1 /*- 2 * SPDX-License-Identifier: BSD-4-Clause 3 * 4 * Copyright (c) 1997, 1998, 1999 5 * Bill Paul <wpaul@ee.columbia.edu>. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed by Bill Paul. 18 * 4. Neither the name of the author nor the names of any co-contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 32 * THE POSSIBILITY OF SUCH DAMAGE. 33 */ 34 35 #include <sys/cdefs.h> 36 __FBSDID("$FreeBSD$"); 37 38 /* 39 * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143 40 * series chips and several workalikes including the following: 41 * 42 * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com) 43 * Macronix/Lite-On 82c115 PNIC II (www.macronix.com) 44 * Lite-On 82c168/82c169 PNIC (www.litecom.com) 45 * ASIX Electronics AX88140A (www.asix.com.tw) 46 * ASIX Electronics AX88141 (www.asix.com.tw) 47 * ADMtek AL981 (www.admtek.com.tw) 48 * ADMtek AN983 (www.admtek.com.tw) 49 * ADMtek CardBus AN985 (www.admtek.com.tw) 50 * Netgear FA511 (www.netgear.com) Appears to be rebadged ADMTek CardBus AN985 51 * Davicom DM9100, DM9102, DM9102A (www.davicom8.com) 52 * Accton EN1217 (www.accton.com) 53 * Xircom X3201 (www.xircom.com) 54 * Abocom FE2500 55 * Conexant LANfinity (www.conexant.com) 56 * 3Com OfficeConnect 10/100B 3CSOHO100B (www.3com.com) 57 * 58 * Datasheets for the 21143 are available at developer.intel.com. 59 * Datasheets for the clone parts can be found at their respective sites. 60 * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.) 61 * The PNIC II is essentially a Macronix 98715A chip; the only difference 62 * worth noting is that its multicast hash table is only 128 bits wide 63 * instead of 512. 64 * 65 * Written by Bill Paul <wpaul@ee.columbia.edu> 66 * Electrical Engineering Department 67 * Columbia University, New York City 68 */ 69 /* 70 * The Intel 21143 is the successor to the DEC 21140. It is basically 71 * the same as the 21140 but with a few new features. The 21143 supports 72 * three kinds of media attachments: 73 * 74 * o MII port, for 10Mbps and 100Mbps support and NWAY 75 * autonegotiation provided by an external PHY. 76 * o SYM port, for symbol mode 100Mbps support. 77 * o 10baseT port. 78 * o AUI/BNC port. 79 * 80 * The 100Mbps SYM port and 10baseT port can be used together in 81 * combination with the internal NWAY support to create a 10/100 82 * autosensing configuration. 83 * 84 * Note that not all tulip workalikes are handled in this driver: we only 85 * deal with those which are relatively well behaved. The Winbond is 86 * handled separately due to its different register offsets and the 87 * special handling needed for its various bugs. The PNIC is handled 88 * here, but I'm not thrilled about it. 89 * 90 * All of the workalike chips use some form of MII transceiver support 91 * with the exception of the Macronix chips, which also have a SYM port. 92 * The ASIX AX88140A is also documented to have a SYM port, but all 93 * the cards I've seen use an MII transceiver, probably because the 94 * AX88140A doesn't support internal NWAY. 95 */ 96 97 #ifdef HAVE_KERNEL_OPTION_HEADERS 98 #include "opt_device_polling.h" 99 #endif 100 101 #include <sys/param.h> 102 #include <sys/endian.h> 103 #include <sys/systm.h> 104 #include <sys/sockio.h> 105 #include <sys/mbuf.h> 106 #include <sys/malloc.h> 107 #include <sys/kernel.h> 108 #include <sys/module.h> 109 #include <sys/socket.h> 110 111 #include <net/if.h> 112 #include <net/if_var.h> 113 #include <net/if_arp.h> 114 #include <net/ethernet.h> 115 #include <net/if_dl.h> 116 #include <net/if_media.h> 117 #include <net/if_types.h> 118 #include <net/if_vlan_var.h> 119 120 #include <net/bpf.h> 121 122 #include <machine/bus.h> 123 #include <machine/resource.h> 124 #include <sys/bus.h> 125 #include <sys/rman.h> 126 127 #include <dev/mii/mii.h> 128 #include <dev/mii/mii_bitbang.h> 129 #include <dev/mii/miivar.h> 130 131 #include <dev/pci/pcireg.h> 132 #include <dev/pci/pcivar.h> 133 134 #define DC_USEIOSPACE 135 136 #include <dev/dc/if_dcreg.h> 137 138 MODULE_DEPEND(dc, pci, 1, 1, 1); 139 MODULE_DEPEND(dc, ether, 1, 1, 1); 140 MODULE_DEPEND(dc, miibus, 1, 1, 1); 141 142 /* 143 * "device miibus" is required in kernel config. See GENERIC if you get 144 * errors here. 145 */ 146 #include "miibus_if.h" 147 148 /* 149 * Various supported device vendors/types and their names. 150 */ 151 static const struct dc_type dc_devs[] = { 152 { DC_DEVID(DC_VENDORID_DEC, DC_DEVICEID_21143), 0, 153 "Intel 21143 10/100BaseTX" }, 154 { DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009), 0, 155 "Davicom DM9009 10/100BaseTX" }, 156 { DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100), 0, 157 "Davicom DM9100 10/100BaseTX" }, 158 { DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102), DC_REVISION_DM9102A, 159 "Davicom DM9102A 10/100BaseTX" }, 160 { DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102), 0, 161 "Davicom DM9102 10/100BaseTX" }, 162 { DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AL981), 0, 163 "ADMtek AL981 10/100BaseTX" }, 164 { DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN983), 0, 165 "ADMtek AN983 10/100BaseTX" }, 166 { DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN985), 0, 167 "ADMtek AN985 CardBus 10/100BaseTX or clone" }, 168 { DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511), 0, 169 "ADMtek ADM9511 10/100BaseTX" }, 170 { DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513), 0, 171 "ADMtek ADM9513 10/100BaseTX" }, 172 { DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A), DC_REVISION_88141, 173 "ASIX AX88141 10/100BaseTX" }, 174 { DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A), 0, 175 "ASIX AX88140A 10/100BaseTX" }, 176 { DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713), DC_REVISION_98713A, 177 "Macronix 98713A 10/100BaseTX" }, 178 { DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713), 0, 179 "Macronix 98713 10/100BaseTX" }, 180 { DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP), DC_REVISION_98713A, 181 "Compex RL100-TX 10/100BaseTX" }, 182 { DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP), 0, 183 "Compex RL100-TX 10/100BaseTX" }, 184 { DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), DC_REVISION_98725, 185 "Macronix 98725 10/100BaseTX" }, 186 { DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), DC_REVISION_98715AEC_C, 187 "Macronix 98715AEC-C 10/100BaseTX" }, 188 { DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), 0, 189 "Macronix 98715/98715A 10/100BaseTX" }, 190 { DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98727), 0, 191 "Macronix 98727/98732 10/100BaseTX" }, 192 { DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C115), 0, 193 "LC82C115 PNIC II 10/100BaseTX" }, 194 { DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168), DC_REVISION_82C169, 195 "82c169 PNIC 10/100BaseTX" }, 196 { DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168), 0, 197 "82c168 PNIC 10/100BaseTX" }, 198 { DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN1217), 0, 199 "Accton EN1217 10/100BaseTX" }, 200 { DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN2242), 0, 201 "Accton EN2242 MiniPCI 10/100BaseTX" }, 202 { DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201), 0, 203 "Xircom X3201 10/100BaseTX" }, 204 { DC_DEVID(DC_VENDORID_DLINK, DC_DEVICEID_DRP32TXD), 0, 205 "Neteasy DRP-32TXD Cardbus 10/100" }, 206 { DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500), 0, 207 "Abocom FE2500 10/100BaseTX" }, 208 { DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500MX), 0, 209 "Abocom FE2500MX 10/100BaseTX" }, 210 { DC_DEVID(DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112), 0, 211 "Conexant LANfinity MiniPCI 10/100BaseTX" }, 212 { DC_DEVID(DC_VENDORID_HAWKING, DC_DEVICEID_HAWKING_PN672TX), 0, 213 "Hawking CB102 CardBus 10/100" }, 214 { DC_DEVID(DC_VENDORID_PLANEX, DC_DEVICEID_FNW3602T), 0, 215 "PlaneX FNW-3602-T CardBus 10/100" }, 216 { DC_DEVID(DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB), 0, 217 "3Com OfficeConnect 10/100B" }, 218 { DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN120), 0, 219 "Microsoft MN-120 CardBus 10/100" }, 220 { DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130), 0, 221 "Microsoft MN-130 10/100" }, 222 { DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB08), 0, 223 "Linksys PCMPC200 CardBus 10/100" }, 224 { DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB09), 0, 225 "Linksys PCMPC200 CardBus 10/100" }, 226 { DC_DEVID(DC_VENDORID_ULI, DC_DEVICEID_M5261), 0, 227 "ULi M5261 FastEthernet" }, 228 { DC_DEVID(DC_VENDORID_ULI, DC_DEVICEID_M5263), 0, 229 "ULi M5263 FastEthernet" }, 230 { 0, 0, NULL } 231 }; 232 233 static int dc_probe(device_t); 234 static int dc_attach(device_t); 235 static int dc_detach(device_t); 236 static int dc_suspend(device_t); 237 static int dc_resume(device_t); 238 static const struct dc_type *dc_devtype(device_t); 239 static void dc_discard_rxbuf(struct dc_softc *, int); 240 static int dc_newbuf(struct dc_softc *, int); 241 static int dc_encap(struct dc_softc *, struct mbuf **); 242 static void dc_pnic_rx_bug_war(struct dc_softc *, int); 243 static int dc_rx_resync(struct dc_softc *); 244 static int dc_rxeof(struct dc_softc *); 245 static void dc_txeof(struct dc_softc *); 246 static void dc_tick(void *); 247 static void dc_tx_underrun(struct dc_softc *); 248 static void dc_intr(void *); 249 static void dc_start(struct ifnet *); 250 static void dc_start_locked(struct ifnet *); 251 static int dc_ioctl(struct ifnet *, u_long, caddr_t); 252 static void dc_init(void *); 253 static void dc_init_locked(struct dc_softc *); 254 static void dc_stop(struct dc_softc *); 255 static void dc_watchdog(void *); 256 static int dc_shutdown(device_t); 257 static int dc_ifmedia_upd(struct ifnet *); 258 static int dc_ifmedia_upd_locked(struct dc_softc *); 259 static void dc_ifmedia_sts(struct ifnet *, struct ifmediareq *); 260 261 static int dc_dma_alloc(struct dc_softc *); 262 static void dc_dma_free(struct dc_softc *); 263 static void dc_dma_map_addr(void *, bus_dma_segment_t *, int, int); 264 265 static void dc_delay(struct dc_softc *); 266 static void dc_eeprom_idle(struct dc_softc *); 267 static void dc_eeprom_putbyte(struct dc_softc *, int); 268 static void dc_eeprom_getword(struct dc_softc *, int, uint16_t *); 269 static void dc_eeprom_getword_pnic(struct dc_softc *, int, uint16_t *); 270 static void dc_eeprom_getword_xircom(struct dc_softc *, int, uint16_t *); 271 static void dc_eeprom_width(struct dc_softc *); 272 static void dc_read_eeprom(struct dc_softc *, caddr_t, int, int, int); 273 274 static int dc_miibus_readreg(device_t, int, int); 275 static int dc_miibus_writereg(device_t, int, int, int); 276 static void dc_miibus_statchg(device_t); 277 static void dc_miibus_mediainit(device_t); 278 279 static void dc_setcfg(struct dc_softc *, int); 280 static void dc_netcfg_wait(struct dc_softc *); 281 static uint32_t dc_mchash_le(struct dc_softc *, const uint8_t *); 282 static uint32_t dc_mchash_be(const uint8_t *); 283 static void dc_setfilt_21143(struct dc_softc *); 284 static void dc_setfilt_asix(struct dc_softc *); 285 static void dc_setfilt_admtek(struct dc_softc *); 286 static void dc_setfilt_uli(struct dc_softc *); 287 static void dc_setfilt_xircom(struct dc_softc *); 288 289 static void dc_setfilt(struct dc_softc *); 290 291 static void dc_reset(struct dc_softc *); 292 static int dc_list_rx_init(struct dc_softc *); 293 static int dc_list_tx_init(struct dc_softc *); 294 295 static int dc_read_srom(struct dc_softc *, int); 296 static int dc_parse_21143_srom(struct dc_softc *); 297 static int dc_decode_leaf_sia(struct dc_softc *, struct dc_eblock_sia *); 298 static int dc_decode_leaf_mii(struct dc_softc *, struct dc_eblock_mii *); 299 static int dc_decode_leaf_sym(struct dc_softc *, struct dc_eblock_sym *); 300 static void dc_apply_fixup(struct dc_softc *, int); 301 static int dc_check_multiport(struct dc_softc *); 302 303 /* 304 * MII bit-bang glue 305 */ 306 static uint32_t dc_mii_bitbang_read(device_t); 307 static void dc_mii_bitbang_write(device_t, uint32_t); 308 309 static const struct mii_bitbang_ops dc_mii_bitbang_ops = { 310 dc_mii_bitbang_read, 311 dc_mii_bitbang_write, 312 { 313 DC_SIO_MII_DATAOUT, /* MII_BIT_MDO */ 314 DC_SIO_MII_DATAIN, /* MII_BIT_MDI */ 315 DC_SIO_MII_CLK, /* MII_BIT_MDC */ 316 0, /* MII_BIT_DIR_HOST_PHY */ 317 DC_SIO_MII_DIR, /* MII_BIT_DIR_PHY_HOST */ 318 } 319 }; 320 321 #ifdef DC_USEIOSPACE 322 #define DC_RES SYS_RES_IOPORT 323 #define DC_RID DC_PCI_CFBIO 324 #else 325 #define DC_RES SYS_RES_MEMORY 326 #define DC_RID DC_PCI_CFBMA 327 #endif 328 329 static device_method_t dc_methods[] = { 330 /* Device interface */ 331 DEVMETHOD(device_probe, dc_probe), 332 DEVMETHOD(device_attach, dc_attach), 333 DEVMETHOD(device_detach, dc_detach), 334 DEVMETHOD(device_suspend, dc_suspend), 335 DEVMETHOD(device_resume, dc_resume), 336 DEVMETHOD(device_shutdown, dc_shutdown), 337 338 /* MII interface */ 339 DEVMETHOD(miibus_readreg, dc_miibus_readreg), 340 DEVMETHOD(miibus_writereg, dc_miibus_writereg), 341 DEVMETHOD(miibus_statchg, dc_miibus_statchg), 342 DEVMETHOD(miibus_mediainit, dc_miibus_mediainit), 343 344 DEVMETHOD_END 345 }; 346 347 static driver_t dc_driver = { 348 "dc", 349 dc_methods, 350 sizeof(struct dc_softc) 351 }; 352 353 static devclass_t dc_devclass; 354 355 DRIVER_MODULE_ORDERED(dc, pci, dc_driver, dc_devclass, NULL, NULL, 356 SI_ORDER_ANY); 357 MODULE_PNP_INFO("W32:vendor/device;U8:revision;D:#", pci, dc, dc_devs, 358 nitems(dc_devs) - 1); 359 DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, NULL, NULL); 360 361 #define DC_SETBIT(sc, reg, x) \ 362 CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x)) 363 364 #define DC_CLRBIT(sc, reg, x) \ 365 CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x)) 366 367 #define SIO_SET(x) DC_SETBIT(sc, DC_SIO, (x)) 368 #define SIO_CLR(x) DC_CLRBIT(sc, DC_SIO, (x)) 369 370 static void 371 dc_delay(struct dc_softc *sc) 372 { 373 int idx; 374 375 for (idx = (300 / 33) + 1; idx > 0; idx--) 376 CSR_READ_4(sc, DC_BUSCTL); 377 } 378 379 static void 380 dc_eeprom_width(struct dc_softc *sc) 381 { 382 int i; 383 384 /* Force EEPROM to idle state. */ 385 dc_eeprom_idle(sc); 386 387 /* Enter EEPROM access mode. */ 388 CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL); 389 dc_delay(sc); 390 DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ); 391 dc_delay(sc); 392 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); 393 dc_delay(sc); 394 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS); 395 dc_delay(sc); 396 397 for (i = 3; i--;) { 398 if (6 & (1 << i)) 399 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN); 400 else 401 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN); 402 dc_delay(sc); 403 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK); 404 dc_delay(sc); 405 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); 406 dc_delay(sc); 407 } 408 409 for (i = 1; i <= 12; i++) { 410 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK); 411 dc_delay(sc); 412 if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) { 413 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); 414 dc_delay(sc); 415 break; 416 } 417 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); 418 dc_delay(sc); 419 } 420 421 /* Turn off EEPROM access mode. */ 422 dc_eeprom_idle(sc); 423 424 if (i < 4 || i > 12) 425 sc->dc_romwidth = 6; 426 else 427 sc->dc_romwidth = i; 428 429 /* Enter EEPROM access mode. */ 430 CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL); 431 dc_delay(sc); 432 DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ); 433 dc_delay(sc); 434 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); 435 dc_delay(sc); 436 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS); 437 dc_delay(sc); 438 439 /* Turn off EEPROM access mode. */ 440 dc_eeprom_idle(sc); 441 } 442 443 static void 444 dc_eeprom_idle(struct dc_softc *sc) 445 { 446 int i; 447 448 CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL); 449 dc_delay(sc); 450 DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ); 451 dc_delay(sc); 452 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); 453 dc_delay(sc); 454 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS); 455 dc_delay(sc); 456 457 for (i = 0; i < 25; i++) { 458 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); 459 dc_delay(sc); 460 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK); 461 dc_delay(sc); 462 } 463 464 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); 465 dc_delay(sc); 466 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS); 467 dc_delay(sc); 468 CSR_WRITE_4(sc, DC_SIO, 0x00000000); 469 } 470 471 /* 472 * Send a read command and address to the EEPROM, check for ACK. 473 */ 474 static void 475 dc_eeprom_putbyte(struct dc_softc *sc, int addr) 476 { 477 int d, i; 478 479 d = DC_EECMD_READ >> 6; 480 for (i = 3; i--; ) { 481 if (d & (1 << i)) 482 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN); 483 else 484 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN); 485 dc_delay(sc); 486 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK); 487 dc_delay(sc); 488 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); 489 dc_delay(sc); 490 } 491 492 /* 493 * Feed in each bit and strobe the clock. 