++;
1287 	sframe = &sc->dc_ldata->dc_tx_list[i];
1288 	sp = sc->dc_cdata.dc_sbuf;
1289 	bzero(sp, DC_SFRAME_LEN);
1290 
1291 	sframe->dc_data = htole32(sc->dc_saddr);
1292 	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
1293 	    DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
1294 
1295 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
1296 
1297 	/* If we want promiscuous mode, set the allframes bit. */
1298 	if (ifp->if_flags & IFF_PROMISC)
1299 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1300 	else
1301 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1302 
1303 	if (ifp->if_flags & IFF_ALLMULTI)
1304 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1305 	else
1306 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1307 
1308 	IF_ADDR_LOCK(ifp);
1309 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1310 		if (ifma->ifma_addr->sa_family != AF_LINK)
1311 			continue;
1312 		h = dc_mchash_le(sc,
1313 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1314 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1315 	}
1316 	IF_ADDR_UNLOCK(ifp);
1317 
1318 	if (ifp->if_flags & IFF_BROADCAST) {
1319 		h = dc_mchash_le(sc, ifp->if_broadcastaddr);
1320 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1321 	}
1322 
1323 	/* Set our MAC address. */
1324 	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1325 	sp[0] = DC_SP_MAC(eaddr[0]);
1326 	sp[1] = DC_SP_MAC(eaddr[1]);
1327 	sp[2] = DC_SP_MAC(eaddr[2]);
1328 
1329 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
1330 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
1331 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1332 	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1333 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1334 
1335 	/*
1336 	 * Wait some time...
1337 	 */
1338 	DELAY(1000);
1339 
1340 	sc->dc_wdog_timer = 5;
1341 }
1342 
1343 static void
1344 dc_setfilt(struct dc_softc *sc)
1345 {
1346 
1347 	if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
1348 	    DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc))
1349 		dc_setfilt_21143(sc);
1350 
1351 	if (DC_IS_ASIX(sc))
1352 		dc_setfilt_asix(sc);
1353 
1354 	if (DC_IS_ADMTEK(sc))
1355 		dc_setfilt_admtek(sc);
1356 
1357 	if (DC_IS_XIRCOM(sc))
1358 		dc_setfilt_xircom(sc);
1359 }
1360 
1361 /*
1362  * In order to fiddle with the 'full-duplex' and '100Mbps' bits in
1363  * the netconfig register, we first have to put the transmit and/or
1364  * receive logic in the idle state.
1365  */
1366 static void
1367 dc_setcfg(struct dc_softc *sc, int media)
1368 {
1369 	int i, restart = 0, watchdogreg;
1370 	u_int32_t isr;
1371 
1372 	if (IFM_SUBTYPE(media) == IFM_NONE)
1373 		return;
1374 
1375 	if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON)) {
1376 		restart = 1;
1377 		DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1378 
1379 		for (i = 0; i < DC_TIMEOUT; i++) {
1380 			isr = CSR_READ_4(sc, DC_ISR);
1381 			if (isr & DC_ISR_TX_IDLE &&
1382 			    ((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
1383 			    (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT))
1384 				break;
1385 			DELAY(10);
1386 		}
1387 
1388 		if (i == DC_TIMEOUT) {
1389 			if (!(isr & DC_ISR_TX_IDLE) && !DC_IS_ASIX(sc))
1390 				device_printf(sc->dc_dev,
1391 				    "%s: failed to force tx to idle state\n",
1392 				    __func__);
1393 			if (!((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
1394 			    (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT) &&
1395 			    !(DC_IS_CENTAUR(sc) || DC_IS_CONEXANT(sc) ||
1396 			    (DC_IS_DAVICOM(sc) && pci_get_revid(sc->dc_dev) >=
1397 			    DC_REVISION_DM9102A)))
1398 				device_printf(sc->dc_dev,
1399 				    "%s: failed to force rx to idle state\n",
1400 				    __func__);
1401 		}
1402 	}
1403 
1404 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
1405 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1406 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1407 		if (sc->dc_pmode == DC_PMODE_MII) {
1408 			if (DC_IS_INTEL(sc)) {
1409 			/* There's a write enable bit here that reads as 1. */
1410 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1411 				watchdogreg &= ~DC_WDOG_CTLWREN;
1412 				watchdogreg |= DC_WDOG_JABBERDIS;
1413 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1414 			} else {
1415 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1416 			}
1417 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1418 			    DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
1419 			if (sc->dc_type == DC_TYPE_98713)
1420 				DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1421 				    DC_NETCFG_SCRAMBLER));
1422 			if (!DC_IS_DAVICOM(sc))
1423 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1424 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1425 			if (DC_IS_INTEL(sc))
1426 				dc_apply_fixup(sc, IFM_AUTO);
1427 		} else {
1428 			if (DC_IS_PNIC(sc)) {
1429 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
1430 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1431 				DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1432 			}
1433 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1434 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1435 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1436 			if (DC_IS_INTEL(sc))
1437 				dc_apply_fixup(sc,
1438 				    (media & IFM_GMASK) == IFM_FDX ?
1439 				    IFM_100_TX | IFM_FDX : IFM_100_TX);
1440 		}
1441 	}
1442 
1443 	if (IFM_SUBTYPE(media) == IFM_10_T) {
1444 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1445 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1446 		if (sc->dc_pmode == DC_PMODE_MII) {
1447 			/* There's a write enable bit here that reads as 1. */
1448 			if (DC_IS_INTEL(sc)) {
1449 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1450 				watchdogreg &= ~DC_WDOG_CTLWREN;
1451 				watchdogreg |= DC_WDOG_JABBERDIS;
1452 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1453 			} else {
1454 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1455 			}
1456 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1457 			    DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
1458 			if (sc->dc_type == DC_TYPE_98713)
1459 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1460 			if (!DC_IS_DAVICOM(sc))
1461 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1462 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1463 			if (DC_IS_INTEL(sc))
1464 				dc_apply_fixup(sc, IFM_AUTO);
1465 		} else {
1466 			if (DC_IS_PNIC(sc)) {
1467 				DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
1468 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1469 				DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1470 			}
1471 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1472 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1473 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1474 			if (DC_IS_INTEL(sc)) {
1475 				DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET);
1476 				DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1477 				if ((media & IFM_GMASK) == IFM_FDX)
1478 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D);
1479 				else
1480 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F);
1481 				DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1482 				DC_CLRBIT(sc, DC_10BTCTRL,
1483 				    DC_TCTL_AUTONEGENBL);
1484 				dc_apply_fixup(sc,
1485 				    (media & IFM_GMASK) == IFM_FDX ?
1486 				    IFM_10_T | IFM_FDX : IFM_10_T);
1487 				DELAY(20000);
1488 			}
1489 		}
1490 	}
1491 
1492 	/*
1493 	 * If this is a Davicom DM9102A card with a DM9801 HomePNA
1494 	 * PHY and we want HomePNA mode, set the portsel bit to turn
1495 	 * on the external MII port.
1496 	 */
1497 	if (DC_IS_DAVICOM(sc)) {
1498 		if (IFM_SUBTYPE(media) == IFM_HPNA_1) {
1499 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1500 			sc->dc_link = 1;
1501 		} else {
1502 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1503 		}
1504 	}
1505 
1506 	if ((media & IFM_GMASK) == IFM_FDX) {
1507 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1508 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1509 			DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1510 	} else {
1511 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1512 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1513 			DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1514 	}
1515 
1516 	if (restart)
1517 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON | DC_NETCFG_RX_ON);
1518 }
1519 
1520 static void
1521 dc_reset(struct dc_softc *sc)
1522 {
1523 	int i;
1524 
1525 	DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1526 
1527 	for (i = 0; i < DC_TIMEOUT; i++) {
1528 		DELAY(10);
1529 		if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
1530 			break;
1531 	}
1532 
1533 	if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_CONEXANT(sc) ||
1534 	    DC_IS_XIRCOM(sc) || DC_IS_INTEL(sc)) {
1535 		DELAY(10000);
1536 		DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1537 		i = 0;
1538 	}
1539 
1540 	if (i == DC_TIMEOUT)
1541 		device_printf(sc->dc_dev, "reset never completed!\n");
1542 
1543 	/* Wait a little while for the chip to get its brains in order. */
1544 	DELAY(1000);
1545 
1546 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
1547 	CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
1548 	CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
1549 
1550 	/*
1551 	 * Bring the SIA out of reset. In some cases, it looks
1552 	 * like failing to unreset the SIA soon enough gets it
1553 	 * into a state where it will never come out of reset
1554 	 * until we reset the whole chip again.
1555 	 */
1556 	if (DC_IS_INTEL(sc)) {
1557 		DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1558 		CSR_WRITE_4(sc, DC_10BTCTRL, 0);
1559 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
1560 	}
1561 }
1562 
1563 static const struct dc_type *
1564 dc_devtype(device_t dev)
1565 {
1566 	const struct dc_type *t;
1567 	u_int32_t devid;
1568 	u_int8_t rev;
1569 
1570 	t = dc_devs;
1571 	devid = pci_get_devid(dev);
1572 	rev = pci_get_revid(dev);
1573 
1574 	while (t->dc_name != NULL) {
1575 		if (devid == t->dc_devid && rev >= t->dc_minrev)
1576 			return (t);
1577 		t++;
1578 	}
1579 
1580 	return (NULL);
1581 }
1582 
1583 /*
1584  * Probe for a 21143 or clone chip. Check the PCI vendor and device
1585  * IDs against our list and return a device name if we find a match.
1586  * We do a little bit of extra work to identify the exact type of
1587  * chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
1588  * but different revision IDs. The same is true for 98715/98715A
1589  * chips and the 98725, as well as the ASIX and ADMtek chips. In some
1590  * cases, the exact chip revision affects driver behavior.
1591  */
1592 static int
1593 dc_probe(device_t dev)
1594 {
1595 	const struct dc_type *t;
1596 
1597 	t = dc_devtype(dev);
1598 
1599 	if (t != NULL) {
1600 		device_set_desc(dev, t->dc_name);
1601 		return (BUS_PROBE_DEFAULT);
1602 	}
1603 
1604 	return (ENXIO);
1605 }
1606 
1607 static void
1608 dc_apply_fixup(struct dc_softc *sc, int media)
1609 {
1610 	struct dc_mediainfo *m;
1611 	u_int8_t *p;
1612 	int i;
1613 	u_int32_t reg;
1614 
1615 	m = sc->dc_mi;
1616 
1617 	while (m != NULL) {
1618 		if (m->dc_media == media)
1619 			break;
1620 		m = m->dc_next;
1621 	}
1622 
1623 	if (m == NULL)
1624 		return;
1625 
1626 	for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) {
1627 		reg = (p[0] | (p[1] << 8)) << 16;
1628 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1629 	}
1630 
1631 	for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) {
1632 		reg = (p[0] | (p[1] << 8)) << 16;
1633 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1634 	}
1635 }
1636 
1637 static void
1638 dc_decode_leaf_sia(struct dc_softc *sc, struct dc_eblock_sia *l)
1639 {
1640 	struct dc_mediainfo *m;
1641 
1642 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1643 	switch (l->dc_sia_code & ~DC_SIA_CODE_EXT) {
1644 	case DC_SIA_CODE_10BT:
1645 		m->dc_media = IFM_10_T;
1646 		break;
1647 	case DC_SIA_CODE_10BT_FDX:
1648 		m->dc_media = IFM_10_T | IFM_FDX;
1649 		break;
1650 	case DC_SIA_CODE_10B2:
1651 		m->dc_media = IFM_10_2;
1652 		break;
1653 	case DC_SIA_CODE_10B5:
1654 		m->dc_media = IFM_10_5;
1655 		break;
1656 	default:
1657 		break;
1658 	}
1659 
1660 	/*
1661 	 * We need to ignore CSR13, CSR14, CSR15 for SIA mode.
