1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2012 Chelsio Communications, Inc. 5 * All rights reserved. 6 * Written by: Navdeep Parhar <np@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 #include "opt_inet.h" 32 #include "opt_inet6.h" 33 #include "opt_kern_tls.h" 34 #include "opt_ratelimit.h" 35 36 #include <sys/param.h> 37 #include <sys/types.h> 38 #include <sys/systm.h> 39 #include <sys/kernel.h> 40 #include <sys/ktr.h> 41 #include <sys/lock.h> 42 #include <sys/limits.h> 43 #include <sys/module.h> 44 #include <sys/protosw.h> 45 #include <sys/domain.h> 46 #include <sys/refcount.h> 47 #include <sys/rmlock.h> 48 #include <sys/socket.h> 49 #include <sys/socketvar.h> 50 #include <sys/sysctl.h> 51 #include <sys/taskqueue.h> 52 #include <net/if.h> 53 #include <net/if_var.h> 54 #include <net/if_types.h> 55 #include <net/if_vlan_var.h> 56 #include <netinet/in.h> 57 #include <netinet/in_pcb.h> 58 #include <netinet/in_var.h> 59 #include <netinet/ip.h> 60 #include <netinet/ip6.h> 61 #include <netinet6/scope6_var.h> 62 #define TCPSTATES 63 #include <netinet/tcp_fsm.h> 64 #include <netinet/tcp_seq.h> 65 #include <netinet/tcp_timer.h> 66 #include <netinet/tcp_var.h> 67 #include <netinet/toecore.h> 68 #include <netinet/cc/cc.h> 69 70 #ifdef TCP_OFFLOAD 71 #include "common/common.h" 72 #include "common/t4_msg.h" 73 #include "common/t4_regs.h" 74 #include "common/t4_regs_values.h" 75 #include "common/t4_tcb.h" 76 #include "t4_clip.h" 77 #include "tom/t4_tom_l2t.h" 78 #include "tom/t4_tom.h" 79 #include "tom/t4_tls.h" 80 81 static struct protosw toe_protosw; 82 static struct protosw toe6_protosw; 83 84 /* Module ops */ 85 static int t4_tom_mod_load(void); 86 static int t4_tom_mod_unload(void); 87 static int t4_tom_modevent(module_t, int, void *); 88 89 /* ULD ops and helpers */ 90 static int t4_tom_activate(struct adapter *); 91 static int t4_tom_deactivate(struct adapter *); 92 93 static struct uld_info tom_uld_info = { 94 .uld_id = ULD_TOM, 95 .activate = t4_tom_activate, 96 .deactivate = t4_tom_deactivate, 97 }; 98 99 static void release_offload_resources(struct toepcb *); 100 static int alloc_tid_tabs(struct tid_info *); 101 static void free_tid_tabs(struct tid_info *); 102 static void free_tom_data(struct adapter *, struct tom_data *); 103 static void reclaim_wr_resources(void *, int); 104 105 struct toepcb * 106 alloc_toepcb(struct vi_info *vi, int flags) 107 { 108 struct port_info *pi = vi->pi; 109 struct adapter *sc = pi->adapter; 110 struct toepcb *toep; 111 int tx_credits, txsd_total, len; 112 113 /* 114 * The firmware counts tx work request credits in units of 16 bytes 115 * each. Reserve room for an ABORT_REQ so the driver never has to worry 116 * about tx credits if it wants to abort a connection. 117 */ 118 tx_credits = sc->params.ofldq_wr_cred; 119 tx_credits -= howmany(sizeof(struct cpl_abort_req), 16); 120 121 /* 122 * Shortest possible tx work request is a fw_ofld_tx_data_wr + 1 byte 123 * immediate payload, and firmware counts tx work request credits in 124 * units of 16 byte. Calculate the maximum work requests possible. 125 */ 126 txsd_total = tx_credits / 127 howmany(sizeof(struct fw_ofld_tx_data_wr) + 1, 16); 128 129 len = offsetof(struct toepcb, txsd) + 130 txsd_total * sizeof(struct ofld_tx_sdesc); 131 132 toep = malloc(len, M_CXGBE, M_ZERO | flags); 133 if (toep == NULL) 134 return (NULL); 135 136 refcount_init(&toep->refcount, 1); 137 toep->td = sc->tom_softc; 138 toep->vi = vi; 139 toep->tid = -1; 140 toep->tx_total = tx_credits; 141 toep->tx_credits = tx_credits; 142 mbufq_init(&toep->ulp_pduq, INT_MAX); 143 mbufq_init(&toep->ulp_pdu_reclaimq, INT_MAX); 144 toep->txsd_total = txsd_total; 145 toep->txsd_avail = txsd_total; 146 toep->txsd_pidx = 0; 147 toep->txsd_cidx = 0; 148 aiotx_init_toep(toep); 149 150 return (toep); 151 } 152 153 /* 154 * Initialize a toepcb after its params have been filled out. 155 */ 156 int 157 init_toepcb(struct vi_info *vi, struct toepcb *toep) 158 { 159 struct conn_params *cp = &toep->params; 160 struct port_info *pi = vi->pi; 161 struct adapter *sc = pi->adapter; 162 struct tx_cl_rl_params *tc; 163 164 if (cp->tc_idx >= 0 && cp->tc_idx < sc->params.nsched_cls) { 165 tc = &pi->sched_params->cl_rl[cp->tc_idx]; 166 mtx_lock(&sc->tc_lock); 167 if (tc->state != CS_HW_CONFIGURED) { 168 CH_ERR(vi, "tid %d cannot be bound to traffic class %d " 169 "because it is not configured (its state is %d)\n", 170 toep->tid, cp->tc_idx, tc->state); 171 cp->tc_idx = -1; 172 } else { 173 tc->refcount++; 174 } 175 mtx_unlock(&sc->tc_lock); 176 } 177 toep->ofld_txq = &sc->sge.ofld_txq[cp->txq_idx]; 178 toep->ofld_rxq = &sc->sge.ofld_rxq[cp->rxq_idx]; 179 toep->ctrlq = &sc->sge.ctrlq[pi->port_id]; 180 181 tls_init_toep(toep); 182 MPASS(ulp_mode(toep) != ULP_MODE_TCPDDP); 183 184 toep->flags |= TPF_INITIALIZED; 185 186 return (0); 187 } 188 189 struct toepcb * 190 hold_toepcb(struct toepcb *toep) 191 { 192 193 refcount_acquire(&toep->refcount); 194 return (toep); 195 } 196 197 void 198 free_toepcb(struct toepcb *toep) 199 { 200 201 if (refcount_release(&toep->refcount) == 0) 202 return; 203 204 KASSERT(!(toep->flags & TPF_ATTACHED), 205 ("%s: attached to an inpcb", __func__)); 206 KASSERT(!(toep->flags & TPF_CPL_PENDING), 207 ("%s: CPL pending", __func__)); 208 209 if (toep->flags & TPF_INITIALIZED) { 210 if (ulp_mode(toep) == ULP_MODE_TCPDDP) 211 ddp_uninit_toep(toep); 212 tls_uninit_toep(toep); 213 } 214 free(toep, M_CXGBE); 215 } 216 217 /* 218 * Set up the socket for TCP offload. 219 */ 220 void 221 offload_socket(struct socket *so, struct toepcb *toep) 222 { 223 struct tom_data *td = toep->td; 224 struct inpcb *inp = sotoinpcb(so); 225 struct tcpcb *tp = intotcpcb(inp); 226 struct sockbuf *sb; 227 228 INP_WLOCK_ASSERT(inp); 229 230 /* Update socket */ 231 sb = &so->so_snd; 232 SOCKBUF_LOCK(sb); 233 sb->sb_flags |= SB_NOCOALESCE; 234 SOCKBUF_UNLOCK(sb); 235 sb = &so->so_rcv; 236 SOCKBUF_LOCK(sb); 237 sb->sb_flags |= SB_NOCOALESCE; 238 if (inp->inp_vflag & INP_IPV6) 239 so->so_proto = &toe6_protosw; 240 else 241 so->so_proto = &toe_protosw; 242 SOCKBUF_UNLOCK(sb); 243 244 /* Update TCP PCB */ 245 tp->tod = &td->tod; 246 tp->t_toe = toep; 247 tp->t_flags |= TF_TOE; 248 249 /* Install an extra hold on inp */ 250 toep->inp = inp; 251 toep->flags |= TPF_ATTACHED; 252 in_pcbref(inp); 253 254 /* Add the TOE PCB to the active list */ 255 mtx_lock(&td->toep_list_lock); 256 TAILQ_INSERT_HEAD(&td->toep_list, toep, link); 257 mtx_unlock(&td->toep_list_lock); 258 } 259 260 void 261 restore_so_proto(struct socket *so, bool v6) 262 { 263 if (v6) 264 so->so_proto = &tcp6_protosw; 265 else 266 so->so_proto = &tcp_protosw; 267 } 268 269 /* This is _not_ the normal way to "unoffload" a socket. */ 270 void 271 undo_offload_socket(struct socket *so) 272 { 273 struct inpcb *inp = sotoinpcb(so); 274 struct tcpcb *tp = intotcpcb(inp); 275 struct toepcb *toep = tp->t_toe; 276 struct tom_data *td = toep->td; 277 struct sockbuf *sb; 278 279 INP_WLOCK_ASSERT(inp); 280 281 sb = &so->so_snd; 282 SOCKBUF_LOCK(sb); 283 sb->sb_flags &= ~SB_NOCOALESCE; 284 SOCKBUF_UNLOCK(sb); 285 sb = &so->so_rcv; 286 SOCKBUF_LOCK(sb); 287 sb->sb_flags &= ~SB_NOCOALESCE; 288 restore_so_proto(so, inp->inp_vflag & INP_IPV6); 289 SOCKBUF_UNLOCK(sb); 290 291 tp->tod = NULL; 292 tp->t_toe = NULL; 293 tp->t_flags &= ~TF_TOE; 294 295 toep->inp = NULL; 296 toep->flags &= ~TPF_ATTACHED; 297 if (in_pcbrele_wlocked(inp)) 298 panic("%s: inp freed.", __func__); 299 300 mtx_lock(&td->toep_list_lock); 301 TAILQ_REMOVE(&td->toep_list, toep, link); 302 mtx_unlock(&td->toep_list_lock); 303 } 304 305 static void 306 release_offload_resources(struct toepcb *toep) 307 { 308 struct tom_data *td = toep->td; 309 struct adapter *sc = td_adapter(td); 310 int tid = toep->tid; 311 312 KASSERT(!