494 */ 495 for (i = sc->dc_romwidth; i--;) { 496 if (addr & (1 << i)) { 497 SIO_SET(DC_SIO_EE_DATAIN); 498 } else { 499 SIO_CLR(DC_SIO_EE_DATAIN); 500 } 501 dc_delay(sc); 502 SIO_SET(DC_SIO_EE_CLK); 503 dc_delay(sc); 504 SIO_CLR(DC_SIO_EE_CLK); 505 dc_delay(sc); 506 } 507 } 508 509 /* 510 * Read a word of data stored in the EEPROM at address 'addr.' 511 * The PNIC 82c168/82c169 has its own non-standard way to read 512 * the EEPROM. 513 */ 514 static void 515 dc_eeprom_getword_pnic(struct dc_softc *sc, int addr, uint16_t *dest) 516 { 517 int i; 518 uint32_t r; 519 520 CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ | addr); 521 522 for (i = 0; i < DC_TIMEOUT; i++) { 523 DELAY(1); 524 r = CSR_READ_4(sc, DC_SIO); 525 if (!(r & DC_PN_SIOCTL_BUSY)) { 526 *dest = (uint16_t)(r & 0xFFFF); 527 return; 528 } 529 } 530 } 531 532 /* 533 * Read a word of data stored in the EEPROM at address 'addr.' 534 * The Xircom X3201 has its own non-standard way to read 535 * the EEPROM, too. 536 */ 537 static void 538 dc_eeprom_getword_xircom(struct dc_softc *sc, int addr, uint16_t *dest) 539 { 540 541 SIO_SET(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ); 542 543 addr *= 2; 544 CSR_WRITE_4(sc, DC_ROM, addr | 0x160); 545 *dest = (uint16_t)CSR_READ_4(sc, DC_SIO) & 0xff; 546 addr += 1; 547 CSR_WRITE_4(sc, DC_ROM, addr | 0x160); 548 *dest |= ((uint16_t)CSR_READ_4(sc, DC_SIO) & 0xff) << 8; 549 550 SIO_CLR(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ); 551 } 552 553 /* 554 * Read a word of data stored in the EEPROM at address 'addr.' 555 */ 556 static void 557 dc_eeprom_getword(struct dc_softc *sc, int addr, uint16_t *dest) 558 { 559 int i; 560 uint16_t word = 0; 561 562 /* Force EEPROM to idle state. */ 563 dc_eeprom_idle(sc); 564 565 /* Enter EEPROM access mode. */ 566 CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL); 567 dc_delay(sc); 568 DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ); 569 dc_delay(sc); 570 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); 571 dc_delay(sc); 572 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS); 573 dc_delay(sc); 574 575 /* 576 * Send address of word we want to read. 577 */ 578 dc_eeprom_putbyte(sc, addr); 579 580 /* 581 * Start reading bits from EEPROM. 582 */ 583 for (i = 0x8000; i; i >>= 1) { 584 SIO_SET(DC_SIO_EE_CLK); 585 dc_delay(sc); 586 if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT) 587 word |= i; 588 dc_delay(sc); 589 SIO_CLR(DC_SIO_EE_CLK); 590 dc_delay(sc); 591 } 592 593 /* Turn off EEPROM access mode. */ 594 dc_eeprom_idle(sc); 595 596 *dest = word; 597 } 598 599 /* 600 * Read a sequence of words from the EEPROM. 601 */ 602 static void 603 dc_read_eeprom(struct dc_softc *sc, caddr_t dest, int off, int cnt, int be) 604 { 605 int i; 606 uint16_t word = 0, *ptr; 607 608 for (i = 0; i < cnt; i++) { 609 if (DC_IS_PNIC(sc)) 610 dc_eeprom_getword_pnic(sc, off + i, &word); 611 else if (DC_IS_XIRCOM(sc)) 612 dc_eeprom_getword_xircom(sc, off + i, &word); 613 else 614 dc_eeprom_getword(sc, off + i, &word); 615 ptr = (uint16_t *)(dest + (i * 2)); 616 if (be) 617 *ptr = be16toh(word); 618 else 619 *ptr = le16toh(word); 620 } 621 } 622 623 /* 624 * Write the MII serial port for the MII bit-bang module. 625 */ 626 static void 627 dc_mii_bitbang_write(device_t dev, uint32_t val) 628 { 629 struct dc_softc *sc; 630 631 sc = device_get_softc(dev); 632 633 CSR_WRITE_4(sc, DC_SIO, val); 634 CSR_BARRIER_4(sc, DC_SIO, 635 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 636 } 637 638 /* 639 * Read the MII serial port for the MII bit-bang module. 640 */ 641 static uint32_t 642 dc_mii_bitbang_read(device_t dev) 643 { 644 struct dc_softc *sc; 645 uint32_t val; 646 647 sc = device_get_softc(dev); 648 649 val = CSR_READ_4(sc, DC_SIO); 650 CSR_BARRIER_4(sc, DC_SIO, 651 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 652 653 return (val); 654 } 655 656 static int 657 dc_miibus_readreg(device_t dev, int phy, int reg) 658 { 659 struct dc_softc *sc; 660 int i, rval, phy_reg = 0; 661 662 sc = device_get_softc(dev); 663 664 if (sc->dc_pmode != DC_PMODE_MII) { 665 if (phy == (MII_NPHY - 1)) { 666 switch (reg) { 667 case MII_BMSR: 668 /* 669 * Fake something to make the probe 670 * code think there's a PHY here. 671 */ 672 return (BMSR_MEDIAMASK); 673 case MII_PHYIDR1: 674 if (DC_IS_PNIC(sc)) 675 return (DC_VENDORID_LO); 676 return (DC_VENDORID_DEC); 677 case MII_PHYIDR2: 678 if (DC_IS_PNIC(sc)) 679 return (DC_DEVICEID_82C168); 680 return (DC_DEVICEID_21143); 681 default: 682 return (0); 683 } 684 } else 685 return (0); 686 } 687 688 if (DC_IS_PNIC(sc)) { 689 CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ | 690 (phy << 23) | (reg << 18)); 691 for (i = 0; i < DC_TIMEOUT; i++) { 692 DELAY(1); 693 rval = CSR_READ_4(sc, DC_PN_MII); 694 if (!(rval & DC_PN_MII_BUSY)) { 695 rval &= 0xFFFF; 696 return (rval == 0xFFFF ? 0 : rval); 697 } 698 } 699 return (0); 700 } 701 702 if (sc->dc_type == DC_TYPE_ULI_M5263) { 703 CSR_WRITE_4(sc, DC_ROM, 704 ((phy << DC_ULI_PHY_ADDR_SHIFT) & DC_ULI_PHY_ADDR_MASK) | 705 ((reg << DC_ULI_PHY_REG_SHIFT) & DC_ULI_PHY_REG_MASK) | 706 DC_ULI_PHY_OP_READ); 707 for (i = 0; i < DC_TIMEOUT; i++) { 708 DELAY(1); 709 rval = CSR_READ_4(sc, DC_ROM); 710 if ((rval & DC_ULI_PHY_OP_DONE) != 0) { 711 return (rval & DC_ULI_PHY_DATA_MASK); 712 } 713 } 714 if (i == DC_TIMEOUT) 715 device_printf(dev, "phy read timed out\n"); 716 return (0); 717 } 718 719 if (DC_IS_COMET(sc)) { 720 switch (reg) { 721 case MII_BMCR: 722 phy_reg = DC_AL_BMCR; 723 break; 724 case MII_BMSR: 725 phy_reg = DC_AL_BMSR; 726 break; 727 case MII_PHYIDR1: 728 phy_reg = DC_AL_VENID; 729 break; 730 case MII_PHYIDR2: 731 phy_reg = DC_AL_DEVID; 732 break; 733 case MII_ANAR: 734 phy_reg = DC_AL_ANAR; 735 break; 736 case MII_ANLPAR: 737 phy_reg = DC_AL_LPAR; 738 break; 739 case MII_ANER: 740 phy_reg = DC_AL_ANER; 741 break; 742 default: 743 device_printf(dev, "phy_read: bad phy register %x\n", 744 reg); 745 return (0); 746 } 747 748 rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF; 749 if (rval == 0xFFFF) 750 return (0); 751 return (rval); 752 } 753 754 if (sc->dc_type == DC_TYPE_98713) { 755 phy_reg = CSR_READ_4(sc, DC_NETCFG); 756 CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL); 757 } 758 rval = mii_bitbang_readreg(dev, &dc_mii_bitbang_ops, phy, reg); 759 if (sc->dc_type == DC_TYPE_98713) 760 CSR_WRITE_4(sc, DC_NETCFG, phy_reg); 761 762 return (rval); 763 } 764 765 static int 766 dc_miibus_writereg(device_t dev, int phy, int reg, int data) 767 { 768 struct dc_softc *sc; 769 int i, phy_reg = 0; 770 771 sc = device_get_softc(dev); 772 773 if (DC_IS_PNIC(sc)) { 774 CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE | 775 (phy << 23) | (reg << 10) | data); 776 for (i = 0; i < DC_TIMEOUT; i++) { 777 if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY)) 778 break; 779 } 780 return (0); 781 } 782 783 if (sc->dc_type == DC_TYPE_ULI_M5263) { 784 CSR_WRITE_4(sc, DC_ROM, 785 ((phy << DC_ULI_PHY_ADDR_SHIFT) & DC_ULI_PHY_ADDR_MASK) | 786 ((reg << DC_ULI_PHY_REG_SHIFT) & DC_ULI_PHY_REG_MASK) | 787 ((data << DC_ULI_PHY_DATA_SHIFT) & DC_ULI_PHY_DATA_MASK) | 788 DC_ULI_PHY_OP_WRITE); 789 DELAY(1); 790 return (0); 791 } 792 793 if (DC_IS_COMET(sc)) { 794 switch (reg) { 795 case MII_BMCR: 796 phy_reg = DC_AL_BMCR; 797 break; 798 case MII_BMSR: 799 phy_reg = DC_AL_BMSR; 800 break; 801 case MII_PHYIDR1: 802 phy_reg = DC_AL_VENID; 803 break; 804 case MII_PHYIDR2: 805 phy_reg = DC_AL_DEVID; 806 break; 807 case MII_ANAR: 808 phy_reg = DC_AL_ANAR; 809 break; 810 case MII_ANLPAR: 811 phy_reg = DC_AL_LPAR; 812 break; 813 case MII_ANER: 814 phy_reg = DC_AL_ANER; 815 break; 816 default: 817 device_printf(dev, "phy_write: bad phy register %x\n", 818 reg); 819 return (0); 820 break; 821 } 822 823 CSR_WRITE_4(sc, phy_reg, data); 824 return (0); 825 } 826 827 if (sc->dc_type == DC_TYPE_98713) { 828 phy_reg = CSR_READ_4(sc, DC_NETCFG); 829 CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL); 830 } 831 mii_bitbang_writereg(dev, &dc_mii_bitbang_ops, phy, reg, data); 832 if (sc->dc_type == DC_TYPE_98713) 833 CSR_WRITE_4(sc, DC_NETCFG, phy_reg); 834 835 return (0); 836 } 837 838 static void 839 dc_miibus_statchg(device_t dev) 840 { 841 struct dc_softc *sc; 842 struct ifnet *ifp; 843 struct mii_data *mii; 844 struct ifmedia *ifm; 845 846 sc = device_get_softc(dev); 847 848 mii = device_get_softc(sc->dc_miibus); 849 ifp = sc->dc_ifp; 850 if (mii == NULL || ifp == NULL || 851 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 852 return; 853 854 ifm = &mii->mii_media; 855 if (DC_IS_DAVICOM(sc) && IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) { 856 dc_setcfg(sc, ifm->ifm_media); 857 return; 858 } else if (!DC_IS_ADMTEK(sc)) 859 dc_setcfg(sc, mii->mii_media_active); 860 861 sc->dc_link = 0; 862 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == 863 (IFM_ACTIVE | IFM_AVALID)) { 864 switch (IFM_SUBTYPE(mii->mii_media_active)) { 865 case IFM_10_T: 866 case IFM_100_TX: 867 sc->dc_link = 1; 868 break; 869 } 870 } 871 } 872 873 /* 874 * Special support for DM9102A cards with HomePNA PHYs. Note: 875 * with the Davicom DM9102A/DM9801 eval board that I have, it seems 876 * to be impossible to talk to the management interface of the DM9801 877 * PHY (its MDIO pin is not connected to anything). Consequently, 878 * the driver has to just 'know' about the additional mode and deal 879 * with it itself. *sigh* 880 */ 881 static void 882 dc_miibus_mediainit(device_t dev) 883 { 884 struct dc_softc *sc; 885 struct mii_data *mii; 886 struct ifmedia *ifm; 887 int rev; 888 889 rev = pci_get_revid(dev); 890 891 sc = device_get_softc(dev); 892 mii = device_get_softc(sc->dc_miibus); 893 ifm = &mii->mii_media; 894 895 if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A) 896 ifmedia_add(ifm, IFM_ETHER | IFM_HPNA_1, 0, NULL); 897 } 898 899 #define DC_BITS_512 9 900 #define DC_BITS_128 7 901 #define DC_BITS_64 6 902 903 static uint32_t 904 dc_mchash_le(struct dc_softc *sc, const uint8_t *addr) 905 { 906 uint32_t crc; 907 908 /* Compute CRC for the address value. */ 909 crc = ether_crc32_le(addr, ETHER_ADDR_LEN); 910 911 /* 912 * The hash table on the PNIC II and the MX98715AEC-C/D/E 913 * chips is only 128 bits wide. 914 */ 915 if (sc->dc_flags & DC_128BIT_HASH) 916 return (crc & ((1 << DC_BITS_128) - 1)); 917 918 /* The hash table on the MX98715BEC is only 64 bits wide. */ 919 if (sc->dc_flags & DC_64BIT_HASH) 920 return (crc & ((1 << DC_BITS_64) - 1)); 921 922 /* Xircom's hash filtering table is different (read: weird) */ 923 /* Xircom uses the LEAST significant bits */ 924 if (DC_IS_XIRCOM(sc)) { 925 if ((crc & 0x180) == 0x180) 926 return ((crc & 0x0F) + (crc & 0x70) * 3 + (14 << 4)); 927 else 928 return ((crc & 0x1F) + ((crc >> 1) & 0xF0) * 3 + 929 (12 << 4)); 930 } 931 932 return (crc & ((1 << DC_BITS_512) - 1)); 933 } 934 935 /* 936 * Calculate CRC of a multicast group address, return the lower 6 bits. 937 */ 938 static uint32_t 939 dc_mchash_be(const uint8_t *addr) 940 { 941 uint32_t crc; 942 943 /* Compute CRC for the address value. */ 944 crc = ether_crc32_be(addr, ETHER_ADDR_LEN); 945 946 /* Return the filter bit position. */ 947 return ((crc >> 26) & 0x0000003F); 948 } 949 950 /* 951 * 21143-style RX filter setup routine. Filter programming is done by 952 * downloading a special setup frame into the TX engine. 21143, Macronix, 953 * PNIC, PNIC II and Davicom chips are programmed this way. 954 * 955 * We always program the chip using 'hash perfect' mode, i.e. one perfect 956 * address (our node address) and a 512-bit hash filter for multicast 957 * frames. We also sneak the broadcast address into the hash filter since 958 * we need that too. 959 */ 960 static u_int 961 dc_hash_maddr_21143(void *arg, struct sockaddr_dl *sdl, u_int cnt) 962 { 963 struct dc_softc *sc = arg; 964 uint32_t h; 965 966 h = dc_mchash_le(sc, LLADDR(sdl)); 967 sc->dc_cdata.dc_sbuf[h >> 4] |= htole32(1 << (h & 0xF)); 968 969 return (1); 970 } 971 972 static void 973 dc_setfilt_21143(struct dc_softc *sc) 974 { 975 uint16_t eaddr[(ETHER_ADDR_LEN+1)/2]; 976 struct dc_desc *sframe; 977 uint32_t h, *sp; 978 struct ifnet *ifp; 979 int i; 980 981 ifp = sc->dc_ifp; 982 983 i = sc->dc_cdata.dc_tx_prod; 984 DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT); 985 sc->dc_cdata.dc_tx_cnt++; 986 sframe = &sc->dc_ldata.dc_tx_list[i]; 987 sp = sc->dc_cdata.dc_sbuf; 988 bzero(sp, DC_SFRAME_LEN); 989 990 sframe->dc_data = htole32(DC_ADDR_LO(sc->dc_saddr)); 991 sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP | 992 DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT); 993 994 sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf; 995 996 /* If we want promiscuous mode, set the allframes bit. */ 997 if (ifp->if_flags & IFF_PROMISC) 998 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC); 999 else 1000 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC); 1001 1002 if (ifp->if_flags & IFF_ALLMULTI) 1003 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI); 1004 else 1005 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI); 1006 1007 if_foreach_llmaddr(ifp, dc_hash_maddr_21143, sp); 1008 1009 if (ifp->if_flags & IFF_BROADCAST) { 1010 h = dc_mchash_le(sc, ifp->if_broadcastaddr); 1011 sp[h >> 4] |= htole32(1 << (h & 0xF)); 1012 } 1013 1014 /* Set our MAC address. */ 1015 bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN); 1016 sp[39] = DC_SP_MAC(eaddr[0]); 1017 sp[40] = DC_SP_MAC(eaddr[1]); 1018 sp[41] = DC_SP_MAC(eaddr[2]); 1019 1020 sframe->dc_status = htole32(DC_TXSTAT_OWN); 1021 bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap, BUS_DMASYNC_PREREAD | 1022 BUS_DMASYNC_PREWRITE); 1023 bus_dmamap_sync(sc->dc_stag, sc->dc_smap, BUS_DMASYNC_PREWRITE); 1024 CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF); 1025 1026 /* 1027 * The PNIC takes an exceedingly long time to process its 1028 * setup frame; wait 10ms after posting the setup frame 1029 * before proceeding, just so it has time to swallow its 1030 * medicine. 