xref: /freebsd/sys/dev/cxgbe/tom/t4_tom.c (revision f9fd7337f63698f33239c58c07bf430198235a22)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2012 Chelsio Communications, Inc.
5  * All rights reserved.
6  * Written by: Navdeep Parhar <np@FreeBSD.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include "opt_inet.h"
34 #include "opt_inet6.h"
35 #include "opt_kern_tls.h"
36 #include "opt_ratelimit.h"
37 
38 #include <sys/param.h>
39 #include <sys/types.h>
40 #include <sys/systm.h>
41 #include <sys/kernel.h>
42 #include <sys/ktr.h>
43 #include <sys/lock.h>
44 #include <sys/limits.h>
45 #include <sys/module.h>
46 #include <sys/protosw.h>
47 #include <sys/domain.h>
48 #include <sys/refcount.h>
49 #include <sys/rmlock.h>
50 #include <sys/socket.h>
51 #include <sys/socketvar.h>
52 #include <sys/sysctl.h>
53 #include <sys/taskqueue.h>
54 #include <net/if.h>
55 #include <net/if_var.h>
56 #include <net/if_types.h>
57 #include <net/if_vlan_var.h>
58 #include <netinet/in.h>
59 #include <netinet/in_pcb.h>
60 #include <netinet/in_var.h>
61 #include <netinet/ip.h>
62 #include <netinet/ip6.h>
63 #include <netinet6/scope6_var.h>
64 #define TCPSTATES
65 #include <netinet/tcp_fsm.h>
66 #include <netinet/tcp_timer.h>
67 #include <netinet/tcp_var.h>
68 #include <netinet/toecore.h>
69 #include <netinet/cc/cc.h>
70 
71 #ifdef TCP_OFFLOAD
72 #include "common/common.h"
73 #include "common/t4_msg.h"
74 #include "common/t4_regs.h"
75 #include "common/t4_regs_values.h"
76 #include "common/t4_tcb.h"
77 #include "t4_clip.h"
78 #include "tom/t4_tom_l2t.h"
79 #include "tom/t4_tom.h"
80 #include "tom/t4_tls.h"
81 
82 static struct protosw toe_protosw;
83 static struct pr_usrreqs toe_usrreqs;
84 
85 static struct protosw toe6_protosw;
86 static struct pr_usrreqs toe6_usrreqs;
87 
88 /* Module ops */
89 static int t4_tom_mod_load(void);
90 static int t4_tom_mod_unload(void);
91 static int t4_tom_modevent(module_t, int, void *);
92 
93 /* ULD ops and helpers */
94 static int t4_tom_activate(struct adapter *);
95 static int t4_tom_deactivate(struct adapter *);
96 
97 static struct uld_info tom_uld_info = {
98 	.uld_id = ULD_TOM,
99 	.activate = t4_tom_activate,
100 	.deactivate = t4_tom_deactivate,
101 };
102 
103 static void release_offload_resources(struct toepcb *);
104 static int alloc_tid_tabs(struct tid_info *);
105 static void free_tid_tabs(struct tid_info *);
106 static void free_tom_data(struct adapter *, struct tom_data *);
107 static void reclaim_wr_resources(void *, int);
108 
109 struct toepcb *
110 alloc_toepcb(struct vi_info *vi, int flags)
111 {
112 	struct port_info *pi = vi->pi;
113 	struct adapter *sc = pi->adapter;
114 	struct toepcb *toep;
115 	int tx_credits, txsd_total, len;
116 
117 	/*
118 	 * The firmware counts tx work request credits in units of 16 bytes
119 	 * each.  Reserve room for an ABORT_REQ so the driver never has to worry
120 	 * about tx credits if it wants to abort a connection.
121 	 */
122 	tx_credits = sc->params.ofldq_wr_cred;
123 	tx_credits -= howmany(sizeof(struct cpl_abort_req), 16);
124 
125 	/*
126 	 * Shortest possible tx work request is a fw_ofld_tx_data_wr + 1 byte
127 	 * immediate payload, and firmware counts tx work request credits in
128 	 * units of 16 byte.  Calculate the maximum work requests possible.
129 	 */
130 	txsd_total = tx_credits /
131 	    howmany(sizeof(struct fw_ofld_tx_data_wr) + 1, 16);
132 
133 	len = offsetof(struct toepcb, txsd) +
134 	    txsd_total * sizeof(struct ofld_tx_sdesc);
135 
136 	toep = malloc(len, M_CXGBE, M_ZERO | flags);
137 	if (toep == NULL)
138 		return (NULL);
139 
140 	refcount_init(&toep->refcount, 1);
141 	toep->td = sc->tom_softc;
142 	toep->vi = vi;
143 	toep->tid = -1;
144 	toep->tx_total = tx_credits;
145 	toep->tx_credits = tx_credits;
146 	mbufq_init(&toep->ulp_pduq, INT_MAX);
147 	mbufq_init(&toep->ulp_pdu_reclaimq, INT_MAX);
148 	toep->txsd_total = txsd_total;
149 	toep->txsd_avail = txsd_total;
150 	toep->txsd_pidx = 0;
151 	toep->txsd_cidx = 0;
152 	aiotx_init_toep(toep);
153 
154 	return (toep);
155 }
156 
157 /*
158  * Initialize a toepcb after its params have been filled out.
159  */
160 int
161 init_toepcb(struct vi_info *vi, struct toepcb *toep)
162 {
163 	struct conn_params *cp = &toep->params;
164 	struct port_info *pi = vi->pi;
165 	struct adapter *sc = pi->adapter;
166 	struct tx_cl_rl_params *tc;
167 
168 	if (cp->tc_idx >= 0 && cp->tc_idx < sc->chip_params->nsched_cls) {
169 		tc = &pi->sched_params->cl_rl[cp->tc_idx];
170 		mtx_lock(&sc->tc_lock);
171 		if (tc->flags & CLRL_ERR) {
172 			log(LOG_ERR,
173 			    "%s: failed to associate traffic class %u with tid %u\n",
174 			    device_get_nameunit(vi->dev), cp->tc_idx,
175 			    toep->tid);
176 			cp->tc_idx = -1;
177 		} else {
178 			tc->refcount++;
179 		}
180 		mtx_unlock(&sc->tc_lock);
181 	}
182 	toep->ofld_txq = &sc->sge.ofld_txq[cp->txq_idx];
183 	toep->ofld_rxq = &sc->sge.ofld_rxq[cp->rxq_idx];
184 	toep->ctrlq = &sc->sge.ctrlq[pi->port_id];
185 
186 	tls_init_toep(toep);
187 	if (ulp_mode(toep) == ULP_MODE_TCPDDP)
188 		ddp_init_toep(toep);
189 
190 	toep->flags |= TPF_INITIALIZED;
191 
192 	return (0);
193 }
194 
195 struct toepcb *
196 hold_toepcb(struct toepcb *toep)
197 {
198 
199 	refcount_acquire(&toep->refcount);
200 	return (toep);
201 }
202 
203 void
204 free_toepcb(struct toepcb *toep)
205 {
206 
207 	if (refcount_release(&toep->refcount) == 0)
208 		return;
209 
210 	KASSERT(!(toep->flags & TPF_ATTACHED),
211 	    ("%s: attached to an inpcb", __func__));
212 	KASSERT(!(toep->flags & TPF_CPL_PENDING),
213 	    ("%s: CPL pending", __func__));
214 
215 	if (toep->flags & TPF_INITIALIZED) {
216 		if (ulp_mode(toep) == ULP_MODE_TCPDDP)
217 			ddp_uninit_toep(toep);
218 		tls_uninit_toep(toep);
219 	}
220 	free(toep, M_CXGBE);
221 }
222 
223 /*
224  * Set up the socket for TCP offload.
225  */
226 void
227 offload_socket(struct socket *so, struct toepcb *toep)
228 {
229 	struct tom_data *td = toep->td;
230 	struct inpcb *inp = sotoinpcb(so);
231 	struct tcpcb *tp = intotcpcb(inp);
232 	struct sockbuf *sb;
233 
234 	INP_WLOCK_ASSERT(inp);
235 
236 	/* Update socket */
237 	sb = &so->so_snd;
238 	SOCKBUF_LOCK(sb);
239 	sb->sb_flags |= SB_NOCOALESCE;
240 	SOCKBUF_UNLOCK(sb);
241 	sb = &so->so_rcv;
242 	SOCKBUF_LOCK(sb);
243 	sb->sb_flags |= SB_NOCOALESCE;
244 	if (inp->inp_vflag & INP_IPV6)
245 		so->so_proto = &toe6_protosw;
246 	else
247 		so->so_proto = &toe_protosw;
248 	SOCKBUF_UNLOCK(sb);
249 
250 	/* Update TCP PCB */
251 	tp->tod = &td->tod;
252 	tp->t_toe = toep;
253 	tp->t_flags |= TF_TOE;
254 
255 	/* Install an extra hold on inp */
256 	toep->inp = inp;
257 	toep->flags |= TPF_ATTACHED;
258 	in_pcbref(inp);
259 
260 	/* Add the TOE PCB to the active list */
261 	mtx_lock(&td->toep_list_lock);
262 	TAILQ_INSERT_HEAD(&td->toep_list, toep, link);
263 	mtx_unlock(&td->toep_list_lock);
264 }
265 
266 /* This is _not_ the normal way to "unoffload" a socket. */
267 void
268 undo_offload_socket(struct socket *so)
269 {
270 	struct inpcb *inp = sotoinpcb(so);
271 	struct tcpcb *tp = intotcpcb(inp);
272 	struct toepcb *toep = tp->t_toe;
273 	struct tom_data *td = toep->td;
274 	struct sockbuf *sb;
275 
276 	INP_WLOCK_ASSERT(inp);
277 
278 	sb = &so->so_snd;
279 	SOCKBUF_LOCK(sb);
280 	sb->sb_flags &= ~SB_NOCOALESCE;
281 	SOCKBUF_UNLOCK(sb);
282 	sb = &so->so_rcv;
283 	SOCKBUF_LOCK(sb);
284 	sb->sb_flags &= ~SB_NOCOALESCE;
285 	SOCKBUF_UNLOCK(sb);
286 
287 	tp->tod = NULL;
288 	tp->t_toe = NULL;
289 	tp->t_flags &= ~TF_TOE;
290 
291 	toep->inp = NULL;
292 	toep->flags &= ~TPF_ATTACHED;
293 	if (in_pcbrele_wlocked(inp))
294 		panic("%s: inp freed.", __func__);
295 
296 	mtx_lock(&td->toep_list_lock);
297 	TAILQ_REMOVE(&td->toep_list, toep, link);
298 	mtx_unlock(&td->toep_list_lock);
299 }
300 
301 static void
302 release_offload_resources(struct toepcb *toep)
303 {
304 	struct tom_data *td = toep->td;
305 	struct adapter *sc = td_adapter(td);
306 	int tid = toep->tid;
307 
308 	KASSERT(!(toep->flags & TPF_CPL_PENDING),
309 	    ("%s: %p has CPL pending.", __func__, toep));
310 	KASSERT(!(toep->flags & TPF_ATTACHED),
311 	    ("%s: %p is still attached.", __func__, toep));
312 
313 	CTR5(KTR_CXGBE, "%s: toep %p (tid %d, l2te %p, ce %p)",
314 	    __func__, toep, tid, toep->l2te, toep->ce);
315 
316 	/*
317 	 * These queues should have been emptied at approximately the same time
318 	 * that a normal connection's socket's so_snd would have been purged or
319 	 * drained.  Do _not_ clean up here.