(toep->flags & TPF_CPL_PENDING), 313 ("%s: %p has CPL pending.", __func__, toep)); 314 KASSERT(!(toep->flags & TPF_ATTACHED), 315 ("%s: %p is still attached.", __func__, toep)); 316 317 CTR5(KTR_CXGBE, "%s: toep %p (tid %d, l2te %p, ce %p)", 318 __func__, toep, tid, toep->l2te, toep->ce); 319 320 /* 321 * These queues should have been emptied at approximately the same time 322 * that a normal connection's socket's so_snd would have been purged or 323 * drained. Do _not_ clean up here. 324 */ 325 MPASS(mbufq_empty(&toep->ulp_pduq)); 326 MPASS(mbufq_empty(&toep->ulp_pdu_reclaimq)); 327 #ifdef INVARIANTS 328 if (ulp_mode(toep) == ULP_MODE_TCPDDP) 329 ddp_assert_empty(toep); 330 #endif 331 MPASS(TAILQ_EMPTY(&toep->aiotx_jobq)); 332 333 if (toep->l2te) 334 t4_l2t_release(toep->l2te); 335 336 if (tid >= 0) { 337 remove_tid(sc, tid, toep->ce ? 2 : 1); 338 release_tid(sc, tid, toep->ctrlq); 339 } 340 341 if (toep->ce) 342 t4_release_clip_entry(sc, toep->ce); 343 344 if (toep->params.tc_idx != -1) 345 t4_release_cl_rl(sc, toep->vi->pi->port_id, toep->params.tc_idx); 346 347 mtx_lock(&td->toep_list_lock); 348 TAILQ_REMOVE(&td->toep_list, toep, link); 349 mtx_unlock(&td->toep_list_lock); 350 351 free_toepcb(toep); 352 } 353 354 /* 355 * The kernel is done with the TCP PCB and this is our opportunity to unhook the 356 * toepcb hanging off of it. If the TOE driver is also done with the toepcb (no 357 * pending CPL) then it is time to release all resources tied to the toepcb. 358 * 359 * Also gets called when an offloaded active open fails and the TOM wants the 360 * kernel to take the TCP PCB back. 361 */ 362 static void 363 t4_pcb_detach(struct toedev *tod __unused, struct tcpcb *tp) 364 { 365 #if defined(KTR) || defined(INVARIANTS) 366 struct inpcb *inp = tptoinpcb(tp); 367 #endif 368 struct toepcb *toep = tp->t_toe; 369 370 INP_WLOCK_ASSERT(inp); 371 372 KASSERT(toep != NULL, ("%s: toep is NULL", __func__)); 373 KASSERT(toep->flags & TPF_ATTACHED, 374 ("%s: not attached", __func__)); 375 376 #ifdef KTR 377 if (tp->t_state == TCPS_SYN_SENT) { 378 CTR6(KTR_CXGBE, "%s: atid %d, toep %p (0x%x), inp %p (0x%x)", 379 __func__, toep->tid, toep, toep->flags, inp, 380 inp->inp_flags); 381 } else { 382 CTR6(KTR_CXGBE, 383 "t4_pcb_detach: tid %d (%s), toep %p (0x%x), inp %p (0x%x)", 384 toep->tid, tcpstates[tp->t_state], toep, toep->flags, inp, 385 inp->inp_flags); 386 } 387 #endif 388 389 tp->tod = NULL; 390 tp->t_toe = NULL; 391 tp->t_flags &= ~TF_TOE; 392 toep->flags &= ~TPF_ATTACHED; 393 394 if (!(toep->flags & TPF_CPL_PENDING)) 395 release_offload_resources(toep); 396 } 397 398 /* 399 * setsockopt handler. 400 */ 401 static void 402 t4_ctloutput(struct toedev *tod, struct tcpcb *tp, int dir, int name) 403 { 404 struct adapter *sc = tod->tod_softc; 405 struct toepcb *toep = tp->t_toe; 406 407 if (dir == SOPT_GET) 408 return; 409 410 CTR4(KTR_CXGBE, "%s: tp %p, dir %u, name %u", __func__, tp, dir, name); 411 412 switch (name) { 413 case TCP_NODELAY: 414 if (tp->t_state != TCPS_ESTABLISHED) 415 break; 416 toep->params.nagle = tp->t_flags & TF_NODELAY ? 0 : 1; 417 t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_T_FLAGS, 418 V_TF_NAGLE(1), V_TF_NAGLE(toep->params.nagle), 0, 0); 419 break; 420 default: 421 break; 422 } 423 } 424 425 static inline uint64_t 426 get_tcb_tflags(const uint64_t *tcb) 427 { 428 429 return ((be64toh(tcb[14]) << 32) | (be64toh(tcb[15]) >> 32)); 430 } 431 432 static inline uint32_t 433 get_tcb_field(const uint64_t *tcb, u_int word, uint32_t mask, u_int shift) 434 { 435 #define LAST_WORD ((TCB_SIZE / 4) - 1) 436 uint64_t t1, t2; 437 int flit_idx; 438 439 MPASS(mask != 0); 440 MPASS(word <= LAST_WORD); 441 MPASS(shift < 32); 442 443 flit_idx = (LAST_WORD - word) / 2; 444 if (word & 0x1) 445 shift += 32; 446 t1 = be64toh(tcb[flit_idx]) >> shift; 447 t2 = 0; 448 if (fls(mask) > 64 - shift) { 449 /* 450 * Will spill over into the next logical flit, which is the flit 451 * before this one. The flit_idx before this one must be valid. 452 */ 453 MPASS(flit_idx > 0); 454 t2 = be64toh(tcb[flit_idx - 1]) << (64 - shift); 455 } 456 return ((t2 | t1) & mask); 457 #undef LAST_WORD 458 } 459 #define GET_TCB_FIELD(tcb, F) \ 460 get_tcb_field(tcb, W_TCB_##F, M_TCB_##F, S_TCB_##F) 461 462 /* 463 * Issues a CPL_GET_TCB to read the entire TCB for the tid. 464 */ 465 static int 466 send_get_tcb(struct adapter *sc, u_int tid) 467 { 468 struct cpl_get_tcb *cpl; 469 struct wrq_cookie cookie; 470 471 MPASS(tid >= sc->tids.tid_base); 472 MPASS(tid - sc->tids.tid_base < sc->tids.ntids); 473 474 cpl = start_wrq_wr(&sc->sge.ctrlq[0], howmany(sizeof(*cpl), 16), 475 &cookie); 476 if (__predict_false(cpl == NULL)) 477 return (ENOMEM); 478 bzero(cpl, sizeof(*cpl)); 479 INIT_TP_WR(cpl, tid); 480 OPCODE_TID(cpl) = htobe32(MK_OPCODE_TID(CPL_GET_TCB, tid)); 481 cpl->reply_ctrl = htobe16(V_REPLY_CHAN(0) | 482 V_QUEUENO(sc->sge.ofld_rxq[0].iq.cntxt_id)); 483 cpl->cookie = 0xff; 484 commit_wrq_wr(&sc->sge.ctrlq[0], cpl, &cookie); 485 486 return (0); 487 } 488 489 static struct tcb_histent * 490 alloc_tcb_histent(struct adapter *sc, u_int tid, int flags) 491 { 492 struct tcb_histent *te; 493 494 MPASS(flags == M_NOWAIT || flags == M_WAITOK); 495 496 te = malloc(sizeof(*te), M_CXGBE, M_ZERO | flags); 497 if (te == NULL) 498 return (NULL); 499 mtx_init(&te->te_lock, "TCB entry", NULL, MTX_DEF); 500 callout_init_mtx(&te->te_callout, &te->te_lock, 0); 501 te->te_adapter = sc; 502 te->te_tid = tid; 503 504 return (te); 505 } 506 507 static void 508 free_tcb_histent(struct tcb_histent *te) 509 { 510 511 mtx_destroy(&te->te_lock); 512 free(te, M_CXGBE); 513 } 514 515 /* 516 * Start tracking the tid in the TCB history. 