xref: /freebsd/sys/dev/dc/if_dc.c (revision 0b37c1590418417c894529d371800dfac71ef887)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1997, 1998, 1999
5  *	Bill Paul <wpaul@ee.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 /*
39  * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
40  * series chips and several workalikes including the following:
41  *
42  * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com)
43  * Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
44  * Lite-On 82c168/82c169 PNIC (www.litecom.com)
45  * ASIX Electronics AX88140A (www.asix.com.tw)
46  * ASIX Electronics AX88141 (www.asix.com.tw)
47  * ADMtek AL981 (www.admtek.com.tw)
48  * ADMtek AN983 (www.admtek.com.tw)
49  * ADMtek CardBus AN985 (www.admtek.com.tw)
50  * Netgear FA511 (www.netgear.com) Appears to be rebadged ADMTek CardBus AN985
51  * Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
52  * Accton EN1217 (www.accton.com)
53  * Xircom X3201 (www.xircom.com)
54  * Abocom FE2500
55  * Conexant LANfinity (www.conexant.com)
56  * 3Com OfficeConnect 10/100B 3CSOHO100B (www.3com.com)
57  *
58  * Datasheets for the 21143 are available at developer.intel.com.
59  * Datasheets for the clone parts can be found at their respective sites.
60  * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
61  * The PNIC II is essentially a Macronix 98715A chip; the only difference
62  * worth noting is that its multicast hash table is only 128 bits wide
63  * instead of 512.
64  *
65  * Written by Bill Paul <wpaul@ee.columbia.edu>
66  * Electrical Engineering Department
67  * Columbia University, New York City
68  */
69 /*
70  * The Intel 21143 is the successor to the DEC 21140. It is basically
71  * the same as the 21140 but with a few new features. The 21143 supports
72  * three kinds of media attachments:
73  *
74  * o MII port, for 10Mbps and 100Mbps support and NWAY
75  *   autonegotiation provided by an external PHY.
76  * o SYM port, for symbol mode 100Mbps support.
77  * o 10baseT port.
78  * o AUI/BNC port.
79  *
80  * The 100Mbps SYM port and 10baseT port can be used together in
81  * combination with the internal NWAY support to create a 10/100
82  * autosensing configuration.
83  *
84  * Note that not all tulip workalikes are handled in this driver: we only
85  * deal with those which are relatively well behaved. The Winbond is
86  * handled separately due to its different register offsets and the
87  * special handling needed for its various bugs. The PNIC is handled
88  * here, but I'm not thrilled about it.
89  *
90  * All of the workalike chips use some form of MII transceiver support
91  * with the exception of the Macronix chips, which also have a SYM port.
92  * The ASIX AX88140A is also documented to have a SYM port, but all
93  * the cards I've seen use an MII transceiver, probably because the
94  * AX88140A doesn't support internal NWAY.
95  */
96 
97 #ifdef HAVE_KERNEL_OPTION_HEADERS
98 #include "opt_device_polling.h"
99 #endif
100 
101 #include <sys/param.h>
102 #include <sys/endian.h>
103 #include <sys/systm.h>
104 #include <sys/sockio.h>
105 #include <sys/mbuf.h>
106 #include <sys/malloc.h>
107 #include <sys/kernel.h>
108 #include <sys/module.h>
109 #include <sys/socket.h>
110 
111 #include <net/if.h>
112 #include <net/if_var.h>
113 #include <net/if_arp.h>
114 #include <net/ethernet.h>
115 #include <net/if_dl.h>
116 #include <net/if_media.h>
117 #include <net/if_types.h>
118 #include <net/if_vlan_var.h>
119 
120 #include <net/bpf.h>
121 
122 #include <machine/bus.h>
123 #include <machine/resource.h>
124 #include <sys/bus.h>
125 #include <sys/rman.h>
126 
127 #include <dev/mii/mii.h>
128 #include <dev/mii/mii_bitbang.h>
129 #include <dev/mii/miivar.h>
130 
131 #include <dev/pci/pcireg.h>
132 #include <dev/pci/pcivar.h>
133 
134 #define	DC_USEIOSPACE
135 
136 #include <dev/dc/if_dcreg.h>
137 
138 #ifdef __sparc64__
139 #include <dev/ofw/openfirm.h>
140 #include <machine/ofw_machdep.h>
141 #endif
142 
143 MODULE_DEPEND(dc, pci, 1, 1, 1);
144 MODULE_DEPEND(dc, ether, 1, 1, 1);
145 MODULE_DEPEND(dc, miibus, 1, 1, 1);
146 
147 /*
148  * "device miibus" is required in kernel config.  See GENERIC if you get
149  * errors here.
150  */
151 #include "miibus_if.h"
152 
153 /*
154  * Various supported device vendors/types and their names.
155  */
156 static const struct dc_type dc_devs[] = {
157 	{ DC_DEVID(DC_VENDORID_DEC, DC_DEVICEID_21143), 0,
158 		"Intel 21143 10/100BaseTX" },
159 	{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009), 0,
160 		"Davicom DM9009 10/100BaseTX" },
161 	{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100), 0,
162 		"Davicom DM9100 10/100BaseTX" },
163 	{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102), DC_REVISION_DM9102A,
164 		"Davicom DM9102A 10/100BaseTX" },
165 	{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102), 0,
166 		"Davicom DM9102 10/100BaseTX" },
167 	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AL981), 0,
168 		"ADMtek AL981 10/100BaseTX" },
169 	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN983), 0,
170 		"ADMtek AN983 10/100BaseTX" },
171 	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN985), 0,
172 		"ADMtek AN985 CardBus 10/100BaseTX or clone" },
173 	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511), 0,
174 		"ADMtek ADM9511 10/100BaseTX" },
175 	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513), 0,
176 		"ADMtek ADM9513 10/100BaseTX" },
177 	{ DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A), DC_REVISION_88141,
178 		"ASIX AX88141 10/100BaseTX" },
179 	{ DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A), 0,
180 		"ASIX AX88140A 10/100BaseTX" },
181 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713), DC_REVISION_98713A,
182 		"Macronix 98713A 10/100BaseTX" },
183 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713), 0,
184 		"Macronix 98713 10/100BaseTX" },
185 	{ DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP), DC_REVISION_98713A,
186 		"Compex RL100-TX 10/100BaseTX" },
187 	{ DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP), 0,
188 		"Compex RL100-TX 10/100BaseTX" },
189 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), DC_REVISION_98725,
190 		"Macronix 98725 10/100BaseTX" },
191 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), DC_REVISION_98715AEC_C,
192 		"Macronix 98715AEC-C 10/100BaseTX" },
193 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), 0,
194 		"Macronix 98715/98715A 10/100BaseTX" },
195 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98727), 0,
196 		"Macronix 98727/98732 10/100BaseTX" },
197 	{ DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C115), 0,
198 		"LC82C115 PNIC II 10/100BaseTX" },
199 	{ DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168), DC_REVISION_82C169,
200 		"82c169 PNIC 10/100BaseTX" },
201 	{ DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168), 0,
202 		"82c168 PNIC 10/100BaseTX" },
203 	{ DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN1217), 0,
204 		"Accton EN1217 10/100BaseTX" },
205 	{ DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN2242), 0,
206 		"Accton EN2242 MiniPCI 10/100BaseTX" },
207 	{ DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201), 0,
208 		"Xircom X3201 10/100BaseTX" },
209 	{ DC_DEVID(DC_VENDORID_DLINK, DC_DEVICEID_DRP32TXD), 0,
210 		"Neteasy DRP-32TXD Cardbus 10/100" },
211 	{ DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500), 0,
212 		"Abocom FE2500 10/100BaseTX" },
213 	{ DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500MX), 0,
214 		"Abocom FE2500MX 10/100BaseTX" },
215 	{ DC_DEVID(DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112), 0,
216 		"Conexant LANfinity MiniPCI 10/100BaseTX" },
217 	{ DC_DEVID(DC_VENDORID_HAWKING, DC_DEVICEID_HAWKING_PN672TX), 0,
218 		"Hawking CB102 CardBus 10/100" },
219 	{ DC_DEVID(DC_VENDORID_PLANEX, DC_DEVICEID_FNW3602T), 0,
220 		"PlaneX FNW-3602-T CardBus 10/100" },
221 	{ DC_DEVID(DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB), 0,
222 		"3Com OfficeConnect 10/100B" },
223 	{ DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN120), 0,
224 		"Microsoft MN-120 CardBus 10/100" },
225 	{ DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130), 0,
226 		"Microsoft MN-130 10/100" },
227 	{ DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB08), 0,
228 		"Linksys PCMPC200 CardBus 10/100" },
229 	{ DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB09), 0,
230 		"Linksys PCMPC200 CardBus 10/100" },
231 	{ DC_DEVID(DC_VENDORID_ULI, DC_DEVICEID_M5261), 0,
232 		"ULi M5261 FastEthernet" },
233 	{ DC_DEVID(DC_VENDORID_ULI, DC_DEVICEID_M5263), 0,
234 		"ULi M5263 FastEthernet" },
235 	{ 0, 0, NULL }
236 };
237 
238 static int dc_probe(device_t);
239 static int dc_attach(device_t);
240 static int dc_detach(device_t);
241 static int dc_suspend(device_t);
242 static int dc_resume(device_t);
243 static const struct dc_type *dc_devtype(device_t);
244 static void dc_discard_rxbuf(struct dc_softc *, int);
245 static int dc_newbuf(struct dc_softc *, int);
246 static int dc_encap(struct dc_softc *, struct mbuf **);
247 static void dc_pnic_rx_bug_war(struct dc_softc *, int);
248 static int dc_rx_resync(struct dc_softc *);
249 static int dc_rxeof(struct dc_softc *);
250 static void dc_txeof(struct dc_softc *);
251 static void dc_tick(void *);
252 static void dc_tx_underrun(struct dc_softc *);
253 static void dc_intr(void *);
254 static void dc_start(struct ifnet *);
255 static void dc_start_locked(struct ifnet *);
256 static int dc_ioctl(struct ifnet *, u_long, caddr_t);
257 static void dc_init(void *);
258 static void dc_init_locked(struct dc_softc *);
259 static void dc_stop(struct dc_softc *);
260 static void dc_watchdog(void *);
261 static int dc_shutdown(device_t);
262 static int dc_ifmedia_upd(struct ifnet *);
263 static int dc_ifmedia_upd_locked(struct dc_softc *);
264 static void dc_ifmedia_sts(struct ifnet *, struct ifmediareq *);
265 
266 static int dc_dma_alloc(struct dc_softc *);
267 static void dc_dma_free(struct dc_softc *);
268 static void dc_dma_map_addr(void *, bus_dma_segment_t *, int, int);
269 
270 static void dc_delay(struct dc_softc *);
271 static void dc_eeprom_idle(struct dc_softc *);
272 static void dc_eeprom_putbyte(struct dc_softc *, int);
273 static void dc_eeprom_getword(struct dc_softc *, int, uint16_t *);
274 static void dc_eeprom_getword_pnic(struct dc_softc *, int, uint16_t *);
275 static void dc_eeprom_getword_xircom(struct dc_softc *, int, uint16_t *);
276 static void dc_eeprom_width(struct dc_softc *);
277 static void dc_read_eeprom(struct dc_softc *, caddr_t, int, int, int);
278 
279 static int dc_miibus_readreg(device_t, int, int);
280 static int dc_miibus_writereg(device_t, int, int, int);
281 static void dc_miibus_statchg(device_t);
282 static void dc_miibus_mediainit(device_t);
283 
284 static void dc_setcfg(struct dc_softc *, int);
285 static void dc_netcfg_wait(struct dc_softc *);
286 static uint32_t dc_mchash_le(struct dc_softc *, const uint8_t *);
287 static uint32_t dc_mchash_be(const uint8_t *);
288 static void dc_setfilt_21143(struct dc_softc *);
289 static void dc_setfilt_asix(struct dc_softc *);
290 static void dc_setfilt_admtek(struct dc_softc *);
291 static void dc_setfilt_uli(struct dc_softc *);
292 static void dc_setfilt_xircom(struct dc_softc *);
293 
294 static void dc_setfilt(struct dc_softc *);
295 
296 static void dc_reset(struct dc_softc *);
297 static int dc_list_rx_init(struct dc_softc *);
298 static int dc_list_tx_init(struct dc_softc *);
299 
300 static int dc_read_srom(struct dc_softc *, int);
301 static int dc_parse_21143_srom(struct dc_softc *);
302 static int dc_decode_leaf_sia(struct dc_softc *, struct dc_eblock_sia *);
303 static int dc_decode_leaf_mii(struct dc_softc *, struct dc_eblock_mii *);
304 static int dc_decode_leaf_sym(struct dc_softc *, struct dc_eblock_sym *);
305 static void dc_apply_fixup(struct dc_softc *, int);
306 static int dc_check_multiport(struct dc_softc *);
307 
308 /*
309  * MII bit-bang glue
310  */
311 static uint32_t dc_mii_bitbang_read(device_t);
312 static void dc_mii_bitbang_write(device_t, uint32_t);
313 
314 static const struct mii_bitbang_ops dc_mii_bitbang_ops = {
315 	dc_mii_bitbang_read,
316 	dc_mii_bitbang_write,
317 	{
318 		DC_SIO_MII_DATAOUT,	/* MII_BIT_MDO */
319 		DC_SIO_MII_DATAIN,	/* MII_BIT_MDI */
320 		DC_SIO_MII_CLK,		/* MII_BIT_MDC */
321 		0,			/* MII_BIT_DIR_HOST_PHY */
322 		DC_SIO_MII_DIR,		/* MII_BIT_DIR_PHY_HOST */
323 	}
324 };
325 
326 #ifdef DC_USEIOSPACE
327 #define	DC_RES			SYS_RES_IOPORT
328 #define	DC_RID			DC_PCI_CFBIO
329 #else
330 #define	DC_RES			SYS_RES_MEMORY
331 #define	DC_RID			DC_PCI_CFBMA
332 #endif
333 
334 static device_method_t dc_methods[] = {
335 	/* Device interface */
336 	DEVMETHOD(device_probe,		dc_probe),
337 	DEVMETHOD(device_attach,	dc_attach),
338 	DEVMETHOD(device_detach,	dc_detach),
339 	DEVMETHOD(device_suspend,	dc_suspend),
340 	DEVMETHOD(device_resume,	dc_resume),
341 	DEVMETHOD(device_shutdown,	dc_shutdown),
342 
343 	/* MII interface */
344 	DEVMETHOD(miibus_readreg,	dc_miibus_readreg),
345 	DEVMETHOD(miibus_writereg,	dc_miibus_writereg),
346 	DEVMETHOD(miibus_statchg,	dc_miibus_statchg),
347 	DEVMETHOD(miibus_mediainit,	dc_miibus_mediainit),
348 
349 	DEVMETHOD_END
350 };
351 
352 static driver_t dc_driver = {
353 	"dc",
354 	dc_methods,
355 	sizeof(struct dc_softc)
356 };
357 
358 static devclass_t dc_devclass;
359 
360 DRIVER_MODULE_ORDERED(dc, pci, dc_driver, dc_devclass, NULL, NULL,
361     SI_ORDER_ANY);
362 MODULE_PNP_INFO("W32:vendor/device;U8:revision;D:#", pci, dc, dc_devs,
363     nitems(dc_devs) - 1);
364 DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, NULL, NULL);
365 
366 #define	DC_SETBIT(sc, reg, x)				\
367 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
368 
369 #define	DC_CLRBIT(sc, reg, x)				\
370 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
371 
372 #define	SIO_SET(x)	DC_SETBIT(sc, DC_SIO, (x))
373 #define	SIO_CLR(x)	DC_CLRBIT(sc, DC_SIO, (x))
374 
375 static void
376 dc_delay(struct dc_softc *sc)
377 {
378 	int idx;
379 
380 	for (idx = (300 / 33) + 1; idx > 0; idx--)
381 		CSR_READ_4(sc, DC_BUSCTL);
382 }
383 
384 static void
385 dc_eeprom_width(struct dc_softc *sc)
386 {
387 	int i;
388 
389 	/* Force EEPROM to idle state. */
390 	dc_eeprom_idle(sc);
391 
392 	/* Enter EEPROM access mode. */
393 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
394 	dc_delay(sc);
395 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
396 	dc_delay(sc);
397 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
398 	dc_delay(sc);
399 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
400 	dc_delay(sc);
401 
402 	for (i = 3; i--;) {
403 		if (6 & (1 << i))
404 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
405 		else
406 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
407 		dc_delay(sc);
408 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
409 		dc_delay(sc);
410 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
411 		dc_delay(sc);
412 	}
413 
414 	for (i = 1; i <= 12; i++) {
415 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
416 		dc_delay(sc);
417 		if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) {
418 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
419 			dc_delay(sc);
420 			break;
421 		}
422 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
423 		dc_delay(sc);
424 	}
425 
426 	/* Turn off EEPROM access mode. */
427 	dc_eeprom_idle(sc);
428 
429 	if (i < 4 || i > 12)
430 		sc->dc_romwidth = 6;
431 	else
432 		sc->dc_romwidth = i;
433 
434 	/* Enter EEPROM access mode. */
435 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
436 	dc_delay(sc);
437 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
438 	dc_delay(sc);
439 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
440 	dc_delay(sc);
441 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
442 	dc_delay(sc);
443 
444 	/* Turn off EEPROM access mode. */
445 	dc_eeprom_idle(sc);
446 }
447 
448 static void
449 dc_eeprom_idle(struct dc_softc *sc)
450 {
451 	int i;
452 
453 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
454 	dc_delay(sc);
455 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
456 	dc_delay(sc);
457 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
458 	dc_delay(sc);
459 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
460 	dc_delay(sc);
461 
462 	for (i = 0; i < 25; i++) {
463 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
464 		dc_delay(sc);
465 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
466 		dc_delay(sc);
467 	}
468 
469 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
470 	dc_delay(sc);
471 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
472 	dc_delay(sc);
473 	CSR_WRITE_4(sc, DC_SIO, 0x00000000);
474 }
475 
476 /*
477  * Send a read command and address to the EEPROM, check for ACK.
478  */
479 static void
480 dc_eeprom_putbyte(struct dc_softc *sc, int addr)
481 {
482 	int d, i;
483 
484 	d = DC_EECMD_READ >> 6;
485 	for (i = 3; i--; ) {
486 		if (d & (1 << i))
487 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
488 		else
489 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
490 		dc_delay(sc);
491 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
492 		dc_delay(sc);
493 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
494 		dc_delay(sc);
495 	}
496 
497 	/*
498 	 * Feed in each bit and strobe the clock.
499 	 */
500 	for (i = sc->dc_romwidth; i--;) {
501 		if (addr & (1 << i)) {
502 			SIO_SET(DC_SIO_EE_DATAIN);
503 		} else {
504 			SIO_CLR(DC_SIO_EE_DATAIN);
505 		}
506 		dc_delay(sc);
507 		SIO_SET(DC_SIO_EE_CLK);
508 		dc_delay(sc);
509 		SIO_CLR(DC_SIO_EE_CLK);
510 		dc_delay(sc);
511 	}
512 }
513 
514 /*
515  * Read a word of data stored in the EEPROM at address 'addr.'
516  * The PNIC 82c168/82c169 has its own non-standard way to read
517  * the EEPROM.
518  */
519 static void
520 dc_eeprom_getword_pnic(struct dc_softc *sc, int addr, uint16_t *dest)
521 {
522 	int i;
523 	uint32_t r;
524 
525 	CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ | addr);
526 
527 	for (i = 0; i < DC_TIMEOUT; i++) {
528 		DELAY(1);
529 		r = CSR_READ_4(sc, DC_SIO);
530 		if (!(r & DC_PN_SIOCTL_BUSY)) {
531 			*dest = (uint16_t)(r & 0xFFFF);
532 			return;
533 		}
534 	}
535 }
536 
537 /*
538  * Read a word of data stored in the EEPROM at address 'addr.'
