xref: /freebsd/sys/dev/dc/if_dc.c (revision 0fa02ea5f786ef02befd46f8f083f48c8cd9630b)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ee.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /*
37  * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
38  * series chips and several workalikes including the following:
39  *
40  * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com)
41  * Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
42  * Lite-On 82c168/82c169 PNIC (www.litecom.com)
43  * ASIX Electronics AX88140A (www.asix.com.tw)
44  * ASIX Electronics AX88141 (www.asix.com.tw)
45  * ADMtek AL981 (www.admtek.com.tw)
46  * ADMtek AN985 (www.admtek.com.tw)
47  * Netgear FA511 (www.netgear.com) Appears to be rebadged ADMTek AN985
48  * Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
49  * Accton EN1217 (www.accton.com)
50  * Xircom X3201 (www.xircom.com)
51  * Abocom FE2500
52  * Conexant LANfinity (www.conexant.com)
53  * 3Com OfficeConnect 10/100B 3CSOHO100B (www.3com.com)
54  *
55  * Datasheets for the 21143 are available at developer.intel.com.
56  * Datasheets for the clone parts can be found at their respective sites.
57  * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
58  * The PNIC II is essentially a Macronix 98715A chip; the only difference
59  * worth noting is that its multicast hash table is only 128 bits wide
60  * instead of 512.
61  *
62  * Written by Bill Paul <wpaul@ee.columbia.edu>
63  * Electrical Engineering Department
64  * Columbia University, New York City
65  */
66 /*
67  * The Intel 21143 is the successor to the DEC 21140. It is basically
68  * the same as the 21140 but with a few new features. The 21143 supports
69  * three kinds of media attachments:
70  *
71  * o MII port, for 10Mbps and 100Mbps support and NWAY
72  *   autonegotiation provided by an external PHY.
73  * o SYM port, for symbol mode 100Mbps support.
74  * o 10baseT port.
75  * o AUI/BNC port.
76  *
77  * The 100Mbps SYM port and 10baseT port can be used together in
78  * combination with the internal NWAY support to create a 10/100
79  * autosensing configuration.
80  *
81  * Note that not all tulip workalikes are handled in this driver: we only
82  * deal with those which are relatively well behaved. The Winbond is
83  * handled separately due to its different register offsets and the
84  * special handling needed for its various bugs. The PNIC is handled
85  * here, but I'm not thrilled about it.
86  *
87  * All of the workalike chips use some form of MII transceiver support
88  * with the exception of the Macronix chips, which also have a SYM port.
89  * The ASIX AX88140A is also documented to have a SYM port, but all
90  * the cards I've seen use an MII transceiver, probably because the
91  * AX88140A doesn't support internal NWAY.
92  */
93 
94 #include <sys/param.h>
95 #include <sys/endian.h>
96 #include <sys/systm.h>
97 #include <sys/sockio.h>
98 #include <sys/mbuf.h>
99 #include <sys/malloc.h>
100 #include <sys/kernel.h>
101 #include <sys/socket.h>
102 #include <sys/sysctl.h>
103 
104 #include <net/if.h>
105 #include <net/if_arp.h>
106 #include <net/ethernet.h>
107 #include <net/if_dl.h>
108 #include <net/if_media.h>
109 #include <net/if_types.h>
110 #include <net/if_vlan_var.h>
111 
112 #include <net/bpf.h>
113 
114 #include <machine/bus_pio.h>
115 #include <machine/bus_memio.h>
116 #include <machine/bus.h>
117 #include <machine/resource.h>
118 #include <sys/bus.h>
119 #include <sys/rman.h>
120 
121 #include <dev/mii/mii.h>
122 #include <dev/mii/miivar.h>
123 
124 #include <dev/pci/pcireg.h>
125 #include <dev/pci/pcivar.h>
126 
127 #define DC_USEIOSPACE
128 #ifdef __alpha__
129 #define SRM_MEDIA
130 #endif
131 
132 #include <pci/if_dcreg.h>
133 
134 MODULE_DEPEND(dc, pci, 1, 1, 1);
135 MODULE_DEPEND(dc, ether, 1, 1, 1);
136 MODULE_DEPEND(dc, miibus, 1, 1, 1);
137 
138 /* "controller miibus0" required.  See GENERIC if you get errors here. */
139 #include "miibus_if.h"
140 
141 /*
142  * Various supported device vendors/types and their names.
143  */
144 static struct dc_type dc_devs[] = {
145 	{ DC_VENDORID_DEC, DC_DEVICEID_21143,
146 		"Intel 21143 10/100BaseTX" },
147 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009,
148 		"Davicom DM9009 10/100BaseTX" },
149 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100,
150 		"Davicom DM9100 10/100BaseTX" },
151 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
152 		"Davicom DM9102 10/100BaseTX" },
153 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
154 		"Davicom DM9102A 10/100BaseTX" },
155 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AL981,
156 		"ADMtek AL981 10/100BaseTX" },
157 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AN985,
158 		"ADMtek AN985 10/100BaseTX" },
159 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511,
160 		"ADMtek ADM9511 10/100BaseTX" },
161 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513,
162 		"ADMtek ADM9513 10/100BaseTX" },
163  	{ DC_VENDORID_ADMTEK, DC_DEVICEID_FA511,
164  		"Netgear FA511 10/100BaseTX" },
165 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
166 		"ASIX AX88140A 10/100BaseTX" },
167 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
168 		"ASIX AX88141 10/100BaseTX" },
169 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
170 		"Macronix 98713 10/100BaseTX" },
171 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
172 		"Macronix 98713A 10/100BaseTX" },
173 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
174 		"Compex RL100-TX 10/100BaseTX" },
175 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
176 		"Compex RL100-TX 10/100BaseTX" },
177 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
178 		"Macronix 98715/98715A 10/100BaseTX" },
179 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
180 		"Macronix 98715AEC-C 10/100BaseTX" },
181 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
182 		"Macronix 98725 10/100BaseTX" },
183 	{ DC_VENDORID_MX, DC_DEVICEID_98727,
184 		"Macronix 98727/98732 10/100BaseTX" },
185 	{ DC_VENDORID_LO, DC_DEVICEID_82C115,
186 		"LC82C115 PNIC II 10/100BaseTX" },
187 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
188 		"82c168 PNIC 10/100BaseTX" },
189 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
190 		"82c169 PNIC 10/100BaseTX" },
191 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN1217,
192 		"Accton EN1217 10/100BaseTX" },
193 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN2242,
194 		"Accton EN2242 MiniPCI 10/100BaseTX" },
195 	{ DC_VENDORID_XIRCOM, DC_DEVICEID_X3201,
196 	  	"Xircom X3201 10/100BaseTX" },
197 	{ DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500,
198 		"Abocom FE2500 10/100BaseTX" },
199 	{ DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500MX,
200 		"Abocom FE2500MX 10/100BaseTX" },
201 	{ DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112,
202 		"Conexant LANfinity MiniPCI 10/100BaseTX" },
203 	{ DC_VENDORID_HAWKING, DC_DEVICEID_HAWKING_PN672TX,
204 		"Hawking CB102 CardBus 10/100" },
205 	{ DC_VENDORID_PLANEX, DC_DEVICEID_FNW3602T,
206 		"PlaneX FNW-3602-T CardBus 10/100" },
207 	{ DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB,
208 		"3Com OfficeConnect 10/100B" },
209 	{ DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN120,
210 		"Microsoft MN-120 CardBus 10/100" },
211 	{ DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130,
212 		"Microsoft MN-130 10/100" },
213 	{ DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130_FAKE,
214 		"Microsoft MN-130 10/100" },
215 	{ 0, 0, NULL }
216 };
217 
218 static int dc_probe		(device_t);
219 static int dc_attach		(device_t);
220 static int dc_detach		(device_t);
221 static int dc_suspend		(device_t);
222 static int dc_resume		(device_t);
223 #ifndef BURN_BRIDGES
224 static void dc_acpi		(device_t);
225 #endif
226 static struct dc_type *dc_devtype	(device_t);
227 static int dc_newbuf		(struct dc_softc *, int, int);
228 static int dc_encap		(struct dc_softc *, struct mbuf **);
229 static void dc_pnic_rx_bug_war	(struct dc_softc *, int);
230 static int dc_rx_resync		(struct dc_softc *);
231 static void dc_rxeof		(struct dc_softc *);
232 static void dc_txeof		(struct dc_softc *);
233 static void dc_tick		(void *);
234 static void dc_tx_underrun	(struct dc_softc *);
235 static void dc_intr		(void *);
236 static void dc_start		(struct ifnet *);
237 static int dc_ioctl		(struct ifnet *, u_long, caddr_t);
238 static void dc_init		(void *);
239 static void dc_stop		(struct dc_softc *);
240 static void dc_watchdog		(struct ifnet *);
241 static void dc_shutdown		(device_t);
242 static int dc_ifmedia_upd	(struct ifnet *);
243 static void dc_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
244 
245 static void dc_delay		(struct dc_softc *);
246 static void dc_eeprom_idle	(struct dc_softc *);
247 static void dc_eeprom_putbyte	(struct dc_softc *, int);
248 static void dc_eeprom_getword	(struct dc_softc *, int, u_int16_t *);
249 static void dc_eeprom_getword_pnic
250 				(struct dc_softc *, int, u_int16_t *);
251 static void dc_eeprom_getword_xircom
252 				(struct dc_softc *, int, u_int16_t *);
253 static void dc_eeprom_width	(struct dc_softc *);
254 static void dc_read_eeprom	(struct dc_softc *, caddr_t, int, int, int);
255 
256 static void dc_mii_writebit	(struct dc_softc *, int);
257 static int dc_mii_readbit	(struct dc_softc *);
258 static void dc_mii_sync		(struct dc_softc *);
259 static void dc_mii_send		(struct dc_softc *, u_int32_t, int);
260 static int dc_mii_readreg	(struct dc_softc *, struct dc_mii_frame *);
261 static int dc_mii_writereg	(struct dc_softc *, struct dc_mii_frame *);
262 static int dc_miibus_readreg	(device_t, int, int);
263 static int dc_miibus_writereg	(device_t, int, int, int);
264 static void dc_miibus_statchg	(device_t);
265 static void dc_miibus_mediainit	(device_t);
266 
267 static void dc_setcfg		(struct dc_softc *, int);
268 static uint32_t dc_mchash_le	(struct dc_softc *, const uint8_t *);
269 static uint32_t dc_mchash_be	(const uint8_t *);
270 static void dc_setfilt_21143	(struct dc_softc *);
271 static void dc_setfilt_asix	(struct dc_softc *);
272 static void dc_setfilt_admtek	(struct dc_softc *);
273 static void dc_setfilt_xircom	(struct dc_softc *);
274 
275 static void dc_setfilt		(struct dc_softc *);
276 
277 static void dc_reset		(struct dc_softc *);
278 static int dc_list_rx_init	(struct dc_softc *);
279 static int dc_list_tx_init	(struct dc_softc *);
280 
281 static void dc_read_srom	(struct dc_softc *, int);
282 static void dc_parse_21143_srom	(struct dc_softc *);
283 static void dc_decode_leaf_sia	(struct dc_softc *, struct dc_eblock_sia *);
284 static void dc_decode_leaf_mii	(struct dc_softc *, struct dc_eblock_mii *);
285 static void dc_decode_leaf_sym	(struct dc_softc *, struct dc_eblock_sym *);
286 static void dc_apply_fixup	(struct dc_softc *, int);
287 
288 static void dc_dma_map_txbuf	(void *, bus_dma_segment_t *, int, bus_size_t,
289 				    int);
290 static void dc_dma_map_rxbuf	(void *, bus_dma_segment_t *, int, bus_size_t,
291 				    int);
292 
293 #ifdef DC_USEIOSPACE
294 #define DC_RES			SYS_RES_IOPORT
295 #define DC_RID			DC_PCI_CFBIO
296 #else
297 #define DC_RES			SYS_RES_MEMORY
298 #define DC_RID			DC_PCI_CFBMA
299 #endif
300 
301 static device_method_t dc_methods[] = {
302 	/* Device interface */
303 	DEVMETHOD(device_probe,		dc_probe),
304 	DEVMETHOD(device_attach,	dc_attach),
305 	DEVMETHOD(device_detach,	dc_detach),
306 	DEVMETHOD(device_suspend,	dc_suspend),
307 	DEVMETHOD(device_resume,	dc_resume),
308 	DEVMETHOD(device_shutdown,	dc_shutdown),
309 
310 	/* bus interface */
311 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
312 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
313 
314 	/* MII interface */
315 	DEVMETHOD(miibus_readreg,	dc_miibus_readreg),
316 	DEVMETHOD(miibus_writereg,	dc_miibus_writereg),
317 	DEVMETHOD(miibus_statchg,	dc_miibus_statchg),
318 	DEVMETHOD(miibus_mediainit,	dc_miibus_mediainit),
319 
320 	{ 0, 0 }
321 };
322 
323 static driver_t dc_driver = {
324 	"dc",
325 	dc_methods,
326 	sizeof(struct dc_softc)
327 };
328 
329 static devclass_t dc_devclass;
330 #ifdef __i386__
331 static int dc_quick = 1;
332 SYSCTL_INT(_hw, OID_AUTO, dc_quick, CTLFLAG_RW, &dc_quick, 0,
333     "do not m_devget() in dc driver");
334 #endif
335 
336 DRIVER_MODULE(dc, cardbus, dc_driver, dc_devclass, 0, 0);
337 DRIVER_MODULE(dc, pci, dc_driver, dc_devclass, 0, 0);
338 DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, 0, 0);
339 
340 #define DC_SETBIT(sc, reg, x)				\
341 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
342 
343 #define DC_CLRBIT(sc, reg, x)				\
344 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
345 
346 #define SIO_SET(x)	DC_SETBIT(sc, DC_SIO, (x))
347 #define SIO_CLR(x)	DC_CLRBIT(sc, DC_SIO, (x))
348 
349 #define IS_MPSAFE 	0
350 
351 static void
352 dc_delay(struct dc_softc *sc)
353 {
354 	int idx;
355 
356 	for (idx = (300 / 33) + 1; idx > 0; idx--)
357 		CSR_READ_4(sc, DC_BUSCTL);
358 }
359 
360 static void
361 dc_eeprom_width(struct dc_softc *sc)
362 {
363 	int i;
364 
365 	/* Force EEPROM to idle state. */
366 	dc_eeprom_idle(sc);
367 
368 	/* Enter EEPROM access mode. */
369 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
370 	dc_delay(sc);
371 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
372 	dc_delay(sc);
373 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
374 	dc_delay(sc);
375 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
376 	dc_delay(sc);
377 
378 	for (i = 3; i--;) {
379 		if (6 & (1 << i))
380 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
381 		else
382 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
383 		dc_delay(sc);
384 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
385 		dc_delay(sc);
386 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
387 		dc_delay(sc);
388 	}
389 
390 	for (i = 1; i <= 12; i++) {
391 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
392 		dc_delay(sc);
393 		if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) {
394 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
395 			dc_delay(sc);
396 			break;
397 		}
398 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
399 		dc_delay(sc);
400 	}
401 
402 	/* Turn off EEPROM access mode. */
403 	dc_eeprom_idle(sc);
404 
405 	if (i < 4 || i > 12)
406 		sc->dc_romwidth = 6;
407 	else
408 		sc->dc_romwidth = i;
409 
410 	/* Enter EEPROM access mode. */
411 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
412 	dc_delay(sc);
413 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
414 	dc_delay(sc);
415 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
416 	dc_delay(sc);
417 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
418 	dc_delay(sc);
419 
420 	/* Turn off EEPROM access mode. */
421 	dc_eeprom_idle(sc);
422 }
423 
424 static void
425 dc_eeprom_idle(struct dc_softc *sc)
426 {
427 	int i;
428 
429 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
430 	dc_delay(sc);
431 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
432 	dc_delay(sc);
433 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
434 	dc_delay(sc);
435 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
436 	dc_delay(sc);
437 
438 	for (i = 0; i < 25; i++) {
439 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
440 		dc_delay(sc);
441 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
442 		dc_delay(sc);
443 	}
444 
445 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
446 	dc_delay(sc);
447 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
448 	dc_delay(sc);
449 	CSR_WRITE_4(sc, DC_SIO, 0x00000000);
450 }
451 
452 /*
453  * Send a read command and address to the EEPROM, check for ACK.
454  */
455 static void
456 dc_eeprom_putbyte(struct dc_softc *sc, int addr)
457 {
458 	int d, i;
459 
460 	d = DC_EECMD_READ >> 6;
461 	for (i = 3; i--; ) {
462 		if (d & (1 << i))
463 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
464 		else
465 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
466 		dc_delay(sc);
467 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
468 		dc_delay(sc);
469 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
470 		dc_delay(sc);
471 	}
472 
473 	/*
474 	 * Feed in each bit and strobe the clock.
475 	 */
476 	for (i = sc->dc_romwidth; i--;) {
477 		if (addr & (1 << i)) {
478 			SIO_SET(DC_SIO_EE_DATAIN);
479 		} else {
480 			SIO_CLR(DC_SIO_EE_DATAIN);
481 		}
482 		dc_delay(sc);
483 		SIO_SET(DC_SIO_EE_CLK);
484 		dc_delay(sc);
485 		SIO_CLR(DC_SIO_EE_CLK);
486 		dc_delay(sc);
487 	}
488 }
489 
490 /*
491  * Read a word of data stored in the EEPROM at address 'addr.'