517 */ 518 int 519 add_tid_to_history(struct adapter *sc, u_int tid) 520 { 521 struct tcb_histent *te = NULL; 522 struct tom_data *td = sc->tom_softc; 523 int rc; 524 525 MPASS(tid >= sc->tids.tid_base); 526 MPASS(tid - sc->tids.tid_base < sc->tids.ntids); 527 528 if (td->tcb_history == NULL) 529 return (ENXIO); 530 531 rw_wlock(&td->tcb_history_lock); 532 if (td->tcb_history[tid] != NULL) { 533 rc = EEXIST; 534 goto done; 535 } 536 te = alloc_tcb_histent(sc, tid, M_NOWAIT); 537 if (te == NULL) { 538 rc = ENOMEM; 539 goto done; 540 } 541 mtx_lock(&te->te_lock); 542 rc = send_get_tcb(sc, tid); 543 if (rc == 0) { 544 te->te_flags |= TE_RPL_PENDING; 545 td->tcb_history[tid] = te; 546 } else { 547 free(te, M_CXGBE); 548 } 549 mtx_unlock(&te->te_lock); 550 done: 551 rw_wunlock(&td->tcb_history_lock); 552 return (rc); 553 } 554 555 static void 556 remove_tcb_histent(struct tcb_histent *te) 557 { 558 struct adapter *sc = te->te_adapter; 559 struct tom_data *td = sc->tom_softc; 560 561 rw_assert(&td->tcb_history_lock, RA_WLOCKED); 562 mtx_assert(&te->te_lock, MA_OWNED); 563 MPASS(td->tcb_history[te->te_tid] == te); 564 565 td->tcb_history[te->te_tid] = NULL; 566 free_tcb_histent(te); 567 rw_wunlock(&td->tcb_history_lock); 568 } 569 570 static inline struct tcb_histent * 571 lookup_tcb_histent(struct adapter *sc, u_int tid, bool addrem) 572 { 573 struct tcb_histent *te; 574 struct tom_data *td = sc->tom_softc; 575 576 MPASS(tid >= sc->tids.tid_base); 577 MPASS(tid - sc->tids.tid_base < sc->tids.ntids); 578 579 if (td->tcb_history == NULL) 580 return (NULL); 581 582 if (addrem) 583 rw_wlock(&td->tcb_history_lock); 584 else 585 rw_rlock(&td->tcb_history_lock); 586 te = td->tcb_history[tid]; 587 if (te != NULL) { 588 mtx_lock(&te->te_lock); 589 return (te); /* with both locks held */ 590 } 591 if (addrem) 592 rw_wunlock(&td->tcb_history_lock); 593 else 594 rw_runlock(&td->tcb_history_lock); 595 596 return (te); 597 } 598 599 static inline void 600 release_tcb_histent(struct tcb_histent *te) 601 { 602 struct adapter *sc = te->te_adapter; 603 struct tom_data *td = sc->tom_softc; 604 605 mtx_assert(&te->te_lock, MA_OWNED); 606 mtx_unlock(&te->te_lock); 607 rw_assert(&td->tcb_history_lock, RA_RLOCKED); 608 rw_runlock(&td->tcb_history_lock); 609 } 610 611 static void 612 request_tcb(void *arg) 613 { 614 struct tcb_histent *te = arg; 615 616 mtx_assert(&te->te_lock, MA_OWNED); 617 618 /* Noone else is supposed to update the histent. */ 619 MPASS(!(te->te_flags & TE_RPL_PENDING)); 620 if (send_get_tcb(te->te_adapter, te->te_tid) == 0) 621 te->te_flags |= TE_RPL_PENDING; 622 else 623 callout_schedule(&te->te_callout, hz / 100); 624 } 625 626 static void 627 update_tcb_histent(struct tcb_histent *te, const uint64_t *tcb) 628 { 629 struct tom_data *td = te->te_adapter->tom_softc; 630 uint64_t tflags = get_tcb_tflags(tcb); 631 uint8_t sample = 0; 632 633 if (GET_TCB_FIELD(tcb, SND_MAX_RAW) != GET_TCB_FIELD(tcb, SND_UNA_RAW)) { 634 if (GET_TCB_FIELD(tcb, T_RXTSHIFT) != 0) 635 sample |= TS_RTO; 636 if (GET_TCB_FIELD(tcb, T_DUPACKS) != 0) 637 sample |= TS_DUPACKS; 638 if (GET_TCB_FIELD(tcb, T_DUPACKS) >= td->dupack_threshold) 639 sample |= TS_FASTREXMT; 640 } 641 642 if (GET_TCB_FIELD(tcb, SND_MAX_RAW) != 0) { 643 uint32_t snd_wnd; 644 645 sample |= TS_SND_BACKLOGGED; /* for whatever reason. */ 646 647 snd_wnd = GET_TCB_FIELD(tcb, RCV_ADV); 648 if (tflags & V_TF_RECV_SCALE(1)) 649 snd_wnd <<= GET_TCB_FIELD(tcb, RCV_SCALE); 650 if (GET_TCB_FIELD(tcb, SND_CWND) < snd_wnd) 651 sample |= TS_CWND_LIMITED; /* maybe due to CWND */ 652 } 653 654 if (tflags & V_TF_CCTRL_ECN(1)) { 655 656 /* 657 * CE marker on incoming IP hdr, echoing ECE back in the TCP 658 * hdr. Indicates congestion somewhere on the way from the peer 659 * to this node. 660 */ 661 if (tflags & V_TF_CCTRL_ECE(1)) 662 sample |= TS_ECN_ECE; 663 664 /* 665 * ECE seen and CWR sent (or about to be sent). Might indicate 666 * congestion on the way to the peer. This node is reducing its 667 * congestion window in response. 668 */ 669 if (tflags & (V_TF_CCTRL_CWR(1) | V_TF_CCTRL_RFR(1))) 670 sample |= TS_ECN_CWR; 671 } 672 673 te->te_sample[te->te_pidx] = sample; 674 if (++te->te_pidx == nitems(te->te_sample)) 675 te->te_pidx = 0; 676 memcpy(te->te_tcb, tcb, TCB_SIZE); 677 te->te_flags |= TE_ACTIVE; 678 } 679 680 static int 681 do_get_tcb_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 682 { 683 struct adapter *sc = iq->adapter; 684 const struct cpl_get_tcb_rpl *cpl = mtod(m, const void *); 685 const uint64_t *tcb = (const uint64_t *)(const void *)(cpl + 1); 686 struct tcb_histent *te; 687 const u_int tid = GET_TID(cpl); 688 bool remove; 689 690 remove = GET_TCB_FIELD(tcb, T_STATE) == TCPS_CLOSED; 691 te = lookup_tcb_histent(sc, tid, remove); 692 if (te == NULL) { 693 /* Not in the history. Who issued the GET_TCB for this? */ 694 device_printf(sc->dev, "tcb %u: flags 0x%016jx, state %u, " 695 "srtt %u, sscale %u, rscale %u, cookie 0x%x\n", tid, 696 (uintmax_t)get_tcb_tflags(tcb), GET_TCB_FIELD(tcb, T_STATE), 697 GET_TCB_FIELD(tcb, T_SRTT), GET_TCB_FIELD(tcb, SND_SCALE), 698 GET_TCB_FIELD(tcb, RCV_SCALE), cpl->cookie); 699 goto done; 700 } 701 702 MPASS(te->te_flags & TE_RPL_PENDING); 703 te->te_flags &= ~TE_RPL_PENDING; 704 if (remove) { 705 remove_tcb_histent(te); 706 } else { 707 update_tcb_histent(te, tcb); 708 callout_reset(&te->te_callout, hz / 10, request_tcb, te); 709 release_tcb_histent(te); 710 } 711 done: 712 m_freem(m); 713 return (0); 714 } 715 716 static void 717 fill_tcp_info_from_tcb(struct adapter *sc, uint64_t *tcb, struct tcp_info *ti) 718 { 719 uint32_t v; 720 721 ti->tcpi_state = GET_TCB_FIELD(tcb, T_STATE); 722 723 v = GET_TCB_FIELD(tcb, T_SRTT); 724 ti->tcpi_rtt = tcp_ticks_to_us(sc, v); 725 726 v = GET_TCB_FIELD(tcb, T_RTTVAR); 727 ti->tcpi_rttvar = tcp_ticks_to_us(sc, v); 728 729 ti->tcpi_snd_ssthresh = GET_TCB_FIELD(tcb, SND_SSTHRESH); 730 ti->tcpi_snd_cwnd = GET_TCB_FIELD(tcb, SND_CWND); 731 ti->tcpi_rcv_nxt = GET_TCB_FIELD(tcb, RCV_NXT); 732 ti->tcpi_rcv_adv = GET_TCB_FIELD(tcb, RCV_ADV); 733 ti->tcpi_dupacks = GET_TCB_FIELD(tcb, T_DUPACKS); 734 735 v = GET_TCB_FIELD(tcb, TX_MAX); 736 ti->tcpi_snd_nxt = v - GET_TCB_FIELD(tcb, SND_NXT_RAW); 737 ti->tcpi_snd_una = v - GET_TCB_FIELD(tcb, SND_UNA_RAW); 738 ti->tcpi_snd_max = v - GET_TCB_FIELD(tcb, SND_MAX_RAW); 739 740 /* Receive window being advertised by us. */ 741 ti->tcpi_rcv_wscale = GET_TCB_FIELD(tcb, SND_SCALE); /* Yes, SND. */ 742 ti->tcpi_rcv_space = GET_TCB_FIELD(tcb, RCV_WND); 743 744 /* Send window */ 745 ti->tcpi_snd_wscale = GET_TCB_FIELD(tcb, RCV_SCALE); /* Yes, RCV. */ 746 ti->tcpi_snd_wnd = GET_TCB_FIELD(tcb, RCV_ADV); 747 if (get_tcb_tflags(tcb) & V_TF_RECV_SCALE(1)) 748 ti->tcpi_snd_wnd <<= ti->tcpi_snd_wscale; 749 else 750 ti->tcpi_snd_wscale = 0; 751 752 } 753 754 static void 755 fill_tcp_info_from_history(struct adapter *sc, struct tcb_histent *te, 756 struct tcp_info *ti) 757 { 758 759 fill_tcp_info_from_tcb(sc, te->te_tcb, ti); 760 } 761 762 /* 763 * Reads the TCB for the given tid using a memory window and copies it to 'buf' 764 * in the same format as CPL_GET_TCB_RPL. 765 */ 766 static void 767 read_tcb_using_memwin(struct adapter *sc, u_int tid, uint64_t *buf) 768 { 769 int i, j, k, rc; 770 uint32_t addr; 771 u_char *tcb, tmp; 772 773 MPASS(tid >= sc->tids.tid_base); 774 MPASS(tid - sc->tids.tid_base < sc->tids.ntids); 775 776 addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE) + tid * TCB_SIZE; 777 rc = read_via_memwin(sc, 2, addr, (uint32_t *)buf, TCB_SIZE); 778 if (rc != 0) 779 return; 780 781 tcb = (u_char *)buf; 782 for (i = 0, j = TCB_SIZE - 16; i < j; i += 16, j -= 16) { 783 for (k = 0; k < 16; k++) { 784 tmp = tcb[i + k]; 785 tcb[i + k] = tcb[j + k]; 786 tcb[j + k] = tmp; 787 } 788 } 789 } 790 791 static void 792 fill_tcp_info(struct adapter *sc, u_int tid, struct tcp_info *ti) 793 { 794 uint64_t tcb[TCB_SIZE / sizeof(uint64_t)]; 795 struct tcb_histent *te; 796 797 ti->tcpi_toe_tid = tid; 798 te = lookup_tcb_histent(sc, tid, false); 799 if (te != NULL) { 800 fill_tcp_info_from_history(sc, te, ti); 801 release_tcb_histent(te); 802 } else { 803 if (!