539  * The Xircom X3201 has its own non-standard way to read
540  * the EEPROM, too.
541  */
542 static void
543 dc_eeprom_getword_xircom(struct dc_softc *sc, int addr, uint16_t *dest)
544 {
545 
546 	SIO_SET(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
547 
548 	addr *= 2;
549 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
550 	*dest = (uint16_t)CSR_READ_4(sc, DC_SIO) & 0xff;
551 	addr += 1;
552 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
553 	*dest |= ((uint16_t)CSR_READ_4(sc, DC_SIO) & 0xff) << 8;
554 
555 	SIO_CLR(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
556 }
557 
558 /*
559  * Read a word of data stored in the EEPROM at address 'addr.'
560  */
561 static void
562 dc_eeprom_getword(struct dc_softc *sc, int addr, uint16_t *dest)
563 {
564 	int i;
565 	uint16_t word = 0;
566 
567 	/* Force EEPROM to idle state. */
568 	dc_eeprom_idle(sc);
569 
570 	/* Enter EEPROM access mode. */
571 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
572 	dc_delay(sc);
573 	DC_SETBIT(sc, DC_SIO,  DC_SIO_ROMCTL_READ);
574 	dc_delay(sc);
575 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
576 	dc_delay(sc);
577 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
578 	dc_delay(sc);
579 
580 	/*
581 	 * Send address of word we want to read.
582 	 */
583 	dc_eeprom_putbyte(sc, addr);
584 
585 	/*
586 	 * Start reading bits from EEPROM.
587 	 */
588 	for (i = 0x8000; i; i >>= 1) {
589 		SIO_SET(DC_SIO_EE_CLK);
590 		dc_delay(sc);
591 		if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
592 			word |= i;
593 		dc_delay(sc);
594 		SIO_CLR(DC_SIO_EE_CLK);
595 		dc_delay(sc);
596 	}
597 
598 	/* Turn off EEPROM access mode. */
599 	dc_eeprom_idle(sc);
600 
601 	*dest = word;
602 }
603 
604 /*
605  * Read a sequence of words from the EEPROM.
606  */
607 static void
608 dc_read_eeprom(struct dc_softc *sc, caddr_t dest, int off, int cnt, int be)
609 {
610 	int i;
611 	uint16_t word = 0, *ptr;
612 
613 	for (i = 0; i < cnt; i++) {
614 		if (DC_IS_PNIC(sc))
615 			dc_eeprom_getword_pnic(sc, off + i, &word);
616 		else if (DC_IS_XIRCOM(sc))
617 			dc_eeprom_getword_xircom(sc, off + i, &word);
618 		else
619 			dc_eeprom_getword(sc, off + i, &word);
620 		ptr = (uint16_t *)(dest + (i * 2));
621 		if (be)
622 			*ptr = be16toh(word);
623 		else
624 			*ptr = le16toh(word);
625 	}
626 }
627 
628 /*
629  * Write the MII serial port for the MII bit-bang module.
630  */
631 static void
632 dc_mii_bitbang_write(device_t dev, uint32_t val)
633 {
634 	struct dc_softc *sc;
635 
636 	sc = device_get_softc(dev);
637 
638 	CSR_WRITE_4(sc, DC_SIO, val);
639 	CSR_BARRIER_4(sc, DC_SIO,
640 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
641 }
642 
643 /*
644  * Read the MII serial port for the MII bit-bang module.
645  */
646 static uint32_t
647 dc_mii_bitbang_read(device_t dev)
648 {
649 	struct dc_softc *sc;
650 	uint32_t val;
651 
652 	sc = device_get_softc(dev);
653 
654 	val = CSR_READ_4(sc, DC_SIO);
655 	CSR_BARRIER_4(sc, DC_SIO,
656 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
657 
658 	return (val);
659 }
660 
661 static int
662 dc_miibus_readreg(device_t dev, int phy, int reg)
663 {
664 	struct dc_softc *sc;
665 	int i, rval, phy_reg = 0;
666 
667 	sc = device_get_softc(dev);
668 
669 	if (sc->dc_pmode != DC_PMODE_MII) {
670 		if (phy == (MII_NPHY - 1)) {
671 			switch (reg) {
672 			case MII_BMSR:
673 			/*
674 			 * Fake something to make the probe
675 			 * code think there's a PHY here.
676 			 */
677 				return (BMSR_MEDIAMASK);
678 			case MII_PHYIDR1:
679 				if (DC_IS_PNIC(sc))
680 					return (DC_VENDORID_LO);
681 				return (DC_VENDORID_DEC);
682 			case MII_PHYIDR2:
683 				if (DC_IS_PNIC(sc))
684 					return (DC_DEVICEID_82C168);
685 				return (DC_DEVICEID_21143);
686 			default:
687 				return (0);
688 			}
689 		} else
690 			return (0);
691 	}
692 
693 	if (DC_IS_PNIC(sc)) {
694 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
695 		    (phy << 23) | (reg << 18));
696 		for (i = 0; i < DC_TIMEOUT; i++) {
697 			DELAY(1);
698 			rval = CSR_READ_4(sc, DC_PN_MII);
699 			if (!(rval & DC_PN_MII_BUSY)) {
700 				rval &= 0xFFFF;
701 				return (rval == 0xFFFF ? 0 : rval);
702 			}
703 		}
704 		return (0);
705 	}
706 
707 	if (sc->dc_type == DC_TYPE_ULI_M5263) {
708 		CSR_WRITE_4(sc, DC_ROM,
709 		    ((phy << DC_ULI_PHY_ADDR_SHIFT) & DC_ULI_PHY_ADDR_MASK) |
710 		    ((reg << DC_ULI_PHY_REG_SHIFT) & DC_ULI_PHY_REG_MASK) |
711 		    DC_ULI_PHY_OP_READ);
712 		for (i = 0; i < DC_TIMEOUT; i++) {
713 			DELAY(1);
714 			rval = CSR_READ_4(sc, DC_ROM);
715 			if ((rval & DC_ULI_PHY_OP_DONE) != 0) {
716 				return (rval & DC_ULI_PHY_DATA_MASK);
717 			}
718 		}
719 		if (i == DC_TIMEOUT)
720 			device_printf(dev, "phy read timed out\n");
721 		return (0);
722 	}
723 
724 	if (DC_IS_COMET(sc)) {
725 		switch (reg) {
726 		case MII_BMCR:
727 			phy_reg = DC_AL_BMCR;
728 			break;
729 		case MII_BMSR:
730 			phy_reg = DC_AL_BMSR;
731 			break;
732 		case MII_PHYIDR1:
733 			phy_reg = DC_AL_VENID;
734 			break;
735 		case MII_PHYIDR2:
736 			phy_reg = DC_AL_DEVID;
737 			break;
738 		case MII_ANAR:
739 			phy_reg = DC_AL_ANAR;
740 			break;
741 		case MII_ANLPAR:
742 			phy_reg = DC_AL_LPAR;
743 			break;
744 		case MII_ANER:
745 			phy_reg = DC_AL_ANER;
746 			break;
747 		default:
748 			device_printf(dev, "phy_read: bad phy register %x\n",
749 			    reg);
750 			return (0);
751 		}
752 
753 		rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
754 		if (rval == 0xFFFF)
755 			return (0);
756 		return (rval);
757 	}
758 
759 	if (sc->dc_type == DC_TYPE_98713) {
760 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
761 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
762 	}
763 	rval = mii_bitbang_readreg(dev, &dc_mii_bitbang_ops, phy, reg);
764 	if (sc->dc_type == DC_TYPE_98713)
765 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
766 
767 	return (rval);
768 }
769 
770 static int
771 dc_miibus_writereg(device_t dev, int phy, int reg, int data)
772 {
773 	struct dc_softc *sc;
774 	int i, phy_reg = 0;
775 
776 	sc = device_get_softc(dev);
777 
778 	if (DC_IS_PNIC(sc)) {
779 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
780 		    (phy << 23) | (reg << 10) | data);
781 		for (i = 0; i < DC_TIMEOUT; i++) {
782 			if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
783 				break;
784 		}
785 		return (0);
786 	}
787 
788 	if (sc->dc_type == DC_TYPE_ULI_M5263) {
789 		CSR_WRITE_4(sc, DC_ROM,
790 		    ((phy << DC_ULI_PHY_ADDR_SHIFT) & DC_ULI_PHY_ADDR_MASK) |
791 		    ((reg << DC_ULI_PHY_REG_SHIFT) & DC_ULI_PHY_REG_MASK) |
792 		    ((data << DC_ULI_PHY_DATA_SHIFT) & DC_ULI_PHY_DATA_MASK) |
793 		    DC_ULI_PHY_OP_WRITE);
794 		DELAY(1);
795 		return (0);
796 	}
797 
798 	if (DC_IS_COMET(sc)) {
799 		switch (reg) {
800 		case MII_BMCR:
801 			phy_reg = DC_AL_BMCR;
802 			break;
803 		case MII_BMSR:
804 			phy_reg = DC_AL_BMSR;
805 			break;
806 		case MII_PHYIDR1:
807 			phy_reg = DC_AL_VENID;
808 			break;
809 		case MII_PHYIDR2:
810 			phy_reg = DC_AL_DEVID;
811 			break;
812 		case MII_ANAR:
813 			phy_reg = DC_AL_ANAR;
814 			break;
815 		case MII_ANLPAR:
816 			phy_reg = DC_AL_LPAR;
817 			break;
818 		case MII_ANER:
819 			phy_reg = DC_AL_ANER;
820 			break;
821 		default:
822 			device_printf(dev, "phy_write: bad phy register %x\n",
823 			    reg);
824 			return (0);
825 			break;
826 		}
827 
828 		CSR_WRITE_4(sc, phy_reg, data);
829 		return (0);
830 	}
831 
832 	if (sc->dc_type == DC_TYPE_98713) {
833 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
834 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
835 	}
836 	mii_bitbang_writereg(dev, &dc_mii_bitbang_ops, phy, reg, data);
837 	if (sc->dc_type == DC_TYPE_98713)
838 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
839 
840 	return (0);
841 }
842 
843 static void
844 dc_miibus_statchg(device_t dev)
845 {
846 	struct dc_softc *sc;
847 	struct ifnet *ifp;
848 	struct mii_data *mii;
849 	struct ifmedia *ifm;
850 
851 	sc = device_get_softc(dev);
852 
853 	mii = device_get_softc(sc->dc_miibus);
854 	ifp = sc->dc_ifp;
855 	if (mii == NULL || ifp == NULL ||
856 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
857 		return;
858 
859 	ifm = &mii->mii_media;
860 	if (DC_IS_DAVICOM(sc) && IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
861 		dc_setcfg(sc, ifm->ifm_media);
862 		return;
863 	} else if (!DC_IS_ADMTEK(sc))
864 		dc_setcfg(sc, mii->mii_media_active);
865 
866 	sc->dc_link = 0;
867 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
868 	    (IFM_ACTIVE | IFM_AVALID)) {
869 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
870 		case IFM_10_T:
871 		case IFM_100_TX:
872 			sc->dc_link = 1;
873 			break;
874 		}
875 	}
876 }
877 
878 /*
879  * Special support for DM9102A cards with HomePNA PHYs. Note:
880  * with the Davicom DM9102A/DM9801 eval board that I have, it seems
881  * to be impossible to talk to the management interface of the DM9801
882  * PHY (its MDIO pin is not connected to anything). Consequently,
883  * the driver has to just 'know' about the additional mode and deal
884  * with it itself. *sigh*
885  */
886 static void
887 dc_miibus_mediainit(device_t dev)
888 {
889 	struct dc_softc *sc;
890 	struct mii_data *mii;
891 	struct ifmedia *ifm;
892 	int rev;
893 
894 	rev = pci_get_revid(dev);
895 
896 	sc = device_get_softc(dev);
897 	mii = device_get_softc(sc->dc_miibus);
898 	ifm = &mii->mii_media;
899 
900 	if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A)
901 		ifmedia_add(ifm, IFM_ETHER | IFM_HPNA_1, 0, NULL);
902 }
903 
904 #define	DC_BITS_512	9
905 #define	DC_BITS_128	7
906 #define	DC_BITS_64	6
907 
908 static uint32_t
909 dc_mchash_le(struct dc_softc *sc, const uint8_t *addr)
910 {
911 	uint32_t crc;
912 
913 	/* Compute CRC for the address value. */
914 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
915 
916 	/*
917 	 * The hash table on the PNIC II and the MX98715AEC-C/D/E
918 	 * chips is only 128 bits wide.
919 	 */
920 	if (sc->dc_flags & DC_128BIT_HASH)
921 		return (crc & ((1 << DC_BITS_128) - 1));
922 
923 	/* The hash table on the MX98715BEC is only 64 bits wide. */
924 	if (sc->dc_flags & DC_64BIT_HASH)
925 		return (crc & ((1 << DC_BITS_64) - 1));
926 
927 	/* Xircom's hash filtering table is different (read: weird) */
928 	/* Xircom uses the LEAST significant bits */
929 	if (DC_IS_XIRCOM(sc)) {
930 		if ((crc & 0x180) == 0x180)
931 			return ((crc & 0x0F) + (crc & 0x70) * 3 + (14 << 4));
932 		else
933 			return ((crc & 0x1F) + ((crc >> 1) & 0xF0) * 3 +
934 			    (12 << 4));
935 	}
936 
937 	return (crc & ((1 << DC_BITS_512) - 1));
938 }
939 
940 /*
941  * Calculate CRC of a multicast group address, return the lower 6 bits.
942  */
943 static uint32_t
944 dc_mchash_be(const uint8_t *addr)
945 {
946 	uint32_t crc;
947 
948 	/* Compute CRC for the address value. */
949 	crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
950 
951 	/* Return the filter bit position. */
952 	return ((crc >> 26) & 0x0000003F);
953 }
954 
955 /*
956  * 21143-style RX filter setup routine. Filter programming is done by
957  * downloading a special setup frame into the TX engine. 21143, Macronix,
958  * PNIC, PNIC II and Davicom chips are programmed this way.
959  *
960  * We always program the chip using 'hash perfect' mode, i.e. one perfect
961  * address (our node address) and a 512-bit hash filter for multicast
962  * frames. We also sneak the broadcast address into the hash filter since
963  * we need that too.
964  */
965 static u_int
966 dc_hash_maddr_21143(void *arg, struct sockaddr_dl *sdl, u_int cnt)
967 {
968 	struct dc_softc *sc = arg;
969 	uint32_t h;
970 
971 	h = dc_mchash_le(sc, LLADDR(sdl));
972 	sc->dc_cdata.dc_sbuf[h >> 4] |= htole32(1 << (h & 0xF));
973 
974 	return (1);
975 }
976 
977 static void
978 dc_setfilt_21143(struct dc_softc *sc)
979 {
980 	uint16_t eaddr[(ETHER_ADDR_LEN+1)/2];
981 	struct dc_desc *sframe;
982 	uint32_t h, *sp;
983 	struct ifnet *ifp;
984 	int i;
985 
986 	ifp = sc->dc_ifp;
987 
988 	i = sc->dc_cdata.dc_tx_prod;
989 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
990 	sc->dc_cdata.dc_tx_cnt++;
991 	sframe = &sc->dc_ldata.dc_tx_list[i];
992 	sp = sc->dc_cdata.dc_sbuf;
993 	bzero(sp, DC_SFRAME_LEN);
994 
995 	sframe->dc_data = htole32(DC_ADDR_LO(sc->dc_saddr));
996 	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
997 	    DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
998 
999 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
1000 
1001 	/* If we want promiscuous mode, set the allframes bit. */
1002 	if (ifp->if_flags & IFF_PROMISC)
1003 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1004 	else
1005 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1006 
1007 	if (ifp->if_flags & IFF_ALLMULTI)
1008 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1009 	else
1010 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1011 
1012 	if_foreach_llmaddr(ifp, dc_hash_maddr_21143, sp);
1013 
1014 	if (ifp->if_flags & IFF_BROADCAST) {
1015 		h = dc_mchash_le(sc, ifp->if_broadcastaddr);
1016 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1017 	}
1018 
1019 	/* Set our MAC address. */
1020 	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1021 	sp[39] = DC_SP_MAC(eaddr[0]);
1022 	sp[40] = DC_SP_MAC(eaddr[1]);
1023 	sp[41] = DC_SP_MAC(eaddr[2]);
1024 
1025 	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1026 	bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap, BUS_DMASYNC_PREREAD |
1027 	    BUS_DMASYNC_PREWRITE);
1028 	bus_dmamap_sync(sc->dc_stag, sc->dc_smap, BUS_DMASYNC_PREWRITE);
1029 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1030 
1031 	/*
1032 	 * The PNIC takes an exceedingly long time to process its
1033 	 * setup frame; wait 10ms after posting the setup frame
1034 	 * before proceeding, just so it has time to swallow its
1035 	 * medicine.
1036 	 */
1037 	DELAY(10000);
1038 
1039 	sc->dc_wdog_timer = 5;
1040 }
1041 
1042 static u_int
1043 dc_hash_maddr_admtek_be(void *arg, struct sockaddr_dl *sdl, u_int cnt)
1044 {
1045 	uint32_t *hashes = arg;
1046 	int h = 0;
1047 
1048 	h = dc_mchash_be(LLADDR(sdl));
1049 	if (h < 32)
1050 		hashes[0] |= (1 << h);
1051 	else
1052 		hashes[1] |= (1 << (h - 32));
1053 
1054 	return (1);
1055 }
1056 
1057 struct dc_hash_maddr_admtek_le_ctx {
1058 	struct dc_softc *sc;
1059 	uint32_t hashes[2];
1060 };
1061 
1062 static u_int
1063 dc_hash_maddr_admtek_le(void *arg, struct sockaddr_dl *sdl, u_int cnt)
1064 {
1065 	struct dc_hash_maddr_admtek_le_ctx *ctx = arg;
1066 	int h = 0;
1067 
1068 	h = dc_mchash_le(ctx->sc, LLADDR(sdl));
1069 	if (h < 32)
1070 		ctx->hashes[0] |= (1 << h);
1071 	else
1072 		ctx->hashes[1] |= (1 << (h - 32));
1073 
1074 	return (1);
1075 }
1076 
1077 static void
1078 dc_setfilt_admtek(struct dc_softc *sc)
1079 {
1080 	uint8_t eaddr[ETHER_ADDR_LEN];
1081 	struct ifnet *ifp;
1082 	struct dc_hash_maddr_admtek_le_ctx ctx = { sc, { 0, 0 }};
1083 
1084 	ifp = sc->dc_ifp;
1085 
1086 	/* Init our MAC address. */
1087 	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1088 	CSR_WRITE_4(sc, DC_AL_PAR0, eaddr[3] << 24 | eaddr[2] << 16 |
1089 	    eaddr[1] << 8 | eaddr[0]);
1090 	CSR_WRITE_4(sc, DC_AL_PAR1, eaddr[5] << 8 | eaddr[4]);
1091 
1092 	/* If we want promiscuous mode, set the allframes bit. */
1093 	if (ifp->if_flags & IFF_PROMISC)
1094 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1095 	else
1096 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1097 
1098 	if (ifp->if_flags & IFF_ALLMULTI)
1099 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1100 	else
1101 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1102 
1103 	/* First, zot all the existing hash bits. */
1104 	CSR_WRITE_4(sc, DC_AL_MAR0, 0);
1105 	CSR_WRITE_4(sc, DC_AL_MAR1, 0);
1106 
1107 	/*
1108 	 * If we're already in promisc or allmulti mode, we
1109 	 * don't have to bother programming the multicast filter.