492  * The PNIC 82c168/82c169 has its own non-standard way to read
493  * the EEPROM.
494  */
495 static void
496 dc_eeprom_getword_pnic(struct dc_softc *sc, int addr, u_int16_t *dest)
497 {
498 	int i;
499 	u_int32_t r;
500 
501 	CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ | addr);
502 
503 	for (i = 0; i < DC_TIMEOUT; i++) {
504 		DELAY(1);
505 		r = CSR_READ_4(sc, DC_SIO);
506 		if (!(r & DC_PN_SIOCTL_BUSY)) {
507 			*dest = (u_int16_t)(r & 0xFFFF);
508 			return;
509 		}
510 	}
511 }
512 
513 /*
514  * Read a word of data stored in the EEPROM at address 'addr.'
515  * The Xircom X3201 has its own non-standard way to read
516  * the EEPROM, too.
517  */
518 static void
519 dc_eeprom_getword_xircom(struct dc_softc *sc, int addr, u_int16_t *dest)
520 {
521 
522 	SIO_SET(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
523 
524 	addr *= 2;
525 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
526 	*dest = (u_int16_t)CSR_READ_4(sc, DC_SIO) & 0xff;
527 	addr += 1;
528 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
529 	*dest |= ((u_int16_t)CSR_READ_4(sc, DC_SIO) & 0xff) << 8;
530 
531 	SIO_CLR(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
532 }
533 
534 /*
535  * Read a word of data stored in the EEPROM at address 'addr.'
536  */
537 static void
538 dc_eeprom_getword(struct dc_softc *sc, int addr, u_int16_t *dest)
539 {
540 	int i;
541 	u_int16_t word = 0;
542 
543 	/* Force EEPROM to idle state. */
544 	dc_eeprom_idle(sc);
545 
546 	/* Enter EEPROM access mode. */
547 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
548 	dc_delay(sc);
549 	DC_SETBIT(sc, DC_SIO,  DC_SIO_ROMCTL_READ);
550 	dc_delay(sc);
551 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
552 	dc_delay(sc);
553 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
554 	dc_delay(sc);
555 
556 	/*
557 	 * Send address of word we want to read.
558 	 */
559 	dc_eeprom_putbyte(sc, addr);
560 
561 	/*
562 	 * Start reading bits from EEPROM.
563 	 */
564 	for (i = 0x8000; i; i >>= 1) {
565 		SIO_SET(DC_SIO_EE_CLK);
566 		dc_delay(sc);
567 		if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
568 			word |= i;
569 		dc_delay(sc);
570 		SIO_CLR(DC_SIO_EE_CLK);
571 		dc_delay(sc);
572 	}
573 
574 	/* Turn off EEPROM access mode. */
575 	dc_eeprom_idle(sc);
576 
577 	*dest = word;
578 }
579 
580 /*
581  * Read a sequence of words from the EEPROM.
582  */
583 static void
584 dc_read_eeprom(struct dc_softc *sc, caddr_t dest, int off, int cnt, int swap)
585 {
586 	int i;
587 	u_int16_t word = 0, *ptr;
588 
589 	for (i = 0; i < cnt; i++) {
590 		if (DC_IS_PNIC(sc))
591 			dc_eeprom_getword_pnic(sc, off + i, &word);
592 		else if (DC_IS_XIRCOM(sc))
593 			dc_eeprom_getword_xircom(sc, off + i, &word);
594 		else
595 			dc_eeprom_getword(sc, off + i, &word);
596 		ptr = (u_int16_t *)(dest + (i * 2));
597 		if (swap)
598 			*ptr = ntohs(word);
599 		else
600 			*ptr = word;
601 	}
602 }
603 
604 /*
605  * The following two routines are taken from the Macronix 98713
606  * Application Notes pp.19-21.
607  */
608 /*
609  * Write a bit to the MII bus.
610  */
611 static void
612 dc_mii_writebit(struct dc_softc *sc, int bit)
613 {
614 
615 	if (bit)
616 		CSR_WRITE_4(sc, DC_SIO,
617 		    DC_SIO_ROMCTL_WRITE | DC_SIO_MII_DATAOUT);
618 	else
619 		CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
620 
621 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
622 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
623 }
624 
625 /*
626  * Read a bit from the MII bus.
627  */
628 static int
629 dc_mii_readbit(struct dc_softc *sc)
630 {
631 
632 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_READ | DC_SIO_MII_DIR);
633 	CSR_READ_4(sc, DC_SIO);
634 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
635 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
636 	if (CSR_READ_4(sc, DC_SIO) & DC_SIO_MII_DATAIN)
637 		return (1);
638 
639 	return (0);
640 }
641 
642 /*
643  * Sync the PHYs by setting data bit and strobing the clock 32 times.
644  */
645 static void
646 dc_mii_sync(struct dc_softc *sc)
647 {
648 	int i;
649 
650 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
651 
652 	for (i = 0; i < 32; i++)
653 		dc_mii_writebit(sc, 1);
654 }
655 
656 /*
657  * Clock a series of bits through the MII.
658  */
659 static void
660 dc_mii_send(struct dc_softc *sc, u_int32_t bits, int cnt)
661 {
662 	int i;
663 
664 	for (i = (0x1 << (cnt - 1)); i; i >>= 1)
665 		dc_mii_writebit(sc, bits & i);
666 }
667 
668 /*
669  * Read an PHY register through the MII.
670  */
671 static int
672 dc_mii_readreg(struct dc_softc *sc, struct dc_mii_frame *frame)
673 {
674 	int i, ack;
675 
676 	DC_LOCK(sc);
677 
678 	/*
679 	 * Set up frame for RX.
680 	 */
681 	frame->mii_stdelim = DC_MII_STARTDELIM;
682 	frame->mii_opcode = DC_MII_READOP;
683 	frame->mii_turnaround = 0;
684 	frame->mii_data = 0;
685 
686 	/*
687 	 * Sync the PHYs.
688 	 */
689 	dc_mii_sync(sc);
690 
691 	/*
692 	 * Send command/address info.
693 	 */
694 	dc_mii_send(sc, frame->mii_stdelim, 2);
695 	dc_mii_send(sc, frame->mii_opcode, 2);
696 	dc_mii_send(sc, frame->mii_phyaddr, 5);
697 	dc_mii_send(sc, frame->mii_regaddr, 5);
698 
699 #ifdef notdef
700 	/* Idle bit */
701 	dc_mii_writebit(sc, 1);
702 	dc_mii_writebit(sc, 0);
703 #endif
704 
705 	/* Check for ack. */
706 	ack = dc_mii_readbit(sc);
707 
708 	/*
709 	 * Now try reading data bits. If the ack failed, we still
710 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
711 	 */
712 	if (ack) {
713 		for (i = 0; i < 16; i++)
714 			dc_mii_readbit(sc);
715 		goto fail;
716 	}
717 
718 	for (i = 0x8000; i; i >>= 1) {
719 		if (!ack) {
720 			if (dc_mii_readbit(sc))
721 				frame->mii_data |= i;
722 		}
723 	}
724 
725 fail:
726 
727 	dc_mii_writebit(sc, 0);
728 	dc_mii_writebit(sc, 0);
729 
730 	DC_UNLOCK(sc);
731 
732 	if (ack)
733 		return (1);
734 	return (0);
735 }
736 
737 /*
738  * Write to a PHY register through the MII.
739  */
740 static int
741 dc_mii_writereg(struct dc_softc *sc, struct dc_mii_frame *frame)
742 {
743 
744 	DC_LOCK(sc);
745 	/*
746 	 * Set up frame for TX.
747 	 */
748 
749 	frame->mii_stdelim = DC_MII_STARTDELIM;
750 	frame->mii_opcode = DC_MII_WRITEOP;
751 	frame->mii_turnaround = DC_MII_TURNAROUND;
752 
753 	/*
754 	 * Sync the PHYs.
755 	 */
756 	dc_mii_sync(sc);
757 
758 	dc_mii_send(sc, frame->mii_stdelim, 2);
759 	dc_mii_send(sc, frame->mii_opcode, 2);
760 	dc_mii_send(sc, frame->mii_phyaddr, 5);
761 	dc_mii_send(sc, frame->mii_regaddr, 5);
762 	dc_mii_send(sc, frame->mii_turnaround, 2);
763 	dc_mii_send(sc, frame->mii_data, 16);
764 
765 	/* Idle bit. */
766 	dc_mii_writebit(sc, 0);
767 	dc_mii_writebit(sc, 0);
768 
769 	DC_UNLOCK(sc);
770 
771 	return (0);
772 }
773 
774 static int
775 dc_miibus_readreg(device_t dev, int phy, int reg)
776 {
777 	struct dc_mii_frame frame;
778 	struct dc_softc	 *sc;
779 	int i, rval, phy_reg = 0;
780 
781 	sc = device_get_softc(dev);
782 	bzero(&frame, sizeof(frame));
783 
784 	/*
785 	 * Note: both the AL981 and AN985 have internal PHYs,
786 	 * however the AL981 provides direct access to the PHY
787 	 * registers while the AN985 uses a serial MII interface.
788 	 * The AN985's MII interface is also buggy in that you
789 	 * can read from any MII address (0 to 31), but only address 1
790 	 * behaves normally. To deal with both cases, we pretend
791 	 * that the PHY is at MII address 1.
792 	 */
793 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
794 		return (0);
795 
796 	/*
797 	 * Note: the ukphy probes of the RS7112 report a PHY at
798 	 * MII address 0 (possibly HomePNA?) and 1 (ethernet)
799 	 * so we only respond to correct one.
800 	 */
801 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
802 		return (0);
803 
804 	if (sc->dc_pmode != DC_PMODE_MII) {
805 		if (phy == (MII_NPHY - 1)) {
806 			switch (reg) {
807 			case MII_BMSR:
808 			/*
809 			 * Fake something to make the probe
810 			 * code think there's a PHY here.
811 			 */
812 				return (BMSR_MEDIAMASK);
813 				break;
814 			case MII_PHYIDR1:
815 				if (DC_IS_PNIC(sc))
816 					return (DC_VENDORID_LO);
817 				return (DC_VENDORID_DEC);
818 				break;
819 			case MII_PHYIDR2:
820 				if (DC_IS_PNIC(sc))
821 					return (DC_DEVICEID_82C168);
822 				return (DC_DEVICEID_21143);
823 				break;
824 			default:
825 				return (0);
826 				break;
827 			}
828 		} else
829 			return (0);
830 	}
831 
832 	if (DC_IS_PNIC(sc)) {
833 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
834 		    (phy << 23) | (reg << 18));
835 		for (i = 0; i < DC_TIMEOUT; i++) {
836 			DELAY(1);
837 			rval = CSR_READ_4(sc, DC_PN_MII);
838 			if (!(rval & DC_PN_MII_BUSY)) {
839 				rval &= 0xFFFF;
840 				return (rval == 0xFFFF ? 0 : rval);
841 			}
842 		}
843 		return (0);
844 	}
845 
846 	if (DC_IS_COMET(sc)) {
847 		switch (reg) {
848 		case MII_BMCR:
849 			phy_reg = DC_AL_BMCR;
850 			break;
851 		case MII_BMSR:
852 			phy_reg = DC_AL_BMSR;
853 			break;
854 		case MII_PHYIDR1:
855 			phy_reg = DC_AL_VENID;
856 			break;
857 		case MII_PHYIDR2:
858 			phy_reg = DC_AL_DEVID;
859 			break;
860 		case MII_ANAR:
861 			phy_reg = DC_AL_ANAR;
862 			break;
863 		case MII_ANLPAR:
864 			phy_reg = DC_AL_LPAR;
865 			break;
866 		case MII_ANER:
867 			phy_reg = DC_AL_ANER;
868 			break;
869 		default:
870 			printf("dc%d: phy_read: bad phy register %x\n",
871 			    sc->dc_unit, reg);
872 			return (0);
873 			break;
874 		}
875 
876 		rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
877 
878 		if (rval == 0xFFFF)
879 			return (0);
880 		return (rval);
881 	}
882 
883 	frame.mii_phyaddr = phy;
884 	frame.mii_regaddr = reg;
885 	if (sc->dc_type == DC_TYPE_98713) {
886 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
887 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
888 	}
889 	dc_mii_readreg(sc, &frame);
890 	if (sc->dc_type == DC_TYPE_98713)
891 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
892 
893 	return (frame.mii_data);
894 }
895 
896 static int
897 dc_miibus_writereg(device_t dev, int phy, int reg, int data)
898 {
899 	struct dc_softc *sc;
900 	struct dc_mii_frame frame;
901 	int i, phy_reg = 0;
902 
903 	sc = device_get_softc(dev);
904 	bzero(&frame, sizeof(frame));
905 
906 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
907 		return (0);
908 
909 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
910 		return (0);
911 
912 	if (DC_IS_PNIC(sc)) {
913 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
914 		    (phy << 23) | (reg << 10) | data);
915 		for (i = 0; i < DC_TIMEOUT; i++) {
916 			if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
917 				break;
918 		}
919 		return (0);
920 	}
921 
922 	if (DC_IS_COMET(sc)) {
923 		switch (reg) {
924 		case MII_BMCR:
925 			phy_reg = DC_AL_BMCR;
926 			break;
927 		case MII_BMSR:
928 			phy_reg = DC_AL_BMSR;
929 			break;
930 		case MII_PHYIDR1:
931 			phy_reg = DC_AL_VENID;
932 			break;
933 		case MII_PHYIDR2:
934 			phy_reg = DC_AL_DEVID;
935 			break;
936 		case MII_ANAR:
937 			phy_reg = DC_AL_ANAR;
938 			break;
939 		case MII_ANLPAR:
940 			phy_reg = DC_AL_LPAR;
941 			break;
942 		case MII_ANER:
943 			phy_reg = DC_AL_ANER;
944 			break;
945 		default:
946 			printf("dc%d: phy_write: bad phy register %x\n",
947 			    sc->dc_unit, reg);
948 			return (0);
949 			break;
950 		}
951 
952 		CSR_WRITE_4(sc, phy_reg, data);
953 		return (0);
954 	}
955 
956 	frame.mii_phyaddr = phy;
957 	frame.mii_regaddr = reg;
958 	frame.mii_data = data;
959 
960 	if (sc->dc_type == DC_TYPE_98713) {
961 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
962 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
963 	}
964 	dc_mii_writereg(sc, &frame);
965 	if (sc->dc_type == DC_TYPE_98713)
966 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
967 
968 	return (0);
969 }
970 
971 static void
972 dc_miibus_statchg(device_t dev)
973 {
974 	struct dc_softc *sc;
975 	struct mii_data *mii;
976 	struct ifmedia *ifm;
977 
978 	sc = device_get_softc(dev);
979 	if (DC_IS_ADMTEK(sc))
980 		return;
981 
982 	mii = device_get_softc(sc->dc_miibus);
983 	ifm = &mii->mii_media;
984 	if (DC_IS_DAVICOM(sc) &&
985 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
986 		dc_setcfg(sc, ifm->ifm_media);
987 		sc->dc_if_media = ifm->ifm_media;
988 	} else {
989 		dc_setcfg(sc, mii->mii_media_active);
990 		sc->dc_if_media = mii->mii_media_active;
991 	}
992 }
993 
994 /*
995  * Special support for DM9102A cards with HomePNA PHYs. Note:
996  * with the Davicom DM9102A/DM9801 eval board that I have, it seems
997  * to be impossible to talk to the management interface of the DM9801
998  * PHY (its MDIO pin is not connected to anything). Consequently,
999  * the driver has to just 'know' about the additional mode and deal
1000  * with it itself. *sigh*
1001  */
1002 static void
1003 dc_miibus_mediainit(device_t dev)
1004 {
1005 	struct dc_softc *sc;
1006 	struct mii_data *mii;
1007 	struct ifmedia *ifm;
1008 	int rev;
1009 
1010 	rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF;
1011 
1012 	sc = device_get_softc(dev);
1013 	mii = device_get_softc(sc->dc_miibus);
1014 	ifm = &mii->mii_media;
1015 
1016 	if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A)
1017 		ifmedia_add(ifm, IFM_ETHER | IFM_HPNA_1, 0, NULL);
1018 }
1019 
1020 #define DC_POLY		0xEDB88320
1021 #define DC_BITS_512	9
1022 #define DC_BITS_128	7
1023 #define DC_BITS_64	6
1024 
1025 static uint32_t
1026 dc_mchash_le(struct dc_softc *sc, const uint8_t *addr)
1027 {
1028 	uint32_t crc;
1029 	int idx, bit;
1030 	uint8_t data;
1031 
1032 	/* Compute CRC for the address value. */
1033 	crc = 0xFFFFFFFF; /* initial value */
1034 
1035 	for (idx = 0; idx < 6; idx++) {
1036 		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1)
1037 			crc = (crc >> 1) ^ (((crc ^ data) & 1) ? DC_POLY : 0);
1038 	}
1039 
1040 	/*
1041 	 * The hash table on the PNIC II and the MX98715AEC-C/D/E
1042 	 * chips is only 128 bits wide.