1031 */ 1032 DELAY(10000); 1033 1034 sc->dc_wdog_timer = 5; 1035 } 1036 1037 static u_int 1038 dc_hash_maddr_admtek_be(void *arg, struct sockaddr_dl *sdl, u_int cnt) 1039 { 1040 uint32_t *hashes = arg; 1041 int h = 0; 1042 1043 h = dc_mchash_be(LLADDR(sdl)); 1044 if (h < 32) 1045 hashes[0] |= (1 << h); 1046 else 1047 hashes[1] |= (1 << (h - 32)); 1048 1049 return (1); 1050 } 1051 1052 struct dc_hash_maddr_admtek_le_ctx { 1053 struct dc_softc *sc; 1054 uint32_t hashes[2]; 1055 }; 1056 1057 static u_int 1058 dc_hash_maddr_admtek_le(void *arg, struct sockaddr_dl *sdl, u_int cnt) 1059 { 1060 struct dc_hash_maddr_admtek_le_ctx *ctx = arg; 1061 int h = 0; 1062 1063 h = dc_mchash_le(ctx->sc, LLADDR(sdl)); 1064 if (h < 32) 1065 ctx->hashes[0] |= (1 << h); 1066 else 1067 ctx->hashes[1] |= (1 << (h - 32)); 1068 1069 return (1); 1070 } 1071 1072 static void 1073 dc_setfilt_admtek(struct dc_softc *sc) 1074 { 1075 uint8_t eaddr[ETHER_ADDR_LEN]; 1076 struct ifnet *ifp; 1077 struct dc_hash_maddr_admtek_le_ctx ctx = { sc, { 0, 0 }}; 1078 1079 ifp = sc->dc_ifp; 1080 1081 /* Init our MAC address. */ 1082 bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN); 1083 CSR_WRITE_4(sc, DC_AL_PAR0, eaddr[3] << 24 | eaddr[2] << 16 | 1084 eaddr[1] << 8 | eaddr[0]); 1085 CSR_WRITE_4(sc, DC_AL_PAR1, eaddr[5] << 8 | eaddr[4]); 1086 1087 /* If we want promiscuous mode, set the allframes bit. */ 1088 if (ifp->if_flags & IFF_PROMISC) 1089 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC); 1090 else 1091 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC); 1092 1093 if (ifp->if_flags & IFF_ALLMULTI) 1094 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI); 1095 else 1096 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI); 1097 1098 /* First, zot all the existing hash bits. */ 1099 CSR_WRITE_4(sc, DC_AL_MAR0, 0); 1100 CSR_WRITE_4(sc, DC_AL_MAR1, 0); 1101 1102 /* 1103 * If we're already in promisc or allmulti mode, we 1104 * don't have to bother programming the multicast filter. 1105 */ 1106 if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) 1107 return; 1108 1109 /* Now program new ones. */ 1110 if (DC_IS_CENTAUR(sc)) 1111 if_foreach_llmaddr(ifp, dc_hash_maddr_admtek_le, &ctx); 1112 else 1113 if_foreach_llmaddr(ifp, dc_hash_maddr_admtek_be, &ctx.hashes); 1114 1115 CSR_WRITE_4(sc, DC_AL_MAR0, ctx.hashes[0]); 1116 CSR_WRITE_4(sc, DC_AL_MAR1, ctx.hashes[1]); 1117 } 1118 1119 static void 1120 dc_setfilt_asix(struct dc_softc *sc) 1121 { 1122 uint32_t eaddr[(ETHER_ADDR_LEN+3)/4]; 1123 struct ifnet *ifp; 1124 uint32_t hashes[2] = { 0, 0 }; 1125 1126 ifp = sc->dc_ifp; 1127 1128 /* Init our MAC address. */ 1129 bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN); 1130 CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0); 1131 CSR_WRITE_4(sc, DC_AX_FILTDATA, eaddr[0]); 1132 CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1); 1133 CSR_WRITE_4(sc, DC_AX_FILTDATA, eaddr[1]); 1134 1135 /* If we want promiscuous mode, set the allframes bit. */ 1136 if (ifp->if_flags & IFF_PROMISC) 1137 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC); 1138 else 1139 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC); 1140 1141 if (ifp->if_flags & IFF_ALLMULTI) 1142 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI); 1143 else 1144 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI); 1145 1146 /* 1147 * The ASIX chip has a special bit to enable reception 1148 * of broadcast frames. 1149 */ 1150 if (ifp->if_flags & IFF_BROADCAST) 1151 DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD); 1152 else 1153 DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD); 1154 1155 /* first, zot all the existing hash bits */ 1156 CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0); 1157 CSR_WRITE_4(sc, DC_AX_FILTDATA, 0); 1158 CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1); 1159 CSR_WRITE_4(sc, DC_AX_FILTDATA, 0); 1160 1161 /* 1162 * If we're already in promisc or allmulti mode, we 1163 * don't have to bother programming the multicast filter. 1164 */ 1165 if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) 1166 return; 1167 1168 /* now program new ones */ 1169 if_foreach_llmaddr(ifp, dc_hash_maddr_admtek_be, hashes); 1170 1171 CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0); 1172 CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]); 1173 CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1); 1174 CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]); 1175 } 1176 1177 static u_int 1178 dc_hash_maddr_uli(void *arg, struct sockaddr_dl *sdl, u_int mcnt) 1179 { 1180 uint32_t **sp = arg; 1181 uint8_t *ma; 1182 1183 if (mcnt == DC_ULI_FILTER_NPERF) 1184 return (0); 1185 ma = LLADDR(sdl); 1186 *(*sp)++ = DC_SP_MAC(ma[1] << 8 | ma[0]); 1187 *(*sp)++ = DC_SP_MAC(ma[3] << 8 | ma[2]); 1188 *(*sp)++ = DC_SP_MAC(ma[5] << 8 | ma[4]); 1189 1190 return (1); 1191 } 1192 1193 static void 1194 dc_setfilt_uli(struct dc_softc *sc) 1195 { 1196 uint8_t eaddr[ETHER_ADDR_LEN]; 1197 struct ifnet *ifp; 1198 struct dc_desc *sframe; 1199 uint32_t filter, *sp; 1200 int i, mcnt; 1201 1202 ifp = sc->dc_ifp; 1203 1204 i = sc->dc_cdata.dc_tx_prod; 1205 DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT); 1206 sc->dc_cdata.dc_tx_cnt++; 1207 sframe = &sc->dc_ldata.dc_tx_list[i]; 1208 sp = sc->dc_cdata.dc_sbuf; 1209 bzero(sp, DC_SFRAME_LEN); 1210 1211 sframe->dc_data = htole32(DC_ADDR_LO(sc->dc_saddr)); 1212 sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP | 1213 DC_TXCTL_TLINK | DC_FILTER_PERFECT | DC_TXCTL_FINT); 1214 1215 sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf; 1216 1217 /* Set station address. */ 1218 bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN); 1219 *sp++ = DC_SP_MAC(eaddr[1] << 8 | eaddr[0]); 1220 *sp++ = DC_SP_MAC(eaddr[3] << 8 | eaddr[2]); 1221 *sp++ = DC_SP_MAC(eaddr[5] << 8 | eaddr[4]); 1222 1223 /* Set broadcast address. */ 1224 *sp++ = DC_SP_MAC(0xFFFF); 1225 *sp++ = DC_SP_MAC(0xFFFF); 1226 *sp++ = DC_SP_MAC(0xFFFF); 1227 1228 /* Extract current filter configuration. */ 1229 filter = CSR_READ_4(sc, DC_NETCFG); 1230 filter &= ~(DC_NETCFG_RX_PROMISC | DC_NETCFG_RX_ALLMULTI); 1231 1232 /* Now build perfect filters. */ 1233 mcnt = if_foreach_llmaddr(ifp, dc_hash_maddr_uli, &sp); 1234 1235 if (mcnt == DC_ULI_FILTER_NPERF) 1236 filter |= DC_NETCFG_RX_ALLMULTI; 1237 else 1238 for (; mcnt < DC_ULI_FILTER_NPERF; mcnt++) { 1239 *sp++ = DC_SP_MAC(0xFFFF); 1240 *sp++ = DC_SP_MAC(0xFFFF); 1241 *sp++ = DC_SP_MAC(0xFFFF); 1242 } 1243 1244 if (filter & (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON)) 1245 CSR_WRITE_4(sc, DC_NETCFG, 1246 filter & ~(DC_NETCFG_TX_ON | DC_NETCFG_RX_ON)); 1247 if (ifp->if_flags & IFF_PROMISC) 1248 filter |= DC_NETCFG_RX_PROMISC | DC_NETCFG_RX_ALLMULTI; 1249 if (ifp->if_flags & IFF_ALLMULTI) 1250 filter |= DC_NETCFG_RX_ALLMULTI; 1251 CSR_WRITE_4(sc, DC_NETCFG, 1252 filter & ~(DC_NETCFG_TX_ON | DC_NETCFG_RX_ON)); 1253 if (filter & (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON)) 1254 CSR_WRITE_4(sc, DC_NETCFG, filter); 1255 1256 sframe->dc_status = htole32(DC_TXSTAT_OWN); 1257 bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap, BUS_DMASYNC_PREREAD | 1258 BUS_DMASYNC_PREWRITE); 1259 bus_dmamap_sync(sc->dc_stag, sc->dc_smap, BUS_DMASYNC_PREWRITE); 1260 CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF); 1261 1262 /* 1263 * Wait some time... 1264 */ 1265 DELAY(1000); 1266 1267 sc->dc_wdog_timer = 5; 1268 } 1269 1270 static u_int 1271 dc_hash_maddr_xircom(void *arg, struct sockaddr_dl *sdl, u_int cnt) 1272 { 1273 struct dc_softc *sc = arg; 1274 uint32_t h; 1275 1276 h = dc_mchash_le(sc, LLADDR(sdl)); 1277 sc->dc_cdata.dc_sbuf[h >> 4] |= htole32(1 << (h & 0xF)); 1278 return (1); 1279 } 1280 1281 static void 1282 dc_setfilt_xircom(struct dc_softc *sc) 1283 { 1284 uint16_t eaddr[(ETHER_ADDR_LEN+1)/2]; 1285 struct ifnet *ifp; 1286 struct dc_desc *sframe; 1287 uint32_t h, *sp; 1288 int i; 1289 1290 ifp = sc->dc_ifp; 1291 DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON)); 1292 1293 i = sc->dc_cdata.dc_tx_prod; 1294 DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT); 1295 sc->dc_cdata.dc_tx_cnt++; 1296 sframe = &sc->dc_ldata.dc_tx_list[i]; 1297 sp = sc->dc_cdata.dc_sbuf; 1298 bzero(sp, DC_SFRAME_LEN); 1299 1300 sframe->dc_data = htole32(DC_ADDR_LO(sc->dc_saddr)); 1301 sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP | 1302 DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT); 1303 1304 sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf; 1305 1306 /* If we want promiscuous mode, set the allframes bit. */ 1307 if (ifp->if_flags & IFF_PROMISC) 1308 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC); 1309 else 1310 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC); 1311 1312 if (ifp->if_flags & IFF_ALLMULTI) 1313 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI); 1314 else 1315 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI); 1316 1317 if_foreach_llmaddr(ifp, dc_hash_maddr_xircom, &sp); 1318 1319 if (ifp->if_flags & IFF_BROADCAST) { 1320 h = dc_mchash_le(sc, ifp->if_broadcastaddr); 1321 sp[h >> 4] |= htole32(1 << (h & 0xF)); 1322 } 1323 1324 /* Set our MAC address. */ 1325 bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN); 1326 sp[0] = DC_SP_MAC(eaddr[0]); 1327 sp[1] = DC_SP_MAC(eaddr[1]); 1328 sp[2] = DC_SP_MAC(eaddr[2]); 1329 1330 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON); 1331 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON); 1332 sframe->dc_status = htole32(DC_TXSTAT_OWN); 1333 bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap, BUS_DMASYNC_PREREAD | 1334 BUS_DMASYNC_PREWRITE); 1335 bus_dmamap_sync(sc->dc_stag, sc->dc_smap, BUS_DMASYNC_PREWRITE); 1336 CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF); 1337 1338 /* 1339 * Wait some time... 1340 */ 1341 DELAY(1000); 1342 1343 sc->dc_wdog_timer = 5; 1344 } 1345 1346 static void 1347 dc_setfilt(struct dc_softc *sc) 1348 { 1349 1350 if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) || 1351 DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc)) 1352 dc_setfilt_21143(sc); 1353 1354 if (DC_IS_ASIX(sc)) 1355 dc_setfilt_asix(sc); 1356 1357 if (DC_IS_ADMTEK(sc)) 1358 dc_setfilt_admtek(sc); 1359 1360 if (DC_IS_ULI(sc)) 1361 dc_setfilt_uli(sc); 1362 1363 if (DC_IS_XIRCOM(sc)) 1364 dc_setfilt_xircom(sc); 1365 } 1366 1367 static void 1368 dc_netcfg_wait(struct dc_softc *sc) 1369 { 1370 uint32_t isr; 1371 int i; 1372 1373 for (i = 0; i < DC_TIMEOUT; i++) { 1374 isr = CSR_READ_4(sc, DC_ISR); 1375 if (isr & DC_ISR_TX_IDLE && 1376 ((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED || 1377 (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT)) 1378 break; 1379 DELAY(10); 1380 } 1381 if (i == DC_TIMEOUT && bus_child_present(sc->dc_dev)) { 1382 if (!(isr & DC_ISR_TX_IDLE) && !DC_IS_ASIX(sc)) 1383 device_printf(sc->dc_dev, 1384 "%s: failed to force tx to idle state\n", __func__); 1385 if (!((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED || 1386 (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT) && 1387 !DC_HAS_BROKEN_RXSTATE(sc)) 1388 device_printf(sc->dc_dev, 1389 "%s: failed to force rx to idle state\n", __func__); 1390 } 1391 } 1392 1393 /* 1394 * In order to fiddle with the 'full-duplex' and '100Mbps' bits in 1395 * the netconfig register, we first have to put the transmit and/or 1396 * receive logic in the idle state. 1397 */ 1398 static void 1399 dc_setcfg(struct dc_softc *sc, int media) 1400 { 1401 int restart = 0, watchdogreg; 1402 1403 if (IFM_SUBTYPE(media) == IFM_NONE) 1404 return; 1405 1406 if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON)) { 1407 restart = 1; 1408 DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON)); 1409 dc_netcfg_wait(sc); 1410 } 1411 1412 if (IFM_SUBTYPE(media) == IFM_100_TX) { 1413 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL); 1414 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT); 1415 if (sc->dc_pmode == DC_PMODE_MII) { 1416 if (DC_IS_INTEL(sc)) { 1417 /* There's a write enable bit here that reads as 1. */ 1418 watchdogreg = CSR_READ_4(sc, DC_WATCHDOG); 1419 watchdogreg &= ~DC_WDOG_CTLWREN; 1420 watchdogreg |= DC_WDOG_JABBERDIS; 1421 CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg); 1422 } else { 1423 DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS); 1424 } 1425 DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS | 1426 DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER)); 1427 if (sc->dc_type == DC_TYPE_98713) 1428 DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS | 1429 DC_NETCFG_SCRAMBLER)); 1430 if (!DC_IS_DAVICOM(sc)) 1431 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL); 1432 DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF); 1433 } else { 1434 if (DC_IS_PNIC(sc)) { 1435 DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL); 1436 DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP); 1437 DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL); 1438 } 1439 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL); 1440 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS); 1441 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER); 1442 } 1443 } 1444 1445 if (IFM_SUBTYPE(media) == IFM_10_T) { 1446 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL); 1447 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT); 1448 if (sc->dc_pmode == DC_PMODE_MII) { 1449 /* There's a write enable bit here that reads as 1. */ 1450 if (DC_IS_INTEL(sc)) { 1451 watchdogreg = CSR_READ_4(sc, DC_WATCHDOG); 1452 watchdogreg &= ~DC_WDOG_CTLWREN; 1453 watchdogreg |= DC_WDOG_JABBERDIS; 1454 CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg); 1455 } else { 1456 DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS); 1457 } 1458 DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS | 1459 DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER)); 1460 if (sc->dc_type == DC_TYPE_98713) 1461 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS); 1462 if (!DC_IS_DAVICOM(sc)) 1463 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL); 1464 DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF); 1465 } else { 1466 if (DC_IS_PNIC(sc)) { 1467 DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL); 1468 DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP); 1469 DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL); 1470 } 1471 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL); 1472 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS); 1473 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER); 1474 if (DC_IS_INTEL(sc)) { 1475 DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET); 1476 DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF); 1477 if ((media & IFM_GMASK) == IFM_FDX) 1478 DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D); 1479 else 1480 DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F); 1481 DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET); 1482 DC_CLRBIT(sc, DC_10BTCTRL, 1483 DC_TCTL_AUTONEGENBL); 1484 DELAY(20000); 1485 } 1486 } 1487 } 1488 1489 /* 1490 * If this is a Davicom DM9102A card with a DM9801 HomePNA 1491 * PHY and we want HomePNA mode, set the portsel bit to turn 1492 * on the external MII port. 1493 */ 1494 if (DC_IS_DAVICOM(sc)) { 1495 if (IFM_SUBTYPE(media) == IFM_HPNA_1) { 1496 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL); 1497 sc->dc_link = 1; 1498 } else { 1499 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL); 1500 } 1501 } 1502 1503 if ((media & IFM_GMASK) == IFM_FDX) { 1504 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX); 1505 if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc)) 1506 DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX); 1507 } else { 1508 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX); 1509 if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc)) 1510 DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX); 1511 } 1512 1513 if (restart) 1514 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON | DC_NETCFG_RX_ON); 1515 } 1516 1517 static void 1518 dc_reset(struct dc_softc *sc) 1519 { 1520 int i; 1521 1522 DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET); 1523 1524 for (i = 0; i < DC_TIMEOUT; i++) { 1525 DELAY(10); 1526 if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET)) 1527 break; 1528 } 1529 1530 if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_CONEXANT(sc) || 1531 DC_IS_XIRCOM(sc) || DC_IS_INTEL(sc) || DC_IS_ULI(sc)) { 1532 DELAY(10000); 1533 DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET); 1534 i = 0; 1535 } 1536 1537 if (i == DC_TIMEOUT) 1538 device_printf(sc->dc_dev, "reset never completed!