1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2012 Chelsio Communications, Inc. 5 * All rights reserved. 6 * Written by: Navdeep Parhar <np@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include "opt_inet.h" 34 #include "opt_inet6.h" 35 #include "opt_ratelimit.h" 36 37 #include <sys/param.h> 38 #include <sys/types.h> 39 #include <sys/systm.h> 40 #include <sys/kernel.h> 41 #include <sys/ktr.h> 42 #include <sys/lock.h> 43 #include <sys/limits.h> 44 #include <sys/module.h> 45 #include <sys/protosw.h> 46 #include <sys/domain.h> 47 #include <sys/refcount.h> 48 #include <sys/rmlock.h> 49 #include <sys/socket.h> 50 #include <sys/socketvar.h> 51 #include <sys/sysctl.h> 52 #include <sys/taskqueue.h> 53 #include <net/if.h> 54 #include <net/if_var.h> 55 #include <net/if_types.h> 56 #include <net/if_vlan_var.h> 57 #include <netinet/in.h> 58 #include <netinet/in_pcb.h> 59 #include <netinet/in_var.h> 60 #include <netinet/ip.h> 61 #include <netinet/ip6.h> 62 #include <netinet6/scope6_var.h> 63 #define TCPSTATES 64 #include <netinet/tcp_fsm.h> 65 #include <netinet/tcp_timer.h> 66 #include <netinet/tcp_var.h> 67 #include <netinet/toecore.h> 68 #include <netinet/cc/cc.h> 69 70 #ifdef TCP_OFFLOAD 71 #include "common/common.h" 72 #include "common/t4_msg.h" 73 #include "common/t4_regs.h" 74 #include "common/t4_regs_values.h" 75 #include "common/t4_tcb.h" 76 #include "t4_clip.h" 77 #include "tom/t4_tom_l2t.h" 78 #include "tom/t4_tom.h" 79 #include "tom/t4_tls.h" 80 81 static struct protosw toe_protosw; 82 static struct pr_usrreqs toe_usrreqs; 83 84 static struct protosw toe6_protosw; 85 static struct pr_usrreqs toe6_usrreqs; 86 87 /* Module ops */ 88 static int t4_tom_mod_load(void); 89 static int t4_tom_mod_unload(void); 90 static int t4_tom_modevent(module_t, int, void *); 91 92 /* ULD ops and helpers */ 93 static int t4_tom_activate(struct adapter *); 94 static int t4_tom_deactivate(struct adapter *); 95 96 static struct uld_info tom_uld_info = { 97 .uld_id = ULD_TOM, 98 .activate = t4_tom_activate, 99 .deactivate = t4_tom_deactivate, 100 }; 101 102 static void release_offload_resources(struct toepcb *); 103 static int alloc_tid_tabs(struct tid_info *); 104 static void free_tid_tabs(struct tid_info *); 105 static void free_tom_data(struct adapter *, struct tom_data *); 106 static void reclaim_wr_resources(void *, int); 107 108 struct toepcb * 109 alloc_toepcb(struct vi_info *vi, int flags) 110 { 111 struct port_info *pi = vi->pi; 112 struct adapter *sc = pi->adapter; 113 struct toepcb *toep; 114 int tx_credits, txsd_total, len; 115 116 /* 117 * The firmware counts tx work request credits in units of 16 bytes 118 * each. Reserve room for an ABORT_REQ so the driver never has to worry 119 * about tx credits if it wants to abort a connection. 120 */ 121 tx_credits = sc->params.ofldq_wr_cred; 122 tx_credits -= howmany(sizeof(struct cpl_abort_req), 16); 123 124 /* 125 * Shortest possible tx work request is a fw_ofld_tx_data_wr + 1 byte 126 * immediate payload, and firmware counts tx work request credits in 127 * units of 16 byte. Calculate the maximum work requests possible. 128 */ 129 txsd_total = tx_credits / 130 howmany(sizeof(struct fw_ofld_tx_data_wr) + 1, 16); 131 132 len = offsetof(struct toepcb, txsd) + 133 txsd_total * sizeof(struct ofld_tx_sdesc); 134 135 toep = malloc(len, M_CXGBE, M_ZERO | flags); 136 if (toep == NULL) 137 return (NULL); 138 139 refcount_init(&toep->refcount, 1); 140 toep->td = sc->tom_softc; 141 toep->vi = vi; 142 toep->tid = -1; 143 toep->tx_total = tx_credits; 144 toep->tx_credits = tx_credits; 145 mbufq_init(&toep->ulp_pduq, INT_MAX); 146 mbufq_init(&toep->ulp_pdu_reclaimq, INT_MAX); 147 toep->txsd_total = txsd_total; 148 toep->txsd_avail = txsd_total; 149 toep->txsd_pidx = 0; 150 toep->txsd_cidx = 0; 151 aiotx_init_toep(toep); 152 153 return (toep); 154 } 155 156 /* 157 * Initialize a toepcb after its params have been filled out. 158 */ 159 int 160 init_toepcb(struct vi_info *vi, struct toepcb *toep) 161 { 162 struct conn_params *cp = &toep->params; 163 struct port_info *pi = vi->pi; 164 struct adapter *sc = pi->adapter; 165 struct tx_cl_rl_params *tc; 166 167 if (cp->tc_idx >= 0 && cp->tc_idx < sc->chip_params->nsched_cls) { 168 tc = &pi->sched_params->cl_rl[cp->tc_idx]; 169 mtx_lock(&sc->tc_lock); 170 if (tc->flags & CLRL_ERR) { 171 log(LOG_ERR, 172 "%s: failed to associate traffic class %u with tid %u\n", 173 device_get_nameunit(vi->dev), cp->tc_idx, 174 toep->tid); 175 cp->tc_idx = -1; 176 } else { 177 tc->refcount++; 178 } 179 mtx_unlock(&sc->tc_lock); 180 } 181 toep->ofld_txq = &sc->sge.ofld_txq[cp->txq_idx]; 182 toep->ofld_rxq = &sc->sge.ofld_rxq[cp->rxq_idx]; 183 toep->ctrlq = &sc->sge.ctrlq[pi->port_id]; 184 185 tls_init_toep(toep); 186 if (ulp_mode(toep) == ULP_MODE_TCPDDP) 187 ddp_init_toep(toep); 188 189 return (0); 190 } 191 192 struct toepcb * 193 hold_toepcb(struct toepcb *toep) 194 { 195 196 refcount_acquire(&toep->refcount); 197 return (toep); 198 } 199 200 void 201 free_toepcb(struct toepcb *toep) 202 { 203 204 if (refcount_release(&toep->refcount) == 0) 205 return; 206 207 KASSERT(!(toep->flags & TPF_ATTACHED), 208 ("%s: attached to an inpcb", __func__)); 209 KASSERT(!(toep->flags & TPF_CPL_PENDING), 210 ("%s: CPL pending", __func__)); 211 212 if (ulp_mode(toep) == ULP_MODE_TCPDDP) 213 ddp_uninit_toep(toep); 214 tls_uninit_toep(toep); 215 free(toep, M_CXGBE); 216 } 217 218 /* 219 * Set up the socket for TCP offload. 220 */ 221 void 222 offload_socket(struct socket *so, struct toepcb *toep) 223 { 224 struct tom_data *td = toep->td; 225 struct inpcb *inp = sotoinpcb(so); 226 struct tcpcb *tp = intotcpcb(inp); 227 struct sockbuf *sb; 228 229 INP_WLOCK_ASSERT(inp); 230 231 /* Update socket */ 232 sb = &so->so_snd; 233 SOCKBUF_LOCK(sb); 234 sb->sb_flags |= SB_NOCOALESCE; 235 SOCKBUF_UNLOCK(sb); 236 sb = &so->so_rcv; 237 SOCKBUF_LOCK(sb); 238 sb->sb_flags |= SB_NOCOALESCE; 239 if (inp->inp_vflag & INP_IPV6) 240 so->so_proto = &toe6_protosw; 241 else 242 so->so_proto = &toe_protosw; 243 SOCKBUF_UNLOCK(sb); 244 245 /* Update TCP PCB */ 246 tp->tod = &td->tod; 247 tp->t_toe = toep; 248 tp->t_flags |= TF_TOE; 249 250 /* Install an extra hold on inp */ 251 toep->inp = inp; 252 toep->flags |= TPF_ATTACHED; 253 in_pcbref(inp); 254 255 /* Add the TOE PCB to the active list */ 256 mtx_lock(&td->toep_list_lock); 257 TAILQ_INSERT_HEAD(&td->toep_list, toep, link); 258 mtx_unlock(&td->toep_list_lock); 259 } 260 261 /* This is _not_ the normal way to "unoffload" a