1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2012 Chelsio Communications, Inc. 5 * All rights reserved. 6 * Written by: Navdeep Parhar <np@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include "opt_inet.h" 34 #include "opt_inet6.h" 35 #include "opt_kern_tls.h" 36 #include "opt_ratelimit.h" 37 38 #include <sys/param.h> 39 #include <sys/types.h> 40 #include <sys/systm.h> 41 #include <sys/kernel.h> 42 #include <sys/ktr.h> 43 #include <sys/lock.h> 44 #include <sys/limits.h> 45 #include <sys/module.h> 46 #include <sys/protosw.h> 47 #include <sys/domain.h> 48 #include <sys/refcount.h> 49 #include <sys/rmlock.h> 50 #include <sys/socket.h> 51 #include <sys/socketvar.h> 52 #include <sys/sysctl.h> 53 #include <sys/taskqueue.h> 54 #include <net/if.h> 55 #include <net/if_var.h> 56 #include <net/if_types.h> 57 #include <net/if_vlan_var.h> 58 #include <netinet/in.h> 59 #include <netinet/in_pcb.h> 60 #include <netinet/in_var.h> 61 #include <netinet/ip.h> 62 #include <netinet/ip6.h> 63 #include <netinet6/scope6_var.h> 64 #define TCPSTATES 65 #include <netinet/tcp_fsm.h> 66 #include <netinet/tcp_timer.h> 67 #include <netinet/tcp_var.h> 68 #include <netinet/toecore.h> 69 #include <netinet/cc/cc.h> 70 71 #ifdef TCP_OFFLOAD 72 #include "common/common.h" 73 #include "common/t4_msg.h" 74 #include "common/t4_regs.h" 75 #include "common/t4_regs_values.h" 76 #include "common/t4_tcb.h" 77 #include "t4_clip.h" 78 #include "tom/t4_tom_l2t.h" 79 #include "tom/t4_tom.h" 80 #include "tom/t4_tls.h" 81 82 static struct protosw toe_protosw; 83 static struct pr_usrreqs toe_usrreqs; 84 85 static struct protosw toe6_protosw; 86 static struct pr_usrreqs toe6_usrreqs; 87 88 /* Module ops */ 89 static int t4_tom_mod_load(void); 90 static int t4_tom_mod_unload(void); 91 static int t4_tom_modevent(module_t, int, void *); 92 93 /* ULD ops and helpers */ 94 static int t4_tom_activate(struct adapter *); 95 static int t4_tom_deactivate(struct adapter *); 96 97 static struct uld_info tom_uld_info = { 98 .uld_id = ULD_TOM, 99 .activate = t4_tom_activate, 100 .deactivate = t4_tom_deactivate, 101 }; 102 103 static void release_offload_resources(struct toepcb *); 104 static int alloc_tid_tabs(struct tid_info *); 105 static void free_tid_tabs(struct tid_info *); 106 static void free_tom_data(struct adapter *, struct tom_data *); 107 static void reclaim_wr_resources(void *, int); 108 109 struct toepcb * 110 alloc_toepcb(struct vi_info *vi, int flags) 111 { 112 struct port_info *pi = vi->pi; 113 struct adapter *sc = pi->adapter; 114 struct toepcb *toep; 115 int tx_credits, txsd_total, len; 116 117 /* 118 * The firmware counts tx work request credits in units of 16 bytes 119 * each. Reserve room for an ABORT_REQ so the driver never has to worry 120 * about tx credits if it wants to abort a connection. 121 */ 122 tx_credits = sc->params.ofldq_wr_cred; 123 tx_credits -= howmany(sizeof(struct cpl_abort_req), 16); 124 125 /* 126 * Shortest possible tx work request is a fw_ofld_tx_data_wr + 1 byte 127 * immediate payload, and firmware counts tx work request credits in 128 * units of 16 byte. Calculate the maximum work requests possible. 129 */ 130 txsd_total = tx_credits / 131 howmany(sizeof(struct fw_ofld_tx_data_wr) + 1, 16); 132 133 len = offsetof(struct toepcb, txsd) + 134 txsd_total * sizeof(struct ofld_tx_sdesc); 135 136 toep = malloc(len, M_CXGBE, M_ZERO | flags); 137 if (toep == NULL) 138 return (NULL); 139 140 refcount_init(&toep->refcount, 1); 141 toep->td = sc->tom_softc; 142 toep->vi = vi; 143 toep->tid = -1; 144 toep->tx_total = tx_credits; 145 toep->tx_credits = tx_credits; 146 mbufq_init(&toep->ulp_pduq, INT_MAX); 147 mbufq_init(&toep->ulp_pdu_reclaimq, INT_MAX); 148 toep->txsd_total = txsd_total; 149 toep->txsd_avail = txsd_total; 150 toep->txsd_pidx = 0; 151 toep->txsd_cidx = 0; 152 aiotx_init_toep(toep); 153 154 return (toep); 155 } 156 