1662 	 * Things apparently already work for cards that do
1663 	 * supply Media Specific Data.
1664 	 */
1665 	if (l->dc_sia_code & DC_SIA_CODE_EXT) {
1666 		m->dc_gp_len = 2;
1667 		m->dc_gp_ptr =
1668 		(u_int8_t *)&l->dc_un.dc_sia_ext.dc_sia_gpio_ctl;
1669 	} else {
1670 		m->dc_gp_len = 2;
1671 		m->dc_gp_ptr =
1672 		(u_int8_t *)&l->dc_un.dc_sia_noext.dc_sia_gpio_ctl;
1673 	}
1674 
1675 	m->dc_next = sc->dc_mi;
1676 	sc->dc_mi = m;
1677 
1678 	sc->dc_pmode = DC_PMODE_SIA;
1679 }
1680 
1681 static void
1682 dc_decode_leaf_sym(struct dc_softc *sc, struct dc_eblock_sym *l)
1683 {
1684 	struct dc_mediainfo *m;
1685 
1686 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1687 	if (l->dc_sym_code == DC_SYM_CODE_100BT)
1688 		m->dc_media = IFM_100_TX;
1689 
1690 	if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX)
1691 		m->dc_media = IFM_100_TX | IFM_FDX;
1692 
1693 	m->dc_gp_len = 2;
1694 	m->dc_gp_ptr = (u_int8_t *)&l->dc_sym_gpio_ctl;
1695 
1696 	m->dc_next = sc->dc_mi;
1697 	sc->dc_mi = m;
1698 
1699 	sc->dc_pmode = DC_PMODE_SYM;
1700 }
1701 
1702 static void
1703 dc_decode_leaf_mii(struct dc_softc *sc, struct dc_eblock_mii *l)
1704 {
1705 	struct dc_mediainfo *m;
1706 	u_int8_t *p;
1707 
1708 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1709 	/* We abuse IFM_AUTO to represent MII. */
1710 	m->dc_media = IFM_AUTO;
1711 	m->dc_gp_len = l->dc_gpr_len;
1712 
1713 	p = (u_int8_t *)l;
1714 	p += sizeof(struct dc_eblock_mii);
1715 	m->dc_gp_ptr = p;
1716 	p += 2 * l->dc_gpr_len;
1717 	m->dc_reset_len = *p;
1718 	p++;
1719 	m->dc_reset_ptr = p;
1720 
1721 	m->dc_next = sc->dc_mi;
1722 	sc->dc_mi = m;
1723 }
1724 
1725 static void
1726 dc_read_srom(struct dc_softc *sc, int bits)
1727 {
1728 	int size;
1729 
1730 	size = 2 << bits;
1731 	sc->dc_srom = malloc(size, M_DEVBUF, M_NOWAIT);
1732 	dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (size / 2), 0);
1733 }
1734 
1735 static void
1736 dc_parse_21143_srom(struct dc_softc *sc)
1737 {
1738 	struct dc_leaf_hdr *lhdr;
1739 	struct dc_eblock_hdr *hdr;
1740 	int have_mii, i, loff;
1741 	char *ptr;
1742 
1743 	have_mii = 0;
1744 	loff = sc->dc_srom[27];
1745 	lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]);
1746 
1747 	ptr = (char *)lhdr;
1748 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1749 	/*
1750 	 * Look if we got a MII media block.
1751 	 */
1752 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1753 		hdr = (struct dc_eblock_hdr *)ptr;
1754 		if (hdr->dc_type == DC_EBLOCK_MII)
1755 		    have_mii++;
1756 
1757 		ptr += (hdr->dc_len & 0x7F);
1758 		ptr++;
1759 	}
1760 
1761 	/*
1762 	 * Do the same thing again. Only use SIA and SYM media
1763 	 * blocks if no MII media block is available.
1764 	 */
1765 	ptr = (char *)lhdr;
1766 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1767 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1768 		hdr = (struct dc_eblock_hdr *)ptr;
1769 		switch (hdr->dc_type) {
1770 		case DC_EBLOCK_MII:
1771 			dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr);
1772 			break;
1773 		case DC_EBLOCK_SIA:
1774 			if (! have_mii)
1775 				dc_decode_leaf_sia(sc,
1776 				    (struct dc_eblock_sia *)hdr);
1777 			break;
1778 		case DC_EBLOCK_SYM:
1779 			if (! have_mii)
1780 				dc_decode_leaf_sym(sc,
1781 				    (struct dc_eblock_sym *)hdr);
1782 			break;
1783 		default:
1784 			/* Don't care. Yet. */
1785 			break;
1786 		}
1787 		ptr += (hdr->dc_len & 0x7F);
1788 		ptr++;
1789 	}
1790 }
1791 
1792 static void
1793 dc_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1794 {
1795 	u_int32_t *paddr;
1796 
1797 	KASSERT(nseg == 1,
1798 	    ("%s: wrong number of segments (%d)", __func__, nseg));
1799 	paddr = arg;
1800 	*paddr = segs->ds_addr;
1801 }
1802 
1803 /*
1804  * Attach the interface. Allocate softc structures, do ifmedia
1805  * setup and ethernet/BPF attach.
1806  */
1807 static int
1808 dc_attach(device_t dev)
1809 {
1810 	int tmp = 0;
1811 	uint32_t eaddr[(ETHER_ADDR_LEN+3)/4];
1812 	u_int32_t command;
1813 	struct dc_softc *sc;
1814 	struct ifnet *ifp;
1815 	u_int32_t revision;
1816 	int error = 0, rid, mac_offset;
1817 	int i;
1818 	u_int8_t *mac;
1819 
1820 	sc = device_get_softc(dev);
1821 	sc->dc_dev = dev;
1822 
1823 	mtx_init(&sc->dc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1824 	    MTX_DEF);
1825 
1826 	/*
1827 	 * Map control/status registers.
1828 	 */
1829 	pci_enable_busmaster(dev);
1830 
1831 	rid = DC_RID;
1832 	sc->dc_res = bus_alloc_resource_any(dev, DC_RES, &rid, RF_ACTIVE);
1833 
1834 	if (sc->dc_res == NULL) {
1835 		device_printf(dev, "couldn't map ports/memory\n");
1836 		error = ENXIO;
1837 		goto fail;
1838 	}
1839 
1840 	sc->dc_btag = rman_get_bustag(sc->dc_res);
1841 	sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
1842 
1843 	/* Allocate interrupt. */
1844 	rid = 0;
1845 	sc->dc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1846 	    RF_SHAREABLE | RF_ACTIVE);
1847 
1848 	if (sc->dc_irq == NULL) {
1849 		device_printf(dev, "couldn't map interrupt\n");
1850 		error = ENXIO;
1851 		goto fail;
1852 	}
1853 
1854 	/* Need this info to decide on a chip type. */
1855 	sc->dc_info = dc_devtype(dev);
1856 	revision = pci_get_revid(dev);
1857 
1858 	/* Get the eeprom width, but PNIC and XIRCOM have diff eeprom */
1859 	if (sc->dc_info->dc_devid !=
1860 	    DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168) &&
1861 	    sc->dc_info->dc_devid !=
1862 	    DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201))
1863 		dc_eeprom_width(sc);
1864 
1865 	switch (sc->dc_info->dc_devid) {
1866 	case DC_DEVID(DC_VENDORID_DEC, DC_DEVICEID_21143):
1867 		sc->dc_type = DC_TYPE_21143;
1868 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1869 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1870 		/* Save EEPROM contents so we can parse them later. */
1871 		dc_read_srom(sc, sc->dc_romwidth);
1872 		break;
1873 	case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009):
1874 	case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100):
1875 	case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102):
1876 		sc->dc_type = DC_TYPE_DM9102;
1877 		sc->dc_flags |= DC_TX_COALESCE | DC_TX_INTR_ALWAYS;
1878 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_TX_STORENFWD;
1879 		sc->dc_flags |= DC_TX_ALIGN;
1880 		sc->dc_pmode = DC_PMODE_MII;
1881 
1882 		/* Increase the latency timer value. */
1883 		pci_write_config(dev, PCIR_LATTIMER, 0x80, 1);
1884 		break;
1885 	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AL981):
1886 		sc->dc_type = DC_TYPE_AL981;
1887 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1888 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1889 		sc->dc_pmode = DC_PMODE_MII;
1890 		dc_read_srom(sc, sc->dc_romwidth);
1891 		break;
1892 	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN985):
1893 	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511):
1894 	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513):
1895 	case DC_DEVID(DC_VENDORID_DLINK, DC_DEVICEID_DRP32TXD):
1896 	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_FA511):
1897 	case DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500):
1898 	case DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500MX):
1899 	case DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN2242):
1900 	case DC_DEVID(DC_VENDORID_HAWKING, DC_DEVICEID_HAWKING_PN672TX):
1901 	case DC_DEVID(DC_VENDORID_PLANEX, DC_DEVICEID_FNW3602T):
1902 	case DC_DEVID(DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB):
1903 	case DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN120):
1904 	case DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130):
1905 	case DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB08):
1906 	case DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB09):
1907 		sc->dc_type = DC_TYPE_AN985;
1908 		sc->dc_flags |= DC_64BIT_HASH;
1909 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1910 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1911 		sc->dc_pmode = DC_PMODE_MII;
1912 		/* Don't read SROM for - auto-loaded on reset */
1913 		break;
1914 	case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713):
1915 	case DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP):
1916 		if (revision < DC_REVISION_98713A) {
1917 			sc->dc_type = DC_TYPE_98713;
1918 		}
1919 		if (revision >= DC_REVISION_98713A) {
1920 			sc->dc_type = DC_TYPE_98713A;
1921 			sc->dc_flags |= DC_21143_NWAY;
1922 		}
1923 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1924 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1925 		break;
1926 	case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5):
1927 	case DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN1217):
1928 		/*
1929 		 * Macronix MX98715AEC-C/D/E parts have only a
1930 		 * 128-bit hash table. We need to deal with these
1931 		 * in the same manner as the PNIC II so that we
1932 		 * get the right number of bits out of the
1933 		 * CRC routine.
1934 		 */
1935 		if (revision >= DC_REVISION_98715AEC_C &&
1936 		    revision < DC_REVISION_98725)
1937 			sc->dc_flags |= DC_128BIT_HASH;
1938 		sc->dc_type = DC_TYPE_987x5;
1939 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1940 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
1941 		break;
1942 	case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98727):
1943 		sc->dc_type = DC_TYPE_987x5;
1944 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1945 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
1946 		break;
1947 	case DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C115):
1948 		sc->dc_type = DC_TYPE_PNICII;
1949 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR | DC_128BIT_HASH;
1950 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
1951 		break;
1952 	case DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168):
1953 		sc->dc_type = DC_TYPE_PNIC;
1954 		sc->dc_flags |= DC_TX_STORENFWD | DC_TX_INTR_ALWAYS;
1955 		sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
1956 		sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_NOWAIT);
1957 		if (revision < DC_REVISION_82C169)
1958 			sc->dc_pmode = DC_PMODE_SYM;
1959 		break;
1960 	case DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A):
1961 		sc->dc_type = DC_TYPE_ASIX;
1962 		sc->dc_flags |= DC_TX_USE_TX_INTR | DC_TX_INTR_FIRSTFRAG;
1963 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1964 		sc->dc_pmode = DC_PMODE_MII;
1965 		break;
1966 	case DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201):
1967 		sc->dc_type = DC_TYPE_XIRCOM;
1968 		sc->dc_flags |= DC_TX_INTR_ALWAYS | DC_TX_COALESCE |
1969 				DC_TX_ALIGN;
1970 		/*
1971 		 * We don't actually need to coalesce, but we're doing
1972 		 * it to obtain a double word aligned buffer.