socket. */ 262 void 263 undo_offload_socket(struct socket *so) 264 { 265 struct inpcb *inp = sotoinpcb(so); 266 struct tcpcb *tp = intotcpcb(inp); 267 struct toepcb *toep = tp->t_toe; 268 struct tom_data *td = toep->td; 269 struct sockbuf *sb; 270 271 INP_WLOCK_ASSERT(inp); 272 273 sb = &so->so_snd; 274 SOCKBUF_LOCK(sb); 275 sb->sb_flags &= ~SB_NOCOALESCE; 276 SOCKBUF_UNLOCK(sb); 277 sb = &so->so_rcv; 278 SOCKBUF_LOCK(sb); 279 sb->sb_flags &= ~SB_NOCOALESCE; 280 SOCKBUF_UNLOCK(sb); 281 282 tp->tod = NULL; 283 tp->t_toe = NULL; 284 tp->t_flags &= ~TF_TOE; 285 286 toep->inp = NULL; 287 toep->flags &= ~TPF_ATTACHED; 288 if (in_pcbrele_wlocked(inp)) 289 panic("%s: inp freed.", __func__); 290 291 mtx_lock(&td->toep_list_lock); 292 TAILQ_REMOVE(&td->toep_list, toep, link); 293 mtx_unlock(&td->toep_list_lock); 294 } 295 296 static void 297 release_offload_resources(struct toepcb *toep) 298 { 299 struct tom_data *td = toep->td; 300 struct adapter *sc = td_adapter(td); 301 int tid = toep->tid; 302 303 KASSERT(!(toep->flags & TPF_CPL_PENDING), 304 ("%s: %p has CPL pending.", __func__, toep)); 305 KASSERT(!(toep->flags & TPF_ATTACHED), 306 ("%s: %p is still attached.", __func__, toep)); 307 308 CTR5(KTR_CXGBE, "%s: toep %p (tid %d, l2te %p, ce %p)", 309 __func__, toep, tid, toep->l2te, toep->ce); 310 311 /* 312 * These queues should have been emptied at approximately the same time 313 * that a normal connection's socket's so_snd would have been purged or 314 * drained. Do _not_ clean up here. 315 */ 316 MPASS(mbufq_len(&toep->ulp_pduq) == 0); 317 MPASS(mbufq_len(&toep->ulp_pdu_reclaimq) == 0); 318 #ifdef INVARIANTS 319 if (ulp_mode(toep) == ULP_MODE_TCPDDP) 320 ddp_assert_empty(toep); 321 #endif 322 MPASS(TAILQ_EMPTY(&toep->aiotx_jobq)); 323 324 if (toep->l2te) 325 t4_l2t_release(toep->l2te); 326 327 if (tid >= 0) { 328 remove_tid(sc, tid, toep->ce ? 2 : 1); 329 release_tid(sc, tid, toep->ctrlq); 330 } 331 332 if (toep->ce) 333 t4_release_lip(sc, toep->ce); 334 335 if (toep->params.tc_idx != -1) 336 t4_release_cl_rl(sc, toep->vi->pi->port_id, toep->params.tc_idx); 337 338 mtx_lock(&td->toep_list_lock); 339 TAILQ_REMOVE(&td->toep_list, toep, link); 340 mtx_unlock(&td->toep_list_lock); 341 342 free_toepcb(toep); 343 } 344 345 /* 346 * The kernel is done with the TCP PCB and this is our opportunity to unhook the 347 * toepcb hanging off of it. If the TOE driver is also done with the toepcb (no 348 * pending CPL) then it is time to release all resources tied to the toepcb. 349 * 350 * Also gets called when an offloaded active open fails and the TOM wants the 351 * kernel to take the TCP PCB back. 352 */ 353 static void 354 t4_pcb_detach(struct toedev *tod __unused, struct tcpcb *tp) 355 { 356 #if defined(KTR) || defined(INVARIANTS) 357 struct inpcb *inp = tp->t_inpcb; 358 #endif 359 struct toepcb *toep = tp->t_toe; 360 361 INP_WLOCK_ASSERT(inp); 362 363 KASSERT(toep != NULL, ("%s: toep is NULL", __func__)); 364 KASSERT(toep->flags & TPF_ATTACHED, 365 ("%s: not attached", __func__)); 366 367 #ifdef KTR 368 if (tp->t_state == TCPS_SYN_SENT) { 369 CTR6(KTR_CXGBE, "%s: atid %d, toep %p (0x%x), inp %p (0x%x)", 370 __func__, toep->tid, toep, toep->flags, inp, 371 inp->inp_flags); 372 } else { 373 CTR6(KTR_CXGBE, 374 "t4_pcb_detach: tid %d (%s), toep %p (0x%x), inp %p (0x%x)", 375 toep->tid, tcpstates[tp->t_state], toep, toep->flags, inp, 376 inp->inp_flags); 377 } 378 #endif 379 380 tp->t_toe = NULL; 381 tp->t_flags &= ~TF_TOE; 382 toep->flags &= ~TPF_ATTACHED; 383 384 if (!(toep->flags & TPF_CPL_PENDING)) 385 release_offload_resources(toep); 386 } 387 388 /* 389 * setsockopt handler. 390 */ 391 static void 392 t4_ctloutput(struct toedev *tod, struct tcpcb *tp, int dir, int name) 393 { 394 struct adapter *sc = tod->tod_softc; 395 struct toepcb *toep = tp->t_toe; 396 397 if (dir == SOPT_GET) 398 return; 399 400 CTR4(KTR_CXGBE, "%s: tp %p, dir %u, name %u", __func__, tp, dir, name); 401 402 switch (name) { 403 case TCP_NODELAY: 404 if (tp->t_state != TCPS_ESTABLISHED) 405 break; 406 toep->params.nagle = tp->t_flags & TF_NODELAY ? 0 : 1; 407 t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_T_FLAGS, 408 V_TF_NAGLE(1), V_TF_NAGLE(toep->params.nagle), 0, 0); 409 break; 410 default: 411 break; 412 } 413 } 414 415 static inline uint64_t 416 get_tcb_tflags(const uint64_t *tcb) 417 { 418 419 return ((be64toh(tcb[14]) << 32) | (be64toh(tcb[15]) >> 32)); 420 } 421 422 static inline uint32_t 423 get_tcb_field(const uint64_t *tcb, u_int word, uint32_t mask, u_int shift) 424 { 425 #define LAST_WORD ((TCB_SIZE / 4) - 1) 426 uint64_t t1, t2; 427 int flit_idx; 428 429 MPASS(mask != 0); 430 MPASS(word <= LAST_WORD); 431 MPASS(shift < 32); 432 433 flit_idx = (LAST_WORD - word) / 2; 434 if (word & 0x1) 435 shift += 32; 436 t1 = be64toh(tcb[flit_idx]) >> shift; 437 t2 = 0; 438 if (fls(mask) > 64 - shift) { 439 /* 440 * Will spill over into the next logical flit, which is the flit 441 * before this one. The flit_idx before this one must be valid. 442 */ 443 MPASS(flit_idx > 0); 444 t2 = be64toh(tcb[flit_idx - 1]) << (64 - shift); 445 } 446 return ((t2 | t1) & mask); 447 #undef LAST_WORD 448 } 449 #define GET_TCB_FIELD(tcb, F) \ 450 get_tcb_field(tcb, W_TCB_##F, M_TCB_##F, S_TCB_##F) 451 452 /* 453 * Issues a CPL_GET_TCB to read the entire TCB for the tid. 454 */ 455 static int 456 send_get_tcb(struct adapter *sc, u_int tid) 457 { 458 struct cpl_get_tcb *cpl; 459 struct wrq_cookie cookie; 460 461 MPASS(tid < sc->tids.ntids); 462 463 cpl = start_wrq_wr(&sc->sge.ctrlq[0], howmany(sizeof(*cpl), 16), 464 &cookie); 465 if (__predict_false(cpl == NULL)) 466 return (ENOMEM); 467 bzero(cpl, sizeof(*cpl)); 468 INIT_TP_WR(cpl, tid); 469 OPCODE_TID(cpl) = htobe32(MK_OPCODE_TID(CPL_GET_TCB, tid)); 470 cpl->reply_ctrl = htobe16(V_REPLY_CHAN(0) | 471 V_QUEUENO(sc->sge.ofld_rxq[0].iq.cntxt_id)); 472 cpl->cookie = 0xff; 473 commit_wrq_wr(&sc->sge.ctrlq[0], cpl, &cookie); 474 475 return (0); 476 } 477 478 static struct tcb_histent * 479 alloc_tcb_histent(struct adapter *sc, u_int tid, int flags) 480 { 481 struct tcb_histent *te; 482 483 MPASS(flags == M_NOWAIT || flags == M_WAITOK); 484 485 te = malloc(sizeof(*te), M_CXGBE, M_ZERO | flags); 486 if (te == NULL) 487 return (NULL); 488 mtx_init(&te->te_lock, "TCB entry", NULL, MTX_DEF); 489 callout_init_mtx(&te->te_callout, &te->te_lock, 0); 490 te->te_adapter = sc; 491 te->te_tid = tid; 492 493 return (te); 494 } 495 496 static void 497 free_tcb_histent(struct tcb_histent *te) 498 { 499 500 mtx_destroy(&te->te_lock); 501 free(te, M_CXGBE); 502 } 503 504 /* 505 * Start tracking the tid in the TCB history. 