\n"); 1539 1540 /* Wait a little while for the chip to get its brains in order. */ 1541 DELAY(1000); 1542 1543 CSR_WRITE_4(sc, DC_IMR, 0x00000000); 1544 CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000); 1545 CSR_WRITE_4(sc, DC_NETCFG, 0x00000000); 1546 1547 /* 1548 * Bring the SIA out of reset. In some cases, it looks 1549 * like failing to unreset the SIA soon enough gets it 1550 * into a state where it will never come out of reset 1551 * until we reset the whole chip again. 1552 */ 1553 if (DC_IS_INTEL(sc)) { 1554 DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET); 1555 CSR_WRITE_4(sc, DC_10BTCTRL, 0xFFFFFFFF); 1556 CSR_WRITE_4(sc, DC_WATCHDOG, 0); 1557 } 1558 } 1559 1560 static const struct dc_type * 1561 dc_devtype(device_t dev) 1562 { 1563 const struct dc_type *t; 1564 uint32_t devid; 1565 uint8_t rev; 1566 1567 t = dc_devs; 1568 devid = pci_get_devid(dev); 1569 rev = pci_get_revid(dev); 1570 1571 while (t->dc_name != NULL) { 1572 if (devid == t->dc_devid && rev >= t->dc_minrev) 1573 return (t); 1574 t++; 1575 } 1576 1577 return (NULL); 1578 } 1579 1580 /* 1581 * Probe for a 21143 or clone chip. Check the PCI vendor and device 1582 * IDs against our list and return a device name if we find a match. 1583 * We do a little bit of extra work to identify the exact type of 1584 * chip. The MX98713 and MX98713A have the same PCI vendor/device ID, 1585 * but different revision IDs. The same is true for 98715/98715A 1586 * chips and the 98725, as well as the ASIX and ADMtek chips. In some 1587 * cases, the exact chip revision affects driver behavior. 1588 */ 1589 static int 1590 dc_probe(device_t dev) 1591 { 1592 const struct dc_type *t; 1593 1594 t = dc_devtype(dev); 1595 1596 if (t != NULL) { 1597 device_set_desc(dev, t->dc_name); 1598 return (BUS_PROBE_DEFAULT); 1599 } 1600 1601 return (ENXIO); 1602 } 1603 1604 static void 1605 dc_apply_fixup(struct dc_softc *sc, int media) 1606 { 1607 struct dc_mediainfo *m; 1608 uint8_t *p; 1609 int i; 1610 uint32_t reg; 1611 1612 m = sc->dc_mi; 1613 1614 while (m != NULL) { 1615 if (m->dc_media == media) 1616 break; 1617 m = m->dc_next; 1618 } 1619 1620 if (m == NULL) 1621 return; 1622 1623 for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) { 1624 reg = (p[0] | (p[1] << 8)) << 16; 1625 CSR_WRITE_4(sc, DC_WATCHDOG, reg); 1626 } 1627 1628 for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) { 1629 reg = (p[0] | (p[1] << 8)) << 16; 1630 CSR_WRITE_4(sc, DC_WATCHDOG, reg); 1631 } 1632 } 1633 1634 static int 1635 dc_decode_leaf_sia(struct dc_softc *sc, struct dc_eblock_sia *l) 1636 { 1637 struct dc_mediainfo *m; 1638 1639 m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO); 1640 if (m == NULL) { 1641 device_printf(sc->dc_dev, "Could not allocate mediainfo\n"); 1642 return (ENOMEM); 1643 } 1644 switch (l->dc_sia_code & ~DC_SIA_CODE_EXT) { 1645 case DC_SIA_CODE_10BT: 1646 m->dc_media = IFM_10_T; 1647 break; 1648 case DC_SIA_CODE_10BT_FDX: 1649 m->dc_media = IFM_10_T | IFM_FDX; 1650 break; 1651 case DC_SIA_CODE_10B2: 1652 m->dc_media = IFM_10_2; 1653 break; 1654 case DC_SIA_CODE_10B5: 1655 m->dc_media = IFM_10_5; 1656 break; 1657 default: 1658 break; 1659 } 1660 1661 /* 1662 * We need to ignore CSR13, CSR14, CSR15 for SIA mode. 1663 * Things apparently already work for cards that do 1664 * supply Media Specific Data. 1665 */ 1666 if (l->dc_sia_code & DC_SIA_CODE_EXT) { 1667 m->dc_gp_len = 2; 1668 m->dc_gp_ptr = 1669 (uint8_t *)&l->dc_un.dc_sia_ext.dc_sia_gpio_ctl; 1670 } else { 1671 m->dc_gp_len = 2; 1672 m->dc_gp_ptr = 1673 (uint8_t *)&l->dc_un.dc_sia_noext.dc_sia_gpio_ctl; 1674 } 1675 1676 m->dc_next = sc->dc_mi; 1677 sc->dc_mi = m; 1678 1679 sc->dc_pmode = DC_PMODE_SIA; 1680 return (0); 1681 } 1682 1683 static int 1684 dc_decode_leaf_sym(struct dc_softc *sc, struct dc_eblock_sym *l) 1685 { 1686 struct dc_mediainfo *m; 1687 1688 m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO); 1689 if (m == NULL) { 1690 device_printf(sc->dc_dev, "Could not allocate mediainfo\n"); 1691 return (ENOMEM); 1692 } 1693 if (l->dc_sym_code == DC_SYM_CODE_100BT) 1694 m->dc_media = IFM_100_TX; 1695 1696 if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX) 1697 m->dc_media = IFM_100_TX | IFM_FDX; 1698 1699 m->dc_gp_len = 2; 1700 m->dc_gp_ptr = (uint8_t *)&l->dc_sym_gpio_ctl; 1701 1702 m->dc_next = sc->dc_mi; 1703 sc->dc_mi = m; 1704 1705 sc->dc_pmode = DC_PMODE_SYM; 1706 return (0); 1707 } 1708 1709 static int 1710 dc_decode_leaf_mii(struct dc_softc *sc, struct dc_eblock_mii *l) 1711 { 1712 struct dc_mediainfo *m; 1713 uint8_t *p; 1714 1715 m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO); 1716 if (m == NULL) { 1717 device_printf(sc->dc_dev, "Could not allocate mediainfo\n"); 1718 return (ENOMEM); 1719 } 1720 /* We abuse IFM_AUTO to represent MII. */ 1721 m->dc_media = IFM_AUTO; 1722 m->dc_gp_len = l->dc_gpr_len; 1723 1724 p = (uint8_t *)l; 1725 p += sizeof(struct dc_eblock_mii); 1726 m->dc_gp_ptr = p; 1727 p += 2 * l->dc_gpr_len; 1728 m->dc_reset_len = *p; 1729 p++; 1730 m->dc_reset_ptr = p; 1731 1732 m->dc_next = sc->dc_mi; 1733 sc->dc_mi = m; 1734 return (0); 1735 } 1736 1737 static int 1738 dc_read_srom(struct dc_softc *sc, int bits) 1739 { 1740 int size; 1741 1742 size = DC_ROM_SIZE(bits); 1743 sc->dc_srom = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO); 1744 if (sc->dc_srom == NULL) { 1745 device_printf(sc->dc_dev, "Could not allocate SROM buffer\n"); 1746 return (ENOMEM); 1747 } 1748 dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (size / 2), 0); 1749 return (0); 1750 } 1751 1752 static int 1753 dc_parse_21143_srom(struct dc_softc *sc) 1754 { 1755 struct dc_leaf_hdr *lhdr; 1756 struct dc_eblock_hdr *hdr; 1757 int error, have_mii, i, loff; 1758 char *ptr; 1759 1760 have_mii = 0; 1761 loff = sc->dc_srom[27]; 1762 lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]); 1763 1764 ptr = (char *)lhdr; 1765 ptr += sizeof(struct dc_leaf_hdr) - 1; 1766 /* 1767 * Look if we got a MII media block. 1768 */ 1769 for (i = 0; i < lhdr->dc_mcnt; i++) { 1770 hdr = (struct dc_eblock_hdr *)ptr; 1771 if (hdr->dc_type == DC_EBLOCK_MII) 1772 have_mii++; 1773 1774 ptr += (hdr->dc_len & 0x7F); 1775 ptr++; 1776 } 1777 1778 /* 1779 * Do the same thing again. Only use SIA and SYM media 1780 * blocks if no MII media block is available. 1781 */ 1782 ptr = (char *)lhdr; 1783 ptr += sizeof(struct dc_leaf_hdr) - 1; 1784 error = 0; 1785 for (i = 0; i < lhdr->dc_mcnt; i++) { 1786 hdr = (struct dc_eblock_hdr *)ptr; 1787 switch (hdr->dc_type) { 1788 case DC_EBLOCK_MII: 1789 error = dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr); 1790 break; 1791 case DC_EBLOCK_SIA: 1792 if (! have_mii) 1793 error = dc_decode_leaf_sia(sc, 1794 (struct dc_eblock_sia *)hdr); 1795 break; 1796 case DC_EBLOCK_SYM: 1797 if (! have_mii) 1798 error = dc_decode_leaf_sym(sc, 1799 (struct dc_eblock_sym *)hdr); 1800 break; 1801 default: 1802 /* Don't care. Yet. */ 1803 break; 1804 } 1805 ptr += (hdr->dc_len & 0x7F); 1806 ptr++; 1807 } 1808 return (error); 1809 } 1810 1811 static void 1812 dc_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 1813 { 1814 bus_addr_t *paddr; 1815 1816 KASSERT(nseg == 1, 1817 ("%s: wrong number of segments (%d)", __func__, nseg)); 1818 paddr = arg; 1819 *paddr = segs->ds_addr; 1820 } 1821 1822 static int 1823 dc_dma_alloc(struct dc_softc *sc) 1824 { 1825 int error, i; 1826 1827 error = bus_dma_tag_create(bus_get_dma_tag(sc->dc_dev), 1, 0, 1828 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 1829 BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0, 1830 NULL, NULL, &sc->dc_ptag); 1831 if (error) { 1832 device_printf(sc->dc_dev, 1833 "failed to allocate parent DMA tag\n"); 1834 goto fail; 1835 } 1836 1837 /* Allocate a busdma tag and DMA safe memory for TX/RX descriptors. */ 1838 error = bus_dma_tag_create(sc->dc_ptag, DC_LIST_ALIGN, 0, 1839 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, DC_RX_LIST_SZ, 1, 1840 DC_RX_LIST_SZ, 0, NULL, NULL, &sc->dc_rx_ltag); 1841 if (error) { 1842 device_printf(sc->dc_dev, "failed to create RX list DMA tag\n"); 1843 goto fail; 1844 } 1845 1846 error = bus_dma_tag_create(sc->dc_ptag, DC_LIST_ALIGN, 0, 1847 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, DC_TX_LIST_SZ, 1, 1848 DC_TX_LIST_SZ, 0, NULL, NULL, &sc->dc_tx_ltag); 1849 if (error) { 1850 device_printf(sc->dc_dev, "failed to create TX list DMA tag\n"); 1851 goto fail; 1852 } 1853 1854 /* RX descriptor list. */ 1855 error = bus_dmamem_alloc(sc->dc_rx_ltag, 1856 (void **)&sc->dc_ldata.dc_rx_list, BUS_DMA_NOWAIT | 1857 BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->dc_rx_lmap); 1858 if (error) { 1859 device_printf(sc->dc_dev, 1860 "failed to allocate DMA'able memory for RX list\n"); 1861 goto fail; 1862 } 1863 error = bus_dmamap_load(sc->dc_rx_ltag, sc->dc_rx_lmap, 1864 sc->dc_ldata.dc_rx_list, DC_RX_LIST_SZ, dc_dma_map_addr, 1865 &sc->dc_ldata.dc_rx_list_paddr, BUS_DMA_NOWAIT); 1866 if (error) { 1867 device_printf(sc->dc_dev, 1868 "failed to load DMA'able memory for RX list\n"); 1869 goto fail; 1870 } 1871 /* TX descriptor list. */ 1872 error = bus_dmamem_alloc(sc->dc_tx_ltag, 1873 (void **)&sc->dc_ldata.dc_tx_list, BUS_DMA_NOWAIT | 1874 BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->dc_tx_lmap); 1875 if (error) { 1876 device_printf(sc->dc_dev, 1877 "failed to allocate DMA'able memory for TX list\n"); 1878 goto fail; 1879 } 1880 error = bus_dmamap_load(sc->dc_tx_ltag, sc->dc_tx_lmap, 1881 sc->dc_ldata.dc_tx_list, DC_TX_LIST_SZ, dc_dma_map_addr, 1882 &sc->dc_ldata.dc_tx_list_paddr, BUS_DMA_NOWAIT); 1883 if (error) { 1884 device_printf(sc->dc_dev, 1885 "cannot load DMA'able memory for TX list\n"); 1886 goto fail; 1887 } 1888 1889 /* 1890 * Allocate a busdma tag and DMA safe memory for the multicast 1891 * setup frame. 1892 */ 1893 error = bus_dma_tag_create(sc->dc_ptag, DC_LIST_ALIGN, 0, 1894 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 1895 DC_SFRAME_LEN + DC_MIN_FRAMELEN, 1, DC_SFRAME_LEN + DC_MIN_FRAMELEN, 1896 0, NULL, NULL, &sc->dc_stag); 1897 if (error) { 1898 device_printf(sc->dc_dev, 1899 "failed to create DMA tag for setup frame\n"); 1900 goto fail; 1901 } 1902 error = bus_dmamem_alloc(sc->dc_stag, (void **)&sc->dc_cdata.dc_sbuf, 1903 BUS_DMA_NOWAIT, &sc->dc_smap); 1904 if (error) { 1905 device_printf(sc->dc_dev, 1906 "failed to allocate DMA'able memory for setup frame\n"); 1907 goto fail; 1908 } 1909 error = bus_dmamap_load(sc->dc_stag, sc->dc_smap, sc->dc_cdata.dc_sbuf, 1910 DC_SFRAME_LEN, dc_dma_map_addr, &sc->dc_saddr, BUS_DMA_NOWAIT); 1911 if (error) { 1912 device_printf(sc->dc_dev, 1913 "cannot load DMA'able memory for setup frame\n"); 1914 goto fail; 1915 } 1916 1917 /* Allocate a busdma tag for RX mbufs. */ 1918 error = bus_dma_tag_create(sc->dc_ptag, DC_RXBUF_ALIGN, 0, 1919 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 1920 MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &sc->dc_rx_mtag); 1921 if (error) { 1922 device_printf(sc->dc_dev, "failed to create RX mbuf tag\n"); 1923 goto fail; 1924 } 1925 1926 /* Allocate a busdma tag for TX mbufs. */ 1927 error = bus_dma_tag_create(sc->dc_ptag, 1, 0, 1928 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 1929 MCLBYTES * DC_MAXFRAGS, DC_MAXFRAGS, MCLBYTES, 1930 0, NULL, NULL, &sc->dc_tx_mtag); 1931 if (error) { 1932 device_printf(sc->dc_dev, "failed to create TX mbuf tag\n"); 1933 goto fail; 1934 } 1935 1936 /* Create the TX/RX busdma maps. */ 1937 for (i = 0; i < DC_TX_LIST_CNT; i++) { 1938 error = bus_dmamap_create(sc->dc_tx_mtag, 0, 1939 &sc->dc_cdata.dc_tx_map[i]); 1940 if (error) { 1941 device_printf(sc->dc_dev, 1942 "failed to create TX mbuf dmamap\n"); 1943 goto fail; 1944 } 1945 } 1946 for (i = 0; i < DC_RX_LIST_CNT; i++) { 1947 error = bus_dmamap_create(sc->dc_rx_mtag, 0, 1948 &sc->dc_cdata.dc_rx_map[i]); 1949 if (error) { 1950 device_printf(sc->dc_dev, 1951 "failed to create RX mbuf dmamap\n"); 1952 goto fail; 1953 } 1954 } 1955 error = bus_dmamap_create(sc->dc_rx_mtag, 0, &sc->dc_sparemap); 1956 if (error) { 1957 device_printf(sc->dc_dev, 1958 "failed to create spare RX mbuf dmamap\n"); 1959 goto fail; 1960 } 1961 1962 fail: 1963 return (error); 1964 } 1965 1966 static void 1967 dc_dma_free(struct dc_softc *sc) 1968 { 1969 int i; 1970 1971 /* RX buffers. */ 1972 if (sc->dc_rx_mtag != NULL) { 1973 for (i = 0; i < DC_RX_LIST_CNT; i++) { 1974 if (sc->dc_cdata.dc_rx_map[i] != NULL) 1975 bus_dmamap_destroy(sc->dc_rx_mtag, 1976 sc->dc_cdata.dc_rx_map[i]); 1977 } 1978 if (sc->dc_sparemap != NULL) 1979 bus_dmamap_destroy(sc->dc_rx_mtag, sc->dc_sparemap); 1980 bus_dma_tag_destroy(sc->dc_rx_mtag); 1981 } 1982 1983 /* TX buffers. */ 1984 if (sc->dc_rx_mtag != NULL) { 1985 for (i = 0; i < DC_TX_LIST_CNT; i++) { 1986 if (sc->dc_cdata.dc_tx_map[i] != NULL) 1987 bus_dmamap_destroy(sc->dc_tx_mtag, 1988 sc->dc_cdata.dc_tx_map[i]); 1989 } 1990 bus_dma_tag_destroy(sc->dc_tx_mtag); 1991 } 1992 1993 /* RX descriptor list. */ 1994 if (sc->dc_rx_ltag) { 1995 if (sc->dc_ldata.dc_rx_list_paddr != 0) 1996 bus_dmamap_unload(sc->dc_rx_ltag, sc->dc_rx_lmap); 1997 if (sc->dc_ldata.dc_rx_list != NULL) 1998 bus_dmamem_free(sc->dc_rx_ltag, sc->dc_ldata.dc_rx_list, 1999 sc->dc_rx_lmap); 2000 bus_dma_tag_destroy(sc->dc_rx_ltag); 2001 } 2002 2003 /* TX descriptor list. */ 2004 if (sc->dc_tx_ltag) { 2005 if (sc->dc_ldata.dc_tx_list_paddr != 0) 2006 bus_dmamap_unload(sc->dc_tx_ltag, sc->dc_tx_lmap); 2007 if (sc->dc_ldata.dc_tx_list != NULL) 2008 bus_dmamem_free(sc->dc_tx_ltag, sc->dc_ldata.dc_tx_list, 2009 sc->dc_tx_lmap); 2010 bus_dma_tag_destroy(sc->dc_tx_ltag); 2011 } 2012 2013 /* multicast setup frame. */ 2014 if (sc->dc_stag) { 2015 if (sc->dc_saddr != 0) 2016 bus_dmamap_unload(sc->dc_stag, sc->dc_smap); 2017 if (sc->dc_cdata.dc_sbuf != NULL) 2018 bus_dmamem_free(sc->dc_stag, sc->dc_cdata.dc_sbuf, 2019 sc->dc_smap); 2020 bus_dma_tag_destroy(sc->dc_stag); 2021 } 2022 } 2023 2024 /* 2025 * Attach the interface. Allocate softc structures, do ifmedia 2026 * setup and ethernet/BPF attach. 2027 */ 2028 static int 2029 dc_attach(device_t dev) 2030 { 2031 uint32_t eaddr[(ETHER_ADDR_LEN+3)/4]; 2032 uint32_t command; 2033 struct dc_softc *sc; 2034 struct ifnet *ifp; 2035 struct dc_mediainfo *m; 2036 uint32_t reg, revision; 2037 uint16_t *srom; 2038 int error, mac_offset, n, phy, rid, tmp; 2039 uint8_t *mac; 2040 2041 sc = device_get_softc(dev); 2042 sc->dc_dev = dev; 2043 2044 mtx_init(&sc->dc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 2045 MTX_DEF); 2046 2047 /* 2048 * Map control/status registers. 