1043 	 */
1044 	if (sc->dc_flags & DC_128BIT_HASH)
1045 		return (crc & ((1 << DC_BITS_128) - 1));
1046 
1047 	/* The hash table on the MX98715BEC is only 64 bits wide. */
1048 	if (sc->dc_flags & DC_64BIT_HASH)
1049 		return (crc & ((1 << DC_BITS_64) - 1));
1050 
1051 	/* Xircom's hash filtering table is different (read: weird) */
1052 	/* Xircom uses the LEAST significant bits */
1053 	if (DC_IS_XIRCOM(sc)) {
1054 		if ((crc & 0x180) == 0x180)
1055 			return ((crc & 0x0F) + (crc & 0x70) * 3 + (14 << 4));
1056 		else
1057 			return ((crc & 0x1F) + ((crc >> 1) & 0xF0) * 3 +
1058 			    (12 << 4));
1059 	}
1060 
1061 	return (crc & ((1 << DC_BITS_512) - 1));
1062 }
1063 
1064 /*
1065  * Calculate CRC of a multicast group address, return the lower 6 bits.
1066  */
1067 static uint32_t
1068 dc_mchash_be(const uint8_t *addr)
1069 {
1070 	uint32_t crc, carry;
1071 	int idx, bit;
1072 	uint8_t data;
1073 
1074 	/* Compute CRC for the address value. */
1075 	crc = 0xFFFFFFFF; /* initial value */
1076 
1077 	for (idx = 0; idx < 6; idx++) {
1078 		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1) {
1079 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01);
1080 			data >>= 1;
1081 			crc <<= 1;
1082 			if (carry)
1083 				crc = (crc ^ 0x04c11db6) | carry;
1084 		}
1085 	}
1086 
1087 	/* Return the filter bit position. */
1088 	return ((crc >> 26) & 0x0000003F);
1089 }
1090 
1091 /*
1092  * 21143-style RX filter setup routine. Filter programming is done by
1093  * downloading a special setup frame into the TX engine. 21143, Macronix,
1094  * PNIC, PNIC II and Davicom chips are programmed this way.
1095  *
1096  * We always program the chip using 'hash perfect' mode, i.e. one perfect
1097  * address (our node address) and a 512-bit hash filter for multicast
1098  * frames. We also sneak the broadcast address into the hash filter since
1099  * we need that too.
1100  */
1101 static void
1102 dc_setfilt_21143(struct dc_softc *sc)
1103 {
1104 	struct dc_desc *sframe;
1105 	u_int32_t h, *sp;
1106 	struct ifmultiaddr *ifma;
1107 	struct ifnet *ifp;
1108 	int i;
1109 
1110 	ifp = &sc->arpcom.ac_if;
1111 
1112 	i = sc->dc_cdata.dc_tx_prod;
1113 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1114 	sc->dc_cdata.dc_tx_cnt++;
1115 	sframe = &sc->dc_ldata->dc_tx_list[i];
1116 	sp = sc->dc_cdata.dc_sbuf;
1117 	bzero(sp, DC_SFRAME_LEN);
1118 
1119 	sframe->dc_data = htole32(sc->dc_saddr);
1120 	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
1121 	    DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
1122 
1123 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
1124 
1125 	/* If we want promiscuous mode, set the allframes bit. */
1126 	if (ifp->if_flags & IFF_PROMISC)
1127 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1128 	else
1129 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1130 
1131 	if (ifp->if_flags & IFF_ALLMULTI)
1132 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1133 	else
1134 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1135 
1136 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1137 		if (ifma->ifma_addr->sa_family != AF_LINK)
1138 			continue;
1139 		h = dc_mchash_le(sc,
1140 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1141 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1142 	}
1143 
1144 	if (ifp->if_flags & IFF_BROADCAST) {
1145 		h = dc_mchash_le(sc, ifp->if_broadcastaddr);
1146 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1147 	}
1148 
1149 	/* Set our MAC address */
1150 	sp[39] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
1151 	sp[40] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
1152 	sp[41] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
1153 
1154 	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1155 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1156 
1157 	/*
1158 	 * The PNIC takes an exceedingly long time to process its
1159 	 * setup frame; wait 10ms after posting the setup frame
1160 	 * before proceeding, just so it has time to swallow its
1161 	 * medicine.
1162 	 */
1163 	DELAY(10000);
1164 
1165 	ifp->if_timer = 5;
1166 }
1167 
1168 static void
1169 dc_setfilt_admtek(struct dc_softc *sc)
1170 {
1171 	struct ifnet *ifp;
1172 	struct ifmultiaddr *ifma;
1173 	int h = 0;
1174 	u_int32_t hashes[2] = { 0, 0 };
1175 
1176 	ifp = &sc->arpcom.ac_if;
1177 
1178 	/* Init our MAC address. */
1179 	CSR_WRITE_4(sc, DC_AL_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1180 	CSR_WRITE_4(sc, DC_AL_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1181 
1182 	/* If we want promiscuous mode, set the allframes bit. */
1183 	if (ifp->if_flags & IFF_PROMISC)
1184 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1185 	else
1186 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1187 
1188 	if (ifp->if_flags & IFF_ALLMULTI)
1189 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1190 	else
1191 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1192 
1193 	/* First, zot all the existing hash bits. */
1194 	CSR_WRITE_4(sc, DC_AL_MAR0, 0);
1195 	CSR_WRITE_4(sc, DC_AL_MAR1, 0);
1196 
1197 	/*
1198 	 * If we're already in promisc or allmulti mode, we
1199 	 * don't have to bother programming the multicast filter.
1200 	 */
1201 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
1202 		return;
1203 
1204 	/* Now program new ones. */
1205 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1206 		if (ifma->ifma_addr->sa_family != AF_LINK)
1207 			continue;
1208 		if (DC_IS_CENTAUR(sc))
1209 			h = dc_mchash_le(sc,
1210 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1211 		else
1212 			h = dc_mchash_be(
1213 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1214 		if (h < 32)
1215 			hashes[0] |= (1 << h);
1216 		else
1217 			hashes[1] |= (1 << (h - 32));
1218 	}
1219 
1220 	CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]);
1221 	CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]);
1222 }
1223 
1224 static void
1225 dc_setfilt_asix(struct dc_softc *sc)
1226 {
1227 	struct ifnet *ifp;
1228 	struct ifmultiaddr *ifma;
1229 	int h = 0;
1230 	u_int32_t hashes[2] = { 0, 0 };
1231 
1232 	ifp = &sc->arpcom.ac_if;
1233 
1234 	/* Init our MAC address */
1235 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
1236 	CSR_WRITE_4(sc, DC_AX_FILTDATA,
1237 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1238 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
1239 	CSR_WRITE_4(sc, DC_AX_FILTDATA,
1240 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1241 
1242 	/* If we want promiscuous mode, set the allframes bit. */
1243 	if (ifp->if_flags & IFF_PROMISC)
1244 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1245 	else
1246 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1247 
1248 	if (ifp->if_flags & IFF_ALLMULTI)
1249 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1250 	else
1251 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1252 
1253 	/*
1254 	 * The ASIX chip has a special bit to enable reception
1255 	 * of broadcast frames.
1256 	 */
1257 	if (ifp->if_flags & IFF_BROADCAST)
1258 		DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1259 	else
1260 		DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1261 
1262 	/* first, zot all the existing hash bits */
1263 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1264 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1265 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1266 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1267 
1268 	/*
1269 	 * If we're already in promisc or allmulti mode, we
1270 	 * don't have to bother programming the multicast filter.
1271 	 */
1272 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
1273 		return;
1274 
1275 	/* now program new ones */
1276 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1277 		if (ifma->ifma_addr->sa_family != AF_LINK)
1278 			continue;
1279 		h = dc_mchash_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1280 		if (h < 32)
1281 			hashes[0] |= (1 << h);
1282 		else
1283 			hashes[1] |= (1 << (h - 32));
1284 	}
1285 
1286 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1287 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
1288 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1289 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
1290 }
1291 
1292 static void
1293 dc_setfilt_xircom(struct dc_softc *sc)
1294 {
1295 	struct ifnet *ifp;
1296 	struct ifmultiaddr *ifma;
1297 	struct dc_desc *sframe;
1298 	u_int32_t h, *sp;
1299 	int i;
1300 
1301 	ifp = &sc->arpcom.ac_if;
1302 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1303 
1304 	i = sc->dc_cdata.dc_tx_prod;
1305 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1306 	sc->dc_cdata.dc_tx_cnt++;
1307 	sframe = &sc->dc_ldata->dc_tx_list[i];
1308 	sp = sc->dc_cdata.dc_sbuf;
1309 	bzero(sp, DC_SFRAME_LEN);
1310 
1311 	sframe->dc_data = htole32(sc->dc_saddr);
1312 	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
1313 	    DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
1314 
1315 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
1316 
1317 	/* If we want promiscuous mode, set the allframes bit. */
1318 	if (ifp->if_flags & IFF_PROMISC)
1319 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1320 	else
1321 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1322 
1323 	if (ifp->if_flags & IFF_ALLMULTI)
1324 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1325 	else
1326 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1327 
1328 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1329 		if (ifma->ifma_addr->sa_family != AF_LINK)
1330 			continue;
1331 		h = dc_mchash_le(sc,
1332 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1333 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1334 	}
1335 
1336 	if (ifp->if_flags & IFF_BROADCAST) {
1337 		h = dc_mchash_le(sc, ifp->if_broadcastaddr);
1338 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1339 	}
1340 
1341 	/* Set our MAC address */
1342 	sp[0] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
1343 	sp[1] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
1344 	sp[2] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
1345 
1346 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
1347 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
1348 	ifp->if_flags |= IFF_RUNNING;
1349 	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1350 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1351 
1352 	/*
1353 	 * Wait some time...
1354 	 */
1355 	DELAY(1000);
1356 
1357 	ifp->if_timer = 5;
1358 }
1359 
1360 static void
1361 dc_setfilt(struct dc_softc *sc)
1362 {
1363 
1364 	if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
1365 	    DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc))
1366 		dc_setfilt_21143(sc);
1367 
1368 	if (DC_IS_ASIX(sc))
1369 		dc_setfilt_asix(sc);
1370 
1371 	if (DC_IS_ADMTEK(sc))
1372 		dc_setfilt_admtek(sc);
1373 
1374 	if (DC_IS_XIRCOM(sc))
1375 		dc_setfilt_xircom(sc);
1376 }
1377 
1378 /*
1379  * In order to fiddle with the 'full-duplex' and '100Mbps' bits in
1380  * the netconfig register, we first have to put the transmit and/or
1381  * receive logic in the idle state.
1382  */
1383 static void
1384 dc_setcfg(struct dc_softc *sc, int media)
1385 {
1386 	int i, restart = 0, watchdogreg;
1387 	u_int32_t isr;
1388 
1389 	if (IFM_SUBTYPE(media) == IFM_NONE)
1390 		return;
1391 
1392 	if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON)) {
1393 		restart = 1;
1394 		DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1395 
1396 		for (i = 0; i < DC_TIMEOUT; i++) {
1397 			isr = CSR_READ_4(sc, DC_ISR);
1398 			if (isr & DC_ISR_TX_IDLE &&
1399 			    ((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
1400 			    (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT))
1401 				break;
1402 			DELAY(10);
1403 		}
1404 
1405 		if (i == DC_TIMEOUT)
1406 			printf("dc%d: failed to force tx and "
1407 				"rx to idle state\n", sc->dc_unit);
1408 	}
1409 
1410 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
1411 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1412 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1413 		if (sc->dc_pmode == DC_PMODE_MII) {
1414 			if (DC_IS_INTEL(sc)) {
1415 			/* There's a write enable bit here that reads as 1. */
1416 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1417 				watchdogreg &= ~DC_WDOG_CTLWREN;
1418 				watchdogreg |= DC_WDOG_JABBERDIS;
1419 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1420 			} else {
1421 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1422 			}
1423 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1424 			    DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
1425 			if (sc->dc_type == DC_TYPE_98713)
1426 				DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1427 				    DC_NETCFG_SCRAMBLER));
1428 			if (!DC_IS_DAVICOM(sc))
1429 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1430 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1431 			if (DC_IS_INTEL(sc))
1432 				dc_apply_fixup(sc, IFM_AUTO);
1433 		} else {
1434 			if (DC_IS_PNIC(sc)) {
1435 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
1436 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1437 				DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1438 			}
1439 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1440 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1441 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1442 			if (DC_IS_INTEL(sc))
1443 				dc_apply_fixup(sc,
1444 				    (media & IFM_GMASK) == IFM_FDX ?
1445 				    IFM_100_TX | IFM_FDX : IFM_100_TX);
1446 		}
1447 	}
1448 
1449 	if (IFM_SUBTYPE(media) == IFM_10_T) {
1450 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1451 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1452 		if (sc->dc_pmode == DC_PMODE_MII) {
1453 			/* There's a write enable bit here that reads as 1. */
1454 			if (DC_IS_INTEL(sc)) {
1455 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1456 				watchdogreg &= ~DC_WDOG_CTLWREN;
1457 				watchdogreg |= DC_WDOG_JABBERDIS;
1458 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1459 			} else {
1460 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1461 			}
1462 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1463 			    DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
1464 			if (sc->dc_type == DC_TYPE_98713)
1465 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1466 			if (!DC_IS_DAVICOM(sc))
1467 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1468 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1469 			if (DC_IS_INTEL(sc))
1470 				dc_apply_fixup(sc, IFM_AUTO);
1471 		} else {
1472 			if (DC_IS_PNIC(sc)) {
1473 				DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
1474 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1475 				DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1476 			}
1477 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1478 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1479 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1480 			if (DC_IS_INTEL(sc)) {
1481 				DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET);
1482 				DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1483 				if ((media & IFM_GMASK) == IFM_FDX)
1484 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D);
1485 				else
1486 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F);
1487 				DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1488 				DC_CLRBIT(sc, DC_10BTCTRL,
1489 				    DC_TCTL_AUTONEGENBL);
1490 				dc_apply_fixup(sc,
1491 				    (media & IFM_GMASK) == IFM_FDX ?
1492 				    IFM_10_T | IFM_FDX : IFM_10_T);
1493 				DELAY(20000);
1494 			}
1495 		}
1496 	}
1497 
1498 	/*
1499 	 * If this is a Davicom DM9102A card with a DM9801 HomePNA
1500 	 * PHY and we want HomePNA mode, set the portsel bit to turn
1501 	 * on the external MII port.
1502 	 */
1503 	if (DC_IS_DAVICOM(sc)) {
1504 		if (IFM_SUBTYPE(media) == IFM_HPNA_1) {
1505 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1506 			sc->dc_link = 1;
1507 		} else {
1508 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1509 		}
1510 	}
1511 
1512 	if ((media & IFM_GMASK) == IFM_FDX) {
1513 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1514 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1515 			DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1516 	} else {
1517 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1518 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1519 			DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1520 	}
1521 
1522 	if (restart)
1523 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON | DC_NETCFG_RX_ON);
1524 }
1525 
1526 static void
1527 dc_reset(struct dc_softc *sc)
1528 {
1529 	int i;
1530 
1531 	DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1532 
1533 	for (i = 0; i < DC_TIMEOUT; i++) {
1534 		DELAY(10);
1535 		if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
1536 			break;
1537 	}
1538 
1539 	if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_CONEXANT(sc) ||
1540 	    DC_IS_XIRCOM(sc) || DC_IS_INTEL(sc)) {
1541 		DELAY(10000);
1542 		DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1543 		i = 0;
1544 	}
1545 
1546 	if (i == DC_TIMEOUT)
1547 		printf("dc%d: reset never completed!\n", sc->dc_unit);
1548 
1549 	/* Wait a little while for the chip to get its brains in order. */
1550 	DELAY(1000);
1551 
1552 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
1553 	CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
1554 	CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
1555 
1556 	/*
1557 	 * Bring the SIA out of reset. In some cases, it looks
1558 	 * like failing to unreset the SIA soon enough gets it
1559 	 * into a state where it will never come out of reset
1560 	 * until we reset the whole chip again.
1561 	 */
1562 	if (DC_IS_INTEL(sc)) {
1563 		DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1564 		CSR_WRITE_4(sc, DC_10BTCTRL, 0);
1565 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
1566 	}
1567 }
1568 
1569 static struct dc_type *
1570 dc_devtype(device_t dev)
1571 {
1572 	struct dc_type *t;
1573 	u_int32_t rev;
1574 
1575 	t = dc_devs;
1576 
1577 	while (t->dc_name != NULL) {
1578 		if ((pci_get_vendor(dev) == t->dc_vid) &&
1579 		    (pci_get_device(dev) == t->dc_did)) {
1580 			/* Check the PCI revision */
1581 			rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF;
1582 			if (t->dc_did == DC_DEVICEID_98713 &&
1583 			    rev >= DC_REVISION_98713A)
1584 				t++;
1585 			if (t->dc_did == DC_DEVICEID_98713_CP &&
1586 			    rev >= DC_REVISION_98713A)
1587 				t++;
1588 			if (t->dc_did == DC_DEVICEID_987x5 &&
1589 			    rev >= DC_REVISION_98715AEC_C)
1590 				t++;
1591 			if (t->dc_did == DC_DEVICEID_987x5 &&
1592 			    rev >= DC_REVISION_98725)
1593 				t++;
1594 			if (t->dc_did == DC_DEVICEID_AX88140A &&
1595 			    rev >= DC_REVISION_88141)
1596 				t++;
1597 			if (t->dc_did == DC_DEVICEID_82C168 &&
1598 			    rev >= DC_REVISION_82C169)
1599 				t++;
1600 			if (t->dc_did == DC_DEVICEID_DM9102 &&
1601 			    rev >= DC_REVISION_DM9102A)
1602 				t++;
1603 			/*
1604 			 * The Microsoft MN-130 has a device ID of 0x0002,
1605 			 * which happens to be the same as the PNIC 82c168.