(sc->debug_flags & DF_DISABLE_TCB_CACHE)) { 804 /* XXX: tell firmware to flush TCB cache. */ 805 } 806 read_tcb_using_memwin(sc, tid, tcb); 807 fill_tcp_info_from_tcb(sc, tcb, ti); 808 } 809 } 810 811 /* 812 * Called by the kernel to allow the TOE driver to "refine" values filled up in 813 * the tcp_info for an offloaded connection. 814 */ 815 static void 816 t4_tcp_info(struct toedev *tod, const struct tcpcb *tp, struct tcp_info *ti) 817 { 818 struct adapter *sc = tod->tod_softc; 819 struct toepcb *toep = tp->t_toe; 820 821 INP_LOCK_ASSERT(tptoinpcb(tp)); 822 MPASS(ti != NULL); 823 824 fill_tcp_info(sc, toep->tid, ti); 825 } 826 827 #ifdef KERN_TLS 828 static int 829 t4_alloc_tls_session(struct toedev *tod, struct tcpcb *tp, 830 struct ktls_session *tls, int direction) 831 { 832 struct toepcb *toep = tp->t_toe; 833 834 INP_WLOCK_ASSERT(tptoinpcb(tp)); 835 MPASS(tls != NULL); 836 837 return (tls_alloc_ktls(toep, tls, direction)); 838 } 839 #endif 840 841 /* SET_TCB_FIELD sent as a ULP command looks like this */ 842 #define LEN__SET_TCB_FIELD_ULP (sizeof(struct ulp_txpkt) + \ 843 sizeof(struct ulptx_idata) + sizeof(struct cpl_set_tcb_field_core)) 844 845 static void * 846 mk_set_tcb_field_ulp(struct ulp_txpkt *ulpmc, uint64_t word, uint64_t mask, 847 uint64_t val, uint32_t tid) 848 { 849 struct ulptx_idata *ulpsc; 850 struct cpl_set_tcb_field_core *req; 851 852 ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0)); 853 ulpmc->len = htobe32(howmany(LEN__SET_TCB_FIELD_ULP, 16)); 854 855 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 856 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 857 ulpsc->len = htobe32(sizeof(*req)); 858 859 req = (struct cpl_set_tcb_field_core *)(ulpsc + 1); 860 OPCODE_TID(req) = htobe32(MK_OPCODE_TID(CPL_SET_TCB_FIELD, tid)); 861 req->reply_ctrl = htobe16(V_NO_REPLY(1)); 862 req->word_cookie = htobe16(V_WORD(word) | V_COOKIE(0)); 863 req->mask = htobe64(mask); 864 req->val = htobe64(val); 865 866 ulpsc = (struct ulptx_idata *)(req + 1); 867 if (LEN__SET_TCB_FIELD_ULP % 16) { 868 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP)); 869 ulpsc->len = htobe32(0); 870 return (ulpsc + 1); 871 } 872 return (ulpsc); 873 } 874 875 static void 876 send_mss_flowc_wr(struct adapter *sc, struct toepcb *toep) 877 { 878 struct wrq_cookie cookie; 879 struct fw_flowc_wr *flowc; 880 struct ofld_tx_sdesc *txsd; 881 const int flowclen = sizeof(*flowc) + sizeof(struct fw_flowc_mnemval); 882 const int flowclen16 = howmany(flowclen, 16); 883 884 if (toep->tx_credits < flowclen16 || toep->txsd_avail == 0) { 885 CH_ERR(sc, "%s: tid %u out of tx credits (%d, %d).\n", __func__, 886 toep->tid, toep->tx_credits, toep->txsd_avail); 887 return; 888 } 889 890 flowc = start_wrq_wr(&toep->ofld_txq->wrq, flowclen16, &cookie); 891 if (__predict_false(flowc == NULL)) { 892 CH_ERR(sc, "ENOMEM in %s for tid %u.\n", __func__, toep->tid); 893 return; 894 } 895 flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) | 896 V_FW_FLOWC_WR_NPARAMS(1)); 897 flowc->flowid_len16 = htonl(V_FW_WR_LEN16(flowclen16) | 898 V_FW_WR_FLOWID(toep->tid)); 899 flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_MSS; 900 flowc->mnemval[0].val = htobe32(toep->params.emss); 901 902 txsd = &toep->txsd[toep->txsd_pidx]; 903 txsd->tx_credits = flowclen16; 904 txsd->plen = 0; 905 toep->tx_credits -= txsd->tx_credits; 906 if (__predict_false(++toep->txsd_pidx == toep->txsd_total)) 907 toep->txsd_pidx = 0; 908 toep->txsd_avail--; 909 commit_wrq_wr(&toep->ofld_txq->wrq, flowc, &cookie); 910 } 911 912 static void 913 t4_pmtu_update(struct toedev *tod, struct tcpcb *tp, tcp_seq seq, int mtu) 914 { 915 struct work_request_hdr *wrh; 916 struct ulp_txpkt *ulpmc; 917 int idx, len; 918 struct wrq_cookie cookie; 919 struct inpcb *inp = tptoinpcb(tp); 920 struct toepcb *toep = tp->t_toe; 921 struct adapter *sc = td_adapter(toep->td); 922 unsigned short *mtus = &sc->params.mtus[0]; 923 924 INP_WLOCK_ASSERT(inp); 925 MPASS(mtu > 0); /* kernel is supposed to provide something usable. */ 926 927 /* tp->snd_una and snd_max are in host byte order too. */ 928 seq = be32toh(seq); 929 930 CTR6(KTR_CXGBE, "%s: tid %d, seq 0x%08x, mtu %u, mtu_idx %u (%d)", 931 __func__, toep->tid, seq, mtu, toep->params.mtu_idx, 932 mtus[toep->params.mtu_idx]); 933 934 if (ulp_mode(toep) == ULP_MODE_NONE && /* XXX: Read TCB otherwise? */ 935 (SEQ_LT(seq, tp->snd_una) || SEQ_GEQ(seq, tp->snd_max))) { 936 CTR5(KTR_CXGBE, 937 "%s: tid %d, seq 0x%08x not in range [0x%08x, 0x%08x).", 938 __func__, toep->tid, seq, tp->snd_una, tp->snd_max); 939 return; 940 } 941 942 /* Find the best mtu_idx for the suggested MTU. */ 943 for (idx = 0; idx < NMTUS - 1 && mtus[idx + 1] <= mtu; idx++) 944 continue; 945 if (idx >= toep->params.mtu_idx) 946 return; /* Never increase the PMTU (just like the kernel). */ 947 948 /* 949 * We'll send a compound work request with 2 SET_TCB_FIELDs -- the first 950 * one updates the mtu_idx and the second one triggers a retransmit. 951 */ 952 len = sizeof(*wrh) + 2 * roundup2(LEN__SET_TCB_FIELD_ULP, 16); 953 wrh = start_wrq_wr(toep->ctrlq, howmany(len, 16), &cookie); 954 if (wrh == NULL) { 955 CH_ERR(sc, "failed to change mtu_idx of tid %d (%u -> %u).\n", 956 toep->tid, toep->params.mtu_idx, idx); 957 return; 958 } 959 INIT_ULPTX_WRH(wrh, len, 1, 0); /* atomic */ 960 ulpmc = (struct ulp_txpkt *)(wrh + 1); 961 ulpmc = mk_set_tcb_field_ulp(ulpmc, W_TCB_T_MAXSEG, 962 V_TCB_T_MAXSEG(M_TCB_T_MAXSEG), V_TCB_T_MAXSEG(idx), toep->tid); 963 ulpmc = mk_set_tcb_field_ulp(ulpmc, W_TCB_TIMESTAMP, 964 V_TCB_TIMESTAMP(0x7FFFFULL << 11), 0, toep->tid); 965 commit_wrq_wr(toep->ctrlq, wrh, &cookie); 966 967 /* Update the software toepcb and tcpcb. */ 968 toep->params.mtu_idx = idx; 969 tp->t_maxseg = mtus[toep->params.mtu_idx]; 970 if (inp->inp_inc.inc_flags & INC_ISIPV6) 971 tp->t_maxseg -= sizeof(struct ip6_hdr) + sizeof(struct tcphdr); 972 else 973 tp->t_maxseg -= sizeof(struct ip) + sizeof(struct tcphdr); 974 toep->params.emss = tp->t_maxseg; 975 if (tp->t_flags & TF_RCVD_TSTMP) 976 toep->params.emss -= TCPOLEN_TSTAMP_APPA; 977 978 /* Update the firmware flowc. */ 979 send_mss_flowc_wr(sc, toep); 980 981 /* Update the MTU in the kernel's hostcache. */ 982 if (sc->tt.update_hc_on_pmtu_change != 0) { 983 struct in_conninfo inc = {0}; 984 985 inc.inc_fibnum = inp->inp_inc.inc_fibnum; 986 if (inp->inp_inc.inc_flags & INC_ISIPV6) { 987 inc.inc_flags |= INC_ISIPV6; 988 inc.inc6_faddr = inp->inp_inc.inc6_faddr; 989 } else { 990 inc.inc_faddr = inp->inp_inc.inc_faddr; 991 } 992 tcp_hc_updatemtu(&inc, mtu); 993 } 994 995 CTR6(KTR_CXGBE, "%s: tid %d, mtu_idx %u (%u), t_maxseg %u, emss %u", 996 __func__, toep->tid, toep->params.mtu_idx, 997 mtus[toep->params.mtu_idx], tp->t_maxseg, toep->params.emss); 998 } 999 1000 /* 1001 * The TOE driver will not receive any more CPLs for the tid associated with the 1002 * toepcb; release the hold on the inpcb. 