1110 	 */
1111 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
1112 		return;
1113 
1114 	/* Now program new ones. */
1115 	if (DC_IS_CENTAUR(sc))
1116 		if_foreach_llmaddr(ifp, dc_hash_maddr_admtek_le, &ctx);
1117 	else
1118 		if_foreach_llmaddr(ifp, dc_hash_maddr_admtek_be, &ctx.hashes);
1119 
1120 	CSR_WRITE_4(sc, DC_AL_MAR0, ctx.hashes[0]);
1121 	CSR_WRITE_4(sc, DC_AL_MAR1, ctx.hashes[1]);
1122 }
1123 
1124 static void
1125 dc_setfilt_asix(struct dc_softc *sc)
1126 {
1127 	uint32_t eaddr[(ETHER_ADDR_LEN+3)/4];
1128 	struct ifnet *ifp;
1129 	uint32_t hashes[2] = { 0, 0 };
1130 
1131 	ifp = sc->dc_ifp;
1132 
1133 	/* Init our MAC address. */
1134 	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1135 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
1136 	CSR_WRITE_4(sc, DC_AX_FILTDATA, eaddr[0]);
1137 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
1138 	CSR_WRITE_4(sc, DC_AX_FILTDATA, eaddr[1]);
1139 
1140 	/* If we want promiscuous mode, set the allframes bit. */
1141 	if (ifp->if_flags & IFF_PROMISC)
1142 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1143 	else
1144 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1145 
1146 	if (ifp->if_flags & IFF_ALLMULTI)
1147 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1148 	else
1149 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1150 
1151 	/*
1152 	 * The ASIX chip has a special bit to enable reception
1153 	 * of broadcast frames.
1154 	 */
1155 	if (ifp->if_flags & IFF_BROADCAST)
1156 		DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1157 	else
1158 		DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1159 
1160 	/* first, zot all the existing hash bits */
1161 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1162 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1163 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1164 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1165 
1166 	/*
1167 	 * If we're already in promisc or allmulti mode, we
1168 	 * don't have to bother programming the multicast filter.
1169 	 */
1170 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
1171 		return;
1172 
1173 	/* now program new ones */
1174 	if_foreach_llmaddr(ifp, dc_hash_maddr_admtek_be, hashes);
1175 
1176 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1177 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
1178 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1179 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
1180 }
1181 
1182 static u_int
1183 dc_hash_maddr_uli(void *arg, struct sockaddr_dl *sdl, u_int mcnt)
1184 {
1185 	uint32_t **sp = arg;
1186 	uint8_t *ma;
1187 
1188 	if (mcnt == DC_ULI_FILTER_NPERF)
1189 		return (0);
1190 	ma = LLADDR(sdl);
1191 	*(*sp)++ = DC_SP_MAC(ma[1] << 8 | ma[0]);
1192 	*(*sp)++ = DC_SP_MAC(ma[3] << 8 | ma[2]);
1193 	*(*sp)++ = DC_SP_MAC(ma[5] << 8 | ma[4]);
1194 
1195 	return (1);
1196 }
1197 
1198 static void
1199 dc_setfilt_uli(struct dc_softc *sc)
1200 {
1201 	uint8_t eaddr[ETHER_ADDR_LEN];
1202 	struct ifnet *ifp;
1203 	struct dc_desc *sframe;
1204 	uint32_t filter, *sp;
1205 	int i, mcnt;
1206 
1207 	ifp = sc->dc_ifp;
1208 
1209 	i = sc->dc_cdata.dc_tx_prod;
1210 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1211 	sc->dc_cdata.dc_tx_cnt++;
1212 	sframe = &sc->dc_ldata.dc_tx_list[i];
1213 	sp = sc->dc_cdata.dc_sbuf;
1214 	bzero(sp, DC_SFRAME_LEN);
1215 
1216 	sframe->dc_data = htole32(DC_ADDR_LO(sc->dc_saddr));
1217 	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
1218 	    DC_TXCTL_TLINK | DC_FILTER_PERFECT | DC_TXCTL_FINT);
1219 
1220 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
1221 
1222 	/* Set station address. */
1223 	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1224 	*sp++ = DC_SP_MAC(eaddr[1] << 8 | eaddr[0]);
1225 	*sp++ = DC_SP_MAC(eaddr[3] << 8 | eaddr[2]);
1226 	*sp++ = DC_SP_MAC(eaddr[5] << 8 | eaddr[4]);
1227 
1228 	/* Set broadcast address. */
1229 	*sp++ = DC_SP_MAC(0xFFFF);
1230 	*sp++ = DC_SP_MAC(0xFFFF);
1231 	*sp++ = DC_SP_MAC(0xFFFF);
1232 
1233 	/* Extract current filter configuration. */
1234 	filter = CSR_READ_4(sc, DC_NETCFG);
1235 	filter &= ~(DC_NETCFG_RX_PROMISC | DC_NETCFG_RX_ALLMULTI);
1236 
1237 	/* Now build perfect filters. */
1238 	mcnt = if_foreach_llmaddr(ifp, dc_hash_maddr_uli, &sp);
1239 
1240 	if (mcnt == DC_ULI_FILTER_NPERF)
1241 		filter |= DC_NETCFG_RX_ALLMULTI;
1242 	else
1243 		for (; mcnt < DC_ULI_FILTER_NPERF; mcnt++) {
1244 			*sp++ = DC_SP_MAC(0xFFFF);
1245 			*sp++ = DC_SP_MAC(0xFFFF);
1246 			*sp++ = DC_SP_MAC(0xFFFF);
1247 		}
1248 
1249 	if (filter & (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON))
1250 		CSR_WRITE_4(sc, DC_NETCFG,
1251 		    filter & ~(DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1252 	if (ifp->if_flags & IFF_PROMISC)
1253 		filter |= DC_NETCFG_RX_PROMISC | DC_NETCFG_RX_ALLMULTI;
1254 	if (ifp->if_flags & IFF_ALLMULTI)
1255 		filter |= DC_NETCFG_RX_ALLMULTI;
1256 	CSR_WRITE_4(sc, DC_NETCFG,
1257 	    filter & ~(DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1258 	if (filter & (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON))
1259 		CSR_WRITE_4(sc, DC_NETCFG, filter);
1260 
1261 	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1262 	bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap, BUS_DMASYNC_PREREAD |
1263 	    BUS_DMASYNC_PREWRITE);
1264 	bus_dmamap_sync(sc->dc_stag, sc->dc_smap, BUS_DMASYNC_PREWRITE);
1265 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1266 
1267 	/*
1268 	 * Wait some time...
1269 	 */
1270 	DELAY(1000);
1271 
1272 	sc->dc_wdog_timer = 5;
1273 }
1274 
1275 static u_int
1276 dc_hash_maddr_xircom(void *arg, struct sockaddr_dl *sdl, u_int cnt)
1277 {
1278 	struct dc_softc *sc = arg;
1279 	uint32_t h;
1280 
1281 	h = dc_mchash_le(sc, LLADDR(sdl));
1282 	sc->dc_cdata.dc_sbuf[h >> 4] |= htole32(1 << (h & 0xF));
1283 	return (1);
1284 }
1285 
1286 static void
1287 dc_setfilt_xircom(struct dc_softc *sc)
1288 {
1289 	uint16_t eaddr[(ETHER_ADDR_LEN+1)/2];
1290 	struct ifnet *ifp;
1291 	struct dc_desc *sframe;
1292 	uint32_t h, *sp;
1293 	int i;
1294 
1295 	ifp = sc->dc_ifp;
1296 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1297 
1298 	i = sc->dc_cdata.dc_tx_prod;
1299 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1300 	sc->dc_cdata.dc_tx_cnt++;
1301 	sframe = &sc->dc_ldata.dc_tx_list[i];
1302 	sp = sc->dc_cdata.dc_sbuf;
1303 	bzero(sp, DC_SFRAME_LEN);
1304 
1305 	sframe->dc_data = htole32(DC_ADDR_LO(sc->dc_saddr));
1306 	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
1307 	    DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
1308 
1309 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
1310 
1311 	/* If we want promiscuous mode, set the allframes bit. */
1312 	if (ifp->if_flags & IFF_PROMISC)
1313 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1314 	else
1315 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1316 
1317 	if (ifp->if_flags & IFF_ALLMULTI)
1318 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1319 	else
1320 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1321 
1322 	if_foreach_llmaddr(ifp, dc_hash_maddr_xircom, &sp);
1323 
1324 	if (ifp->if_flags & IFF_BROADCAST) {
1325 		h = dc_mchash_le(sc, ifp->if_broadcastaddr);
1326 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1327 	}
1328 
1329 	/* Set our MAC address. */
1330 	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1331 	sp[0] = DC_SP_MAC(eaddr[0]);
1332 	sp[1] = DC_SP_MAC(eaddr[1]);
1333 	sp[2] = DC_SP_MAC(eaddr[2]);
1334 
1335 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
1336 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
1337 	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1338 	bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap, BUS_DMASYNC_PREREAD |
1339 	    BUS_DMASYNC_PREWRITE);
1340 	bus_dmamap_sync(sc->dc_stag, sc->dc_smap, BUS_DMASYNC_PREWRITE);
1341 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1342 
1343 	/*
1344 	 * Wait some time...
1345 	 */
1346 	DELAY(1000);
1347 
1348 	sc->dc_wdog_timer = 5;
1349 }
1350 
1351 static void
1352 dc_setfilt(struct dc_softc *sc)
1353 {
1354 
1355 	if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
1356 	    DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc))
1357 		dc_setfilt_21143(sc);
1358 
1359 	if (DC_IS_ASIX(sc))
1360 		dc_setfilt_asix(sc);
1361 
1362 	if (DC_IS_ADMTEK(sc))
1363 		dc_setfilt_admtek(sc);
1364 
1365 	if (DC_IS_ULI(sc))
1366 		dc_setfilt_uli(sc);
1367 
1368 	if (DC_IS_XIRCOM(sc))
1369 		dc_setfilt_xircom(sc);
1370 }
1371 
1372 static void
1373 dc_netcfg_wait(struct dc_softc *sc)
1374 {
1375 	uint32_t isr;
1376 	int i;
1377 
1378 	for (i = 0; i < DC_TIMEOUT; i++) {
1379 		isr = CSR_READ_4(sc, DC_ISR);
1380 		if (isr & DC_ISR_TX_IDLE &&
1381 		    ((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
1382 		    (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT))
1383 			break;
1384 		DELAY(10);
1385 	}
1386 	if (i == DC_TIMEOUT && bus_child_present(sc->dc_dev)) {
1387 		if (!(isr & DC_ISR_TX_IDLE) && !DC_IS_ASIX(sc))
1388 			device_printf(sc->dc_dev,
1389 			    "%s: failed to force tx to idle state\n", __func__);
1390 		if (!((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
1391 		    (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT) &&
1392 		    !DC_HAS_BROKEN_RXSTATE(sc))
1393 			device_printf(sc->dc_dev,
1394 			    "%s: failed to force rx to idle state\n", __func__);
1395 	}
1396 }
1397 
1398 /*
1399  * In order to fiddle with the 'full-duplex' and '100Mbps' bits in
1400  * the netconfig register, we first have to put the transmit and/or
1401  * receive logic in the idle state.
1402  */
1403 static void
1404 dc_setcfg(struct dc_softc *sc, int media)
1405 {
1406 	int restart = 0, watchdogreg;
1407 
1408 	if (IFM_SUBTYPE(media) == IFM_NONE)
1409 		return;
1410 
1411 	if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON)) {
1412 		restart = 1;
1413 		DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1414 		dc_netcfg_wait(sc);
1415 	}
1416 
1417 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
1418 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1419 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1420 		if (sc->dc_pmode == DC_PMODE_MII) {
1421 			if (DC_IS_INTEL(sc)) {
1422 			/* There's a write enable bit here that reads as 1. */
1423 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1424 				watchdogreg &= ~DC_WDOG_CTLWREN;
1425 				watchdogreg |= DC_WDOG_JABBERDIS;
1426 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1427 			} else {
1428 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1429 			}
1430 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1431 			    DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
1432 			if (sc->dc_type == DC_TYPE_98713)
1433 				DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1434 				    DC_NETCFG_SCRAMBLER));
1435 			if (!DC_IS_DAVICOM(sc))
1436 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1437 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1438 		} else {
1439 			if (DC_IS_PNIC(sc)) {
1440 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
1441 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1442 				DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1443 			}
1444 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1445 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1446 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1447 		}
1448 	}
1449 
1450 	if (IFM_SUBTYPE(media) == IFM_10_T) {
1451 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1452 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1453 		if (sc->dc_pmode == DC_PMODE_MII) {
1454 			/* There's a write enable bit here that reads as 1. */
1455 			if (DC_IS_INTEL(sc)) {
1456 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1457 				watchdogreg &= ~DC_WDOG_CTLWREN;
1458 				watchdogreg |= DC_WDOG_JABBERDIS;
1459 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1460 			} else {
1461 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1462 			}
1463 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1464 			    DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
1465 			if (sc->dc_type == DC_TYPE_98713)
1466 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1467 			if (!DC_IS_DAVICOM(sc))
1468 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1469 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1470 		} else {
1471 			if (DC_IS_PNIC(sc)) {
1472 				DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
1473 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1474 				DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1475 			}
1476 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1477 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1478 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1479 			if (DC_IS_INTEL(sc)) {
1480 				DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET);
1481 				DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1482 				if ((media & IFM_GMASK) == IFM_FDX)
1483 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D);
1484 				else
1485 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F);
1486 				DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1487 				DC_CLRBIT(sc, DC_10BTCTRL,
1488 				    DC_TCTL_AUTONEGENBL);
1489 				DELAY(20000);
1490 			}
1491 		}
1492 	}
1493 
1494 	/*
1495 	 * If this is a Davicom DM9102A card with a DM9801 HomePNA
1496 	 * PHY and we want HomePNA mode, set the portsel bit to turn
1497 	 * on the external MII port.
1498 	 */
1499 	if (DC_IS_DAVICOM(sc)) {
1500 		if (IFM_SUBTYPE(media) == IFM_HPNA_1) {
1501 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1502 			sc->dc_link = 1;
1503 		} else {
1504 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1505 		}
1506 	}
1507 
1508 	if ((media & IFM_GMASK) == IFM_FDX) {
1509 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1510 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1511 			DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1512 	} else {
1513 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1514 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1515 			DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1516 	}
1517 
1518 	if (restart)
1519 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON | DC_NETCFG_RX_ON);
1520 }
1521 
1522 static void
1523 dc_reset(struct dc_softc *sc)
1524 {
1525 	int i;
1526 
1527 	DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1528 
1529 	for (i = 0; i < DC_TIMEOUT; i++) {
1530 		DELAY(10);
1531 		if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
1532 			break;
1533 	}
1534 
1535 	if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_CONEXANT(sc) ||
1536 	    DC_IS_XIRCOM(sc) || DC_IS_INTEL(sc) || DC_IS_ULI(sc)) {
1537 		DELAY(10000);
1538 		DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1539 		i = 0;
1540 	}
1541 
1542 	if (i == DC_TIMEOUT)
1543 		device_printf(sc->dc_dev, "reset never completed!\n");
1544 
1545 	/* Wait a little while for the chip to get its brains in order. */
1546 	DELAY(1000);
1547 
1548 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
1549 	CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
1550 	CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
1551 
1552 	/*
1553 	 * Bring the SIA out of reset. In some cases, it looks
1554 	 * like failing to unreset the SIA soon enough gets it
1555 	 * into a state where it will never come out of reset
1556 	 * until we reset the whole chip again.
1557 	 */
1558 	if (DC_IS_INTEL(sc)) {
1559 		DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1560 		CSR_WRITE_4(sc, DC_10BTCTRL, 0xFFFFFFFF);
1561 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
1562 	}
1563 }
1564 
1565 static const struct dc_type *
1566 dc_devtype(device_t dev)
1567 {
1568 	const struct dc_type *t;
1569 	uint32_t devid;
1570 	uint8_t rev;
1571 
1572 	t = dc_devs;
1573 	devid = pci_get_devid(dev);
1574 	rev = pci_get_revid(dev);
1575 
1576 	while (t->dc_name != NULL) {
1577 		if (devid == t->dc_devid && rev >= t->dc_minrev)
1578 			return (t);
1579 		t++;
1580 	}
1581 
1582 	return (NULL);
1583 }
1584 
1585 /*
1586  * Probe for a 21143 or clone chip. Check the PCI vendor and device
1587  * IDs against our list and return a device name if we find a match.
1588  * We do a little bit of extra work to identify the exact type of
1589  * chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
1590  * but different revision IDs. The same is true for 98715/98715A
1591  * chips and the 98725, as well as the ASIX and ADMtek chips. In some
1592  * cases, the exact chip revision affects driver behavior.
1593  */
1594 static int
1595 dc_probe(device_t dev)
1596 {
1597 	const struct dc_type *t;
1598 
1599 	t = dc_devtype(dev);
1600 
1601 	if (t != NULL) {
1602 		device_set_desc(dev, t->dc_name);
1603 		return (BUS_PROBE_DEFAULT);
1604 	}
1605 
1606 	return (ENXIO);
1607 }
1608 
1609 static void
1610 dc_apply_fixup(struct dc_softc *sc, int media)
1611 {
1612 	struct dc_mediainfo *m;
1613 	uint8_t *p;
1614 	int i;
1615 	uint32_t reg;
1616 
1617 	m = sc->dc_mi;
1618 
1619 	while (m != NULL) {
1620 		if (m->dc_media == media)
1621 			break;
1622 		m = m->dc_next;
1623 	}
1624 
1625 	if (m == NULL)
1626 		return;
1627 
1628 	for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) {
1629 		reg = (p[0] | (p[1] << 8)) << 16;
1630 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1631 	}
1632 
1633 	for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) {
1634 		reg = (p[0] | (p[1] << 8)) << 16;
1635 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1636 	}
1637 }
1638 
1639 static int
1640 dc_decode_leaf_sia(struct dc_softc *sc, struct dc_eblock_sia *l)
1641 {
1642 	struct dc_mediainfo *m;
1643 
1644 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1645 	if (m == NULL) {
1646 		device_printf(sc->dc_dev, "Could not allocate mediainfo\n");
1647 		return (ENOMEM);
1648 	}
1649 	switch (l->dc_sia_code & ~DC_SIA_CODE_EXT) {
1650 	case DC_SIA_CODE_10BT:
1651 		m->dc_media = IFM_10_T;
1652 		break;
1653 	case DC_SIA_CODE_10BT_FDX:
1654 		m->dc_media = IFM_10_T | IFM_FDX;
1655 		break;
1656 	case DC_SIA_CODE_10B2:
1657 		m->dc_media = IFM_10_2;
1658 		break;
1659 	case DC_SIA_CODE_10B5:
1660 		m->dc_media = IFM_10_5;
1661 		break;
1662 	default:
1663 		break;
1664 	}
1665 
1666 	/*
1667 	 * We need to ignore CSR13, CSR14, CSR15 for SIA mode.
1668 	 * Things apparently already work for cards that do
1669 	 * supply Media Specific Data.