320 	 */
321 	MPASS(mbufq_len(&toep->ulp_pduq) == 0);
322 	MPASS(mbufq_len(&toep->ulp_pdu_reclaimq) == 0);
323 #ifdef INVARIANTS
324 	if (ulp_mode(toep) == ULP_MODE_TCPDDP)
325 		ddp_assert_empty(toep);
326 #endif
327 	MPASS(TAILQ_EMPTY(&toep->aiotx_jobq));
328 
329 	if (toep->l2te)
330 		t4_l2t_release(toep->l2te);
331 
332 	if (tid >= 0) {
333 		remove_tid(sc, tid, toep->ce ? 2 : 1);
334 		release_tid(sc, tid, toep->ctrlq);
335 	}
336 
337 	if (toep->ce)
338 		t4_release_lip(sc, toep->ce);
339 
340 	if (toep->params.tc_idx != -1)
341 		t4_release_cl_rl(sc, toep->vi->pi->port_id, toep->params.tc_idx);
342 
343 	mtx_lock(&td->toep_list_lock);
344 	TAILQ_REMOVE(&td->toep_list, toep, link);
345 	mtx_unlock(&td->toep_list_lock);
346 
347 	free_toepcb(toep);
348 }
349 
350 /*
351  * The kernel is done with the TCP PCB and this is our opportunity to unhook the
352  * toepcb hanging off of it.  If the TOE driver is also done with the toepcb (no
353  * pending CPL) then it is time to release all resources tied to the toepcb.
354  *
355  * Also gets called when an offloaded active open fails and the TOM wants the
356  * kernel to take the TCP PCB back.
357  */
358 static void
359 t4_pcb_detach(struct toedev *tod __unused, struct tcpcb *tp)
360 {
361 #if defined(KTR) || defined(INVARIANTS)
362 	struct inpcb *inp = tp->t_inpcb;
363 #endif
364 	struct toepcb *toep = tp->t_toe;
365 
366 	INP_WLOCK_ASSERT(inp);
367 
368 	KASSERT(toep != NULL, ("%s: toep is NULL", __func__));
369 	KASSERT(toep->flags & TPF_ATTACHED,
370 	    ("%s: not attached", __func__));
371 
372 #ifdef KTR
373 	if (tp->t_state == TCPS_SYN_SENT) {
374 		CTR6(KTR_CXGBE, "%s: atid %d, toep %p (0x%x), inp %p (0x%x)",
375 		    __func__, toep->tid, toep, toep->flags, inp,
376 		    inp->inp_flags);
377 	} else {
378 		CTR6(KTR_CXGBE,
379 		    "t4_pcb_detach: tid %d (%s), toep %p (0x%x), inp %p (0x%x)",
380 		    toep->tid, tcpstates[tp->t_state], toep, toep->flags, inp,
381 		    inp->inp_flags);
382 	}
383 #endif
384 
385 	tp->t_toe = NULL;
386 	tp->t_flags &= ~TF_TOE;
387 	toep->flags &= ~TPF_ATTACHED;
388 
389 	if (!(toep->flags & TPF_CPL_PENDING))
390 		release_offload_resources(toep);
391 }
392 
393 /*
394  * setsockopt handler.
395  */
396 static void
397 t4_ctloutput(struct toedev *tod, struct tcpcb *tp, int dir, int name)
398 {
399 	struct adapter *sc = tod->tod_softc;
400 	struct toepcb *toep = tp->t_toe;
401 
402 	if (dir == SOPT_GET)
403 		return;
404 
405 	CTR4(KTR_CXGBE, "%s: tp %p, dir %u, name %u", __func__, tp, dir, name);
406 
407 	switch (name) {
408 	case TCP_NODELAY:
409 		if (tp->t_state != TCPS_ESTABLISHED)
410 			break;
411 		toep->params.nagle = tp->t_flags & TF_NODELAY ? 0 : 1;
412 		t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_T_FLAGS,
413 		    V_TF_NAGLE(1), V_TF_NAGLE(toep->params.nagle), 0, 0);
414 		break;
415 	default:
416 		break;
417 	}
418 }
419 
420 static inline uint64_t
421 get_tcb_tflags(const uint64_t *tcb)
422 {
423 
424 	return ((be64toh(tcb[14]) << 32) | (be64toh(tcb[15]) >> 32));
425 }
426 
427 static inline uint32_t
428 get_tcb_field(const uint64_t *tcb, u_int word, uint32_t mask, u_int shift)
429 {
430 #define LAST_WORD ((TCB_SIZE / 4) - 1)
431 	uint64_t t1, t2;
432 	int flit_idx;
433 
434 	MPASS(mask != 0);
435 	MPASS(word <= LAST_WORD);
436 	MPASS(shift < 32);
437 
438 	flit_idx = (LAST_WORD - word) / 2;
439 	if (word & 0x1)
440 		shift += 32;
441 	t1 = be64toh(tcb[flit_idx]) >> shift;
442 	t2 = 0;
443 	if (fls(mask) > 64 - shift) {
444 		/*
445 		 * Will spill over into the next logical flit, which is the flit
446 		 * before this one.  The flit_idx before this one must be valid.
447 		 */
448 		MPASS(flit_idx > 0);
449 		t2 = be64toh(tcb[flit_idx - 1]) << (64 - shift);
450 	}
451 	return ((t2 | t1) & mask);
452 #undef LAST_WORD
453 }
454 #define GET_TCB_FIELD(tcb, F) \
455     get_tcb_field(tcb, W_TCB_##F, M_TCB_##F, S_TCB_##F)
456 
457 /*
458  * Issues a CPL_GET_TCB to read the entire TCB for the tid.
459  */
460 static int
461 send_get_tcb(struct adapter *sc, u_int tid)
462 {
463 	struct cpl_get_tcb *cpl;
464 	struct wrq_cookie cookie;
465 
466 	MPASS(tid < sc->tids.ntids);
467 
468 	cpl = start_wrq_wr(&sc->sge.ctrlq[0], howmany(sizeof(*cpl), 16),
469 	    &cookie);
470 	if (__predict_false(cpl == NULL))
471 		return (ENOMEM);
472 	bzero(cpl, sizeof(*cpl));
473 	INIT_TP_WR(cpl, tid);
474 	OPCODE_TID(cpl) = htobe32(MK_OPCODE_TID(CPL_GET_TCB, tid));
475 	cpl->reply_ctrl = htobe16(V_REPLY_CHAN(0) |
476 	    V_QUEUENO(sc->sge.ofld_rxq[0].iq.cntxt_id));
477 	cpl->cookie = 0xff;
478 	commit_wrq_wr(&sc->sge.ctrlq[0], cpl, &cookie);
479 
480 	return (0);
481 }
482 
483 static struct tcb_histent *
484 alloc_tcb_histent(struct adapter *sc, u_int tid, int flags)
485 {
486 	struct tcb_histent *te;
487 
488 	MPASS(flags == M_NOWAIT || flags == M_WAITOK);
489 
490 	te = malloc(sizeof(*te), M_CXGBE, M_ZERO | flags);
491 	if (te == NULL)
492 		return (NULL);
493 	mtx_init(&te->te_lock, "TCB entry", NULL, MTX_DEF);
494 	callout_init_mtx(&te->te_callout, &te->te_lock, 0);
495 	te->te_adapter = sc;
496 	te->te_tid = tid;
497 
498 	return (te);
499 }
500 
501 static void
502 free_tcb_histent(struct tcb_histent *te)
503 {
504 
505 	mtx_destroy(&te->te_lock);
506 	free(te, M_CXGBE);
507 }
508 
509 /*
510  * Start tracking the tid in the TCB history.