1003 */ 1004 void 1005 final_cpl_received(struct toepcb *toep) 1006 { 1007 struct inpcb *inp = toep->inp; 1008 bool need_wakeup; 1009 1010 KASSERT(inp != NULL, ("%s: inp is NULL", __func__)); 1011 INP_WLOCK_ASSERT(inp); 1012 KASSERT(toep->flags & TPF_CPL_PENDING, 1013 ("%s: CPL not pending already?", __func__)); 1014 1015 CTR6(KTR_CXGBE, "%s: tid %d, toep %p (0x%x), inp %p (0x%x)", 1016 __func__, toep->tid, toep, toep->flags, inp, inp->inp_flags); 1017 1018 if (ulp_mode(toep) == ULP_MODE_TCPDDP) 1019 release_ddp_resources(toep); 1020 toep->inp = NULL; 1021 need_wakeup = (toep->flags & TPF_WAITING_FOR_FINAL) != 0; 1022 toep->flags &= ~(TPF_CPL_PENDING | TPF_WAITING_FOR_FINAL); 1023 mbufq_drain(&toep->ulp_pduq); 1024 mbufq_drain(&toep->ulp_pdu_reclaimq); 1025 1026 if (!(toep->flags & TPF_ATTACHED)) 1027 release_offload_resources(toep); 1028 1029 if (!in_pcbrele_wlocked(inp)) 1030 INP_WUNLOCK(inp); 1031 1032 if (need_wakeup) { 1033 struct mtx *lock = mtx_pool_find(mtxpool_sleep, toep); 1034 1035 mtx_lock(lock); 1036 wakeup(toep); 1037 mtx_unlock(lock); 1038 } 1039 } 1040 1041 void 1042 insert_tid(struct adapter *sc, int tid, void *ctx, int ntids) 1043 { 1044 struct tid_info *t = &sc->tids; 1045 1046 MPASS(tid >= t->tid_base); 1047 MPASS(tid - t->tid_base < t->ntids); 1048 1049 t->tid_tab[tid - t->tid_base] = ctx; 1050 atomic_add_int(&t->tids_in_use, ntids); 1051 } 1052 1053 void * 1054 lookup_tid(struct adapter *sc, int tid) 1055 { 1056 struct tid_info *t = &sc->tids; 1057 1058 return (t->tid_tab[tid - t->tid_base]); 1059 } 1060 1061 void 1062 update_tid(struct adapter *sc, int tid, void *ctx) 1063 { 1064 struct tid_info *t = &sc->tids; 1065 1066 t->tid_tab[tid - t->tid_base] = ctx; 1067 } 1068 1069 void 1070 remove_tid(struct adapter *sc, int tid, int ntids) 1071 { 1072 struct tid_info *t = &sc->tids; 1073 1074 t->tid_tab[tid - t->tid_base] = NULL; 1075 atomic_subtract_int(&t->tids_in_use, ntids); 1076 } 1077 1078 /* 1079 * What mtu_idx to use, given a 4-tuple. Note that both s->mss and tcp_mssopt 1080 * have the MSS that we should advertise in our SYN. Advertised MSS doesn't 1081 * account for any TCP options so the effective MSS (only payload, no headers or 1082 * options) could be different. 1083 */ 1084 static int 1085 find_best_mtu_idx(struct adapter *sc, struct in_conninfo *inc, 1086 struct offload_settings *s) 1087 { 1088 unsigned short *mtus = &sc->params.mtus[0]; 1089 int i, mss, mtu; 1090 1091 MPASS(inc != NULL); 1092 1093 mss = s->mss > 0 ? s->mss : tcp_mssopt(inc); 1094 if (inc->inc_flags & INC_ISIPV6) 1095 mtu = mss + sizeof(struct ip6_hdr) + sizeof(struct tcphdr); 1096 else 1097 mtu = mss + sizeof(struct ip) + sizeof(struct tcphdr); 1098 1099 for (i = 0; i < NMTUS - 1 && mtus[i + 1] <= mtu; i++) 1100 continue; 1101 1102 return (i); 1103 } 1104 1105 /* 1106 * Determine the receive window size for a socket. 1107 */ 1108 u_long 1109 select_rcv_wnd(struct socket *so) 1110 { 1111 unsigned long wnd; 1112 1113 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1114 1115 wnd = sbspace(&so->so_rcv); 1116 if (wnd < MIN_RCV_WND) 1117 wnd = MIN_RCV_WND; 1118 1119 return min(wnd, MAX_RCV_WND); 1120 } 1121 1122 int 1123 select_rcv_wscale(void) 1124 { 1125 int wscale = 0; 1126 unsigned long space = sb_max; 1127 1128 if (space > MAX_RCV_WND) 1129 space = MAX_RCV_WND; 1130 1131 while (wscale < TCP_MAX_WINSHIFT && (TCP_MAXWIN << wscale) < space) 1132 wscale++; 1133 1134 return (wscale); 1135 } 1136 1137 __be64 1138 calc_options0(struct vi_info *vi, struct conn_params *cp) 1139 { 1140 uint64_t opt0 = 0; 1141 1142 opt0 |= F_TCAM_BYPASS; 1143 1144 MPASS(cp->wscale >= 0 && cp->wscale <= M_WND_SCALE); 1145 opt0 |= V_WND_SCALE(cp->wscale); 1146 1147 MPASS(cp->mtu_idx >= 0 && cp->mtu_idx < NMTUS); 1148 opt0 |= V_MSS_IDX(cp->mtu_idx); 1149 1150 MPASS(cp->ulp_mode >= 0 && cp->ulp_mode <= M_ULP_MODE); 1151 opt0 |= V_ULP_MODE(cp->ulp_mode); 1152 1153 MPASS(cp->opt0_bufsize >= 0 && cp->opt0_bufsize <= M_RCV_BUFSIZ); 1154 opt0 |= V_RCV_BUFSIZ(cp->opt0_bufsize); 1155 1156 MPASS(cp->l2t_idx >= 0 && cp->l2t_idx < vi->adapter->vres.l2t.size); 1157 opt0 |= V_L2T_IDX(cp->l2t_idx); 1158 1159 opt0 |= V_SMAC_SEL(vi->smt_idx); 1160 opt0 |= V_TX_CHAN(vi->pi->tx_chan); 1161 1162 MPASS(cp->keepalive == 0 || cp->keepalive == 1); 1163 opt0 |= V_KEEP_ALIVE(cp->keepalive); 1164 1165 MPASS(cp->nagle == 0 || cp->nagle == 1); 1166 opt0 |= V_NAGLE(cp->nagle); 1167 1168 return (htobe64(opt0)); 1169 } 1170 1171 __be32 1172 calc_options2(struct vi_info *vi, struct conn_params *cp) 1173 { 1174 uint32_t opt2 = 0; 1175 struct port_info *pi = vi->pi; 1176 struct adapter *sc = pi->adapter; 1177 1178 /* 1179 * rx flow control, rx coalesce, congestion control, and tx pace are all 1180 * explicitly set by the driver. On T5+ the ISS is also set by the 1181 * driver to the value picked by the kernel. 1182 */ 1183 if (is_t4(sc)) { 1184 opt2 |= F_RX_FC_VALID | F_RX_COALESCE_VALID; 1185 opt2 |= F_CONG_CNTRL_VALID | F_PACE_VALID; 1186 } else { 1187 opt2 |= F_T5_OPT_2_VALID; /* all 4 valid */ 1188 opt2 |= F_T5_ISS; /* ISS provided in CPL */ 1189 } 1190 1191 MPASS(cp->sack == 0 || cp->sack == 1); 1192 opt2 |= V_SACK_EN(cp->sack); 1193 1194 MPASS(cp->tstamp == 0 || cp->tstamp == 1); 1195 opt2 |= V_TSTAMPS_EN(cp->tstamp); 1196 1197 if (cp->wscale > 0) 1198 opt2 |= F_WND_SCALE_EN; 1199 1200 MPASS(cp->ecn == 0 || cp->ecn == 1); 1201 opt2 |= V_CCTRL_ECN(cp->ecn); 1202 1203 /* XXX: F_RX_CHANNEL for multiple rx c-chan support goes here. */ 1204 1205 opt2 |= V_TX_QUEUE(sc->params.tp.tx_modq[pi->tx_chan]); 1206 opt2 |= V_PACE(0); 1207 opt2 |= F_RSS_QUEUE_VALID; 1208 opt2 |= V_RSS_QUEUE(sc->sge.ofld_rxq[cp->rxq_idx].iq.abs_id); 1209 1210 MPASS(cp->cong_algo >= 0 && cp->cong_algo <= M_CONG_CNTRL); 1211 opt2 |= V_CONG_CNTRL(cp->cong_algo); 1212 1213 MPASS(cp->rx_coalesce == 0 || cp->rx_coalesce == 1); 1214 if (cp->rx_coalesce == 1) 1215 opt2 |= V_RX_COALESCE(M_RX_COALESCE); 1216 1217 opt2 |= V_RX_FC_DDP(0) | V_RX_FC_DISABLE(0); 1218 MPASS(cp->ulp_mode != ULP_MODE_TCPDDP); 1219 1220 return (htobe32(opt2)); 1221 } 1222 1223 uint64_t 1224 select_ntuple(struct vi_info *vi, struct l2t_entry *e) 1225 { 1226 struct adapter *sc = vi->adapter; 1227 struct tp_params *tp = &sc->params.tp; 1228 uint64_t ntuple = 0; 1229 1230 /* 1231 * Initialize each of the fields which we care about which are present 1232 * in the Compressed Filter Tuple. 1233 */ 1234 if (tp->vlan_shift >= 0 && EVL_VLANOFTAG(e->vlan) != CPL_L2T_VLAN_NONE) 1235 ntuple |= (uint64_t)(F_FT_VLAN_VLD | e->vlan) << tp->vlan_shift; 1236 1237 if (tp->port_shift >= 0) 1238 ntuple |= (uint64_t)e->lport << tp->port_shift; 1239 1240 if (tp->protocol_shift >= 0) 1241 ntuple |= (uint64_t)IPPROTO_TCP << tp->protocol_shift; 1242 1243 if (tp->vnic_shift >= 0 && tp->vnic_mode == FW_VNIC_MODE_PF_VF) { 1244 ntuple |= (uint64_t)(V_FT_VNID_ID_VF(vi->vin) | 1245 V_FT_VNID_ID_PF(sc->pf) | V_FT_VNID_ID_VLD(vi->vfvld)) << 1246 tp->vnic_shift; 1247 } 1248 1249 if (is_t4(sc)) 1250 return (htobe32((uint32_t)ntuple)); 1251 else 1252 return (htobe64(V_FILTER_TUPLE(ntuple))); 1253 } 1254 1255 /* 1256 * Initialize various connection parameters. 