1670 	 */
1671 	if (l->dc_sia_code & DC_SIA_CODE_EXT) {
1672 		m->dc_gp_len = 2;
1673 		m->dc_gp_ptr =
1674 		(uint8_t *)&l->dc_un.dc_sia_ext.dc_sia_gpio_ctl;
1675 	} else {
1676 		m->dc_gp_len = 2;
1677 		m->dc_gp_ptr =
1678 		(uint8_t *)&l->dc_un.dc_sia_noext.dc_sia_gpio_ctl;
1679 	}
1680 
1681 	m->dc_next = sc->dc_mi;
1682 	sc->dc_mi = m;
1683 
1684 	sc->dc_pmode = DC_PMODE_SIA;
1685 	return (0);
1686 }
1687 
1688 static int
1689 dc_decode_leaf_sym(struct dc_softc *sc, struct dc_eblock_sym *l)
1690 {
1691 	struct dc_mediainfo *m;
1692 
1693 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1694 	if (m == NULL) {
1695 		device_printf(sc->dc_dev, "Could not allocate mediainfo\n");
1696 		return (ENOMEM);
1697 	}
1698 	if (l->dc_sym_code == DC_SYM_CODE_100BT)
1699 		m->dc_media = IFM_100_TX;
1700 
1701 	if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX)
1702 		m->dc_media = IFM_100_TX | IFM_FDX;
1703 
1704 	m->dc_gp_len = 2;
1705 	m->dc_gp_ptr = (uint8_t *)&l->dc_sym_gpio_ctl;
1706 
1707 	m->dc_next = sc->dc_mi;
1708 	sc->dc_mi = m;
1709 
1710 	sc->dc_pmode = DC_PMODE_SYM;
1711 	return (0);
1712 }
1713 
1714 static int
1715 dc_decode_leaf_mii(struct dc_softc *sc, struct dc_eblock_mii *l)
1716 {
1717 	struct dc_mediainfo *m;
1718 	uint8_t *p;
1719 
1720 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1721 	if (m == NULL) {
1722 		device_printf(sc->dc_dev, "Could not allocate mediainfo\n");
1723 		return (ENOMEM);
1724 	}
1725 	/* We abuse IFM_AUTO to represent MII. */
1726 	m->dc_media = IFM_AUTO;
1727 	m->dc_gp_len = l->dc_gpr_len;
1728 
1729 	p = (uint8_t *)l;
1730 	p += sizeof(struct dc_eblock_mii);
1731 	m->dc_gp_ptr = p;
1732 	p += 2 * l->dc_gpr_len;
1733 	m->dc_reset_len = *p;
1734 	p++;
1735 	m->dc_reset_ptr = p;
1736 
1737 	m->dc_next = sc->dc_mi;
1738 	sc->dc_mi = m;
1739 	return (0);
1740 }
1741 
1742 static int
1743 dc_read_srom(struct dc_softc *sc, int bits)
1744 {
1745 	int size;
1746 
1747 	size = DC_ROM_SIZE(bits);
1748 	sc->dc_srom = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
1749 	if (sc->dc_srom == NULL) {
1750 		device_printf(sc->dc_dev, "Could not allocate SROM buffer\n");
1751 		return (ENOMEM);
1752 	}
1753 	dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (size / 2), 0);
1754 	return (0);
1755 }
1756 
1757 static int
1758 dc_parse_21143_srom(struct dc_softc *sc)
1759 {
1760 	struct dc_leaf_hdr *lhdr;
1761 	struct dc_eblock_hdr *hdr;
1762 	int error, have_mii, i, loff;
1763 	char *ptr;
1764 
1765 	have_mii = 0;
1766 	loff = sc->dc_srom[27];
1767 	lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]);
1768 
1769 	ptr = (char *)lhdr;
1770 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1771 	/*
1772 	 * Look if we got a MII media block.
1773 	 */
1774 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1775 		hdr = (struct dc_eblock_hdr *)ptr;
1776 		if (hdr->dc_type == DC_EBLOCK_MII)
1777 		    have_mii++;
1778 
1779 		ptr += (hdr->dc_len & 0x7F);
1780 		ptr++;
1781 	}
1782 
1783 	/*
1784 	 * Do the same thing again. Only use SIA and SYM media
1785 	 * blocks if no MII media block is available.
1786 	 */
1787 	ptr = (char *)lhdr;
1788 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1789 	error = 0;
1790 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1791 		hdr = (struct dc_eblock_hdr *)ptr;
1792 		switch (hdr->dc_type) {
1793 		case DC_EBLOCK_MII:
1794 			error = dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr);
1795 			break;
1796 		case DC_EBLOCK_SIA:
1797 			if (! have_mii)
1798 				error = dc_decode_leaf_sia(sc,
1799 				    (struct dc_eblock_sia *)hdr);
1800 			break;
1801 		case DC_EBLOCK_SYM:
1802 			if (! have_mii)
1803 				error = dc_decode_leaf_sym(sc,
1804 				    (struct dc_eblock_sym *)hdr);
1805 			break;
1806 		default:
1807 			/* Don't care. Yet. */
1808 			break;
1809 		}
1810 		ptr += (hdr->dc_len & 0x7F);
1811 		ptr++;
1812 	}
1813 	return (error);
1814 }
1815 
1816 static void
1817 dc_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1818 {
1819 	bus_addr_t *paddr;
1820 
1821 	KASSERT(nseg == 1,
1822 	    ("%s: wrong number of segments (%d)", __func__, nseg));
1823 	paddr = arg;
1824 	*paddr = segs->ds_addr;
1825 }
1826 
1827 static int
1828 dc_dma_alloc(struct dc_softc *sc)
1829 {
1830 	int error, i;
1831 
1832 	error = bus_dma_tag_create(bus_get_dma_tag(sc->dc_dev), 1, 0,
1833 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1834 	    BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0,
1835 	    NULL, NULL, &sc->dc_ptag);
1836 	if (error) {
1837 		device_printf(sc->dc_dev,
1838 		    "failed to allocate parent DMA tag\n");
1839 		goto fail;
1840 	}
1841 
1842 	/* Allocate a busdma tag and DMA safe memory for TX/RX descriptors. */
1843 	error = bus_dma_tag_create(sc->dc_ptag, DC_LIST_ALIGN, 0,
1844 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, DC_RX_LIST_SZ, 1,
1845 	    DC_RX_LIST_SZ, 0, NULL, NULL, &sc->dc_rx_ltag);
1846 	if (error) {
1847 		device_printf(sc->dc_dev, "failed to create RX list DMA tag\n");
1848 		goto fail;
1849 	}
1850 
1851 	error = bus_dma_tag_create(sc->dc_ptag, DC_LIST_ALIGN, 0,
1852 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, DC_TX_LIST_SZ, 1,
1853 	    DC_TX_LIST_SZ, 0, NULL, NULL, &sc->dc_tx_ltag);
1854 	if (error) {
1855 		device_printf(sc->dc_dev, "failed to create TX list DMA tag\n");
1856 		goto fail;
1857 	}
1858 
1859 	/* RX descriptor list. */
1860 	error = bus_dmamem_alloc(sc->dc_rx_ltag,
1861 	    (void **)&sc->dc_ldata.dc_rx_list, BUS_DMA_NOWAIT |
1862 	    BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->dc_rx_lmap);
1863 	if (error) {
1864 		device_printf(sc->dc_dev,
1865 		    "failed to allocate DMA'able memory for RX list\n");
1866 		goto fail;
1867 	}
1868 	error = bus_dmamap_load(sc->dc_rx_ltag, sc->dc_rx_lmap,
1869 	    sc->dc_ldata.dc_rx_list, DC_RX_LIST_SZ, dc_dma_map_addr,
1870 	    &sc->dc_ldata.dc_rx_list_paddr, BUS_DMA_NOWAIT);
1871 	if (error) {
1872 		device_printf(sc->dc_dev,
1873 		    "failed to load DMA'able memory for RX list\n");
1874 		goto fail;
1875 	}
1876 	/* TX descriptor list. */
1877 	error = bus_dmamem_alloc(sc->dc_tx_ltag,
1878 	    (void **)&sc->dc_ldata.dc_tx_list, BUS_DMA_NOWAIT |
1879 	    BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->dc_tx_lmap);
1880 	if (error) {
1881 		device_printf(sc->dc_dev,
1882 		    "failed to allocate DMA'able memory for TX list\n");
1883 		goto fail;
1884 	}
1885 	error = bus_dmamap_load(sc->dc_tx_ltag, sc->dc_tx_lmap,
1886 	    sc->dc_ldata.dc_tx_list, DC_TX_LIST_SZ, dc_dma_map_addr,
1887 	    &sc->dc_ldata.dc_tx_list_paddr, BUS_DMA_NOWAIT);
1888 	if (error) {
1889 		device_printf(sc->dc_dev,
1890 		    "cannot load DMA'able memory for TX list\n");
1891 		goto fail;
1892 	}
1893 
1894 	/*
1895 	 * Allocate a busdma tag and DMA safe memory for the multicast
1896 	 * setup frame.
1897 	 */
1898 	error = bus_dma_tag_create(sc->dc_ptag, DC_LIST_ALIGN, 0,
1899 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1900 	    DC_SFRAME_LEN + DC_MIN_FRAMELEN, 1, DC_SFRAME_LEN + DC_MIN_FRAMELEN,
1901 	    0, NULL, NULL, &sc->dc_stag);
1902 	if (error) {
1903 		device_printf(sc->dc_dev,
1904 		    "failed to create DMA tag for setup frame\n");
1905 		goto fail;
1906 	}
1907 	error = bus_dmamem_alloc(sc->dc_stag, (void **)&sc->dc_cdata.dc_sbuf,
1908 	    BUS_DMA_NOWAIT, &sc->dc_smap);
1909 	if (error) {
1910 		device_printf(sc->dc_dev,
1911 		    "failed to allocate DMA'able memory for setup frame\n");
1912 		goto fail;
1913 	}
1914 	error = bus_dmamap_load(sc->dc_stag, sc->dc_smap, sc->dc_cdata.dc_sbuf,
1915 	    DC_SFRAME_LEN, dc_dma_map_addr, &sc->dc_saddr, BUS_DMA_NOWAIT);
1916 	if (error) {
1917 		device_printf(sc->dc_dev,
1918 		    "cannot load DMA'able memory for setup frame\n");
1919 		goto fail;
1920 	}
1921 
1922 	/* Allocate a busdma tag for RX mbufs. */
1923 	error = bus_dma_tag_create(sc->dc_ptag, DC_RXBUF_ALIGN, 0,
1924 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1925 	    MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &sc->dc_rx_mtag);
1926 	if (error) {
1927 		device_printf(sc->dc_dev, "failed to create RX mbuf tag\n");
1928 		goto fail;
1929 	}
1930 
1931 	/* Allocate a busdma tag for TX mbufs. */
1932 	error = bus_dma_tag_create(sc->dc_ptag, 1, 0,
1933 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1934 	    MCLBYTES * DC_MAXFRAGS, DC_MAXFRAGS, MCLBYTES,
1935 	    0, NULL, NULL, &sc->dc_tx_mtag);
1936 	if (error) {
1937 		device_printf(sc->dc_dev, "failed to create TX mbuf tag\n");
1938 		goto fail;
1939 	}
1940 
1941 	/* Create the TX/RX busdma maps. */
1942 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
1943 		error = bus_dmamap_create(sc->dc_tx_mtag, 0,
1944 		    &sc->dc_cdata.dc_tx_map[i]);
1945 		if (error) {
1946 			device_printf(sc->dc_dev,
1947 			    "failed to create TX mbuf dmamap\n");
1948 			goto fail;
1949 		}
1950 	}
1951 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
1952 		error = bus_dmamap_create(sc->dc_rx_mtag, 0,
1953 		    &sc->dc_cdata.dc_rx_map[i]);
1954 		if (error) {
1955 			device_printf(sc->dc_dev,
1956 			    "failed to create RX mbuf dmamap\n");
1957 			goto fail;
1958 		}
1959 	}
1960 	error = bus_dmamap_create(sc->dc_rx_mtag, 0, &sc->dc_sparemap);
1961 	if (error) {
1962 		device_printf(sc->dc_dev,
1963 		    "failed to create spare RX mbuf dmamap\n");
1964 		goto fail;
1965 	}
1966 
1967 fail:
1968 	return (error);
1969 }
1970 
1971 static void
1972 dc_dma_free(struct dc_softc *sc)
1973 {
1974 	int i;
1975 
1976 	/* RX buffers. */
1977 	if (sc->dc_rx_mtag != NULL) {
1978 		for (i = 0; i < DC_RX_LIST_CNT; i++) {
1979 			if (sc->dc_cdata.dc_rx_map[i] != NULL)
1980 				bus_dmamap_destroy(sc->dc_rx_mtag,
1981 				    sc->dc_cdata.dc_rx_map[i]);
1982 		}
1983 		if (sc->dc_sparemap != NULL)
1984 			bus_dmamap_destroy(sc->dc_rx_mtag, sc->dc_sparemap);
1985 		bus_dma_tag_destroy(sc->dc_rx_mtag);
1986 	}
1987 
1988 	/* TX buffers. */
1989 	if (sc->dc_rx_mtag != NULL) {
1990 		for (i = 0; i < DC_TX_LIST_CNT; i++) {
1991 			if (sc->dc_cdata.dc_tx_map[i] != NULL)
1992 				bus_dmamap_destroy(sc->dc_tx_mtag,
1993 				    sc->dc_cdata.dc_tx_map[i]);
1994 		}
1995 		bus_dma_tag_destroy(sc->dc_tx_mtag);
1996 	}
1997 
1998 	/* RX descriptor list. */
1999 	if (sc->dc_rx_ltag) {
2000 		if (sc->dc_ldata.dc_rx_list_paddr != 0)
2001 			bus_dmamap_unload(sc->dc_rx_ltag, sc->dc_rx_lmap);
2002 		if (sc->dc_ldata.dc_rx_list != NULL)
2003 			bus_dmamem_free(sc->dc_rx_ltag, sc->dc_ldata.dc_rx_list,
2004 			    sc->dc_rx_lmap);
2005 		bus_dma_tag_destroy(sc->dc_rx_ltag);
2006 	}
2007 
2008 	/* TX descriptor list. */
2009 	if (sc->dc_tx_ltag) {
2010 		if (sc->dc_ldata.dc_tx_list_paddr != 0)
2011 			bus_dmamap_unload(sc->dc_tx_ltag, sc->dc_tx_lmap);
2012 		if (sc->dc_ldata.dc_tx_list != NULL)
2013 			bus_dmamem_free(sc->dc_tx_ltag, sc->dc_ldata.dc_tx_list,
2014 			    sc->dc_tx_lmap);
2015 		bus_dma_tag_destroy(sc->dc_tx_ltag);
2016 	}
2017 
2018 	/* multicast setup frame. */
2019 	if (sc->dc_stag) {
2020 		if (sc->dc_saddr != 0)
2021 			bus_dmamap_unload(sc->dc_stag, sc->dc_smap);
2022 		if (sc->dc_cdata.dc_sbuf != NULL)
2023 			bus_dmamem_free(sc->dc_stag, sc->dc_cdata.dc_sbuf,
2024 			    sc->dc_smap);
2025 		bus_dma_tag_destroy(sc->dc_stag);
2026 	}
2027 }
2028 
2029 /*
2030  * Attach the interface. Allocate softc structures, do ifmedia
2031  * setup and ethernet/BPF attach.
2032  */
2033 static int
2034 dc_attach(device_t dev)
2035 {
2036 	uint32_t eaddr[(ETHER_ADDR_LEN+3)/4];
2037 	uint32_t command;
2038 	struct dc_softc *sc;
2039 	struct ifnet *ifp;
2040 	struct dc_mediainfo *m;
2041 	uint32_t reg, revision;
2042 	uint16_t *srom;
2043 	int error, mac_offset, n, phy, rid, tmp;
2044 	uint8_t *mac;
2045 
2046 	sc = device_get_softc(dev);
2047 	sc->dc_dev = dev;
2048 
2049 	mtx_init(&sc->dc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
2050 	    MTX_DEF);
2051 
2052 	/*
2053 	 * Map control/status registers.
2054 	 */
2055 	pci_enable_busmaster(dev);
2056 
2057 	rid = DC_RID;
2058 	sc->dc_res = bus_alloc_resource_any(dev, DC_RES, &rid, RF_ACTIVE);
2059 
2060 	if (sc->dc_res == NULL) {
2061 		device_printf(dev, "couldn't map ports/memory\n");
2062 		error = ENXIO;
2063 		goto fail;
2064 	}
2065 
2066 	sc->dc_btag = rman_get_bustag(sc->dc_res);
2067 	sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
2068 
2069 	/* Allocate interrupt. */
2070 	rid = 0;
2071 	sc->dc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
2072 	    RF_SHAREABLE | RF_ACTIVE);
2073 
2074 	if (sc->dc_irq == NULL) {
2075 		device_printf(dev, "couldn't map interrupt\n");
2076 		error = ENXIO;
2077 		goto fail;
2078 	}
2079 
2080 	/* Need this info to decide on a chip type. */
2081 	sc->dc_info = dc_devtype(dev);
2082 	revision = pci_get_revid(dev);
2083 
2084 	error = 0;
2085 	/* Get the eeprom width, but PNIC and XIRCOM have diff eeprom */
2086 	if (sc->dc_info->dc_devid !=
2087 	    DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168) &&
2088 	    sc->dc_info->dc_devid !=
2089 	    DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201))
2090 		dc_eeprom_width(sc);
2091 
2092 	switch (sc->dc_info->dc_devid) {
2093 	case DC_DEVID(DC_VENDORID_DEC, DC_DEVICEID_21143):
2094 		sc->dc_type = DC_TYPE_21143;
2095 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
2096 		sc->dc_flags |= DC_REDUCED_MII_POLL;
2097 		/* Save EEPROM contents so we can parse them later. */
2098 		error = dc_read_srom(sc, sc->dc_romwidth);
2099 		if (error != 0)
2100 			goto fail;
2101 		break;
2102 	case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009):
2103 	case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100):
2104 	case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102):
2105 		sc->dc_type = DC_TYPE_DM9102;
2106 		sc->dc_flags |= DC_TX_COALESCE | DC_TX_INTR_ALWAYS;
2107 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_TX_STORENFWD;
2108 		sc->dc_flags |= DC_TX_ALIGN;
2109 		sc->dc_pmode = DC_PMODE_MII;
2110 
2111 		/* Increase the latency timer value. */
2112 		pci_write_config(dev, PCIR_LATTIMER, 0x80, 1);
2113 		break;
2114 	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AL981):
2115 		sc->dc_type = DC_TYPE_AL981;
2116 		sc->dc_flags |= DC_TX_USE_TX_INTR;
2117 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
2118 		sc->dc_pmode = DC_PMODE_MII;
2119 		error = dc_read_srom(sc, sc->dc_romwidth);
2120 		if (error != 0)
2121 			goto fail;
2122 		break;
2123 	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN983):
2124 	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN985):
2125 	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511):
2126 	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513):
2127 	case DC_DEVID(DC_VENDORID_DLINK, DC_DEVICEID_DRP32TXD):
2128 	case DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500):
2129 	case DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500MX):
2130 	case DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN2242):
2131 	case DC_DEVID(DC_VENDORID_HAWKING, DC_DEVICEID_HAWKING_PN672TX):
2132 	case DC_DEVID(DC_VENDORID_PLANEX, DC_DEVICEID_FNW3602T):
2133 	case DC_DEVID(DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB):
2134 	case DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN120):
2135 	case DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130):
2136 	case DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB08):
2137 	case DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB09):
2138 		sc->dc_type = DC_TYPE_AN983;
2139 		sc->dc_flags |= DC_64BIT_HASH;
2140 		sc->dc_flags |= DC_TX_USE_TX_INTR;
2141 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
2142 		sc->dc_pmode = DC_PMODE_MII;
2143 		/* Don't read SROM for - auto-loaded on reset */
2144 		break;
2145 	case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713):
2146 	case DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP):
2147 		if (revision < DC_REVISION_98713A) {
2148 			sc->dc_type = DC_TYPE_98713;
2149 		}
2150 		if (revision >= DC_REVISION_98713A) {
2151 			sc->dc_type = DC_TYPE_98713A;
2152 			sc->dc_flags |= DC_21143_NWAY;
2153 		}
2154 		sc->dc_flags |= DC_REDUCED_MII_POLL;
2155 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
2156 		break;
2157 	case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5):
2158 	case DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN1217):
2159 		/*
2160 		 * Macronix MX98715AEC-C/D/E parts have only a
2161 		 * 128-bit hash table. We need to deal with these
2162 		 * in the same manner as the PNIC II so that we
2163 		 * get the right number of bits out of the
2164 		 * CRC routine.