1606 			 * To keep dc_attach() from getting confused, we
1607 			 * pretend its ID is something different.
1608 			 * XXX: ideally, dc_attach() should be checking
1609 			 * vendorid+deviceid together to avoid such
1610 			 * collisions.
1611 			 */
1612 			if (t->dc_vid == DC_VENDORID_MICROSOFT &&
1613 			    t->dc_did == DC_DEVICEID_MSMN130)
1614 				t++;
1615 			return (t);
1616 		}
1617 		t++;
1618 	}
1619 
1620 	return (NULL);
1621 }
1622 
1623 /*
1624  * Probe for a 21143 or clone chip. Check the PCI vendor and device
1625  * IDs against our list and return a device name if we find a match.
1626  * We do a little bit of extra work to identify the exact type of
1627  * chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
1628  * but different revision IDs. The same is true for 98715/98715A
1629  * chips and the 98725, as well as the ASIX and ADMtek chips. In some
1630  * cases, the exact chip revision affects driver behavior.
1631  */
1632 static int
1633 dc_probe(device_t dev)
1634 {
1635 	struct dc_type *t;
1636 
1637 	t = dc_devtype(dev);
1638 
1639 	if (t != NULL) {
1640 		device_set_desc(dev, t->dc_name);
1641 		return (0);
1642 	}
1643 
1644 	return (ENXIO);
1645 }
1646 
1647 #ifndef BURN_BRIDGES
1648 static void
1649 dc_acpi(device_t dev)
1650 {
1651 	int unit;
1652 	u_int32_t iobase, membase, irq;
1653 
1654 	unit = device_get_unit(dev);
1655 
1656 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1657 		/* Save important PCI config data. */
1658 		iobase = pci_read_config(dev, DC_PCI_CFBIO, 4);
1659 		membase = pci_read_config(dev, DC_PCI_CFBMA, 4);
1660 		irq = pci_read_config(dev, DC_PCI_CFIT, 4);
1661 
1662 		/* Reset the power state. */
1663 		printf("dc%d: chip is in D%d power mode "
1664 		    "-- setting to D0\n", unit,
1665 		    pci_get_powerstate(dev));
1666 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1667 
1668 		/* Restore PCI config data. */
1669 		pci_write_config(dev, DC_PCI_CFBIO, iobase, 4);
1670 		pci_write_config(dev, DC_PCI_CFBMA, membase, 4);
1671 		pci_write_config(dev, DC_PCI_CFIT, irq, 4);
1672 	}
1673 }
1674 #endif
1675 
1676 static void
1677 dc_apply_fixup(struct dc_softc *sc, int media)
1678 {
1679 	struct dc_mediainfo *m;
1680 	u_int8_t *p;
1681 	int i;
1682 	u_int32_t reg;
1683 
1684 	m = sc->dc_mi;
1685 
1686 	while (m != NULL) {
1687 		if (m->dc_media == media)
1688 			break;
1689 		m = m->dc_next;
1690 	}
1691 
1692 	if (m == NULL)
1693 		return;
1694 
1695 	for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) {
1696 		reg = (p[0] | (p[1] << 8)) << 16;
1697 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1698 	}
1699 
1700 	for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) {
1701 		reg = (p[0] | (p[1] << 8)) << 16;
1702 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1703 	}
1704 }
1705 
1706 static void
1707 dc_decode_leaf_sia(struct dc_softc *sc, struct dc_eblock_sia *l)
1708 {
1709 	struct dc_mediainfo *m;
1710 
1711 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1712 	switch (l->dc_sia_code & ~DC_SIA_CODE_EXT) {
1713 	case DC_SIA_CODE_10BT:
1714 		m->dc_media = IFM_10_T;
1715 		break;
1716 	case DC_SIA_CODE_10BT_FDX:
1717 		m->dc_media = IFM_10_T | IFM_FDX;
1718 		break;
1719 	case DC_SIA_CODE_10B2:
1720 		m->dc_media = IFM_10_2;
1721 		break;
1722 	case DC_SIA_CODE_10B5:
1723 		m->dc_media = IFM_10_5;
1724 		break;
1725 	default:
1726 		break;
1727 	}
1728 
1729 	/*
1730 	 * We need to ignore CSR13, CSR14, CSR15 for SIA mode.
1731 	 * Things apparently already work for cards that do
1732 	 * supply Media Specific Data.
1733 	 */
1734 	if (l->dc_sia_code & DC_SIA_CODE_EXT) {
1735 		m->dc_gp_len = 2;
1736 		m->dc_gp_ptr =
1737 		(u_int8_t *)&l->dc_un.dc_sia_ext.dc_sia_gpio_ctl;
1738 	} else {
1739 		m->dc_gp_len = 2;
1740 		m->dc_gp_ptr =
1741 		(u_int8_t *)&l->dc_un.dc_sia_noext.dc_sia_gpio_ctl;
1742 	}
1743 
1744 	m->dc_next = sc->dc_mi;
1745 	sc->dc_mi = m;
1746 
1747 	sc->dc_pmode = DC_PMODE_SIA;
1748 }
1749 
1750 static void
1751 dc_decode_leaf_sym(struct dc_softc *sc, struct dc_eblock_sym *l)
1752 {
1753 	struct dc_mediainfo *m;
1754 
1755 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1756 	if (l->dc_sym_code == DC_SYM_CODE_100BT)
1757 		m->dc_media = IFM_100_TX;
1758 
1759 	if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX)
1760 		m->dc_media = IFM_100_TX | IFM_FDX;
1761 
1762 	m->dc_gp_len = 2;
1763 	m->dc_gp_ptr = (u_int8_t *)&l->dc_sym_gpio_ctl;
1764 
1765 	m->dc_next = sc->dc_mi;
1766 	sc->dc_mi = m;
1767 
1768 	sc->dc_pmode = DC_PMODE_SYM;
1769 }
1770 
1771 static void
1772 dc_decode_leaf_mii(struct dc_softc *sc, struct dc_eblock_mii *l)
1773 {
1774 	struct dc_mediainfo *m;
1775 	u_int8_t *p;
1776 
1777 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1778 	/* We abuse IFM_AUTO to represent MII. */
1779 	m->dc_media = IFM_AUTO;
1780 	m->dc_gp_len = l->dc_gpr_len;
1781 
1782 	p = (u_int8_t *)l;
1783 	p += sizeof(struct dc_eblock_mii);
1784 	m->dc_gp_ptr = p;
1785 	p += 2 * l->dc_gpr_len;
1786 	m->dc_reset_len = *p;
1787 	p++;
1788 	m->dc_reset_ptr = p;
1789 
1790 	m->dc_next = sc->dc_mi;
1791 	sc->dc_mi = m;
1792 }
1793 
1794 static void
1795 dc_read_srom(struct dc_softc *sc, int bits)
1796 {
1797 	int size;
1798 
1799 	size = 2 << bits;
1800 	sc->dc_srom = malloc(size, M_DEVBUF, M_NOWAIT);
1801 	dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (size / 2), 0);
1802 }
1803 
1804 static void
1805 dc_parse_21143_srom(struct dc_softc *sc)
1806 {
1807 	struct dc_leaf_hdr *lhdr;
1808 	struct dc_eblock_hdr *hdr;
1809 	int have_mii, i, loff;
1810 	char *ptr;
1811 
1812 	have_mii = 0;
1813 	loff = sc->dc_srom[27];
1814 	lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]);
1815 
1816 	ptr = (char *)lhdr;
1817 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1818 	/*
1819 	 * Look if we got a MII media block.
1820 	 */
1821 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1822 		hdr = (struct dc_eblock_hdr *)ptr;
1823 		if (hdr->dc_type == DC_EBLOCK_MII)
1824 		    have_mii++;
1825 
1826 		ptr += (hdr->dc_len & 0x7F);
1827 		ptr++;
1828 	}
1829 
1830 	/*
1831 	 * Do the same thing again. Only use SIA and SYM media
1832 	 * blocks if no MII media block is available.
1833 	 */
1834 	ptr = (char *)lhdr;
1835 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1836 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1837 		hdr = (struct dc_eblock_hdr *)ptr;
1838 		switch (hdr->dc_type) {
1839 		case DC_EBLOCK_MII:
1840 			dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr);
1841 			break;
1842 		case DC_EBLOCK_SIA:
1843 			if (! have_mii)
1844 				dc_decode_leaf_sia(sc,
1845 				    (struct dc_eblock_sia *)hdr);
1846 			break;
1847 		case DC_EBLOCK_SYM:
1848 			if (! have_mii)
1849 				dc_decode_leaf_sym(sc,
1850 				    (struct dc_eblock_sym *)hdr);
1851 			break;
1852 		default:
1853 			/* Don't care. Yet. */
1854 			break;
1855 		}
1856 		ptr += (hdr->dc_len & 0x7F);
1857 		ptr++;
1858 	}
1859 }
1860 
1861 static void
1862 dc_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1863 {
1864 	u_int32_t *paddr;
1865 
1866 	KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
1867 	paddr = arg;
1868 	*paddr = segs->ds_addr;
1869 }
1870 
1871 /*
1872  * Attach the interface. Allocate softc structures, do ifmedia
1873  * setup and ethernet/BPF attach.
1874  */
1875 static int
1876 dc_attach(device_t dev)
1877 {
1878 	int tmp = 0;
1879 	u_char eaddr[ETHER_ADDR_LEN];
1880 	u_int32_t command;
1881 	struct dc_softc *sc;
1882 	struct ifnet *ifp;
1883 	u_int32_t revision;
1884 	int unit, error = 0, rid, mac_offset;
1885 	int i;
1886 	u_int8_t *mac;
1887 
1888 	sc = device_get_softc(dev);
1889 	unit = device_get_unit(dev);
1890 
1891 	mtx_init(&sc->dc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1892 	    MTX_DEF | MTX_RECURSE);
1893 #ifndef BURN_BRIDGES
1894 	/*
1895 	 * Handle power management nonsense.
1896 	 */
1897 	dc_acpi(dev);
1898 #endif
1899 	/*
1900 	 * Map control/status registers.
1901 	 */
1902 	pci_enable_busmaster(dev);
1903 
1904 	rid = DC_RID;
1905 	sc->dc_res = bus_alloc_resource(dev, DC_RES, &rid,
1906 	    0, ~0, 1, RF_ACTIVE);
1907 
1908 	if (sc->dc_res == NULL) {
1909 		printf("dc%d: couldn't map ports/memory\n", unit);
1910 		error = ENXIO;
1911 		goto fail;
1912 	}
1913 
1914 	sc->dc_btag = rman_get_bustag(sc->dc_res);
1915 	sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
1916 
1917 	/* Allocate interrupt. */
1918 	rid = 0;
1919 	sc->dc_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1920 	    RF_SHAREABLE | RF_ACTIVE);
1921 
1922 	if (sc->dc_irq == NULL) {
1923 		printf("dc%d: couldn't map interrupt\n", unit);
1924 		error = ENXIO;
1925 		goto fail;
1926 	}
1927 
1928 	/* Need this info to decide on a chip type. */
1929 	sc->dc_info = dc_devtype(dev);
1930 	revision = pci_read_config(dev, DC_PCI_CFRV, 4) & 0x000000FF;
1931 
1932 	/* Get the eeprom width, but PNIC and XIRCOM have diff eeprom */
1933 	if (sc->dc_info->dc_did != DC_DEVICEID_82C168 &&
1934 	   sc->dc_info->dc_did != DC_DEVICEID_X3201)
1935 		dc_eeprom_width(sc);
1936 
1937 	switch (sc->dc_info->dc_did) {
1938 	case DC_DEVICEID_21143:
1939 		sc->dc_type = DC_TYPE_21143;
1940 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1941 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1942 		/* Save EEPROM contents so we can parse them later. */
1943 		dc_read_srom(sc, sc->dc_romwidth);
1944 		break;
1945 	case DC_DEVICEID_DM9009:
1946 	case DC_DEVICEID_DM9100:
1947 	case DC_DEVICEID_DM9102:
1948 		sc->dc_type = DC_TYPE_DM9102;
1949 		sc->dc_flags |= DC_TX_COALESCE | DC_TX_INTR_ALWAYS;
1950 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_TX_STORENFWD;
1951 		sc->dc_flags |= DC_TX_ALIGN;
1952 		sc->dc_pmode = DC_PMODE_MII;
1953 		/* Increase the latency timer value. */
1954 		command = pci_read_config(dev, DC_PCI_CFLT, 4);
1955 		command &= 0xFFFF00FF;
1956 		command |= 0x00008000;
1957 		pci_write_config(dev, DC_PCI_CFLT, command, 4);
1958 		break;
1959 	case DC_DEVICEID_AL981:
1960 		sc->dc_type = DC_TYPE_AL981;
1961 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1962 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1963 		sc->dc_pmode = DC_PMODE_MII;
1964 		dc_read_srom(sc, sc->dc_romwidth);
1965 		break;
1966 	case DC_DEVICEID_AN985:
1967 	case DC_DEVICEID_ADM9511:
1968 	case DC_DEVICEID_ADM9513:
1969 	case DC_DEVICEID_FA511:
1970 	case DC_DEVICEID_FE2500:
1971 	case DC_DEVICEID_EN2242:
1972 	case DC_DEVICEID_HAWKING_PN672TX:
1973 	case DC_DEVICEID_3CSOHOB:
1974 	case DC_DEVICEID_MSMN120:
1975 	case DC_DEVICEID_MSMN130_FAKE: /* XXX avoid collision with PNIC*/
1976 		sc->dc_type = DC_TYPE_AN985;
1977 		sc->dc_flags |= DC_64BIT_HASH;
1978 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1979 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1980 		sc->dc_pmode = DC_PMODE_MII;
1981 		/* Don't read SROM for - auto-loaded on reset */
1982 		break;
1983 	case DC_DEVICEID_98713:
1984 	case DC_DEVICEID_98713_CP:
1985 		if (revision < DC_REVISION_98713A) {
1986 			sc->dc_type = DC_TYPE_98713;
1987 		}
1988 		if (revision >= DC_REVISION_98713A) {
1989 			sc->dc_type = DC_TYPE_98713A;
1990 			sc->dc_flags |= DC_21143_NWAY;
1991 		}
1992 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1993 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1994 		break;
1995 	case DC_DEVICEID_987x5:
1996 	case DC_DEVICEID_EN1217:
1997 		/*
1998 		 * Macronix MX98715AEC-C/D/E parts have only a
1999 		 * 128-bit hash table. We need to deal with these
2000 		 * in the same manner as the PNIC II so that we
2001 		 * get the right number of bits out of the
2002 		 * CRC routine.
2003 		 */
2004 		if (revision >= DC_REVISION_98715AEC_C &&
2005 		    revision < DC_REVISION_98725)
2006 			sc->dc_flags |= DC_128BIT_HASH;
2007 		sc->dc_type = DC_TYPE_987x5;
2008 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
2009 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
2010 		break;
2011 	case DC_DEVICEID_98727:
2012 		sc->dc_type = DC_TYPE_987x5;
2013 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
2014 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
2015 		break;
2016 	case DC_DEVICEID_82C115:
2017 		sc->dc_type = DC_TYPE_PNICII;
2018 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR | DC_128BIT_HASH;
2019 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
2020 		break;
2021 	case DC_DEVICEID_82C168:
2022 		sc->dc_type = DC_TYPE_PNIC;
2023 		sc->dc_flags |= DC_TX_STORENFWD | DC_TX_INTR_ALWAYS;
2024 		sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
2025 		sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_NOWAIT);
2026 		if (revision < DC_REVISION_82C169)
2027 			sc->dc_pmode = DC_PMODE_SYM;
2028 		break;
2029 	case DC_DEVICEID_AX88140A:
2030 		sc->dc_type = DC_TYPE_ASIX;
2031 		sc->dc_flags |= DC_TX_USE_TX_INTR | DC_TX_INTR_FIRSTFRAG;
2032 		sc->dc_flags |= DC_REDUCED_MII_POLL;
2033 		sc->dc_pmode = DC_PMODE_MII;
2034 		break;
2035 	case DC_DEVICEID_X3201:
2036 		sc->dc_type = DC_TYPE_XIRCOM;
2037 		sc->dc_flags |= DC_TX_INTR_ALWAYS | DC_TX_COALESCE |
2038 				DC_TX_ALIGN;
2039 		/*
2040 		 * We don't actually need to coalesce, but we're doing
2041 		 * it to obtain a double word aligned buffer.
2042 		 * The DC_TX_COALESCE flag is required.