157 /* 158 * Initialize a toepcb after its params have been filled out. 159 */ 160 int 161 init_toepcb(struct vi_info *vi, struct toepcb *toep) 162 { 163 struct conn_params *cp = &toep->params; 164 struct port_info *pi = vi->pi; 165 struct adapter *sc = pi->adapter; 166 struct tx_cl_rl_params *tc; 167 168 if (cp->tc_idx >= 0 && cp->tc_idx < sc->chip_params->nsched_cls) { 169 tc = &pi->sched_params->cl_rl[cp->tc_idx]; 170 mtx_lock(&sc->tc_lock); 171 if (tc->flags & CLRL_ERR) { 172 log(LOG_ERR, 173 "%s: failed to associate traffic class %u with tid %u\n", 174 device_get_nameunit(vi->dev), cp->tc_idx, 175 toep->tid); 176 cp->tc_idx = -1; 177 } else { 178 tc->refcount++; 179 } 180 mtx_unlock(&sc->tc_lock); 181 } 182 toep->ofld_txq = &sc->sge.ofld_txq[cp->txq_idx]; 183 toep->ofld_rxq = &sc->sge.ofld_rxq[cp->rxq_idx]; 184 toep->ctrlq = &sc->sge.ctrlq[pi->port_id]; 185 186 tls_init_toep(toep); 187 if (ulp_mode(toep) == ULP_MODE_TCPDDP) 188 ddp_init_toep(toep); 189 190 toep->flags |= TPF_INITIALIZED; 191 192 return (0); 193 } 194 195 struct toepcb * 196 hold_toepcb(struct toepcb *toep) 197 { 198 199 refcount_acquire(&toep->refcount); 200 return (toep); 201 } 202 203 void 204 free_toepcb(struct toepcb *toep) 205 { 206 207 if (refcount_release(&toep->refcount) == 0) 208 return; 209 210 KASSERT(!(toep->flags & TPF_ATTACHED), 211 ("%s: attached to an inpcb", __func__)); 212 KASSERT(!(toep->flags & TPF_CPL_PENDING), 213 ("%s: CPL pending", __func__)); 214 215 if (toep->flags & TPF_INITIALIZED) { 216 if (ulp_mode(toep) == ULP_MODE_TCPDDP) 217 ddp_uninit_toep(toep); 218 tls_uninit_toep(toep); 219 } 220 free(toep, M_CXGBE); 221 } 222 223 /* 224 * Set up the socket for TCP offload. 225 */ 226 void 227 offload_socket(struct socket *so, struct toepcb *toep) 228 { 229 struct tom_data *td = toep->td; 230 struct inpcb *inp = sotoinpcb(so); 231 struct tcpcb *tp = intotcpcb(inp); 232 struct sockbuf *sb; 233 234 INP_WLOCK_ASSERT(inp); 235 236 /* Update socket */ 237 sb = &so->so_snd; 238 SOCKBUF_LOCK(sb); 239 sb->sb_flags |= SB_NOCOALESCE; 240 SOCKBUF_UNLOCK(sb); 241 sb = &so->so_rcv; 242 SOCKBUF_LOCK(sb); 243 sb->sb_flags |= SB_NOCOALESCE; 244 if (inp->inp_vflag & INP_IPV6) 245 so->so_proto = &toe6_protosw; 246 else 247 so->so_proto = &toe_protosw; 248 SOCKBUF_UNLOCK(sb); 249 250 /* Update TCP PCB */ 251 tp->tod = &td->tod; 252 tp->t_toe = toep; 253 tp->t_flags |= TF_TOE; 254 255 /* Install an extra hold on inp */ 256 toep->inp = inp; 257 toep->flags |= TPF_ATTACHED; 258 in_pcbref(inp); 259 260 /* Add the TOE PCB to the active list */ 261 mtx_lock(&td->toep_list_lock); 262 TAILQ_INSERT_HEAD(&td->toep_list, toep, link); 263 mtx_unlock(&td->toep_list_lock); 264 } 265 266 /* This is _not_ the normal way to "unoffload" a socket. */ 267 void 268 undo_offload_socket(struct socket *so) 269 { 270 struct inpcb *inp = sotoinpcb(so); 271 struct tcpcb *tp = intotcpcb(inp); 272 struct toepcb *toep = tp->t_toe; 273 struct tom_data *td = toep->td; 274 struct sockbuf *sb; 275 276 INP_WLOCK_ASSERT(inp); 277 278 sb = &so->so_snd; 279 SOCKBUF_LOCK(sb); 280 sb->sb_flags &= ~SB_NOCOALESCE; 281 SOCKBUF_UNLOCK(sb); 282 sb = &so->so_rcv; 283 SOCKBUF_LOCK(sb); 284 sb->sb_flags &= ~SB_NOCOALESCE; 285 SOCKBUF_UNLOCK(sb); 286 287 tp->tod = NULL; 288 tp->t_toe = NULL; 289 tp->t_flags &= ~TF_TOE; 290 291 toep->inp = NULL; 292 toep->flags &= ~TPF_ATTACHED; 293 if (in_pcbrele_wlocked(inp)) 294 panic("%s: inp freed.", __func__); 295 296 mtx_lock(&td->toep_list_lock); 297 TAILQ_REMOVE(&td->toep_list, toep, link); 298 mtx_unlock(&td->toep_list_lock); 299 } 300 301 static void 302 release_offload_resources(struct toepcb *toep) 303 { 304 struct tom_data *td = toep->td; 305 struct adapter *sc = td_adapter(td); 306 int tid = toep->tid; 307 308 KASSERT(!(toep->flags & TPF_CPL_PENDING), 309 ("%s: %p has CPL pending.", __func__, toep)); 310 KASSERT(!