1973 		 * The DC_TX_COALESCE flag is required.
1974 		 */
1975 		sc->dc_pmode = DC_PMODE_MII;
1976 		break;
1977 	case DC_DEVID(DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112):
1978 		sc->dc_type = DC_TYPE_CONEXANT;
1979 		sc->dc_flags |= DC_TX_INTR_ALWAYS;
1980 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1981 		sc->dc_pmode = DC_PMODE_MII;
1982 		dc_read_srom(sc, sc->dc_romwidth);
1983 		break;
1984 	default:
1985 		device_printf(dev, "unknown device: %x\n",
1986 		    sc->dc_info->dc_devid);
1987 		break;
1988 	}
1989 
1990 	/* Save the cache line size. */
1991 	if (DC_IS_DAVICOM(sc))
1992 		sc->dc_cachesize = 0;
1993 	else
1994 		sc->dc_cachesize = pci_get_cachelnsz(dev);
1995 
1996 	/* Reset the adapter. */
1997 	dc_reset(sc);
1998 
1999 	/* Take 21143 out of snooze mode */
2000 	if (DC_IS_INTEL(sc) || DC_IS_XIRCOM(sc)) {
2001 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
2002 		command &= ~(DC_CFDD_SNOOZE_MODE | DC_CFDD_SLEEP_MODE);
2003 		pci_write_config(dev, DC_PCI_CFDD, command, 4);
2004 	}
2005 
2006 	/*
2007 	 * Try to learn something about the supported media.
2008 	 * We know that ASIX and ADMtek and Davicom devices
2009 	 * will *always* be using MII media, so that's a no-brainer.
2010 	 * The tricky ones are the Macronix/PNIC II and the
2011 	 * Intel 21143.
2012 	 */
2013 	if (DC_IS_INTEL(sc))
2014 		dc_parse_21143_srom(sc);
2015 	else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
2016 		if (sc->dc_type == DC_TYPE_98713)
2017 			sc->dc_pmode = DC_PMODE_MII;
2018 		else
2019 			sc->dc_pmode = DC_PMODE_SYM;
2020 	} else if (!sc->dc_pmode)
2021 		sc->dc_pmode = DC_PMODE_MII;
2022 
2023 	/*
2024 	 * Get station address from the EEPROM.
2025 	 */
2026 	switch(sc->dc_type) {
2027 	case DC_TYPE_98713:
2028 	case DC_TYPE_98713A:
2029 	case DC_TYPE_987x5:
2030 	case DC_TYPE_PNICII:
2031 		dc_read_eeprom(sc, (caddr_t)&mac_offset,
2032 		    (DC_EE_NODEADDR_OFFSET / 2), 1, 0);
2033 		dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
2034 		break;
2035 	case DC_TYPE_PNIC:
2036 		dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
2037 		break;
2038 	case DC_TYPE_DM9102:
2039 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2040 #ifdef __sparc64__
2041 		/*
2042 		 * If this is an onboard dc(4) the station address read from
2043 		 * the EEPROM is all zero and we have to get it from the FCode.
2044 		 */
2045 		if (eaddr[0] == 0 && (eaddr[1] & ~0xffff) == 0)
2046 			OF_getetheraddr(dev, (caddr_t)&eaddr);
2047 #endif
2048 		break;
2049 	case DC_TYPE_21143:
2050 	case DC_TYPE_ASIX:
2051 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2052 		break;
2053 	case DC_TYPE_AL981:
2054 	case DC_TYPE_AN985:
2055 		eaddr[0] = CSR_READ_4(sc, DC_AL_PAR0);
2056 		eaddr[1] = CSR_READ_4(sc, DC_AL_PAR1);
2057 		break;
2058 	case DC_TYPE_CONEXANT:
2059 		bcopy(sc->dc_srom + DC_CONEXANT_EE_NODEADDR, &eaddr,
2060 		    ETHER_ADDR_LEN);
2061 		break;
2062 	case DC_TYPE_XIRCOM:
2063 		/* The MAC comes from the CIS. */
2064 		mac = pci_get_ether(dev);
2065 		if (!mac) {
2066 			device_printf(dev, "No station address in CIS!\n");
2067 			error = ENXIO;
2068 			goto fail;
2069 		}
2070 		bcopy(mac, eaddr, ETHER_ADDR_LEN);
2071 		break;
2072 	default:
2073 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2074 		break;
2075 	}
2076 
2077 	/* Allocate a busdma tag and DMA safe memory for TX/RX descriptors. */
2078 	error = bus_dma_tag_create(bus_get_dma_tag(dev), PAGE_SIZE, 0,
2079 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
2080 	    sizeof(struct dc_list_data), 1, sizeof(struct dc_list_data),
2081 	    0, NULL, NULL, &sc->dc_ltag);
2082 	if (error) {
2083 		device_printf(dev, "failed to allocate busdma tag\n");
2084 		error = ENXIO;
2085 		goto fail;
2086 	}
2087 	error = bus_dmamem_alloc(sc->dc_ltag, (void **)&sc->dc_ldata,
2088 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->dc_lmap);
2089 	if (error) {
2090 		device_printf(dev, "failed to allocate DMA safe memory\n");
2091 		error = ENXIO;
2092 		goto fail;
2093 	}
2094 	error = bus_dmamap_load(sc->dc_ltag, sc->dc_lmap, sc->dc_ldata,
2095 	    sizeof(struct dc_list_data), dc_dma_map_addr, &sc->dc_laddr,
2096 	    BUS_DMA_NOWAIT);
2097 	if (error) {
2098 		device_printf(dev, "cannot get address of the descriptors\n");
2099 		error = ENXIO;
2100 		goto fail;
2101 	}
2102 
2103 	/*
2104 	 * Allocate a busdma tag and DMA safe memory for the multicast
2105 	 * setup frame.
2106 	 */
2107 	error = bus_dma_tag_create(bus_get_dma_tag(dev), PAGE_SIZE, 0,
2108 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
2109 	    DC_SFRAME_LEN + DC_MIN_FRAMELEN, 1, DC_SFRAME_LEN + DC_MIN_FRAMELEN,
2110 	    0, NULL, NULL, &sc->dc_stag);
2111 	if (error) {
2112 		device_printf(dev, "failed to allocate busdma tag\n");
2113 		error = ENXIO;
2114 		goto fail;
2115 	}
2116 	error = bus_dmamem_alloc(sc->dc_stag, (void **)&sc->dc_cdata.dc_sbuf,
2117 	    BUS_DMA_NOWAIT, &sc->dc_smap);
2118 	if (error) {
2119 		device_printf(dev, "failed to allocate DMA safe memory\n");
2120 		error = ENXIO;
2121 		goto fail;
2122 	}
2123 	error = bus_dmamap_load(sc->dc_stag, sc->dc_smap, sc->dc_cdata.dc_sbuf,
2124 	    DC_SFRAME_LEN, dc_dma_map_addr, &sc->dc_saddr, BUS_DMA_NOWAIT);
2125 	if (error) {
2126 		device_printf(dev, "cannot get address of the descriptors\n");
2127 		error = ENXIO;
2128 		goto fail;
2129 	}
2130 
2131 	/* Allocate a busdma tag for mbufs. */
2132 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0,
2133 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
2134 	    MCLBYTES * DC_MAXFRAGS, DC_MAXFRAGS, MCLBYTES,
2135 	    0, NULL, NULL, &sc->dc_mtag);
2136 	if (error) {
2137 		device_printf(dev, "failed to allocate busdma tag\n");
2138 		error = ENXIO;
2139 		goto fail;
2140 	}
2141 
2142 	/* Create the TX/RX busdma maps. */
2143 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2144 		error = bus_dmamap_create(sc->dc_mtag, 0,
2145 		    &sc->dc_cdata.dc_tx_map[i]);
2146 		if (error) {
2147 			device_printf(dev, "failed to init TX ring\n");
2148 			error = ENXIO;
2149 			goto fail;
2150 		}
2151 	}
2152 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2153 		error = bus_dmamap_create(sc->dc_mtag, 0,
2154 		    &sc->dc_cdata.dc_rx_map[i]);
2155 		if (error) {
2156 			device_printf(dev, "failed to init RX ring\n");
2157 			error = ENXIO;
2158 			goto fail;
2159 		}
2160 	}
2161 	error = bus_dmamap_create(sc->dc_mtag, 0, &sc->dc_sparemap);
2162 	if (error) {
2163 		device_printf(dev, "failed to init RX ring\n");
2164 		error = ENXIO;
2165 		goto fail;
2166 	}
2167 
2168 	ifp = sc->dc_ifp = if_alloc(IFT_ETHER);
2169 	if (ifp == NULL) {
2170 		device_printf(dev, "can not if_alloc()\n");
2171 		error = ENOSPC;
2172 		goto fail;
2173 	}
2174 	ifp->if_softc = sc;
2175 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2176 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2177 	ifp->if_ioctl = dc_ioctl;
2178 	ifp->if_start = dc_start;
2179 	ifp->if_init = dc_init;
2180 	IFQ_SET_MAXLEN(&ifp->if_snd, DC_TX_LIST_CNT - 1);
2181 	ifp->if_snd.ifq_drv_maxlen = DC_TX_LIST_CNT - 1;
2182 	IFQ_SET_READY(&ifp->if_snd);
2183 
2184 	/*
2185 	 * Do MII setup. If this is a 21143, check for a PHY on the
2186 	 * MII bus after applying any necessary fixups to twiddle the
2187 	 * GPIO bits. If we don't end up finding a PHY, restore the
2188 	 * old selection (SIA only or SIA/SYM) and attach the dcphy
2189 	 * driver instead.
2190 	 */
2191 	if (DC_IS_INTEL(sc)) {
2192 		dc_apply_fixup(sc, IFM_AUTO);
2193 		tmp = sc->dc_pmode;
2194 		sc->dc_pmode = DC_PMODE_MII;
2195 	}
2196 
2197 	/*
2198 	 * Setup General Purpose port mode and data so the tulip can talk
2199 	 * to the MII.  This needs to be done before mii_phy_probe so that
2200 	 * we can actually see them.
2201 	 */
2202 	if (DC_IS_XIRCOM(sc)) {
2203 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
2204 		    DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2205 		DELAY(10);
2206 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
2207 		    DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2208 		DELAY(10);
2209 	}
2210 
2211 	error = mii_phy_probe(dev, &sc->dc_miibus,
2212 	    dc_ifmedia_upd, dc_ifmedia_sts);
2213 
2214 	if (error && DC_IS_INTEL(sc)) {
2215 		sc->dc_pmode = tmp;
2216 		if (sc->dc_pmode != DC_PMODE_SIA)
2217 			sc->dc_pmode = DC_PMODE_SYM;
2218 		sc->dc_flags |= DC_21143_NWAY;
2219 		mii_phy_probe(dev, &sc->dc_miibus,
2220 		    dc_ifmedia_upd, dc_ifmedia_sts);
2221 		/*
2222 		 * For non-MII cards, we need to have the 21143
2223 		 * drive the LEDs. Except there are some systems
2224 		 * like the NEC VersaPro NoteBook PC which have no
2225 		 * LEDs, and twiddling these bits has adverse effects
2226 		 * on them. (I.e. you suddenly can't get a link.)