506 */ 507 int 508 add_tid_to_history(struct adapter *sc, u_int tid) 509 { 510 struct tcb_histent *te = NULL; 511 struct tom_data *td = sc->tom_softc; 512 int rc; 513 514 MPASS(tid < sc->tids.ntids); 515 516 if (td->tcb_history == NULL) 517 return (ENXIO); 518 519 rw_wlock(&td->tcb_history_lock); 520 if (td->tcb_history[tid] != NULL) { 521 rc = EEXIST; 522 goto done; 523 } 524 te = alloc_tcb_histent(sc, tid, M_NOWAIT); 525 if (te == NULL) { 526 rc = ENOMEM; 527 goto done; 528 } 529 mtx_lock(&te->te_lock); 530 rc = send_get_tcb(sc, tid); 531 if (rc == 0) { 532 te->te_flags |= TE_RPL_PENDING; 533 td->tcb_history[tid] = te; 534 } else { 535 free(te, M_CXGBE); 536 } 537 mtx_unlock(&te->te_lock); 538 done: 539 rw_wunlock(&td->tcb_history_lock); 540 return (rc); 541 } 542 543 static void 544 remove_tcb_histent(struct tcb_histent *te) 545 { 546 struct adapter *sc = te->te_adapter; 547 struct tom_data *td = sc->tom_softc; 548 549 rw_assert(&td->tcb_history_lock, RA_WLOCKED); 550 mtx_assert(&te->te_lock, MA_OWNED); 551 MPASS(td->tcb_history[te->te_tid] == te); 552 553 td->tcb_history[te->te_tid] = NULL; 554 free_tcb_histent(te); 555 rw_wunlock(&td->tcb_history_lock); 556 } 557 558 static inline struct tcb_histent * 559 lookup_tcb_histent(struct adapter *sc, u_int tid, bool addrem) 560 { 561 struct tcb_histent *te; 562 struct tom_data *td = sc->tom_softc; 563 564 MPASS(tid < sc->tids.ntids); 565 566 if (td->tcb_history == NULL) 567 return (NULL); 568 569 if (addrem) 570 rw_wlock(&td->tcb_history_lock); 571 else 572 rw_rlock(&td->tcb_history_lock); 573 te = td->tcb_history[tid]; 574 if (te != NULL) { 575 mtx_lock(&te->te_lock); 576 return (te); /* with both locks held */ 577 } 578 if (addrem) 579 rw_wunlock(&td->tcb_history_lock); 580 else 581 rw_runlock(&td->tcb_history_lock); 582 583 return (te); 584 } 585 586 static inline void 587 release_tcb_histent(struct tcb_histent *te) 588 { 589 struct adapter *sc = te->te_adapter; 590 struct tom_data *td = sc->tom_softc; 591 592 mtx_assert(&te->te_lock, MA_OWNED); 593 mtx_unlock(&te->te_lock); 594 rw_assert(&td->tcb_history_lock, RA_RLOCKED); 595 rw_runlock(&td->tcb_history_lock); 596 } 597 598 static void 599 request_tcb(void *arg) 600 { 601 struct tcb_histent *te = arg; 602 603 mtx_assert(&te->te_lock, MA_OWNED); 604 605 /* Noone else is supposed to update the histent. */ 606 MPASS(!(te->te_flags & TE_RPL_PENDING)); 607 if (send_get_tcb(te->te_adapter, te->te_tid) == 0) 608 te->te_flags |= TE_RPL_PENDING; 609 else 610 callout_schedule(&te->te_callout, hz / 100); 611 } 612 613 static void 614 update_tcb_histent(struct tcb_histent *te, const uint64_t *tcb) 615 { 616 struct tom_data *td = te->te_adapter->tom_softc; 617 uint64_t tflags = get_tcb_tflags(tcb); 618 uint8_t sample = 0; 619 620 if (GET_TCB_FIELD(tcb, SND_MAX_RAW) != GET_TCB_FIELD(tcb, SND_UNA_RAW)) { 621 if (GET_TCB_FIELD(tcb, T_RXTSHIFT) != 0) 622 sample |= TS_RTO; 623 if (GET_TCB_FIELD(tcb, T_DUPACKS) != 0) 624 sample |= TS_DUPACKS; 625 if (GET_TCB_FIELD(tcb, T_DUPACKS) >= td->dupack_threshold) 626 sample |= TS_FASTREXMT; 627 } 628 629 if (GET_TCB_FIELD(tcb, SND_MAX_RAW) != 0) { 630 uint32_t snd_wnd; 631 632 sample |= TS_SND_BACKLOGGED; /* for whatever reason. */ 633 634 snd_wnd = GET_TCB_FIELD(tcb, RCV_ADV); 635 if (tflags & V_TF_RECV_SCALE(1)) 636 snd_wnd <<= GET_TCB_FIELD(tcb, RCV_SCALE); 637 if (GET_TCB_FIELD(tcb, SND_CWND) < snd_wnd) 638 sample |= TS_CWND_LIMITED; /* maybe due to CWND */ 639 } 640 641 if (tflags & V_TF_CCTRL_ECN(1)) { 642 643 /* 644 * CE marker on incoming IP hdr, echoing ECE back in the TCP 645 * hdr. Indicates congestion somewhere on the way from the peer 646 * to this node. 647 */ 648 if (tflags & V_TF_CCTRL_ECE(1)) 649 sample |= TS_ECN_ECE; 650 651 /* 652 * ECE seen and CWR sent (or about to be sent). Might indicate 653 * congestion on the way to the peer. This node is reducing its 654 * congestion window in response. 655 */ 656 if (tflags & (V_TF_CCTRL_CWR(1) | V_TF_CCTRL_RFR(1))) 657 sample |= TS_ECN_CWR; 658 } 659 660 te->te_sample[te->te_pidx] = sample; 661 if (++te->te_pidx == nitems(te->te_sample)) 662 te->te_pidx = 0; 663 memcpy(te->te_tcb, tcb, TCB_SIZE); 664 te->te_flags |= TE_ACTIVE; 665 } 666 667 static int 668 do_get_tcb_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 669 { 670 struct adapter *sc = iq->adapter; 671 const struct cpl_get_tcb_rpl *cpl = mtod(m, const void *); 672 const uint64_t *tcb = (const uint64_t *)(const void *)(cpl + 1); 673 struct tcb_histent *te; 674 const u_int tid = GET_TID(cpl); 675 bool remove; 676 677 remove = GET_TCB_FIELD(tcb, T_STATE) == TCPS_CLOSED; 678 te = lookup_tcb_histent(sc, tid, remove); 679 if (te == NULL) { 680 /* Not in the history. Who issued the GET_TCB for this? */ 681 device_printf(sc->dev, "tcb %u: flags 0x%016jx, state %u, " 682 "srtt %u, sscale %u, rscale %u, cookie 0x%x\n", tid, 683 (uintmax_t)get_tcb_tflags(tcb), GET_TCB_FIELD(tcb, T_STATE), 684 GET_TCB_FIELD(tcb, T_SRTT), GET_TCB_FIELD(tcb, SND_SCALE), 685 GET_TCB_FIELD(tcb, RCV_SCALE), cpl->cookie); 686 goto done; 687 } 688 689 MPASS(te->te_flags & TE_RPL_PENDING); 690 te->te_flags &= ~TE_RPL_PENDING; 691 if (remove) { 692 remove_tcb_histent(te); 693 } else { 694 update_tcb_histent(te, tcb); 695 callout_reset(&te->te_callout, hz / 10, request_tcb, te); 696 release_tcb_histent(te); 697 } 698 done: 699 m_freem(m); 700 return (0); 701 } 702 703 static void 704 fill_tcp_info_from_tcb(struct adapter *sc, uint64_t *tcb, struct tcp_info *ti) 705 { 706 uint32_t v; 707 708 ti->tcpi_state = GET_TCB_FIELD(tcb, T_STATE); 709 710 v = GET_TCB_FIELD(tcb, T_SRTT); 711 ti->tcpi_rtt = tcp_ticks_to_us(sc, v); 712 713 v = GET_TCB_FIELD(tcb, T_RTTVAR); 714 ti->tcpi_rttvar = tcp_ticks_to_us(sc, v); 715 716 ti->tcpi_snd_ssthresh = GET_TCB_FIELD(tcb, SND_SSTHRESH); 717 ti->tcpi_snd_cwnd = GET_TCB_FIELD(tcb, SND_CWND); 718 ti->tcpi_rcv_nxt = GET_TCB_FIELD(tcb, RCV_NXT); 719 720 v = GET_TCB_FIELD(tcb, TX_MAX); 721 ti->tcpi_snd_nxt = v - GET_TCB_FIELD(tcb, SND_NXT_RAW); 722 723 /* Receive window being advertised by us. */ 724 ti->tcpi_rcv_wscale = GET_TCB_FIELD(tcb, SND_SCALE); /* Yes, SND. */ 725 ti->tcpi_rcv_space = GET_TCB_FIELD(tcb, RCV_WND); 726 727 /* Send window */ 728 ti->tcpi_snd_wscale = GET_TCB_FIELD(tcb, RCV_SCALE); /* Yes, RCV. */ 729 ti->tcpi_snd_wnd = GET_TCB_FIELD(tcb, RCV_ADV); 730 if (get_tcb_tflags(tcb) & V_TF_RECV_SCALE(1)) 731 ti->tcpi_snd_wnd <<= ti->tcpi_snd_wscale; 732 else 733 ti->tcpi_snd_wscale = 0; 734 735 } 736 737 static void 738 fill_tcp_info_from_history(struct adapter *sc, struct tcb_histent *te, 739 struct tcp_info *ti) 740 { 741 742 fill_tcp_info_from_tcb(sc, te->te_tcb, ti); 743 } 744 745 /* 746 * Reads the TCB for the given tid using a memory window and copies it to 'buf' 747 * in the same format as CPL_GET_TCB_RPL. 748 */ 749 static void 750 read_tcb_using_memwin(struct adapter *sc, u_int tid, uint64_t *buf) 751 { 752 int i, j, k, rc; 753 uint32_t addr; 754 u_char *tcb, tmp; 755 756 MPASS(tid < sc->tids.ntids); 757 758 addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE) + tid * TCB_SIZE; 759 rc = read_via_memwin(sc, 2, addr, (uint32_t *)buf, TCB_SIZE); 760 if (rc != 0) 761 return; 762 763 tcb = (u_char *)buf; 764 for (i = 0, j = TCB_SIZE - 16; i < j; i += 16, j -= 16) { 765 for (k = 0; k < 16; k++) { 766 tmp = tcb[i + k]; 767 tcb[i + k] = tcb[j + k]; 768 tcb[j + k] = tmp; 769 } 770 } 771 } 772 773 static void 774 fill_tcp_info(struct adapter *sc, u_int tid, struct tcp_info *ti) 775 { 776 uint64_t tcb[TCB_SIZE / sizeof(uint64_t)]; 777 struct tcb_histent *te; 778 779 ti->tcpi_toe_tid = tid; 780 te = lookup_tcb_histent(sc, tid, false); 781 if (te != NULL) { 782 fill_tcp_info_from_history(sc, te, ti); 783 release_tcb_histent(te); 784 } else { 785 if (!(sc->debug_flags & DF_DISABLE_TCB_CACHE)) { 786 /* XXX: tell firmware to flush TCB cache. */ 787 } 788 read_tcb_using_memwin(sc, tid, tcb); 789 fill_tcp_info_from_tcb(sc, tcb, ti); 790 } 791 } 792 793 /* 794 * Called by the kernel to allow the TOE driver to "refine" values filled up in 795 * the tcp_info for an offloaded connection. 796 */ 797 static void 798 t4_tcp_info(struct toedev *tod, struct tcpcb *tp, struct tcp_info *ti) 799 { 800 struct adapter *sc = tod->tod_softc; 801 struct toepcb *toep = tp->t_toe; 802 803 INP_WLOCK_ASSERT(tp->t_inpcb); 804 MPASS(ti != NULL); 805 806 fill_tcp_info(sc, toep->tid, ti); 807 } 808 809 /* 810 * The TOE driver will not receive any more CPLs for the tid associated with the 811 * toepcb; release the hold on the inpcb. 812 */ 813 void 814 final_cpl_received(struct toepcb *toep) 815 { 816 struct inpcb *inp = toep->inp; 817 818 KASSERT(inp != NULL, ("%s: inp is NULL", __func__)); 819 INP_WLOCK_ASSERT(inp); 820 KASSERT(toep->flags & TPF_CPL_PENDING, 821 ("%s: CPL not pending already?", __func__)); 822 823 CTR6(KTR_CXGBE, "%s: tid %d, toep %p (0x%x), inp %p (0x%x)", 824 __func__, toep->tid, toep, toep->flags, inp, inp->inp_flags); 825 826 if (ulp_mode(toep) == ULP_MODE_TCPDDP) 827 release_ddp_resources(toep); 828 toep->inp = NULL; 829 toep->flags &= ~TPF_CPL_PENDING; 830 mbufq_drain(&toep->ulp_pdu_reclaimq); 831 832 if (!(toep->flags & TPF_ATTACHED)) 833 release_offload_resources(toep); 834 835 if (!in_pcbrele_wlocked(inp)) 836 INP_WUNLOCK(inp); 837 } 838 839 void 840 insert_tid(struct adapter *sc, int tid, void *ctx, int ntids) 841 { 842 struct tid_info *t = &sc->tids; 843 844 MPASS(tid >= t->tid_base); 845 MPASS(tid - t->tid_base < t->ntids); 846 847 t->tid_tab[tid - t->tid_base] = ctx; 848 atomic_add_int(&t->tids_in_use, ntids); 849 } 850 851 void * 852 lookup_tid(struct adapter *sc, int tid) 853 { 854 struct tid_info *t = &sc->tids; 855 856 return (t->tid_tab[tid - t->tid_base]); 857 } 858 859 void 860 update_tid(struct adapter *sc, int tid, void *ctx) 861 { 862 struct tid_info *t = &sc->tids; 863 864 t->tid_tab[tid - t->tid_base] = ctx; 865 } 866 867 void 868 remove_tid(struct adapter *sc, int tid, int ntids) 869 { 870 struct tid_info *t = &sc->tids; 871 872 t->tid_tab[tid - t->tid_base] = NULL; 873 atomic_subtract_int(&t->tids_in_use, ntids); 874 } 875 876 /* 877 * What mtu_idx to use, given a 4-tuple. Note that both s->mss and tcp_mssopt 878 * have the MSS that we should advertise in our SYN. Advertised MSS doesn't 879 * account for any TCP options so the effective MSS (only payload, no headers or 880 * options) could be different. 881 */ 882 static int 883 find_best_mtu_idx(struct adapter *sc, struct in_conninfo *inc, 884 struct offload_settings *s) 885 { 886 unsigned short *mtus = &sc->params.mtus[0]; 887 int i, mss, mtu; 888 889 MPASS(inc != NULL); 890 891 mss = s->mss > 0 ? s->mss : tcp_mssopt(inc); 892 if (inc->inc_flags & INC_ISIPV6) 893 mtu = mss + sizeof(struct ip6_hdr) + sizeof(struct tcphdr); 894 else 895 mtu = mss + sizeof(struct ip) + sizeof(struct tcphdr); 896 897 for (i = 0; i < NMTUS - 1 && mtus[i + 1] <= mtu; i++) 898 continue; 899 900 return (i); 901 } 902 903 /* 904 * Determine the receive window size for a socket. 905 */ 906 u_long 907 select_rcv_wnd(struct socket *so) 908 { 909 unsigned long wnd; 910 911 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 912 913 wnd = sbspace(&so->so_rcv); 914 if (wnd < MIN_RCV_WND) 915 wnd = MIN_RCV_WND; 916 917 return min(wnd, MAX_RCV_WND); 918 } 919 920 int 921 select_rcv_wscale(void) 922 { 923 int wscale = 0; 924 unsigned long space = sb_max; 925 926 if (space > MAX_RCV_WND) 927 space = MAX_RCV_WND; 928 929 while (wscale < TCP_MAX_WINSHIFT && (TCP_MAXWIN << wscale) < space) 930 wscale++; 931 932 return (wscale); 933 } 934 935 __be64 936 calc_options0(struct vi_info *vi, struct conn_params *cp) 937 { 938 uint64_t opt0 = 0; 939 940 opt0 |= F_TCAM_BYPASS; 941 942 MPASS(cp->wscale >= 0 && cp->wscale <= M_WND_SCALE); 943 opt0 |= V_WND_SCALE(cp->wscale); 944 945 MPASS(cp->mtu_idx >= 0 && cp->mtu_idx < NMTUS); 946 opt0 |= V_MSS_IDX(cp->mtu_idx); 947 948 MPASS(cp->ulp_mode >= 0 && cp->ulp_mode <= M_ULP_MODE); 949 opt0 |= V_ULP_MODE(cp->ulp_mode); 950 951 MPASS(cp->opt0_bufsize >= 0 && cp->opt0_bufsize <= M_RCV_BUFSIZ); 952 opt0 |= V_RCV_BUFSIZ(cp->opt0_bufsize); 953 954 MPASS(cp->l2t_idx >= 0 && cp->l2t_idx < vi->pi->adapter->vres.l2t.size); 955 opt0 |= V_L2T_IDX(cp->l2t_idx); 956 957 opt0 |= V_SMAC_SEL(vi->smt_idx); 958 opt0 |= V_TX_CHAN(vi->pi->tx_chan); 959 960 MPASS(cp->keepalive == 0 || cp->keepalive == 1); 961 opt0 |= V_KEEP_ALIVE(cp->keepalive); 962 963 MPASS(cp->nagle == 0 || cp->nagle == 1); 964 opt0 |= V_NAGLE(cp->nagle); 965 966 return (htobe64(opt0)); 967 } 968 969 __be32 970 calc_options2(struct vi_info *vi, struct conn_params *cp) 971 { 972 uint32_t opt2 = 0; 973 struct port_info *pi = vi->pi; 974 struct adapter *sc = pi->adapter; 975 976 /* 977 * rx flow control, rx coalesce, congestion control, and tx pace are all 978 * explicitly set by the driver. On T5+ the ISS is also set by the 979 * driver to the value picked by the kernel. 