2043 		 */
2044 		sc->dc_pmode = DC_PMODE_MII;
2045 		break;
2046 	case DC_DEVICEID_RS7112:
2047 		sc->dc_type = DC_TYPE_CONEXANT;
2048 		sc->dc_flags |= DC_TX_INTR_ALWAYS;
2049 		sc->dc_flags |= DC_REDUCED_MII_POLL;
2050 		sc->dc_pmode = DC_PMODE_MII;
2051 		dc_read_srom(sc, sc->dc_romwidth);
2052 		break;
2053 	default:
2054 		printf("dc%d: unknown device: %x\n", sc->dc_unit,
2055 		    sc->dc_info->dc_did);
2056 		break;
2057 	}
2058 
2059 	/* Save the cache line size. */
2060 	if (DC_IS_DAVICOM(sc))
2061 		sc->dc_cachesize = 0;
2062 	else
2063 		sc->dc_cachesize = pci_read_config(dev,
2064 		    DC_PCI_CFLT, 4) & 0xFF;
2065 
2066 	/* Reset the adapter. */
2067 	dc_reset(sc);
2068 
2069 	/* Take 21143 out of snooze mode */
2070 	if (DC_IS_INTEL(sc) || DC_IS_XIRCOM(sc)) {
2071 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
2072 		command &= ~(DC_CFDD_SNOOZE_MODE | DC_CFDD_SLEEP_MODE);
2073 		pci_write_config(dev, DC_PCI_CFDD, command, 4);
2074 	}
2075 
2076 	/*
2077 	 * Try to learn something about the supported media.
2078 	 * We know that ASIX and ADMtek and Davicom devices
2079 	 * will *always* be using MII media, so that's a no-brainer.
2080 	 * The tricky ones are the Macronix/PNIC II and the
2081 	 * Intel 21143.
2082 	 */
2083 	if (DC_IS_INTEL(sc))
2084 		dc_parse_21143_srom(sc);
2085 	else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
2086 		if (sc->dc_type == DC_TYPE_98713)
2087 			sc->dc_pmode = DC_PMODE_MII;
2088 		else
2089 			sc->dc_pmode = DC_PMODE_SYM;
2090 	} else if (!sc->dc_pmode)
2091 		sc->dc_pmode = DC_PMODE_MII;
2092 
2093 	/*
2094 	 * Get station address from the EEPROM.
2095 	 */
2096 	switch(sc->dc_type) {
2097 	case DC_TYPE_98713:
2098 	case DC_TYPE_98713A:
2099 	case DC_TYPE_987x5:
2100 	case DC_TYPE_PNICII:
2101 		dc_read_eeprom(sc, (caddr_t)&mac_offset,
2102 		    (DC_EE_NODEADDR_OFFSET / 2), 1, 0);
2103 		dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
2104 		break;
2105 	case DC_TYPE_PNIC:
2106 		dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
2107 		break;
2108 	case DC_TYPE_DM9102:
2109 	case DC_TYPE_21143:
2110 	case DC_TYPE_ASIX:
2111 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2112 		break;
2113 	case DC_TYPE_AL981:
2114 	case DC_TYPE_AN985:
2115 		*(u_int32_t *)(&eaddr[0]) = CSR_READ_4(sc, DC_AL_PAR0);
2116 		*(u_int16_t *)(&eaddr[4]) = CSR_READ_4(sc, DC_AL_PAR1);
2117 		break;
2118 	case DC_TYPE_CONEXANT:
2119 		bcopy(sc->dc_srom + DC_CONEXANT_EE_NODEADDR, &eaddr,
2120 		    ETHER_ADDR_LEN);
2121 		break;
2122 	case DC_TYPE_XIRCOM:
2123 		/* The MAC comes from the CIS. */
2124 		mac = pci_get_ether(dev);
2125 		if (!mac) {
2126 			device_printf(dev, "No station address in CIS!\n");
2127 			error = ENXIO;
2128 			goto fail;
2129 		}
2130 		bcopy(mac, eaddr, ETHER_ADDR_LEN);
2131 		break;
2132 	default:
2133 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2134 		break;
2135 	}
2136 
2137 	/*
2138 	 * A 21143 or clone chip was detected. Inform the world.
2139 	 */
2140 	printf("dc%d: Ethernet address: %6D\n", unit, eaddr, ":");
2141 
2142 	sc->dc_unit = unit;
2143 	bcopy(eaddr, &sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
2144 
2145 	/* Allocate a busdma tag and DMA safe memory for TX/RX descriptors. */
2146 	error = bus_dma_tag_create(NULL, PAGE_SIZE, 0, BUS_SPACE_MAXADDR_32BIT,
2147 	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct dc_list_data), 1,
2148 	    sizeof(struct dc_list_data), 0, NULL, NULL, &sc->dc_ltag);
2149 	if (error) {
2150 		printf("dc%d: failed to allocate busdma tag\n", unit);
2151 		error = ENXIO;
2152 		goto fail;
2153 	}
2154 	error = bus_dmamem_alloc(sc->dc_ltag, (void **)&sc->dc_ldata,
2155 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->dc_lmap);
2156 	if (error) {
2157 		printf("dc%d: failed to allocate DMA safe memory\n", unit);
2158 		error = ENXIO;
2159 		goto fail;
2160 	}
2161 	error = bus_dmamap_load(sc->dc_ltag, sc->dc_lmap, sc->dc_ldata,
2162 	    sizeof(struct dc_list_data), dc_dma_map_addr, &sc->dc_laddr,
2163 	    BUS_DMA_NOWAIT);
2164 	if (error) {
2165 		printf("dc%d: cannot get address of the descriptors\n", unit);
2166 		error = ENXIO;
2167 		goto fail;
2168 	}
2169 
2170 	/*
2171 	 * Allocate a busdma tag and DMA safe memory for the multicast
2172 	 * setup frame.
2173 	 */
2174 	error = bus_dma_tag_create(NULL, PAGE_SIZE, 0, BUS_SPACE_MAXADDR_32BIT,
2175 	    BUS_SPACE_MAXADDR, NULL, NULL, DC_SFRAME_LEN + DC_MIN_FRAMELEN, 1,
2176 	    DC_SFRAME_LEN + DC_MIN_FRAMELEN, 0, NULL, NULL, &sc->dc_stag);
2177 	if (error) {
2178 		printf("dc%d: failed to allocate busdma tag\n", unit);
2179 		error = ENXIO;
2180 		goto fail;
2181 	}
2182 	error = bus_dmamem_alloc(sc->dc_stag, (void **)&sc->dc_cdata.dc_sbuf,
2183 	    BUS_DMA_NOWAIT, &sc->dc_smap);
2184 	if (error) {
2185 		printf("dc%d: failed to allocate DMA safe memory\n", unit);
2186 		error = ENXIO;
2187 		goto fail;
2188 	}
2189 	error = bus_dmamap_load(sc->dc_stag, sc->dc_smap, sc->dc_cdata.dc_sbuf,
2190 	    DC_SFRAME_LEN, dc_dma_map_addr, &sc->dc_saddr, BUS_DMA_NOWAIT);
2191 	if (error) {
2192 		printf("dc%d: cannot get address of the descriptors\n", unit);
2193 		error = ENXIO;
2194 		goto fail;
2195 	}
2196 
2197 	/* Allocate a busdma tag for mbufs. */
2198 	error = bus_dma_tag_create(NULL, PAGE_SIZE, 0, BUS_SPACE_MAXADDR_32BIT,
2199 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * DC_TX_LIST_CNT,
2200 	    DC_TX_LIST_CNT, MCLBYTES, 0, NULL, NULL, &sc->dc_mtag);
2201 	if (error) {
2202 		printf("dc%d: failed to allocate busdma tag\n", unit);
2203 		error = ENXIO;
2204 		goto fail;
2205 	}
2206 
2207 	/* Create the TX/RX busdma maps. */
2208 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2209 		error = bus_dmamap_create(sc->dc_mtag, 0,
2210 		    &sc->dc_cdata.dc_tx_map[i]);
2211 		if (error) {
2212 			printf("dc%d: failed to init TX ring\n", unit);
2213 			error = ENXIO;
2214 			goto fail;
2215 		}
2216 	}
2217 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2218 		error = bus_dmamap_create(sc->dc_mtag, 0,
2219 		    &sc->dc_cdata.dc_rx_map[i]);
2220 		if (error) {
2221 			printf("dc%d: failed to init RX ring\n", unit);
2222 			error = ENXIO;
2223 			goto fail;
2224 		}
2225 	}
2226 	error = bus_dmamap_create(sc->dc_mtag, 0, &sc->dc_sparemap);
2227 	if (error) {
2228 		printf("dc%d: failed to init RX ring\n", unit);
2229 		error = ENXIO;
2230 		goto fail;
2231 	}
2232 
2233 	ifp = &sc->arpcom.ac_if;
2234 	ifp->if_softc = sc;
2235 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2236 	/* XXX: bleah, MTU gets overwritten in ether_ifattach() */
2237 	ifp->if_mtu = ETHERMTU;
2238 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2239 	ifp->if_ioctl = dc_ioctl;
2240 	ifp->if_start = dc_start;
2241 	ifp->if_watchdog = dc_watchdog;
2242 	ifp->if_init = dc_init;
2243 	ifp->if_baudrate = 10000000;
2244 	ifp->if_snd.ifq_maxlen = DC_TX_LIST_CNT - 1;
2245 
2246 	/*
2247 	 * Do MII setup. If this is a 21143, check for a PHY on the
2248 	 * MII bus after applying any necessary fixups to twiddle the
2249 	 * GPIO bits. If we don't end up finding a PHY, restore the
2250 	 * old selection (SIA only or SIA/SYM) and attach the dcphy
2251 	 * driver instead.
2252 	 */
2253 	if (DC_IS_INTEL(sc)) {
2254 		dc_apply_fixup(sc, IFM_AUTO);
2255 		tmp = sc->dc_pmode;
2256 		sc->dc_pmode = DC_PMODE_MII;
2257 	}
2258 
2259 	error = mii_phy_probe(dev, &sc->dc_miibus,
2260 	    dc_ifmedia_upd, dc_ifmedia_sts);
2261 
2262 	if (error && DC_IS_INTEL(sc)) {
2263 		sc->dc_pmode = tmp;
2264 		if (sc->dc_pmode != DC_PMODE_SIA)
2265 			sc->dc_pmode = DC_PMODE_SYM;
2266 		sc->dc_flags |= DC_21143_NWAY;
2267 		mii_phy_probe(dev, &sc->dc_miibus,
2268 		    dc_ifmedia_upd, dc_ifmedia_sts);
2269 		/*
2270 		 * For non-MII cards, we need to have the 21143
2271 		 * drive the LEDs. Except there are some systems
2272 		 * like the NEC VersaPro NoteBook PC which have no
2273 		 * LEDs, and twiddling these bits has adverse effects
2274 		 * on them. (I.e. you suddenly can't get a link.)
2275 		 */
2276 		if (pci_read_config(dev, DC_PCI_CSID, 4) != 0x80281033)
2277 			sc->dc_flags |= DC_TULIP_LEDS;
2278 		error = 0;
2279 	}
2280 
2281 	if (error) {
2282 		printf("dc%d: MII without any PHY!\n", sc->dc_unit);
2283 		goto fail;
2284 	}
2285 
2286 	if (DC_IS_XIRCOM(sc)) {
2287 		/*
2288 		 * setup General Purpose Port mode and data so the tulip
2289 		 * can talk to the MII.
2290 		 */
2291 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
2292 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2293 		DELAY(10);
2294 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
2295 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2296 		DELAY(10);
2297 	}
2298 
2299 	if (DC_IS_ADMTEK(sc)) {
2300 		/*
2301 		 * Set automatic TX underrun recovery for the ADMtek chips
2302 		 */
2303 		DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR);
2304 	}
2305 
2306 	/*
2307 	 * Tell the upper layer(s) we support long frames.
2308 	 */
2309 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2310 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
2311 
2312 	callout_init(&sc->dc_stat_ch, IS_MPSAFE ? CALLOUT_MPSAFE : 0);
2313 
2314 #ifdef SRM_MEDIA
2315 	sc->dc_srm_media = 0;
2316 
2317 	/* Remember the SRM console media setting */
2318 	if (DC_IS_INTEL(sc)) {
2319 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
2320 		command &= ~(DC_CFDD_SNOOZE_MODE | DC_CFDD_SLEEP_MODE);
2321 		switch ((command >> 8) & 0xff) {
2322 		case 3:
2323 			sc->dc_srm_media = IFM_10_T;
2324 			break;
2325 		case 4:
2326 			sc->dc_srm_media = IFM_10_T | IFM_FDX;
2327 			break;
2328 		case 5:
2329 			sc->dc_srm_media = IFM_100_TX;
2330 			break;
2331 		case 6:
2332 			sc->dc_srm_media = IFM_100_TX | IFM_FDX;
2333 			break;
2334 		}
2335 		if (sc->dc_srm_media)
2336 			sc->dc_srm_media |= IFM_ACTIVE | IFM_ETHER;
2337 	}
2338 #endif
2339 
2340 	/*
2341 	 * Call MI attach routine.
2342 	 */
2343 	ether_ifattach(ifp, eaddr);
2344 
2345 	/* Hook interrupt last to avoid having to lock softc */
2346 	error = bus_setup_intr(dev, sc->dc_irq, INTR_TYPE_NET |
2347 	    (IS_MPSAFE ? INTR_MPSAFE : 0),
2348 	    dc_intr, sc, &sc->dc_intrhand);
2349 
2350 	if (error) {
2351 		printf("dc%d: couldn't set up irq\n", unit);
2352 		ether_ifdetach(ifp);
2353 		goto fail;
2354 	}
2355 
2356 fail:
2357 	if (error)
2358 		dc_detach(dev);
2359 	return (error);
2360 }
2361 
2362 /*
2363  * Shutdown hardware and free up resources. This can be called any
2364  * time after the mutex has been initialized. It is called in both
2365  * the error case in attach and the normal detach case so it needs
2366  * to be careful about only freeing resources that have actually been
2367  * allocated.
2368  */
2369 static int
2370 dc_detach(device_t dev)
2371 {
2372 	struct dc_softc *sc;
2373 	struct ifnet *ifp;
2374 	struct dc_mediainfo *m;
2375 	int i;
2376 
2377 	sc = device_get_softc(dev);
2378 	KASSERT(mtx_initialized(&sc->dc_mtx), ("dc mutex not initialized"));
2379 	DC_LOCK(sc);
2380 
2381 	ifp = &sc->arpcom.ac_if;
2382 
2383 	/* These should only be active if attach succeeded */
2384 	if (device_is_attached(dev)) {
2385 		dc_stop(sc);
2386 		ether_ifdetach(ifp);
2387 	}
2388 	if (sc->dc_miibus)
2389 		device_delete_child(dev, sc->dc_miibus);
2390 	bus_generic_detach(dev);
2391 
2392 	if (sc->dc_intrhand)
2393 		bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2394 	if (sc->dc_irq)
2395 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2396 	if (sc->dc_res)
2397 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2398 
2399 	if (sc->dc_cdata.dc_sbuf != NULL)
2400 		bus_dmamem_free(sc->dc_stag, sc->dc_cdata.dc_sbuf, sc->dc_smap);
2401 	if (sc->dc_ldata != NULL)
2402 		bus_dmamem_free(sc->dc_ltag, sc->dc_ldata, sc->dc_lmap);
2403 	for (i = 0; i < DC_TX_LIST_CNT; i++)
2404 		bus_dmamap_destroy(sc->dc_mtag, sc->dc_cdata.dc_tx_map[i]);
2405 	for (i = 0; i < DC_RX_LIST_CNT; i++)
2406 		bus_dmamap_destroy(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i]);
2407 	bus_dmamap_destroy(sc->dc_mtag, sc->dc_sparemap);
2408 	if (sc->dc_stag)
2409 		bus_dma_tag_destroy(sc->dc_stag);
2410 	if (sc->dc_mtag)
2411 		bus_dma_tag_destroy(sc->dc_mtag);
2412 	if (sc->dc_ltag)
2413 		bus_dma_tag_destroy(sc->dc_ltag);
2414 
2415 	free(sc->dc_pnic_rx_buf, M_DEVBUF);
2416 
2417 	while (sc->dc_mi != NULL) {
2418 		m = sc->dc_mi->dc_next;
2419 		free(sc->dc_mi, M_DEVBUF);
2420 		sc->dc_mi = m;
2421 	}
2422 	free(sc->dc_srom, M_DEVBUF);
2423 
2424 	DC_UNLOCK(sc);
2425 	mtx_destroy(&sc->dc_mtx);
2426 
2427 	return (0);
2428 }
2429 
2430 /*
2431  * Initialize the transmit descriptors.
2432  */
2433 static int
2434 dc_list_tx_init(struct dc_softc *sc)
2435 {
2436 	struct dc_chain_data *cd;
2437 	struct dc_list_data *ld;
2438 	int i, nexti;
2439 
2440 	cd = &sc->dc_cdata;
2441 	ld = sc->dc_ldata;
2442 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2443 		if (i == DC_TX_LIST_CNT - 1)
2444 			nexti = 0;
2445 		else
2446 			nexti = i + 1;
2447 		ld->dc_tx_list[i].dc_next = htole32(DC_TXDESC(sc, nexti));
2448 		cd->dc_tx_chain[i] = NULL;
2449 		ld->dc_tx_list[i].dc_data = 0;
2450 		ld->dc_tx_list[i].dc_ctl = 0;
2451 	}
2452 
2453 	cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
2454 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
2455 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2456 	return (0);
2457 }
2458 
2459 
2460 /*
2461  * Initialize the RX descriptors and allocate mbufs for them. Note that
2462  * we arrange the descriptors in a closed ring, so that the last descriptor
2463  * points back to the first.