2227 		 */
2228 		if (!(pci_get_subvendor(dev) == 0x1033 &&
2229 		    pci_get_subdevice(dev) == 0x8028))
2230 			sc->dc_flags |= DC_TULIP_LEDS;
2231 		error = 0;
2232 	}
2233 
2234 	if (error) {
2235 		device_printf(dev, "MII without any PHY!\n");
2236 		goto fail;
2237 	}
2238 
2239 	if (DC_IS_ADMTEK(sc)) {
2240 		/*
2241 		 * Set automatic TX underrun recovery for the ADMtek chips
2242 		 */
2243 		DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR);
2244 	}
2245 
2246 	/*
2247 	 * Tell the upper layer(s) we support long frames.
2248 	 */
2249 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2250 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
2251 	ifp->if_capenable = ifp->if_capabilities;
2252 #ifdef DEVICE_POLLING
2253 	ifp->if_capabilities |= IFCAP_POLLING;
2254 #endif
2255 
2256 	callout_init_mtx(&sc->dc_stat_ch, &sc->dc_mtx, 0);
2257 	callout_init_mtx(&sc->dc_wdog_ch, &sc->dc_mtx, 0);
2258 
2259 	/*
2260 	 * Call MI attach routine.
2261 	 */
2262 	ether_ifattach(ifp, (caddr_t)eaddr);
2263 
2264 	/* Hook interrupt last to avoid having to lock softc */
2265 	error = bus_setup_intr(dev, sc->dc_irq, INTR_TYPE_NET | INTR_MPSAFE,
2266 	    NULL, dc_intr, sc, &sc->dc_intrhand);
2267 
2268 	if (error) {
2269 		device_printf(dev, "couldn't set up irq\n");
2270 		ether_ifdetach(ifp);
2271 		goto fail;
2272 	}
2273 
2274 fail:
2275 	if (error)
2276 		dc_detach(dev);
2277 	return (error);
2278 }
2279 
2280 /*
2281  * Shutdown hardware and free up resources. This can be called any
2282  * time after the mutex has been initialized. It is called in both
2283  * the error case in attach and the normal detach case so it needs
2284  * to be careful about only freeing resources that have actually been
2285  * allocated.
2286  */
2287 static int
2288 dc_detach(device_t dev)
2289 {
2290 	struct dc_softc *sc;
2291 	struct ifnet *ifp;
2292 	struct dc_mediainfo *m;
2293 	int i;
2294 
2295 	sc = device_get_softc(dev);
2296 	KASSERT(mtx_initialized(&sc->dc_mtx), ("dc mutex not initialized"));
2297 
2298 	ifp = sc->dc_ifp;
2299 
2300 #ifdef DEVICE_POLLING
2301 	if (ifp->if_capenable & IFCAP_POLLING)
2302 		ether_poll_deregister(ifp);
2303 #endif
2304 
2305 	/* These should only be active if attach succeeded */
2306 	if (device_is_attached(dev)) {
2307 		DC_LOCK(sc);
2308 		dc_stop(sc);
2309 		DC_UNLOCK(sc);
2310 		callout_drain(&sc->dc_stat_ch);
2311 		callout_drain(&sc->dc_wdog_ch);
2312 		ether_ifdetach(ifp);
2313 	}
2314 	if (sc->dc_miibus)
2315 		device_delete_child(dev, sc->dc_miibus);
2316 	bus_generic_detach(dev);
2317 
2318 	if (sc->dc_intrhand)
2319 		bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2320 	if (sc->dc_irq)
2321 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2322 	if (sc->dc_res)
2323 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2324 
2325 	if (ifp)
2326 		if_free(ifp);
2327 
2328 	if (sc->dc_cdata.dc_sbuf != NULL)
2329 		bus_dmamem_free(sc->dc_stag, sc->dc_cdata.dc_sbuf, sc->dc_smap);
2330 	if (sc->dc_ldata != NULL)
2331 		bus_dmamem_free(sc->dc_ltag, sc->dc_ldata, sc->dc_lmap);
2332 	if (sc->dc_mtag) {
2333 		for (i = 0; i < DC_TX_LIST_CNT; i++)
2334 			if (sc->dc_cdata.dc_tx_map[i] != NULL)
2335 				bus_dmamap_destroy(sc->dc_mtag,
2336 				    sc->dc_cdata.dc_tx_map[i]);
2337 		for (i = 0; i < DC_RX_LIST_CNT; i++)
2338 			if (sc->dc_cdata.dc_rx_map[i] != NULL)
2339 				bus_dmamap_destroy(sc->dc_mtag,
2340 				    sc->dc_cdata.dc_rx_map[i]);
2341 		bus_dmamap_destroy(sc->dc_mtag, sc->dc_sparemap);
2342 	}
2343 	if (sc->dc_stag)
2344 		bus_dma_tag_destroy(sc->dc_stag);
2345 	if (sc->dc_mtag)
2346 		bus_dma_tag_destroy(sc->dc_mtag);
2347 	if (sc->dc_ltag)
2348 		bus_dma_tag_destroy(sc->dc_ltag);
2349 
2350 	free(sc->dc_pnic_rx_buf, M_DEVBUF);
2351 
2352 	while (sc->dc_mi != NULL) {
2353 		m = sc->dc_mi->dc_next;
2354 		free(sc->dc_mi, M_DEVBUF);
2355 		sc->dc_mi = m;
2356 	}
2357 	free(sc->dc_srom, M_DEVBUF);
2358 
2359 	mtx_destroy(&sc->dc_mtx);
2360 
2361 	return (0);
2362 }
2363 
2364 /*
2365  * Initialize the transmit descriptors.
2366  */
2367 static int
2368 dc_list_tx_init(struct dc_softc *sc)
2369 {
2370 	struct dc_chain_data *cd;
2371 	struct dc_list_data *ld;
2372 	int i, nexti;
2373 
2374 	cd = &sc->dc_cdata;
2375 	ld = sc->dc_ldata;
2376 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2377 		if (i == DC_TX_LIST_CNT - 1)
2378 			nexti = 0;
2379 		else
2380 			nexti = i + 1;
2381 		ld->dc_tx_list[i].dc_next = htole32(DC_TXDESC(sc, nexti));
2382 		cd->dc_tx_chain[i] = NULL;
2383 		ld->dc_tx_list[i].dc_data = 0;
2384 		ld->dc_tx_list[i].dc_ctl = 0;
2385 	}
2386 
2387 	cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
2388 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
2389 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2390 	return (0);
2391 }
2392 
2393 
2394 /*
2395  * Initialize the RX descriptors and allocate mbufs for them. Note that
2396  * we arrange the descriptors in a closed ring, so that the last descriptor
2397  * points back to the first.
2398  */
2399 static int
2400 dc_list_rx_init(struct dc_softc *sc)
2401 {
2402 	struct dc_chain_data *cd;
2403 	struct dc_list_data *ld;
2404 	int i, nexti;
2405 
2406 	cd = &sc->dc_cdata;
2407 	ld = sc->dc_ldata;
2408 
2409 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2410 		if (dc_newbuf(sc, i, 1) != 0)
2411 			return (ENOBUFS);
2412 		if (i == DC_RX_LIST_CNT - 1)
2413 			nexti = 0;
2414 		else
2415 			nexti = i + 1;
2416 		ld->dc_rx_list[i].dc_next = htole32(DC_RXDESC(sc, nexti));
2417 	}
2418 
2419 	cd->dc_rx_prod = 0;
2420 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
2421 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2422 	return (0);
2423 }
2424 
2425 /*
2426  * Initialize an RX descriptor and attach an MBUF cluster.
2427  */
2428 static int
2429 dc_newbuf(struct dc_softc *sc, int i, int alloc)
2430 {
2431 	struct mbuf *m_new;
2432 	bus_dmamap_t tmp;
2433 	bus_dma_segment_t segs[1];
2434 	int error, nseg;
2435 
2436 	if (alloc) {
2437 		m_new = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2438 		if (m_new == NULL)
2439 			return (ENOBUFS);
2440 	} else {
2441 		m_new = sc->dc_cdata.dc_rx_chain[i];
2442 		m_new->m_data = m_new->m_ext.ext_buf;
2443 	}
2444 	m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2445 	m_adj(m_new, sizeof(u_int64_t));
2446 
2447 	/*
2448 	 * If this is a PNIC chip, zero the buffer. This is part
2449 	 * of the workaround for the receive bug in the 82c168 and
2450 	 * 82c169 chips.
2451 	 */
2452 	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
2453 		bzero(mtod(m_new, char *), m_new->m_len);
2454 
2455 	/* No need to remap the mbuf if we're reusing it. */
2456 	if (alloc) {
2457 		error = bus_dmamap_load_mbuf_sg(sc->dc_mtag, sc->dc_sparemap,
2458 		    m_new, segs, &nseg, 0);
2459 		if (error) {
2460 			m_freem(m_new);
2461 			return (error);
2462 		}
2463 		KASSERT(nseg == 1,
2464 		    ("%s: wrong number of segments (%d)", __func__, nseg));
2465 		sc->dc_ldata->dc_rx_list[i].dc_data = htole32(segs->ds_addr);
2466 		bus_dmamap_unload(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i]);
2467 		tmp = sc->dc_cdata.dc_rx_map[i];
2468 		sc->dc_cdata.dc_rx_map[i] = sc->dc_sparemap;
2469 		sc->dc_sparemap = tmp;
2470 		sc->dc_cdata.dc_rx_chain[i] = m_new;
2471 	}
2472 
2473 	sc->dc_ldata->dc_rx_list[i].dc_ctl = htole32(DC_RXCTL_RLINK | DC_RXLEN);
2474 	sc->dc_ldata->dc_rx_list[i].dc_status = htole32(DC_RXSTAT_OWN);
2475 	bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i],
2476 	    BUS_DMASYNC_PREREAD);
2477 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
2478 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2479 	return (0);
2480 }
2481 
2482 /*
2483  * Grrrrr.
2484  * The PNIC chip has a terrible bug in it that manifests itself during
2485  * periods of heavy activity. The exact mode of failure if difficult to
2486  * pinpoint: sometimes it only happens in promiscuous mode, sometimes it
2487  * will happen on slow machines. The bug is that sometimes instead of
2488  * uploading one complete frame during reception, it uploads what looks
2489  * like the entire contents of its FIFO memory. The frame we want is at
2490  * the end of the whole mess, but we never know exactly how much data has
2491  * been uploaded, so salvaging the frame is hard.
2492  *
2493  * There is only one way to do it reliably, and it's disgusting.
2494  * Here's what we know:
2495  *
2496  * - We know there will always be somewhere between one and three extra
2497  *   descriptors uploaded.
2498  *
2499  * - We know the desired received frame will always be at the end of the
2500  *   total data upload.
2501  *
2502  * - We know the size of the desired received frame because it will be
2503  *   provided in the length field of the status word in the last descriptor.
2504  *
2505  * Here's what we do:
2506  *
2507  * - When we allocate buffers for the receive ring, we bzero() them.
2508  *   This means that we know that the buffer contents should be all
2509  *   zeros, except for data uploaded by the chip.
2510  *
2511  * - We also force the PNIC chip to upload frames that include the
2512  *   ethernet CRC at the end.
2513  *
2514  * - We gather all of the bogus frame data into a single buffer.
2515  *
2516  * - We then position a pointer at the end of this buffer and scan
2517  *   backwards until we encounter the first non-zero byte of data.