2049 */ 2050 pci_enable_busmaster(dev); 2051 2052 rid = DC_RID; 2053 sc->dc_res = bus_alloc_resource_any(dev, DC_RES, &rid, RF_ACTIVE); 2054 2055 if (sc->dc_res == NULL) { 2056 device_printf(dev, "couldn't map ports/memory\n"); 2057 error = ENXIO; 2058 goto fail; 2059 } 2060 2061 sc->dc_btag = rman_get_bustag(sc->dc_res); 2062 sc->dc_bhandle = rman_get_bushandle(sc->dc_res); 2063 2064 /* Allocate interrupt. */ 2065 rid = 0; 2066 sc->dc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, 2067 RF_SHAREABLE | RF_ACTIVE); 2068 2069 if (sc->dc_irq == NULL) { 2070 device_printf(dev, "couldn't map interrupt\n"); 2071 error = ENXIO; 2072 goto fail; 2073 } 2074 2075 /* Need this info to decide on a chip type. */ 2076 sc->dc_info = dc_devtype(dev); 2077 revision = pci_get_revid(dev); 2078 2079 error = 0; 2080 /* Get the eeprom width, but PNIC and XIRCOM have diff eeprom */ 2081 if (sc->dc_info->dc_devid != 2082 DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168) && 2083 sc->dc_info->dc_devid != 2084 DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201)) 2085 dc_eeprom_width(sc); 2086 2087 switch (sc->dc_info->dc_devid) { 2088 case DC_DEVID(DC_VENDORID_DEC, DC_DEVICEID_21143): 2089 sc->dc_type = DC_TYPE_21143; 2090 sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR; 2091 sc->dc_flags |= DC_REDUCED_MII_POLL; 2092 /* Save EEPROM contents so we can parse them later. */ 2093 error = dc_read_srom(sc, sc->dc_romwidth); 2094 if (error != 0) 2095 goto fail; 2096 break; 2097 case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009): 2098 case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100): 2099 case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102): 2100 sc->dc_type = DC_TYPE_DM9102; 2101 sc->dc_flags |= DC_TX_COALESCE | DC_TX_INTR_ALWAYS; 2102 sc->dc_flags |= DC_REDUCED_MII_POLL | DC_TX_STORENFWD; 2103 sc->dc_flags |= DC_TX_ALIGN; 2104 sc->dc_pmode = DC_PMODE_MII; 2105 2106 /* Increase the latency timer value. */ 2107 pci_write_config(dev, PCIR_LATTIMER, 0x80, 1); 2108 break; 2109 case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AL981): 2110 sc->dc_type = DC_TYPE_AL981; 2111 sc->dc_flags |= DC_TX_USE_TX_INTR; 2112 sc->dc_flags |= DC_TX_ADMTEK_WAR; 2113 sc->dc_pmode = DC_PMODE_MII; 2114 error = dc_read_srom(sc, sc->dc_romwidth); 2115 if (error != 0) 2116 goto fail; 2117 break; 2118 case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN983): 2119 case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN985): 2120 case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511): 2121 case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513): 2122 case DC_DEVID(DC_VENDORID_DLINK, DC_DEVICEID_DRP32TXD): 2123 case DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500): 2124 case DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500MX): 2125 case DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN2242): 2126 case DC_DEVID(DC_VENDORID_HAWKING, DC_DEVICEID_HAWKING_PN672TX): 2127 case DC_DEVID(DC_VENDORID_PLANEX, DC_DEVICEID_FNW3602T): 2128 case DC_DEVID(DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB): 2129 case DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN120): 2130 case DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130): 2131 case DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB08): 2132 case DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB09): 2133 sc->dc_type = DC_TYPE_AN983; 2134 sc->dc_flags |= DC_64BIT_HASH; 2135 sc->dc_flags |= DC_TX_USE_TX_INTR; 2136 sc->dc_flags |= DC_TX_ADMTEK_WAR; 2137 sc->dc_pmode = DC_PMODE_MII; 2138 /* Don't read SROM for - auto-loaded on reset */ 2139 break; 2140 case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713): 2141 case DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP): 2142 if (revision < DC_REVISION_98713A) { 2143 sc->dc_type = DC_TYPE_98713; 2144 } 2145 if (revision >= DC_REVISION_98713A) { 2146 sc->dc_type = DC_TYPE_98713A; 2147 sc->dc_flags |= DC_21143_NWAY; 2148 } 2149 sc->dc_flags |= DC_REDUCED_MII_POLL; 2150 sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR; 2151 break; 2152 case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5): 2153 case DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN1217): 2154 /* 2155 * Macronix MX98715AEC-C/D/E parts have only a 2156 * 128-bit hash table. We need to deal with these 2157 * in the same manner as the PNIC II so that we 2158 * get the right number of bits out of the 2159 * CRC routine. 2160 */ 2161 if (revision >= DC_REVISION_98715AEC_C && 2162 revision < DC_REVISION_98725) 2163 sc->dc_flags |= DC_128BIT_HASH; 2164 sc->dc_type = DC_TYPE_987x5; 2165 sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR; 2166 sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY; 2167 break; 2168 case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98727): 2169 sc->dc_type = DC_TYPE_987x5; 2170 sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR; 2171 sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY; 2172 break; 2173 case DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C115): 2174 sc->dc_type = DC_TYPE_PNICII; 2175 sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR | DC_128BIT_HASH; 2176 sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY; 2177 break; 2178 case DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168): 2179 sc->dc_type = DC_TYPE_PNIC; 2180 sc->dc_flags |= DC_TX_STORENFWD | DC_TX_INTR_ALWAYS; 2181 sc->dc_flags |= DC_PNIC_RX_BUG_WAR; 2182 sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_NOWAIT); 2183 if (sc->dc_pnic_rx_buf == NULL) { 2184 device_printf(sc->dc_dev, 2185 "Could not allocate PNIC RX buffer\n"); 2186 error = ENOMEM; 2187 goto fail; 2188 } 2189 if (revision < DC_REVISION_82C169) 2190 sc->dc_pmode = DC_PMODE_SYM; 2191 break; 2192 case DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A): 2193 sc->dc_type = DC_TYPE_ASIX; 2194 sc->dc_flags |= DC_TX_USE_TX_INTR | DC_TX_INTR_FIRSTFRAG; 2195 sc->dc_flags |= DC_REDUCED_MII_POLL; 2196 sc->dc_pmode = DC_PMODE_MII; 2197 break; 2198 case DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201): 2199 sc->dc_type = DC_TYPE_XIRCOM; 2200 sc->dc_flags |= DC_TX_INTR_ALWAYS | DC_TX_COALESCE | 2201 DC_TX_ALIGN; 2202 /* 2203 * We don't actually need to coalesce, but we're doing 2204 * it to obtain a double word aligned buffer. 2205 * The DC_TX_COALESCE flag is required. 2206 */ 2207 sc->dc_pmode = DC_PMODE_MII; 2208 break; 2209 case DC_DEVID(DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112): 2210 sc->dc_type = DC_TYPE_CONEXANT; 2211 sc->dc_flags |= DC_TX_INTR_ALWAYS; 2212 sc->dc_flags |= DC_REDUCED_MII_POLL; 2213 sc->dc_pmode = DC_PMODE_MII; 2214 error = dc_read_srom(sc, sc->dc_romwidth); 2215 if (error != 0) 2216 goto fail; 2217 break; 2218 case DC_DEVID(DC_VENDORID_ULI, DC_DEVICEID_M5261): 2219 case DC_DEVID(DC_VENDORID_ULI, DC_DEVICEID_M5263): 2220 if (sc->dc_info->dc_devid == 2221 DC_DEVID(DC_VENDORID_ULI, DC_DEVICEID_M5261)) 2222 sc->dc_type = DC_TYPE_ULI_M5261; 2223 else 2224 sc->dc_type = DC_TYPE_ULI_M5263; 2225 /* TX buffers should be aligned on 4 byte boundary. */ 2226 sc->dc_flags |= DC_TX_INTR_ALWAYS | DC_TX_COALESCE | 2227 DC_TX_ALIGN; 2228 sc->dc_pmode = DC_PMODE_MII; 2229 error = dc_read_srom(sc, sc->dc_romwidth); 2230 if (error != 0) 2231 goto fail; 2232 break; 2233 default: 2234 device_printf(dev, "unknown device: %x\n", 2235 sc->dc_info->dc_devid); 2236 break; 2237 } 2238 2239 /* Save the cache line size. */ 2240 if (DC_IS_DAVICOM(sc)) 2241 sc->dc_cachesize = 0; 2242 else 2243 sc->dc_cachesize = pci_get_cachelnsz(dev); 2244 2245 /* Reset the adapter. */ 2246 dc_reset(sc); 2247 2248 /* Take 21143 out of snooze mode */ 2249 if (DC_IS_INTEL(sc) || DC_IS_XIRCOM(sc)) { 2250 command = pci_read_config(dev, DC_PCI_CFDD, 4); 2251 command &= ~(DC_CFDD_SNOOZE_MODE | DC_CFDD_SLEEP_MODE); 2252 pci_write_config(dev, DC_PCI_CFDD, command, 4); 2253 } 2254 2255 /* 2256 * Try to learn something about the supported media. 2257 * We know that ASIX and ADMtek and Davicom devices 2258 * will *always* be using MII media, so that's a no-brainer. 2259 * The tricky ones are the Macronix/PNIC II and the 2260 * Intel 21143. 2261 */ 2262 if (DC_IS_INTEL(sc)) { 2263 error = dc_parse_21143_srom(sc); 2264 if (error != 0) 2265 goto fail; 2266 } else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) { 2267 if (sc->dc_type == DC_TYPE_98713) 2268 sc->dc_pmode = DC_PMODE_MII; 2269 else 2270 sc->dc_pmode = DC_PMODE_SYM; 2271 } else if (!sc->dc_pmode) 2272 sc->dc_pmode = DC_PMODE_MII; 2273 2274 /* 2275 * Get station address from the EEPROM. 2276 */ 2277 switch(sc->dc_type) { 2278 case DC_TYPE_98713: 2279 case DC_TYPE_98713A: 2280 case DC_TYPE_987x5: 2281 case DC_TYPE_PNICII: 2282 dc_read_eeprom(sc, (caddr_t)&mac_offset, 2283 (DC_EE_NODEADDR_OFFSET / 2), 1, 0); 2284 dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0); 2285 break; 2286 case DC_TYPE_PNIC: 2287 dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1); 2288 break; 2289 case DC_TYPE_DM9102: 2290 dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0); 2291 break; 2292 case DC_TYPE_21143: 2293 case DC_TYPE_ASIX: 2294 dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0); 2295 break; 2296 case DC_TYPE_AL981: 2297 case DC_TYPE_AN983: 2298 reg = CSR_READ_4(sc, DC_AL_PAR0); 2299 mac = (uint8_t *)&eaddr[0]; 2300 mac[0] = (reg >> 0) & 0xff; 2301 mac[1] = (reg >> 8) & 0xff; 2302 mac[2] = (reg >> 16) & 0xff; 2303 mac[3] = (reg >> 24) & 0xff; 2304 reg = CSR_READ_4(sc, DC_AL_PAR1); 2305 mac[4] = (reg >> 0) & 0xff; 2306 mac[5] = (reg >> 8) & 0xff; 2307 break; 2308 case DC_TYPE_CONEXANT: 2309 bcopy(sc->dc_srom + DC_CONEXANT_EE_NODEADDR, &eaddr, 2310 ETHER_ADDR_LEN); 2311 break; 2312 case DC_TYPE_XIRCOM: 2313 /* The MAC comes from the CIS. */ 2314 mac = pci_get_ether(dev); 2315 if (!mac) { 2316 device_printf(dev, "No station address in CIS!\n"); 2317 error = ENXIO; 2318 goto fail; 2319 } 2320 bcopy(mac, eaddr, ETHER_ADDR_LEN); 2321 break; 2322 case DC_TYPE_ULI_M5261: 2323 case DC_TYPE_ULI_M5263: 2324 srom = (uint16_t *)sc->dc_srom; 2325 if (srom == NULL || *srom == 0xFFFF || *srom == 0) { 2326 /* 2327 * No valid SROM present, read station address 2328 * from ID Table. 2329 */ 2330 device_printf(dev, 2331 "Reading station address from ID Table.\n"); 2332 CSR_WRITE_4(sc, DC_BUSCTL, 0x10000); 2333 CSR_WRITE_4(sc, DC_SIARESET, 0x01C0); 2334 CSR_WRITE_4(sc, DC_10BTCTRL, 0x0000); 2335 CSR_WRITE_4(sc, DC_10BTCTRL, 0x0010); 2336 CSR_WRITE_4(sc, DC_10BTCTRL, 0x0000); 2337 CSR_WRITE_4(sc, DC_SIARESET, 0x0000); 2338 CSR_WRITE_4(sc, DC_SIARESET, 0x01B0); 2339 mac = (uint8_t *)eaddr; 2340 for (n = 0; n < ETHER_ADDR_LEN; n++) 2341 mac[n] = (uint8_t)CSR_READ_4(sc, DC_10BTCTRL); 2342 CSR_WRITE_4(sc, DC_SIARESET, 0x0000); 2343 CSR_WRITE_4(sc, DC_BUSCTL, 0x0000); 2344 DELAY(10); 2345 } else 2346 dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 2347 0); 2348 break; 2349 default: 2350 dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0); 2351 break; 2352 } 2353 2354 bcopy(eaddr, sc->dc_eaddr, sizeof(eaddr)); 2355 /* 2356 * If we still have invalid station address, see whether we can 2357 * find station address for chip 0. Some multi-port controllers 2358 * just store station address for chip 0 if they have a shared 2359 * SROM. 2360 */ 2361 if ((sc->dc_eaddr[0] == 0 && (sc->dc_eaddr[1] & ~0xffff) == 0) || 2362 (sc->dc_eaddr[0] == 0xffffffff && 2363 (sc->dc_eaddr[1] & 0xffff) == 0xffff)) { 2364 error = dc_check_multiport(sc); 2365 if (error == 0) { 2366 bcopy(sc->dc_eaddr, eaddr, sizeof(eaddr)); 2367 /* Extract media information. */ 2368 if (DC_IS_INTEL(sc) && sc->dc_srom != NULL) { 2369 while (sc->dc_mi != NULL) { 2370 m = sc->dc_mi->dc_next; 2371 free(sc->dc_mi, M_DEVBUF); 2372 sc->dc_mi = m; 2373 } 2374 error = dc_parse_21143_srom(sc); 2375 if (error != 0) 2376 goto fail; 2377 } 2378 } else if (error == ENOMEM) 2379 goto fail; 2380 else 2381 error = 0; 2382 } 2383 2384 if ((error = dc_dma_alloc(sc)) != 0) 2385 goto fail; 2386 2387 ifp = sc->dc_ifp = if_alloc(IFT_ETHER); 2388 if (ifp == NULL) { 2389 device_printf(dev, "can not if_alloc()\n"); 2390 error = ENOSPC; 2391 goto fail; 2392 } 2393 ifp->if_softc = sc; 2394 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 2395 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 2396 ifp->if_ioctl = dc_ioctl; 2397 ifp->if_start = dc_start; 2398 ifp->if_init = dc_init; 2399 IFQ_SET_MAXLEN(&ifp->if_snd, DC_TX_LIST_CNT - 1); 2400 ifp->if_snd.ifq_drv_maxlen = DC_TX_LIST_CNT - 1; 2401 IFQ_SET_READY(&ifp->if_snd); 2402 2403 /* 2404 * Do MII setup. If this is a 21143, check for a PHY on the 2405 * MII bus after applying any necessary fixups to twiddle the 2406 * GPIO bits. If we don't end up finding a PHY, restore the 2407 * old selection (SIA only or SIA/SYM) and attach the dcphy 2408 * driver instead. 2409 */ 2410 tmp = 0; 2411 if (DC_IS_INTEL(sc)) { 2412 dc_apply_fixup(sc, IFM_AUTO); 2413 tmp = sc->dc_pmode; 2414 sc->dc_pmode = DC_PMODE_MII; 2415 } 2416 2417 /* 2418 * Setup General Purpose port mode and data so the tulip can talk 2419 * to the MII. This needs to be done before mii_attach so that 2420 * we can actually see them. 2421 */ 2422 if (DC_IS_XIRCOM(sc)) { 2423 CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN | 2424 DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT); 2425 DELAY(10); 2426 CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN | 2427 DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT); 2428 DELAY(10); 2429 } 2430 2431 phy = MII_PHY_ANY; 2432 /* 2433 * Note: both the AL981 and AN983 have internal PHYs, however the 2434 * AL981 provides direct access to the PHY registers while the AN983 2435 * uses a serial MII interface. The AN983's MII interface is also 2436 * buggy in that you can read from any MII address (0 to 31), but 2437 * only address 1 behaves normally. To deal with both cases, we 2438 * pretend that the PHY is at MII address 1. 2439 */ 2440 if (DC_IS_ADMTEK(sc)) 2441 phy = DC_ADMTEK_PHYADDR; 2442 2443 /* 2444 * Note: the ukphy probes of the RS7112 report a PHY at MII address 2445 * 0 (possibly HomePNA?) and 1 (ethernet) so we only respond to the 2446 * correct one. 2447 */ 2448 if (DC_IS_CONEXANT(sc)) 2449 phy = DC_CONEXANT_PHYADDR; 2450 2451 error = mii_attach(dev, &sc->dc_miibus, ifp, dc_ifmedia_upd, 2452 dc_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0); 2453 2454 if (error && DC_IS_INTEL(sc)) { 2455 sc->dc_pmode = tmp; 2456 if (sc->dc_pmode != DC_PMODE_SIA) 2457 sc->dc_pmode = DC_PMODE_SYM; 2458 sc->dc_flags |= DC_21143_NWAY; 2459 /* 2460 * For non-MII cards, we need to have the 21143 2461 * drive the LEDs. Except there are some systems 2462 * like the NEC VersaPro NoteBook PC which have no 2463 * LEDs, and twiddling these bits has adverse effects 2464 * on them. (I.e. you suddenly can't get a link.) 2465 */ 2466 if (!(pci_get_subvendor(dev) == 0x1033 && 2467 pci_get_subdevice(dev) == 0x8028)) 2468 sc->dc_flags |= DC_TULIP_LEDS; 2469 error = mii_attach(dev, &sc->dc_miibus, ifp, dc_ifmedia_upd, 2470 dc_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, 2471 MII_OFFSET_ANY, 0); 2472 } 2473 2474 if (error) { 2475 device_printf(dev, "attaching PHYs failed\n"); 2476 goto fail; 2477 } 2478 2479 if (DC_IS_ADMTEK(sc)) { 2480 /* 2481 * Set automatic TX underrun recovery for the ADMtek chips 2482 */ 2483 DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR); 2484 } 2485 2486 /* 2487 * Tell the upper layer(s) we support long frames. 2488 */ 2489 ifp->if_hdrlen = sizeof(struct ether_vlan_header); 2490 ifp->if_capabilities |= IFCAP_VLAN_MTU; 2491 ifp->if_capenable = ifp->if_capabilities; 2492 #ifdef DEVICE_POLLING 2493 ifp->if_capabilities |= IFCAP_POLLING; 2494 #endif 2495 2496 callout_init_mtx(&sc->dc_stat_ch, &sc->dc_mtx, 0); 2497 callout_init_mtx(&sc->dc_wdog_ch, &sc->dc_mtx, 0); 2498 2499 /* 2500 * Call MI attach routine. 2501 */ 2502 ether_ifattach(ifp, (caddr_t)eaddr); 2503 2504 /* Hook interrupt last to avoid having to lock softc */ 2505 error = bus_setup_intr(dev, sc->dc_irq, INTR_TYPE_NET | INTR_MPSAFE, 2506 NULL, dc_intr, sc, &sc->dc_intrhand); 2507 2508 if (error) { 2509 device_printf(dev, "couldn't set up irq\n"); 2510 ether_ifdetach(ifp); 2511 goto fail; 2512 } 2513 2514 fail: 2515 if (error) 2516 dc_detach(dev); 2517 return (error); 2518 } 2519 2520 /* 2521 * Shutdown hardware and free up resources. This can be called any 2522 * time after the mutex has been initialized. It is called in both 2523 * the error case in attach and the normal detach case so it needs 2524 * to be careful about only freeing resources that have actually been 2525 * allocated. 