511  */
512 int
513 add_tid_to_history(struct adapter *sc, u_int tid)
514 {
515 	struct tcb_histent *te = NULL;
516 	struct tom_data *td = sc->tom_softc;
517 	int rc;
518 
519 	MPASS(tid < sc->tids.ntids);
520 
521 	if (td->tcb_history == NULL)
522 		return (ENXIO);
523 
524 	rw_wlock(&td->tcb_history_lock);
525 	if (td->tcb_history[tid] != NULL) {
526 		rc = EEXIST;
527 		goto done;
528 	}
529 	te = alloc_tcb_histent(sc, tid, M_NOWAIT);
530 	if (te == NULL) {
531 		rc = ENOMEM;
532 		goto done;
533 	}
534 	mtx_lock(&te->te_lock);
535 	rc = send_get_tcb(sc, tid);
536 	if (rc == 0) {
537 		te->te_flags |= TE_RPL_PENDING;
538 		td->tcb_history[tid] = te;
539 	} else {
540 		free(te, M_CXGBE);
541 	}
542 	mtx_unlock(&te->te_lock);
543 done:
544 	rw_wunlock(&td->tcb_history_lock);
545 	return (rc);
546 }
547 
548 static void
549 remove_tcb_histent(struct tcb_histent *te)
550 {
551 	struct adapter *sc = te->te_adapter;
552 	struct tom_data *td = sc->tom_softc;
553 
554 	rw_assert(&td->tcb_history_lock, RA_WLOCKED);
555 	mtx_assert(&te->te_lock, MA_OWNED);
556 	MPASS(td->tcb_history[te->te_tid] == te);
557 
558 	td->tcb_history[te->te_tid] = NULL;
559 	free_tcb_histent(te);
560 	rw_wunlock(&td->tcb_history_lock);
561 }
562 
563 static inline struct tcb_histent *
564 lookup_tcb_histent(struct adapter *sc, u_int tid, bool addrem)
565 {
566 	struct tcb_histent *te;
567 	struct tom_data *td = sc->tom_softc;
568 
569 	MPASS(tid < sc->tids.ntids);
570 
571 	if (td->tcb_history == NULL)
572 		return (NULL);
573 
574 	if (addrem)
575 		rw_wlock(&td->tcb_history_lock);
576 	else
577 		rw_rlock(&td->tcb_history_lock);
578 	te = td->tcb_history[tid];
579 	if (te != NULL) {
580 		mtx_lock(&te->te_lock);
581 		return (te);	/* with both locks held */
582 	}
583 	if (addrem)
584 		rw_wunlock(&td->tcb_history_lock);
585 	else
586 		rw_runlock(&td->tcb_history_lock);
587 
588 	return (te);
589 }
590 
591 static inline void
592 release_tcb_histent(struct tcb_histent *te)
593 {
594 	struct adapter *sc = te->te_adapter;
595 	struct tom_data *td = sc->tom_softc;
596 
597 	mtx_assert(&te->te_lock, MA_OWNED);
598 	mtx_unlock(&te->te_lock);
599 	rw_assert(&td->tcb_history_lock, RA_RLOCKED);
600 	rw_runlock(&td->tcb_history_lock);
601 }
602 
603 static void
604 request_tcb(void *arg)
605 {
606 	struct tcb_histent *te = arg;
607 
608 	mtx_assert(&te->te_lock, MA_OWNED);
609 
610 	/* Noone else is supposed to update the histent. */
611 	MPASS(!(te->te_flags & TE_RPL_PENDING));
612 	if (send_get_tcb(te->te_adapter, te->te_tid) == 0)
613 		te->te_flags |= TE_RPL_PENDING;
614 	else
615 		callout_schedule(&te->te_callout, hz / 100);
616 }
617 
618 static void
619 update_tcb_histent(struct tcb_histent *te, const uint64_t *tcb)
620 {
621 	struct tom_data *td = te->te_adapter->tom_softc;
622 	uint64_t tflags = get_tcb_tflags(tcb);
623 	uint8_t sample = 0;
624 
625 	if (GET_TCB_FIELD(tcb, SND_MAX_RAW) != GET_TCB_FIELD(tcb, SND_UNA_RAW)) {
626 		if (GET_TCB_FIELD(tcb, T_RXTSHIFT) != 0)
627 			sample |= TS_RTO;
628 		if (GET_TCB_FIELD(tcb, T_DUPACKS) != 0)
629 			sample |= TS_DUPACKS;
630 		if (GET_TCB_FIELD(tcb, T_DUPACKS) >= td->dupack_threshold)
631 			sample |= TS_FASTREXMT;
632 	}
633 
634 	if (GET_TCB_FIELD(tcb, SND_MAX_RAW) != 0) {
635 		uint32_t snd_wnd;
636 
637 		sample |= TS_SND_BACKLOGGED;	/* for whatever reason. */
638 
639 		snd_wnd = GET_TCB_FIELD(tcb, RCV_ADV);
640 		if (tflags & V_TF_RECV_SCALE(1))
641 			snd_wnd <<= GET_TCB_FIELD(tcb, RCV_SCALE);
642 		if (GET_TCB_FIELD(tcb, SND_CWND) < snd_wnd)
643 			sample |= TS_CWND_LIMITED;	/* maybe due to CWND */
644 	}
645 
646 	if (tflags & V_TF_CCTRL_ECN(1)) {
647 
648 		/*
649 		 * CE marker on incoming IP hdr, echoing ECE back in the TCP
650 		 * hdr.  Indicates congestion somewhere on the way from the peer
651 		 * to this node.
652 		 */
653 		if (tflags & V_TF_CCTRL_ECE(1))
654 			sample |= TS_ECN_ECE;
655 
656 		/*
657 		 * ECE seen and CWR sent (or about to be sent).  Might indicate
658 		 * congestion on the way to the peer.  This node is reducing its
659 		 * congestion window in response.
660 		 */
661 		if (tflags & (V_TF_CCTRL_CWR(1) | V_TF_CCTRL_RFR(1)))
662 			sample |= TS_ECN_CWR;
663 	}
664 
665 	te->te_sample[te->te_pidx] = sample;
666 	if (++te->te_pidx == nitems(te->te_sample))
667 		te->te_pidx = 0;
668 	memcpy(te->te_tcb, tcb, TCB_SIZE);
669 	te->te_flags |= TE_ACTIVE;
670 }
671 
672 static int
673 do_get_tcb_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
674 {
675 	struct adapter *sc = iq->adapter;
676 	const struct cpl_get_tcb_rpl *cpl = mtod(m, const void *);
677 	const uint64_t *tcb = (const uint64_t *)(const void *)(cpl + 1);
678 	struct tcb_histent *te;
679 	const u_int tid = GET_TID(cpl);
680 	bool remove;
681 
682 	remove = GET_TCB_FIELD(tcb, T_STATE) == TCPS_CLOSED;
683 	te = lookup_tcb_histent(sc, tid, remove);
684 	if (te == NULL) {
685 		/* Not in the history.  Who issued the GET_TCB for this? */
686 		device_printf(sc->dev, "tcb %u: flags 0x%016jx, state %u, "
687 		    "srtt %u, sscale %u, rscale %u, cookie 0x%x\n", tid,
688 		    (uintmax_t)get_tcb_tflags(tcb), GET_TCB_FIELD(tcb, T_STATE),
689 		    GET_TCB_FIELD(tcb, T_SRTT), GET_TCB_FIELD(tcb, SND_SCALE),
690 		    GET_TCB_FIELD(tcb, RCV_SCALE), cpl->cookie);
691 		goto done;
692 	}
693 
694 	MPASS(te->te_flags & TE_RPL_PENDING);
695 	te->te_flags &= ~TE_RPL_PENDING;
696 	if (remove) {
697 		remove_tcb_histent(te);
698 	} else {
699 		update_tcb_histent(te, tcb);
700 		callout_reset(&te->te_callout, hz / 10, request_tcb, te);
701 		release_tcb_histent(te);
702 	}
703 done:
704 	m_freem(m);
705 	return (0);
706 }
707 
708 static void
709 fill_tcp_info_from_tcb(struct adapter *sc, uint64_t *tcb, struct tcp_info *ti)
710 {
711 	uint32_t v;
712 
713 	ti->tcpi_state = GET_TCB_FIELD(tcb, T_STATE);
714 
715 	v = GET_TCB_FIELD(tcb, T_SRTT);
716 	ti->tcpi_rtt = tcp_ticks_to_us(sc, v);
717 
718 	v = GET_TCB_FIELD(tcb, T_RTTVAR);
719 	ti->tcpi_rttvar = tcp_ticks_to_us(sc, v);
720 
721 	ti->tcpi_snd_ssthresh = GET_TCB_FIELD(tcb, SND_SSTHRESH);
722 	ti->tcpi_snd_cwnd = GET_TCB_FIELD(tcb, SND_CWND);
723 	ti->tcpi_rcv_nxt = GET_TCB_FIELD(tcb, RCV_NXT);
724 
725 	v = GET_TCB_FIELD(tcb, TX_MAX);
726 	ti->tcpi_snd_nxt = v - GET_TCB_FIELD(tcb, SND_NXT_RAW);
727 
728 	/* Receive window being advertised by us. */
729 	ti->tcpi_rcv_wscale = GET_TCB_FIELD(tcb, SND_SCALE);	/* Yes, SND. */
730 	ti->tcpi_rcv_space = GET_TCB_FIELD(tcb, RCV_WND);
731 
732 	/* Send window */
733 	ti->tcpi_snd_wscale = GET_TCB_FIELD(tcb, RCV_SCALE);	/* Yes, RCV. */
734 	ti->tcpi_snd_wnd = GET_TCB_FIELD(tcb, RCV_ADV);
735 	if (get_tcb_tflags(tcb) & V_TF_RECV_SCALE(1))
736 		ti->tcpi_snd_wnd <<= ti->tcpi_snd_wscale;
737 	else
738 		ti->tcpi_snd_wscale = 0;
739 
740 }
741 
742 static void
743 fill_tcp_info_from_history(struct adapter *sc, struct tcb_histent *te,
744     struct tcp_info *ti)
745 {
746 
747 	fill_tcp_info_from_tcb(sc, te->te_tcb, ti);
748 }
749 
750 /*
751  * Reads the TCB for the given tid using a memory window and copies it to 'buf'
752  * in the same format as CPL_GET_TCB_RPL.