(toep->flags & TPF_ATTACHED), 311 ("%s: %p is still attached.", __func__, toep)); 312 313 CTR5(KTR_CXGBE, "%s: toep %p (tid %d, l2te %p, ce %p)", 314 __func__, toep, tid, toep->l2te, toep->ce); 315 316 /* 317 * These queues should have been emptied at approximately the same time 318 * that a normal connection's socket's so_snd would have been purged or 319 * drained. Do _not_ clean up here. 320 */ 321 MPASS(mbufq_len(&toep->ulp_pduq) == 0); 322 MPASS(mbufq_len(&toep->ulp_pdu_reclaimq) == 0); 323 #ifdef INVARIANTS 324 if (ulp_mode(toep) == ULP_MODE_TCPDDP) 325 ddp_assert_empty(toep); 326 #endif 327 MPASS(TAILQ_EMPTY(&toep->aiotx_jobq)); 328 329 if (toep->l2te) 330 t4_l2t_release(toep->l2te); 331 332 if (tid >= 0) { 333 remove_tid(sc, tid, toep->ce ? 2 : 1); 334 release_tid(sc, tid, toep->ctrlq); 335 } 336 337 if (toep->ce) 338 t4_release_lip(sc, toep->ce); 339 340 if (toep->params.tc_idx != -1) 341 t4_release_cl_rl(sc, toep->vi->pi->port_id, toep->params.tc_idx); 342 343 mtx_lock(&td->toep_list_lock); 344 TAILQ_REMOVE(&td->toep_list, toep, link); 345 mtx_unlock(&td->toep_list_lock); 346 347 free_toepcb(toep); 348 } 349 350 /* 351 * The kernel is done with the TCP PCB and this is our opportunity to unhook the 352 * toepcb hanging off of it. If the TOE driver is also done with the toepcb (no 353 * pending CPL) then it is time to release all resources tied to the toepcb. 354 * 355 * Also gets called when an offloaded active open fails and the TOM wants the 356 * kernel to take the TCP PCB back. 357 */ 358 static void 359 t4_pcb_detach(struct toedev *tod __unused, struct tcpcb *tp) 360 { 361 #if defined(KTR) || defined(INVARIANTS) 362 struct inpcb *inp = tp->t_inpcb; 363 #endif 364 struct toepcb *toep = tp->t_toe; 365 366 INP_WLOCK_ASSERT(inp); 367 368 KASSERT(toep != NULL, ("%s: toep is NULL", __func__)); 369 KASSERT(toep->flags & TPF_ATTACHED, 370 ("%s: not attached", __func__)); 371 372 #ifdef KTR 373 if (tp->t_state == TCPS_SYN_SENT) { 374 CTR6(KTR_CXGBE, "%s: atid %d, toep %p (0x%x), inp %p (0x%x)", 375 __func__, toep->tid, toep, toep->flags, inp, 376 inp->inp_flags); 377 } else { 378 CTR6(KTR_CXGBE, 379 "t4_pcb_detach: tid %d (%s), toep %p (0x%x), inp %p (0x%x)", 380 toep->tid, tcpstates[tp->t_state], toep, toep->flags, inp, 381 inp->inp_flags); 382 } 383 #endif 384 385 if (ulp_mode(toep) == ULP_MODE_TLS) 386 tls_detach(toep); 387 388 tp->tod = NULL; 389 tp->t_toe = NULL; 390 tp->t_flags &= ~TF_TOE; 391 toep->flags &= ~TPF_ATTACHED; 392 393 if (!(toep->flags & TPF_CPL_PENDING)) 394 release_offload_resources(toep); 395 } 396 397 /* 398 * setsockopt handler. 399 */ 400 static void 401 t4_ctloutput(struct toedev *tod, struct tcpcb *tp, int dir, int name) 402 { 403 struct adapter *sc = tod->tod_softc; 404 struct toepcb *toep = tp->t_toe; 405 406 if (dir == SOPT_GET) 407 return; 408 409 CTR4(KTR_CXGBE, "%s: tp %p, dir %u, name %u", __func__, tp, dir, name); 410 411 switch (name) { 412 case TCP_NODELAY: 413 if (tp->t_state != TCPS_ESTABLISHED) 414 break; 415 toep->params.nagle = tp->t_flags & TF_NODELAY ? 0 : 1; 416 t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_T_FLAGS, 417 V_TF_NAGLE(1), V_TF_NAGLE(toep->params.nagle), 0, 0); 418 break; 419 default: 420 break; 421 } 422 } 423 424 static inline uint64_t 425 get_tcb_tflags(const uint64_t *tcb) 426 { 427 428 return ((be64toh(tcb[14]) << 32) | (be64toh(tcb[15]) >> 32)); 429 } 430 431 static inline uint32_t 432 get_tcb_field(const uint64_t *tcb, u_int word, uint32_t mask, u_int shift) 433 { 434 #define LAST_WORD ((TCB_SIZE / 4) - 1) 435 uint64_t t1, t2; 436 int flit_idx; 437 438 MPASS(mask != 0); 439 MPASS(word <= LAST_WORD); 440 MPASS(shift < 32); 441 442 flit_idx = (LAST_WORD - word) / 2; 443 if (word & 0x1) 444 shift += 32; 445 t1 = be64toh(tcb[flit_idx]) >> shift; 446 t2 = 0; 447 if (fls(mask) > 64 - shift) { 448 /* 449 * Will spill over into the next logical flit, which is the flit 450 * before this one. The flit_idx before this one must be valid. 