2165 		 */
2166 		if (revision >= DC_REVISION_98715AEC_C &&
2167 		    revision < DC_REVISION_98725)
2168 			sc->dc_flags |= DC_128BIT_HASH;
2169 		sc->dc_type = DC_TYPE_987x5;
2170 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
2171 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
2172 		break;
2173 	case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98727):
2174 		sc->dc_type = DC_TYPE_987x5;
2175 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
2176 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
2177 		break;
2178 	case DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C115):
2179 		sc->dc_type = DC_TYPE_PNICII;
2180 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR | DC_128BIT_HASH;
2181 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
2182 		break;
2183 	case DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168):
2184 		sc->dc_type = DC_TYPE_PNIC;
2185 		sc->dc_flags |= DC_TX_STORENFWD | DC_TX_INTR_ALWAYS;
2186 		sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
2187 		sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_NOWAIT);
2188 		if (sc->dc_pnic_rx_buf == NULL) {
2189 			device_printf(sc->dc_dev,
2190 			    "Could not allocate PNIC RX buffer\n");
2191 			error = ENOMEM;
2192 			goto fail;
2193 		}
2194 		if (revision < DC_REVISION_82C169)
2195 			sc->dc_pmode = DC_PMODE_SYM;
2196 		break;
2197 	case DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A):
2198 		sc->dc_type = DC_TYPE_ASIX;
2199 		sc->dc_flags |= DC_TX_USE_TX_INTR | DC_TX_INTR_FIRSTFRAG;
2200 		sc->dc_flags |= DC_REDUCED_MII_POLL;
2201 		sc->dc_pmode = DC_PMODE_MII;
2202 		break;
2203 	case DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201):
2204 		sc->dc_type = DC_TYPE_XIRCOM;
2205 		sc->dc_flags |= DC_TX_INTR_ALWAYS | DC_TX_COALESCE |
2206 				DC_TX_ALIGN;
2207 		/*
2208 		 * We don't actually need to coalesce, but we're doing
2209 		 * it to obtain a double word aligned buffer.
2210 		 * The DC_TX_COALESCE flag is required.
2211 		 */
2212 		sc->dc_pmode = DC_PMODE_MII;
2213 		break;
2214 	case DC_DEVID(DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112):
2215 		sc->dc_type = DC_TYPE_CONEXANT;
2216 		sc->dc_flags |= DC_TX_INTR_ALWAYS;
2217 		sc->dc_flags |= DC_REDUCED_MII_POLL;
2218 		sc->dc_pmode = DC_PMODE_MII;
2219 		error = dc_read_srom(sc, sc->dc_romwidth);
2220 		if (error != 0)
2221 			goto fail;
2222 		break;
2223 	case DC_DEVID(DC_VENDORID_ULI, DC_DEVICEID_M5261):
2224 	case DC_DEVID(DC_VENDORID_ULI, DC_DEVICEID_M5263):
2225 		if (sc->dc_info->dc_devid ==
2226 		    DC_DEVID(DC_VENDORID_ULI, DC_DEVICEID_M5261))
2227 			sc->dc_type = DC_TYPE_ULI_M5261;
2228 		else
2229 			sc->dc_type = DC_TYPE_ULI_M5263;
2230 		/* TX buffers should be aligned on 4 byte boundary. */
2231 		sc->dc_flags |= DC_TX_INTR_ALWAYS | DC_TX_COALESCE |
2232 		    DC_TX_ALIGN;
2233 		sc->dc_pmode = DC_PMODE_MII;
2234 		error = dc_read_srom(sc, sc->dc_romwidth);
2235 		if (error != 0)
2236 			goto fail;
2237 		break;
2238 	default:
2239 		device_printf(dev, "unknown device: %x\n",
2240 		    sc->dc_info->dc_devid);
2241 		break;
2242 	}
2243 
2244 	/* Save the cache line size. */
2245 	if (DC_IS_DAVICOM(sc))
2246 		sc->dc_cachesize = 0;
2247 	else
2248 		sc->dc_cachesize = pci_get_cachelnsz(dev);
2249 
2250 	/* Reset the adapter. */
2251 	dc_reset(sc);
2252 
2253 	/* Take 21143 out of snooze mode */
2254 	if (DC_IS_INTEL(sc) || DC_IS_XIRCOM(sc)) {
2255 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
2256 		command &= ~(DC_CFDD_SNOOZE_MODE | DC_CFDD_SLEEP_MODE);
2257 		pci_write_config(dev, DC_PCI_CFDD, command, 4);
2258 	}
2259 
2260 	/*
2261 	 * Try to learn something about the supported media.
2262 	 * We know that ASIX and ADMtek and Davicom devices
2263 	 * will *always* be using MII media, so that's a no-brainer.
2264 	 * The tricky ones are the Macronix/PNIC II and the
2265 	 * Intel 21143.
2266 	 */
2267 	if (DC_IS_INTEL(sc)) {
2268 		error = dc_parse_21143_srom(sc);
2269 		if (error != 0)
2270 			goto fail;
2271 	} else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
2272 		if (sc->dc_type == DC_TYPE_98713)
2273 			sc->dc_pmode = DC_PMODE_MII;
2274 		else
2275 			sc->dc_pmode = DC_PMODE_SYM;
2276 	} else if (!sc->dc_pmode)
2277 		sc->dc_pmode = DC_PMODE_MII;
2278 
2279 	/*
2280 	 * Get station address from the EEPROM.
2281 	 */
2282 	switch(sc->dc_type) {
2283 	case DC_TYPE_98713:
2284 	case DC_TYPE_98713A:
2285 	case DC_TYPE_987x5:
2286 	case DC_TYPE_PNICII:
2287 		dc_read_eeprom(sc, (caddr_t)&mac_offset,
2288 		    (DC_EE_NODEADDR_OFFSET / 2), 1, 0);
2289 		dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
2290 		break;
2291 	case DC_TYPE_PNIC:
2292 		dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
2293 		break;
2294 	case DC_TYPE_DM9102:
2295 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2296 #ifdef __sparc64__
2297 		/*
2298 		 * If this is an onboard dc(4) the station address read from
2299 		 * the EEPROM is all zero and we have to get it from the FCode.
2300 		 */
2301 		if (eaddr[0] == 0 && (eaddr[1] & ~0xffff) == 0)
2302 			OF_getetheraddr(dev, (caddr_t)&eaddr);
2303 #endif
2304 		break;
2305 	case DC_TYPE_21143:
2306 	case DC_TYPE_ASIX:
2307 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2308 		break;
2309 	case DC_TYPE_AL981:
2310 	case DC_TYPE_AN983:
2311 		reg = CSR_READ_4(sc, DC_AL_PAR0);
2312 		mac = (uint8_t *)&eaddr[0];
2313 		mac[0] = (reg >> 0) & 0xff;
2314 		mac[1] = (reg >> 8) & 0xff;
2315 		mac[2] = (reg >> 16) & 0xff;
2316 		mac[3] = (reg >> 24) & 0xff;
2317 		reg = CSR_READ_4(sc, DC_AL_PAR1);
2318 		mac[4] = (reg >> 0) & 0xff;
2319 		mac[5] = (reg >> 8) & 0xff;
2320 		break;
2321 	case DC_TYPE_CONEXANT:
2322 		bcopy(sc->dc_srom + DC_CONEXANT_EE_NODEADDR, &eaddr,
2323 		    ETHER_ADDR_LEN);
2324 		break;
2325 	case DC_TYPE_XIRCOM:
2326 		/* The MAC comes from the CIS. */
2327 		mac = pci_get_ether(dev);
2328 		if (!mac) {
2329 			device_printf(dev, "No station address in CIS!\n");
2330 			error = ENXIO;
2331 			goto fail;
2332 		}
2333 		bcopy(mac, eaddr, ETHER_ADDR_LEN);
2334 		break;
2335 	case DC_TYPE_ULI_M5261:
2336 	case DC_TYPE_ULI_M5263:
2337 		srom = (uint16_t *)sc->dc_srom;
2338 		if (srom == NULL || *srom == 0xFFFF || *srom == 0) {
2339 			/*
2340 			 * No valid SROM present, read station address
2341 			 * from ID Table.
2342 			 */
2343 			device_printf(dev,
2344 			    "Reading station address from ID Table.\n");
2345 			CSR_WRITE_4(sc, DC_BUSCTL, 0x10000);
2346 			CSR_WRITE_4(sc, DC_SIARESET, 0x01C0);
2347 			CSR_WRITE_4(sc, DC_10BTCTRL, 0x0000);
2348 			CSR_WRITE_4(sc, DC_10BTCTRL, 0x0010);
2349 			CSR_WRITE_4(sc, DC_10BTCTRL, 0x0000);
2350 			CSR_WRITE_4(sc, DC_SIARESET, 0x0000);
2351 			CSR_WRITE_4(sc, DC_SIARESET, 0x01B0);
2352 			mac = (uint8_t *)eaddr;
2353 			for (n = 0; n < ETHER_ADDR_LEN; n++)
2354 				mac[n] = (uint8_t)CSR_READ_4(sc, DC_10BTCTRL);
2355 			CSR_WRITE_4(sc, DC_SIARESET, 0x0000);
2356 			CSR_WRITE_4(sc, DC_BUSCTL, 0x0000);
2357 			DELAY(10);
2358 		} else
2359 			dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3,
2360 			    0);
2361 		break;
2362 	default:
2363 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2364 		break;
2365 	}
2366 
2367 	bcopy(eaddr, sc->dc_eaddr, sizeof(eaddr));
2368 	/*
2369 	 * If we still have invalid station address, see whether we can
2370 	 * find station address for chip 0.  Some multi-port controllers
2371 	 * just store station address for chip 0 if they have a shared
2372 	 * SROM.
2373 	 */
2374 	if ((sc->dc_eaddr[0] == 0 && (sc->dc_eaddr[1] & ~0xffff) == 0) ||
2375 	    (sc->dc_eaddr[0] == 0xffffffff &&
2376 	    (sc->dc_eaddr[1] & 0xffff) == 0xffff)) {
2377 		error = dc_check_multiport(sc);
2378 		if (error == 0) {
2379 			bcopy(sc->dc_eaddr, eaddr, sizeof(eaddr));
2380 			/* Extract media information. */
2381 			if (DC_IS_INTEL(sc) && sc->dc_srom != NULL) {
2382 				while (sc->dc_mi != NULL) {
2383 					m = sc->dc_mi->dc_next;
2384 					free(sc->dc_mi, M_DEVBUF);
2385 					sc->dc_mi = m;
2386 				}
2387 				error = dc_parse_21143_srom(sc);
2388 				if (error != 0)
2389 					goto fail;
2390 			}
2391 		} else if (error == ENOMEM)
2392 			goto fail;
2393 		else
2394 			error = 0;
2395 	}
2396 
2397 	if ((error = dc_dma_alloc(sc)) != 0)
2398 		goto fail;
2399 
2400 	ifp = sc->dc_ifp = if_alloc(IFT_ETHER);
2401 	if (ifp == NULL) {
2402 		device_printf(dev, "can not if_alloc()\n");
2403 		error = ENOSPC;
2404 		goto fail;
2405 	}
2406 	ifp->if_softc = sc;
2407 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2408 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2409 	ifp->if_ioctl = dc_ioctl;
2410 	ifp->if_start = dc_start;
2411 	ifp->if_init = dc_init;
2412 	IFQ_SET_MAXLEN(&ifp->if_snd, DC_TX_LIST_CNT - 1);
2413 	ifp->if_snd.ifq_drv_maxlen = DC_TX_LIST_CNT - 1;
2414 	IFQ_SET_READY(&ifp->if_snd);
2415 
2416 	/*
2417 	 * Do MII setup. If this is a 21143, check for a PHY on the
2418 	 * MII bus after applying any necessary fixups to twiddle the
2419 	 * GPIO bits. If we don't end up finding a PHY, restore the
2420 	 * old selection (SIA only or SIA/SYM) and attach the dcphy
2421 	 * driver instead.
2422 	 */
2423 	tmp = 0;
2424 	if (DC_IS_INTEL(sc)) {
2425 		dc_apply_fixup(sc, IFM_AUTO);
2426 		tmp = sc->dc_pmode;
2427 		sc->dc_pmode = DC_PMODE_MII;
2428 	}
2429 
2430 	/*
2431 	 * Setup General Purpose port mode and data so the tulip can talk
2432 	 * to the MII.  This needs to be done before mii_attach so that
2433 	 * we can actually see them.
2434 	 */
2435 	if (DC_IS_XIRCOM(sc)) {
2436 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
2437 		    DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2438 		DELAY(10);
2439 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
2440 		    DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2441 		DELAY(10);
2442 	}
2443 
2444 	phy = MII_PHY_ANY;
2445 	/*
2446 	 * Note: both the AL981 and AN983 have internal PHYs, however the
2447 	 * AL981 provides direct access to the PHY registers while the AN983
2448 	 * uses a serial MII interface. The AN983's MII interface is also
2449 	 * buggy in that you can read from any MII address (0 to 31), but
2450 	 * only address 1 behaves normally. To deal with both cases, we
2451 	 * pretend that the PHY is at MII address 1.
2452 	 */
2453 	if (DC_IS_ADMTEK(sc))
2454 		phy = DC_ADMTEK_PHYADDR;
2455 
2456 	/*
2457 	 * Note: the ukphy probes of the RS7112 report a PHY at MII address
2458 	 * 0 (possibly HomePNA?) and 1 (ethernet) so we only respond to the
2459 	 * correct one.
2460 	 */
2461 	if (DC_IS_CONEXANT(sc))
2462 		phy = DC_CONEXANT_PHYADDR;
2463 
2464 	error = mii_attach(dev, &sc->dc_miibus, ifp, dc_ifmedia_upd,
2465 	    dc_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
2466 
2467 	if (error && DC_IS_INTEL(sc)) {
2468 		sc->dc_pmode = tmp;
2469 		if (sc->dc_pmode != DC_PMODE_SIA)
2470 			sc->dc_pmode = DC_PMODE_SYM;
2471 		sc->dc_flags |= DC_21143_NWAY;
2472 		/*
2473 		 * For non-MII cards, we need to have the 21143
2474 		 * drive the LEDs. Except there are some systems
2475 		 * like the NEC VersaPro NoteBook PC which have no
2476 		 * LEDs, and twiddling these bits has adverse effects
2477 		 * on them. (I.e. you suddenly can't get a link.)
2478 		 */
2479 		if (!(pci_get_subvendor(dev) == 0x1033 &&
2480 		    pci_get_subdevice(dev) == 0x8028))
2481 			sc->dc_flags |= DC_TULIP_LEDS;
2482 		error = mii_attach(dev, &sc->dc_miibus, ifp, dc_ifmedia_upd,
2483 		    dc_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY,
2484 		    MII_OFFSET_ANY, 0);
2485 	}
2486 
2487 	if (error) {
2488 		device_printf(dev, "attaching PHYs failed\n");
2489 		goto fail;
2490 	}
2491 
2492 	if (DC_IS_ADMTEK(sc)) {
2493 		/*
2494 		 * Set automatic TX underrun recovery for the ADMtek chips
2495 		 */
2496 		DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR);
2497 	}
2498 
2499 	/*
2500 	 * Tell the upper layer(s) we support long frames.
2501 	 */
2502 	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
2503 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
2504 	ifp->if_capenable = ifp->if_capabilities;
2505 #ifdef DEVICE_POLLING
2506 	ifp->if_capabilities |= IFCAP_POLLING;
2507 #endif
2508 
2509 	callout_init_mtx(&sc->dc_stat_ch, &sc->dc_mtx, 0);
2510 	callout_init_mtx(&sc->dc_wdog_ch, &sc->dc_mtx, 0);
2511 
2512 	/*
2513 	 * Call MI attach routine.
2514 	 */
2515 	ether_ifattach(ifp, (caddr_t)eaddr);
2516 
2517 	/* Hook interrupt last to avoid having to lock softc */
2518 	error = bus_setup_intr(dev, sc->dc_irq, INTR_TYPE_NET | INTR_MPSAFE,
2519 	    NULL, dc_intr, sc, &sc->dc_intrhand);
2520 
2521 	if (error) {
2522 		device_printf(dev, "couldn't set up irq\n");
2523 		ether_ifdetach(ifp);
2524 		goto fail;
2525 	}
2526 
2527 fail:
2528 	if (error)
2529 		dc_detach(dev);
2530 	return (error);
2531 }
2532 
2533 /*
2534  * Shutdown hardware and free up resources. This can be called any
2535  * time after the mutex has been initialized. It is called in both
2536  * the error case in attach and the normal detach case so it needs
2537  * to be careful about only freeing resources that have actually been
2538  * allocated.
2539  */
2540 static int
2541 dc_detach(device_t dev)
2542 {
2543 	struct dc_softc *sc;
2544 	struct ifnet *ifp;
2545 	struct dc_mediainfo *m;
2546 
2547 	sc = device_get_softc(dev);
2548 	KASSERT(mtx_initialized(&sc->dc_mtx), ("dc mutex not initialized"));
2549 
2550 	ifp = sc->dc_ifp;
2551 
2552 #ifdef DEVICE_POLLING
2553 	if (ifp != NULL && ifp->if_capenable & IFCAP_POLLING)
2554 		ether_poll_deregister(ifp);
2555 #endif
2556 
2557 	/* These should only be active if attach succeeded */
2558 	if (device_is_attached(dev)) {
2559 		DC_LOCK(sc);
2560 		dc_stop(sc);
2561 		DC_UNLOCK(sc);
2562 		callout_drain(&sc->dc_stat_ch);
2563 		callout_drain(&sc->dc_wdog_ch);
2564 		ether_ifdetach(ifp);
2565 	}
2566 	if (sc->dc_miibus)
2567 		device_delete_child(dev, sc->dc_miibus);
2568 	bus_generic_detach(dev);
2569 
2570 	if (sc->dc_intrhand)
2571 		bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2572 	if (sc->dc_irq)
2573 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2574 	if (sc->dc_res)
2575 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2576 
2577 	if (ifp != NULL)
2578 		if_free(ifp);
2579 
2580 	dc_dma_free(sc);
2581 
2582 	free(sc->dc_pnic_rx_buf, M_DEVBUF);
2583 
2584 	while (sc->dc_mi != NULL) {
2585 		m = sc->dc_mi->dc_next;
2586 		free(sc->dc_mi, M_DEVBUF);
2587 		sc->dc_mi = m;
2588 	}
2589 	free(sc->dc_srom, M_DEVBUF);
2590 
2591 	mtx_destroy(&sc->dc_mtx);
2592 
2593 	return (0);
2594 }
2595 
2596 /*
2597  * Initialize the transmit descriptors.