753  */
754 static void
755 read_tcb_using_memwin(struct adapter *sc, u_int tid, uint64_t *buf)
756 {
757 	int i, j, k, rc;
758 	uint32_t addr;
759 	u_char *tcb, tmp;
760 
761 	MPASS(tid < sc->tids.ntids);
762 
763 	addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE) + tid * TCB_SIZE;
764 	rc = read_via_memwin(sc, 2, addr, (uint32_t *)buf, TCB_SIZE);
765 	if (rc != 0)
766 		return;
767 
768 	tcb = (u_char *)buf;
769 	for (i = 0, j = TCB_SIZE - 16; i < j; i += 16, j -= 16) {
770 		for (k = 0; k < 16; k++) {
771 			tmp = tcb[i + k];
772 			tcb[i + k] = tcb[j + k];
773 			tcb[j + k] = tmp;
774 		}
775 	}
776 }
777 
778 static void
779 fill_tcp_info(struct adapter *sc, u_int tid, struct tcp_info *ti)
780 {
781 	uint64_t tcb[TCB_SIZE / sizeof(uint64_t)];
782 	struct tcb_histent *te;
783 
784 	ti->tcpi_toe_tid = tid;
785 	te = lookup_tcb_histent(sc, tid, false);
786 	if (te != NULL) {
787 		fill_tcp_info_from_history(sc, te, ti);
788 		release_tcb_histent(te);
789 	} else {
790 		if (!(sc->debug_flags & DF_DISABLE_TCB_CACHE)) {
791 			/* XXX: tell firmware to flush TCB cache. */
792 		}
793 		read_tcb_using_memwin(sc, tid, tcb);
794 		fill_tcp_info_from_tcb(sc, tcb, ti);
795 	}
796 }
797 
798 /*
799  * Called by the kernel to allow the TOE driver to "refine" values filled up in
800  * the tcp_info for an offloaded connection.
801  */
802 static void
803 t4_tcp_info(struct toedev *tod, struct tcpcb *tp, struct tcp_info *ti)
804 {
805 	struct adapter *sc = tod->tod_softc;
806 	struct toepcb *toep = tp->t_toe;
807 
808 	INP_WLOCK_ASSERT(tp->t_inpcb);
809 	MPASS(ti != NULL);
810 
811 	fill_tcp_info(sc, toep->tid, ti);
812 }
813 
814 #ifdef KERN_TLS
815 static int
816 t4_alloc_tls_session(struct toedev *tod, struct tcpcb *tp,
817     struct ktls_session *tls, int direction)
818 {
819 	struct toepcb *toep = tp->t_toe;
820 
821 	INP_WLOCK_ASSERT(tp->t_inpcb);
822 	MPASS(tls != NULL);
823 
824 	return (tls_alloc_ktls(toep, tls, direction));
825 }
826 #endif
827 
828 /*
829  * The TOE driver will not receive any more CPLs for the tid associated with the
830  * toepcb; release the hold on the inpcb.
831  */
832 void
833 final_cpl_received(struct toepcb *toep)
834 {
835 	struct inpcb *inp = toep->inp;
836 
837 	KASSERT(inp != NULL, ("%s: inp is NULL", __func__));
838 	INP_WLOCK_ASSERT(inp);
839 	KASSERT(toep->flags & TPF_CPL_PENDING,
840 	    ("%s: CPL not pending already?", __func__));
841 
842 	CTR6(KTR_CXGBE, "%s: tid %d, toep %p (0x%x), inp %p (0x%x)",
843 	    __func__, toep->tid, toep, toep->flags, inp, inp->inp_flags);
844 
845 	if (ulp_mode(toep) == ULP_MODE_TCPDDP)
846 		release_ddp_resources(toep);
847 	toep->inp = NULL;
848 	toep->flags &= ~TPF_CPL_PENDING;
849 	mbufq_drain(&toep->ulp_pdu_reclaimq);
850 
851 	if (!(toep->flags & TPF_ATTACHED))
852 		release_offload_resources(toep);
853 
854 	if (!in_pcbrele_wlocked(inp))
855 		INP_WUNLOCK(inp);
856 }
857 
858 void
859 insert_tid(struct adapter *sc, int tid, void *ctx, int ntids)
860 {
861 	struct tid_info *t = &sc->tids;
862 
863 	MPASS(tid >= t->tid_base);
864 	MPASS(tid - t->tid_base < t->ntids);
865 
866 	t->tid_tab[tid - t->tid_base] = ctx;
867 	atomic_add_int(&t->tids_in_use, ntids);
868 }
869 
870 void *
871 lookup_tid(struct adapter *sc, int tid)
872 {
873 	struct tid_info *t = &sc->tids;
874 
875 	return (t->tid_tab[tid - t->tid_base]);
876 }
877 
878 void
879 update_tid(struct adapter *sc, int tid, void *ctx)
880 {
881 	struct tid_info *t = &sc->tids;
882 
883 	t->tid_tab[tid - t->tid_base] = ctx;
884 }
885 
886 void
887 remove_tid(struct adapter *sc, int tid, int ntids)
888 {
889 	struct tid_info *t = &sc->tids;
890 
891 	t->tid_tab[tid - t->tid_base] = NULL;
892 	atomic_subtract_int(&t->tids_in_use, ntids);
893 }
894 
895 /*
896  * What mtu_idx to use, given a 4-tuple.  Note that both s->mss and tcp_mssopt
897  * have the MSS that we should advertise in our SYN.  Advertised MSS doesn't
898  * account for any TCP options so the effective MSS (only payload, no headers or
899  * options) could be different.
900  */
901 static int
902 find_best_mtu_idx(struct adapter *sc, struct in_conninfo *inc,
903     struct offload_settings *s)
904 {
905 	unsigned short *mtus = &sc->params.mtus[0];
906 	int i, mss, mtu;
907 
908 	MPASS(inc != NULL);
909 
910 	mss = s->mss > 0 ? s->mss : tcp_mssopt(inc);
911 	if (inc->inc_flags & INC_ISIPV6)
912 		mtu = mss + sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
913 	else
914 		mtu = mss + sizeof(struct ip) + sizeof(struct tcphdr);
915 
916 	for (i = 0; i < NMTUS - 1 && mtus[i + 1] <= mtu; i++)
917 		continue;
918 
919 	return (i);
920 }
921 
922 /*
923  * Determine the receive window size for a socket.
924  */
925 u_long
926 select_rcv_wnd(struct socket *so)
927 {
928 	unsigned long wnd;
929 
930 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
931 
932 	wnd = sbspace(&so->so_rcv);
933 	if (wnd < MIN_RCV_WND)
934 		wnd = MIN_RCV_WND;
935 
936 	return min(wnd, MAX_RCV_WND);
937 }
938 
939 int
940 select_rcv_wscale(void)
941 {
942 	int wscale = 0;
943 	unsigned long space = sb_max;
944 
945 	if (space > MAX_RCV_WND)
946 		space = MAX_RCV_WND;
947 
948 	while (wscale < TCP_MAX_WINSHIFT && (TCP_MAXWIN << wscale) < space)
949 		wscale++;
950 
951 	return (wscale);
952 }
953 
954 __be64
955 calc_options0(struct vi_info *vi, struct conn_params *cp)
956 {
957 	uint64_t opt0 = 0;
958 
959 	opt0 |= F_TCAM_BYPASS;
960 
961 	MPASS(cp->wscale >= 0 && cp->wscale <= M_WND_SCALE);
962 	opt0 |= V_WND_SCALE(cp->wscale);
963 
964 	MPASS(cp->mtu_idx >= 0 && cp->mtu_idx < NMTUS);
965 	opt0 |= V_MSS_IDX(cp->mtu_idx);
966 
967 	MPASS(cp->ulp_mode >= 0 && cp->ulp_mode <= M_ULP_MODE);
968 	opt0 |= V_ULP_MODE(cp->ulp_mode);
969 
970 	MPASS(cp->opt0_bufsize >= 0 && cp->opt0_bufsize <= M_RCV_BUFSIZ);
971 	opt0 |= V_RCV_BUFSIZ(cp->opt0_bufsize);
972 
973 	MPASS(cp->l2t_idx >= 0 && cp->l2t_idx < vi->adapter->vres.l2t.size);
974 	opt0 |= V_L2T_IDX(cp->l2t_idx);
975 
976 	opt0 |= V_SMAC_SEL(vi->smt_idx);
977 	opt0 |= V_TX_CHAN(vi->pi->tx_chan);
978 
979 	MPASS(cp->keepalive == 0 || cp->keepalive == 1);
980 	opt0 |= V_KEEP_ALIVE(cp->keepalive);
981 
982 	MPASS(cp->nagle == 0 || cp->nagle == 1);
983 	opt0 |= V_NAGLE(cp->nagle);
984 
985 	return (htobe64(opt0));
986 }
987 
988 __be32
989 calc_options2(struct vi_info *vi, struct conn_params *cp)
990 {
991 	uint32_t opt2 = 0;
992 	struct port_info *pi = vi->pi;
993 	struct adapter *sc = pi->adapter;
994 
995 	/*
996 	 * rx flow control, rx coalesce, congestion control, and tx pace are all
997 	 * explicitly set by the driver.  On T5+ the ISS is also set by the
998 	 * driver to the value picked by the kernel.