451 */ 452 MPASS(flit_idx > 0); 453 t2 = be64toh(tcb[flit_idx - 1]) << (64 - shift); 454 } 455 return ((t2 | t1) & mask); 456 #undef LAST_WORD 457 } 458 #define GET_TCB_FIELD(tcb, F) \ 459 get_tcb_field(tcb, W_TCB_##F, M_TCB_##F, S_TCB_##F) 460 461 /* 462 * Issues a CPL_GET_TCB to read the entire TCB for the tid. 463 */ 464 static int 465 send_get_tcb(struct adapter *sc, u_int tid) 466 { 467 struct cpl_get_tcb *cpl; 468 struct wrq_cookie cookie; 469 470 MPASS(tid < sc->tids.ntids); 471 472 cpl = start_wrq_wr(&sc->sge.ctrlq[0], howmany(sizeof(*cpl), 16), 473 &cookie); 474 if (__predict_false(cpl == NULL)) 475 return (ENOMEM); 476 bzero(cpl, sizeof(*cpl)); 477 INIT_TP_WR(cpl, tid); 478 OPCODE_TID(cpl) = htobe32(MK_OPCODE_TID(CPL_GET_TCB, tid)); 479 cpl->reply_ctrl = htobe16(V_REPLY_CHAN(0) | 480 V_QUEUENO(sc->sge.ofld_rxq[0].iq.cntxt_id)); 481 cpl->cookie = 0xff; 482 commit_wrq_wr(&sc->sge.ctrlq[0], cpl, &cookie); 483 484 return (0); 485 } 486 487 static struct tcb_histent * 488 alloc_tcb_histent(struct adapter *sc, u_int tid, int flags) 489 { 490 struct tcb_histent *te; 491 492 MPASS(flags == M_NOWAIT || flags == M_WAITOK); 493 494 te = malloc(sizeof(*te), M_CXGBE, M_ZERO | flags); 495 if (te == NULL) 496 return (NULL); 497 mtx_init(&te->te_lock, "TCB entry", NULL, MTX_DEF); 498 callout_init_mtx(&te->te_callout, &te->te_lock, 0); 499 te->te_adapter = sc; 500 te->te_tid = tid; 501 502 return (te); 503 } 504 505 static void 506 free_tcb_histent(struct tcb_histent *te) 507 { 508 509 mtx_destroy(&te->te_lock); 510 free(te, M_CXGBE); 511 } 512 513 /* 514 * Start tracking the tid in the TCB history. 515 */ 516 int 517 add_tid_to_history(struct adapter *sc, u_int tid) 518 { 519 struct tcb_histent *te = NULL; 520 struct tom_data *td = sc->tom_softc; 521 int rc; 522 523 MPASS(tid < sc->tids.ntids); 524 525 if (td->tcb_history == NULL) 526 return (ENXIO); 527 528 rw_wlock(&td->tcb_history_lock); 529 if (td->tcb_history[tid] != NULL) { 530 rc = EEXIST; 531 goto done; 532 } 533 te = alloc_tcb_histent(sc, tid, M_NOWAIT); 534 if (te == NULL) { 535 rc = ENOMEM; 536 goto done; 537 } 538 mtx_lock(&te->te_lock); 539 rc = send_get_tcb(sc, tid); 540 if (rc == 0) { 541 te->te_flags |= TE_RPL_PENDING; 542 td->tcb_history[tid] = te; 543 } else { 544 free(te, M_CXGBE); 545 } 546 mtx_unlock(&te->te_lock); 547 done: 548 rw_wunlock(&td->tcb_history_lock); 549 return (rc); 550 } 551 552 static void 553 remove_tcb_histent(struct tcb_histent *te) 554 { 555 struct adapter *sc = te->te_adapter; 556 struct tom_data *td = sc->tom_softc; 557 558 rw_assert(&td->tcb_history_lock, RA_WLOCKED); 559 mtx_assert(&te->te_lock, MA_OWNED); 560 MPASS(td->tcb_history[te->te_tid] == te); 561 562 td->tcb_history[te->te_tid] = NULL; 563 free_tcb_histent(te); 564 rw_wunlock(&td->tcb_history_lock); 565 } 566 567 static inline struct tcb_histent * 568 lookup_tcb_histent(struct adapter *sc, u_int tid, bool addrem) 569 { 570 struct tcb_histent *te; 571 struct tom_data *td = sc->tom_softc; 572 573 MPASS(tid < sc->tids.ntids); 574 575 if (td->tcb_history == NULL) 576 return (NULL); 577 578 if (addrem) 579 rw_wlock(&td->tcb_history_lock); 580 else 581 rw_rlock(&td->tcb_history_lock); 582 te = td->tcb_history[tid]; 583 if (te != NULL) { 584 mtx_lock(&te->te_lock); 585 return (te); /* with both locks held */ 586 } 587 if (addrem) 588 rw_wunlock(&td->tcb_history_lock); 589 else 590 rw_runlock(&td->tcb_history_lock); 591 592 return (te); 593 } 594 595 static inline void 596 release_tcb_histent(struct tcb_histent *te) 597 { 598 struct adapter *sc = te->te_adapter; 599 struct tom_data *td = sc->tom_softc; 600 601 mtx_assert(&te->te_lock, MA_OWNED); 602 mtx_unlock(&te->te_lock); 603 rw_assert(&td->tcb_history_lock, RA_RLOCKED); 604 rw_runlock(&td->tcb_history_lock); 605 } 606 607 static void 608 request_tcb(void *arg) 609 { 610 struct tcb_histent *te = arg; 611 612 mtx_assert(&te->te_lock, MA_OWNED); 613 614 /* Noone else is supposed to update the histent. */ 615 MPASS(!