2598  */
2599 static int
2600 dc_list_tx_init(struct dc_softc *sc)
2601 {
2602 	struct dc_chain_data *cd;
2603 	struct dc_list_data *ld;
2604 	int i, nexti;
2605 
2606 	cd = &sc->dc_cdata;
2607 	ld = &sc->dc_ldata;
2608 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2609 		if (i == DC_TX_LIST_CNT - 1)
2610 			nexti = 0;
2611 		else
2612 			nexti = i + 1;
2613 		ld->dc_tx_list[i].dc_status = 0;
2614 		ld->dc_tx_list[i].dc_ctl = 0;
2615 		ld->dc_tx_list[i].dc_data = 0;
2616 		ld->dc_tx_list[i].dc_next = htole32(DC_TXDESC(sc, nexti));
2617 		cd->dc_tx_chain[i] = NULL;
2618 	}
2619 
2620 	cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
2621 	cd->dc_tx_pkts = 0;
2622 	bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap,
2623 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2624 	return (0);
2625 }
2626 
2627 /*
2628  * Initialize the RX descriptors and allocate mbufs for them. Note that
2629  * we arrange the descriptors in a closed ring, so that the last descriptor
2630  * points back to the first.
2631  */
2632 static int
2633 dc_list_rx_init(struct dc_softc *sc)
2634 {
2635 	struct dc_chain_data *cd;
2636 	struct dc_list_data *ld;
2637 	int i, nexti;
2638 
2639 	cd = &sc->dc_cdata;
2640 	ld = &sc->dc_ldata;
2641 
2642 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2643 		if (dc_newbuf(sc, i) != 0)
2644 			return (ENOBUFS);
2645 		if (i == DC_RX_LIST_CNT - 1)
2646 			nexti = 0;
2647 		else
2648 			nexti = i + 1;
2649 		ld->dc_rx_list[i].dc_next = htole32(DC_RXDESC(sc, nexti));
2650 	}
2651 
2652 	cd->dc_rx_prod = 0;
2653 	bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_rx_lmap,
2654 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2655 	return (0);
2656 }
2657 
2658 /*
2659  * Initialize an RX descriptor and attach an MBUF cluster.
2660  */
2661 static int
2662 dc_newbuf(struct dc_softc *sc, int i)
2663 {
2664 	struct mbuf *m;
2665 	bus_dmamap_t map;
2666 	bus_dma_segment_t segs[1];
2667 	int error, nseg;
2668 
2669 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2670 	if (m == NULL)
2671 		return (ENOBUFS);
2672 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2673 	m_adj(m, sizeof(u_int64_t));
2674 
2675 	/*
2676 	 * If this is a PNIC chip, zero the buffer. This is part
2677 	 * of the workaround for the receive bug in the 82c168 and
2678 	 * 82c169 chips.
2679 	 */
2680 	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
2681 		bzero(mtod(m, char *), m->m_len);
2682 
2683 	error = bus_dmamap_load_mbuf_sg(sc->dc_rx_mtag, sc->dc_sparemap,
2684 	    m, segs, &nseg, 0);
2685 	if (error) {
2686 		m_freem(m);
2687 		return (error);
2688 	}
2689 	KASSERT(nseg == 1, ("%s: wrong number of segments (%d)", __func__,
2690 	    nseg));
2691 	if (sc->dc_cdata.dc_rx_chain[i] != NULL)
2692 		bus_dmamap_unload(sc->dc_rx_mtag, sc->dc_cdata.dc_rx_map[i]);
2693 
2694 	map = sc->dc_cdata.dc_rx_map[i];
2695 	sc->dc_cdata.dc_rx_map[i] = sc->dc_sparemap;
2696 	sc->dc_sparemap = map;
2697 	sc->dc_cdata.dc_rx_chain[i] = m;
2698 	bus_dmamap_sync(sc->dc_rx_mtag, sc->dc_cdata.dc_rx_map[i],
2699 	    BUS_DMASYNC_PREREAD);
2700 
2701 	sc->dc_ldata.dc_rx_list[i].dc_ctl = htole32(DC_RXCTL_RLINK | DC_RXLEN);
2702 	sc->dc_ldata.dc_rx_list[i].dc_data =
2703 	    htole32(DC_ADDR_LO(segs[0].ds_addr));
2704 	sc->dc_ldata.dc_rx_list[i].dc_status = htole32(DC_RXSTAT_OWN);
2705 	bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_rx_lmap,
2706 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2707 	return (0);
2708 }
2709 
2710 /*
2711  * Grrrrr.
2712  * The PNIC chip has a terrible bug in it that manifests itself during
2713  * periods of heavy activity. The exact mode of failure if difficult to
2714  * pinpoint: sometimes it only happens in promiscuous mode, sometimes it
2715  * will happen on slow machines. The bug is that sometimes instead of
2716  * uploading one complete frame during reception, it uploads what looks
2717  * like the entire contents of its FIFO memory. The frame we want is at
2718  * the end of the whole mess, but we never know exactly how much data has
2719  * been uploaded, so salvaging the frame is hard.
2720  *
2721  * There is only one way to do it reliably, and it's disgusting.
2722  * Here's what we know:
2723  *
2724  * - We know there will always be somewhere between one and three extra
2725  *   descriptors uploaded.
2726  *
2727  * - We know the desired received frame will always be at the end of the
2728  *   total data upload.
2729  *
2730  * - We know the size of the desired received frame because it will be
2731  *   provided in the length field of the status word in the last descriptor.
2732  *
2733  * Here's what we do:
2734  *
2735  * - When we allocate buffers for the receive ring, we bzero() them.
2736  *   This means that we know that the buffer contents should be all
2737  *   zeros, except for data uploaded by the chip.
2738  *
2739  * - We also force the PNIC chip to upload frames that include the
2740  *   ethernet CRC at the end.
2741  *
2742  * - We gather all of the bogus frame data into a single buffer.
2743  *
2744  * - We then position a pointer at the end of this buffer and scan
2745  *   backwards until we encounter the first non-zero byte of data.
2746  *   This is the end of the received frame. We know we will encounter
2747  *   some data at the end of the frame because the CRC will always be
2748  *   there, so even if the sender transmits a packet of all zeros,
2749  *   we won't be fooled.
2750  *
2751  * - We know the size of the actual received frame, so we subtract
2752  *   that value from the current pointer location. This brings us
2753  *   to the start of the actual received packet.
2754  *
2755  * - We copy this into an mbuf and pass it on, along with the actual
2756  *   frame length.
2757  *
2758  * The performance hit is tremendous, but it beats dropping frames all
2759  * the time.
2760  */
2761 
2762 #define	DC_WHOLEFRAME	(DC_RXSTAT_FIRSTFRAG | DC_RXSTAT_LASTFRAG)
2763 static void
2764 dc_pnic_rx_bug_war(struct dc_softc *sc, int idx)
2765 {
2766 	struct dc_desc *cur_rx;
2767 	struct dc_desc *c = NULL;
2768 	struct mbuf *m = NULL;
2769 	unsigned char *ptr;
2770 	int i, total_len;
2771 	uint32_t rxstat = 0;
2772 
2773 	i = sc->dc_pnic_rx_bug_save;
2774 	cur_rx = &sc->dc_ldata.dc_rx_list[idx];
2775 	ptr = sc->dc_pnic_rx_buf;
2776 	bzero(ptr, DC_RXLEN * 5);
2777 
2778 	/* Copy all the bytes from the bogus buffers. */
2779 	while (1) {
2780 		c = &sc->dc_ldata.dc_rx_list[i];
2781 		rxstat = le32toh(c->dc_status);
2782 		m = sc->dc_cdata.dc_rx_chain[i];
2783 		bcopy(mtod(m, char *), ptr, DC_RXLEN);
2784 		ptr += DC_RXLEN;
2785 		/* If this is the last buffer, break out. */
2786 		if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
2787 			break;
2788 		dc_discard_rxbuf(sc, i);
2789 		DC_INC(i, DC_RX_LIST_CNT);
2790 	}
2791 
2792 	/* Find the length of the actual receive frame. */
2793 	total_len = DC_RXBYTES(rxstat);
2794 
2795 	/* Scan backwards until we hit a non-zero byte. */
2796 	while (*ptr == 0x00)
2797 		ptr--;
2798 
2799 	/* Round off. */
2800 	if ((uintptr_t)(ptr) & 0x3)
2801 		ptr -= 1;
2802 
2803 	/* Now find the start of the frame. */
2804 	ptr -= total_len;
2805 	if (ptr < sc->dc_pnic_rx_buf)
2806 		ptr = sc->dc_pnic_rx_buf;
2807 
2808 	/*
2809 	 * Now copy the salvaged frame to the last mbuf and fake up
2810 	 * the status word to make it look like a successful
2811 	 * frame reception.
2812 	 */
2813 	bcopy(ptr, mtod(m, char *), total_len);
2814 	cur_rx->dc_status = htole32(rxstat | DC_RXSTAT_FIRSTFRAG);
2815 }
2816 
2817 /*
2818  * This routine searches the RX ring for dirty descriptors in the
2819  * event that the rxeof routine falls out of sync with the chip's
2820  * current descriptor pointer. This may happen sometimes as a result
2821  * of a "no RX buffer available" condition that happens when the chip
2822  * consumes all of the RX buffers before the driver has a chance to
2823  * process the RX ring. This routine may need to be called more than
2824  * once to bring the driver back in sync with the chip, however we
2825  * should still be getting RX DONE interrupts to drive the search
2826  * for new packets in the RX ring, so we should catch up eventually.
2827  */
2828 static int
2829 dc_rx_resync(struct dc_softc *sc)
2830 {
2831 	struct dc_desc *cur_rx;
2832 	int i, pos;
2833 
2834 	pos = sc->dc_cdata.dc_rx_prod;
2835 
2836 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2837 		cur_rx = &sc->dc_ldata.dc_rx_list[pos];
2838 		if (!(le32toh(cur_rx->dc_status) & DC_RXSTAT_OWN))
2839 			break;
2840 		DC_INC(pos, DC_RX_LIST_CNT);
2841 	}
2842 
2843 	/* If the ring really is empty, then just return. */
2844 	if (i == DC_RX_LIST_CNT)
2845 		return (0);
2846 
2847 	/* We've fallen behing the chip: catch it. */
2848 	sc->dc_cdata.dc_rx_prod = pos;
2849 
2850 	return (EAGAIN);
2851 }
2852 
2853 static void
2854 dc_discard_rxbuf(struct dc_softc *sc, int i)
2855 {
2856 	struct mbuf *m;
2857 
2858 	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2859 		m = sc->dc_cdata.dc_rx_chain[i];
2860 		bzero(mtod(m, char *), m->m_len);
2861 	}
2862 
2863 	sc->dc_ldata.dc_rx_list[i].dc_ctl = htole32(DC_RXCTL_RLINK | DC_RXLEN);
2864 	sc->dc_ldata.dc_rx_list[i].dc_status = htole32(DC_RXSTAT_OWN);
2865 	bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_rx_lmap, BUS_DMASYNC_PREREAD |
2866 	    BUS_DMASYNC_PREWRITE);
2867 }
2868 
2869 /*
2870  * A frame has been uploaded: pass the resulting mbuf chain up to
2871  * the higher level protocols.
2872  */
2873 static int
2874 dc_rxeof(struct dc_softc *sc)
2875 {
2876 	struct mbuf *m;
2877 	struct ifnet *ifp;
2878 	struct dc_desc *cur_rx;
2879 	int i, total_len, rx_npkts;
2880 	uint32_t rxstat;
2881 
2882 	DC_LOCK_ASSERT(sc);
2883 
2884 	ifp = sc->dc_ifp;
2885 	rx_npkts = 0;
2886 
2887 	bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_rx_lmap, BUS_DMASYNC_POSTREAD |
2888 	    BUS_DMASYNC_POSTWRITE);
2889 	for (i = sc->dc_cdata.dc_rx_prod;
2890 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
2891 	    DC_INC(i, DC_RX_LIST_CNT)) {
2892 #ifdef DEVICE_POLLING
2893 		if (ifp->if_capenable & IFCAP_POLLING) {
2894 			if (sc->rxcycles <= 0)
2895 				break;
2896 			sc->rxcycles--;
2897 		}
2898 #endif
2899 		cur_rx = &sc->dc_ldata.dc_rx_list[i];
2900 		rxstat = le32toh(cur_rx->dc_status);
2901 		if ((rxstat & DC_RXSTAT_OWN) != 0)
2902 			break;
2903 		m = sc->dc_cdata.dc_rx_chain[i];
2904 		bus_dmamap_sync(sc->dc_rx_mtag, sc->dc_cdata.dc_rx_map[i],
2905 		    BUS_DMASYNC_POSTREAD);
2906 		total_len = DC_RXBYTES(rxstat);
2907 		rx_npkts++;
2908 
2909 		if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2910 			if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
2911 				if (rxstat & DC_RXSTAT_FIRSTFRAG)
2912 					sc->dc_pnic_rx_bug_save = i;
2913 				if ((rxstat & DC_RXSTAT_LASTFRAG) == 0)
2914 					continue;
2915 				dc_pnic_rx_bug_war(sc, i);
2916 				rxstat = le32toh(cur_rx->dc_status);
2917 				total_len = DC_RXBYTES(rxstat);
2918 			}
2919 		}
2920 
2921 		/*
2922 		 * If an error occurs, update stats, clear the
2923 		 * status word and leave the mbuf cluster in place:
2924 		 * it should simply get re-used next time this descriptor
2925 		 * comes up in the ring.  However, don't report long
2926 		 * frames as errors since they could be vlans.
2927 		 */
2928 		if ((rxstat & DC_RXSTAT_RXERR)) {
2929 			if (!(rxstat & DC_RXSTAT_GIANT) ||
2930 			    (rxstat & (DC_RXSTAT_CRCERR | DC_RXSTAT_DRIBBLE |
2931 				       DC_RXSTAT_MIIERE | DC_RXSTAT_COLLSEEN |
2932 				       DC_RXSTAT_RUNT   | DC_RXSTAT_DE))) {
2933 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2934 				if (rxstat & DC_RXSTAT_COLLSEEN)
2935 					if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
2936 				dc_discard_rxbuf(sc, i);
2937 				if (rxstat & DC_RXSTAT_CRCERR)
2938 					continue;
2939 				else {
2940 					ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2941 					dc_init_locked(sc);
2942 					return (rx_npkts);
2943 				}
2944 			}
2945 		}
2946 
2947 		/* No errors; receive the packet. */
2948 		total_len -= ETHER_CRC_LEN;
2949 #ifdef __NO_STRICT_ALIGNMENT
2950 		/*
2951 		 * On architectures without alignment problems we try to
2952 		 * allocate a new buffer for the receive ring, and pass up
2953 		 * the one where the packet is already, saving the expensive
2954 		 * copy done in m_devget().
2955 		 * If we are on an architecture with alignment problems, or
2956 		 * if the allocation fails, then use m_devget and leave the
2957 		 * existing buffer in the receive ring.
2958 		 */
2959 		if (dc_newbuf(sc, i) != 0) {
2960 			dc_discard_rxbuf(sc, i);
2961 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2962 			continue;
2963 		}
2964 		m->m_pkthdr.rcvif = ifp;
2965 		m->m_pkthdr.len = m->m_len = total_len;
2966 #else
2967 		{
2968 			struct mbuf *m0;
2969 
2970 			m0 = m_devget(mtod(m, char *), total_len,
2971 				ETHER_ALIGN, ifp, NULL);
2972 			dc_discard_rxbuf(sc, i);
2973 			if (m0 == NULL) {
2974 				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2975 				continue;
2976 			}
2977 			m = m0;
2978 		}
2979 #endif
2980 
2981 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2982 		DC_UNLOCK(sc);
2983 		(*ifp->if_input)(ifp, m);
2984 		DC_LOCK(sc);
2985 	}
2986 
2987 	sc->dc_cdata.dc_rx_prod = i;
2988 	return (rx_npkts);
2989 }
2990 
2991 /*
2992  * A frame was downloaded to the chip. It's safe for us to clean up
2993  * the list buffers.
2994  */
2995 static void
2996 dc_txeof(struct dc_softc *sc)
2997 {
2998 	struct dc_desc *cur_tx;
2999 	struct ifnet *ifp;
3000 	int idx, setup;
3001 	uint32_t ctl, txstat;
3002 
3003 	if (sc->dc_cdata.dc_tx_cnt == 0)
3004 		return;
3005 
3006 	ifp = sc->dc_ifp;
3007 
3008 	/*
3009 	 * Go through our tx list and free mbufs for those
3010 	 * frames that have been transmitted.
3011 	 */
3012 	bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap, BUS_DMASYNC_POSTREAD |
3013 	    BUS_DMASYNC_POSTWRITE);
3014 	setup = 0;
3015 	for (idx = sc->dc_cdata.dc_tx_cons; idx != sc->dc_cdata.dc_tx_prod;
3016 	    DC_INC(idx, DC_TX_LIST_CNT), sc->dc_cdata.dc_tx_cnt--) {
3017 		cur_tx = &sc->dc_ldata.dc_tx_list[idx];
3018 		txstat = le32toh(cur_tx->dc_status);
3019 		ctl = le32toh(cur_tx->dc_ctl);
3020 
3021 		if (txstat & DC_TXSTAT_OWN)
3022 			break;
3023 
3024 		if (sc->dc_cdata.dc_tx_chain[idx] == NULL)
3025 			continue;
3026 
3027 		if (ctl & DC_TXCTL_SETUP) {
3028 			cur_tx->dc_ctl = htole32(ctl & ~DC_TXCTL_SETUP);
3029 			setup++;
3030 			bus_dmamap_sync(sc->dc_stag, sc->dc_smap,
3031 			    BUS_DMASYNC_POSTWRITE);
3032 			/*
3033 			 * Yes, the PNIC is so brain damaged
3034 			 * that it will sometimes generate a TX
3035 			 * underrun error while DMAing the RX
3036 			 * filter setup frame. If we detect this,
3037 			 * we have to send the setup frame again,
3038 			 * or else the filter won't be programmed
3039 			 * correctly.
3040 			 */
3041 			if (DC_IS_PNIC(sc)) {
3042 				if (txstat & DC_TXSTAT_ERRSUM)
3043 					dc_setfilt(sc);
3044 			}
3045 			sc->dc_cdata.dc_tx_chain[idx] = NULL;
3046 			continue;
3047 		}
3048 
3049 		if (DC_IS_XIRCOM(sc) || DC_IS_CONEXANT(sc)) {
3050 			/*
3051 			 * XXX: Why does my Xircom taunt me so?
3052 			 * For some reason it likes setting the CARRLOST flag
3053 			 * even when the carrier is there. wtf?!?
3054 			 * Who knows, but Conexant chips have the
3055 			 * same problem. Maybe they took lessons
3056 			 * from Xircom.