980 */ 981 if (is_t4(sc)) { 982 opt2 |= F_RX_FC_VALID | F_RX_COALESCE_VALID; 983 opt2 |= F_CONG_CNTRL_VALID | F_PACE_VALID; 984 } else { 985 opt2 |= F_T5_OPT_2_VALID; /* all 4 valid */ 986 opt2 |= F_T5_ISS; /* ISS provided in CPL */ 987 } 988 989 MPASS(cp->sack == 0 || cp->sack == 1); 990 opt2 |= V_SACK_EN(cp->sack); 991 992 MPASS(cp->tstamp == 0 || cp->tstamp == 1); 993 opt2 |= V_TSTAMPS_EN(cp->tstamp); 994 995 if (cp->wscale > 0) 996 opt2 |= F_WND_SCALE_EN; 997 998 MPASS(cp->ecn == 0 || cp->ecn == 1); 999 opt2 |= V_CCTRL_ECN(cp->ecn); 1000 1001 /* XXX: F_RX_CHANNEL for multiple rx c-chan support goes here. */ 1002 1003 opt2 |= V_TX_QUEUE(sc->params.tp.tx_modq[pi->tx_chan]); 1004 opt2 |= V_PACE(0); 1005 opt2 |= F_RSS_QUEUE_VALID; 1006 opt2 |= V_RSS_QUEUE(sc->sge.ofld_rxq[cp->rxq_idx].iq.abs_id); 1007 1008 MPASS(cp->cong_algo >= 0 && cp->cong_algo <= M_CONG_CNTRL); 1009 opt2 |= V_CONG_CNTRL(cp->cong_algo); 1010 1011 MPASS(cp->rx_coalesce == 0 || cp->rx_coalesce == 1); 1012 if (cp->rx_coalesce == 1) 1013 opt2 |= V_RX_COALESCE(M_RX_COALESCE); 1014 1015 opt2 |= V_RX_FC_DDP(0) | V_RX_FC_DISABLE(0); 1016 #ifdef USE_DDP_RX_FLOW_CONTROL 1017 if (cp->ulp_mode == ULP_MODE_TCPDDP) 1018 opt2 |= F_RX_FC_DDP; 1019 #endif 1020 if (cp->ulp_mode == ULP_MODE_TLS) 1021 opt2 |= F_RX_FC_DISABLE; 1022 1023 return (htobe32(opt2)); 1024 } 1025 1026 uint64_t 1027 select_ntuple(struct vi_info *vi, struct l2t_entry *e) 1028 { 1029 struct adapter *sc = vi->pi->adapter; 1030 struct tp_params *tp = &sc->params.tp; 1031 uint64_t ntuple = 0; 1032 1033 /* 1034 * Initialize each of the fields which we care about which are present 1035 * in the Compressed Filter Tuple. 1036 */ 1037 if (tp->vlan_shift >= 0 && EVL_VLANOFTAG(e->vlan) != CPL_L2T_VLAN_NONE) 1038 ntuple |= (uint64_t)(F_FT_VLAN_VLD | e->vlan) << tp->vlan_shift; 1039 1040 if (tp->port_shift >= 0) 1041 ntuple |= (uint64_t)e->lport << tp->port_shift; 1042 1043 if (tp->protocol_shift >= 0) 1044 ntuple |= (uint64_t)IPPROTO_TCP << tp->protocol_shift; 1045 1046 if (tp->vnic_shift >= 0 && tp->ingress_config & F_VNIC) { 1047 ntuple |= (uint64_t)(V_FT_VNID_ID_VF(vi->vin) | 1048 V_FT_VNID_ID_PF(sc->pf) | V_FT_VNID_ID_VLD(vi->vfvld)) << 1049 tp->vnic_shift; 1050 } 1051 1052 if (is_t4(sc)) 1053 return (htobe32((uint32_t)ntuple)); 1054 else 1055 return (htobe64(V_FILTER_TUPLE(ntuple))); 1056 } 1057 1058 static int 1059 is_tls_sock(struct socket *so, struct adapter *sc) 1060 { 1061 struct inpcb *inp = sotoinpcb(so); 1062 int i, rc; 1063 1064 /* XXX: Eventually add a SO_WANT_TLS socket option perhaps? */ 1065 rc = 0; 1066 ADAPTER_LOCK(sc); 1067 for (i = 0; i < sc->tt.num_tls_rx_ports; i++) { 1068 if (inp->inp_lport == htons(sc->tt.tls_rx_ports[i]) || 1069 inp->inp_fport == htons(sc->tt.tls_rx_ports[i])) { 1070 rc = 1; 1071 break; 1072 } 1073 } 1074 ADAPTER_UNLOCK(sc); 1075 return (rc); 1076 } 1077 1078 /* 1079 * Initialize various connection parameters. 1080 */ 1081 void 1082 init_conn_params(struct vi_info *vi , struct offload_settings *s, 1083 struct in_conninfo *inc, struct socket *so, 1084 const struct tcp_options *tcpopt, int16_t l2t_idx, struct conn_params *cp) 1085 { 1086 struct port_info *pi = vi->pi; 1087 struct adapter *sc = pi->adapter; 1088 struct tom_tunables *tt = &sc->tt; 1089 struct inpcb *inp = sotoinpcb(so); 1090 struct tcpcb *tp = intotcpcb(inp); 1091 u_long wnd; 1092 1093 MPASS(s->offload != 0); 1094 1095 /* Congestion control algorithm */ 1096 if (s->cong_algo >= 0) 1097 cp->cong_algo = s->cong_algo & M_CONG_CNTRL; 1098 else if (sc->tt.cong_algorithm >= 0) 1099 cp->cong_algo = tt->cong_algorithm & M_CONG_CNTRL; 1100 else { 1101 struct cc_algo *cc = CC_ALGO(tp); 1102 1103 if (strcasecmp(cc->name, "reno") == 0) 1104 cp->cong_algo = CONG_ALG_RENO; 1105 else if (strcasecmp(cc->name, "tahoe") == 0) 1106 cp->cong_algo = CONG_ALG_TAHOE; 1107 if (strcasecmp(cc->name, "newreno") == 0) 1108 cp->cong_algo = CONG_ALG_NEWRENO; 1109 if (strcasecmp(cc->name, "highspeed") == 0) 1110 cp->cong_algo = CONG_ALG_HIGHSPEED; 1111 else { 1112 /* 1113 * Use newreno in case the algorithm selected by the 1114 * host stack is not supported by the hardware. 1115 */ 1116 cp->cong_algo = CONG_ALG_NEWRENO; 1117 } 1118 } 1119 1120 /* Tx traffic scheduling class. */ 1121 if (s->sched_class >= 0 && 1122 s->sched_class < sc->chip_params->nsched_cls) { 1123 cp->tc_idx = s->sched_class; 1124 } else 1125 cp->tc_idx = -1; 1126 1127 /* Nagle's algorithm. */ 1128 if (s->nagle >= 0) 1129 cp->nagle = s->nagle > 0 ? 1 : 0; 1130 else 1131 cp->nagle = tp->t_flags & TF_NODELAY ? 0 : 1; 1132 1133 /* TCP Keepalive. */ 1134 if (tcp_always_keepalive || so_options_get(so) & SO_KEEPALIVE) 1135 cp->keepalive = 1; 1136 else 1137 cp->keepalive = 0; 1138 1139 /* Optimization that's specific to T5 @ 40G. */ 1140 if (tt->tx_align >= 0) 1141 cp->tx_align = tt->tx_align > 0 ? 1 : 0; 1142 else if (chip_id(sc) == CHELSIO_T5 && 1143 (port_top_speed(pi) > 10 || sc->params.nports > 2)) 1144 cp->tx_align = 1; 1145 else 1146 cp->tx_align = 0; 1147 1148 /* ULP mode. */ 1149 if (can_tls_offload(sc) && 1150 (s->tls > 0 || (s->tls < 0 && is_tls_sock(so, sc)))) 1151 cp->ulp_mode = ULP_MODE_TLS; 1152 else if (s->ddp > 0 || 1153 (s->ddp < 0 && sc->tt.ddp && (so_options_get(so) & SO_NO_DDP) == 0)) 1154 cp->ulp_mode = ULP_MODE_TCPDDP; 1155 else 1156 cp->ulp_mode = ULP_MODE_NONE; 1157 1158 /* Rx coalescing. */ 1159 if (s->rx_coalesce >= 0) 1160 cp->rx_coalesce = s->rx_coalesce > 0 ? 1 : 0; 1161 else if (cp->ulp_mode == ULP_MODE_TLS) 1162 cp->rx_coalesce = 0; 1163 else if (tt->rx_coalesce >= 0) 1164 cp->rx_coalesce = tt->rx_coalesce > 0 ? 