(te->te_flags & TE_RPL_PENDING)); 616 if (send_get_tcb(te->te_adapter, te->te_tid) == 0) 617 te->te_flags |= TE_RPL_PENDING; 618 else 619 callout_schedule(&te->te_callout, hz / 100); 620 } 621 622 static void 623 update_tcb_histent(struct tcb_histent *te, const uint64_t *tcb) 624 { 625 struct tom_data *td = te->te_adapter->tom_softc; 626 uint64_t tflags = get_tcb_tflags(tcb); 627 uint8_t sample = 0; 628 629 if (GET_TCB_FIELD(tcb, SND_MAX_RAW) != GET_TCB_FIELD(tcb, SND_UNA_RAW)) { 630 if (GET_TCB_FIELD(tcb, T_RXTSHIFT) != 0) 631 sample |= TS_RTO; 632 if (GET_TCB_FIELD(tcb, T_DUPACKS) != 0) 633 sample |= TS_DUPACKS; 634 if (GET_TCB_FIELD(tcb, T_DUPACKS) >= td->dupack_threshold) 635 sample |= TS_FASTREXMT; 636 } 637 638 if (GET_TCB_FIELD(tcb, SND_MAX_RAW) != 0) { 639 uint32_t snd_wnd; 640 641 sample |= TS_SND_BACKLOGGED; /* for whatever reason. */ 642 643 snd_wnd = GET_TCB_FIELD(tcb, RCV_ADV); 644 if (tflags & V_TF_RECV_SCALE(1)) 645 snd_wnd <<= GET_TCB_FIELD(tcb, RCV_SCALE); 646 if (GET_TCB_FIELD(tcb, SND_CWND) < snd_wnd) 647 sample |= TS_CWND_LIMITED; /* maybe due to CWND */ 648 } 649 650 if (tflags & V_TF_CCTRL_ECN(1)) { 651 652 /* 653 * CE marker on incoming IP hdr, echoing ECE back in the TCP 654 * hdr. Indicates congestion somewhere on the way from the peer 655 * to this node. 656 */ 657 if (tflags & V_TF_CCTRL_ECE(1)) 658 sample |= TS_ECN_ECE; 659 660 /* 661 * ECE seen and CWR sent (or about to be sent). Might indicate 662 * congestion on the way to the peer. This node is reducing its 663 * congestion window in response. 664 */ 665 if (tflags & (V_TF_CCTRL_CWR(1) | V_TF_CCTRL_RFR(1))) 666 sample |= TS_ECN_CWR; 667 } 668 669 te->te_sample[te->te_pidx] = sample; 670 if (++te->te_pidx == nitems(te->te_sample)) 671 te->te_pidx = 0; 672 memcpy(te->te_tcb, tcb, TCB_SIZE); 673 te->te_flags |= TE_ACTIVE; 674 } 675 676 static int 677 do_get_tcb_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 678 { 679 struct adapter *sc = iq->adapter; 680 const struct cpl_get_tcb_rpl *cpl = mtod(m, const void *); 681 const uint64_t *tcb = (const uint64_t *)(const void *)(cpl + 1); 682 struct tcb_histent *te; 683 const u_int tid = GET_TID(cpl); 684 bool remove; 685 686 remove = GET_TCB_FIELD(tcb, T_STATE) == TCPS_CLOSED; 687 te = lookup_tcb_histent(sc, tid, remove); 688 if (te == NULL) { 689 /* Not in the history. Who issued the GET_TCB for this? */ 690 device_printf(sc->dev, "tcb %u: flags 0x%016jx, state %u, " 691 "srtt %u, sscale %u, rscale %u, cookie 0x%x\n", tid, 692 (uintmax_t)get_tcb_tflags(tcb), GET_TCB_FIELD(tcb, T_STATE), 693 GET_TCB_FIELD(tcb, T_SRTT), GET_TCB_FIELD(tcb, SND_SCALE), 694 GET_TCB_FIELD(tcb, RCV_SCALE), cpl->cookie); 695 goto done; 696 } 697 698 MPASS(te->te_flags & TE_RPL_PENDING); 699 te->te_flags &= ~TE_RPL_PENDING; 700 if (remove) { 701 remove_tcb_histent(te); 702 } else { 703 update_tcb_histent(te, tcb); 704 callout_reset(&te->te_callout, hz / 10, request_tcb, te); 705 release_tcb_histent(te); 706 } 707 done: 708 m_freem(m); 709 return (0); 710 } 711 712 static void 713 fill_tcp_info_from_tcb(struct adapter *sc, uint64_t *tcb, struct tcp_info *ti) 714 { 715 uint32_t v; 716 717 ti->tcpi_state = GET_TCB_FIELD(tcb, T_STATE); 718 719 v = GET_TCB_FIELD(tcb, T_SRTT); 720 ti->tcpi_rtt = tcp_ticks_to_us(sc, v); 721 722 v = GET_TCB_FIELD(tcb, T_RTTVAR); 723 ti->tcpi_rttvar = tcp_ticks_to_us(sc, v); 724 725 ti->tcpi_snd_ssthresh = GET_TCB_FIELD(tcb, SND_SSTHRESH); 726 ti->tcpi_snd_cwnd = GET_TCB_FIELD(tcb, SND_CWND); 727 ti->tcpi_rcv_nxt = GET_TCB_FIELD(tcb, RCV_NXT); 728 729 v = GET_TCB_FIELD(tcb, TX_MAX); 730 ti->tcpi_snd_nxt = v - GET_TCB_FIELD(tcb, SND_NXT_RAW); 731 732 /* Receive window being advertised by us. */ 733 ti->tcpi_rcv_wscale = GET_TCB_FIELD(tcb, SND_SCALE); /* Yes, SND. */ 734 ti->tcpi_rcv_space = GET_TCB_FIELD(tcb, RCV_WND); 735 736 /* Send window */ 737 ti->tcpi_snd_wscale = GET_TCB_FIELD(tcb, RCV_SCALE); /* Yes, RCV. */ 738 ti->tcpi_snd_wnd = GET_TCB_FIELD(tcb, RCV_ADV); 739 if (get_tcb_tflags(tcb) & V_TF_RECV_SCALE(1)) 740 ti->tcpi_snd_wnd <<= ti->tcpi_snd_wscale; 741 else 742 ti->tcpi_snd_wscale = 0; 743 744 } 745 746 static void 747 fill_tcp_info_from_history(struct adapter *sc, struct tcb_histent *te, 748 struct tcp_info *ti) 749 { 750 751 fill_tcp_info_from_tcb(sc, te->te_tcb, ti); 752 } 753 754 /* 755 * Reads the TCB for the given tid using a memory window and copies it to 'buf' 756 * in the same format as CPL_GET_TCB_RPL. 757 */ 758 static void 759 read_tcb_using_memwin(struct adapter *sc, u_int tid, uint64_t *buf) 760 { 761 int i, j, k, rc; 762 uint32_t addr; 763 u_char *tcb, tmp; 764 765 MPASS(tid < sc->tids.ntids); 766 767 addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE) + tid * TCB_SIZE; 768 rc = read_via_memwin(sc, 2, addr, (uint32_t *)buf, TCB_SIZE); 769 if (rc != 0) 770 return; 771 772 tcb = (u_char *)buf; 773 for (i = 0, j = TCB_SIZE - 16; i < j; i += 16, j -= 16) { 774 for (k = 0; k < 16; k++) { 775 tmp = tcb[i + k]; 776 tcb[i + k] = tcb[j + k]; 777 tcb[j + k] = tmp; 778 } 779 } 780 } 781 782 static void 783 fill_tcp_info(struct adapter *sc, u_int tid, struct tcp_info *ti) 784 { 785 uint64_t tcb[TCB_SIZE / sizeof(uint64_t)]; 786 struct tcb_histent *te; 787 788 ti->tcpi_toe_tid = tid; 789 te = lookup_tcb_histent(sc, tid, false); 790 if (te != NULL) { 791 fill_tcp_info_from_history(sc, te, ti); 792 release_tcb_histent(te); 793 } else { 794 if (!(sc->debug_flags & DF_DISABLE_TCB_CACHE)) { 795 /* XXX: tell firmware to flush TCB cache. */ 796 } 797 read_tcb_using_memwin(sc, tid, tcb); 798 fill_tcp_info_from_tcb(sc, tcb, ti); 799 } 800 } 801 802 /* 803 * Called by the kernel to allow the TOE driver to "refine" values filled up in 804 * the tcp_info for an offloaded connection. 805 */ 806 static void 807 t4_tcp_info(struct toedev *tod, struct tcpcb *tp, struct tcp_info *ti) 808 { 809 struct adapter *sc = tod->tod_softc; 810 struct toepcb *toep = tp->t_toe; 811 812 INP_WLOCK_ASSERT(tp->t_inpcb); 813 MPASS(ti != NULL); 814 815 fill_tcp_info(sc, toep->tid, ti); 816 } 817 818 #ifdef KERN_TLS 819 static int 820 t4_alloc_tls_session(struct toedev *tod, struct tcpcb *tp, 821 struct ktls_session *tls, int direction) 822 { 823 struct toepcb *toep = tp->t_toe; 824 825 INP_WLOCK_ASSERT(tp->t_inpcb); 826 MPASS(tls != NULL); 827 828 return (tls_alloc_ktls(toep, tls, direction)); 829 } 830 #endif 831 832 /* 833 * The TOE driver will not receive any more CPLs for the tid associated with the 834 * toepcb; release the hold on the inpcb. 835 */ 836 void 837 final_cpl_received(struct toepcb *toep) 838 { 839 struct inpcb *inp = toep->inp; 840 841 KASSERT(inp != NULL, ("%s: inp is NULL", __func__)); 842 INP_WLOCK_ASSERT(inp); 843 KASSERT(toep->flags & TPF_CPL_PENDING, 844 ("%s: CPL not pending already?", __func__)); 845 846 CTR6(KTR_CXGBE, "%s: tid %d, toep %p (0x%x), inp %p (0x%x)", 847 __func__, toep->tid, toep, toep->flags, inp, inp->inp_flags); 848 849 if (ulp_mode(toep) == ULP_MODE_TCPDDP) 850 release_ddp_resources(toep); 851 else if (ulp_mode(toep) == ULP_MODE_TLS) 852 tls_detach(toep); 853 toep->inp = NULL; 854 toep->flags &= ~TPF_CPL_PENDING; 855 mbufq_drain(&toep->ulp_pdu_reclaimq); 856 857 if (!