999 	 */
1000 	if (is_t4(sc)) {
1001 		opt2 |= F_RX_FC_VALID | F_RX_COALESCE_VALID;
1002 		opt2 |= F_CONG_CNTRL_VALID | F_PACE_VALID;
1003 	} else {
1004 		opt2 |= F_T5_OPT_2_VALID;	/* all 4 valid */
1005 		opt2 |= F_T5_ISS;		/* ISS provided in CPL */
1006 	}
1007 
1008 	MPASS(cp->sack == 0 || cp->sack == 1);
1009 	opt2 |= V_SACK_EN(cp->sack);
1010 
1011 	MPASS(cp->tstamp == 0 || cp->tstamp == 1);
1012 	opt2 |= V_TSTAMPS_EN(cp->tstamp);
1013 
1014 	if (cp->wscale > 0)
1015 		opt2 |= F_WND_SCALE_EN;
1016 
1017 	MPASS(cp->ecn == 0 || cp->ecn == 1);
1018 	opt2 |= V_CCTRL_ECN(cp->ecn);
1019 
1020 	/* XXX: F_RX_CHANNEL for multiple rx c-chan support goes here. */
1021 
1022 	opt2 |= V_TX_QUEUE(sc->params.tp.tx_modq[pi->tx_chan]);
1023 	opt2 |= V_PACE(0);
1024 	opt2 |= F_RSS_QUEUE_VALID;
1025 	opt2 |= V_RSS_QUEUE(sc->sge.ofld_rxq[cp->rxq_idx].iq.abs_id);
1026 
1027 	MPASS(cp->cong_algo >= 0 && cp->cong_algo <= M_CONG_CNTRL);
1028 	opt2 |= V_CONG_CNTRL(cp->cong_algo);
1029 
1030 	MPASS(cp->rx_coalesce == 0 || cp->rx_coalesce == 1);
1031 	if (cp->rx_coalesce == 1)
1032 		opt2 |= V_RX_COALESCE(M_RX_COALESCE);
1033 
1034 	opt2 |= V_RX_FC_DDP(0) | V_RX_FC_DISABLE(0);
1035 #ifdef USE_DDP_RX_FLOW_CONTROL
1036 	if (cp->ulp_mode == ULP_MODE_TCPDDP)
1037 		opt2 |= F_RX_FC_DDP;
1038 #endif
1039 
1040 	return (htobe32(opt2));
1041 }
1042 
1043 uint64_t
1044 select_ntuple(struct vi_info *vi, struct l2t_entry *e)
1045 {
1046 	struct adapter *sc = vi->adapter;
1047 	struct tp_params *tp = &sc->params.tp;
1048 	uint64_t ntuple = 0;
1049 
1050 	/*
1051 	 * Initialize each of the fields which we care about which are present
1052 	 * in the Compressed Filter Tuple.
1053 	 */
1054 	if (tp->vlan_shift >= 0 && EVL_VLANOFTAG(e->vlan) != CPL_L2T_VLAN_NONE)
1055 		ntuple |= (uint64_t)(F_FT_VLAN_VLD | e->vlan) << tp->vlan_shift;
1056 
1057 	if (tp->port_shift >= 0)
1058 		ntuple |= (uint64_t)e->lport << tp->port_shift;
1059 
1060 	if (tp->protocol_shift >= 0)
1061 		ntuple |= (uint64_t)IPPROTO_TCP << tp->protocol_shift;
1062 
1063 	if (tp->vnic_shift >= 0 && tp->ingress_config & F_VNIC) {
1064 		ntuple |= (uint64_t)(V_FT_VNID_ID_VF(vi->vin) |
1065 		    V_FT_VNID_ID_PF(sc->pf) | V_FT_VNID_ID_VLD(vi->vfvld)) <<
1066 		    tp->vnic_shift;
1067 	}
1068 
1069 	if (is_t4(sc))
1070 		return (htobe32((uint32_t)ntuple));
1071 	else
1072 		return (htobe64(V_FILTER_TUPLE(ntuple)));
1073 }
1074 
1075 static int
1076 is_tls_sock(struct socket *so, struct adapter *sc)
1077 {
1078 	struct inpcb *inp = sotoinpcb(so);
1079 	int i, rc;
1080 
1081 	/* XXX: Eventually add a SO_WANT_TLS socket option perhaps? */
1082 	rc = 0;
1083 	ADAPTER_LOCK(sc);
1084 	for (i = 0; i < sc->tt.num_tls_rx_ports; i++) {
1085 		if (inp->inp_lport == htons(sc->tt.tls_rx_ports[i]) ||
1086 		    inp->inp_fport == htons(sc->tt.tls_rx_ports[i])) {
1087 			rc = 1;
1088 			break;
1089 		}
1090 	}
1091 	ADAPTER_UNLOCK(sc);
1092 	return (rc);
1093 }
1094 
1095 /*
1096  * Initialize various connection parameters.
1097  */
1098 void
1099 init_conn_params(struct vi_info *vi , struct offload_settings *s,
1100     struct in_conninfo *inc, struct socket *so,
1101     const struct tcp_options *tcpopt, int16_t l2t_idx, struct conn_params *cp)
1102 {
1103 	struct port_info *pi = vi->pi;
1104 	struct adapter *sc = pi->adapter;
1105 	struct tom_tunables *tt = &sc->tt;
1106 	struct inpcb *inp = sotoinpcb(so);
1107 	struct tcpcb *tp = intotcpcb(inp);
1108 	u_long wnd;
1109 
1110 	MPASS(s->offload != 0);
1111 
1112 	/* Congestion control algorithm */
1113 	if (s->cong_algo >= 0)
1114 		cp->cong_algo = s->cong_algo & M_CONG_CNTRL;
1115 	else if (sc->tt.cong_algorithm >= 0)
1116 		cp->cong_algo = tt->cong_algorithm & M_CONG_CNTRL;
1117 	else {
1118 		struct cc_algo *cc = CC_ALGO(tp);
1119 
1120 		if (strcasecmp(cc->name, "reno") == 0)
1121 			cp->cong_algo = CONG_ALG_RENO;
1122 		else if (strcasecmp(cc->name, "tahoe") == 0)
1123 			cp->cong_algo = CONG_ALG_TAHOE;
1124 		if (strcasecmp(cc->name, "newreno") == 0)
1125 			cp->cong_algo = CONG_ALG_NEWRENO;
1126 		if (strcasecmp(cc->name, "highspeed") == 0)
1127 			cp->cong_algo = CONG_ALG_HIGHSPEED;
1128 		else {
1129 			/*
1130 			 * Use newreno in case the algorithm selected by the
1131 			 * host stack is not supported by the hardware.
1132 			 */
1133 			cp->cong_algo = CONG_ALG_NEWRENO;
1134 		}
1135 	}
1136 
1137 	/* Tx traffic scheduling class. */
1138 	if (s->sched_class >= 0 &&
1139 	    s->sched_class < sc->chip_params->nsched_cls) {
1140 	    cp->tc_idx = s->sched_class;
1141 	} else
1142 	    cp->tc_idx = -1;
1143 
1144 	/* Nagle's algorithm. */
1145 	if (s->nagle >= 0)
1146 		cp->nagle = s->nagle > 0 ? 1 : 0;
1147 	else
1148 		cp->nagle = tp->t_flags & TF_NODELAY ? 0 : 1;
1149 
1150 	/* TCP Keepalive. */
1151 	if (V_tcp_always_keepalive || so_options_get(so) & SO_KEEPALIVE)
1152 		cp->keepalive = 1;
1153 	else
1154 		cp->keepalive = 0;
1155 
1156 	/* Optimization that's specific to T5 @ 40G. */
1157 	if (tt->tx_align >= 0)
1158 		cp->tx_align =  tt->tx_align > 0 ? 1 : 0;
1159 	else if (chip_id(sc) == CHELSIO_T5 &&
1160 	    (port_top_speed(pi) > 10 || sc->params.nports > 2))
1161 		cp->tx_align = 1;
1162 	else
1163 		cp->tx_align = 0;
1164 
1165 	/* ULP mode. */
1166 	if (can_tls_offload(sc) &&
1167 	    (s->tls > 0 || (s->tls < 0 && is_tls_sock(so, sc))))
1168 		cp->ulp_mode = ULP_MODE_TLS;
1169 	else if (s->ddp > 0 ||
1170 	    (s->ddp < 0 && sc->tt.ddp && (so_options_get(so) & SO_NO_DDP) == 0))
1171 		cp->ulp_mode = ULP_MODE_TCPDDP;
1172 	else
1173 		cp->ulp_mode = ULP_MODE_NONE;
1174 
1175 	/* Rx coalescing. */
1176 	if (s->rx_coalesce >= 0)
1177 		cp->rx_coalesce = s->rx_coalesce > 0 ? 1 : 0;
1178 	else if (cp->ulp_mode == ULP_MODE_TLS)
1179 		cp->rx_coalesce = 0;
1180 	else if (tt->rx_coalesce >= 0)
1181 		cp->rx_coalesce = tt->rx_coalesce > 0 ? 1 : 0;
1182 	else
1183 		cp->rx_coalesce = 1;	/* default */
1184 
1185 	/*
1186 	 * Index in the PMTU table.  This controls the MSS that we announce in
1187 	 * our SYN initially, but after ESTABLISHED it controls the MSS that we
1188 	 * use to send data.