1 : 0; 1165 else 1166 cp->rx_coalesce = 1; /* default */ 1167 1168 /* 1169 * Index in the PMTU table. This controls the MSS that we announce in 1170 * our SYN initially, but after ESTABLISHED it controls the MSS that we 1171 * use to send data. 1172 */ 1173 cp->mtu_idx = find_best_mtu_idx(sc, inc, s); 1174 1175 /* Tx queue for this connection. */ 1176 if (s->txq >= 0 && s->txq < vi->nofldtxq) 1177 cp->txq_idx = s->txq; 1178 else 1179 cp->txq_idx = arc4random() % vi->nofldtxq; 1180 cp->txq_idx += vi->first_ofld_txq; 1181 1182 /* Rx queue for this connection. */ 1183 if (s->rxq >= 0 && s->rxq < vi->nofldrxq) 1184 cp->rxq_idx = s->rxq; 1185 else 1186 cp->rxq_idx = arc4random() % vi->nofldrxq; 1187 cp->rxq_idx += vi->first_ofld_rxq; 1188 1189 if (SOLISTENING(so)) { 1190 /* Passive open */ 1191 MPASS(tcpopt != NULL); 1192 1193 /* TCP timestamp option */ 1194 if (tcpopt->tstamp && 1195 (s->tstamp > 0 || (s->tstamp < 0 && V_tcp_do_rfc1323))) 1196 cp->tstamp = 1; 1197 else 1198 cp->tstamp = 0; 1199 1200 /* SACK */ 1201 if (tcpopt->sack && 1202 (s->sack > 0 || (s->sack < 0 && V_tcp_do_sack))) 1203 cp->sack = 1; 1204 else 1205 cp->sack = 0; 1206 1207 /* Receive window scaling. */ 1208 if (tcpopt->wsf > 0 && tcpopt->wsf < 15 && V_tcp_do_rfc1323) 1209 cp->wscale = select_rcv_wscale(); 1210 else 1211 cp->wscale = 0; 1212 1213 /* ECN */ 1214 if (tcpopt->ecn && /* XXX: review. */ 1215 (s->ecn > 0 || (s->ecn < 0 && V_tcp_do_ecn))) 1216 cp->ecn = 1; 1217 else 1218 cp->ecn = 0; 1219 1220 wnd = max(so->sol_sbrcv_hiwat, MIN_RCV_WND); 1221 cp->opt0_bufsize = min(wnd >> 10, M_RCV_BUFSIZ); 1222 1223 if (tt->sndbuf > 0) 1224 cp->sndbuf = tt->sndbuf; 1225 else if (so->sol_sbsnd_flags & SB_AUTOSIZE && 1226 V_tcp_do_autosndbuf) 1227 cp->sndbuf = 256 * 1024; 1228 else 1229 cp->sndbuf = so->sol_sbsnd_hiwat; 1230 } else { 1231 /* Active open */ 1232 1233 /* TCP timestamp option */ 1234 if (s->tstamp > 0 || 1235 (s->tstamp < 0 && (tp->t_flags & TF_REQ_TSTMP))) 1236 cp->tstamp = 1; 1237 else 1238 cp->tstamp = 0; 1239 1240 /* SACK */ 1241 if (s->sack > 0 || 1242 (s->sack < 0 && (tp->t_flags & TF_SACK_PERMIT))) 1243 cp->sack = 1; 1244 else 1245 cp->sack = 0; 1246 1247 /* Receive window scaling */ 1248 if (tp->t_flags & TF_REQ_SCALE) 1249 cp->wscale = select_rcv_wscale(); 1250 else 1251 cp->wscale = 0; 1252 1253 /* ECN */ 1254 if (s->ecn > 0 || (s->ecn < 0 && V_tcp_do_ecn == 1)) 1255 cp->ecn = 1; 1256 else 1257 cp->ecn = 0; 1258 1259 SOCKBUF_LOCK(&so->so_rcv); 1260 wnd = max(select_rcv_wnd(so), MIN_RCV_WND); 1261 SOCKBUF_UNLOCK(&so->so_rcv); 1262 cp->opt0_bufsize = min(wnd >> 10, M_RCV_BUFSIZ); 1263 1264 if (tt->sndbuf > 0) 1265 cp->sndbuf = tt->sndbuf; 1266 else { 1267 SOCKBUF_LOCK(&so->so_snd); 1268 if (so->so_snd.sb_flags & SB_AUTOSIZE && 1269 V_tcp_do_autosndbuf) 1270 cp->sndbuf = 256 * 1024; 1271 else 1272 cp->sndbuf = so->so_snd.sb_hiwat; 1273 SOCKBUF_UNLOCK(&so->so_snd); 1274 } 1275 } 1276 1277 cp->l2t_idx = l2t_idx; 1278 1279 /* This will be initialized on ESTABLISHED. */ 1280 cp->emss = 0; 1281 } 1282 1283 int 1284 negative_advice(int status) 1285 { 1286 1287 return (status == CPL_ERR_RTX_NEG_ADVICE || 1288 status == CPL_ERR_PERSIST_NEG_ADVICE || 1289 status == CPL_ERR_KEEPALV_NEG_ADVICE); 1290 } 1291 1292 static int 1293 alloc_tid_tab(struct tid_info *t, int flags) 1294 { 1295 1296 MPASS(t->ntids > 0); 1297 MPASS(t->tid_tab == NULL); 1298 1299 t->tid_tab = malloc(t->ntids * sizeof(*t->tid_tab), M_CXGBE, 1300 M_ZERO | flags); 1301 if (t->tid_tab == NULL) 1302 return (ENOMEM); 1303 atomic_store_rel_int(&t->tids_in_use, 0); 1304 1305 return (0); 1306 } 1307 1308 static void 1309 free_tid_tab(struct tid_info *t) 1310 { 1311 1312 KASSERT(t->tids_in_use == 0, 1313 ("%s: %d tids still in use.", __func__, t->tids_in_use)); 1314 1315 free(t->tid_tab, M_CXGBE); 1316 t->tid_tab = NULL; 1317 } 1318 1319 static int 1320 alloc_stid_tab(struct tid_info *t, int flags) 1321 { 1322 1323 MPASS(t->nstids > 0); 1324 MPASS(t->stid_tab == NULL); 1325 1326 t->stid_tab = malloc(t->nstids * sizeof(*t->stid_tab), M_CXGBE, 1327 M_ZERO | flags); 1328 if (t->stid_tab == NULL) 1329 return (ENOMEM); 1330 mtx_init(&t->stid_lock, "stid lock", NULL, MTX_DEF); 1331 t->stids_in_use = 0; 1332 TAILQ_INIT(&t->stids); 1333 t->nstids_free_head = t->nstids; 1334 1335 return (0); 1336 } 1337 1338 static void 1339 free_stid_tab(struct tid_info *t) 1340 { 1341 1342 KASSERT(t->stids_in_use == 0, 1343 ("%s: %d tids still in use.", __func__, t->stids_in_use)); 1344 1345 if (mtx_initialized(&t->stid_lock)) 1346 mtx_destroy(&t->stid_lock); 1347 free(t->stid_tab, M_CXGBE); 1348 t->stid_tab = NULL; 1349 } 1350 1351 static void 1352 free_tid_tabs(struct tid_info *t) 1353 { 1354 1355 free_tid_tab(t); 1356 free_atid_tab(t); 1357 free_stid_tab(t); 1358 } 1359 1360 static int 1361 alloc_tid_tabs(struct tid_info *t) 1362 { 1363 int rc; 1364 1365 rc = alloc_tid_tab(t, M_NOWAIT); 1366 if (rc != 0) 1367 goto failed; 1368 1369 rc = alloc_atid_tab(t, M_NOWAIT); 1370 if (rc != 0) 1371 goto failed; 1372 1373 rc = alloc_stid_tab(t, M_NOWAIT); 1374 if (rc != 0) 1375 goto failed; 1376 1377 return (0); 1378 failed: 1379 free_tid_tabs(t); 1380 return (rc); 1381 } 1382 1383 static inline void 1384 alloc_tcb_history(struct adapter *sc, struct tom_data *td) 1385 { 1386 1387 if (sc->tids.ntids == 0 || sc->tids.ntids > 1024) 1388 return; 1389 rw_init(&td->tcb_history_lock, "TCB history"); 1390 td->tcb_history = malloc(sc->tids.ntids * sizeof(*td->tcb_history), 1391 M_CXGBE, M_ZERO | M_NOWAIT); 1392 td->dupack_threshold = G_DUPACKTHRESH(t4_read_reg(sc, A_TP_PARA_REG0)); 1393 } 1394 1395 static inline void 1396 free_tcb_history(struct adapter *sc, struct tom_data *td) 1397 { 1398 #ifdef INVARIANTS 1399 int i; 1400 1401 if (td->tcb_history != NULL) { 1402 for (i = 0; i < sc->tids.ntids; i++) { 1403 MPASS(td->tcb_history[i] == NULL); 1404 } 1405 } 1406 #endif 1407 free(td->tcb_history, M_CXGBE); 1408 if (rw_initialized(&td->tcb_history_lock)) 1409 rw_destroy(&td->tcb_history_lock); 1410 } 1411 1412 static void 1413 free_tom_data(struct adapter *sc, struct tom_data *td) 1414 { 1415 1416 ASSERT_SYNCHRONIZED_OP(sc); 1417 1418 KASSERT(TAILQ_EMPTY(&td->toep_list), 1419 ("%s: TOE PCB list is not empty.", __func__)); 1420 KASSERT(td->lctx_count == 0, 1421 ("%s: lctx hash table is not empty.", __func__)); 1422 1423 t4_free_ppod_region(&td->pr); 1424 1425 if (td->listen_mask != 0) 1426 hashdestroy(td->listen_hash, M_CXGBE, td->listen_mask); 1427 1428 if (mtx_initialized(&td->unsent_wr_lock)) 1429 mtx_destroy(&td->unsent_wr_lock); 1430 if (mtx_initialized(&td->lctx_hash_lock)) 1431 mtx_destroy(&td->lctx_hash_lock); 1432 if (mtx_initialized(&td->toep_list_lock)) 1433 mtx_destroy(&td->toep_list_lock); 1434 1435 free_tcb_history(sc, td); 1436 free_tid_tabs(&sc->tids); 1437 free(td, M_CXGBE); 1438 } 1439 1440 static char * 1441 prepare_pkt(int open_type, uint16_t vtag, struct inpcb *inp, int *pktlen, 1442 int *buflen) 1443 { 1444 char *pkt; 1445 struct tcphdr *th; 1446 int ipv6, len; 1447 const int maxlen = 1448 max(sizeof(struct ether_header), sizeof(struct ether_vlan_header)) + 1449 max(sizeof(struct ip), sizeof(struct ip6_hdr)) + 1450 sizeof(struct tcphdr); 1451 1452 MPASS(open_type == OPEN_TYPE_ACTIVE || open_type == OPEN_TYPE_LISTEN); 1453 1454 pkt = malloc(maxlen, M_CXGBE, M_ZERO | M_NOWAIT); 1455 if (pkt == NULL) 1456 return (NULL); 1457 1458 ipv6 = inp->inp_vflag & INP_IPV6; 1459 len = 0; 1460 1461 if (EVL_VLANOFTAG(vtag) == 