2526 */ 2527 static int 2528 dc_detach(device_t dev) 2529 { 2530 struct dc_softc *sc; 2531 struct ifnet *ifp; 2532 struct dc_mediainfo *m; 2533 2534 sc = device_get_softc(dev); 2535 KASSERT(mtx_initialized(&sc->dc_mtx), ("dc mutex not initialized")); 2536 2537 ifp = sc->dc_ifp; 2538 2539 #ifdef DEVICE_POLLING 2540 if (ifp != NULL && ifp->if_capenable & IFCAP_POLLING) 2541 ether_poll_deregister(ifp); 2542 #endif 2543 2544 /* These should only be active if attach succeeded */ 2545 if (device_is_attached(dev)) { 2546 DC_LOCK(sc); 2547 dc_stop(sc); 2548 DC_UNLOCK(sc); 2549 callout_drain(&sc->dc_stat_ch); 2550 callout_drain(&sc->dc_wdog_ch); 2551 ether_ifdetach(ifp); 2552 } 2553 if (sc->dc_miibus) 2554 device_delete_child(dev, sc->dc_miibus); 2555 bus_generic_detach(dev); 2556 2557 if (sc->dc_intrhand) 2558 bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand); 2559 if (sc->dc_irq) 2560 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq); 2561 if (sc->dc_res) 2562 bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res); 2563 2564 if (ifp != NULL) 2565 if_free(ifp); 2566 2567 dc_dma_free(sc); 2568 2569 free(sc->dc_pnic_rx_buf, M_DEVBUF); 2570 2571 while (sc->dc_mi != NULL) { 2572 m = sc->dc_mi->dc_next; 2573 free(sc->dc_mi, M_DEVBUF); 2574 sc->dc_mi = m; 2575 } 2576 free(sc->dc_srom, M_DEVBUF); 2577 2578 mtx_destroy(&sc->dc_mtx); 2579 2580 return (0); 2581 } 2582 2583 /* 2584 * Initialize the transmit descriptors. 2585 */ 2586 static int 2587 dc_list_tx_init(struct dc_softc *sc) 2588 { 2589 struct dc_chain_data *cd; 2590 struct dc_list_data *ld; 2591 int i, nexti; 2592 2593 cd = &sc->dc_cdata; 2594 ld = &sc->dc_ldata; 2595 for (i = 0; i < DC_TX_LIST_CNT; i++) { 2596 if (i == DC_TX_LIST_CNT - 1) 2597 nexti = 0; 2598 else 2599 nexti = i + 1; 2600 ld->dc_tx_list[i].dc_status = 0; 2601 ld->dc_tx_list[i].dc_ctl = 0; 2602 ld->dc_tx_list[i].dc_data = 0; 2603 ld->dc_tx_list[i].dc_next = htole32(DC_TXDESC(sc, nexti)); 2604 cd->dc_tx_chain[i] = NULL; 2605 } 2606 2607 cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0; 2608 cd->dc_tx_pkts = 0; 2609 bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap, 2610 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); 2611 return (0); 2612 } 2613 2614 /* 2615 * Initialize the RX descriptors and allocate mbufs for them. Note that 2616 * we arrange the descriptors in a closed ring, so that the last descriptor 2617 * points back to the first. 2618 */ 2619 static int 2620 dc_list_rx_init(struct dc_softc *sc) 2621 { 2622 struct dc_chain_data *cd; 2623 struct dc_list_data *ld; 2624 int i, nexti; 2625 2626 cd = &sc->dc_cdata; 2627 ld = &sc->dc_ldata; 2628 2629 for (i = 0; i < DC_RX_LIST_CNT; i++) { 2630 if (dc_newbuf(sc, i) != 0) 2631 return (ENOBUFS); 2632 if (i == DC_RX_LIST_CNT - 1) 2633 nexti = 0; 2634 else 2635 nexti = i + 1; 2636 ld->dc_rx_list[i].dc_next = htole32(DC_RXDESC(sc, nexti)); 2637 } 2638 2639 cd->dc_rx_prod = 0; 2640 bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_rx_lmap, 2641 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); 2642 return (0); 2643 } 2644 2645 /* 2646 * Initialize an RX descriptor and attach an MBUF cluster. 2647 */ 2648 static int 2649 dc_newbuf(struct dc_softc *sc, int i) 2650 { 2651 struct mbuf *m; 2652 bus_dmamap_t map; 2653 bus_dma_segment_t segs[1]; 2654 int error, nseg; 2655 2656 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 2657 if (m == NULL) 2658 return (ENOBUFS); 2659 m->m_len = m->m_pkthdr.len = MCLBYTES; 2660 m_adj(m, sizeof(u_int64_t)); 2661 2662 /* 2663 * If this is a PNIC chip, zero the buffer. This is part 2664 * of the workaround for the receive bug in the 82c168 and 2665 * 82c169 chips. 2666 */ 2667 if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) 2668 bzero(mtod(m, char *), m->m_len); 2669 2670 error = bus_dmamap_load_mbuf_sg(sc->dc_rx_mtag, sc->dc_sparemap, 2671 m, segs, &nseg, 0); 2672 if (error) { 2673 m_freem(m); 2674 return (error); 2675 } 2676 KASSERT(nseg == 1, ("%s: wrong number of segments (%d)", __func__, 2677 nseg)); 2678 if (sc->dc_cdata.dc_rx_chain[i] != NULL) 2679 bus_dmamap_unload(sc->dc_rx_mtag, sc->dc_cdata.dc_rx_map[i]); 2680 2681 map = sc->dc_cdata.dc_rx_map[i]; 2682 sc->dc_cdata.dc_rx_map[i] = sc->dc_sparemap; 2683 sc->dc_sparemap = map; 2684 sc->dc_cdata.dc_rx_chain[i] = m; 2685 bus_dmamap_sync(sc->dc_rx_mtag, sc->dc_cdata.dc_rx_map[i], 2686 BUS_DMASYNC_PREREAD); 2687 2688 sc->dc_ldata.dc_rx_list[i].dc_ctl = htole32(DC_RXCTL_RLINK | DC_RXLEN); 2689 sc->dc_ldata.dc_rx_list[i].dc_data = 2690 htole32(DC_ADDR_LO(segs[0].ds_addr)); 2691 sc->dc_ldata.dc_rx_list[i].dc_status = htole32(DC_RXSTAT_OWN); 2692 bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_rx_lmap, 2693 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); 2694 return (0); 2695 } 2696 2697 /* 2698 * Grrrrr. 2699 * The PNIC chip has a terrible bug in it that manifests itself during 2700 * periods of heavy activity. The exact mode of failure if difficult to 2701 * pinpoint: sometimes it only happens in promiscuous mode, sometimes it 2702 * will happen on slow machines. The bug is that sometimes instead of 2703 * uploading one complete frame during reception, it uploads what looks 2704 * like the entire contents of its FIFO memory. The frame we want is at 2705 * the end of the whole mess, but we never know exactly how much data has 2706 * been uploaded, so salvaging the frame is hard. 2707 * 2708 * There is only one way to do it reliably, and it's disgusting. 2709 * Here's what we know: 2710 * 2711 * - We know there will always be somewhere between one and three extra 2712 * descriptors uploaded. 2713 * 2714 * - We know the desired received frame will always be at the end of the 2715 * total data upload. 2716 * 2717 * - We know the size of the desired received frame because it will be 2718 * provided in the length field of the status word in the last descriptor. 2719 * 2720 * Here's what we do: 2721 * 2722 * - When we allocate buffers for the receive ring, we bzero() them. 2723 * This means that we know that the buffer contents should be all 2724 * zeros, except for data uploaded by the chip. 2725 * 2726 * - We also force the PNIC chip to upload frames that include the 2727 * ethernet CRC at the end. 2728 * 2729 * - We gather all of the bogus frame data into a single buffer. 2730 * 2731 * - We then position a pointer at the end of this buffer and scan 2732 * backwards until we encounter the first non-zero byte of data. 2733 * This is the end of the received frame. We know we will encounter 2734 * some data at the end of the frame because the CRC will always be 2735 * there, so even if the sender transmits a packet of all zeros, 2736 * we won't be fooled. 2737 * 2738 * - We know the size of the actual received frame, so we subtract 2739 * that value from the current pointer location. This brings us 2740 * to the start of the actual received packet. 2741 * 2742 * - We copy this into an mbuf and pass it on, along with the actual 2743 * frame length. 2744 * 2745 * The performance hit is tremendous, but it beats dropping frames all 2746 * the time. 2747 */ 2748 2749 #define DC_WHOLEFRAME (DC_RXSTAT_FIRSTFRAG | DC_RXSTAT_LASTFRAG) 2750 static void 2751 dc_pnic_rx_bug_war(struct dc_softc *sc, int idx) 2752 { 2753 struct dc_desc *cur_rx; 2754 struct dc_desc *c = NULL; 2755 struct mbuf *m = NULL; 2756 unsigned char *ptr; 2757 int i, total_len; 2758 uint32_t rxstat = 0; 2759 2760 i = sc->dc_pnic_rx_bug_save; 2761 cur_rx = &sc->dc_ldata.dc_rx_list[idx]; 2762 ptr = sc->dc_pnic_rx_buf; 2763 bzero(ptr, DC_RXLEN * 5); 2764 2765 /* Copy all the bytes from the bogus buffers. */ 2766 while (1) { 2767 c = &sc->dc_ldata.dc_rx_list[i]; 2768 rxstat = le32toh(c->dc_status); 2769 m = sc->dc_cdata.dc_rx_chain[i]; 2770 bcopy(mtod(m, char *), ptr, DC_RXLEN); 2771 ptr += DC_RXLEN; 2772 /* If this is the last buffer, break out. */ 2773 if (i == idx || rxstat & DC_RXSTAT_LASTFRAG) 2774 break; 2775 dc_discard_rxbuf(sc, i); 2776 DC_INC(i, DC_RX_LIST_CNT); 2777 } 2778 2779 /* Find the length of the actual receive frame. */ 2780 total_len = DC_RXBYTES(rxstat); 2781 2782 /* Scan backwards until we hit a non-zero byte. */ 2783 while (*ptr == 0x00) 2784 ptr--; 2785 2786 /* Round off. */ 2787 if ((uintptr_t)(ptr) & 0x3) 2788 ptr -= 1; 2789 2790 /* Now find the start of the frame. */ 2791 ptr -= total_len; 2792 if (ptr < sc->dc_pnic_rx_buf) 2793 ptr = sc->dc_pnic_rx_buf; 2794 2795 /* 2796 * Now copy the salvaged frame to the last mbuf and fake up 2797 * the status word to make it look like a successful 2798 * frame reception. 2799 */ 2800 bcopy(ptr, mtod(m, char *), total_len); 2801 cur_rx->dc_status = htole32(rxstat | DC_RXSTAT_FIRSTFRAG); 2802 } 2803 2804 /* 2805 * This routine searches the RX ring for dirty descriptors in the 2806 * event that the rxeof routine falls out of sync with the chip's 2807 * current descriptor pointer. This may happen sometimes as a result 2808 * of a "no RX buffer available" condition that happens when the chip 2809 * consumes all of the RX buffers before the driver has a chance to 2810 * process the RX ring. This routine may need to be called more than 2811 * once to bring the driver back in sync with the chip, however we 2812 * should still be getting RX DONE interrupts to drive the search 2813 * for new packets in the RX ring, so we should catch up eventually. 2814 */ 2815 static int 2816 dc_rx_resync(struct dc_softc *sc) 2817 { 2818 struct dc_desc *cur_rx; 2819 int i, pos; 2820 2821 pos = sc->dc_cdata.dc_rx_prod; 2822 2823 for (i = 0; i < DC_RX_LIST_CNT; i++) { 2824 cur_rx = &sc->dc_ldata.dc_rx_list[pos]; 2825 if (!(le32toh(cur_rx->dc_status) & DC_RXSTAT_OWN)) 2826 break; 2827 DC_INC(pos, DC_RX_LIST_CNT); 2828 } 2829 2830 /* If the ring really is empty, then just return. */ 2831 if (i == DC_RX_LIST_CNT) 2832 return (0); 2833 2834 /* We've fallen behing the chip: catch it. */ 2835 sc->dc_cdata.dc_rx_prod = pos; 2836 2837 return (EAGAIN); 2838 } 2839 2840 static void 2841 dc_discard_rxbuf(struct dc_softc *sc, int i) 2842 { 2843 struct mbuf *m; 2844 2845 if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) { 2846 m = sc->dc_cdata.dc_rx_chain[i]; 2847 bzero(mtod(m, char *), m->m_len); 2848 } 2849 2850 sc->dc_ldata.dc_rx_list[i].dc_ctl = htole32(DC_RXCTL_RLINK | DC_RXLEN); 2851 sc->dc_ldata.dc_rx_list[i].dc_status = htole32(DC_RXSTAT_OWN); 2852 bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_rx_lmap, BUS_DMASYNC_PREREAD | 2853 BUS_DMASYNC_PREWRITE); 2854 } 2855 2856 /* 2857 * A frame has been uploaded: pass the resulting mbuf chain up to 2858 * the higher level protocols. 2859 */ 2860 static int 2861 dc_rxeof(struct dc_softc *sc) 2862 { 2863 struct mbuf *m; 2864 struct ifnet *ifp; 2865 struct dc_desc *cur_rx; 2866 int i, total_len, rx_npkts; 2867 uint32_t rxstat; 2868 2869 DC_LOCK_ASSERT(sc); 2870 2871 ifp = sc->dc_ifp; 2872 rx_npkts = 0; 2873 2874 bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_rx_lmap, BUS_DMASYNC_POSTREAD | 2875 BUS_DMASYNC_POSTWRITE); 2876 for (i = sc->dc_cdata.dc_rx_prod; 2877 (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0; 2878 DC_INC(i, DC_RX_LIST_CNT)) { 2879 #ifdef DEVICE_POLLING 2880 if (ifp->if_capenable & IFCAP_POLLING) { 2881 if (sc->rxcycles <= 0) 2882 break; 2883 sc->rxcycles--; 2884 } 2885 #endif 2886 cur_rx = &sc->dc_ldata.dc_rx_list[i]; 2887 rxstat = le32toh(cur_rx->dc_status); 2888 if ((rxstat & DC_RXSTAT_OWN) != 0) 2889 break; 2890 m = sc->dc_cdata.dc_rx_chain[i]; 2891 bus_dmamap_sync(sc->dc_rx_mtag, sc->dc_cdata.dc_rx_map[i], 2892 BUS_DMASYNC_POSTREAD); 2893 total_len = DC_RXBYTES(rxstat); 2894 rx_npkts++; 2895 2896 if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) { 2897 if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) { 2898 if (rxstat & DC_RXSTAT_FIRSTFRAG) 2899 sc->dc_pnic_rx_bug_save = i; 2900 if ((rxstat & DC_RXSTAT_LASTFRAG) == 0) 2901 continue; 2902 dc_pnic_rx_bug_war(sc, i); 2903 rxstat = le32toh(cur_rx->dc_status); 2904 total_len = DC_RXBYTES(rxstat); 2905 } 2906 } 2907 2908 /* 2909 * If an error occurs, update stats, clear the 2910 * status word and leave the mbuf cluster in place: 2911 * it should simply get re-used next time this descriptor 2912 * comes up in the ring. However, don't report long 2913 * frames as errors since they could be vlans. 2914 */ 2915 if ((rxstat & DC_RXSTAT_RXERR)) { 2916 if (!(rxstat & DC_RXSTAT_GIANT) || 2917 (rxstat & (DC_RXSTAT_CRCERR | DC_RXSTAT_DRIBBLE | 2918 DC_RXSTAT_MIIERE | DC_RXSTAT_COLLSEEN | 2919 DC_RXSTAT_RUNT | DC_RXSTAT_DE))) { 2920 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 2921 if (rxstat & DC_RXSTAT_COLLSEEN) 2922 if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1); 2923 dc_discard_rxbuf(sc, i); 2924 if (rxstat & DC_RXSTAT_CRCERR) 2925 continue; 2926 else { 2927 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2928 dc_init_locked(sc); 2929 return (rx_npkts); 2930 } 2931 } 2932 } 2933 2934 /* No errors; receive the packet. */ 2935 total_len -= ETHER_CRC_LEN; 2936 #ifdef __NO_STRICT_ALIGNMENT 2937 /* 2938 * On architectures without alignment problems we try to 2939 * allocate a new buffer for the receive ring, and pass up 2940 * the one where the packet is already, saving the expensive 2941 * copy done in m_devget(). 2942 * If we are on an architecture with alignment problems, or 2943 * if the allocation fails, then use m_devget and leave the 2944 * existing buffer in the receive ring. 2945 */ 2946 if (dc_newbuf(sc, i) != 0) { 2947 dc_discard_rxbuf(sc, i); 2948 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); 2949 continue; 2950 } 2951 m->m_pkthdr.rcvif = ifp; 2952 m->m_pkthdr.len = m->m_len = total_len; 2953 #else 2954 { 2955 struct mbuf *m0; 2956 2957 m0 = m_devget(mtod(m, char *), total_len, 2958 ETHER_ALIGN, ifp, NULL); 2959 dc_discard_rxbuf(sc, i); 2960 if (m0 == NULL) { 2961 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); 2962 continue; 2963 } 2964 m = m0; 2965 } 2966 #endif 2967 2968 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 2969 DC_UNLOCK(sc); 2970 (*ifp->if_input)(ifp, m); 2971 DC_LOCK(sc); 2972 } 2973 2974 sc->dc_cdata.dc_rx_prod = i; 2975 return (rx_npkts); 2976 } 2977 2978 /* 2979 * A frame was downloaded to the chip. It's safe for us to clean up 2980 * the list buffers. 2981 */ 2982 static void 2983 dc_txeof(struct dc_softc *sc) 2984 { 2985 struct dc_desc *cur_tx; 2986 struct ifnet *ifp; 2987 int idx, setup; 2988 uint32_t ctl, txstat; 2989 2990 if (sc->dc_cdata.dc_tx_cnt == 0) 2991 return; 2992 2993 ifp = sc->dc_ifp; 2994 2995 /* 2996 * Go through our tx list and free mbufs for those 2997 * frames that have been transmitted. 2998 */ 2999 bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap, BUS_DMASYNC_POSTREAD | 3000 BUS_DMASYNC_POSTWRITE); 3001 setup = 0; 3002 for (idx = sc->dc_cdata.dc_tx_cons; idx != sc->dc_cdata.dc_tx_prod; 3003 DC_INC(idx, DC_TX_LIST_CNT), sc->dc_cdata.dc_tx_cnt--) { 3004 cur_tx = &sc->dc_ldata.dc_tx_list[idx]; 3005 txstat = le32toh(cur_tx->dc_status); 3006 ctl = le32toh(cur_tx->dc_ctl); 3007 3008 if (txstat & DC_TXSTAT_OWN) 3009 break; 3010 3011 if (sc->dc_cdata.dc_tx_chain[idx] == NULL) 3012 continue; 3013 3014 if (ctl & DC_TXCTL_SETUP) { 3015 cur_tx->dc_ctl = htole32(ctl & ~DC_TXCTL_SETUP); 3016 setup++; 3017 bus_dmamap_sync(sc->dc_stag, sc->dc_smap, 3018 BUS_DMASYNC_POSTWRITE); 3019 /* 3020 * Yes, the PNIC is so brain damaged 3021 * that it will sometimes generate a TX 3022 * underrun error while DMAing the RX 3023 * filter setup frame. If we detect this, 3024 * we have to send the setup frame again, 3025 * or else the filter won't be programmed 3026 * correctly. 3027 */ 3028 if (DC_IS_PNIC(sc)) { 3029 if (txstat & DC_TXSTAT_ERRSUM) 3030 dc_setfilt(sc); 3031 } 3032 sc->dc_cdata.dc_tx_chain[idx] = NULL; 3033 continue; 3034 } 3035 3036 if (DC_IS_XIRCOM(sc) || DC_IS_CONEXANT(sc)) { 3037 /* 3038 * XXX: Why does my Xircom taunt me so? 3039 * For some reason it likes setting the CARRLOST flag 3040 * even when the carrier is there. wtf?!? 3041 * Who knows, but Conexant chips have the 3042 * same problem. Maybe they took lessons 3043 * from Xircom. 