3057 			 */
3058 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
3059 			    sc->dc_pmode == DC_PMODE_MII &&
3060 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
3061 			    DC_TXSTAT_NOCARRIER)))
3062 				txstat &= ~DC_TXSTAT_ERRSUM;
3063 		} else {
3064 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
3065 			    sc->dc_pmode == DC_PMODE_MII &&
3066 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
3067 			    DC_TXSTAT_NOCARRIER | DC_TXSTAT_CARRLOST)))
3068 				txstat &= ~DC_TXSTAT_ERRSUM;
3069 		}
3070 
3071 		if (txstat & DC_TXSTAT_ERRSUM) {
3072 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3073 			if (txstat & DC_TXSTAT_EXCESSCOLL)
3074 				if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
3075 			if (txstat & DC_TXSTAT_LATECOLL)
3076 				if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
3077 			if (!(txstat & DC_TXSTAT_UNDERRUN)) {
3078 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3079 				dc_init_locked(sc);
3080 				return;
3081 			}
3082 		} else
3083 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
3084 		if_inc_counter(ifp, IFCOUNTER_COLLISIONS, (txstat & DC_TXSTAT_COLLCNT) >> 3);
3085 
3086 		bus_dmamap_sync(sc->dc_tx_mtag, sc->dc_cdata.dc_tx_map[idx],
3087 		    BUS_DMASYNC_POSTWRITE);
3088 		bus_dmamap_unload(sc->dc_tx_mtag, sc->dc_cdata.dc_tx_map[idx]);
3089 		m_freem(sc->dc_cdata.dc_tx_chain[idx]);
3090 		sc->dc_cdata.dc_tx_chain[idx] = NULL;
3091 	}
3092 	sc->dc_cdata.dc_tx_cons = idx;
3093 
3094 	if (sc->dc_cdata.dc_tx_cnt <= DC_TX_LIST_CNT - DC_TX_LIST_RSVD) {
3095 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3096 		if (sc->dc_cdata.dc_tx_cnt == 0)
3097 			sc->dc_wdog_timer = 0;
3098 	}
3099 	if (setup > 0)
3100 		bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap,
3101 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3102 }
3103 
3104 static void
3105 dc_tick(void *xsc)
3106 {
3107 	struct dc_softc *sc;
3108 	struct mii_data *mii;
3109 	struct ifnet *ifp;
3110 	uint32_t r;
3111 
3112 	sc = xsc;
3113 	DC_LOCK_ASSERT(sc);
3114 	ifp = sc->dc_ifp;
3115 	mii = device_get_softc(sc->dc_miibus);
3116 
3117 	/*
3118 	 * Reclaim transmitted frames for controllers that do
3119 	 * not generate TX completion interrupt for every frame.
3120 	 */
3121 	if (sc->dc_flags & DC_TX_USE_TX_INTR)
3122 		dc_txeof(sc);
3123 
3124 	if (sc->dc_flags & DC_REDUCED_MII_POLL) {
3125 		if (sc->dc_flags & DC_21143_NWAY) {
3126 			r = CSR_READ_4(sc, DC_10BTSTAT);
3127 			if (IFM_SUBTYPE(mii->mii_media_active) ==
3128 			    IFM_100_TX && (r & DC_TSTAT_LS100)) {
3129 				sc->dc_link = 0;
3130 				mii_mediachg(mii);
3131 			}
3132 			if (IFM_SUBTYPE(mii->mii_media_active) ==
3133 			    IFM_10_T && (r & DC_TSTAT_LS10)) {
3134 				sc->dc_link = 0;
3135 				mii_mediachg(mii);
3136 			}
3137 			if (sc->dc_link == 0)
3138 				mii_tick(mii);
3139 		} else {
3140 			/*
3141 			 * For NICs which never report DC_RXSTATE_WAIT, we
3142 			 * have to bite the bullet...
3143 			 */
3144 			if ((DC_HAS_BROKEN_RXSTATE(sc) || (CSR_READ_4(sc,
3145 			    DC_ISR) & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT) &&
3146 			    sc->dc_cdata.dc_tx_cnt == 0)
3147 				mii_tick(mii);
3148 		}
3149 	} else
3150 		mii_tick(mii);
3151 
3152 	/*
3153 	 * When the init routine completes, we expect to be able to send
3154 	 * packets right away, and in fact the network code will send a
3155 	 * gratuitous ARP the moment the init routine marks the interface
3156 	 * as running. However, even though the MAC may have been initialized,
3157 	 * there may be a delay of a few seconds before the PHY completes
3158 	 * autonegotiation and the link is brought up. Any transmissions
3159 	 * made during that delay will be lost. Dealing with this is tricky:
3160 	 * we can't just pause in the init routine while waiting for the
3161 	 * PHY to come ready since that would bring the whole system to
3162 	 * a screeching halt for several seconds.
3163 	 *
3164 	 * What we do here is prevent the TX start routine from sending
3165 	 * any packets until a link has been established. After the
3166 	 * interface has been initialized, the tick routine will poll
3167 	 * the state of the PHY until the IFM_ACTIVE flag is set. Until
3168 	 * that time, packets will stay in the send queue, and once the
3169 	 * link comes up, they will be flushed out to the wire.
3170 	 */
3171 	if (sc->dc_link != 0 && !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3172 		dc_start_locked(ifp);
3173 
3174 	if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link)
3175 		callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
3176 	else
3177 		callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
3178 }
3179 
3180 /*
3181  * A transmit underrun has occurred.  Back off the transmit threshold,
3182  * or switch to store and forward mode if we have to.
3183  */
3184 static void
3185 dc_tx_underrun(struct dc_softc *sc)
3186 {
3187 	uint32_t netcfg, isr;
3188 	int i, reinit;
3189 
3190 	reinit = 0;
3191 	netcfg = CSR_READ_4(sc, DC_NETCFG);
3192 	device_printf(sc->dc_dev, "TX underrun -- ");
3193 	if ((sc->dc_flags & DC_TX_STORENFWD) == 0) {
3194 		if (sc->dc_txthresh + DC_TXTHRESH_INC > DC_TXTHRESH_MAX) {
3195 			printf("using store and forward mode\n");
3196 			netcfg |= DC_NETCFG_STORENFWD;
3197 		} else {
3198 			printf("increasing TX threshold\n");
3199 			sc->dc_txthresh += DC_TXTHRESH_INC;
3200 			netcfg &= ~DC_NETCFG_TX_THRESH;
3201 			netcfg |= sc->dc_txthresh;
3202 		}
3203 
3204 		if (DC_IS_INTEL(sc)) {
3205 			/*
3206 			 * The real 21143 requires that the transmitter be idle
3207 			 * in order to change the transmit threshold or store
3208 			 * and forward state.
3209 			 */
3210 			CSR_WRITE_4(sc, DC_NETCFG, netcfg & ~DC_NETCFG_TX_ON);
3211 
3212 			for (i = 0; i < DC_TIMEOUT; i++) {
3213 				isr = CSR_READ_4(sc, DC_ISR);
3214 				if (isr & DC_ISR_TX_IDLE)
3215 					break;
3216 				DELAY(10);
3217 			}
3218 			if (i == DC_TIMEOUT) {
3219 				device_printf(sc->dc_dev,
3220 				    "%s: failed to force tx to idle state\n",
3221 				    __func__);
3222 				reinit++;
3223 			}
3224 		}
3225 	} else {
3226 		printf("resetting\n");
3227 		reinit++;
3228 	}
3229 
3230 	if (reinit == 0) {
3231 		CSR_WRITE_4(sc, DC_NETCFG, netcfg);
3232 		if (DC_IS_INTEL(sc))
3233 			CSR_WRITE_4(sc, DC_NETCFG, netcfg | DC_NETCFG_TX_ON);
3234 	} else {
3235 		sc->dc_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3236 		dc_init_locked(sc);
3237 	}
3238 }
3239 
3240 #ifdef DEVICE_POLLING
3241 static poll_handler_t dc_poll;
3242 
3243 static int
3244 dc_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
3245 {
3246 	struct dc_softc *sc = ifp->if_softc;
3247 	int rx_npkts = 0;
3248 
3249 	DC_LOCK(sc);
3250 
3251 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3252 		DC_UNLOCK(sc);
3253 		return (rx_npkts);
3254 	}
3255 
3256 	sc->rxcycles = count;
3257 	rx_npkts = dc_rxeof(sc);
3258 	dc_txeof(sc);
3259 	if (!IFQ_IS_EMPTY(&ifp->if_snd) &&
3260 	    !(ifp->if_drv_flags & IFF_DRV_OACTIVE))
3261 		dc_start_locked(ifp);
3262 
3263 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
3264 		uint32_t	status;
3265 
3266 		status = CSR_READ_4(sc, DC_ISR);
3267 		status &= (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF |
3268 			DC_ISR_TX_NOBUF | DC_ISR_TX_IDLE | DC_ISR_TX_UNDERRUN |
3269 			DC_ISR_BUS_ERR);
3270 		if (!status) {
3271 			DC_UNLOCK(sc);
3272 			return (rx_npkts);
3273 		}
3274 		/* ack what we have */
3275 		CSR_WRITE_4(sc, DC_ISR, status);
3276 
3277 		if (status & (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF)) {
3278 			uint32_t r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
3279 			if_inc_counter(ifp, IFCOUNTER_IERRORS, (r & 0xffff) + ((r >> 17) & 0x7ff));
3280 
3281 			if (dc_rx_resync(sc))
3282 				dc_rxeof(sc);
3283 		}
3284 		/* restart transmit unit if necessary */
3285 		if (status & DC_ISR_TX_IDLE && sc->dc_cdata.dc_tx_cnt)
3286 			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3287 
3288 		if (status & DC_ISR_TX_UNDERRUN)
3289 			dc_tx_underrun(sc);
3290 
3291 		if (status & DC_ISR_BUS_ERR) {
3292 			if_printf(ifp, "%s: bus error\n", __func__);
3293 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3294 			dc_init_locked(sc);
3295 		}
3296 	}
3297 	DC_UNLOCK(sc);
3298 	return (rx_npkts);
3299 }
3300 #endif /* DEVICE_POLLING */
3301 
3302 static void
3303 dc_intr(void *arg)
3304 {
3305 	struct dc_softc *sc;
3306 	struct ifnet *ifp;
3307 	uint32_t r, status;
3308 	int n;
3309 
3310 	sc = arg;
3311 
3312 	if (sc->suspended)
3313 		return;
3314 
3315 	DC_LOCK(sc);
3316 	status = CSR_READ_4(sc, DC_ISR);
3317 	if (status == 0xFFFFFFFF || (status & DC_INTRS) == 0) {
3318 		DC_UNLOCK(sc);
3319 		return;
3320 	}
3321 	ifp = sc->dc_ifp;
3322 #ifdef DEVICE_POLLING
3323 	if (ifp->if_capenable & IFCAP_POLLING) {
3324 		DC_UNLOCK(sc);
3325 		return;
3326 	}
3327 #endif
3328 	/* Disable interrupts. */
3329 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3330 
3331 	for (n = 16; n > 0; n--) {
3332 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
3333 			break;
3334 		/* Ack interrupts. */
3335 		CSR_WRITE_4(sc, DC_ISR, status);
3336 
3337 		if (status & DC_ISR_RX_OK) {
3338 			if (dc_rxeof(sc) == 0) {
3339 				while (dc_rx_resync(sc))
3340 					dc_rxeof(sc);
3341 			}
3342 		}
3343 
3344 		if (status & (DC_ISR_TX_OK | DC_ISR_TX_NOBUF))
3345 			dc_txeof(sc);
3346 
3347 		if (status & DC_ISR_TX_IDLE) {
3348 			dc_txeof(sc);
3349 			if (sc->dc_cdata.dc_tx_cnt) {
3350 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3351 				CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3352 			}
3353 		}
3354 
3355 		if (status & DC_ISR_TX_UNDERRUN)
3356 			dc_tx_underrun(sc);
3357 
3358 		if ((status & DC_ISR_RX_WATDOGTIMEO)
3359 		    || (status & DC_ISR_RX_NOBUF)) {
3360 			r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
3361 			if_inc_counter(ifp, IFCOUNTER_IERRORS, (r & 0xffff) + ((r >> 17) & 0x7ff));
3362 			if (dc_rxeof(sc) == 0) {
3363 				while (dc_rx_resync(sc))
3364 					dc_rxeof(sc);
3365 			}
3366 		}
3367 
3368 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3369 			dc_start_locked(ifp);
3370 
3371 		if (status & DC_ISR_BUS_ERR) {
3372 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3373 			dc_init_locked(sc);
3374 			DC_UNLOCK(sc);
3375 			return;
3376 		}
3377 		status = CSR_READ_4(sc, DC_ISR);
3378 		if (status == 0xFFFFFFFF || (status & DC_INTRS) == 0)
3379 			break;
3380 	}
3381 
3382 	/* Re-enable interrupts. */
3383 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3384 		CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3385 
3386 	DC_UNLOCK(sc);
3387 }
3388 
3389 /*
3390  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
3391  * pointers to the fragment pointers.
3392  */
3393 static int
3394 dc_encap(struct dc_softc *sc, struct mbuf **m_head)
3395 {
3396 	bus_dma_segment_t segs[DC_MAXFRAGS];
3397 	bus_dmamap_t map;
3398 	struct dc_desc *f;
3399 	struct mbuf *m;
3400 	int cur, defragged, error, first, frag, i, idx, nseg;
3401 
3402 	m = NULL;
3403 	defragged = 0;
3404 	if (sc->dc_flags & DC_TX_COALESCE &&
3405 	    ((*m_head)->m_next != NULL || sc->dc_flags & DC_TX_ALIGN)) {
3406 		m = m_defrag(*m_head, M_NOWAIT);
3407 		defragged = 1;
3408 	} else {
3409 		/*
3410 		 * Count the number of frags in this chain to see if we
3411 		 * need to m_collapse.  Since the descriptor list is shared
3412 		 * by all packets, we'll m_collapse long chains so that they
3413 		 * do not use up the entire list, even if they would fit.
3414 		 */
3415 		i = 0;
3416 		for (m = *m_head; m != NULL; m = m->m_next)
3417 			i++;
3418 		if (i > DC_TX_LIST_CNT / 4 ||
3419 		    DC_TX_LIST_CNT - i + sc->dc_cdata.dc_tx_cnt <=
3420 		    DC_TX_LIST_RSVD) {
3421 			m = m_collapse(*m_head, M_NOWAIT, DC_MAXFRAGS);
3422 			defragged = 1;
3423 		}
3424 	}
3425 	if (defragged != 0) {
3426 		if (m == NULL) {
3427 			m_freem(*m_head);
3428 			*m_head = NULL;
3429 			return (ENOBUFS);
3430 		}
3431 		*m_head = m;
3432 	}
3433 
3434 	idx = sc->dc_cdata.dc_tx_prod;
3435 	error = bus_dmamap_load_mbuf_sg(sc->dc_tx_mtag,
3436 	    sc->dc_cdata.dc_tx_map[idx], *m_head, segs, &nseg, 0);
3437 	if (error == EFBIG) {
3438 		if (defragged != 0 || (m = m_collapse(*m_head, M_NOWAIT,
3439 		    DC_MAXFRAGS)) == NULL) {
3440 			m_freem(*m_head);
3441 			*m_head = NULL;
3442 			return (defragged != 0 ? error : ENOBUFS);
3443 		}
3444 		*m_head = m;
3445 		error = bus_dmamap_load_mbuf_sg(sc->dc_tx_mtag,
3446 		    sc->dc_cdata.dc_tx_map[idx], *m_head, segs, &nseg, 0);
3447 		if (error != 0) {
3448 			m_freem(*m_head);
3449 			*m_head = NULL;
3450 			return (error);
3451 		}
3452 	} else if (error != 0)
3453 		return (error);
3454 	KASSERT(nseg <= DC_MAXFRAGS,
3455 	    ("%s: wrong number of segments (%d)", __func__, nseg));
3456 	if (nseg == 0) {
3457 		m_freem(*m_head);
3458 		*m_head = NULL;
3459 		return (EIO);
3460 	}
3461 
3462 	/* Check descriptor overruns. */
3463 	if (sc->dc_cdata.dc_tx_cnt + nseg > DC_TX_LIST_CNT - DC_TX_LIST_RSVD) {
3464 		bus_dmamap_unload(sc->dc_tx_mtag, sc->dc_cdata.dc_tx_map[idx]);
3465 		return (ENOBUFS);
3466 	}
3467 	bus_dmamap_sync(sc->dc_tx_mtag, sc->dc_cdata.dc_tx_map[idx],
3468 	    BUS_DMASYNC_PREWRITE);
3469 
3470 	first = cur = frag = sc->dc_cdata.dc_tx_prod;
3471 	for (i = 0; i < nseg; i++) {
3472 		if ((sc->dc_flags & DC_TX_ADMTEK_WAR) &&
3473 		    (frag == (DC_TX_LIST_CNT - 1)) &&
3474 		    (first != sc->dc_cdata.dc_tx_first)) {
3475 			bus_dmamap_unload(sc->dc_tx_mtag,
3476 			    sc->dc_cdata.dc_tx_map[first]);
3477 			m_freem(*m_head);
3478 			*m_head = NULL;
3479 			return (ENOBUFS);
3480 		}
3481 
3482 		f = &sc->dc_ldata.dc_tx_list[frag];
3483 		f->dc_ctl = htole32(DC_TXCTL_TLINK | segs[i].ds_len);
3484 		if (i == 0) {
3485 			f->dc_status = 0;
3486 			f->dc_ctl |= htole32(DC_TXCTL_FIRSTFRAG);
3487 		} else
3488 			f->dc_status = htole32(DC_TXSTAT_OWN);
3489 		f->dc_data = htole32(DC_ADDR_LO(segs[i].ds_addr));
3490 		cur = frag;
3491 		DC_INC(frag, DC_TX_LIST_CNT);
3492 	}
3493 
3494 	sc->dc_cdata.dc_tx_prod = frag;
3495 	sc->dc_cdata.dc_tx_cnt += nseg;
3496 	sc->dc_cdata.dc_tx_chain[cur] = *m_head;
3497 	sc->dc_ldata.dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_LASTFRAG);
3498 	if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
3499 		sc->dc_ldata.dc_tx_list[first].dc_ctl |=
3500 		    htole32(DC_TXCTL_FINT);
3501 	if (sc->dc_flags & DC_TX_INTR_ALWAYS)
3502 		sc->dc_ldata.dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
3503 	if (sc->dc_flags & DC_TX_USE_TX_INTR &&
3504 	    ++sc->dc_cdata.dc_tx_pkts >= 8) {
3505 		sc->dc_cdata.dc_tx_pkts = 0;
3506 		sc->dc_ldata.dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
3507 	}
3508 	sc->dc_ldata.dc_tx_list[first].dc_status = htole32(DC_TXSTAT_OWN);
3509 
3510 	bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap,
3511 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3512 
3513 	/*
3514 	 * Swap the last and the first dmamaps to ensure the map for
3515 	 * this transmission is placed at the last descriptor.
3516 	 */
3517 	map = sc->dc_cdata.dc_tx_map[cur];
3518 	sc->dc_cdata.dc_tx_map[cur] = sc->dc_cdata.dc_tx_map[first];
3519 	sc->dc_cdata.dc_tx_map[first] = map;
3520 
3521 	return (0);
3522 }
3523 
3524 static void
3525 dc_start(struct ifnet *ifp)
3526 {
3527 	struct dc_softc *sc;
3528 
3529 	sc = ifp->if_softc;
3530 	DC_LOCK(sc);
3531 	dc_start_locked(ifp);
3532 	DC_UNLOCK(sc);
3533 }
3534 
3535 /*
3536  * Main transmit routine
3537  * To avoid having to do mbuf copies, we put pointers to the mbuf data
3538  * regions directly in the transmit lists.  We also save a copy of the
3539  * pointers since the transmit list fragment pointers are physical
3540  * addresses.
3541  */
3542 static void
3543 dc_start_locked(struct ifnet *ifp)
3544 {
3545 	struct dc_softc *sc;
3546 	struct mbuf *m_head;
3547 	int queued;
3548 
3549 	sc = ifp->if_softc;
3550 
3551 	DC_LOCK_ASSERT(sc);
3552 
3553 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
3554 	    IFF_DRV_RUNNING || sc->dc_link == 0)
3555 		return;
3556 
3557 	sc->dc_cdata.dc_tx_first = sc->dc_cdata.dc_tx_prod;
3558 
3559 	for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
3560 		/*
3561 		 * If there's no way we can send any packets, return now.