(toep->flags & TPF_ATTACHED)) 858 release_offload_resources(toep); 859 860 if (!in_pcbrele_wlocked(inp)) 861 INP_WUNLOCK(inp); 862 } 863 864 void 865 insert_tid(struct adapter *sc, int tid, void *ctx, int ntids) 866 { 867 struct tid_info *t = &sc->tids; 868 869 MPASS(tid >= t->tid_base); 870 MPASS(tid - t->tid_base < t->ntids); 871 872 t->tid_tab[tid - t->tid_base] = ctx; 873 atomic_add_int(&t->tids_in_use, ntids); 874 } 875 876 void * 877 lookup_tid(struct adapter *sc, int tid) 878 { 879 struct tid_info *t = &sc->tids; 880 881 return (t->tid_tab[tid - t->tid_base]); 882 } 883 884 void 885 update_tid(struct adapter *sc, int tid, void *ctx) 886 { 887 struct tid_info *t = &sc->tids; 888 889 t->tid_tab[tid - t->tid_base] = ctx; 890 } 891 892 void 893 remove_tid(struct adapter *sc, int tid, int ntids) 894 { 895 struct tid_info *t = &sc->tids; 896 897 t->tid_tab[tid - t->tid_base] = NULL; 898 atomic_subtract_int(&t->tids_in_use, ntids); 899 } 900 901 /* 902 * What mtu_idx to use, given a 4-tuple. Note that both s->mss and tcp_mssopt 903 * have the MSS that we should advertise in our SYN. Advertised MSS doesn't 904 * account for any TCP options so the effective MSS (only payload, no headers or 905 * options) could be different. 906 */ 907 static int 908 find_best_mtu_idx(struct adapter *sc, struct in_conninfo *inc, 909 struct offload_settings *s) 910 { 911 unsigned short *mtus = &sc->params.mtus[0]; 912 int i, mss, mtu; 913 914 MPASS(inc != NULL); 915 916 mss = s->mss > 0 ? s->mss : tcp_mssopt(inc); 917 if (inc->inc_flags & INC_ISIPV6) 918 mtu = mss + sizeof(struct ip6_hdr) + sizeof(struct tcphdr); 919 else 920 mtu = mss + sizeof(struct ip) + sizeof(struct tcphdr); 921 922 for (i = 0; i < NMTUS - 1 && mtus[i + 1] <= mtu; i++) 923 continue; 924 925 return (i); 926 } 927 928 /* 929 * Determine the receive window size for a socket. 930 */ 931 u_long 932 select_rcv_wnd(struct socket *so) 933 { 934 unsigned long wnd; 935 936 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 937 938 wnd = sbspace(&so->so_rcv); 939 if (wnd < MIN_RCV_WND) 940 wnd = MIN_RCV_WND; 941 942 return min(wnd, MAX_RCV_WND); 943 } 944 945 int 946 select_rcv_wscale(void) 947 { 948 int wscale = 0; 949 unsigned long space = sb_max; 950 951 if (space > MAX_RCV_WND) 952 space = MAX_RCV_WND; 953 954 while (wscale < TCP_MAX_WINSHIFT && (TCP_MAXWIN << wscale) < space) 955 wscale++; 956 957 return (wscale); 958 } 959 960 __be64 961 calc_options0(struct vi_info *vi, struct conn_params *cp) 962 { 963 uint64_t opt0 = 0; 964 965 opt0 |= F_TCAM_BYPASS; 966 967 MPASS(cp->wscale >= 0 && cp->wscale <= M_WND_SCALE); 968 opt0 |= V_WND_SCALE(cp->wscale); 969 970 MPASS(cp->mtu_idx >= 0 && cp->mtu_idx < NMTUS); 971 opt0 |= V_MSS_IDX(cp->mtu_idx); 972 973 MPASS(cp->ulp_mode >= 0 && cp->ulp_mode <= M_ULP_MODE); 974 opt0 |= V_ULP_MODE(cp->ulp_mode); 975 976 MPASS(cp->opt0_bufsize >= 0 && cp->opt0_bufsize <= M_RCV_BUFSIZ); 977 opt0 |= V_RCV_BUFSIZ(cp->opt0_bufsize); 978 979 MPASS(cp->l2t_idx >= 0 && cp->l2t_idx < vi->adapter->vres.l2t.size); 980 opt0 |= V_L2T_IDX(cp->l2t_idx); 981 982 opt0 |= V_SMAC_SEL(vi->smt_idx); 983 opt0 |= V_TX_CHAN(vi->pi->tx_chan); 984 985 MPASS(cp->keepalive == 0 || cp->keepalive == 1); 986 opt0 |= V_KEEP_ALIVE(cp->keepalive); 987 988 MPASS(cp->nagle == 0 || cp->nagle == 1); 989 opt0 |= V_NAGLE(cp->nagle); 990 991 return (htobe64(opt0)); 992 } 993 994 __be32 995 calc_options2(struct vi_info *vi, struct conn_params *cp) 996 { 997 uint32_t opt2 = 0; 998 struct port_info *pi = vi->pi; 999 struct adapter *sc = pi->adapter; 1000 1001 /* 1002 * rx flow control, rx coalesce, congestion control, and tx pace are all 1003 * explicitly set by the driver. On T5+ the ISS is also set by the 1004 * driver to the value picked by the kernel. 