3044 */ 3045 if (/*sc->dc_type == DC_TYPE_21143 &&*/ 3046 sc->dc_pmode == DC_PMODE_MII && 3047 ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM | 3048 DC_TXSTAT_NOCARRIER))) 3049 txstat &= ~DC_TXSTAT_ERRSUM; 3050 } else { 3051 if (/*sc->dc_type == DC_TYPE_21143 &&*/ 3052 sc->dc_pmode == DC_PMODE_MII && 3053 ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM | 3054 DC_TXSTAT_NOCARRIER | DC_TXSTAT_CARRLOST))) 3055 txstat &= ~DC_TXSTAT_ERRSUM; 3056 } 3057 3058 if (txstat & DC_TXSTAT_ERRSUM) { 3059 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 3060 if (txstat & DC_TXSTAT_EXCESSCOLL) 3061 if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1); 3062 if (txstat & DC_TXSTAT_LATECOLL) 3063 if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1); 3064 if (!(txstat & DC_TXSTAT_UNDERRUN)) { 3065 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 3066 dc_init_locked(sc); 3067 return; 3068 } 3069 } else 3070 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 3071 if_inc_counter(ifp, IFCOUNTER_COLLISIONS, (txstat & DC_TXSTAT_COLLCNT) >> 3); 3072 3073 bus_dmamap_sync(sc->dc_tx_mtag, sc->dc_cdata.dc_tx_map[idx], 3074 BUS_DMASYNC_POSTWRITE); 3075 bus_dmamap_unload(sc->dc_tx_mtag, sc->dc_cdata.dc_tx_map[idx]); 3076 m_freem(sc->dc_cdata.dc_tx_chain[idx]); 3077 sc->dc_cdata.dc_tx_chain[idx] = NULL; 3078 } 3079 sc->dc_cdata.dc_tx_cons = idx; 3080 3081 if (sc->dc_cdata.dc_tx_cnt <= DC_TX_LIST_CNT - DC_TX_LIST_RSVD) { 3082 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3083 if (sc->dc_cdata.dc_tx_cnt == 0) 3084 sc->dc_wdog_timer = 0; 3085 } 3086 if (setup > 0) 3087 bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap, 3088 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3089 } 3090 3091 static void 3092 dc_tick(void *xsc) 3093 { 3094 struct dc_softc *sc; 3095 struct mii_data *mii; 3096 struct ifnet *ifp; 3097 uint32_t r; 3098 3099 sc = xsc; 3100 DC_LOCK_ASSERT(sc); 3101 ifp = sc->dc_ifp; 3102 mii = device_get_softc(sc->dc_miibus); 3103 3104 /* 3105 * Reclaim transmitted frames for controllers that do 3106 * not generate TX completion interrupt for every frame. 3107 */ 3108 if (sc->dc_flags & DC_TX_USE_TX_INTR) 3109 dc_txeof(sc); 3110 3111 if (sc->dc_flags & DC_REDUCED_MII_POLL) { 3112 if (sc->dc_flags & DC_21143_NWAY) { 3113 r = CSR_READ_4(sc, DC_10BTSTAT); 3114 if (IFM_SUBTYPE(mii->mii_media_active) == 3115 IFM_100_TX && (r & DC_TSTAT_LS100)) { 3116 sc->dc_link = 0; 3117 mii_mediachg(mii); 3118 } 3119 if (IFM_SUBTYPE(mii->mii_media_active) == 3120 IFM_10_T && (r & DC_TSTAT_LS10)) { 3121 sc->dc_link = 0; 3122 mii_mediachg(mii); 3123 } 3124 if (sc->dc_link == 0) 3125 mii_tick(mii); 3126 } else { 3127 /* 3128 * For NICs which never report DC_RXSTATE_WAIT, we 3129 * have to bite the bullet... 3130 */ 3131 if ((DC_HAS_BROKEN_RXSTATE(sc) || (CSR_READ_4(sc, 3132 DC_ISR) & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT) && 3133 sc->dc_cdata.dc_tx_cnt == 0) 3134 mii_tick(mii); 3135 } 3136 } else 3137 mii_tick(mii); 3138 3139 /* 3140 * When the init routine completes, we expect to be able to send 3141 * packets right away, and in fact the network code will send a 3142 * gratuitous ARP the moment the init routine marks the interface 3143 * as running. However, even though the MAC may have been initialized, 3144 * there may be a delay of a few seconds before the PHY completes 3145 * autonegotiation and the link is brought up. Any transmissions 3146 * made during that delay will be lost. Dealing with this is tricky: 3147 * we can't just pause in the init routine while waiting for the 3148 * PHY to come ready since that would bring the whole system to 3149 * a screeching halt for several seconds. 3150 * 3151 * What we do here is prevent the TX start routine from sending 3152 * any packets until a link has been established. After the 3153 * interface has been initialized, the tick routine will poll 3154 * the state of the PHY until the IFM_ACTIVE flag is set. Until 3155 * that time, packets will stay in the send queue, and once the 3156 * link comes up, they will be flushed out to the wire. 3157 */ 3158 if (sc->dc_link != 0 && !IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 3159 dc_start_locked(ifp); 3160 3161 if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link) 3162 callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc); 3163 else 3164 callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc); 3165 } 3166 3167 /* 3168 * A transmit underrun has occurred. Back off the transmit threshold, 3169 * or switch to store and forward mode if we have to. 3170 */ 3171 static void 3172 dc_tx_underrun(struct dc_softc *sc) 3173 { 3174 uint32_t netcfg, isr; 3175 int i, reinit; 3176 3177 reinit = 0; 3178 netcfg = CSR_READ_4(sc, DC_NETCFG); 3179 device_printf(sc->dc_dev, "TX underrun -- "); 3180 if ((sc->dc_flags & DC_TX_STORENFWD) == 0) { 3181 if (sc->dc_txthresh + DC_TXTHRESH_INC > DC_TXTHRESH_MAX) { 3182 printf("using store and forward mode\n"); 3183 netcfg |= DC_NETCFG_STORENFWD; 3184 } else { 3185 printf("increasing TX threshold\n"); 3186 sc->dc_txthresh += DC_TXTHRESH_INC; 3187 netcfg &= ~DC_NETCFG_TX_THRESH; 3188 netcfg |= sc->dc_txthresh; 3189 } 3190 3191 if (DC_IS_INTEL(sc)) { 3192 /* 3193 * The real 21143 requires that the transmitter be idle 3194 * in order to change the transmit threshold or store 3195 * and forward state. 3196 */ 3197 CSR_WRITE_4(sc, DC_NETCFG, netcfg & ~DC_NETCFG_TX_ON); 3198 3199 for (i = 0; i < DC_TIMEOUT; i++) { 3200 isr = CSR_READ_4(sc, DC_ISR); 3201 if (isr & DC_ISR_TX_IDLE) 3202 break; 3203 DELAY(10); 3204 } 3205 if (i == DC_TIMEOUT) { 3206 device_printf(sc->dc_dev, 3207 "%s: failed to force tx to idle state\n", 3208 __func__); 3209 reinit++; 3210 } 3211 } 3212 } else { 3213 printf("resetting\n"); 3214 reinit++; 3215 } 3216 3217 if (reinit == 0) { 3218 CSR_WRITE_4(sc, DC_NETCFG, netcfg); 3219 if (DC_IS_INTEL(sc)) 3220 CSR_WRITE_4(sc, DC_NETCFG, netcfg | DC_NETCFG_TX_ON); 3221 } else { 3222 sc->dc_ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 3223 dc_init_locked(sc); 3224 } 3225 } 3226 3227 #ifdef DEVICE_POLLING 3228 static poll_handler_t dc_poll; 3229 3230 static int 3231 dc_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) 3232 { 3233 struct dc_softc *sc = ifp->if_softc; 3234 int rx_npkts = 0; 3235 3236 DC_LOCK(sc); 3237 3238 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 3239 DC_UNLOCK(sc); 3240 return (rx_npkts); 3241 } 3242 3243 sc->rxcycles = count; 3244 rx_npkts = dc_rxeof(sc); 3245 dc_txeof(sc); 3246 if (!IFQ_IS_EMPTY(&ifp->if_snd) && 3247 !(ifp->if_drv_flags & IFF_DRV_OACTIVE)) 3248 dc_start_locked(ifp); 3249 3250 if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */ 3251 uint32_t status; 3252 3253 status = CSR_READ_4(sc, DC_ISR); 3254 status &= (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF | 3255 DC_ISR_TX_NOBUF | DC_ISR_TX_IDLE | DC_ISR_TX_UNDERRUN | 3256 DC_ISR_BUS_ERR); 3257 if (!status) { 3258 DC_UNLOCK(sc); 3259 return (rx_npkts); 3260 } 3261 /* ack what we have */ 3262 CSR_WRITE_4(sc, DC_ISR, status); 3263 3264 if (status & (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF)) { 3265 uint32_t r = CSR_READ_4(sc, DC_FRAMESDISCARDED); 3266 if_inc_counter(ifp, IFCOUNTER_IERRORS, (r & 0xffff) + ((r >> 17) & 0x7ff)); 3267 3268 if (dc_rx_resync(sc)) 3269 dc_rxeof(sc); 3270 } 3271 /* restart transmit unit if necessary */ 3272 if (status & DC_ISR_TX_IDLE && sc->dc_cdata.dc_tx_cnt) 3273 CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF); 3274 3275 if (status & DC_ISR_TX_UNDERRUN) 3276 dc_tx_underrun(sc); 3277 3278 if (status & DC_ISR_BUS_ERR) { 3279 if_printf(ifp, "%s: bus error\n", __func__); 3280 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 3281 dc_init_locked(sc); 3282 } 3283 } 3284 DC_UNLOCK(sc); 3285 return (rx_npkts); 3286 } 3287 #endif /* DEVICE_POLLING */ 3288 3289 static void 3290 dc_intr(void *arg) 3291 { 3292 struct dc_softc *sc; 3293 struct ifnet *ifp; 3294 uint32_t r, status; 3295 int n; 3296 3297 sc = arg; 3298 3299 if (sc->suspended) 3300 return; 3301 3302 DC_LOCK(sc); 3303 status = CSR_READ_4(sc, DC_ISR); 3304 if (status == 0xFFFFFFFF || (status & DC_INTRS) == 0) { 3305 DC_UNLOCK(sc); 3306 return; 3307 } 3308 ifp = sc->dc_ifp; 3309 #ifdef DEVICE_POLLING 3310 if (ifp->if_capenable & IFCAP_POLLING) { 3311 DC_UNLOCK(sc); 3312 return; 3313 } 3314 #endif 3315 /* Disable interrupts. */ 3316 CSR_WRITE_4(sc, DC_IMR, 0x00000000); 3317 3318 for (n = 16; n > 0; n--) { 3319 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 3320 break; 3321 /* Ack interrupts. */ 3322 CSR_WRITE_4(sc, DC_ISR, status); 3323 3324 if (status & DC_ISR_RX_OK) { 3325 if (dc_rxeof(sc) == 0) { 3326 while (dc_rx_resync(sc)) 3327 dc_rxeof(sc); 3328 } 3329 } 3330 3331 if (status & (DC_ISR_TX_OK | DC_ISR_TX_NOBUF)) 3332 dc_txeof(sc); 3333 3334 if (status & DC_ISR_TX_IDLE) { 3335 dc_txeof(sc); 3336 if (sc->dc_cdata.dc_tx_cnt) { 3337 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON); 3338 CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF); 3339 } 3340 } 3341 3342 if (status & DC_ISR_TX_UNDERRUN) 3343 dc_tx_underrun(sc); 3344 3345 if ((status & DC_ISR_RX_WATDOGTIMEO) 3346 || (status & DC_ISR_RX_NOBUF)) { 3347 r = CSR_READ_4(sc, DC_FRAMESDISCARDED); 3348 if_inc_counter(ifp, IFCOUNTER_IERRORS, (r & 0xffff) + ((r >> 17) & 0x7ff)); 3349 if (dc_rxeof(sc) == 0) { 3350 while (dc_rx_resync(sc)) 3351 dc_rxeof(sc); 3352 } 3353 } 3354 3355 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 3356 dc_start_locked(ifp); 3357 3358 if (status & DC_ISR_BUS_ERR) { 3359 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 3360 dc_init_locked(sc); 3361 DC_UNLOCK(sc); 3362 return; 3363 } 3364 status = CSR_READ_4(sc, DC_ISR); 3365 if (status == 0xFFFFFFFF || (status & DC_INTRS) == 0) 3366 break; 3367 } 3368 3369 /* Re-enable interrupts. */ 3370 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 3371 CSR_WRITE_4(sc, DC_IMR, DC_INTRS); 3372 3373 DC_UNLOCK(sc); 3374 } 3375 3376 /* 3377 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data 3378 * pointers to the fragment pointers. 3379 */ 3380 static int 3381 dc_encap(struct dc_softc *sc, struct mbuf **m_head) 3382 { 3383 bus_dma_segment_t segs[DC_MAXFRAGS]; 3384 bus_dmamap_t map; 3385 struct dc_desc *f; 3386 struct mbuf *m; 3387 int cur, defragged, error, first, frag, i, idx, nseg; 3388 3389 m = NULL; 3390 defragged = 0; 3391 if (sc->dc_flags & DC_TX_COALESCE && 3392 ((*m_head)->m_next != NULL || sc->dc_flags & DC_TX_ALIGN)) { 3393 m = m_defrag(*m_head, M_NOWAIT); 3394 defragged = 1; 3395 } else { 3396 /* 3397 * Count the number of frags in this chain to see if we 3398 * need to m_collapse. Since the descriptor list is shared 3399 * by all packets, we'll m_collapse long chains so that they 3400 * do not use up the entire list, even if they would fit. 3401 */ 3402 i = 0; 3403 for (m = *m_head; m != NULL; m = m->m_next) 3404 i++; 3405 if (i > DC_TX_LIST_CNT / 4 || 3406 DC_TX_LIST_CNT - i + sc->dc_cdata.dc_tx_cnt <= 3407 DC_TX_LIST_RSVD) { 3408 m = m_collapse(*m_head, M_NOWAIT, DC_MAXFRAGS); 3409 defragged = 1; 3410 } 3411 } 3412 if (defragged != 0) { 3413 if (m == NULL) { 3414 m_freem(*m_head); 3415 *m_head = NULL; 3416 return (ENOBUFS); 3417 } 3418 *m_head = m; 3419 } 3420 3421 idx = sc->dc_cdata.dc_tx_prod; 3422 error = bus_dmamap_load_mbuf_sg(sc->dc_tx_mtag, 3423 sc->dc_cdata.dc_tx_map[idx], *m_head, segs, &nseg, 0); 3424 if (error == EFBIG) { 3425 if (defragged != 0 || (m = m_collapse(*m_head, M_NOWAIT, 3426 DC_MAXFRAGS)) == NULL) { 3427 m_freem(*m_head); 3428 *m_head = NULL; 3429 return (defragged != 0 ? error : ENOBUFS); 3430 } 3431 *m_head = m; 3432 error = bus_dmamap_load_mbuf_sg(sc->dc_tx_mtag, 3433 sc->dc_cdata.dc_tx_map[idx], *m_head, segs, &nseg, 0); 3434 if (error != 0) { 3435 m_freem(*m_head); 3436 *m_head = NULL; 3437 return (error); 3438 } 3439 } else if (error != 0) 3440 return (error); 3441 KASSERT(nseg <= DC_MAXFRAGS, 3442 ("%s: wrong number of segments (%d)", __func__, nseg)); 3443 if (nseg == 0) { 3444 m_freem(*m_head); 3445 *m_head = NULL; 3446 return (EIO); 3447 } 3448 3449 /* Check descriptor overruns. */ 3450 if (sc->dc_cdata.dc_tx_cnt + nseg > DC_TX_LIST_CNT - DC_TX_LIST_RSVD) { 3451 bus_dmamap_unload(sc->dc_tx_mtag, sc->dc_cdata.dc_tx_map[idx]); 3452 return (ENOBUFS); 3453 } 3454 bus_dmamap_sync(sc->dc_tx_mtag, sc->dc_cdata.dc_tx_map[idx], 3455 BUS_DMASYNC_PREWRITE); 3456 3457 first = cur = frag = sc->dc_cdata.dc_tx_prod; 3458 for (i = 0; i < nseg; i++) { 3459 if ((sc->dc_flags & DC_TX_ADMTEK_WAR) && 3460 (frag == (DC_TX_LIST_CNT - 1)) && 3461 (first != sc->dc_cdata.dc_tx_first)) { 3462 bus_dmamap_unload(sc->dc_tx_mtag, 3463 sc->dc_cdata.dc_tx_map[first]); 3464 m_freem(*m_head); 3465 *m_head = NULL; 3466 return (ENOBUFS); 3467 } 3468 3469 f = &sc->dc_ldata.dc_tx_list[frag]; 3470 f->dc_ctl = htole32(DC_TXCTL_TLINK | segs[i].ds_len); 3471 if (i == 0) { 3472 f->dc_status = 0; 3473 f->dc_ctl |= htole32(DC_TXCTL_FIRSTFRAG); 3474 } else 3475 f->dc_status = htole32(DC_TXSTAT_OWN); 3476 f->dc_data = htole32(DC_ADDR_LO(segs[i].ds_addr)); 3477 cur = frag; 3478 DC_INC(frag, DC_TX_LIST_CNT); 3479 } 3480 3481 sc->dc_cdata.dc_tx_prod = frag; 3482 sc->dc_cdata.dc_tx_cnt += nseg; 3483 sc->dc_cdata.dc_tx_chain[cur] = *m_head; 3484 sc->dc_ldata.dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_LASTFRAG); 3485 if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG) 3486 sc->dc_ldata.dc_tx_list[first].dc_ctl |= 3487 htole32(DC_TXCTL_FINT); 3488 if (sc->dc_flags & DC_TX_INTR_ALWAYS) 3489 sc->dc_ldata.dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT); 3490 if (sc->dc_flags & DC_TX_USE_TX_INTR && 3491 ++sc->dc_cdata.dc_tx_pkts >= 8) { 3492 sc->dc_cdata.dc_tx_pkts = 0; 3493 sc->dc_ldata.dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT); 3494 } 3495 sc->dc_ldata.dc_tx_list[first].dc_status = htole32(DC_TXSTAT_OWN); 3496 3497 bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap, 3498 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3499 3500 /* 3501 * Swap the last and the first dmamaps to ensure the map for 3502 * this transmission is placed at the last descriptor. 3503 */ 3504 map = sc->dc_cdata.dc_tx_map[cur]; 3505 sc->dc_cdata.dc_tx_map[cur] = sc->dc_cdata.dc_tx_map[first]; 3506 sc->dc_cdata.dc_tx_map[first] = map; 3507 3508 return (0); 3509 } 3510 3511 static void 3512 dc_start(struct ifnet *ifp) 3513 { 3514 struct dc_softc *sc; 3515 3516 sc = ifp->if_softc; 3517 DC_LOCK(sc); 3518 dc_start_locked(ifp); 3519 DC_UNLOCK(sc); 3520 } 3521 3522 /* 3523 * Main transmit routine 3524 * To avoid having to do mbuf copies, we put pointers to the mbuf data 3525 * regions directly in the transmit lists. We also save a copy of the 3526 * pointers since the transmit list fragment pointers are physical 3527 * addresses. 3528 */ 3529 static void 3530 dc_start_locked(struct ifnet *ifp) 3531 { 3532 struct dc_softc *sc; 3533 struct mbuf *m_head; 3534 int queued; 3535 3536 sc = ifp->if_softc; 3537 3538 DC_LOCK_ASSERT(sc); 3539 3540 if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 3541 IFF_DRV_RUNNING || sc->dc_link == 0) 3542 return; 3543 3544 sc->dc_cdata.dc_tx_first = sc->dc_cdata.dc_tx_prod; 3545 3546 for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) { 3547 /* 3548 * If there's no way we can send any packets, return now. 3549 */ 3550 if (sc->dc_cdata.dc_tx_cnt > DC_TX_LIST_CNT - DC_TX_LIST_RSVD) { 3551 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 3552 break; 3553 } 3554 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); 3555 if (m_head == NULL) 3556 break; 3557 3558 if (dc_encap(sc, &m_head)) { 3559 if (m_head == NULL) 3560 break; 3561 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 3562 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 3563 break; 3564 } 3565 3566 queued++; 3567 /* 3568 * If there's a BPF listener, bounce a copy of this frame 3569 * to him. 3570 */ 3571 BPF_MTAP(ifp, m_head); 3572 } 3573 3574 if (queued > 0) { 3575 /* Transmit */ 3576 if (!