3562 		 */
3563 		if (sc->dc_cdata.dc_tx_cnt > DC_TX_LIST_CNT - DC_TX_LIST_RSVD) {
3564 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3565 			break;
3566 		}
3567 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
3568 		if (m_head == NULL)
3569 			break;
3570 
3571 		if (dc_encap(sc, &m_head)) {
3572 			if (m_head == NULL)
3573 				break;
3574 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
3575 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3576 			break;
3577 		}
3578 
3579 		queued++;
3580 		/*
3581 		 * If there's a BPF listener, bounce a copy of this frame
3582 		 * to him.
3583 		 */
3584 		BPF_MTAP(ifp, m_head);
3585 	}
3586 
3587 	if (queued > 0) {
3588 		/* Transmit */
3589 		if (!(sc->dc_flags & DC_TX_POLL))
3590 			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3591 
3592 		/*
3593 		 * Set a timeout in case the chip goes out to lunch.
3594 		 */
3595 		sc->dc_wdog_timer = 5;
3596 	}
3597 }
3598 
3599 static void
3600 dc_init(void *xsc)
3601 {
3602 	struct dc_softc *sc = xsc;
3603 
3604 	DC_LOCK(sc);
3605 	dc_init_locked(sc);
3606 	DC_UNLOCK(sc);
3607 }
3608 
3609 static void
3610 dc_init_locked(struct dc_softc *sc)
3611 {
3612 	struct ifnet *ifp = sc->dc_ifp;
3613 	struct mii_data *mii;
3614 	struct ifmedia *ifm;
3615 
3616 	DC_LOCK_ASSERT(sc);
3617 
3618 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
3619 		return;
3620 
3621 	mii = device_get_softc(sc->dc_miibus);
3622 
3623 	/*
3624 	 * Cancel pending I/O and free all RX/TX buffers.
3625 	 */
3626 	dc_stop(sc);
3627 	dc_reset(sc);
3628 	if (DC_IS_INTEL(sc)) {
3629 		ifm = &mii->mii_media;
3630 		dc_apply_fixup(sc, ifm->ifm_media);
3631 	}
3632 
3633 	/*
3634 	 * Set cache alignment and burst length.
3635 	 */
3636 	if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc) || DC_IS_ULI(sc))
3637 		CSR_WRITE_4(sc, DC_BUSCTL, 0);
3638 	else
3639 		CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME | DC_BUSCTL_MRLE);
3640 	/*
3641 	 * Evenly share the bus between receive and transmit process.
3642 	 */
3643 	if (DC_IS_INTEL(sc))
3644 		DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION);
3645 	if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
3646 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
3647 	} else {
3648 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
3649 	}
3650 	if (sc->dc_flags & DC_TX_POLL)
3651 		DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
3652 	switch(sc->dc_cachesize) {
3653 	case 32:
3654 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
3655 		break;
3656 	case 16:
3657 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
3658 		break;
3659 	case 8:
3660 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
3661 		break;
3662 	case 0:
3663 	default:
3664 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
3665 		break;
3666 	}
3667 
3668 	if (sc->dc_flags & DC_TX_STORENFWD)
3669 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3670 	else {
3671 		if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3672 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3673 		} else {
3674 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3675 			DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3676 		}
3677 	}
3678 
3679 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
3680 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
3681 
3682 	if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
3683 		/*
3684 		 * The app notes for the 98713 and 98715A say that
3685 		 * in order to have the chips operate properly, a magic
3686 		 * number must be written to CSR16. Macronix does not
3687 		 * document the meaning of these bits so there's no way
3688 		 * to know exactly what they do. The 98713 has a magic
3689 		 * number all its own; the rest all use a different one.
3690 		 */
3691 		DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
3692 		if (sc->dc_type == DC_TYPE_98713)
3693 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
3694 		else
3695 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
3696 	}
3697 
3698 	if (DC_IS_XIRCOM(sc)) {
3699 		/*
3700 		 * setup General Purpose Port mode and data so the tulip
3701 		 * can talk to the MII.
3702 		 */
3703 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
3704 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3705 		DELAY(10);
3706 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
3707 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3708 		DELAY(10);
3709 	}
3710 
3711 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3712 	DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN);
3713 
3714 	/* Init circular RX list. */
3715 	if (dc_list_rx_init(sc) == ENOBUFS) {
3716 		device_printf(sc->dc_dev,
3717 		    "initialization failed: no memory for rx buffers\n");
3718 		dc_stop(sc);
3719 		return;
3720 	}
3721 
3722 	/*
3723 	 * Init TX descriptors.
3724 	 */
3725 	dc_list_tx_init(sc);
3726 
3727 	/*
3728 	 * Load the address of the RX list.
3729 	 */
3730 	CSR_WRITE_4(sc, DC_RXADDR, DC_RXDESC(sc, 0));
3731 	CSR_WRITE_4(sc, DC_TXADDR, DC_TXDESC(sc, 0));
3732 
3733 	/*
3734 	 * Enable interrupts.
3735 	 */
3736 #ifdef DEVICE_POLLING
3737 	/*
3738 	 * ... but only if we are not polling, and make sure they are off in
3739 	 * the case of polling. Some cards (e.g. fxp) turn interrupts on
3740 	 * after a reset.
3741 	 */
3742 	if (ifp->if_capenable & IFCAP_POLLING)
3743 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3744 	else
3745 #endif
3746 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3747 	CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
3748 
3749 	/* Initialize TX jabber and RX watchdog timer. */
3750 	if (DC_IS_ULI(sc))
3751 		CSR_WRITE_4(sc, DC_WATCHDOG, DC_WDOG_JABBERCLK |
3752 		    DC_WDOG_HOSTUNJAB);
3753 
3754 	/* Enable transmitter. */
3755 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3756 
3757 	/*
3758 	 * If this is an Intel 21143 and we're not using the
3759 	 * MII port, program the LED control pins so we get
3760 	 * link and activity indications.
3761 	 */
3762 	if (sc->dc_flags & DC_TULIP_LEDS) {
3763 		CSR_WRITE_4(sc, DC_WATCHDOG,
3764 		    DC_WDOG_CTLWREN | DC_WDOG_LINK | DC_WDOG_ACTIVITY);
3765 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
3766 	}
3767 
3768 	/*
3769 	 * Load the RX/multicast filter. We do this sort of late
3770 	 * because the filter programming scheme on the 21143 and
3771 	 * some clones requires DMAing a setup frame via the TX
3772 	 * engine, and we need the transmitter enabled for that.
3773 	 */
3774 	dc_setfilt(sc);
3775 
3776 	/* Enable receiver. */
3777 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
3778 	CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
3779 
3780 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3781 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3782 
3783 	dc_ifmedia_upd_locked(sc);
3784 
3785 	/* Clear missed frames and overflow counter. */
3786 	CSR_READ_4(sc, DC_FRAMESDISCARDED);
3787 
3788 	/* Don't start the ticker if this is a homePNA link. */
3789 	if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_HPNA_1)
3790 		sc->dc_link = 1;
3791 	else {
3792 		if (sc->dc_flags & DC_21143_NWAY)
3793 			callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
3794 		else
3795 			callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
3796 	}
3797 
3798 	sc->dc_wdog_timer = 0;
3799 	callout_reset(&sc->dc_wdog_ch, hz, dc_watchdog, sc);
3800 }
3801 
3802 /*
3803  * Set media options.
3804  */
3805 static int
3806 dc_ifmedia_upd(struct ifnet *ifp)
3807 {
3808 	struct dc_softc *sc;
3809 	int error;
3810 
3811 	sc = ifp->if_softc;
3812 	DC_LOCK(sc);
3813 	error = dc_ifmedia_upd_locked(sc);
3814 	DC_UNLOCK(sc);
3815 	return (error);
3816 }
3817 
3818 static int
3819 dc_ifmedia_upd_locked(struct dc_softc *sc)
3820 {
3821 	struct mii_data *mii;
3822 	struct ifmedia *ifm;
3823 	int error;
3824 
3825 	DC_LOCK_ASSERT(sc);
3826 
3827 	sc->dc_link = 0;
3828 	mii = device_get_softc(sc->dc_miibus);
3829 	error = mii_mediachg(mii);
3830 	if (error == 0) {
3831 		ifm = &mii->mii_media;
3832 		if (DC_IS_INTEL(sc))
3833 			dc_setcfg(sc, ifm->ifm_media);
3834 		else if (DC_IS_DAVICOM(sc) &&
3835 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1)
3836 			dc_setcfg(sc, ifm->ifm_media);
3837 	}
3838 
3839 	return (error);
3840 }
3841 
3842 /*
3843  * Report current media status.
3844  */
3845 static void
3846 dc_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3847 {
3848 	struct dc_softc *sc;
3849 	struct mii_data *mii;
3850 	struct ifmedia *ifm;
3851 
3852 	sc = ifp->if_softc;
3853 	mii = device_get_softc(sc->dc_miibus);
3854 	DC_LOCK(sc);
3855 	mii_pollstat(mii);
3856 	ifm = &mii->mii_media;
3857 	if (DC_IS_DAVICOM(sc)) {
3858 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
3859 			ifmr->ifm_active = ifm->ifm_media;
3860 			ifmr->ifm_status = 0;
3861 			DC_UNLOCK(sc);
3862 			return;
3863 		}
3864 	}
3865 	ifmr->ifm_active = mii->mii_media_active;
3866 	ifmr->ifm_status = mii->mii_media_status;
3867 	DC_UNLOCK(sc);
3868 }
3869 
3870 static int
3871 dc_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
3872 {
3873 	struct dc_softc *sc = ifp->if_softc;
3874 	struct ifreq *ifr = (struct ifreq *)data;
3875 	struct mii_data *mii;
3876 	int error = 0;
3877 
3878 	switch (command) {
3879 	case SIOCSIFFLAGS:
3880 		DC_LOCK(sc);
3881 		if (ifp->if_flags & IFF_UP) {
3882 			int need_setfilt = (ifp->if_flags ^ sc->dc_if_flags) &
3883 				(IFF_PROMISC | IFF_ALLMULTI);
3884 
3885 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3886 				if (need_setfilt)
3887 					dc_setfilt(sc);
3888 			} else {
3889 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3890 				dc_init_locked(sc);
3891 			}
3892 		} else {
3893 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3894 				dc_stop(sc);
3895 		}
3896 		sc->dc_if_flags = ifp->if_flags;
3897 		DC_UNLOCK(sc);
3898 		break;
3899 	case SIOCADDMULTI:
3900 	case SIOCDELMULTI:
3901 		DC_LOCK(sc);
3902 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3903 			dc_setfilt(sc);
3904 		DC_UNLOCK(sc);
3905 		break;
3906 	case SIOCGIFMEDIA:
3907 	case SIOCSIFMEDIA:
3908 		mii = device_get_softc(sc->dc_miibus);
3909 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
3910 		break;
3911 	case SIOCSIFCAP:
3912 #ifdef DEVICE_POLLING
3913 		if (ifr->ifr_reqcap & IFCAP_POLLING &&
3914 		    !(ifp->if_capenable & IFCAP_POLLING)) {
3915 			error = ether_poll_register(dc_poll, ifp);
3916 			if (error)
3917 				return(error);
3918 			DC_LOCK(sc);
3919 			/* Disable interrupts */
3920 			CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3921 			ifp->if_capenable |= IFCAP_POLLING;
3922 			DC_UNLOCK(sc);
3923 			return (error);
3924 		}
3925 		if (!(ifr->ifr_reqcap & IFCAP_POLLING) &&
3926 		    ifp->if_capenable & IFCAP_POLLING) {
3927 			error = ether_poll_deregister(ifp);
3928 			/* Enable interrupts. */
3929 			DC_LOCK(sc);
3930 			CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3931 			ifp->if_capenable &= ~IFCAP_POLLING;
3932 			DC_UNLOCK(sc);
3933 			return (error);
3934 		}
3935 #endif /* DEVICE_POLLING */
3936 		break;
3937 	default:
3938 		error = ether_ioctl(ifp, command, data);
3939 		break;
3940 	}
3941 
3942 	return (error);
3943 }
3944 
3945 static void
3946 dc_watchdog(void *xsc)
3947 {
3948 	struct dc_softc *sc = xsc;
3949 	struct ifnet *ifp;
3950 
3951 	DC_LOCK_ASSERT(sc);
3952 
3953 	if (sc->dc_wdog_timer == 0 || --sc->dc_wdog_timer != 0) {
3954 		callout_reset(&sc->dc_wdog_ch, hz, dc_watchdog, sc);
3955 		return;
3956 	}
3957 
3958 	ifp = sc->dc_ifp;
3959 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3960 	device_printf(sc->dc_dev, "watchdog timeout\n");
3961 
3962 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3963 	dc_init_locked(sc);
3964 
3965 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3966 		dc_start_locked(ifp);
3967 }
3968 
3969 /*
3970  * Stop the adapter and free any mbufs allocated to the
3971  * RX and TX lists.
3972  */
3973 static void
3974 dc_stop(struct dc_softc *sc)
3975 {
3976 	struct ifnet *ifp;
3977 	struct dc_list_data *ld;
3978 	struct dc_chain_data *cd;
3979 	int i;
3980 	uint32_t ctl, netcfg;
3981 
3982 	DC_LOCK_ASSERT(sc);
3983 
3984 	ifp = sc->dc_ifp;
3985 	ld = &sc->dc_ldata;
3986 	cd = &sc->dc_cdata;
3987 
3988 	callout_stop(&sc->dc_stat_ch);
3989 	callout_stop(&sc->dc_wdog_ch);
3990 	sc->dc_wdog_timer = 0;
3991 	sc->dc_link = 0;
3992 
3993 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3994 
3995 	netcfg = CSR_READ_4(sc, DC_NETCFG);
3996 	if (netcfg & (DC_NETCFG_RX_ON | DC_NETCFG_TX_ON))
3997 		CSR_WRITE_4(sc, DC_NETCFG,
3998 		   netcfg & ~(DC_NETCFG_RX_ON | DC_NETCFG_TX_ON));
3999 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
4000 	/* Wait the completion of TX/RX SM. */
4001 	if (netcfg & (DC_NETCFG_RX_ON | DC_NETCFG_TX_ON))
4002 		dc_netcfg_wait(sc);
4003 
4004 	CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
4005 	CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
4006 
4007 	/*
4008 	 * Free data in the RX lists.
4009 	 */
4010 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
4011 		if (cd->dc_rx_chain[i] != NULL) {
4012 			bus_dmamap_sync(sc->dc_rx_mtag,
4013 			    cd->dc_rx_map[i], BUS_DMASYNC_POSTREAD);
4014 			bus_dmamap_unload(sc->dc_rx_mtag,
4015 			    cd->dc_rx_map[i]);
4016 			m_freem(cd->dc_rx_chain[i]);
4017 			cd->dc_rx_chain[i] = NULL;
4018 		}
4019 	}
4020 	bzero(ld->dc_rx_list, DC_RX_LIST_SZ);
4021 	bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_rx_lmap,
4022 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4023 
4024 	/*
4025 	 * Free the TX list buffers.
4026 	 */
4027 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
4028 		if (cd->dc_tx_chain[i] != NULL) {
4029 			ctl = le32toh(ld->dc_tx_list[i].dc_ctl);
4030 			if (ctl & DC_TXCTL_SETUP) {
4031 				bus_dmamap_sync(sc->dc_stag, sc->dc_smap,
4032 				    BUS_DMASYNC_POSTWRITE);
4033 			} else {
4034 				bus_dmamap_sync(sc->dc_tx_mtag,
4035 				    cd->dc_tx_map[i], BUS_DMASYNC_POSTWRITE);
4036 				bus_dmamap_unload(sc->dc_tx_mtag,
4037 				    cd->dc_tx_map[i]);
4038 				m_freem(cd->dc_tx_chain[i]);
4039 			}
4040 			cd->dc_tx_chain[i] = NULL;
4041 		}
4042 	}
4043 	bzero(ld->dc_tx_list, DC_TX_LIST_SZ);
4044 	bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap,
4045 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4046 }
4047 
4048 /*
4049  * Device suspend routine.  Stop the interface and save some PCI
4050  * settings in case the BIOS doesn't restore them properly on
4051  * resume.
4052  */
4053 static int
4054 dc_suspend(device_t dev)
4055 {
4056 	struct dc_softc *sc;
4057 
4058 	sc = device_get_softc(dev);
4059 	DC_LOCK(sc);
4060 	dc_stop(sc);
4061 	sc->suspended = 1;
4062 	DC_UNLOCK(sc);
4063 
4064 	return (0);
4065 }
4066 
4067 /*
4068  * Device resume routine.  Restore some PCI settings in case the BIOS
4069  * doesn't, re-enable busmastering, and restart the interface if
4070  * appropriate.
4071  */
4072 static int
4073 dc_resume(device_t dev)
4074 {
4075 	struct dc_softc *sc;
4076 	struct ifnet *ifp;
4077 
4078 	sc = device_get_softc(dev);
4079 	ifp = sc->dc_ifp;
4080 
4081 	/* reinitialize interface if necessary */
4082 	DC_LOCK(sc);
4083 	if (ifp->if_flags & IFF_UP)
4084 		dc_init_locked(sc);
4085 
4086 	sc->suspended = 0;
4087 	DC_UNLOCK(sc);
4088 
4089 	return (0);
4090 }
4091 
4092 /*
4093  * Stop all chip I/O so that the kernel's probe routines don't
4094  * get confused by errant DMAs when rebooting.
4095  */
4096 static int
4097 dc_shutdown(device_t dev)
4098 {
4099 	struct dc_softc *sc;
4100 
4101 	sc = device_get_softc(dev);
4102 
4103 	DC_LOCK(sc);
4104 	dc_stop(sc);
4105 	DC_UNLOCK(sc);
4106 
4107 	return (0);
4108 }
4109 
4110 static int
4111 dc_check_multiport(struct dc_softc *sc)
4112 {
4113 	struct dc_softc *dsc;
4114 	devclass_t dc;
4115 	device_t child;
4116 	uint8_t *eaddr;
4117 	int unit;
4118 
4119 	dc = devclass_find("dc");
4120 	for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
4121 		child = devclass_get_device(dc, unit);
4122 		if (child == NULL)
4123 			continue;
4124 		if (child == sc->dc_dev)
4125 			continue;
4126 		if (device_get_parent(child) != device_get_parent(sc->dc_dev))
4127 			continue;
4128 		if (unit > device_get_unit(sc->dc_dev))
4129 			continue;
4130 		if (device_is_attached(child) == 0)
4131 			continue;
4132 		dsc = device_get_softc(child);
4133 		device_printf(sc->dc_dev,
4134 		    "Using station address of %s as base\n",
4135 		    device_get_nameunit(child));
4136 		bcopy(dsc->dc_eaddr, sc->dc_eaddr, ETHER_ADDR_LEN);
4137 		eaddr = (uint8_t *)sc->dc_eaddr;
4138 		eaddr[5]++;
4139 		/* Prepare SROM to parse again. */
4140 		if (DC_IS_INTEL(sc) && dsc->dc_srom != NULL &&
4141 		    sc->dc_romwidth != 0) {
4142 			free(sc->dc_srom, M_DEVBUF);
4143 			sc->dc_romwidth = dsc->dc_romwidth;
4144 			sc->dc_srom = malloc(DC_ROM_SIZE(sc->dc_romwidth),
4145 			    M_DEVBUF, M_NOWAIT);
4146 			if (sc->dc_srom == NULL) {
4147 				device_printf(sc->dc_dev,
4148 				    "Could not allocate SROM buffer\n");
4149 				return (ENOMEM);
4150 			}
4151 			bcopy(dsc->dc_srom, sc->dc_srom,
4152 			    DC_ROM_SIZE(sc->dc_romwidth));
4153 		}
4154 		return (0);
4155 	}
4156 	return (ENOENT);
4157 }
4158