0xfff) { 1462 struct ether_header *eh = (void *)pkt; 1463 1464 if (ipv6) 1465 eh->ether_type = htons(ETHERTYPE_IPV6); 1466 else 1467 eh->ether_type = htons(ETHERTYPE_IP); 1468 1469 len += sizeof(*eh); 1470 } else { 1471 struct ether_vlan_header *evh = (void *)pkt; 1472 1473 evh->evl_encap_proto = htons(ETHERTYPE_VLAN); 1474 evh->evl_tag = htons(vtag); 1475 if (ipv6) 1476 evh->evl_proto = htons(ETHERTYPE_IPV6); 1477 else 1478 evh->evl_proto = htons(ETHERTYPE_IP); 1479 1480 len += sizeof(*evh); 1481 } 1482 1483 if (ipv6) { 1484 struct ip6_hdr *ip6 = (void *)&pkt[len]; 1485 1486 ip6->ip6_vfc = IPV6_VERSION; 1487 ip6->ip6_plen = htons(sizeof(struct tcphdr)); 1488 ip6->ip6_nxt = IPPROTO_TCP; 1489 if (open_type == OPEN_TYPE_ACTIVE) { 1490 ip6->ip6_src = inp->in6p_laddr; 1491 ip6->ip6_dst = inp->in6p_faddr; 1492 } else if (open_type == OPEN_TYPE_LISTEN) { 1493 ip6->ip6_src = inp->in6p_laddr; 1494 ip6->ip6_dst = ip6->ip6_src; 1495 } 1496 1497 len += sizeof(*ip6); 1498 } else { 1499 struct ip *ip = (void *)&pkt[len]; 1500 1501 ip->ip_v = IPVERSION; 1502 ip->ip_hl = sizeof(*ip) >> 2; 1503 ip->ip_tos = inp->inp_ip_tos; 1504 ip->ip_len = htons(sizeof(struct ip) + sizeof(struct tcphdr)); 1505 ip->ip_ttl = inp->inp_ip_ttl; 1506 ip->ip_p = IPPROTO_TCP; 1507 if (open_type == OPEN_TYPE_ACTIVE) { 1508 ip->ip_src = inp->inp_laddr; 1509 ip->ip_dst = inp->inp_faddr; 1510 } else if (open_type == OPEN_TYPE_LISTEN) { 1511 ip->ip_src = inp->inp_laddr; 1512 ip->ip_dst = ip->ip_src; 1513 } 1514 1515 len += sizeof(*ip); 1516 } 1517 1518 th = (void *)&pkt[len]; 1519 if (open_type == OPEN_TYPE_ACTIVE) { 1520 th->th_sport = inp->inp_lport; /* network byte order already */ 1521 th->th_dport = inp->inp_fport; /* ditto */ 1522 } else if (open_type == OPEN_TYPE_LISTEN) { 1523 th->th_sport = inp->inp_lport; /* network byte order already */ 1524 th->th_dport = th->th_sport; 1525 } 1526 len += sizeof(th); 1527 1528 *pktlen = *buflen = len; 1529 return (pkt); 1530 } 1531 1532 const struct offload_settings * 1533 lookup_offload_policy(struct adapter *sc, int open_type, struct mbuf *m, 1534 uint16_t vtag, struct inpcb *inp) 1535 { 1536 const struct t4_offload_policy *op; 1537 char *pkt; 1538 struct offload_rule *r; 1539 int i, matched, pktlen, buflen; 1540 static const struct offload_settings allow_offloading_settings = { 1541 .offload = 1, 1542 .rx_coalesce = -1, 1543 .cong_algo = -1, 1544 .sched_class = -1, 1545 .tstamp = -1, 1546 .sack = -1, 1547 .nagle = -1, 1548 .ecn = -1, 1549 .ddp = -1, 1550 .tls = -1, 1551 .txq = -1, 1552 .rxq = -1, 1553 .mss = -1, 1554 }; 1555 static const struct offload_settings disallow_offloading_settings = { 1556 .offload = 0, 1557 /* rest is irrelevant when offload is off. */ 1558 }; 1559 1560 rw_assert(&sc->policy_lock, RA_LOCKED); 1561 1562 /* 1563 * If there's no Connection Offloading Policy attached to the device 1564 * then we need to return a default static policy. If 1565 * "cop_managed_offloading" is true, then we need to disallow 1566 * offloading until a COP is attached to the device. Otherwise we 1567 * allow offloading ... 1568 */ 1569 op = sc->policy; 1570 if (op == NULL) { 1571 if (sc->tt.cop_managed_offloading) 1572 return (&disallow_offloading_settings); 1573 else 1574 return (&allow_offloading_settings); 1575 } 1576 1577 switch (open_type) { 1578 case OPEN_TYPE_ACTIVE: 1579 case OPEN_TYPE_LISTEN: 1580 pkt = prepare_pkt(open_type, vtag, inp, &pktlen, &buflen); 1581 break; 1582 case OPEN_TYPE_PASSIVE: 1583 MPASS(m != NULL); 1584 pkt = mtod(m, char *); 1585 MPASS(*pkt == CPL_PASS_ACCEPT_REQ); 1586 pkt += sizeof(struct cpl_pass_accept_req); 1587 pktlen = m->m_pkthdr.len - sizeof(struct cpl_pass_accept_req); 1588 buflen = m->m_len - sizeof(struct cpl_pass_accept_req); 1589 break; 1590 default: 1591 MPASS(0); 1592 return (&disallow_offloading_settings); 1593 } 1594 1595 if (pkt == NULL || pktlen == 0 || buflen == 0) 1596 return (&disallow_offloading_settings); 1597 1598 matched = 0; 1599 r = &op->rule[0]; 1600 for (i = 0; i < op->nrules; i++, r++) { 1601 if (r->open_type != open_type && 1602 r->open_type != OPEN_TYPE_DONTCARE) { 1603 continue; 1604 } 1605 matched = bpf_filter(r->bpf_prog.bf_insns, pkt, pktlen, buflen); 1606 if (matched) 1607 break; 1608 } 1609 1610 if (open_type == OPEN_TYPE_ACTIVE || open_type == OPEN_TYPE_LISTEN) 1611 free(pkt, M_CXGBE); 1612 1613 return (matched ? &r->settings : &disallow_offloading_settings); 1614 } 1615 1616 static void 1617 reclaim_wr_resources(void *arg, int count) 1618 { 1619 struct tom_data *td = arg; 1620 STAILQ_HEAD(, wrqe) twr_list = STAILQ_HEAD_INITIALIZER(twr_list); 1621 struct cpl_act_open_req *cpl; 1622 u_int opcode, atid, tid; 1623 struct wrqe *wr; 1624 struct adapter *sc = td_adapter(td); 1625 1626 mtx_lock(&td->unsent_wr_lock); 1627 STAILQ_SWAP(&td->unsent_wr_list, &twr_list, wrqe); 1628 mtx_unlock(&td->unsent_wr_lock); 1629 1630 while ((wr = STAILQ_FIRST(&twr_list)) != NULL) { 1631 STAILQ_REMOVE_HEAD(&twr_list, link); 1632 1633 cpl = wrtod(wr); 1634 opcode = GET_OPCODE(cpl); 1635 1636 switch (opcode) { 1637 case CPL_ACT_OPEN_REQ: 1638 case CPL_ACT_OPEN_REQ6: 1639 atid = G_TID_TID(be32toh(OPCODE_TID(cpl))); 1640 CTR2(KTR_CXGBE, "%s: atid %u ", __func__, atid); 1641 act_open_failure_cleanup(sc, atid, EHOSTUNREACH); 1642 free(wr, M_CXGBE); 1643 break; 1644 case CPL_PASS_ACCEPT_RPL: 1645 tid = GET_TID(cpl); 1646 CTR2(KTR_CXGBE, "%s: tid %u ", __func__, tid); 1647 synack_failure_cleanup(sc, tid); 1648 free(wr, M_CXGBE); 1649 break; 1650 default: 1651 log(LOG_ERR, "%s: leaked work request %p, wr_len %d, " 1652 "opcode %x\n", __func__, wr, wr->wr_len, opcode); 1653 /* WR not freed here; go look at it with a debugger. */ 1654 } 1655 } 1656 } 1657 1658 /* 1659 * Ground control to Major TOM 1660 * Commencing countdown, engines on 1661 */ 1662 static int 1663 t4_tom_activate(struct adapter *sc) 1664 { 1665 struct tom_data *td; 1666 struct toedev *tod; 1667 struct vi_info *vi; 1668 int i, rc, v; 1669 1670 ASSERT_SYNCHRONIZED_OP(sc); 1671 1672 /* per-adapter softc for TOM */ 1673 td = malloc(sizeof(*td), M_CXGBE, M_ZERO | M_NOWAIT); 1674 if (td == NULL) 1675 return (ENOMEM); 1676 1677 /* List of TOE PCBs and associated lock */ 1678 mtx_init(&td->toep_list_lock, "PCB list lock", NULL, MTX_DEF); 1679 TAILQ_INIT(&td->toep_list); 1680 1681 /* Listen context */ 1682 mtx_init(&td->lctx_hash_lock, "lctx hash lock", NULL, MTX_DEF); 1683 td->listen_hash = hashinit_flags(LISTEN_HASH_SIZE, M_CXGBE, 1684 &td->listen_mask, HASH_NOWAIT); 1685 1686 /* List