2464  */
2465 static int
2466 dc_list_rx_init(struct dc_softc *sc)
2467 {
2468 	struct dc_chain_data *cd;
2469 	struct dc_list_data *ld;
2470 	int i, nexti;
2471 
2472 	cd = &sc->dc_cdata;
2473 	ld = sc->dc_ldata;
2474 
2475 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2476 		if (dc_newbuf(sc, i, 1) != 0)
2477 			return (ENOBUFS);
2478 		if (i == DC_RX_LIST_CNT - 1)
2479 			nexti = 0;
2480 		else
2481 			nexti = i + 1;
2482 		ld->dc_rx_list[i].dc_next = htole32(DC_RXDESC(sc, nexti));
2483 	}
2484 
2485 	cd->dc_rx_prod = 0;
2486 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
2487 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2488 	return (0);
2489 }
2490 
2491 static void
2492 dc_dma_map_rxbuf(arg, segs, nseg, mapsize, error)
2493 	void *arg;
2494 	bus_dma_segment_t *segs;
2495 	int nseg;
2496 	bus_size_t mapsize;
2497 	int error;
2498 {
2499 	struct dc_softc *sc;
2500 	struct dc_desc *c;
2501 
2502 	sc = arg;
2503 	c = &sc->dc_ldata->dc_rx_list[sc->dc_cdata.dc_rx_cur];
2504 	if (error) {
2505 		sc->dc_cdata.dc_rx_err = error;
2506 		return;
2507 	}
2508 
2509 	KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
2510 	sc->dc_cdata.dc_rx_err = 0;
2511 	c->dc_data = htole32(segs->ds_addr);
2512 }
2513 
2514 /*
2515  * Initialize an RX descriptor and attach an MBUF cluster.
2516  */
2517 static int
2518 dc_newbuf(struct dc_softc *sc, int i, int alloc)
2519 {
2520 	struct mbuf *m_new;
2521 	bus_dmamap_t tmp;
2522 	int error;
2523 
2524 	if (alloc) {
2525 		m_new = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2526 		if (m_new == NULL)
2527 			return (ENOBUFS);
2528 	} else {
2529 		m_new = sc->dc_cdata.dc_rx_chain[i];
2530 		m_new->m_data = m_new->m_ext.ext_buf;
2531 	}
2532 	m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2533 	m_adj(m_new, sizeof(u_int64_t));
2534 
2535 	/*
2536 	 * If this is a PNIC chip, zero the buffer. This is part
2537 	 * of the workaround for the receive bug in the 82c168 and
2538 	 * 82c169 chips.
2539 	 */
2540 	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
2541 		bzero(mtod(m_new, char *), m_new->m_len);
2542 
2543 	/* No need to remap the mbuf if we're reusing it. */
2544 	if (alloc) {
2545 		sc->dc_cdata.dc_rx_cur = i;
2546 		error = bus_dmamap_load_mbuf(sc->dc_mtag, sc->dc_sparemap,
2547 		    m_new, dc_dma_map_rxbuf, sc, 0);
2548 		if (error) {
2549 			m_freem(m_new);
2550 			return (error);
2551 		}
2552 		if (sc->dc_cdata.dc_rx_err != 0) {
2553 			m_freem(m_new);
2554 			return (sc->dc_cdata.dc_rx_err);
2555 		}
2556 		bus_dmamap_unload(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i]);
2557 		tmp = sc->dc_cdata.dc_rx_map[i];
2558 		sc->dc_cdata.dc_rx_map[i] = sc->dc_sparemap;
2559 		sc->dc_sparemap = tmp;
2560 		sc->dc_cdata.dc_rx_chain[i] = m_new;
2561 	}
2562 
2563 	sc->dc_ldata->dc_rx_list[i].dc_ctl = htole32(DC_RXCTL_RLINK | DC_RXLEN);
2564 	sc->dc_ldata->dc_rx_list[i].dc_status = htole32(DC_RXSTAT_OWN);
2565 	bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i],
2566 	    BUS_DMASYNC_PREREAD);
2567 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
2568 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2569 	return (0);
2570 }
2571 
2572 /*
2573  * Grrrrr.
2574  * The PNIC chip has a terrible bug in it that manifests itself during
2575  * periods of heavy activity. The exact mode of failure if difficult to
2576  * pinpoint: sometimes it only happens in promiscuous mode, sometimes it
2577  * will happen on slow machines. The bug is that sometimes instead of
2578  * uploading one complete frame during reception, it uploads what looks
2579  * like the entire contents of its FIFO memory. The frame we want is at
2580  * the end of the whole mess, but we never know exactly how much data has
2581  * been uploaded, so salvaging the frame is hard.
2582  *
2583  * There is only one way to do it reliably, and it's disgusting.
2584  * Here's what we know:
2585  *
2586  * - We know there will always be somewhere between one and three extra
2587  *   descriptors uploaded.
2588  *
2589  * - We know the desired received frame will always be at the end of the
2590  *   total data upload.
2591  *
2592  * - We know the size of the desired received frame because it will be
2593  *   provided in the length field of the status word in the last descriptor.
2594  *
2595  * Here's what we do:
2596  *
2597  * - When we allocate buffers for the receive ring, we bzero() them.
2598  *   This means that we know that the buffer contents should be all
2599  *   zeros, except for data uploaded by the chip.
2600  *
2601  * - We also force the PNIC chip to upload frames that include the
2602  *   ethernet CRC at the end.
2603  *
2604  * - We gather all of the bogus frame data into a single buffer.
2605  *
2606  * - We then position a pointer at the end of this buffer and scan
2607  *   backwards until we encounter the first non-zero byte of data.
2608  *   This is the end of the received frame. We know we will encounter
2609  *   some data at the end of the frame because the CRC will always be
2610  *   there, so even if the sender transmits a packet of all zeros,
2611  *   we won't be fooled.
2612  *
2613  * - We know the size of the actual received frame, so we subtract
2614  *   that value from the current pointer location. This brings us
2615  *   to the start of the actual received packet.
2616  *
2617  * - We copy this into an mbuf and pass it on, along with the actual
2618  *   frame length.
2619  *
2620  * The performance hit is tremendous, but it beats dropping frames all
2621  * the time.
2622  */
2623 
2624 #define DC_WHOLEFRAME	(DC_RXSTAT_FIRSTFRAG | DC_RXSTAT_LASTFRAG)
2625 static void
2626 dc_pnic_rx_bug_war(struct dc_softc *sc, int idx)
2627 {
2628 	struct dc_desc *cur_rx;
2629 	struct dc_desc *c = NULL;
2630 	struct mbuf *m = NULL;
2631 	unsigned char *ptr;
2632 	int i, total_len;
2633 	u_int32_t rxstat = 0;
2634 
2635 	i = sc->dc_pnic_rx_bug_save;
2636 	cur_rx = &sc->dc_ldata->dc_rx_list[idx];
2637 	ptr = sc->dc_pnic_rx_buf;
2638 	bzero(ptr, DC_RXLEN * 5);
2639 
2640 	/* Copy all the bytes from the bogus buffers. */
2641 	while (1) {
2642 		c = &sc->dc_ldata->dc_rx_list[i];
2643 		rxstat = le32toh(c->dc_status);
2644 		m = sc->dc_cdata.dc_rx_chain[i];
2645 		bcopy(mtod(m, char *), ptr, DC_RXLEN);
2646 		ptr += DC_RXLEN;
2647 		/* If this is the last buffer, break out. */
2648 		if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
2649 			break;
2650 		dc_newbuf(sc, i, 0);
2651 		DC_INC(i, DC_RX_LIST_CNT);
2652 	}
2653 
2654 	/* Find the length of the actual receive frame. */
2655 	total_len = DC_RXBYTES(rxstat);
2656 
2657 	/* Scan backwards until we hit a non-zero byte. */
2658 	while (*ptr == 0x00)
2659 		ptr--;
2660 
2661 	/* Round off. */
2662 	if ((uintptr_t)(ptr) & 0x3)
2663 		ptr -= 1;
2664 
2665 	/* Now find the start of the frame. */
2666 	ptr -= total_len;
2667 	if (ptr < sc->dc_pnic_rx_buf)
2668 		ptr = sc->dc_pnic_rx_buf;
2669 
2670 	/*
2671 	 * Now copy the salvaged frame to the last mbuf and fake up
2672 	 * the status word to make it look like a successful
2673 	 * frame reception.
2674 	 */
2675 	dc_newbuf(sc, i, 0);
2676 	bcopy(ptr, mtod(m, char *), total_len);
2677 	cur_rx->dc_status = htole32(rxstat | DC_RXSTAT_FIRSTFRAG);
2678 }
2679 
2680 /*
2681  * This routine searches the RX ring for dirty descriptors in the
2682  * event that the rxeof routine falls out of sync with the chip's
2683  * current descriptor pointer. This may happen sometimes as a result
2684  * of a "no RX buffer available" condition that happens when the chip
2685  * consumes all of the RX buffers before the driver has a chance to
2686  * process the RX ring. This routine may need to be called more than
2687  * once to bring the driver back in sync with the chip, however we
2688  * should still be getting RX DONE interrupts to drive the search
2689  * for new packets in the RX ring, so we should catch up eventually.
2690  */
2691 static int
2692 dc_rx_resync(struct dc_softc *sc)
2693 {
2694 	struct dc_desc *cur_rx;
2695 	int i, pos;
2696 
2697 	pos = sc->dc_cdata.dc_rx_prod;
2698 
2699 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2700 		cur_rx = &sc->dc_ldata->dc_rx_list[pos];
2701 		if (!(le32toh(cur_rx->dc_status) & DC_RXSTAT_OWN))
2702 			break;
2703 		DC_INC(pos, DC_RX_LIST_CNT);
2704 	}
2705 
2706 	/* If the ring really is empty, then just return. */
2707 	if (i == DC_RX_LIST_CNT)
2708 		return (0);
2709 
2710 	/* We've fallen behing the chip: catch it. */
2711 	sc->dc_cdata.dc_rx_prod = pos;
2712 
2713 	return (EAGAIN);
2714 }
2715 
2716 /*
2717  * A frame has been uploaded: pass the resulting mbuf chain up to
2718  * the higher level protocols.
2719  */
2720 static void
2721 dc_rxeof(struct dc_softc *sc)
2722 {
2723 	struct mbuf *m;
2724 	struct ifnet *ifp;
2725 	struct dc_desc *cur_rx;
2726 	int i, total_len = 0;
2727 	u_int32_t rxstat;
2728 
2729 	DC_LOCK_ASSERT(sc);
2730 
2731 	ifp = &sc->arpcom.ac_if;
2732 	i = sc->dc_cdata.dc_rx_prod;
2733 
2734 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap, BUS_DMASYNC_POSTREAD);
2735 	while (!(le32toh(sc->dc_ldata->dc_rx_list[i].dc_status) &
2736 	    DC_RXSTAT_OWN)) {
2737 #ifdef DEVICE_POLLING
2738 		if (ifp->if_flags & IFF_POLLING) {
2739 			if (sc->rxcycles <= 0)
2740 				break;
2741 			sc->rxcycles--;
2742 		}
2743 #endif
2744 		cur_rx = &sc->dc_ldata->dc_rx_list[i];
2745 		rxstat = le32toh(cur_rx->dc_status);
2746 		m = sc->dc_cdata.dc_rx_chain[i];
2747 		bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i],
2748 		    BUS_DMASYNC_POSTREAD);
2749 		total_len = DC_RXBYTES(rxstat);
2750 
2751 		if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2752 			if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
2753 				if (rxstat & DC_RXSTAT_FIRSTFRAG)
2754 					sc->dc_pnic_rx_bug_save = i;
2755 				if ((rxstat & DC_RXSTAT_LASTFRAG) == 0) {
2756 					DC_INC(i, DC_RX_LIST_CNT);
2757 					continue;
2758 				}
2759 				dc_pnic_rx_bug_war(sc, i);
2760 				rxstat = le32toh(cur_rx->dc_status);
2761 				total_len = DC_RXBYTES(rxstat);
2762 			}
2763 		}
2764 
2765 		/*
2766 		 * If an error occurs, update stats, clear the
2767 		 * status word and leave the mbuf cluster in place:
2768 		 * it should simply get re-used next time this descriptor
2769 		 * comes up in the ring.  However, don't report long
2770 		 * frames as errors since they could be vlans.
2771 		 */
2772 		if ((rxstat & DC_RXSTAT_RXERR)) {
2773 			if (!(rxstat & DC_RXSTAT_GIANT) ||
2774 			    (rxstat & (DC_RXSTAT_CRCERR | DC_RXSTAT_DRIBBLE |
2775 				       DC_RXSTAT_MIIERE | DC_RXSTAT_COLLSEEN |
2776 				       DC_RXSTAT_RUNT   | DC_RXSTAT_DE))) {
2777 				ifp->if_ierrors++;
2778 				if (rxstat & DC_RXSTAT_COLLSEEN)
2779 					ifp->if_collisions++;
2780 				dc_newbuf(sc, i, 0);
2781 				if (rxstat & DC_RXSTAT_CRCERR) {
2782 					DC_INC(i, DC_RX_LIST_CNT);
2783 					continue;
2784 				} else {
2785 					dc_init(sc);
2786 					return;
2787 				}
2788 			}
2789 		}
2790 
2791 		/* No errors; receive the packet. */
2792 		total_len -= ETHER_CRC_LEN;
2793 #ifdef __i386__
2794 		/*
2795 		 * On the x86 we do not have alignment problems, so try to
2796 		 * allocate a new buffer for the receive ring, and pass up
2797 		 * the one where the packet is already, saving the expensive
2798 		 * copy done in m_devget().
2799 		 * If we are on an architecture with alignment problems, or
2800 		 * if the allocation fails, then use m_devget and leave the
2801 		 * existing buffer in the receive ring.
2802 		 */
2803 		if (dc_quick && dc_newbuf(sc, i, 1) == 0) {
2804 			m->m_pkthdr.rcvif = ifp;
2805 			m->m_pkthdr.len = m->m_len = total_len;
2806 			DC_INC(i, DC_RX_LIST_CNT);
2807 		} else
2808 #endif
2809 		{
2810 			struct mbuf *m0;
2811 
2812 			m0 = m_devget(mtod(m, char *), total_len,
2813 				ETHER_ALIGN, ifp, NULL);
2814 			dc_newbuf(sc, i, 0);
2815 			DC_INC(i, DC_RX_LIST_CNT);
2816 			if (m0 == NULL) {
2817 				ifp->if_ierrors++;
2818 				continue;
2819 			}
2820 			m = m0;
2821 		}
2822 
2823 		ifp->if_ipackets++;
2824 		DC_UNLOCK(sc);
2825 		(*ifp->if_input)(ifp, m);
2826 		DC_LOCK(sc);
2827 	}
2828 
2829 	sc->dc_cdata.dc_rx_prod = i;
2830 }
2831 
2832 /*
2833  * A frame was downloaded to the chip. It's safe for us to clean up
2834  * the list buffers.
2835  */
2836 
2837 static void
2838 dc_txeof(struct dc_softc *sc)
2839 {
2840 	struct dc_desc *cur_tx = NULL;
2841 	struct ifnet *ifp;
2842 	int idx;
2843 	u_int32_t ctl, txstat;
2844 
2845 	ifp = &sc->arpcom.ac_if;
2846 
2847 	/*
2848 	 * Go through our tx list and free mbufs for those
2849 	 * frames that have been transmitted.
2850 	 */
2851 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap, BUS_DMASYNC_POSTREAD);
2852 	idx = sc->dc_cdata.dc_tx_cons;
2853 	while (idx != sc->dc_cdata.dc_tx_prod) {
2854 
2855 		cur_tx = &sc->dc_ldata->dc_tx_list[idx];
2856 		txstat = le32toh(cur_tx->dc_status);
2857 		ctl = le32toh(cur_tx->dc_ctl);
2858 
2859 		if (txstat & DC_TXSTAT_OWN)
2860 			break;
2861 
2862 		if (!(ctl & DC_TXCTL_FIRSTFRAG) || ctl & DC_TXCTL_SETUP) {
2863 			if (ctl & DC_TXCTL_SETUP) {
2864 				/*
2865 				 * Yes, the PNIC is so brain damaged
2866 				 * that it will sometimes generate a TX
2867 				 * underrun error while DMAing the RX
2868 				 * filter setup frame. If we detect this,
2869 				 * we have to send the setup frame again,
2870 				 * or else the filter won't be programmed
2871 				 * correctly.
2872 				 */
2873 				if (DC_IS_PNIC(sc)) {
2874 					if (txstat & DC_TXSTAT_ERRSUM)
2875 						dc_setfilt(sc);
2876 				}
2877 				sc->dc_cdata.dc_tx_chain[idx] = NULL;
2878 			}
2879 			sc->dc_cdata.dc_tx_cnt--;
2880 			DC_INC(idx, DC_TX_LIST_CNT);
2881 			continue;
2882 		}
2883 
2884 		if (DC_IS_XIRCOM(sc) || DC_IS_CONEXANT(sc)) {
2885 			/*
2886 			 * XXX: Why does my Xircom taunt me so?