1189 	 */
1190 	cp->mtu_idx = find_best_mtu_idx(sc, inc, s);
1191 
1192 	/* Tx queue for this connection. */
1193 	if (s->txq >= 0 && s->txq < vi->nofldtxq)
1194 		cp->txq_idx = s->txq;
1195 	else
1196 		cp->txq_idx = arc4random() % vi->nofldtxq;
1197 	cp->txq_idx += vi->first_ofld_txq;
1198 
1199 	/* Rx queue for this connection. */
1200 	if (s->rxq >= 0 && s->rxq < vi->nofldrxq)
1201 		cp->rxq_idx = s->rxq;
1202 	else
1203 		cp->rxq_idx = arc4random() % vi->nofldrxq;
1204 	cp->rxq_idx += vi->first_ofld_rxq;
1205 
1206 	if (SOLISTENING(so)) {
1207 		/* Passive open */
1208 		MPASS(tcpopt != NULL);
1209 
1210 		/* TCP timestamp option */
1211 		if (tcpopt->tstamp &&
1212 		    (s->tstamp > 0 || (s->tstamp < 0 && V_tcp_do_rfc1323)))
1213 			cp->tstamp = 1;
1214 		else
1215 			cp->tstamp = 0;
1216 
1217 		/* SACK */
1218 		if (tcpopt->sack &&
1219 		    (s->sack > 0 || (s->sack < 0 && V_tcp_do_sack)))
1220 			cp->sack = 1;
1221 		else
1222 			cp->sack = 0;
1223 
1224 		/* Receive window scaling. */
1225 		if (tcpopt->wsf > 0 && tcpopt->wsf < 15 && V_tcp_do_rfc1323)
1226 			cp->wscale = select_rcv_wscale();
1227 		else
1228 			cp->wscale = 0;
1229 
1230 		/* ECN */
1231 		if (tcpopt->ecn &&	/* XXX: review. */
1232 		    (s->ecn > 0 || (s->ecn < 0 && V_tcp_do_ecn)))
1233 			cp->ecn = 1;
1234 		else
1235 			cp->ecn = 0;
1236 
1237 		wnd = max(so->sol_sbrcv_hiwat, MIN_RCV_WND);
1238 		cp->opt0_bufsize = min(wnd >> 10, M_RCV_BUFSIZ);
1239 
1240 		if (tt->sndbuf > 0)
1241 			cp->sndbuf = tt->sndbuf;
1242 		else if (so->sol_sbsnd_flags & SB_AUTOSIZE &&
1243 		    V_tcp_do_autosndbuf)
1244 			cp->sndbuf = 256 * 1024;
1245 		else
1246 			cp->sndbuf = so->sol_sbsnd_hiwat;
1247 	} else {
1248 		/* Active open */
1249 
1250 		/* TCP timestamp option */
1251 		if (s->tstamp > 0 ||
1252 		    (s->tstamp < 0 && (tp->t_flags & TF_REQ_TSTMP)))
1253 			cp->tstamp = 1;
1254 		else
1255 			cp->tstamp = 0;
1256 
1257 		/* SACK */
1258 		if (s->sack > 0 ||
1259 		    (s->sack < 0 && (tp->t_flags & TF_SACK_PERMIT)))
1260 			cp->sack = 1;
1261 		else
1262 			cp->sack = 0;
1263 
1264 		/* Receive window scaling */
1265 		if (tp->t_flags & TF_REQ_SCALE)
1266 			cp->wscale = select_rcv_wscale();
1267 		else
1268 			cp->wscale = 0;
1269 
1270 		/* ECN */
1271 		if (s->ecn > 0 || (s->ecn < 0 && V_tcp_do_ecn == 1))
1272 			cp->ecn = 1;
1273 		else
1274 			cp->ecn = 0;
1275 
1276 		SOCKBUF_LOCK(&so->so_rcv);
1277 		wnd = max(select_rcv_wnd(so), MIN_RCV_WND);
1278 		SOCKBUF_UNLOCK(&so->so_rcv);
1279 		cp->opt0_bufsize = min(wnd >> 10, M_RCV_BUFSIZ);
1280 
1281 		if (tt->sndbuf > 0)
1282 			cp->sndbuf = tt->sndbuf;
1283 		else {
1284 			SOCKBUF_LOCK(&so->so_snd);
1285 			if (so->so_snd.sb_flags & SB_AUTOSIZE &&
1286 			    V_tcp_do_autosndbuf)
1287 				cp->sndbuf = 256 * 1024;
1288 			else
1289 				cp->sndbuf = so->so_snd.sb_hiwat;
1290 			SOCKBUF_UNLOCK(&so->so_snd);
1291 		}
1292 	}
1293 
1294 	cp->l2t_idx = l2t_idx;
1295 
1296 	/* This will be initialized on ESTABLISHED. */
1297 	cp->emss = 0;
1298 }
1299 
1300 int
1301 negative_advice(int status)
1302 {
1303 
1304 	return (status == CPL_ERR_RTX_NEG_ADVICE ||
1305 	    status == CPL_ERR_PERSIST_NEG_ADVICE ||
1306 	    status == CPL_ERR_KEEPALV_NEG_ADVICE);
1307 }
1308 
1309 static int
1310 alloc_tid_tab(struct tid_info *t, int flags)
1311 {
1312 
1313 	MPASS(t->ntids > 0);
1314 	MPASS(t->tid_tab == NULL);
1315 
1316 	t->tid_tab = malloc(t->ntids * sizeof(*t->tid_tab), M_CXGBE,
1317 	    M_ZERO | flags);
1318 	if (t->tid_tab == NULL)
1319 		return (ENOMEM);
1320 	atomic_store_rel_int(&t->tids_in_use, 0);
1321 
1322 	return (0);
1323 }
1324 
1325 static void
1326 free_tid_tab(struct tid_info *t)
1327 {
1328 
1329 	KASSERT(t->tids_in_use == 0,
1330 	    ("%s: %d tids still in use.", __func__, t->tids_in_use));
1331 
1332 	free(t->tid_tab, M_CXGBE);
1333 	t->tid_tab = NULL;
1334 }
1335 
1336 static int
1337 alloc_stid_tab(struct tid_info *t, int flags)
1338 {
1339 
1340 	MPASS(t->nstids > 0);
1341 	MPASS(t->stid_tab == NULL);
1342 
1343 	t->stid_tab = malloc(t->nstids * sizeof(*t->stid_tab), M_CXGBE,
1344 	    M_ZERO | flags);
1345 	if (t->stid_tab == NULL)
1346 		return (ENOMEM);
1347 	mtx_init(&t->stid_lock, "stid lock", NULL, MTX_DEF);
1348 	t->stids_in_use = 0;
1349 	TAILQ_INIT(&t->stids);
1350 	t->nstids_free_head = t->nstids;
1351 
1352 	return (0);
1353 }
1354 
1355 static void
1356 free_stid_tab(struct tid_info *t)
1357 {
1358 
1359 	KASSERT(t->stids_in_use == 0,
1360 	    ("%s: %d tids still in use.", __func__, t->stids_in_use));
1361 
1362 	if (mtx_initialized(&t->stid_lock))
1363 		mtx_destroy(&t->stid_lock);
1364 	free(t->stid_tab, M_CXGBE);
1365 	t->stid_tab = NULL;
1366 }
1367 
1368 static void
1369 free_tid_tabs(struct tid_info *t)
1370 {
1371 
1372 	free_tid_tab(t);
1373 	free_stid_tab(t);
1374 }
1375 
1376 static int
1377 alloc_tid_tabs(struct tid_info *t)
1378 {
1379 	int rc;
1380 
1381 	rc = alloc_tid_tab(t, M_NOWAIT);
1382 	if (rc != 0)
1383 		goto failed;
1384 
1385 	rc = alloc_stid_tab(t, M_NOWAIT);
1386 	if (rc != 0)
1387 		goto failed;
1388 
1389 	return (0);
1390 failed:
1391 	free_tid_tabs(t);
1392 	return (rc);
1393 }
1394 
1395 static inline void
1396 alloc_tcb_history(struct adapter *sc, struct tom_data *td)
1397 {
1398 
1399 	if (sc->tids.ntids == 0 || sc->tids.ntids > 1024)
1400 		return;
1401 	rw_init(&td->tcb_history_lock, "TCB history");
1402 	td->tcb_history = malloc(sc->tids.ntids * sizeof(*td->tcb_history),
1403 	    M_CXGBE, M_ZERO | M_NOWAIT);
1404 	td->dupack_threshold = G_DUPACKTHRESH(t4_read_reg(sc, A_TP_PARA_REG0));
1405 }
1406 
1407 static inline void
1408 free_tcb_history(struct adapter *sc, struct tom_data *td)
1409 {
1410 #ifdef INVARIANTS
1411 	int i;
1412 
1413 	if (td->tcb_history != NULL) {
1414 		for (i = 0; i < sc->tids.ntids; i++) {
1415 			MPASS(td->tcb_history[i] == NULL);
1416 		}
1417 	}
1418 #endif
1419 	free(td->tcb_history, M_CXGBE);
1420 	if (rw_initialized(&td->tcb_history_lock))
1421 		rw_destroy(&td->tcb_history_lock);
1422 }
1423 
1424 static void
1425 free_tom_data(struct adapter *sc, struct tom_data *td)
1426 {
1427 
1428 	ASSERT_SYNCHRONIZED_OP(sc);
1429 
1430 	KASSERT(TAILQ_EMPTY(&td->toep_list),
1431 	    ("%s: TOE PCB list is not empty.", __func__));
1432 	KASSERT(td->lctx_count == 0,
1433 	    ("%s: lctx hash table is not empty.", __func__));
1434 
1435 	t4_free_ppod_region(&td->pr);
1436 
1437 	if (td->listen_mask != 0)
1438 		hashdestroy(td->listen_hash, M_CXGBE, td->listen_mask);
1439 
1440 	if (mtx_initialized(&td->unsent_wr_lock))
1441 		mtx_destroy(&td->unsent_wr_lock);
1442 	if (mtx_initialized(&td->lctx_hash_lock))
1443 		mtx_destroy(&td->lctx_hash_lock);
1444 	if (mtx_initialized(&td->toep_list_lock))
1445 		mtx_destroy(&td->toep_list_lock);
1446 
1447 	free_tcb_history(sc, td);
1448 	free_tid_tabs(&sc->tids);
1449 	free(td, M_CXGBE);
1450 }
1451 
1452 static char *
1453 prepare_pkt(int open_type, uint16_t vtag, struct inpcb *inp, int *pktlen,
1454     int *buflen)
1455 {
1456 	char *pkt;
1457 	struct tcphdr *th;
1458 	int ipv6, len;
1459 	const int maxlen =