1257 */ 1258 void 1259 init_conn_params(struct vi_info *vi , struct offload_settings *s, 1260 struct in_conninfo *inc, struct socket *so, 1261 const struct tcp_options *tcpopt, int16_t l2t_idx, struct conn_params *cp) 1262 { 1263 struct port_info *pi = vi->pi; 1264 struct adapter *sc = pi->adapter; 1265 struct tom_tunables *tt = &sc->tt; 1266 struct inpcb *inp = sotoinpcb(so); 1267 struct tcpcb *tp = intotcpcb(inp); 1268 u_long wnd; 1269 u_int q_idx; 1270 1271 MPASS(s->offload != 0); 1272 1273 /* Congestion control algorithm */ 1274 if (s->cong_algo >= 0) 1275 cp->cong_algo = s->cong_algo & M_CONG_CNTRL; 1276 else if (sc->tt.cong_algorithm >= 0) 1277 cp->cong_algo = tt->cong_algorithm & M_CONG_CNTRL; 1278 else { 1279 struct cc_algo *cc = CC_ALGO(tp); 1280 1281 if (strcasecmp(cc->name, "reno") == 0) 1282 cp->cong_algo = CONG_ALG_RENO; 1283 else if (strcasecmp(cc->name, "tahoe") == 0) 1284 cp->cong_algo = CONG_ALG_TAHOE; 1285 if (strcasecmp(cc->name, "newreno") == 0) 1286 cp->cong_algo = CONG_ALG_NEWRENO; 1287 if (strcasecmp(cc->name, "highspeed") == 0) 1288 cp->cong_algo = CONG_ALG_HIGHSPEED; 1289 else { 1290 /* 1291 * Use newreno in case the algorithm selected by the 1292 * host stack is not supported by the hardware. 1293 */ 1294 cp->cong_algo = CONG_ALG_NEWRENO; 1295 } 1296 } 1297 1298 /* Tx traffic scheduling class. */ 1299 if (s->sched_class >= 0 && s->sched_class < sc->params.nsched_cls) 1300 cp->tc_idx = s->sched_class; 1301 else 1302 cp->tc_idx = -1; 1303 1304 /* Nagle's algorithm. */ 1305 if (s->nagle >= 0) 1306 cp->nagle = s->nagle > 0 ? 1 : 0; 1307 else 1308 cp->nagle = tp->t_flags & TF_NODELAY ? 0 : 1; 1309 1310 /* TCP Keepalive. */ 1311 if (V_tcp_always_keepalive || so_options_get(so) & SO_KEEPALIVE) 1312 cp->keepalive = 1; 1313 else 1314 cp->keepalive = 0; 1315 1316 /* Optimization that's specific to T5 @ 40G. */ 1317 if (tt->tx_align >= 0) 1318 cp->tx_align = tt->tx_align > 0 ? 1 : 0; 1319 else if (chip_id(sc) == CHELSIO_T5 && 1320 (port_top_speed(pi) > 10 || sc->params.nports > 2)) 1321 cp->tx_align = 1; 1322 else 1323 cp->tx_align = 0; 1324 1325 /* ULP mode. */ 1326 cp->ulp_mode = ULP_MODE_NONE; 1327 1328 /* Rx coalescing. */ 1329 if (s->rx_coalesce >= 0) 1330 cp->rx_coalesce = s->rx_coalesce > 0 ? 1 : 0; 1331 else if (tt->rx_coalesce >= 0) 1332 cp->rx_coalesce = tt->rx_coalesce > 0 ? 1 : 0; 1333 else 1334 cp->rx_coalesce = 1; /* default */ 1335 1336 /* 1337 * Index in the PMTU table. This controls the MSS that we announce in 1338 * our SYN initially, but after ESTABLISHED it controls the MSS that we 1339 * use to send data. 1340 */ 1341 cp->mtu_idx = find_best_mtu_idx(sc, inc, s); 1342 1343 /* Tx queue for this connection. */ 1344 if (s->txq == QUEUE_RANDOM) 1345 q_idx = arc4random(); 1346 else if (s->txq == QUEUE_ROUNDROBIN) 1347 q_idx = atomic_fetchadd_int(&vi->txq_rr, 1); 1348 else 1349 q_idx = s->txq; 1350 cp->txq_idx = vi->first_ofld_txq + q_idx % vi->nofldtxq; 1351 1352 /* Rx queue for this connection. */ 1353 if (s->rxq == QUEUE_RANDOM) 1354 q_idx = arc4random(); 1355 else if (s->rxq == QUEUE_ROUNDROBIN) 1356 q_idx = atomic_fetchadd_int(&vi->rxq_rr, 1); 1357 else 1358 q_idx = s->rxq; 1359 cp->rxq_idx = vi->first_ofld_rxq + q_idx % vi->nofldrxq; 1360 1361 if (SOLISTENING(so)) { 1362 /* Passive open */ 1363 MPASS(tcpopt != NULL); 1364 1365 /* TCP timestamp option */ 1366 if (tcpopt->tstamp && 1367 (s->tstamp > 0 || (s->tstamp < 0 && V_tcp_do_rfc1323))) 1368 cp->tstamp = 1; 1369 else 1370 cp->tstamp = 0; 1371 1372 /* SACK */ 1373 if (tcpopt->sack && 1374 (s->sack > 0 || (s->sack < 0 && V_tcp_do_sack))) 1375 cp->sack = 1; 1376 else 1377 cp->sack = 0; 1378 1379 /* Receive window scaling. */ 1380 if (tcpopt->wsf > 0 && tcpopt->wsf < 15 && V_tcp_do_rfc1323) 1381 cp->wscale = select_rcv_wscale(); 1382 else 1383 cp->wscale = 0; 1384 1385 /* ECN */ 1386 if (tcpopt->ecn && /* XXX: review. */ 1387 (s->ecn > 0 || (s->ecn < 0 && V_tcp_do_ecn))) 1388 cp->ecn = 1; 1389 else 1390 cp->ecn = 0; 1391 1392 wnd = max(so->sol_sbrcv_hiwat, MIN_RCV_WND); 1393 cp->opt0_bufsize = min(wnd >> 10, M_RCV_BUFSIZ); 1394 1395 if (tt->sndbuf > 0) 1396 cp->sndbuf = tt->sndbuf; 1397 else if (so->sol_sbsnd_flags & SB_AUTOSIZE && 1398 V_tcp_do_autosndbuf) 1399 cp->sndbuf = 256 * 1024; 1400 else 1401 cp->sndbuf = so->sol_sbsnd_hiwat; 1402 } else { 1403 /* Active open */ 1404 1405 /* TCP timestamp option */ 1406 if (s->tstamp > 0 || 1407 (s->tstamp < 0 && (tp->t_flags & TF_REQ_TSTMP))) 1408 cp->tstamp = 1; 1409 else 1410 cp->tstamp = 0; 1411 1412 /* SACK */ 1413 if (s->sack > 0 || 1414 (s->sack < 0 && (tp->t_flags & TF_SACK_PERMIT))) 1415 cp->sack = 1; 1416 else 1417 cp->sack = 0; 1418 1419 /* Receive window scaling */ 1420 if (tp->t_flags & TF_REQ_SCALE) 1421 cp->wscale = select_rcv_wscale(); 1422 else 1423 cp->wscale = 0; 1424 1425 /* ECN */ 1426 if (s->ecn > 0 || (s->ecn < 0 && V_tcp_do_ecn == 1)) 1427 cp->ecn = 1; 1428 else 1429 cp->ecn = 0; 1430 1431 SOCKBUF_LOCK(&so->so_rcv); 1432 wnd = max(select_rcv_wnd(so), MIN_RCV_WND); 1433 SOCKBUF_UNLOCK(&so->so_rcv); 1434 cp->opt0_bufsize = min(wnd >> 10, M_RCV_BUFSIZ); 1435 1436 if (tt->sndbuf > 0) 1437 cp->sndbuf = tt->sndbuf; 1438 else { 1439 SOCKBUF_LOCK(&so->so_snd); 1440 if (so->so_snd.sb_flags & SB_AUTOSIZE && 1441 V_tcp_do_autosndbuf) 1442 cp->sndbuf = 256 * 1024; 1443 else 1444 cp->sndbuf = so->so_snd.sb_hiwat; 1445 SOCKBUF_UNLOCK(&so->so_snd); 1446 } 1447 } 1448 1449 cp->l2t_idx = l2t_idx; 1450 1451 /* This will be initialized on ESTABLISHED. */ 1452 cp->emss = 0; 1453 } 1454 1455 int 1456 negative_advice(int status) 1457 { 1458 1459 return (status == CPL_ERR_RTX_NEG_ADVICE || 1460 status == CPL_ERR_PERSIST_NEG_ADVICE || 1461 status == CPL_ERR_KEEPALV_NEG_ADVICE); 1462 } 1463 1464 static int 1465 alloc_tid_tab(struct tid_info *t, int flags) 1466 { 1467 1468 MPASS(t->ntids > 0); 1469 MPASS(t->tid_tab == NULL); 1470 1471 t->tid_tab = malloc(t->ntids * sizeof(*t->tid_tab), M_CXGBE, 1472 M_ZERO | flags); 1473 if (t->tid_tab == NULL) 1474 return (ENOMEM); 1475 atomic_store_rel_int(&t->tids_in_use, 0); 1476 1477 return (0); 1478 } 1479 1480 static void 1481 free_tid_tab(struct tid_info *t) 1482 { 1483 1484 KASSERT(t->tids_in_use == 0, 1485 ("%s: %d tids still in use.", __func__, t->tids_in_use)); 1486 1487 free(t->tid_tab, M_CXGBE); 1488 t->tid_tab = NULL; 1489 } 1490 1491 static int 1492 alloc_stid_tab(struct tid_info *t, int flags) 1493 { 1494 1495 MPASS(t->nstids > 0); 1496 MPASS(t->stid_tab == NULL); 1497 1498 t->stid_tab = malloc(t->nstids * sizeof(*t->stid_tab), M_CXGBE, 1499 M_ZERO | flags); 1500 if (t->stid_tab == NULL) 1501 return (ENOMEM); 1502 mtx_init(&t->stid_lock, "stid lock", NULL, MTX_DEF); 1503 t->stids_in_use = 0; 1504 TAILQ_INIT(&t->stids); 1505 t->nstids_free_head = t->nstids; 1506 1507 return (0); 1508 } 1509 1510 static void 1511 free_stid_tab(struct tid_info *t) 1512 { 1513 1514 KASSERT(t->stids_in_use == 0, 1515 ("%s: %d tids still in use.", __func__, t->stids_in_use)); 1516 1517 if (mtx_initialized(&t->stid_lock)) 1518 mtx_destroy(&t->stid_lock); 1519 free(t->stid_tab, M_CXGBE); 1520 t->stid_tab = NULL; 1521 } 1522 1523 static void 1524 free_tid_tabs(struct tid_info *t) 1525 { 1526 1527 free_tid_tab(t); 1528 free_stid_tab(t); 1529 } 1530 1531 static int 1532 alloc_tid_tabs(struct tid_info *t) 1533 { 1534 int rc; 1535 1536 rc = alloc_tid_tab(t, M_NOWAIT); 1537 if (rc != 0) 1538 goto failed; 1539 1540 rc = alloc_stid_tab(t, M_NOWAIT); 1541 if (rc != 0) 1542 goto failed; 1543 1544 return (0); 1545 failed: 1546 free_tid_tabs(t); 1547 return (rc); 1548 } 1549 1550 static inline void 1551 alloc_tcb_history(struct adapter *sc, struct tom_data *td) 1552 { 1553 1554 if (sc->tids.ntids == 0 || sc->tids.ntids > 1024) 1555 return; 1556 rw_init(&td->tcb_history_lock, "TCB history"); 1557 td->tcb_history = malloc(sc->tids.ntids * sizeof(*td->tcb_history), 1558 M_CXGBE, M_ZERO | M_NOWAIT); 1559 td->dupack_threshold = G_DUPACKTHRESH(t4_read_reg(sc, A_TP_PARA_REG0)); 1560 } 1561 1562 static inline void 1563 free_tcb_history(struct adapter *sc, struct tom_data *td) 1564 { 1565 #ifdef INVARIANTS 1566 int i; 1567 1568 if (td->tcb_history != NULL) { 1569 for (i = 0; i < sc->tids.ntids; i++) { 1570 MPASS(td->tcb_history[i] == NULL); 1571 } 1572 } 1573 #endif 1574 free(td->tcb_history, M_CXGBE); 1575 if (rw_initialized(&td->tcb_history_lock)) 1576 rw_destroy(&td->tcb_history_lock); 1577 } 1578 1579 static void 1580 free_tom_data(struct adapter *sc, struct tom_data *td) 1581 { 1582 1583 ASSERT_SYNCHRONIZED_OP(sc); 1584 1585 KASSERT(TAILQ_EMPTY(&td->toep_list), 1586 ("%s: TOE PCB list is not empty.", __func__)); 1587 KASSERT(td->lctx_count == 0, 1588 ("%s: lctx hash table is not empty.", __func__)); 1589 1590 t4_free_ppod_region(&td->pr); 1591 1592 if (td->listen_mask != 0) 1593 hashdestroy(td->listen_hash, M_CXGBE, td->listen_mask); 1594 1595 if (mtx_initialized(&td->unsent_wr_lock)) 1596 mtx_destroy(&td->unsent_wr_lock); 1597 if (mtx_initialized(&td->lctx_hash_lock)) 1598 mtx_destroy(&td->lctx_hash_lock); 1599 if (mtx_initialized(&td->toep_list_lock)) 1600 mtx_destroy(&td->toep_list_lock); 1601 1602 free_tcb_history(sc, td); 1603 free_tid_tabs(&sc->tids); 1604 free(td, M_CXGBE); 1605 } 1606 1607 static char * 1608 prepare_pkt(int open_type, uint16_t vtag, struct inpcb *inp, int *pktlen, 1609 int *buflen) 1610 { 1611 char *pkt; 1612 struct tcphdr *th; 1613 int ipv6, len; 1614 const int maxlen = 1615 max(sizeof(struct ether_header), sizeof(struct ether_vlan_header)) + 1616 max(sizeof(struct ip), sizeof(struct ip6_hdr)) + 1617 sizeof(struct tcphdr); 1618 1619 MPASS(open_type == OPEN_TYPE_ACTIVE || open_type == OPEN_TYPE_LISTEN); 1620 1621 pkt = malloc(maxlen, M_CXGBE, M_ZERO | M_NOWAIT); 1622 if (pkt == NULL) 1623 return (NULL); 1624 1625 ipv6 = inp->inp_vflag & INP_IPV6; 1626 len = 0; 1627 1628 if (EVL_VLANOFTAG(vtag) == 0xfff) { 1629 struct ether_header *eh = (void *)pkt; 1630 1631 if (ipv6) 1632 eh->ether_type = htons(ETHERTYPE_IPV6); 1633 else 1634 eh->ether_type = htons(ETHERTYPE_IP); 1635 1636 len += sizeof(*eh); 1637 } else { 1638 struct ether_vlan_header *evh = (void *)pkt; 1639 1640 evh->evl_encap_proto = htons(ETHERTYPE_VLAN); 1641 evh->evl_tag = htons(vtag); 1642 if (ipv6) 1643 evh->evl_proto = htons(ETHERTYPE_IPV6); 1644 else 1645 evh->evl_proto = htons(ETHERTYPE_IP); 1646 1647 len += sizeof(*evh); 1648 } 1649 1650 if (ipv6) { 1651 struct ip6_hdr *ip6 = (void *)&pkt[len]; 1652 1653 ip6->ip6_vfc = IPV6_VERSION; 1654 ip6->ip6_plen = htons(sizeof(struct tcphdr)); 1655 ip6->ip6_nxt = IPPROTO_TCP; 1656 if (open_type == OPEN_TYPE_ACTIVE) { 1657 ip6->ip6_src = inp->in6p_laddr; 1658 ip6->ip6_dst = inp->in6p_faddr; 1659 } else if (open_type == OPEN_TYPE_LISTEN) { 1660 ip6->ip6_src = inp->in6p_laddr; 1661 ip6->ip6_dst = ip6->ip6_src; 1662 } 1663 1664 len += sizeof(*ip6); 1665 } else { 1666 struct ip *ip = (void *)&pkt[len]; 1667 1668 ip->ip_v = IPVERSION; 1669 ip->ip_hl = sizeof(*ip) >> 2; 1670 ip->ip_tos = inp->inp_ip_tos; 1671 ip->ip_len = htons(sizeof(struct ip) + sizeof(struct tcphdr)); 1672 ip->ip_ttl = inp->inp_ip_ttl; 1673 ip->ip_p = IPPROTO_TCP; 1674 if (open_type == OPEN_TYPE_ACTIVE) { 1675 ip->ip_src = inp->inp_laddr; 1676 ip->ip_dst = inp->inp_faddr; 1677 } else if (open_type == OPEN_TYPE_LISTEN) { 1678 ip->ip_src = inp->inp_laddr; 1679 ip->ip_dst = ip->ip_src; 1680 } 1681 1682 len += sizeof(*ip); 1683 } 1684 1685 th = (void *)&pkt[len]; 1686 if (open_type == OPEN_TYPE_ACTIVE) { 1687 th->th_sport = inp->inp_lport; /* network byte order already */ 1688 th->th_dport = inp->inp_fport; /* ditto */ 1689 } else if (open_type == OPEN_TYPE_LISTEN) { 1690 th->th_sport = inp->inp_lport; /* network byte order already */ 1691 th->th_dport = th->th_sport; 1692 } 1693 len += sizeof(th); 1694 1695 *pktlen = *buflen = len; 1696 return (pkt); 1697 } 1698 1699 const struct offload_settings * 1700 lookup_offload_policy(struct adapter *sc, int open_type, struct mbuf *m, 1701 uint16_t vtag, struct inpcb *inp) 1702 { 1703 const struct t4_offload_policy *op; 1704 char *pkt; 1705 struct offload_rule *r; 1706 int i, matched, pktlen, buflen; 1707 static const struct offload_settings allow_offloading_settings = { 1708 .offload = 1, 1709 .rx_coalesce = -1, 1710 .cong_algo = -1, 1711 .sched_class = -1, 1712 .tstamp = -1, 1713 .sack = -1, 1714 .nagle = -1, 1715 .ecn = -1, 1716 .ddp = -1, 1717 .tls = -1, 1718 .txq = QUEUE_RANDOM, 1719 .rxq = QUEUE_RANDOM, 1720 .mss = -1, 1721 }; 1722 static const struct offload_settings disallow_offloading_settings = { 1723 .offload = 0, 1724 /* rest is irrelevant when offload is off. */ 1725 }; 1726 1727 rw_assert(&sc->policy_lock, RA_LOCKED); 1728 1729 /* 1730 * If there's no Connection Offloading Policy attached to the device 1731 * then we need to return a default static policy. If 1732 * "cop_managed_offloading" is true, then we need to disallow 1733 * offloading until a COP is attached to the device. Otherwise we 1734 * allow offloading ... 1735 */ 1736 op = sc->policy; 1737 if (op == NULL) { 1738 if (sc->tt.cop_managed_offloading) 1739 return (&disallow_offloading_settings); 1740 else 1741 return (&allow_offloading_settings); 1742 } 1743 1744 switch (open_type) { 1745 case OPEN_TYPE_ACTIVE: 1746 case OPEN_TYPE_LISTEN: 1747 pkt = prepare_pkt(open_type, vtag, inp, &pktlen, &buflen); 1748 break; 1749 case OPEN_TYPE_PASSIVE: 1750 MPASS(m != NULL); 1751 pkt = mtod(m, char *); 1752 MPASS(*pkt == CPL_PASS_ACCEPT_REQ); 1753 pkt += sizeof(struct cpl_pass_accept_req); 1754 pktlen = m->m_pkthdr.len - sizeof(struct cpl_pass_accept_req); 1755 buflen = m->m_len - sizeof(struct cpl_pass_accept_req); 1756 break; 1757 default: 1758 MPASS(0); 1759 return (&disallow_offloading_settings); 1760 } 1761 1762 if (pkt == NULL || pktlen == 0 || buflen == 0) 1763 return (&disallow_offloading_settings); 1764 1765 matched = 0; 1766 r = &op->rule[0]; 1767 for (i = 0; i < op->nrules; i++, r++) { 1768 if (r->open_type != open_type && 1769 r->open_type != OPEN_TYPE_DONTCARE) { 1770 continue; 1771 } 1772 matched = bpf_filter(r->bpf_prog.bf_insns, pkt, pktlen, buflen); 1773 if (matched) 1774 break; 1775 } 1776 1777 if (open_type == OPEN_TYPE_ACTIVE || open_type == OPEN_TYPE_LISTEN) 1778 free(pkt, M_CXGBE); 1779 1780 return (matched ? &r->settings : &disallow_offloading_settings); 1781 } 1782 1783 static void 1784 reclaim_wr_resources(void *arg, int count) 1785 { 1786 struct tom_data *td = arg; 1787 STAILQ_HEAD(, wrqe) twr_list = STAILQ_HEAD_INITIALIZER(twr_list); 1788 struct cpl_act_open_req *cpl; 1789 u_int opcode, atid, tid; 1790 struct wrqe *wr; 1791 struct adapter *sc = td_adapter(td); 1792 1793 mtx_lock(&td->unsent_wr_lock); 1794 STAILQ_SWAP(&td->unsent_wr_list, &twr_list, wrqe); 1795 mtx_unlock(&td->unsent_wr_lock); 1796 1797 while ((wr = STAILQ_FIRST(&twr_list)) != NULL) { 1798 STAILQ_REMOVE_HEAD(&twr_list, link); 1799 1800 cpl = wrtod(wr); 1801 opcode = GET_OPCODE(cpl); 1802 1803 switch (opcode) { 1804 case