2887 			 * For some reason it likes setting the CARRLOST flag
2888 			 * even when the carrier is there. wtf?!?
2889 			 * Who knows, but Conexant chips have the
2890 			 * same problem. Maybe they took lessons
2891 			 * from Xircom.
2892 			 */
2893 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2894 			    sc->dc_pmode == DC_PMODE_MII &&
2895 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
2896 			    DC_TXSTAT_NOCARRIER)))
2897 				txstat &= ~DC_TXSTAT_ERRSUM;
2898 		} else {
2899 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2900 			    sc->dc_pmode == DC_PMODE_MII &&
2901 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
2902 			    DC_TXSTAT_NOCARRIER | DC_TXSTAT_CARRLOST)))
2903 				txstat &= ~DC_TXSTAT_ERRSUM;
2904 		}
2905 
2906 		if (txstat & DC_TXSTAT_ERRSUM) {
2907 			ifp->if_oerrors++;
2908 			if (txstat & DC_TXSTAT_EXCESSCOLL)
2909 				ifp->if_collisions++;
2910 			if (txstat & DC_TXSTAT_LATECOLL)
2911 				ifp->if_collisions++;
2912 			if (!(txstat & DC_TXSTAT_UNDERRUN)) {
2913 				dc_init(sc);
2914 				return;
2915 			}
2916 		}
2917 
2918 		ifp->if_collisions += (txstat & DC_TXSTAT_COLLCNT) >> 3;
2919 
2920 		ifp->if_opackets++;
2921 		if (sc->dc_cdata.dc_tx_chain[idx] != NULL) {
2922 			bus_dmamap_sync(sc->dc_mtag,
2923 			    sc->dc_cdata.dc_tx_map[idx],
2924 			    BUS_DMASYNC_POSTWRITE);
2925 			bus_dmamap_unload(sc->dc_mtag,
2926 			    sc->dc_cdata.dc_tx_map[idx]);
2927 			m_freem(sc->dc_cdata.dc_tx_chain[idx]);
2928 			sc->dc_cdata.dc_tx_chain[idx] = NULL;
2929 		}
2930 
2931 		sc->dc_cdata.dc_tx_cnt--;
2932 		DC_INC(idx, DC_TX_LIST_CNT);
2933 	}
2934 
2935 	if (idx != sc->dc_cdata.dc_tx_cons) {
2936 	    	/* Some buffers have been freed. */
2937 		sc->dc_cdata.dc_tx_cons = idx;
2938 		ifp->if_flags &= ~IFF_OACTIVE;
2939 	}
2940 	ifp->if_timer = (sc->dc_cdata.dc_tx_cnt == 0) ? 0 : 5;
2941 }
2942 
2943 static void
2944 dc_tick(void *xsc)
2945 {
2946 	struct dc_softc *sc;
2947 	struct mii_data *mii;
2948 	struct ifnet *ifp;
2949 	u_int32_t r;
2950 
2951 	sc = xsc;
2952 	DC_LOCK(sc);
2953 	ifp = &sc->arpcom.ac_if;
2954 	mii = device_get_softc(sc->dc_miibus);
2955 
2956 	if (sc->dc_flags & DC_REDUCED_MII_POLL) {
2957 		if (sc->dc_flags & DC_21143_NWAY) {
2958 			r = CSR_READ_4(sc, DC_10BTSTAT);
2959 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2960 			    IFM_100_TX && (r & DC_TSTAT_LS100)) {
2961 				sc->dc_link = 0;
2962 				mii_mediachg(mii);
2963 			}
2964 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2965 			    IFM_10_T && (r & DC_TSTAT_LS10)) {
2966 				sc->dc_link = 0;
2967 				mii_mediachg(mii);
2968 			}
2969 			if (sc->dc_link == 0)
2970 				mii_tick(mii);
2971 		} else {
2972 			r = CSR_READ_4(sc, DC_ISR);
2973 			if ((r & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT &&
2974 			    sc->dc_cdata.dc_tx_cnt == 0) {
2975 				mii_tick(mii);
2976 				if (!(mii->mii_media_status & IFM_ACTIVE))
2977 					sc->dc_link = 0;
2978 			}
2979 		}
2980 	} else
2981 		mii_tick(mii);
2982 
2983 	/*
2984 	 * When the init routine completes, we expect to be able to send
2985 	 * packets right away, and in fact the network code will send a
2986 	 * gratuitous ARP the moment the init routine marks the interface
2987 	 * as running. However, even though the MAC may have been initialized,
2988 	 * there may be a delay of a few seconds before the PHY completes
2989 	 * autonegotiation and the link is brought up. Any transmissions
2990 	 * made during that delay will be lost. Dealing with this is tricky:
2991 	 * we can't just pause in the init routine while waiting for the
2992 	 * PHY to come ready since that would bring the whole system to
2993 	 * a screeching halt for several seconds.
2994 	 *
2995 	 * What we do here is prevent the TX start routine from sending
2996 	 * any packets until a link has been established. After the
2997 	 * interface has been initialized, the tick routine will poll
2998 	 * the state of the PHY until the IFM_ACTIVE flag is set. Until
2999 	 * that time, packets will stay in the send queue, and once the
3000 	 * link comes up, they will be flushed out to the wire.
3001 	 */
3002 	if (!sc->dc_link && mii->mii_media_status & IFM_ACTIVE &&
3003 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
3004 		sc->dc_link++;
3005 		if (ifp->if_snd.ifq_head != NULL)
3006 			dc_start(ifp);
3007 	}
3008 
3009 	if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link)
3010 		callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
3011 	else
3012 		callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
3013 
3014 	DC_UNLOCK(sc);
3015 }
3016 
3017 /*
3018  * A transmit underrun has occurred.  Back off the transmit threshold,
3019  * or switch to store and forward mode if we have to.
3020  */
3021 static void
3022 dc_tx_underrun(struct dc_softc *sc)
3023 {
3024 	u_int32_t isr;
3025 	int i;
3026 
3027 	if (DC_IS_DAVICOM(sc))
3028 		dc_init(sc);
3029 
3030 	if (DC_IS_INTEL(sc)) {
3031 		/*
3032 		 * The real 21143 requires that the transmitter be idle
3033 		 * in order to change the transmit threshold or store
3034 		 * and forward state.
3035 		 */
3036 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3037 
3038 		for (i = 0; i < DC_TIMEOUT; i++) {
3039 			isr = CSR_READ_4(sc, DC_ISR);
3040 			if (isr & DC_ISR_TX_IDLE)
3041 				break;
3042 			DELAY(10);
3043 		}
3044 		if (i == DC_TIMEOUT) {
3045 			printf("dc%d: failed to force tx to idle state\n",
3046 			    sc->dc_unit);
3047 			dc_init(sc);
3048 		}
3049 	}
3050 
3051 	printf("dc%d: TX underrun -- ", sc->dc_unit);
3052 	sc->dc_txthresh += DC_TXTHRESH_INC;
3053 	if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3054 		printf("using store and forward mode\n");
3055 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3056 	} else {
3057 		printf("increasing TX threshold\n");
3058 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3059 		DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3060 	}
3061 
3062 	if (DC_IS_INTEL(sc))
3063 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3064 }
3065 
3066 #ifdef DEVICE_POLLING
3067 static poll_handler_t dc_poll;
3068 
3069 static void
3070 dc_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
3071 {
3072 	struct dc_softc *sc = ifp->if_softc;
3073 
3074 	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
3075 		/* Re-enable interrupts. */
3076 		CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3077 		return;
3078 	}
3079 	DC_LOCK(sc);
3080 	sc->rxcycles = count;
3081 	dc_rxeof(sc);
3082 	dc_txeof(sc);
3083 	if (ifp->if_snd.ifq_head != NULL && !(ifp->if_flags & IFF_OACTIVE))
3084 		dc_start(ifp);
3085 
3086 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
3087 		u_int32_t	status;
3088 
3089 		status = CSR_READ_4(sc, DC_ISR);
3090 		status &= (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF |
3091 			DC_ISR_TX_NOBUF | DC_ISR_TX_IDLE | DC_ISR_TX_UNDERRUN |
3092 			DC_ISR_BUS_ERR);
3093 		if (!status) {
3094 			DC_UNLOCK(sc);
3095 			return;
3096 		}
3097 		/* ack what we have */
3098 		CSR_WRITE_4(sc, DC_ISR, status);
3099 
3100 		if (status & (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF)) {
3101 			u_int32_t r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
3102 			ifp->if_ierrors += (r & 0xffff) + ((r >> 17) & 0x7ff);
3103 
3104 			if (dc_rx_resync(sc))
3105 				dc_rxeof(sc);
3106 		}
3107 		/* restart transmit unit if necessary */
3108 		if (status & DC_ISR_TX_IDLE && sc->dc_cdata.dc_tx_cnt)
3109 			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3110 
3111 		if (status & DC_ISR_TX_UNDERRUN)
3112 			dc_tx_underrun(sc);
3113 
3114 		if (status & DC_ISR_BUS_ERR) {
3115 			printf("dc_poll: dc%d bus error\n", sc->dc_unit);
3116 			dc_reset(sc);
3117 			dc_init(sc);
3118 		}
3119 	}
3120 	DC_UNLOCK(sc);
3121 }
3122 #endif /* DEVICE_POLLING */
3123 
3124 static void
3125 dc_intr(void *arg)
3126 {
3127 	struct dc_softc *sc;
3128 	struct ifnet *ifp;
3129 	u_int32_t status;
3130 
3131 	sc = arg;
3132 
3133 	if (sc->suspended)
3134 		return;
3135 
3136 	if ((CSR_READ_4(sc, DC_ISR) & DC_INTRS) == 0)
3137 		return;
3138 
3139 	DC_LOCK(sc);
3140 	ifp = &sc->arpcom.ac_if;
3141 #ifdef DEVICE_POLLING
3142 	if (ifp->if_flags & IFF_POLLING)
3143 		goto done;
3144 	if (ether_poll_register(dc_poll, ifp)) { /* ok, disable interrupts */
3145 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3146 		goto done;
3147 	}
3148 #endif
3149 
3150 	/* Suppress unwanted interrupts */
3151 	if (!(ifp->if_flags & IFF_UP)) {
3152 		if (CSR_READ_4(sc, DC_ISR) & DC_INTRS)
3153 			dc_stop(sc);
3154 		DC_UNLOCK(sc);
3155 		return;
3156 	}
3157 
3158 	/* Disable interrupts. */
3159 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3160 
3161 	while (((status = CSR_READ_4(sc, DC_ISR)) & DC_INTRS)
3162 	      && status != 0xFFFFFFFF) {
3163 
3164 		CSR_WRITE_4(sc, DC_ISR, status);
3165 
3166 		if (status & DC_ISR_RX_OK) {
3167 			int		curpkts;
3168 			curpkts = ifp->if_ipackets;
3169 			dc_rxeof(sc);
3170 			if (curpkts == ifp->if_ipackets) {
3171 				while (dc_rx_resync(sc))
3172 					dc_rxeof(sc);
3173 			}
3174 		}
3175 
3176 		if (status & (DC_ISR_TX_OK | DC_ISR_TX_NOBUF))
3177 			dc_txeof(sc);
3178 
3179 		if (status & DC_ISR_TX_IDLE) {
3180 			dc_txeof(sc);
3181 			if (sc->dc_cdata.dc_tx_cnt) {
3182 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3183 				CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3184 			}
3185 		}
3186 
3187 		if (status & DC_ISR_TX_UNDERRUN)
3188 			dc_tx_underrun(sc);
3189 
3190 		if ((status & DC_ISR_RX_WATDOGTIMEO)
3191 		    || (status & DC_ISR_RX_NOBUF)) {
3192 			int		curpkts;
3193 			curpkts = ifp->if_ipackets;
3194 			dc_rxeof(sc);
3195 			if (curpkts == ifp->if_ipackets) {
3196 				while (dc_rx_resync(sc))
3197 					dc_rxeof(sc);
3198 			}
3199 		}
3200 
3201 		if (status & DC_ISR_BUS_ERR) {
3202 			dc_reset(sc);
3203 			dc_init(sc);
3204 		}
3205 	}
3206 
3207 	/* Re-enable interrupts. */
3208 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3209 
3210 	if (ifp->if_snd.ifq_head != NULL)
3211 		dc_start(ifp);
3212 
3213 #ifdef DEVICE_POLLING
3214 done:
3215 #endif
3216 
3217 	DC_UNLOCK(sc);
3218 }
3219 
3220 static void
3221 dc_dma_map_txbuf(arg, segs, nseg, mapsize, error)
3222 	void *arg;
3223 	bus_dma_segment_t *segs;
3224 	int nseg;
3225 	bus_size_t mapsize;
3226 	int error;
3227 {
3228 	struct dc_softc *sc;
3229 	struct dc_desc *f;
3230 	int cur, first, frag, i;
3231 
3232 	sc = arg;
3233 	if (error) {
3234 		sc->dc_cdata.dc_tx_err = error;
3235 		return;
3236 	}
3237 
3238 	first = cur = frag = sc->dc_cdata.dc_tx_prod;
3239 	for (i = 0; i < nseg; i++) {
3240 		if ((sc->dc_flags & DC_TX_ADMTEK_WAR) &&
3241 		    (frag == (DC_TX_LIST_CNT - 1)) &&
3242 		    (first != sc->dc_cdata.dc_tx_first)) {
3243 			bus_dmamap_unload(sc->dc_mtag,
3244 			    sc->dc_cdata.dc_tx_map[first]);
3245 			sc->dc_cdata.dc_tx_err = ENOBUFS;
3246 			return;
3247 		}
3248 
3249 		f = &sc->dc_ldata->dc_tx_list[frag];
3250 		f->dc_ctl = htole32(DC_TXCTL_TLINK | segs[i].ds_len);
3251 		if (i == 0) {
3252 			f->dc_status = 0;
3253 			f->dc_ctl |= htole32(DC_TXCTL_FIRSTFRAG);
3254 		} else
3255 			f->dc_status = htole32(DC_TXSTAT_OWN);
3256 		f->dc_data = htole32(segs[i].ds_addr);
3257 		cur = frag;
3258 		DC_INC(frag, DC_TX_LIST_CNT);
3259 	}
3260 
3261 	sc->dc_cdata.dc_tx_err = 0;
3262 	sc->dc_cdata.dc_tx_prod = frag;
3263 	sc->dc_cdata.dc_tx_cnt += nseg;
3264 	sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_LASTFRAG);
3265 	if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
3266 		sc->dc_ldata->dc_tx_list[first].dc_ctl |=
3267 		    htole32(DC_TXCTL_FINT);
3268 	if (sc->dc_flags & DC_TX_INTR_ALWAYS)
3269 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
3270 	if (sc->dc_flags & DC_TX_USE_TX_INTR && sc->dc_cdata.dc_tx_cnt > 64)
3271 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
3272 	sc->dc_ldata->dc_tx_list[first].dc_status = htole32(DC_TXSTAT_OWN);
3273 }
3274 
3275 /*
3276  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
3277  * pointers to the fragment pointers.
3278  */
3279 static int
3280 dc_encap(struct dc_softc *sc, struct mbuf **m_head)
3281 {
3282 	struct mbuf *m;
3283 	int error, idx, chainlen = 0;
3284 
3285 	/*
3286 	 * If there's no way we can send any packets, return now.
3287 	 */
3288 	if (DC_TX_LIST_CNT - sc->dc_cdata.dc_tx_cnt < 6)
3289 		return (ENOBUFS);
3290 
3291 	/*
3292 	 * Count the number of frags in this chain to see if
3293 	 * we need to m_defrag.  Since the descriptor list is shared
3294 	 * by all packets, we'll m_defrag long chains so that they
3295 	 * do not use up the entire list, even if they would fit.
3296 	 */
3297 	for (m = *m_head; m != NULL; m = m->m_next)
3298 		chainlen++;
3299 
3300 	if ((chainlen > DC_TX_LIST_CNT / 4) ||
3301 	    ((DC_TX_LIST_CNT - (chainlen + sc->dc_cdata.dc_tx_cnt)) < 6)) {
3302 		m = m_defrag(*m_head, M_DONTWAIT);
3303 		if (m == NULL)
3304 			return (ENOBUFS);
3305 		*m_head = m;
3306 	}
3307 
3308 	/*
3309 	 * Start packing the mbufs in this chain into
3310 	 * the fragment pointers. Stop when we run out
3311 	 * of fragments or hit the end of the mbuf chain.
3312 	 */
3313 	idx = sc->dc_cdata.dc_tx_prod;
3314 	error = bus_dmamap_load_mbuf(sc->dc_mtag, sc->dc_cdata.dc_tx_map[idx],
3315 	    *m_head, dc_dma_map_txbuf, sc, 0);
3316 	if (error)
3317 		return (error);
3318 	if (sc->dc_cdata.dc_tx_err != 0)
3319 		return (sc->dc_cdata.dc_tx_err);
3320 	sc->dc_cdata.dc_tx_chain[idx] = *m_head;
3321 	bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_tx_map[idx],
3322 	    BUS_DMASYNC_PREWRITE);
3323 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
3324 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
3325 	return (0);
3326 }
3327 
3328 /*
3329  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3330  * to the mbuf data regions directly in the transmit lists. We also save a
3331  * copy of the pointers since the transmit list fragment pointers are
3332  * physical addresses.