1460 	    max(sizeof(struct ether_header), sizeof(struct ether_vlan_header)) +
1461 	    max(sizeof(struct ip), sizeof(struct ip6_hdr)) +
1462 	    sizeof(struct tcphdr);
1463 
1464 	MPASS(open_type == OPEN_TYPE_ACTIVE || open_type == OPEN_TYPE_LISTEN);
1465 
1466 	pkt = malloc(maxlen, M_CXGBE, M_ZERO | M_NOWAIT);
1467 	if (pkt == NULL)
1468 		return (NULL);
1469 
1470 	ipv6 = inp->inp_vflag & INP_IPV6;
1471 	len = 0;
1472 
1473 	if (EVL_VLANOFTAG(vtag) == 0xfff) {
1474 		struct ether_header *eh = (void *)pkt;
1475 
1476 		if (ipv6)
1477 			eh->ether_type = htons(ETHERTYPE_IPV6);
1478 		else
1479 			eh->ether_type = htons(ETHERTYPE_IP);
1480 
1481 		len += sizeof(*eh);
1482 	} else {
1483 		struct ether_vlan_header *evh = (void *)pkt;
1484 
1485 		evh->evl_encap_proto = htons(ETHERTYPE_VLAN);
1486 		evh->evl_tag = htons(vtag);
1487 		if (ipv6)
1488 			evh->evl_proto = htons(ETHERTYPE_IPV6);
1489 		else
1490 			evh->evl_proto = htons(ETHERTYPE_IP);
1491 
1492 		len += sizeof(*evh);
1493 	}
1494 
1495 	if (ipv6) {
1496 		struct ip6_hdr *ip6 = (void *)&pkt[len];
1497 
1498 		ip6->ip6_vfc = IPV6_VERSION;
1499 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
1500 		ip6->ip6_nxt = IPPROTO_TCP;
1501 		if (open_type == OPEN_TYPE_ACTIVE) {
1502 			ip6->ip6_src = inp->in6p_laddr;
1503 			ip6->ip6_dst = inp->in6p_faddr;
1504 		} else if (open_type == OPEN_TYPE_LISTEN) {
1505 			ip6->ip6_src = inp->in6p_laddr;
1506 			ip6->ip6_dst = ip6->ip6_src;
1507 		}
1508 
1509 		len += sizeof(*ip6);
1510 	} else {
1511 		struct ip *ip = (void *)&pkt[len];
1512 
1513 		ip->ip_v = IPVERSION;
1514 		ip->ip_hl = sizeof(*ip) >> 2;
1515 		ip->ip_tos = inp->inp_ip_tos;
1516 		ip->ip_len = htons(sizeof(struct ip) + sizeof(struct tcphdr));
1517 		ip->ip_ttl = inp->inp_ip_ttl;
1518 		ip->ip_p = IPPROTO_TCP;
1519 		if (open_type == OPEN_TYPE_ACTIVE) {
1520 			ip->ip_src = inp->inp_laddr;
1521 			ip->ip_dst = inp->inp_faddr;
1522 		} else if (open_type == OPEN_TYPE_LISTEN) {
1523 			ip->ip_src = inp->inp_laddr;
1524 			ip->ip_dst = ip->ip_src;
1525 		}
1526 
1527 		len += sizeof(*ip);
1528 	}
1529 
1530 	th = (void *)&pkt[len];
1531 	if (open_type == OPEN_TYPE_ACTIVE) {
1532 		th->th_sport = inp->inp_lport;	/* network byte order already */
1533 		th->th_dport = inp->inp_fport;	/* ditto */
1534 	} else if (open_type == OPEN_TYPE_LISTEN) {
1535 		th->th_sport = inp->inp_lport;	/* network byte order already */
1536 		th->th_dport = th->th_sport;
1537 	}
1538 	len += sizeof(th);
1539 
1540 	*pktlen = *buflen = len;
1541 	return (pkt);
1542 }
1543 
1544 const struct offload_settings *
1545 lookup_offload_policy(struct adapter *sc, int open_type, struct mbuf *m,
1546     uint16_t vtag, struct inpcb *inp)
1547 {
1548 	const struct t4_offload_policy *op;
1549 	char *pkt;
1550 	struct offload_rule *r;
1551 	int i, matched, pktlen, buflen;
1552 	static const struct offload_settings allow_offloading_settings = {
1553 		.offload = 1,
1554 		.rx_coalesce = -1,
1555 		.cong_algo = -1,
1556 		.sched_class = -1,
1557 		.tstamp = -1,
1558 		.sack = -1,
1559 		.nagle = -1,
1560 		.ecn = -1,
1561 		.ddp = -1,
1562 		.tls = -1,
1563 		.txq = -1,
1564 		.rxq = -1,
1565 		.mss = -1,
1566 	};
1567 	static const struct offload_settings disallow_offloading_settings = {
1568 		.offload = 0,
1569 		/* rest is irrelevant when offload is off. */
1570 	};
1571 
1572 	rw_assert(&sc->policy_lock, RA_LOCKED);
1573 
1574 	/*
1575 	 * If there's no Connection Offloading Policy attached to the device
1576 	 * then we need to return a default static policy.  If
1577 	 * "cop_managed_offloading" is true, then we need to disallow
1578 	 * offloading until a COP is attached to the device.  Otherwise we
1579 	 * allow offloading ...
1580 	 */
1581 	op = sc->policy;
1582 	if (op == NULL) {
1583 		if (sc->tt.cop_managed_offloading)
1584 			return (&disallow_offloading_settings);
1585 		else
1586 			return (&allow_offloading_settings);
1587 	}
1588 
1589 	switch (open_type) {
1590 	case OPEN_TYPE_ACTIVE:
1591 	case OPEN_TYPE_LISTEN:
1592 		pkt = prepare_pkt(open_type, vtag, inp, &pktlen, &buflen);
1593 		break;
1594 	case OPEN_TYPE_PASSIVE:
1595 		MPASS(m != NULL);
1596 		pkt = mtod(m, char *);
1597 		MPASS(*pkt == CPL_PASS_ACCEPT_REQ);
1598 		pkt += sizeof(struct cpl_pass_accept_req);
1599 		pktlen = m->m_pkthdr.len - sizeof(struct cpl_pass_accept_req);
1600 		buflen = m->m_len - sizeof(struct cpl_pass_accept_req);
1601 		break;
1602 	default:
1603 		MPASS(0);
1604 		return (&disallow_offloading_settings);
1605 	}
1606 
1607 	if (pkt == NULL || pktlen == 0 || buflen == 0)
1608 		return (&disallow_offloading_settings);
1609 
1610 	matched = 0;
1611 	r = &op->rule[0];
1612 	for (i = 0; i < op->nrules; i++, r++) {
1613 		if (r->open_type != open_type &&
1614 		    r->open_type != OPEN_TYPE_DONTCARE) {
1615 			continue;
1616 		}
1617 		matched = bpf_filter(r->bpf_prog.bf_insns, pkt, pktlen, buflen);
1618 		if (matched)
1619 			break;
1620 	}
1621 
1622 	if (open_type == OPEN_TYPE_ACTIVE || open_type == OPEN_TYPE_LISTEN)
1623 		free(pkt, M_CXGBE);
1624 
1625 	return (matched ? &r->settings : &disallow_offloading_settings);
1626 }
1627 
1628 static void
1629 reclaim_wr_resources(void *arg, int count)
1630 {
1631 	struct tom_data *td = arg;
1632 	STAILQ_HEAD(, wrqe) twr_list = STAILQ_HEAD_INITIALIZER(twr_list);
1633 	struct cpl_act_open_req *cpl;
1634 	u_int opcode, atid, tid;
1635 	struct wrqe *wr;
1636 	struct adapter *sc = td_adapter(td);
1637 
1638 	mtx_lock(&td->unsent_wr_lock);
1639 	STAILQ_SWAP(&td->unsent_wr_list, &twr_list, wrqe);
1640 	mtx_unlock(&td->unsent_wr_lock);
1641 
1642 	while ((wr = STAILQ_FIRST(&twr_list)) != NULL) {
1643 		STAILQ_REMOVE_HEAD(&twr_list, link);
1644 
1645 		cpl = wrtod(wr);
1646 		opcode = GET_OPCODE(cpl);
1647 
1648 		switch (opcode) {
1649 		case CPL_ACT_OPEN_REQ:
1650 		case CPL_ACT_OPEN_REQ6:
1651 			atid = G_TID_TID(be32toh(OPCODE_TID(cpl)));
1652 			CTR2(KTR_CXGBE, "%s: atid %u ", __func__, atid);
1653 			act_open_failure_cleanup(sc, atid, EHOSTUNREACH);
1654 			free(wr, M_CXGBE);
1655 			break;
1656 		case CPL_PASS_ACCEPT_RPL:
1657 			tid = GET_TID(cpl);
1658 			CTR2(KTR_CXGBE, "%s: tid %u ", __func__, tid);
1659 			synack_failure_cleanup(sc, tid);
1660 			free(wr, M_CXGBE);
1661 			break;
1662 		default:
1663 			log(LOG_ERR, "%s: leaked work request %p, wr_len %d, "
1664 			    "opcode %x\n", __func__, wr, wr->wr_len, opcode);
1665 			/* WR not freed here; go look at it with a debugger.  */
1666 		}
1667 	}
1668 }
1669 
1670 /*
1671  * Ground control to Major TOM
1672  * Commencing countdown, engines on
1673  */
1674 static int
1675 t4_tom_activate(struct adapter *sc)
1676 {
1677 	struct tom_data *td;
1678 	struct toedev *tod;
1679 	struct vi_info *vi;
1680 	int i, rc, v;
1681 
1682 	ASSERT_SYNCHRONIZED_OP(sc);
1683 
1684 	/* per-adapter softc for TOM */
1685 	td = malloc(sizeof(*td), M_CXGBE, M_ZERO | M_NOWAIT);
1686 	if (td == NULL)
1687 		return (ENOMEM);
1688 
1689 	/* List of TOE PCBs and associated lock */
1690 	mtx_init(&td->toep_list_lock, "PCB list lock", NULL, MTX_DEF);
1691 	TAILQ_INIT(&td->toep_list);
1692 