CPL_ACT_OPEN_REQ: 1805 case CPL_ACT_OPEN_REQ6: 1806 atid = G_TID_TID(be32toh(OPCODE_TID(cpl))); 1807 CTR2(KTR_CXGBE, "%s: atid %u ", __func__, atid); 1808 act_open_failure_cleanup(sc, atid, EHOSTUNREACH); 1809 free(wr, M_CXGBE); 1810 break; 1811 case CPL_PASS_ACCEPT_RPL: 1812 tid = GET_TID(cpl); 1813 CTR2(KTR_CXGBE, "%s: tid %u ", __func__, tid); 1814 synack_failure_cleanup(sc, tid); 1815 free(wr, M_CXGBE); 1816 break; 1817 default: 1818 log(LOG_ERR, "%s: leaked work request %p, wr_len %d, " 1819 "opcode %x\n", __func__, wr, wr->wr_len, opcode); 1820 /* WR not freed here; go look at it with a debugger. */ 1821 } 1822 } 1823 } 1824 1825 /* 1826 * Ground control to Major TOM 1827 * Commencing countdown, engines on 1828 */ 1829 static int 1830 t4_tom_activate(struct adapter *sc) 1831 { 1832 struct tom_data *td; 1833 struct toedev *tod; 1834 struct vi_info *vi; 1835 int i, rc, v; 1836 1837 ASSERT_SYNCHRONIZED_OP(sc); 1838 1839 /* per-adapter softc for TOM */ 1840 td = malloc(sizeof(*td), M_CXGBE, M_ZERO | M_NOWAIT); 1841 if (td == NULL) 1842 return (ENOMEM); 1843 1844 /* List of TOE PCBs and associated lock */ 1845 mtx_init(&td->toep_list_lock, "PCB list lock", NULL, MTX_DEF); 1846 TAILQ_INIT(&td->toep_list); 1847 1848 /* Listen context */ 1849 mtx_init(&td->lctx_hash_lock, "lctx hash lock", NULL, MTX_DEF); 1850 td->listen_hash = hashinit_flags(LISTEN_HASH_SIZE, M_CXGBE, 1851 &td->listen_mask, HASH_NOWAIT); 1852 1853 /* List of WRs for which L2 resolution failed */ 1854 mtx_init(&td->unsent_wr_lock, "Unsent WR list lock", NULL, MTX_DEF); 1855 STAILQ_INIT(&td->unsent_wr_list); 1856 TASK_INIT(&td->reclaim_wr_resources, 0, reclaim_wr_resources, td); 1857 1858 /* TID tables */ 1859 rc = alloc_tid_tabs(&sc->tids); 1860 if (rc != 0) 1861 goto done; 1862 1863 rc = t4_init_ppod_region(&td->pr, &sc->vres.ddp, 1864 t4_read_reg(sc, A_ULP_RX_TDDP_PSZ), "TDDP page pods"); 1865 if (rc != 0) 1866 goto done; 1867 t4_set_reg_field(sc, A_ULP_RX_TDDP_TAGMASK, 1868 V_TDDPTAGMASK(M_TDDPTAGMASK), td->pr.pr_tag_mask); 1869 1870 alloc_tcb_history(sc, td); 1871 1872 /* toedev ops */ 1873 tod = &td->tod; 1874 init_toedev(tod); 1875 tod->tod_softc = sc; 1876 tod->tod_connect = t4_connect; 1877 tod->tod_listen_start = t4_listen_start; 1878 tod->tod_listen_stop = t4_listen_stop; 1879 tod->tod_rcvd = t4_rcvd; 1880 tod->tod_output = t4_tod_output; 1881 tod->tod_send_rst = t4_send_rst; 1882 tod->tod_send_fin = t4_send_fin; 1883 tod->tod_pcb_detach = t4_pcb_detach; 1884 tod->tod_l2_update = t4_l2_update; 1885 tod->tod_syncache_added = t4_syncache_added; 1886 tod->tod_syncache_removed = t4_syncache_removed; 1887 tod->tod_syncache_respond = t4_syncache_respond; 1888 tod->tod_offload_socket = t4_offload_socket; 1889 tod->tod_ctloutput = t4_ctloutput; 1890 tod->tod_tcp_info = t4_tcp_info; 1891 #ifdef KERN_TLS 1892 tod->tod_alloc_tls_session = t4_alloc_tls_session; 1893 #endif 1894 tod->tod_pmtu_update = t4_pmtu_update; 1895 1896 for_each_port(sc, i) { 1897 for_each_vi(sc->port[i], v, vi) { 1898 SETTOEDEV(vi->ifp, &td->tod); 1899 } 1900 } 1901 1902 sc->tom_softc = td; 1903 register_toedev(sc->tom_softc); 1904 1905 done: 1906 if (rc != 0) 1907 free_tom_data(sc, td); 1908 return (rc); 1909 } 1910 1911 static int 1912 t4_tom_deactivate(struct adapter *sc) 1913 { 1914 int rc = 0; 1915 struct tom_data *td = sc->tom_softc; 1916 1917 ASSERT_SYNCHRONIZED_OP(sc); 1918 1919 if (td == NULL) 1920 return (0); /* XXX. KASSERT? */ 1921 1922 if (sc->offload_map != 0) 1923 return (EBUSY); /* at least one port has IFCAP_TOE enabled */ 1924 1925 if (uld_active(sc, ULD_IWARP) || uld_active(sc, ULD_ISCSI)) 1926 return (EBUSY); /* both iWARP and iSCSI rely on the TOE. */ 1927 1928 mtx_lock(&td->toep_list_lock); 1929 if (!TAILQ_EMPTY(&td->toep_list)) 1930 rc = EBUSY; 1931 mtx_unlock(&td->toep_list_lock); 1932 1933 mtx_lock(&td->lctx_hash_lock); 1934 if (td->lctx_count > 0) 1935 rc = EBUSY; 1936 mtx_unlock(&td->lctx_hash_lock); 1937 1938 taskqueue_drain(taskqueue_thread, &td->reclaim_wr_resources); 1939 mtx_lock(&td->unsent_wr_lock); 1940 if (!STAILQ_EMPTY(&td->unsent_wr_list)) 1941 rc = EBUSY; 1942 mtx_unlock(&td->unsent_wr_lock); 1943 1944 if (rc == 0) { 1945 unregister_toedev(sc->tom_softc); 1946 free_tom_data(sc, td); 1947 sc->tom_softc = NULL; 1948 } 1949 1950 return (rc); 1951 } 1952 1953 static int 1954 t4_aio_queue_tom(struct socket *so, struct kaiocb *job) 1955 { 1956 struct tcpcb *tp = sototcpcb(so); 1957 struct toepcb *toep = tp->t_toe; 1958 int error; 1959 1960 /* 1961 * No lock is needed as TOE sockets never change between 1962 * active and passive. 1963 */ 1964 if (SOLISTENING(so)) 1965 return (EINVAL); 1966 1967 if (ulp_mode(toep) == ULP_MODE_TCPDDP || 1968 ulp_mode(toep) == ULP_MODE_NONE) { 1969 error = t4_aio_queue_ddp(so, job); 1970 if (error != EOPNOTSUPP) 1971 return (error); 1972 } 1973 1974 return (t4_aio_queue_aiotx(so, job)); 1975 } 1976 1977 static int 1978 t4_tom_mod_load(void) 1979 { 1980 /* CPL handlers */ 1981 t4_register_cpl_handler(CPL_GET_TCB_RPL, do_get_tcb_rpl); 1982 t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, do_l2t_write_rpl2, 1983 CPL_COOKIE_TOM); 1984 t4_init_connect_cpl_handlers(); 1985 t4_init_listen_cpl_handlers(); 1986 t4_init_cpl_io_handlers(); 1987 1988 t4_ddp_mod_load(); 1989 t4_tls_mod_load(); 1990 1991 bcopy(&tcp_protosw, &toe_protosw, sizeof(toe_protosw)); 1992 toe_protosw.pr_aio_queue = t4_aio_queue_tom; 1993 1994 bcopy(&tcp6_protosw, &toe6_protosw, sizeof(toe6_protosw)); 1995 toe6_protosw.pr_aio_queue = t4_aio_queue_tom; 1996 1997 return (t4_register_uld(&tom_uld_info)); 1998 } 1999 2000 static void 2001 tom_uninit(struct adapter *sc, void *arg __unused) 2002 { 2003 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4tomun")) 2004 return; 2005 2006 /* Try to free resources (works only if no port has IFCAP_TOE) */ 2007 if (uld_active(sc, ULD_TOM)) 2008 t4_deactivate_uld(sc, ULD_TOM); 2009 2010 end_synchronized_op(sc, 0); 2011 } 2012 2013 static int 2014 t4_tom_mod_unload(void) 2015 { 2016 t4_iterate(tom_uninit, NULL); 2017 2018 if (t4_unregister_uld(&tom_uld_info) == EBUSY) 2019 return (EBUSY); 2020 2021 t4_tls_mod_unload(); 2022 t4_ddp_mod_unload(); 2023 2024 t4_uninit_connect_cpl_handlers(); 2025 t4_uninit_listen_cpl_handlers(); 2026 t4_uninit_cpl_io_handlers(); 2027 t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, NULL, CPL_COOKIE_TOM); 2028 t4_register_cpl_handler(CPL_GET_TCB_RPL, NULL); 2029 2030 return (0); 2031 } 2032 #endif /* TCP_OFFLOAD */ 2033 2034 static int 2035 t4_tom_modevent(module_t mod, int cmd, void *arg) 2036 { 2037 int rc = 0; 2038 2039 #ifdef TCP_OFFLOAD 2040 switch (cmd) { 2041 case MOD_LOAD: 2042 rc = t4_tom_mod_load(); 2043 break; 2044 2045 case MOD_UNLOAD: 2046 rc = t4_tom_mod_unload(); 2047 break; 2048 2049 default: 2050 rc = EINVAL; 2051 } 2052 #else 2053 printf("t4_tom: compiled without TCP_OFFLOAD support.\n"); 2054 rc = EOPNOTSUPP; 2055 #endif 2056 return (rc); 2057 } 2058 2059 static moduledata_t t4_tom_moddata= { 2060 "t4_tom", 2061 t4_tom_modevent, 2062 0 2063 }; 2064 2065 MODULE_VERSION(t4_tom, 1); 2066 MODULE_DEPEND(t4_tom, toecore, 1, 1, 1); 2067 MODULE_DEPEND(t4_tom, t4nex, 1, 1, 1); 2068 DECLARE_MODULE(t4_tom, t4_tom_moddata, SI_SUB_EXEC, SI_ORDER_ANY); 2069