2518  *   This is the end of the received frame. We know we will encounter
2519  *   some data at the end of the frame because the CRC will always be
2520  *   there, so even if the sender transmits a packet of all zeros,
2521  *   we won't be fooled.
2522  *
2523  * - We know the size of the actual received frame, so we subtract
2524  *   that value from the current pointer location. This brings us
2525  *   to the start of the actual received packet.
2526  *
2527  * - We copy this into an mbuf and pass it on, along with the actual
2528  *   frame length.
2529  *
2530  * The performance hit is tremendous, but it beats dropping frames all
2531  * the time.
2532  */
2533 
2534 #define DC_WHOLEFRAME	(DC_RXSTAT_FIRSTFRAG | DC_RXSTAT_LASTFRAG)
2535 static void
2536 dc_pnic_rx_bug_war(struct dc_softc *sc, int idx)
2537 {
2538 	struct dc_desc *cur_rx;
2539 	struct dc_desc *c = NULL;
2540 	struct mbuf *m = NULL;
2541 	unsigned char *ptr;
2542 	int i, total_len;
2543 	u_int32_t rxstat = 0;
2544 
2545 	i = sc->dc_pnic_rx_bug_save;
2546 	cur_rx = &sc->dc_ldata->dc_rx_list[idx];
2547 	ptr = sc->dc_pnic_rx_buf;
2548 	bzero(ptr, DC_RXLEN * 5);
2549 
2550 	/* Copy all the bytes from the bogus buffers. */
2551 	while (1) {
2552 		c = &sc->dc_ldata->dc_rx_list[i];
2553 		rxstat = le32toh(c->dc_status);
2554 		m = sc->dc_cdata.dc_rx_chain[i];
2555 		bcopy(mtod(m, char *), ptr, DC_RXLEN);
2556 		ptr += DC_RXLEN;
2557 		/* If this is the last buffer, break out. */
2558 		if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
2559 			break;
2560 		dc_newbuf(sc, i, 0);
2561 		DC_INC(i, DC_RX_LIST_CNT);
2562 	}
2563 
2564 	/* Find the length of the actual receive frame. */
2565 	total_len = DC_RXBYTES(rxstat);
2566 
2567 	/* Scan backwards until we hit a non-zero byte. */
2568 	while (*ptr == 0x00)
2569 		ptr--;
2570 
2571 	/* Round off. */
2572 	if ((uintptr_t)(ptr) & 0x3)
2573 		ptr -= 1;
2574 
2575 	/* Now find the start of the frame. */
2576 	ptr -= total_len;
2577 	if (ptr < sc->dc_pnic_rx_buf)
2578 		ptr = sc->dc_pnic_rx_buf;
2579 
2580 	/*
2581 	 * Now copy the salvaged frame to the last mbuf and fake up
2582 	 * the status word to make it look like a successful
2583 	 * frame reception.
2584 	 */
2585 	dc_newbuf(sc, i, 0);
2586 	bcopy(ptr, mtod(m, char *), total_len);
2587 	cur_rx->dc_status = htole32(rxstat | DC_RXSTAT_FIRSTFRAG);
2588 }
2589 
2590 /*
2591  * This routine searches the RX ring for dirty descriptors in the
2592  * event that the rxeof routine falls out of sync with the chip's
2593  * current descriptor pointer. This may happen sometimes as a result
2594  * of a "no RX buffer available" condition that happens when the chip
2595  * consumes all of the RX buffers before the driver has a chance to
2596  * process the RX ring. This routine may need to be called more than
2597  * once to bring the driver back in sync with the chip, however we
2598  * should still be getting RX DONE interrupts to drive the search
2599  * for new packets in the RX ring, so we should catch up eventually.
2600  */
2601 static int
2602 dc_rx_resync(struct dc_softc *sc)
2603 {
2604 	struct dc_desc *cur_rx;
2605 	int i, pos;
2606 
2607 	pos = sc->dc_cdata.dc_rx_prod;
2608 
2609 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2610 		cur_rx = &sc->dc_ldata->dc_rx_list[pos];
2611 		if (!(le32toh(cur_rx->dc_status) & DC_RXSTAT_OWN))
2612 			break;
2613 		DC_INC(pos, DC_RX_LIST_CNT);
2614 	}
2615 
2616 	/* If the ring really is empty, then just return. */
2617 	if (i == DC_RX_LIST_CNT)
2618 		return (0);
2619 
2620 	/* We've fallen behing the chip: catch it. */
2621 	sc->dc_cdata.dc_rx_prod = pos;
2622 
2623 	return (EAGAIN);
2624 }
2625 
2626 /*
2627  * A frame has been uploaded: pass the resulting mbuf chain up to
2628  * the higher level protocols.
2629  */
2630 static void
2631 dc_rxeof(struct dc_softc *sc)
2632 {
2633 	struct mbuf *m, *m0;
2634 	struct ifnet *ifp;
2635 	struct dc_desc *cur_rx;
2636 	int i, total_len = 0;
2637 	u_int32_t rxstat;
2638 
2639 	DC_LOCK_ASSERT(sc);
2640 
2641 	ifp = sc->dc_ifp;
2642 	i = sc->dc_cdata.dc_rx_prod;
2643 
2644 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap, BUS_DMASYNC_POSTREAD);
2645 	while (!(le32toh(sc->dc_ldata->dc_rx_list[i].dc_status) &
2646 	    DC_RXSTAT_OWN)) {
2647 #ifdef DEVICE_POLLING
2648 		if (ifp->if_capenable & IFCAP_POLLING) {
2649 			if (sc->rxcycles <= 0)
2650 				break;
2651 			sc->rxcycles--;
2652 		}
2653 #endif
2654 		cur_rx = &sc->dc_ldata->dc_rx_list[i];
2655 		rxstat = le32toh(cur_rx->dc_status);
2656 		m = sc->dc_cdata.dc_rx_chain[i];
2657 		bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i],
2658 		    BUS_DMASYNC_POSTREAD);
2659 		total_len = DC_RXBYTES(rxstat);
2660 
2661 		if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2662 			if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
2663 				if (rxstat & DC_RXSTAT_FIRSTFRAG)
2664 					sc->dc_pnic_rx_bug_save = i;
2665 				if ((rxstat & DC_RXSTAT_LASTFRAG) == 0) {
2666 					DC_INC(i, DC_RX_LIST_CNT);
2667 					continue;
2668 				}
2669 				dc_pnic_rx_bug_war(sc, i);
2670 				rxstat = le32toh(cur_rx->dc_status);
2671 				total_len = DC_RXBYTES(rxstat);
2672 			}
2673 		}
2674 
2675 		/*
2676 		 * If an error occurs, update stats, clear the
2677 		 * status word and leave the mbuf cluster in place:
2678 		 * it should simply get re-used next time this descriptor
2679 		 * comes up in the ring.  However, don't report long
2680 		 * frames as errors since they could be vlans.
2681 		 */
2682 		if ((rxstat & DC_RXSTAT_RXERR)) {
2683 			if (!(rxstat & DC_RXSTAT_GIANT) ||
2684 			    (rxstat & (DC_RXSTAT_CRCERR | DC_RXSTAT_DRIBBLE |
2685 				       DC_RXSTAT_MIIERE | DC_RXSTAT_COLLSEEN |
2686 				       DC_RXSTAT_RUNT   | DC_RXSTAT_DE))) {
2687 				ifp->if_ierrors++;
2688 				if (rxstat & DC_RXSTAT_COLLSEEN)
2689 					ifp->if_collisions++;
2690 				dc_newbuf(sc, i, 0);
2691 				if (rxstat & DC_RXSTAT_CRCERR) {
2692 					DC_INC(i, DC_RX_LIST_CNT);
2693 					continue;
2694 				} else {
2695 					dc_init_locked(sc);
2696 					return;
2697 				}
2698 			}
2699 		}
2700 
2701 		/* No errors; receive the packet. */
2702 		total_len -= ETHER_CRC_LEN;
2703 #ifdef __NO_STRICT_ALIGNMENT
2704 		/*
2705 		 * On architectures without alignment problems we try to
2706 		 * allocate a new buffer for the receive ring, and pass up
2707 		 * the one where the packet is already, saving the expensive
2708 		 * copy done in m_devget().
2709 		 * If we are on an architecture with alignment problems, or
2710 		 * if the allocation fails, then use m_devget and leave the
2711 		 * existing buffer in the receive ring.
2712 		 */
2713 		if (dc_newbuf(sc, i, 1) == 0) {
2714 			m->m_pkthdr.rcvif = ifp;
2715 			m->m_pkthdr.len = m->m_len = total_len;
2716 			DC_INC(i, DC_RX_LIST_CNT);
2717 		} else
2718 #endif
2719 		{
2720 			m0 = m_devget(mtod(m, char *), total_len,
2721 				ETHER_ALIGN, ifp, NULL);
2722 			dc_newbuf(sc, i, 0);
2723 			DC_INC(i, DC_RX_LIST_CNT);
2724 			if (m0 == NULL) {
2725 				ifp->if_ierrors++;
2726 				continue;
2727 			}
2728 			m = m0;
2729 		}
2730 
2731 		ifp->if_ipackets++;
2732 		DC_UNLOCK(sc);
2733 		(*ifp->if_input)(ifp, m);
2734 		DC_LOCK(sc);
2735 	}
2736 
2737 	sc->dc_cdata.dc_rx_prod = i;
2738 }
2739 
2740 /*
2741  * A frame was downloaded to the chip. It's safe for us to clean up
2742  * the list buffers.
2743  */
2744 static void
2745 dc_txeof(struct dc_softc *sc)
2746 {
2747 	struct dc_desc *cur_tx = NULL;
2748 	struct ifnet *ifp;
2749 	int idx;
2750 	u_int32_t ctl, txstat;
2751 
2752 	ifp = sc->dc_ifp;
2753 
2754 	/*
2755 	 * Go through our tx list and free mbufs for those
2756 	 * frames that have been transmitted.
2757 	 */
2758 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap, BUS_DMASYNC_POSTREAD);
2759 	idx = sc->dc_cdata.dc_tx_cons;
2760 	while (idx != sc->dc_cdata.dc_tx_prod) {
2761 
2762 		cur_tx = &sc->dc_ldata->dc_tx_list[idx];
2763 		txstat = le32toh(cur_tx->dc_status);
2764 		ctl = le32toh(cur_tx->dc_ctl);
2765 
2766 		if (txstat & DC_TXSTAT_OWN)
2767 			break;
2768 
2769 		if (!(ctl & DC_TXCTL_LASTFRAG) || ctl & DC_TXCTL_SETUP) {
2770 			if (ctl & DC_TXCTL_SETUP) {
2771 				/*
2772 				 * Yes, the PNIC is so brain damaged
2773 				 * that it will sometimes generate a TX
2774 				 * underrun error while DMAing the RX
2775 				 * filter setup frame. If we detect this,
2776 				 * we have to send the setup frame again,
2777 				 * or else the filter won't be programmed
2778 				 * correctly.
2779 				 */
2780 				if (DC_IS_PNIC(sc)) {
2781 					if (txstat & DC_TXSTAT_ERRSUM)
2782 						dc_setfilt(sc);
2783 				}
2784 				sc->dc_cdata.dc_tx_chain[idx] = NULL;
2785 			}
2786 			sc->dc_cdata.dc_tx_cnt--;
2787 			DC_INC(idx, DC_TX_LIST_CNT);
2788 			continue;
2789 		}
2790 
2791 		if (DC_IS_XIRCOM(sc) || DC_IS_CONEXANT(sc)) {
2792 			/*
2793 			 * XXX: Why does my Xircom taunt me so?