of WRs for which L2 resolution failed */ 1687 mtx_init(&td->unsent_wr_lock, "Unsent WR list lock", NULL, MTX_DEF); 1688 STAILQ_INIT(&td->unsent_wr_list); 1689 TASK_INIT(&td->reclaim_wr_resources, 0, reclaim_wr_resources, td); 1690 1691 /* TID tables */ 1692 rc = alloc_tid_tabs(&sc->tids); 1693 if (rc != 0) 1694 goto done; 1695 1696 rc = t4_init_ppod_region(&td->pr, &sc->vres.ddp, 1697 t4_read_reg(sc, A_ULP_RX_TDDP_PSZ), "TDDP page pods"); 1698 if (rc != 0) 1699 goto done; 1700 t4_set_reg_field(sc, A_ULP_RX_TDDP_TAGMASK, 1701 V_TDDPTAGMASK(M_TDDPTAGMASK), td->pr.pr_tag_mask); 1702 1703 alloc_tcb_history(sc, td); 1704 1705 /* toedev ops */ 1706 tod = &td->tod; 1707 init_toedev(tod); 1708 tod->tod_softc = sc; 1709 tod->tod_connect = t4_connect; 1710 tod->tod_listen_start = t4_listen_start; 1711 tod->tod_listen_stop = t4_listen_stop; 1712 tod->tod_rcvd = t4_rcvd; 1713 tod->tod_output = t4_tod_output; 1714 tod->tod_send_rst = t4_send_rst; 1715 tod->tod_send_fin = t4_send_fin; 1716 tod->tod_pcb_detach = t4_pcb_detach; 1717 tod->tod_l2_update = t4_l2_update; 1718 tod->tod_syncache_added = t4_syncache_added; 1719 tod->tod_syncache_removed = t4_syncache_removed; 1720 tod->tod_syncache_respond = t4_syncache_respond; 1721 tod->tod_offload_socket = t4_offload_socket; 1722 tod->tod_ctloutput = t4_ctloutput; 1723 tod->tod_tcp_info = t4_tcp_info; 1724 1725 for_each_port(sc, i) { 1726 for_each_vi(sc->port[i], v, vi) { 1727 TOEDEV(vi->ifp) = &td->tod; 1728 } 1729 } 1730 1731 sc->tom_softc = td; 1732 register_toedev(sc->tom_softc); 1733 1734 done: 1735 if (rc != 0) 1736 free_tom_data(sc, td); 1737 return (rc); 1738 } 1739 1740 static int 1741 t4_tom_deactivate(struct adapter *sc) 1742 { 1743 int rc = 0; 1744 struct tom_data *td = sc->tom_softc; 1745 1746 ASSERT_SYNCHRONIZED_OP(sc); 1747 1748 if (td == NULL) 1749 return (0); /* XXX. KASSERT? */ 1750 1751 if (sc->offload_map != 0) 1752 return (EBUSY); /* at least one port has IFCAP_TOE enabled */ 1753 1754 if (uld_active(sc, ULD_IWARP) || uld_active(sc, ULD_ISCSI)) 1755 return (EBUSY); /* both iWARP and iSCSI rely on the TOE. */ 1756 1757 mtx_lock(&td->toep_list_lock); 1758 if (!TAILQ_EMPTY(&td->toep_list)) 1759 rc = EBUSY; 1760 mtx_unlock(&td->toep_list_lock); 1761 1762 mtx_lock(&td->lctx_hash_lock); 1763 if (td->lctx_count > 0) 1764 rc = EBUSY; 1765 mtx_unlock(&td->lctx_hash_lock); 1766 1767 taskqueue_drain(taskqueue_thread, &td->reclaim_wr_resources); 1768 mtx_lock(&td->unsent_wr_lock); 1769 if (!STAILQ_EMPTY(&td->unsent_wr_list)) 1770 rc = EBUSY; 1771 mtx_unlock(&td->unsent_wr_lock); 1772 1773 if (rc == 0) { 1774 unregister_toedev(sc->tom_softc); 1775 free_tom_data(sc, td); 1776 sc->tom_softc = NULL; 1777 } 1778 1779 return (rc); 1780 } 1781 1782 static int 1783 t4_aio_queue_tom(struct socket *so, struct kaiocb *job) 1784 { 1785 struct tcpcb *tp = so_sototcpcb(so); 1786 struct toepcb *toep = tp->t_toe; 1787 int error; 1788 1789 if (ulp_mode(toep) == ULP_MODE_TCPDDP) { 1790 error = t4_aio_queue_ddp(so, job); 1791 if (error != EOPNOTSUPP) 1792 return (error); 1793 } 1794 1795 return (t4_aio_queue_aiotx(so, job)); 1796 } 1797 1798 static int 1799 t4_ctloutput_tom(struct socket *so, struct sockopt *sopt) 1800 { 1801 1802 if (sopt->sopt_level != IPPROTO_TCP) 1803 return (tcp_ctloutput(so, sopt)); 1804 1805 switch (sopt->sopt_name) { 1806 case TCP_TLSOM_SET_TLS_CONTEXT: 1807 case TCP_TLSOM_GET_TLS_TOM: 1808 case TCP_TLSOM_CLR_TLS_TOM: 1809 case TCP_TLSOM_CLR_QUIES: 1810 return (t4_ctloutput_tls(so, sopt)); 1811 default: 1812 return (tcp_ctloutput(so, sopt)); 1813 } 1814 } 1815 1816 static int 1817 t4_tom_mod_load(void) 1818 { 1819 struct protosw *tcp_protosw, *tcp6_protosw; 1820 1821 /* CPL handlers */ 1822 t4_register_cpl_handler(CPL_GET_TCB_RPL, do_get_tcb_rpl); 1823 t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, do_l2t_write_rpl2, 1824 CPL_COOKIE_TOM); 1825 t4_init_connect_cpl_handlers(); 1826 t4_init_listen_cpl_handlers(); 1827 t4_init_cpl_io_handlers(); 1828 1829 t4_ddp_mod_load(); 1830 t4_tls_mod_load(); 1831 1832 tcp_protosw = pffindproto(PF_INET, IPPROTO_TCP, SOCK_STREAM); 1833 if (tcp_protosw == NULL) 1834 return (ENOPROTOOPT); 1835 bcopy(tcp_protosw, &toe_protosw, sizeof(toe_protosw)); 1836 bcopy(tcp_protosw->pr_usrreqs, &toe_usrreqs, sizeof(toe_usrreqs)); 1837 toe_usrreqs.pru_aio_queue = t4_aio_queue_tom; 1838 toe_protosw.pr_ctloutput = t4_ctloutput_tom; 1839 toe_protosw.pr_usrreqs = &toe_usrreqs; 1840 1841 tcp6_protosw = pffindproto(PF_INET6, IPPROTO_TCP, SOCK_STREAM); 1842 if (tcp6_protosw == NULL) 1843 return (ENOPROTOOPT); 1844 bcopy(tcp6_protosw, &toe6_protosw, sizeof(toe6_protosw)); 1845 bcopy(tcp6_protosw->pr_usrreqs, &toe6_usrreqs, sizeof(toe6_usrreqs)); 1846 toe6_usrreqs.pru_aio_queue = t4_aio_queue_tom; 1847 toe6_protosw.pr_ctloutput = t4_ctloutput_tom; 1848 toe6_protosw.pr_usrreqs = &toe6_usrreqs; 1849 1850 return (t4_register_uld(&tom_uld_info)); 1851 } 1852 1853 static void 1854 tom_uninit(struct adapter *sc, void *arg __unused) 1855 { 1856 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4tomun")) 1857 return; 1858 1859 /* Try to free resources (works only if no port has IFCAP_TOE) */ 1860 if (uld_active(sc, ULD_TOM)) 1861 t4_deactivate_uld(sc, ULD_TOM); 1862 1863 end_synchronized_op(sc, 0); 1864 } 1865 1866 static int 1867 t4_tom_mod_unload(void) 1868 { 1869 t4_iterate(tom_uninit, NULL); 1870 1871 if (t4_unregister_uld(&tom_uld_info) == EBUSY) 1872 return (EBUSY); 1873 1874 t4_tls_mod_unload(); 1875 t4_ddp_mod_unload(); 1876 1877 t4_uninit_connect_cpl_handlers(); 1878 t4_uninit_listen_cpl_handlers(); 1879 t4_uninit_cpl_io_handlers(); 1880 t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, NULL, CPL_COOKIE_TOM); 1881 1882 return (0); 1883 } 1884 #endif /* TCP_OFFLOAD */ 1885 1886 static int 1887 t4_tom_modevent(module_t mod, int cmd, void *arg) 1888 { 1889 int rc = 0; 1890 1891 #ifdef TCP_OFFLOAD 1892 switch (cmd) { 1893 case MOD_LOAD: 1894 rc = t4_tom_mod_load(); 1895 break; 1896 1897 case MOD_UNLOAD: 1898 rc = t4_tom_mod_unload(); 1899 break; 1900 1901 default: 1902 rc = EINVAL; 1903 } 1904 #else 1905 printf("t4_tom: compiled without TCP_OFFLOAD support.\n"); 1906 rc = EOPNOTSUPP; 1907 #endif 1908 return (rc); 1909 } 1910 1911 static moduledata_t t4_tom_moddata= { 1912 "t4_tom", 1913 t4_tom_modevent, 1914 0 1915 }; 1916 1917 MODULE_VERSION(t4_tom, 1); 1918 MODULE_DEPEND(t4_tom, toecore, 1, 1, 1); 1919 MODULE_DEPEND(t4_tom, t4nex, 1, 1, 1); 1920 DECLARE_MODULE(t4_tom, t4_tom_moddata, SI_SUB_EXEC, SI_ORDER_ANY); 1921