3333  */
3334 
3335 static void
3336 dc_start(struct ifnet *ifp)
3337 {
3338 	struct dc_softc *sc;
3339 	struct mbuf *m_head = NULL, *m;
3340 	int idx;
3341 
3342 	sc = ifp->if_softc;
3343 
3344 	DC_LOCK(sc);
3345 
3346 	if (!sc->dc_link && ifp->if_snd.ifq_len < 10) {
3347 		DC_UNLOCK(sc);
3348 		return;
3349 	}
3350 
3351 	if (ifp->if_flags & IFF_OACTIVE) {
3352 		DC_UNLOCK(sc);
3353 		return;
3354 	}
3355 
3356 	idx = sc->dc_cdata.dc_tx_first = sc->dc_cdata.dc_tx_prod;
3357 
3358 	while (sc->dc_cdata.dc_tx_chain[idx] == NULL) {
3359 		IF_DEQUEUE(&ifp->if_snd, m_head);
3360 		if (m_head == NULL)
3361 			break;
3362 
3363 		if (sc->dc_flags & DC_TX_COALESCE &&
3364 		    (m_head->m_next != NULL ||
3365 		     sc->dc_flags & DC_TX_ALIGN)) {
3366 			m = m_defrag(m_head, M_DONTWAIT);
3367 			if (m == NULL) {
3368 				IF_PREPEND(&ifp->if_snd, m_head);
3369 				ifp->if_flags |= IFF_OACTIVE;
3370 				break;
3371 			} else {
3372 				m_head = m;
3373 			}
3374 		}
3375 
3376 		if (dc_encap(sc, &m_head)) {
3377 			IF_PREPEND(&ifp->if_snd, m_head);
3378 			ifp->if_flags |= IFF_OACTIVE;
3379 			break;
3380 		}
3381 		idx = sc->dc_cdata.dc_tx_prod;
3382 
3383 		/*
3384 		 * If there's a BPF listener, bounce a copy of this frame
3385 		 * to him.
3386 		 */
3387 		BPF_MTAP(ifp, m_head);
3388 
3389 		if (sc->dc_flags & DC_TX_ONE) {
3390 			ifp->if_flags |= IFF_OACTIVE;
3391 			break;
3392 		}
3393 	}
3394 
3395 	/* Transmit */
3396 	if (!(sc->dc_flags & DC_TX_POLL))
3397 		CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3398 
3399 	/*
3400 	 * Set a timeout in case the chip goes out to lunch.
3401 	 */
3402 	ifp->if_timer = 5;
3403 
3404 	DC_UNLOCK(sc);
3405 }
3406 
3407 static void
3408 dc_init(void *xsc)
3409 {
3410 	struct dc_softc *sc = xsc;
3411 	struct ifnet *ifp = &sc->arpcom.ac_if;
3412 	struct mii_data *mii;
3413 
3414 	DC_LOCK(sc);
3415 
3416 	mii = device_get_softc(sc->dc_miibus);
3417 
3418 	/*
3419 	 * Cancel pending I/O and free all RX/TX buffers.
3420 	 */
3421 	dc_stop(sc);
3422 	dc_reset(sc);
3423 
3424 	/*
3425 	 * Set cache alignment and burst length.
3426 	 */
3427 	if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc))
3428 		CSR_WRITE_4(sc, DC_BUSCTL, 0);
3429 	else
3430 		CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME | DC_BUSCTL_MRLE);
3431 	/*
3432 	 * Evenly share the bus between receive and transmit process.
3433 	 */
3434 	if (DC_IS_INTEL(sc))
3435 		DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION);
3436 	if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
3437 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
3438 	} else {
3439 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
3440 	}
3441 	if (sc->dc_flags & DC_TX_POLL)
3442 		DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
3443 	switch(sc->dc_cachesize) {
3444 	case 32:
3445 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
3446 		break;
3447 	case 16:
3448 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
3449 		break;
3450 	case 8:
3451 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
3452 		break;
3453 	case 0:
3454 	default:
3455 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
3456 		break;
3457 	}
3458 
3459 	if (sc->dc_flags & DC_TX_STORENFWD)
3460 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3461 	else {
3462 		if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3463 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3464 		} else {
3465 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3466 			DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3467 		}
3468 	}
3469 
3470 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
3471 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
3472 
3473 	if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
3474 		/*
3475 		 * The app notes for the 98713 and 98715A say that
3476 		 * in order to have the chips operate properly, a magic
3477 		 * number must be written to CSR16. Macronix does not
3478 		 * document the meaning of these bits so there's no way
3479 		 * to know exactly what they do. The 98713 has a magic
3480 		 * number all its own; the rest all use a different one.
3481 		 */
3482 		DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
3483 		if (sc->dc_type == DC_TYPE_98713)
3484 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
3485 		else
3486 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
3487 	}
3488 
3489 	if (DC_IS_XIRCOM(sc)) {
3490 		/*
3491 		 * setup General Purpose Port mode and data so the tulip
3492 		 * can talk to the MII.
3493 		 */
3494 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
3495 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3496 		DELAY(10);
3497 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
3498 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3499 		DELAY(10);
3500 	}
3501 
3502 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3503 	DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN);
3504 
3505 	/* Init circular RX list. */
3506 	if (dc_list_rx_init(sc) == ENOBUFS) {
3507 		printf("dc%d: initialization failed: no "
3508 		    "memory for rx buffers\n", sc->dc_unit);
3509 		dc_stop(sc);
3510 		DC_UNLOCK(sc);
3511 		return;
3512 	}
3513 
3514 	/*
3515 	 * Init TX descriptors.
3516 	 */
3517 	dc_list_tx_init(sc);
3518 
3519 	/*
3520 	 * Load the address of the RX list.
3521 	 */
3522 	CSR_WRITE_4(sc, DC_RXADDR, DC_RXDESC(sc, 0));
3523 	CSR_WRITE_4(sc, DC_TXADDR, DC_TXDESC(sc, 0));
3524 
3525 	/*
3526 	 * Enable interrupts.
3527 	 */
3528 #ifdef DEVICE_POLLING
3529 	/*
3530 	 * ... but only if we are not polling, and make sure they are off in
3531 	 * the case of polling. Some cards (e.g. fxp) turn interrupts on
3532 	 * after a reset.
3533 	 */
3534 	if (ifp->if_flags & IFF_POLLING)
3535 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3536 	else
3537 #endif
3538 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3539 	CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
3540 
3541 	/* Enable transmitter. */
3542 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3543 
3544 	/*
3545 	 * If this is an Intel 21143 and we're not using the
3546 	 * MII port, program the LED control pins so we get
3547 	 * link and activity indications.
3548 	 */
3549 	if (sc->dc_flags & DC_TULIP_LEDS) {
3550 		CSR_WRITE_4(sc, DC_WATCHDOG,
3551 		    DC_WDOG_CTLWREN | DC_WDOG_LINK | DC_WDOG_ACTIVITY);
3552 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
3553 	}
3554 
3555 	/*
3556 	 * Load the RX/multicast filter. We do this sort of late
3557 	 * because the filter programming scheme on the 21143 and
3558 	 * some clones requires DMAing a setup frame via the TX
3559 	 * engine, and we need the transmitter enabled for that.
3560 	 */
3561 	dc_setfilt(sc);
3562 
3563 	/* Enable receiver. */
3564 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
3565 	CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
3566 
3567 	mii_mediachg(mii);
3568 	dc_setcfg(sc, sc->dc_if_media);
3569 
3570 	ifp->if_flags |= IFF_RUNNING;
3571 	ifp->if_flags &= ~IFF_OACTIVE;
3572 
3573 	/* Don't start the ticker if this is a homePNA link. */
3574 	if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_HPNA_1)
3575 		sc->dc_link = 1;
3576 	else {
3577 		if (sc->dc_flags & DC_21143_NWAY)
3578 			callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
3579 		else
3580 			callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
3581 	}
3582 
3583 #ifdef SRM_MEDIA
3584 	if(sc->dc_srm_media) {
3585 		struct ifreq ifr;
3586 
3587 		ifr.ifr_media = sc->dc_srm_media;
3588 		ifmedia_ioctl(ifp, &ifr, &mii->mii_media, SIOCSIFMEDIA);
3589 		sc->dc_srm_media = 0;
3590 	}
3591 #endif
3592 	DC_UNLOCK(sc);
3593 }
3594 
3595 /*
3596  * Set media options.
3597  */
3598 static int
3599 dc_ifmedia_upd(struct ifnet *ifp)
3600 {
3601 	struct dc_softc *sc;
3602 	struct mii_data *mii;
3603 	struct ifmedia *ifm;
3604 
3605 	sc = ifp->if_softc;
3606 	mii = device_get_softc(sc->dc_miibus);
3607 	mii_mediachg(mii);
3608 	ifm = &mii->mii_media;
3609 
3610 	if (DC_IS_DAVICOM(sc) &&
3611 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1)
3612 		dc_setcfg(sc, ifm->ifm_media);
3613 	else
3614 		sc->dc_link = 0;
3615 
3616 	return (0);
3617 }
3618 
3619 /*
3620  * Report current media status.
3621  */
3622 static void
3623 dc_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3624 {
3625 	struct dc_softc *sc;
3626 	struct mii_data *mii;
3627 	struct ifmedia *ifm;
3628 
3629 	sc = ifp->if_softc;
3630 	mii = device_get_softc(sc->dc_miibus);
3631 	mii_pollstat(mii);
3632 	ifm = &mii->mii_media;
3633 	if (DC_IS_DAVICOM(sc)) {
3634 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
3635 			ifmr->ifm_active = ifm->ifm_media;
3636 			ifmr->ifm_status = 0;
3637 			return;
3638 		}
3639 	}
3640 	ifmr->ifm_active = mii->mii_media_active;
3641 	ifmr->ifm_status = mii->mii_media_status;
3642 }
3643 
3644 static int
3645 dc_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
3646 {
3647 	struct dc_softc *sc = ifp->if_softc;
3648 	struct ifreq *ifr = (struct ifreq *)data;
3649 	struct mii_data *mii;
3650 	int error = 0;
3651 
3652 	DC_LOCK(sc);
3653 
3654 	switch (command) {
3655 	case SIOCSIFFLAGS:
3656 		if (ifp->if_flags & IFF_UP) {
3657 			int need_setfilt = (ifp->if_flags ^ sc->dc_if_flags) &
3658 				(IFF_PROMISC | IFF_ALLMULTI);
3659 
3660 			if (ifp->if_flags & IFF_RUNNING) {
3661 				if (need_setfilt)
3662 					dc_setfilt(sc);
3663 			} else {
3664 				sc->dc_txthresh = 0;
3665 				dc_init(sc);
3666 			}
3667 		} else {
3668 			if (ifp->if_flags & IFF_RUNNING)
3669 				dc_stop(sc);
3670 		}
3671 		sc->dc_if_flags = ifp->if_flags;
3672 		error = 0;
3673 		break;
3674 	case SIOCADDMULTI:
3675 	case SIOCDELMULTI:
3676 		dc_setfilt(sc);
3677 		error = 0;
3678 		break;
3679 	case SIOCGIFMEDIA:
3680 	case SIOCSIFMEDIA:
3681 		mii = device_get_softc(sc->dc_miibus);
3682 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
3683 #ifdef SRM_MEDIA
3684 		if (sc->dc_srm_media)
3685 			sc->dc_srm_media = 0;
3686 #endif
3687 		break;
3688 	default:
3689 		error = ether_ioctl(ifp, command, data);
3690 		break;
3691 	}
3692 
3693 	DC_UNLOCK(sc);
3694 
3695 	return (error);
3696 }
3697 
3698 static void
3699 dc_watchdog(struct ifnet *ifp)
3700 {
3701 	struct dc_softc *sc;
3702 
3703 	sc = ifp->if_softc;
3704 
3705 	DC_LOCK(sc);
3706 
3707 	ifp->if_oerrors++;
3708 	printf("dc%d: watchdog timeout\n", sc->dc_unit);
3709 
3710 	dc_stop(sc);
3711 	dc_reset(sc);
3712 	dc_init(sc);
3713 
3714 	if (ifp->if_snd.ifq_head != NULL)
3715 		dc_start(ifp);
3716 
3717 	DC_UNLOCK(sc);
3718 }
3719 
3720 /*
3721  * Stop the adapter and free any mbufs allocated to the
3722  * RX and TX lists.
3723  */
3724 static void
3725 dc_stop(struct dc_softc *sc)
3726 {
3727 	struct ifnet *ifp;
3728 	struct dc_list_data *ld;
3729 	struct dc_chain_data *cd;
3730 	int i;
3731 	u_int32_t ctl;
3732 
3733 	DC_LOCK(sc);
3734 
3735 	ifp = &sc->arpcom.ac_if;
3736 	ifp->if_timer = 0;
3737 	ld = sc->dc_ldata;
3738 	cd = &sc->dc_cdata;
3739 
3740 	callout_stop(&sc->dc_stat_ch);
3741 
3742 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3743 #ifdef DEVICE_POLLING
3744 	ether_poll_deregister(ifp);
3745 #endif
3746 
3747 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ON | DC_NETCFG_TX_ON));
3748 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3749 	CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
3750 	CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
3751 	sc->dc_link = 0;
3752 
3753 	/*
3754 	 * Free data in the RX lists.
3755 	 */
3756 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
3757 		if (cd->dc_rx_chain[i] != NULL) {
3758 			m_freem(cd->dc_rx_chain[i]);
3759 			cd->dc_rx_chain[i] = NULL;
3760 		}
3761 	}
3762 	bzero(&ld->dc_rx_list, sizeof(ld->dc_rx_list));
3763 
3764 	/*
3765 	 * Free the TX list buffers.
3766 	 */
3767 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
3768 		if (cd->dc_tx_chain[i] != NULL) {
3769 			ctl = le32toh(ld->dc_tx_list[i].dc_ctl);
3770 			if ((ctl & DC_TXCTL_SETUP) ||
3771 			    !(ctl & DC_TXCTL_FIRSTFRAG)) {
3772 				cd->dc_tx_chain[i] = NULL;
3773 				continue;
3774 			}
3775 			bus_dmamap_unload(sc->dc_mtag, cd->dc_tx_map[i]);
3776 			m_freem(cd->dc_tx_chain[i]);
3777 			cd->dc_tx_chain[i] = NULL;
3778 		}
3779 	}
3780 	bzero(&ld->dc_tx_list, sizeof(ld->dc_tx_list));
3781 
3782 	DC_UNLOCK(sc);
3783 }
3784 
3785 /*
3786  * Device suspend routine.  Stop the interface and save some PCI
3787  * settings in case the BIOS doesn't restore them properly on
3788  * resume.
3789  */
3790 static int
3791 dc_suspend(device_t dev)
3792 {
3793 	struct dc_softc *sc;
3794 	int i, s;
3795 
3796 	s = splimp();
3797 
3798 	sc = device_get_softc(dev);
3799 
3800 	dc_stop(sc);
3801 
3802 	for (i = 0; i < 5; i++)
3803 		sc->saved_maps[i] = pci_read_config(dev, PCIR_BAR(i), 4);
3804 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
3805 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
3806 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
3807 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
3808 
3809 	sc->suspended = 1;
3810 
3811 	splx(s);
3812 	return (0);
3813 }
3814 
3815 /*
3816  * Device resume routine.  Restore some PCI settings in case the BIOS
3817  * doesn't, re-enable busmastering, and restart the interface if
3818  * appropriate.
3819  */
3820 static int
3821 dc_resume(device_t dev)
3822 {
3823 	struct dc_softc *sc;
3824 	struct ifnet *ifp;
3825 	int i, s;
3826 
3827 	s = splimp();
3828 
3829 	sc = device_get_softc(dev);
3830 	ifp = &sc->arpcom.ac_if;
3831 #ifndef BURN_BRIDGES
3832 	dc_acpi(dev);
3833 #endif
3834 	/* better way to do this? */
3835 	for (i = 0; i < 5; i++)
3836 		pci_write_config(dev, PCIR_BAR(i), sc->saved_maps[i], 4);
3837 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
3838 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
3839 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
3840 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
3841 
3842 	/* reenable busmastering */
3843 	pci_enable_busmaster(dev);
3844 	pci_enable_io(dev, DC_RES);
3845 
3846 	/* reinitialize interface if necessary */
3847 	if (ifp->if_flags & IFF_UP)
3848 		dc_init(sc);
3849 
3850 	sc->suspended = 0;
3851 
3852 	splx(s);
3853 	return (0);
3854 }
3855 
3856 /*
3857  * Stop all chip I/O so that the kernel's probe routines don't
3858  * get confused by errant DMAs when rebooting.
3859  */
3860 static void
3861 dc_shutdown(device_t dev)
3862 {
3863 	struct dc_softc *sc;
3864 
3865 	sc = device_get_softc(dev);
3866 
3867 	dc_stop(sc);
3868 }
3869