2794 			 * For some reason it likes setting the CARRLOST flag
2795 			 * even when the carrier is there. wtf?!?
2796 			 * Who knows, but Conexant chips have the
2797 			 * same problem. Maybe they took lessons
2798 			 * from Xircom.
2799 			 */
2800 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2801 			    sc->dc_pmode == DC_PMODE_MII &&
2802 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
2803 			    DC_TXSTAT_NOCARRIER)))
2804 				txstat &= ~DC_TXSTAT_ERRSUM;
2805 		} else {
2806 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2807 			    sc->dc_pmode == DC_PMODE_MII &&
2808 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
2809 			    DC_TXSTAT_NOCARRIER | DC_TXSTAT_CARRLOST)))
2810 				txstat &= ~DC_TXSTAT_ERRSUM;
2811 		}
2812 
2813 		if (txstat & DC_TXSTAT_ERRSUM) {
2814 			ifp->if_oerrors++;
2815 			if (txstat & DC_TXSTAT_EXCESSCOLL)
2816 				ifp->if_collisions++;
2817 			if (txstat & DC_TXSTAT_LATECOLL)
2818 				ifp->if_collisions++;
2819 			if (!(txstat & DC_TXSTAT_UNDERRUN)) {
2820 				dc_init_locked(sc);
2821 				return;
2822 			}
2823 		}
2824 
2825 		ifp->if_collisions += (txstat & DC_TXSTAT_COLLCNT) >> 3;
2826 
2827 		ifp->if_opackets++;
2828 		if (sc->dc_cdata.dc_tx_chain[idx] != NULL) {
2829 			bus_dmamap_sync(sc->dc_mtag,
2830 			    sc->dc_cdata.dc_tx_map[idx],
2831 			    BUS_DMASYNC_POSTWRITE);
2832 			bus_dmamap_unload(sc->dc_mtag,
2833 			    sc->dc_cdata.dc_tx_map[idx]);
2834 			m_freem(sc->dc_cdata.dc_tx_chain[idx]);
2835 			sc->dc_cdata.dc_tx_chain[idx] = NULL;
2836 		}
2837 
2838 		sc->dc_cdata.dc_tx_cnt--;
2839 		DC_INC(idx, DC_TX_LIST_CNT);
2840 	}
2841 	sc->dc_cdata.dc_tx_cons = idx;
2842 
2843 	if (DC_TX_LIST_CNT - sc->dc_cdata.dc_tx_cnt > DC_TX_LIST_RSVD)
2844 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2845 
2846 	if (sc->dc_cdata.dc_tx_cnt == 0)
2847 		sc->dc_wdog_timer = 0;
2848 }
2849 
2850 static void
2851 dc_tick(void *xsc)
2852 {
2853 	struct dc_softc *sc;
2854 	struct mii_data *mii;
2855 	struct ifnet *ifp;
2856 	u_int32_t r;
2857 
2858 	sc = xsc;
2859 	DC_LOCK_ASSERT(sc);
2860 	ifp = sc->dc_ifp;
2861 	mii = device_get_softc(sc->dc_miibus);
2862 
2863 	if (sc->dc_flags & DC_REDUCED_MII_POLL) {
2864 		if (sc->dc_flags & DC_21143_NWAY) {
2865 			r = CSR_READ_4(sc, DC_10BTSTAT);
2866 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2867 			    IFM_100_TX && (r & DC_TSTAT_LS100)) {
2868 				sc->dc_link = 0;
2869 				mii_mediachg(mii);
2870 			}
2871 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2872 			    IFM_10_T && (r & DC_TSTAT_LS10)) {
2873 				sc->dc_link = 0;
2874 				mii_mediachg(mii);
2875 			}
2876 			if (sc->dc_link == 0)
2877 				mii_tick(mii);
2878 		} else {
2879 			r = CSR_READ_4(sc, DC_ISR);
2880 			if ((r & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT &&
2881 			    sc->dc_cdata.dc_tx_cnt == 0) {
2882 				mii_tick(mii);
2883 				if (!(mii->mii_media_status & IFM_ACTIVE))
2884 					sc->dc_link = 0;
2885 			}
2886 		}
2887 	} else
2888 		mii_tick(mii);
2889 
2890 	/*
2891 	 * When the init routine completes, we expect to be able to send
2892 	 * packets right away, and in fact the network code will send a
2893 	 * gratuitous ARP the moment the init routine marks the interface
2894 	 * as running. However, even though the MAC may have been initialized,
2895 	 * there may be a delay of a few seconds before the PHY completes
2896 	 * autonegotiation and the link is brought up. Any transmissions
2897 	 * made during that delay will be lost. Dealing with this is tricky:
2898 	 * we can't just pause in the init routine while waiting for the
2899 	 * PHY to come ready since that would bring the whole system to
2900 	 * a screeching halt for several seconds.
2901 	 *
2902 	 * What we do here is prevent the TX start routine from sending
2903 	 * any packets until a link has been established. After the
2904 	 * interface has been initialized, the tick routine will poll
2905 	 * the state of the PHY until the IFM_ACTIVE flag is set. Until
2906 	 * that time, packets will stay in the send queue, and once the
2907 	 * link comes up, they will be flushed out to the wire.
2908 	 */
2909 	if (!sc->dc_link && mii->mii_media_status & IFM_ACTIVE &&
2910 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2911 		sc->dc_link++;
2912 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2913 			dc_start_locked(ifp);
2914 	}
2915 
2916 	if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link)
2917 		callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
2918 	else
2919 		callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
2920 }
2921 
2922 /*
2923  * A transmit underrun has occurred.  Back off the transmit threshold,
2924  * or switch to store and forward mode if we have to.
2925  */
2926 static void
2927 dc_tx_underrun(struct dc_softc *sc)
2928 {
2929 	u_int32_t isr;
2930 	int i;
2931 
2932 	if (DC_IS_DAVICOM(sc))
2933 		dc_init_locked(sc);
2934 
2935 	if (DC_IS_INTEL(sc)) {
2936 		/*
2937 		 * The real 21143 requires that the transmitter be idle
2938 		 * in order to change the transmit threshold or store
2939 		 * and forward state.
2940 		 */
2941 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2942 
2943 		for (i = 0; i < DC_TIMEOUT; i++) {
2944 			isr = CSR_READ_4(sc, DC_ISR);
2945 			if (isr & DC_ISR_TX_IDLE)
2946 				break;
2947 			DELAY(10);
2948 		}
2949 		if (i == DC_TIMEOUT) {
2950 			device_printf(sc->dc_dev,
2951 			    "%s: failed to force tx to idle state\n",
2952 			    __func__);
2953 			dc_init_locked(sc);
2954 		}
2955 	}
2956 
2957 	device_printf(sc->dc_dev, "TX underrun -- ");
2958 	sc->dc_txthresh += DC_TXTHRESH_INC;
2959 	if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
2960 		printf("using store and forward mode\n");
2961 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
2962 	} else {
2963 		printf("increasing TX threshold\n");
2964 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
2965 		DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
2966 	}
2967 
2968 	if (DC_IS_INTEL(sc))
2969 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2970 }
2971 
2972 #ifdef DEVICE_POLLING
2973 static poll_handler_t dc_poll;
2974 
2975 static void
2976 dc_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2977 {
2978 	struct dc_softc *sc = ifp->if_softc;
2979 
2980 	DC_LOCK(sc);
2981 
2982 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2983 		DC_UNLOCK(sc);
2984 		return;
2985 	}
2986 
2987 	sc->rxcycles = count;
2988 	dc_rxeof(sc);
2989 	dc_txeof(sc);
2990 	if (!IFQ_IS_EMPTY(&ifp->if_snd) &&
2991 	    !(ifp->if_drv_flags & IFF_DRV_OACTIVE))
2992 		dc_start_locked(ifp);
2993 
2994 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
2995 		u_int32_t	status;
2996 
2997 		status = CSR_READ_4(sc, DC_ISR);
2998 		status &= (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF |
2999 			DC_ISR_TX_NOBUF | DC_ISR_TX_IDLE | DC_ISR_TX_UNDERRUN |
3000 			DC_ISR_BUS_ERR);
3001 		if (!status) {
3002 			DC_UNLOCK(sc);
3003 			return;
3004 		}
3005 		/* ack what we have */
3006 		CSR_WRITE_4(sc, DC_ISR, status);
3007 
3008 		if (status & (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF)) {
3009 			u_int32_t r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
3010 			ifp->if_ierrors += (r & 0xffff) + ((r >> 17) & 0x7ff);
3011 
3012 			if (dc_rx_resync(sc))
3013 				dc_rxeof(sc);
3014 		}
3015 		/* restart transmit unit if necessary */
3016 		if (status & DC_ISR_TX_IDLE && sc->dc_cdata.dc_tx_cnt)
3017 			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3018 
3019 		if (status & DC_ISR_TX_UNDERRUN)
3020 			dc_tx_underrun(sc);
3021 
3022 		if (status & DC_ISR_BUS_ERR) {
3023 			if_printf(ifp, "%s: bus error\n", __func__);
3024 			dc_reset(sc);
3025 			dc_init_locked(sc);
3026 		}
3027 	}
3028 	DC_UNLOCK(sc);
3029 }
3030 #endif /* DEVICE_POLLING */
3031 
3032 static void
3033 dc_intr(void *arg)
3034 {
3035 	struct dc_softc *sc;
3036 	struct ifnet *ifp;
3037 	u_int32_t status;
3038 
3039 	sc = arg;
3040 
3041 	if (sc->suspended)
3042 		return;
3043 
3044 	if ((CSR_READ_4(sc, DC_ISR) & DC_INTRS) == 0)
3045 		return;
3046 
3047 	DC_LOCK(sc);
3048 	ifp = sc->dc_ifp;
3049 #ifdef DEVICE_POLLING
3050 	if (ifp->if_capenable & IFCAP_POLLING) {
3051 		DC_UNLOCK(sc);
3052 		return;
3053 	}
3054 #endif
3055 
3056 	/* Suppress unwanted interrupts */
3057 	if (!(ifp->if_flags & IFF_UP)) {
3058 		if (CSR_READ_4(sc, DC_ISR) & DC_INTRS)
3059 			dc_stop(sc);
3060 		DC_UNLOCK(sc);
3061 		return;
3062 	}
3063 
3064 	/* Disable interrupts. */
3065 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3066 
3067 	while (((status = CSR_READ_4(sc, DC_ISR)) & DC_INTRS) &&
3068 	    status != 0xFFFFFFFF &&
3069 	    (ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3070 
3071 		CSR_WRITE_4(sc, DC_ISR, status);
3072 
3073 		if (status & DC_ISR_RX_OK) {
3074 			int		curpkts;
3075 			curpkts = ifp->if_ipackets;
3076 			dc_rxeof(sc);
3077 			if (curpkts == ifp->if_ipackets) {
3078 				while (dc_rx_resync(sc))
3079 					dc_rxeof(sc);
3080 			}
3081 		}
3082 
3083 		if (status & (DC_ISR_TX_OK | DC_ISR_TX_NOBUF))
3084 			dc_txeof(sc);
3085 
3086 		if (status & DC_ISR_TX_IDLE) {
3087 			dc_txeof(sc);
3088 			if (sc->dc_cdata.dc_tx_cnt) {
3089 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3090 				CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3091 			}
3092 		}
3093 
3094 		if (status & DC_ISR_TX_UNDERRUN)
3095 			dc_tx_underrun(sc);
3096 
3097 		if ((status & DC_ISR_RX_WATDOGTIMEO)
3098 		    || (status & DC_ISR_RX_NOBUF)) {
3099 			int		curpkts;
3100 			curpkts = ifp->if_ipackets;
3101 			dc_rxeof(sc);
3102 			if (curpkts == ifp->if_ipackets) {
3103 				while (dc_rx_resync(sc))
3104 					dc_rxeof(sc);
3105 			}
3106 		}
3107 
3108 		if (status & DC_ISR_BUS_ERR) {
3109 			dc_reset(sc);
3110 			dc_init_locked(sc);
3111 		}
3112 	}
3113 
3114 	/* Re-enable interrupts. */
3115 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3116 
3117 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3118 		dc_start_locked(ifp);
3119 
3120 	DC_UNLOCK(sc);
3121 }
3122 
3123 /*
3124  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
3125  * pointers to the fragment pointers.