(sc->dc_flags & DC_TX_POLL)) 3577 CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF); 3578 3579 /* 3580 * Set a timeout in case the chip goes out to lunch. 3581 */ 3582 sc->dc_wdog_timer = 5; 3583 } 3584 } 3585 3586 static void 3587 dc_init(void *xsc) 3588 { 3589 struct dc_softc *sc = xsc; 3590 3591 DC_LOCK(sc); 3592 dc_init_locked(sc); 3593 DC_UNLOCK(sc); 3594 } 3595 3596 static void 3597 dc_init_locked(struct dc_softc *sc) 3598 { 3599 struct ifnet *ifp = sc->dc_ifp; 3600 struct mii_data *mii; 3601 struct ifmedia *ifm; 3602 3603 DC_LOCK_ASSERT(sc); 3604 3605 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 3606 return; 3607 3608 mii = device_get_softc(sc->dc_miibus); 3609 3610 /* 3611 * Cancel pending I/O and free all RX/TX buffers. 3612 */ 3613 dc_stop(sc); 3614 dc_reset(sc); 3615 if (DC_IS_INTEL(sc)) { 3616 ifm = &mii->mii_media; 3617 dc_apply_fixup(sc, ifm->ifm_media); 3618 } 3619 3620 /* 3621 * Set cache alignment and burst length. 3622 */ 3623 if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc) || DC_IS_ULI(sc)) 3624 CSR_WRITE_4(sc, DC_BUSCTL, 0); 3625 else 3626 CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME | DC_BUSCTL_MRLE); 3627 /* 3628 * Evenly share the bus between receive and transmit process. 3629 */ 3630 if (DC_IS_INTEL(sc)) 3631 DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION); 3632 if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) { 3633 DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA); 3634 } else { 3635 DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG); 3636 } 3637 if (sc->dc_flags & DC_TX_POLL) 3638 DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1); 3639 switch(sc->dc_cachesize) { 3640 case 32: 3641 DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG); 3642 break; 3643 case 16: 3644 DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG); 3645 break; 3646 case 8: 3647 DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG); 3648 break; 3649 case 0: 3650 default: 3651 DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE); 3652 break; 3653 } 3654 3655 if (sc->dc_flags & DC_TX_STORENFWD) 3656 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD); 3657 else { 3658 if (sc->dc_txthresh > DC_TXTHRESH_MAX) { 3659 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD); 3660 } else { 3661 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD); 3662 DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh); 3663 } 3664 } 3665 3666 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC); 3667 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF); 3668 3669 if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) { 3670 /* 3671 * The app notes for the 98713 and 98715A say that 3672 * in order to have the chips operate properly, a magic 3673 * number must be written to CSR16. Macronix does not 3674 * document the meaning of these bits so there's no way 3675 * to know exactly what they do. The 98713 has a magic 3676 * number all its own; the rest all use a different one. 3677 */ 3678 DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000); 3679 if (sc->dc_type == DC_TYPE_98713) 3680 DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713); 3681 else 3682 DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715); 3683 } 3684 3685 if (DC_IS_XIRCOM(sc)) { 3686 /* 3687 * setup General Purpose Port mode and data so the tulip 3688 * can talk to the MII. 3689 */ 3690 CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN | 3691 DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT); 3692 DELAY(10); 3693 CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN | 3694 DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT); 3695 DELAY(10); 3696 } 3697 3698 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH); 3699 DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN); 3700 3701 /* Init circular RX list. */ 3702 if (dc_list_rx_init(sc) == ENOBUFS) { 3703 device_printf(sc->dc_dev, 3704 "initialization failed: no memory for rx buffers\n"); 3705 dc_stop(sc); 3706 return; 3707 } 3708 3709 /* 3710 * Init TX descriptors. 3711 */ 3712 dc_list_tx_init(sc); 3713 3714 /* 3715 * Load the address of the RX list. 3716 */ 3717 CSR_WRITE_4(sc, DC_RXADDR, DC_RXDESC(sc, 0)); 3718 CSR_WRITE_4(sc, DC_TXADDR, DC_TXDESC(sc, 0)); 3719 3720 /* 3721 * Enable interrupts. 3722 */ 3723 #ifdef DEVICE_POLLING 3724 /* 3725 * ... but only if we are not polling, and make sure they are off in 3726 * the case of polling. Some cards (e.g. fxp) turn interrupts on 3727 * after a reset. 3728 */ 3729 if (ifp->if_capenable & IFCAP_POLLING) 3730 CSR_WRITE_4(sc, DC_IMR, 0x00000000); 3731 else 3732 #endif 3733 CSR_WRITE_4(sc, DC_IMR, DC_INTRS); 3734 CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF); 3735 3736 /* Initialize TX jabber and RX watchdog timer. */ 3737 if (DC_IS_ULI(sc)) 3738 CSR_WRITE_4(sc, DC_WATCHDOG, DC_WDOG_JABBERCLK | 3739 DC_WDOG_HOSTUNJAB); 3740 3741 /* Enable transmitter. */ 3742 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON); 3743 3744 /* 3745 * If this is an Intel 21143 and we're not using the 3746 * MII port, program the LED control pins so we get 3747 * link and activity indications. 3748 */ 3749 if (sc->dc_flags & DC_TULIP_LEDS) { 3750 CSR_WRITE_4(sc, DC_WATCHDOG, 3751 DC_WDOG_CTLWREN | DC_WDOG_LINK | DC_WDOG_ACTIVITY); 3752 CSR_WRITE_4(sc, DC_WATCHDOG, 0); 3753 } 3754 3755 /* 3756 * Load the RX/multicast filter. We do this sort of late 3757 * because the filter programming scheme on the 21143 and 3758 * some clones requires DMAing a setup frame via the TX 3759 * engine, and we need the transmitter enabled for that. 3760 */ 3761 dc_setfilt(sc); 3762 3763 /* Enable receiver. */ 3764 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON); 3765 CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF); 3766 3767 ifp->if_drv_flags |= IFF_DRV_RUNNING; 3768 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3769 3770 dc_ifmedia_upd_locked(sc); 3771 3772 /* Clear missed frames and overflow counter. */ 3773 CSR_READ_4(sc, DC_FRAMESDISCARDED); 3774 3775 /* Don't start the ticker if this is a homePNA link. */ 3776 if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_HPNA_1) 3777 sc->dc_link = 1; 3778 else { 3779 if (sc->dc_flags & DC_21143_NWAY) 3780 callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc); 3781 else 3782 callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc); 3783 } 3784 3785 sc->dc_wdog_timer = 0; 3786 callout_reset(&sc->dc_wdog_ch, hz, dc_watchdog, sc); 3787 } 3788 3789 /* 3790 * Set media options. 3791 */ 3792 static int 3793 dc_ifmedia_upd(struct ifnet *ifp) 3794 { 3795 struct dc_softc *sc; 3796 int error; 3797 3798 sc = ifp->if_softc; 3799 DC_LOCK(sc); 3800 error = dc_ifmedia_upd_locked(sc); 3801 DC_UNLOCK(sc); 3802 return (error); 3803 } 3804 3805 static int 3806 dc_ifmedia_upd_locked(struct dc_softc *sc) 3807 { 3808 struct mii_data *mii; 3809 struct ifmedia *ifm; 3810 int error; 3811 3812 DC_LOCK_ASSERT(sc); 3813 3814 sc->dc_link = 0; 3815 mii = device_get_softc(sc->dc_miibus); 3816 error = mii_mediachg(mii); 3817 if (error == 0) { 3818 ifm = &mii->mii_media; 3819 if (DC_IS_INTEL(sc)) 3820 dc_setcfg(sc, ifm->ifm_media); 3821 else if (DC_IS_DAVICOM(sc) && 3822 IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) 3823 dc_setcfg(sc, ifm->ifm_media); 3824 } 3825 3826 return (error); 3827 } 3828 3829 /* 3830 * Report current media status. 3831 */ 3832 static void 3833 dc_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 3834 { 3835 struct dc_softc *sc; 3836 struct mii_data *mii; 3837 struct ifmedia *ifm; 3838 3839 sc = ifp->if_softc; 3840 mii = device_get_softc(sc->dc_miibus); 3841 DC_LOCK(sc); 3842 mii_pollstat(mii); 3843 ifm = &mii->mii_media; 3844 if (DC_IS_DAVICOM(sc)) { 3845 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) { 3846 ifmr->ifm_active = ifm->ifm_media; 3847 ifmr->ifm_status = 0; 3848 DC_UNLOCK(sc); 3849 return; 3850 } 3851 } 3852 ifmr->ifm_active = mii->mii_media_active; 3853 ifmr->ifm_status = mii->mii_media_status; 3854 DC_UNLOCK(sc); 3855 } 3856 3857 static int 3858 dc_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 3859 { 3860 struct dc_softc *sc = ifp->if_softc; 3861 struct ifreq *ifr = (struct ifreq *)data; 3862 struct mii_data *mii; 3863 int error = 0; 3864 3865 switch (command) { 3866 case SIOCSIFFLAGS: 3867 DC_LOCK(sc); 3868 if (ifp->if_flags & IFF_UP) { 3869 int need_setfilt = (ifp->if_flags ^ sc->dc_if_flags) & 3870 (IFF_PROMISC | IFF_ALLMULTI); 3871 3872 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 3873 if (need_setfilt) 3874 dc_setfilt(sc); 3875 } else { 3876 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 3877 dc_init_locked(sc); 3878 } 3879 } else { 3880 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 3881 dc_stop(sc); 3882 } 3883 sc->dc_if_flags = ifp->if_flags; 3884 DC_UNLOCK(sc); 3885 break; 3886 case SIOCADDMULTI: 3887 case SIOCDELMULTI: 3888 DC_LOCK(sc); 3889 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 3890 dc_setfilt(sc); 3891 DC_UNLOCK(sc); 3892 break; 3893 case SIOCGIFMEDIA: 3894 case SIOCSIFMEDIA: 3895 mii = device_get_softc(sc->dc_miibus); 3896 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); 3897 break; 3898 case SIOCSIFCAP: 3899 #ifdef DEVICE_POLLING 3900 if (ifr->ifr_reqcap & IFCAP_POLLING && 3901 !(ifp->if_capenable & IFCAP_POLLING)) { 3902 error = ether_poll_register(dc_poll, ifp); 3903 if (error) 3904 return(error); 3905 DC_LOCK(sc); 3906 /* Disable interrupts */ 3907 CSR_WRITE_4(sc, DC_IMR, 0x00000000); 3908 ifp->if_capenable |= IFCAP_POLLING; 3909 DC_UNLOCK(sc); 3910 return (error); 3911 } 3912 if (!(ifr->ifr_reqcap & IFCAP_POLLING) && 3913 ifp->if_capenable & IFCAP_POLLING) { 3914 error = ether_poll_deregister(ifp); 3915 /* Enable interrupts. */ 3916 DC_LOCK(sc); 3917 CSR_WRITE_4(sc, DC_IMR, DC_INTRS); 3918 ifp->if_capenable &= ~IFCAP_POLLING; 3919 DC_UNLOCK(sc); 3920 return (error); 3921 } 3922 #endif /* DEVICE_POLLING */ 3923 break; 3924 default: 3925 error = ether_ioctl(ifp, command, data); 3926 break; 3927 } 3928 3929 return (error); 3930 } 3931 3932 static void 3933 dc_watchdog(void *xsc) 3934 { 3935 struct dc_softc *sc = xsc; 3936 struct ifnet *ifp; 3937 3938 DC_LOCK_ASSERT(sc); 3939 3940 if (sc->dc_wdog_timer == 0 || --sc->dc_wdog_timer != 0) { 3941 callout_reset(&sc->dc_wdog_ch, hz, dc_watchdog, sc); 3942 return; 3943 } 3944 3945 ifp = sc->dc_ifp; 3946 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 3947 device_printf(sc->dc_dev, "watchdog timeout\n"); 3948 3949 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 3950 dc_init_locked(sc); 3951 3952 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 3953 dc_start_locked(ifp); 3954 } 3955 3956 /* 3957 * Stop the adapter and free any mbufs allocated to the 3958 * RX and TX lists. 3959 */ 3960 static void 3961 dc_stop(struct dc_softc *sc) 3962 { 3963 struct ifnet *ifp; 3964 struct dc_list_data *ld; 3965 struct dc_chain_data *cd; 3966 int i; 3967 uint32_t ctl, netcfg; 3968 3969 DC_LOCK_ASSERT(sc); 3970 3971 ifp = sc->dc_ifp; 3972 ld = &sc->dc_ldata; 3973 cd = &sc->dc_cdata; 3974 3975 callout_stop(&sc->dc_stat_ch); 3976 callout_stop(&sc->dc_wdog_ch); 3977 sc->dc_wdog_timer = 0; 3978 sc->dc_link = 0; 3979 3980 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 3981 3982 netcfg = CSR_READ_4(sc, DC_NETCFG); 3983 if (netcfg & (DC_NETCFG_RX_ON | DC_NETCFG_TX_ON)) 3984 CSR_WRITE_4(sc, DC_NETCFG, 3985 netcfg & ~(DC_NETCFG_RX_ON | DC_NETCFG_TX_ON)); 3986 CSR_WRITE_4(sc, DC_IMR, 0x00000000); 3987 /* Wait the completion of TX/RX SM. */ 3988 if (netcfg & (DC_NETCFG_RX_ON | DC_NETCFG_TX_ON)) 3989 dc_netcfg_wait(sc); 3990 3991 CSR_WRITE_4(sc, DC_TXADDR, 0x00000000); 3992 CSR_WRITE_4(sc, DC_RXADDR, 0x00000000); 3993 3994 /* 3995 * Free data in the RX lists. 3996 */ 3997 for (i = 0; i < DC_RX_LIST_CNT; i++) { 3998 if (cd->dc_rx_chain[i] != NULL) { 3999 bus_dmamap_sync(sc->dc_rx_mtag, 4000 cd->dc_rx_map[i], BUS_DMASYNC_POSTREAD); 4001 bus_dmamap_unload(sc->dc_rx_mtag, 4002 cd->dc_rx_map[i]); 4003 m_freem(cd->dc_rx_chain[i]); 4004 cd->dc_rx_chain[i] = NULL; 4005 } 4006 } 4007 bzero(ld->dc_rx_list, DC_RX_LIST_SZ); 4008 bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_rx_lmap, 4009 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 4010 4011 /* 4012 * Free the TX list buffers. 4013 */ 4014 for (i = 0; i < DC_TX_LIST_CNT; i++) { 4015 if (cd->dc_tx_chain[i] != NULL) { 4016 ctl = le32toh(ld->dc_tx_list[i].dc_ctl); 4017 if (ctl & DC_TXCTL_SETUP) { 4018 bus_dmamap_sync(sc->dc_stag, sc->dc_smap, 4019 BUS_DMASYNC_POSTWRITE); 4020 } else { 4021 bus_dmamap_sync(sc->dc_tx_mtag, 4022 cd->dc_tx_map[i], BUS_DMASYNC_POSTWRITE); 4023 bus_dmamap_unload(sc->dc_tx_mtag, 4024 cd->dc_tx_map[i]); 4025 m_freem(cd->dc_tx_chain[i]); 4026 } 4027 cd->dc_tx_chain[i] = NULL; 4028 } 4029 } 4030 bzero(ld->dc_tx_list, DC_TX_LIST_SZ); 4031 bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap, 4032 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 4033 } 4034 4035 /* 4036 * Device suspend routine. Stop the interface and save some PCI 4037 * settings in case the BIOS doesn't restore them properly on 4038 * resume. 4039 */ 4040 static int 4041 dc_suspend(device_t dev) 4042 { 4043 struct dc_softc *sc; 4044 4045 sc = device_get_softc(dev); 4046 DC_LOCK(sc); 4047 dc_stop(sc); 4048 sc->suspended = 1; 4049 DC_UNLOCK(sc); 4050 4051 return (0); 4052 } 4053 4054 /* 4055 * Device resume routine. Restore some PCI settings in case the BIOS 4056 * doesn't, re-enable busmastering, and restart the interface if 4057 * appropriate. 4058 */ 4059 static int 4060 dc_resume(device_t dev) 4061 { 4062 struct dc_softc *sc; 4063 struct ifnet *ifp; 4064 4065 sc = device_get_softc(dev); 4066 ifp = sc->dc_ifp; 4067 4068 /* reinitialize interface if necessary */ 4069 DC_LOCK(sc); 4070 if (ifp->if_flags & IFF_UP) 4071 dc_init_locked(sc); 4072 4073 sc->suspended = 0; 4074 DC_UNLOCK(sc); 4075 4076 return (0); 4077 } 4078 4079 /* 4080 * Stop all chip I/O so that the kernel's probe routines don't 4081 * get confused by errant DMAs when rebooting. 4082 */ 4083 static int 4084 dc_shutdown(device_t dev) 4085 { 4086 struct dc_softc *sc; 4087 4088 sc = device_get_softc(dev); 4089 4090 DC_LOCK(sc); 4091 dc_stop(sc); 4092 DC_UNLOCK(sc); 4093 4094 return (0); 4095 } 4096 4097 static int 4098 dc_check_multiport(struct dc_softc *sc) 4099 { 4100 struct dc_softc *dsc; 4101 devclass_t dc; 4102 device_t child; 4103 uint8_t *eaddr; 4104 int unit; 4105 4106 dc = devclass_find("dc"); 4107 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) { 4108 child = devclass_get_device(dc, unit); 4109 if (child == NULL) 4110 continue; 4111 if (child == sc->dc_dev) 4112 continue; 4113 if (device_get_parent(child) != device_get_parent(sc->dc_dev)) 4114 continue; 4115 if (unit > device_get_unit(sc->dc_dev)) 4116 continue; 4117 if (device_is_attached(child) == 0) 4118 continue; 4119 dsc = device_get_softc(child); 4120 device_printf(sc->dc_dev, 4121 "Using station address of %s as base\n", 4122 device_get_nameunit(child)); 4123 bcopy(dsc->dc_eaddr, sc->dc_eaddr, ETHER_ADDR_LEN); 4124 eaddr = (uint8_t *)sc->dc_eaddr; 4125 eaddr[5]++; 4126 /* Prepare SROM to parse again. */ 4127 if (DC_IS_INTEL(sc) && dsc->dc_srom != NULL && 4128 sc->dc_romwidth != 0) { 4129 free(sc->dc_srom, M_DEVBUF); 4130 sc->dc_romwidth = dsc->dc_romwidth; 4131 sc->dc_srom = malloc(DC_ROM_SIZE(sc->dc_romwidth), 4132 M_DEVBUF, M_NOWAIT); 4133 if (sc->dc_srom == NULL) { 4134 device_printf(sc->dc_dev, 4135 "Could not allocate SROM buffer\n"); 4136 return (ENOMEM); 4137 } 4138 bcopy(dsc->dc_srom, sc->dc_srom, 4139 DC_ROM_SIZE(sc->dc_romwidth)); 4140 } 4141 return (0); 4142 } 4143 return (ENOENT); 4144 } 4145