1693 	/* Listen context */
1694 	mtx_init(&td->lctx_hash_lock, "lctx hash lock", NULL, MTX_DEF);
1695 	td->listen_hash = hashinit_flags(LISTEN_HASH_SIZE, M_CXGBE,
1696 	    &td->listen_mask, HASH_NOWAIT);
1697 
1698 	/* List of WRs for which L2 resolution failed */
1699 	mtx_init(&td->unsent_wr_lock, "Unsent WR list lock", NULL, MTX_DEF);
1700 	STAILQ_INIT(&td->unsent_wr_list);
1701 	TASK_INIT(&td->reclaim_wr_resources, 0, reclaim_wr_resources, td);
1702 
1703 	/* TID tables */
1704 	rc = alloc_tid_tabs(&sc->tids);
1705 	if (rc != 0)
1706 		goto done;
1707 
1708 	rc = t4_init_ppod_region(&td->pr, &sc->vres.ddp,
1709 	    t4_read_reg(sc, A_ULP_RX_TDDP_PSZ), "TDDP page pods");
1710 	if (rc != 0)
1711 		goto done;
1712 	t4_set_reg_field(sc, A_ULP_RX_TDDP_TAGMASK,
1713 	    V_TDDPTAGMASK(M_TDDPTAGMASK), td->pr.pr_tag_mask);
1714 
1715 	alloc_tcb_history(sc, td);
1716 
1717 	/* toedev ops */
1718 	tod = &td->tod;
1719 	init_toedev(tod);
1720 	tod->tod_softc = sc;
1721 	tod->tod_connect = t4_connect;
1722 	tod->tod_listen_start = t4_listen_start;
1723 	tod->tod_listen_stop = t4_listen_stop;
1724 	tod->tod_rcvd = t4_rcvd;
1725 	tod->tod_output = t4_tod_output;
1726 	tod->tod_send_rst = t4_send_rst;
1727 	tod->tod_send_fin = t4_send_fin;
1728 	tod->tod_pcb_detach = t4_pcb_detach;
1729 	tod->tod_l2_update = t4_l2_update;
1730 	tod->tod_syncache_added = t4_syncache_added;
1731 	tod->tod_syncache_removed = t4_syncache_removed;
1732 	tod->tod_syncache_respond = t4_syncache_respond;
1733 	tod->tod_offload_socket = t4_offload_socket;
1734 	tod->tod_ctloutput = t4_ctloutput;
1735 	tod->tod_tcp_info = t4_tcp_info;
1736 #ifdef KERN_TLS
1737 	tod->tod_alloc_tls_session = t4_alloc_tls_session;
1738 #endif
1739 
1740 	for_each_port(sc, i) {
1741 		for_each_vi(sc->port[i], v, vi) {
1742 			TOEDEV(vi->ifp) = &td->tod;
1743 		}
1744 	}
1745 
1746 	sc->tom_softc = td;
1747 	register_toedev(sc->tom_softc);
1748 
1749 done:
1750 	if (rc != 0)
1751 		free_tom_data(sc, td);
1752 	return (rc);
1753 }
1754 
1755 static int
1756 t4_tom_deactivate(struct adapter *sc)
1757 {
1758 	int rc = 0;
1759 	struct tom_data *td = sc->tom_softc;
1760 
1761 	ASSERT_SYNCHRONIZED_OP(sc);
1762 
1763 	if (td == NULL)
1764 		return (0);	/* XXX. KASSERT? */
1765 
1766 	if (sc->offload_map != 0)
1767 		return (EBUSY);	/* at least one port has IFCAP_TOE enabled */
1768 
1769 	if (uld_active(sc, ULD_IWARP) || uld_active(sc, ULD_ISCSI))
1770 		return (EBUSY);	/* both iWARP and iSCSI rely on the TOE. */
1771 
1772 	mtx_lock(&td->toep_list_lock);
1773 	if (!TAILQ_EMPTY(&td->toep_list))
1774 		rc = EBUSY;
1775 	mtx_unlock(&td->toep_list_lock);
1776 
1777 	mtx_lock(&td->lctx_hash_lock);
1778 	if (td->lctx_count > 0)
1779 		rc = EBUSY;
1780 	mtx_unlock(&td->lctx_hash_lock);
1781 
1782 	taskqueue_drain(taskqueue_thread, &td->reclaim_wr_resources);
1783 	mtx_lock(&td->unsent_wr_lock);
1784 	if (!STAILQ_EMPTY(&td->unsent_wr_list))
1785 		rc = EBUSY;
1786 	mtx_unlock(&td->unsent_wr_lock);
1787 
1788 	if (rc == 0) {
1789 		unregister_toedev(sc->tom_softc);
1790 		free_tom_data(sc, td);
1791 		sc->tom_softc = NULL;
1792 	}
1793 
1794 	return (rc);
1795 }
1796 
1797 static int
1798 t4_aio_queue_tom(struct socket *so, struct kaiocb *job)
1799 {
1800 	struct tcpcb *tp = so_sototcpcb(so);
1801 	struct toepcb *toep = tp->t_toe;
1802 	int error;
1803 
1804 	if (ulp_mode(toep) == ULP_MODE_TCPDDP) {
1805 		error = t4_aio_queue_ddp(so, job);
1806 		if (error != EOPNOTSUPP)
1807 			return (error);
1808 	}
1809 
1810 	return (t4_aio_queue_aiotx(so, job));
1811 }
1812 
1813 static int
1814 t4_ctloutput_tom(struct socket *so, struct sockopt *sopt)
1815 {
1816 
1817 	if (sopt->sopt_level != IPPROTO_TCP)
1818 		return (tcp_ctloutput(so, sopt));
1819 
1820 	switch (sopt->sopt_name) {
1821 	case TCP_TLSOM_SET_TLS_CONTEXT:
1822 	case TCP_TLSOM_GET_TLS_TOM:
1823 	case TCP_TLSOM_CLR_TLS_TOM:
1824 	case TCP_TLSOM_CLR_QUIES:
1825 		return (t4_ctloutput_tls(so, sopt));
1826 	default:
1827 		return (tcp_ctloutput(so, sopt));
1828 	}
1829 }
1830 
1831 static int
1832 t4_tom_mod_load(void)
1833 {
1834 	struct protosw *tcp_protosw, *tcp6_protosw;
1835 
1836 	/* CPL handlers */
1837 	t4_register_cpl_handler(CPL_GET_TCB_RPL, do_get_tcb_rpl);
1838 	t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, do_l2t_write_rpl2,
1839 	    CPL_COOKIE_TOM);
1840 	t4_init_connect_cpl_handlers();
1841 	t4_init_listen_cpl_handlers();
1842 	t4_init_cpl_io_handlers();
1843 
1844 	t4_ddp_mod_load();
1845 	t4_tls_mod_load();
1846 
1847 	tcp_protosw = pffindproto(PF_INET, IPPROTO_TCP, SOCK_STREAM);
1848 	if (tcp_protosw == NULL)
1849 		return (ENOPROTOOPT);
1850 	bcopy(tcp_protosw, &toe_protosw, sizeof(toe_protosw));
1851 	bcopy(tcp_protosw->pr_usrreqs, &toe_usrreqs, sizeof(toe_usrreqs));
1852 	toe_usrreqs.pru_aio_queue = t4_aio_queue_tom;
1853 	toe_protosw.pr_ctloutput = t4_ctloutput_tom;
1854 	toe_protosw.pr_usrreqs = &toe_usrreqs;
1855 
1856 	tcp6_protosw = pffindproto(PF_INET6, IPPROTO_TCP, SOCK_STREAM);
1857 	if (tcp6_protosw == NULL)
1858 		return (ENOPROTOOPT);
1859 	bcopy(tcp6_protosw, &toe6_protosw, sizeof(toe6_protosw));
1860 	bcopy(tcp6_protosw->pr_usrreqs, &toe6_usrreqs, sizeof(toe6_usrreqs));
1861 	toe6_usrreqs.pru_aio_queue = t4_aio_queue_tom;
1862 	toe6_protosw.pr_ctloutput = t4_ctloutput_tom;
1863 	toe6_protosw.pr_usrreqs = &toe6_usrreqs;
1864 
1865 	return (t4_register_uld(&tom_uld_info));
1866 }
1867 
1868 static void
1869 tom_uninit(struct adapter *sc, void *arg __unused)
1870 {
1871 	if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4tomun"))
1872 		return;
1873 
1874 	/* Try to free resources (works only if no port has IFCAP_TOE) */
1875 	if (uld_active(sc, ULD_TOM))
1876 		t4_deactivate_uld(sc, ULD_TOM);
1877 
1878 	end_synchronized_op(sc, 0);
1879 }
1880 
1881 static int
1882 t4_tom_mod_unload(void)
1883 {
1884 	t4_iterate(tom_uninit, NULL);
1885 
1886 	if (t4_unregister_uld(&tom_uld_info) == EBUSY)
1887 		return (EBUSY);
1888 
1889 	t4_tls_mod_unload();
1890 	t4_ddp_mod_unload();
1891 
1892 	t4_uninit_connect_cpl_handlers();
1893 	t4_uninit_listen_cpl_handlers();
1894 	t4_uninit_cpl_io_handlers();
1895 	t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, NULL, CPL_COOKIE_TOM);
1896 	t4_register_cpl_handler(CPL_GET_TCB_RPL, NULL);
1897 
1898 	return (0);
1899 }
1900 #endif	/* TCP_OFFLOAD */
1901 
1902 static int
1903 t4_tom_modevent(module_t mod, int cmd, void *arg)
1904 {
1905 	int rc = 0;
1906 
1907 #ifdef TCP_OFFLOAD
1908 	switch (cmd) {
1909 	case MOD_LOAD:
1910 		rc = t4_tom_mod_load();
1911 		break;
1912 
1913 	case MOD_UNLOAD:
1914 		rc = t4_tom_mod_unload();
1915 		break;
1916 
1917 	default:
1918 		rc = EINVAL;
1919 	}
1920 #else
1921 	printf("t4_tom: compiled without TCP_OFFLOAD support.\n");
1922 	rc = EOPNOTSUPP;
1923 #endif
1924 	return (rc);
1925 }
1926 
1927 static moduledata_t t4_tom_moddata= {
1928 	"t4_tom",
1929 	t4_tom_modevent,
1930 	0
1931 };
1932 
1933 MODULE_VERSION(t4_tom, 1);
1934 MODULE_DEPEND(t4_tom, toecore, 1, 1, 1);
1935 MODULE_DEPEND(t4_tom, t4nex, 1, 1, 1);
1936 DECLARE_MODULE(t4_tom, t4_tom_moddata, SI_SUB_EXEC, SI_ORDER_ANY);
1937