3126  */
3127 static int
3128 dc_encap(struct dc_softc *sc, struct mbuf **m_head)
3129 {
3130 	bus_dma_segment_t segs[DC_MAXFRAGS];
3131 	struct dc_desc *f;
3132 	struct mbuf *m;
3133 	int chainlen, cur, error, first, frag, i, idx, nseg;
3134 
3135 	/*
3136 	 * If there's no way we can send any packets, return now.
3137 	 */
3138 	if (DC_TX_LIST_CNT - sc->dc_cdata.dc_tx_cnt <= DC_TX_LIST_RSVD)
3139 		return (ENOBUFS);
3140 
3141 	/*
3142 	 * Count the number of frags in this chain to see if
3143 	 * we need to m_defrag.  Since the descriptor list is shared
3144 	 * by all packets, we'll m_defrag long chains so that they
3145 	 * do not use up the entire list, even if they would fit.
3146 	 */
3147 	chainlen = 0;
3148 	for (m = *m_head; m != NULL; m = m->m_next)
3149 		chainlen++;
3150 
3151 	m = NULL;
3152 	if ((sc->dc_flags & DC_TX_COALESCE && ((*m_head)->m_next != NULL ||
3153 	    sc->dc_flags & DC_TX_ALIGN)) || (chainlen > DC_TX_LIST_CNT / 4) ||
3154 	    (DC_TX_LIST_CNT - (chainlen + sc->dc_cdata.dc_tx_cnt) <=
3155 	    DC_TX_LIST_RSVD)) {
3156 		m = m_defrag(*m_head, M_DONTWAIT);
3157 		if (m == NULL) {
3158 			m_freem(*m_head);
3159 			*m_head = NULL;
3160 			return (ENOBUFS);
3161 		}
3162 		*m_head = m;
3163 	}
3164 	idx = sc->dc_cdata.dc_tx_prod;
3165 	error = bus_dmamap_load_mbuf_sg(sc->dc_mtag,
3166 	    sc->dc_cdata.dc_tx_map[idx], *m_head, segs, &nseg, 0);
3167 	if (error == EFBIG) {
3168 		m = m_defrag(*m_head, M_DONTWAIT);
3169 		if (m == NULL) {
3170 			m_freem(*m_head);
3171 			*m_head = NULL;
3172 			return (ENOBUFS);
3173 		}
3174 		*m_head = m;
3175 		error = bus_dmamap_load_mbuf_sg(sc->dc_mtag,
3176 		    sc->dc_cdata.dc_tx_map[idx], *m_head, segs, &nseg, 0);
3177 		if (error != 0) {
3178 			m_freem(*m_head);
3179 			*m_head = NULL;
3180 			return (error);
3181 		}
3182 	} else if (error != 0)
3183 		return (error);
3184 	KASSERT(nseg <= DC_MAXFRAGS,
3185 	    ("%s: wrong number of segments (%d)", __func__, nseg));
3186 	if (nseg == 0) {
3187 		m_freem(*m_head);
3188 		*m_head = NULL;
3189 		return (EIO);
3190 	}
3191 
3192 	first = cur = frag = sc->dc_cdata.dc_tx_prod;
3193 	for (i = 0; i < nseg; i++) {
3194 		if ((sc->dc_flags & DC_TX_ADMTEK_WAR) &&
3195 		    (frag == (DC_TX_LIST_CNT - 1)) &&
3196 		    (first != sc->dc_cdata.dc_tx_first)) {
3197 			bus_dmamap_unload(sc->dc_mtag,
3198 			    sc->dc_cdata.dc_tx_map[first]);
3199 			m_freem(*m_head);
3200 			*m_head = NULL;
3201 			return (ENOBUFS);
3202 		}
3203 
3204 		f = &sc->dc_ldata->dc_tx_list[frag];
3205 		f->dc_ctl = htole32(DC_TXCTL_TLINK | segs[i].ds_len);
3206 		if (i == 0) {
3207 			f->dc_status = 0;
3208 			f->dc_ctl |= htole32(DC_TXCTL_FIRSTFRAG);
3209 		} else
3210 			f->dc_status = htole32(DC_TXSTAT_OWN);
3211 		f->dc_data = htole32(segs[i].ds_addr);
3212 		cur = frag;
3213 		DC_INC(frag, DC_TX_LIST_CNT);
3214 	}
3215 
3216 	sc->dc_cdata.dc_tx_prod = frag;
3217 	sc->dc_cdata.dc_tx_cnt += nseg;
3218 	sc->dc_cdata.dc_tx_chain[cur] = *m_head;
3219 	sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_LASTFRAG);
3220 	if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
3221 		sc->dc_ldata->dc_tx_list[first].dc_ctl |=
3222 		    htole32(DC_TXCTL_FINT);
3223 	if (sc->dc_flags & DC_TX_INTR_ALWAYS)
3224 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
3225 	if (sc->dc_flags & DC_TX_USE_TX_INTR && sc->dc_cdata.dc_tx_cnt > 64)
3226 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
3227 	sc->dc_ldata->dc_tx_list[first].dc_status = htole32(DC_TXSTAT_OWN);
3228 
3229 	bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_tx_map[idx],
3230 	    BUS_DMASYNC_PREWRITE);
3231 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
3232 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
3233 	return (0);
3234 }
3235 
3236 static void
3237 dc_start(struct ifnet *ifp)
3238 {
3239 	struct dc_softc *sc;
3240 
3241 	sc = ifp->if_softc;
3242 	DC_LOCK(sc);
3243 	dc_start_locked(ifp);
3244 	DC_UNLOCK(sc);
3245 }
3246 
3247 /*
3248  * Main transmit routine
3249  * To avoid having to do mbuf copies, we put pointers to the mbuf data
3250  * regions directly in the transmit lists.  We also save a copy of the
3251  * pointers since the transmit list fragment pointers are physical
3252  * addresses.
3253  */
3254 static void
3255 dc_start_locked(struct ifnet *ifp)
3256 {
3257 	struct dc_softc *sc;
3258 	struct mbuf *m_head = NULL;
3259 	unsigned int queued = 0;
3260 	int idx;
3261 
3262 	sc = ifp->if_softc;
3263 
3264 	DC_LOCK_ASSERT(sc);
3265 
3266 	if (!sc->dc_link && ifp->if_snd.ifq_len < 10)
3267 		return;
3268 
3269 	if (ifp->if_drv_flags & IFF_DRV_OACTIVE)
3270 		return;
3271 
3272 	idx = sc->dc_cdata.dc_tx_first = sc->dc_cdata.dc_tx_prod;
3273 
3274 	while (sc->dc_cdata.dc_tx_chain[idx] == NULL) {
3275 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
3276 		if (m_head == NULL)
3277 			break;
3278 
3279 		if (dc_encap(sc, &m_head)) {
3280 			if (m_head == NULL)
3281 				break;
3282 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
3283 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3284 			break;
3285 		}
3286 		idx = sc->dc_cdata.dc_tx_prod;
3287 
3288 		queued++;
3289 		/*
3290 		 * If there's a BPF listener, bounce a copy of this frame
3291 		 * to him.
3292 		 */
3293 		BPF_MTAP(ifp, m_head);
3294 
3295 		if (sc->dc_flags & DC_TX_ONE) {
3296 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3297 			break;
3298 		}
3299 	}
3300 
3301 	if (queued > 0) {
3302 		/* Transmit */
3303 		if (!(sc->dc_flags & DC_TX_POLL))
3304 			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3305 
3306 		/*
3307 		 * Set a timeout in case the chip goes out to lunch.
3308 		 */
3309 		sc->dc_wdog_timer = 5;
3310 	}
3311 }
3312 
3313 static void
3314 dc_init(void *xsc)
3315 {
3316 	struct dc_softc *sc = xsc;
3317 
3318 	DC_LOCK(sc);
3319 	dc_init_locked(sc);
3320 	DC_UNLOCK(sc);
3321 }
3322 
3323 static void
3324 dc_init_locked(struct dc_softc *sc)
3325 {
3326 	struct ifnet *ifp = sc->dc_ifp;
3327 	struct mii_data *mii;
3328 
3329 	DC_LOCK_ASSERT(sc);
3330 
3331 	mii = device_get_softc(sc->dc_miibus);
3332 
3333 	/*
3334 	 * Cancel pending I/O and free all RX/TX buffers.
3335 	 */
3336 	dc_stop(sc);
3337 	dc_reset(sc);
3338 
3339 	/*
3340 	 * Set cache alignment and burst length.
3341 	 */
3342 	if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc))
3343 		CSR_WRITE_4(sc, DC_BUSCTL, 0);
3344 	else
3345 		CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME | DC_BUSCTL_MRLE);
3346 	/*
3347 	 * Evenly share the bus between receive and transmit process.
3348 	 */
3349 	if (DC_IS_INTEL(sc))
3350 		DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION);
3351 	if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
3352 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
3353 	} else {
3354 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
3355 	}
3356 	if (sc->dc_flags & DC_TX_POLL)
3357 		DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
3358 	switch(sc->dc_cachesize) {
3359 	case 32:
3360 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
3361 		break;
3362 	case 16:
3363 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
3364 		break;
3365 	case 8:
3366 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
3367 		break;
3368 	case 0:
3369 	default:
3370 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
3371 		break;
3372 	}
3373 
3374 	if (sc->dc_flags & DC_TX_STORENFWD)
3375 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3376 	else {
3377 		if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3378 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3379 		} else {
3380 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3381 			DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3382 		}
3383 	}
3384 
3385 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
3386 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
3387 
3388 	if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
3389 		/*
3390 		 * The app notes for the 98713 and 98715A say that
3391 		 * in order to have the chips operate properly, a magic
3392 		 * number must be written to CSR16. Macronix does not
3393 		 * document the meaning of these bits so there's no way
3394 		 * to know exactly what they do. The 98713 has a magic
3395 		 * number all its own; the rest all use a different one.
3396 		 */
3397 		DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
3398 		if (sc->dc_type == DC_TYPE_98713)
3399 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
3400 		else
3401 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
3402 	}
3403 
3404 	if (DC_IS_XIRCOM(sc)) {
3405 		/*
3406 		 * setup General Purpose Port mode and data so the tulip
3407 		 * can talk to the MII.
3408 		 */
3409 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
3410 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3411 		DELAY(10);
3412 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
3413 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3414 		DELAY(10);
3415 	}
3416 
3417 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3418 	DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN);
3419 
3420 	/* Init circular RX list. */
3421 	if (dc_list_rx_init(sc) == ENOBUFS) {
3422 		device_printf(sc->dc_dev,
3423 		    "initialization failed: no memory for rx buffers\n");
3424 		dc_stop(sc);
3425 		return;
3426 	}
3427 
3428 	/*
3429 	 * Init TX descriptors.
3430 	 */
3431 	dc_list_tx_init(sc);
3432 
3433 	/*
3434 	 * Load the address of the RX list.
3435 	 */
3436 	CSR_WRITE_4(sc, DC_RXADDR, DC_RXDESC(sc, 0));
3437 	CSR_WRITE_4(sc, DC_TXADDR, DC_TXDESC(sc, 0));
3438 
3439 	/*
3440 	 * Enable interrupts.
3441 	 */
3442 #ifdef DEVICE_POLLING
3443 	/*
3444 	 * ... but only if we are not polling, and make sure they are off in
3445 	 * the case of polling. Some cards (e.g. fxp) turn interrupts on
3446 	 * after a reset.
3447 	 */
3448 	if (ifp->if_capenable & IFCAP_POLLING)
3449 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3450 	else
3451 #endif
3452 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3453 	CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
3454 
3455 	/* Enable transmitter. */
3456 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3457 
3458 	/*
3459 	 * If this is an Intel 21143 and we're not using the
3460 	 * MII port, program the LED control pins so we get
3461 	 * link and activity indications.
3462 	 */
3463 	if (sc->dc_flags & DC_TULIP_LEDS) {
3464 		CSR_WRITE_4(sc, DC_WATCHDOG,
3465 		    DC_WDOG_CTLWREN | DC_WDOG_LINK | DC_WDOG_ACTIVITY);
3466 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
3467 	}
3468 
3469 	/*
3470 	 * Load the RX/multicast filter. We do this sort of late
3471 	 * because the filter programming scheme on the 21143 and
3472 	 * some clones requires DMAing a setup frame via the TX
3473 	 * engine, and we need the transmitter enabled for that.
3474 	 */
3475 	dc_setfilt(sc);
3476 
3477 	/* Enable receiver. */
3478 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
3479 	CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
3480 
3481 	mii_mediachg(mii);
3482 	dc_setcfg(sc, sc->dc_if_media);
3483 
3484 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3485 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3486 
3487 	/* Don't start the ticker if this is a homePNA link. */
3488 	if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_HPNA_1)
3489 		sc->dc_link = 1;
3490 	else {
3491 		if (sc->dc_flags & DC_21143_NWAY)
3492 			callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
3493 		else
3494 			callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
3495 	}
3496 
3497 	sc->dc_wdog_timer = 0;
3498 	callout_reset(&sc->dc_wdog_ch, hz, dc_watchdog, sc);
3499 }
3500 
3501 /*
3502  * Set media options.
3503  */
3504 static int
3505 dc_ifmedia_upd(struct ifnet *ifp)
3506 {
3507 	struct dc_softc *sc;
3508 	struct mii_data *mii;
3509 	struct ifmedia *ifm;
3510 
3511 	sc = ifp->if_softc;
3512 	mii = device_get_softc(sc->dc_miibus);
3513 	DC_LOCK(sc);
3514 	mii_mediachg(mii);
3515 	ifm = &mii->mii_media;
3516 
3517 	if (DC_IS_DAVICOM(sc) &&
3518 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1)
3519 		dc_setcfg(sc, ifm->ifm_media);
3520 	else
3521 		sc->dc_link = 0;
3522 	DC_UNLOCK(sc);
3523 
3524 	return (0);
3525 }
3526 
3527 /*
3528  * Report current media status.
3529  */
3530 static void
3531 dc_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3532 {
3533 	struct dc_softc *sc;
3534 	struct mii_data *mii;
3535 	struct ifmedia *ifm;
3536 
3537 	sc = ifp->if_softc;
3538 	mii = device_get_softc(sc->dc_miibus);
3539 	DC_LOCK(sc);
3540 	mii_pollstat(mii);
3541 	ifm = &mii->mii_media;
3542 	if (DC_IS_DAVICOM(sc)) {
3543 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
3544 			ifmr->ifm_active = ifm->ifm_media;
3545 			ifmr->ifm_status = 0;
3546 			DC_UNLOCK(sc);
3547 			return;
3548 		}
3549 	}
3550 	ifmr->ifm_active = mii->mii_media_active;
3551 	ifmr->ifm_status = mii->mii_media_status;
3552 	DC_UNLOCK(sc);
3553 }
3554 
3555 static int
3556 dc_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
3557 {
3558 	struct dc_softc *sc = ifp->if_softc;
3559 	struct ifreq *ifr = (struct ifreq *)data;
3560 	struct mii_data *mii;
3561 	int error = 0;
3562 
3563 	switch (command) {
3564 	case SIOCSIFFLAGS:
3565 		DC_LOCK(sc);
3566 		if (ifp->if_flags & IFF_UP) {
3567 			int need_setfilt = (ifp->if_flags ^ sc->dc_if_flags) &
3568 				(IFF_PROMISC | IFF_ALLMULTI);
3569 
3570 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3571 				if (need_setfilt)
3572 					dc_setfilt(sc);
3573 			} else {
3574 				sc->dc_txthresh = 0;
3575 				dc_init_locked(sc);
3576 			}
3577 		} else {
3578 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3579 				dc_stop(sc);
3580 		}
3581 		sc->dc_if_flags = ifp->if_flags;
3582 		DC_UNLOCK(sc);
3583 		error = 0;
3584 		break;
3585 	case SIOCADDMULTI:
3586 	case SIOCDELMULTI:
3587 		DC_LOCK(sc);
3588 		dc_setfilt(sc);
3589 		DC_UNLOCK(sc);
3590 		error = 0;
3591 		break;
3592 	case SIOCGIFMEDIA:
3593 	case SIOCSIFMEDIA:
3594 		mii = device_get_softc(sc->dc_miibus);
3595 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
3596 		break;
3597 	case SIOCSIFCAP:
3598 #ifdef DEVICE_POLLING
3599 		if (ifr->ifr_reqcap & IFCAP_POLLING &&
3600 		    !(ifp->if_capenable & IFCAP_POLLING)) {
3601 			error = ether_poll_register(dc_poll, ifp);
3602 			if (error)
3603 				return(error);
3604 			DC_LOCK(sc);
3605 			/* Disable interrupts */
3606 			CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3607 			ifp->if_capenable |= IFCAP_POLLING;
3608 			DC_UNLOCK(sc);
3609 			return (error);
3610 		}
3611 		if (!(ifr->ifr_reqcap & IFCAP_POLLING) &&
3612 		    ifp->if_capenable & IFCAP_POLLING) {
3613 			error = ether_poll_deregister(ifp);
3614 			/* Enable interrupts. */
3615 			DC_LOCK(sc);
3616 			CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3617 			ifp->if_capenable &= ~IFCAP_POLLING;
3618 			DC_UNLOCK(sc);
3619 			return (error);
3620 		}
3621 #endif /* DEVICE_POLLING */
3622 		break;
3623 	default:
3624 		error = ether_ioctl(ifp, command, data);
3625 		break;
3626 	}
3627 
3628 	return (error);
3629 }
3630 
3631 static void
3632 dc_watchdog(void *xsc)
3633 {
3634 	struct dc_softc *sc = xsc;
3635 	struct ifnet *ifp;
3636 
3637 	DC_LOCK_ASSERT(sc);
3638 
3639 	if (sc->dc_wdog_timer == 0 || --sc->dc_wdog_timer != 0) {
3640 		callout_reset(&sc->dc_wdog_ch, hz, dc_watchdog, sc);
3641 		return;
3642 	}
3643 
3644 	ifp = sc->dc_ifp;
3645 	ifp->if_oerrors++;
3646 	device_printf(sc->dc_dev, "watchdog timeout\n");
3647 
3648 	dc_stop(sc);
3649 	dc_reset(sc);
3650 	dc_init_locked(sc);
3651 
3652 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3653 		dc_start_locked(ifp);
3654 }
3655 
3656 /*
3657  * Stop the adapter and free any mbufs allocated to the
3658  * RX and TX lists.
3659  */
3660 static void
3661 dc_stop(struct dc_softc *sc)
3662 {
3663 	struct ifnet *ifp;
3664 	struct dc_list_data *ld;
3665 	struct dc_chain_data *cd;
3666 	int i;
3667 	u_int32_t ctl;
3668 
3669 	DC_LOCK_ASSERT(sc);
3670 
3671 	ifp = sc->dc_ifp;
3672 	ld = sc->dc_ldata;
3673 	cd = &sc->dc_cdata;
3674 
3675 	callout_stop(&sc->dc_stat_ch);
3676 	callout_stop(&sc->dc_wdog_ch);
3677 	sc->dc_wdog_timer = 0;
3678 
3679 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3680 
3681 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ON | DC_NETCFG_TX_ON));
3682 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3683 	CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
3684 	CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
3685 	sc->dc_link = 0;
3686 
3687 	/*
3688 	 * Free data in the RX lists.
3689 	 */
3690 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
3691 		if (cd->dc_rx_chain[i] != NULL) {
3692 			m_freem(cd->dc_rx_chain[i]);
3693 			cd->dc_rx_chain[i] = NULL;
3694 		}
3695 	}
3696 	bzero(&ld->dc_rx_list, sizeof(ld->dc_rx_list));
3697 
3698 	/*
3699 	 * Free the TX list buffers.
3700 	 */
3701 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
3702 		if (cd->dc_tx_chain[i] != NULL) {
3703 			ctl = le32toh(ld->dc_tx_list[i].dc_ctl);
3704 			if ((ctl & DC_TXCTL_SETUP) ||
3705 			    !(ctl & DC_TXCTL_LASTFRAG)) {
3706 				cd->dc_tx_chain[i] = NULL;
3707 				continue;
3708 			}
3709 			bus_dmamap_unload(sc->dc_mtag, cd->dc_tx_map[i]);
3710 			m_freem(cd->dc_tx_chain[i]);
3711 			cd->dc_tx_chain[i] = NULL;
3712 		}
3713 	}
3714 	bzero(&ld->dc_tx_list, sizeof(ld->dc_tx_list));
3715 }
3716 
3717 /*
3718  * Device suspend routine.  Stop the interface and save some PCI
3719  * settings in case the BIOS doesn't restore them properly on
3720  * resume.
3721  */
3722 static int
3723 dc_suspend(device_t dev)
3724 {
3725 	struct dc_softc *sc;
3726 
3727 	sc = device_get_softc(dev);
3728 	DC_LOCK(sc);
3729 	dc_stop(sc);
3730 	sc->suspended = 1;
3731 	DC_UNLOCK(sc);
3732 
3733 	return (0);
3734 }
3735 
3736 /*
3737  * Device resume routine.  Restore some PCI settings in case the BIOS
3738  * doesn't, re-enable busmastering, and restart the interface if
3739  * appropriate.
3740  */
3741 static int
3742 dc_resume(device_t dev)
3743 {
3744 	struct dc_softc *sc;
3745 	struct ifnet *ifp;
3746 
3747 	sc = device_get_softc(dev);
3748 	ifp = sc->dc_ifp;
3749 
3750 	/* reinitialize interface if necessary */
3751 	DC_LOCK(sc);
3752 	if (ifp->if_flags & IFF_UP)
3753 		dc_init_locked(sc);
3754 
3755 	sc->suspended = 0;
3756 	DC_UNLOCK(sc);
3757 
3758 	return (0);
3759 }
3760 
3761 /*
3762  * Stop all chip I/O so that the kernel's probe routines don't
3763  * get confused by errant DMAs when rebooting.
3764  */
3765 static int
3766 dc_shutdown(device_t dev)
3767 {
3768 	struct dc_softc *sc;
3769 
3770 	sc = device_get_softc(dev);
3771 
3772 	DC_LOCK(sc);
3773 	dc_stop(sc);
3774 	DC_UNLOCK(sc);
3775 
3776 	return (0);
3777 }
3778