1005 */ 1006 if (is_t4(sc)) { 1007 opt2 |= F_RX_FC_VALID | F_RX_COALESCE_VALID; 1008 opt2 |= F_CONG_CNTRL_VALID | F_PACE_VALID; 1009 } else { 1010 opt2 |= F_T5_OPT_2_VALID; /* all 4 valid */ 1011 opt2 |= F_T5_ISS; /* ISS provided in CPL */ 1012 } 1013 1014 MPASS(cp->sack == 0 || cp->sack == 1); 1015 opt2 |= V_SACK_EN(cp->sack); 1016 1017 MPASS(cp->tstamp == 0 || cp->tstamp == 1); 1018 opt2 |= V_TSTAMPS_EN(cp->tstamp); 1019 1020 if (cp->wscale > 0) 1021 opt2 |= F_WND_SCALE_EN; 1022 1023 MPASS(cp->ecn == 0 || cp->ecn == 1); 1024 opt2 |= V_CCTRL_ECN(cp->ecn); 1025 1026 /* XXX: F_RX_CHANNEL for multiple rx c-chan support goes here. */ 1027 1028 opt2 |= V_TX_QUEUE(sc->params.tp.tx_modq[pi->tx_chan]); 1029 opt2 |= V_PACE(0); 1030 opt2 |= F_RSS_QUEUE_VALID; 1031 opt2 |= V_RSS_QUEUE(sc->sge.ofld_rxq[cp->rxq_idx].iq.abs_id); 1032 1033 MPASS(cp->cong_algo >= 0 && cp->cong_algo <= M_CONG_CNTRL); 1034 opt2 |= V_CONG_CNTRL(cp->cong_algo); 1035 1036 MPASS(cp->rx_coalesce == 0 || cp->rx_coalesce == 1); 1037 if (cp->rx_coalesce == 1) 1038 opt2 |= V_RX_COALESCE(M_RX_COALESCE); 1039 1040 opt2 |= V_RX_FC_DDP(0) | V_RX_FC_DISABLE(0); 1041 #ifdef USE_DDP_RX_FLOW_CONTROL 1042 if (cp->ulp_mode == ULP_MODE_TCPDDP) 1043 opt2 |= F_RX_FC_DDP; 1044 #endif 1045 1046 return (htobe32(opt2)); 1047 } 1048 1049 uint64_t 1050 select_ntuple(struct vi_info *vi, struct l2t_entry *e) 1051 { 1052 struct adapter *sc = vi->adapter; 1053 struct tp_params *tp = &sc->params.tp; 1054 uint64_t ntuple = 0; 1055 1056 /* 1057 * Initialize each of the fields which we care about which are present 1058 * in the Compressed Filter Tuple. 1059 */ 1060 if (tp->vlan_shift >= 0 && EVL_VLANOFTAG(e->vlan) != CPL_L2T_VLAN_NONE) 1061 ntuple |= (uint64_t)(F_FT_VLAN_VLD | e->vlan) << tp->vlan_shift; 1062 1063 if (tp->port_shift >= 0) 1064 ntuple |= (uint64_t)e->lport << tp->port_shift; 1065 1066 if (tp->protocol_shift >= 0) 1067 ntuple |= (uint64_t)IPPROTO_TCP << tp->protocol_shift; 1068 1069 if (tp->vnic_shift >= 0 && tp->ingress_config & F_VNIC) { 1070 ntuple |= (uint64_t)(V_FT_VNID_ID_VF(vi->vin) | 1071 V_FT_VNID_ID_PF(sc->pf) | V_FT_VNID_ID_VLD(vi->vfvld)) << 1072 tp->vnic_shift; 1073 } 1074 1075 if (is_t4(sc)) 1076 return (htobe32((uint32_t)ntuple)); 1077 else 1078 return (htobe64(V_FILTER_TUPLE(ntuple))); 1079 } 1080 1081 static int 1082 is_tls_sock(struct socket *so, struct adapter *sc) 1083 { 1084 struct inpcb *inp = sotoinpcb(so); 1085 int i, rc; 1086 1087 /* XXX: Eventually add a SO_WANT_TLS socket option perhaps? */ 1088 rc = 0; 1089 ADAPTER_LOCK(sc); 1090 for (i = 0; i < sc->tt.num_tls_rx_ports; i++) { 1091 if (inp->inp_lport == htons(sc->tt.tls_rx_ports[i]) || 1092 inp->inp_fport == htons(sc->tt.tls_rx_ports[i])) { 1093 rc = 1; 1094 break; 1095 } 1096 } 1097 ADAPTER_UNLOCK(sc); 1098 return (rc); 1099 } 1100 1101 /* 1102 * Initialize various connection parameters. 1103 */ 1104 void 1105 init_conn_params(struct vi_info *vi , struct offload_settings *s, 1106 struct in_conninfo *inc, struct socket *so, 1107 const struct tcp_options *tcpopt, int16_t l2t_idx, struct conn_params *cp) 1108 { 1109 struct port_info *pi = vi->pi; 1110 struct adapter *sc = pi->adapter; 1111 struct tom_tunables *tt = &sc->tt; 1112 struct inpcb *inp = sotoinpcb(so); 1113 struct tcpcb *tp = intotcpcb(inp); 1114 u_long wnd; 1115 1116 MPASS(s->offload != 0); 1117 1118 /* Congestion control algorithm */ 1119 if (s->cong_algo >= 0) 1120 cp->cong_algo = s->cong_algo & M_CONG_CNTRL; 1121 else if (sc->tt.cong_algorithm >= 0) 1122 cp->cong_algo = tt->cong_algorithm & M_CONG_CNTRL; 1123 else { 1124 struct cc_algo *cc = CC_ALGO(tp); 1125 1126 if (strcasecmp(cc->name, "reno") == 0) 1127 cp->cong_algo = CONG_ALG_RENO; 1128 else if (strcasecmp(cc->name, "tahoe") == 0) 1129 cp->cong_algo = CONG_ALG_TAHOE; 1130 if (strcasecmp(cc->name, "newreno") == 0) 1131 cp->cong_algo = CONG_ALG_NEWRENO; 1132 if (strcasecmp(cc->name, "highspeed") == 0) 1133 cp->cong_algo = CONG_ALG_HIGHSPEED; 1134 else { 1135 /* 1136 * Use newreno in case the algorithm selected by the 1137 * host stack is not supported by the hardware. 1138 */ 1139 cp->cong_algo = CONG_ALG_NEWRENO; 1140 } 1141 } 1142 1143 /* Tx traffic scheduling class. */ 1144 if (s->sched_class >= 0 && 1145 s->sched_class < sc->chip_params->nsched_cls) { 1146 cp->tc_idx = s->sched_class; 1147 } else 1148 cp->tc_idx = -1; 1149 1150 /* Nagle's algorithm. */ 1151 if (s->nagle >= 0) 1152 cp->nagle = s->nagle > 0 ? 1 : 0; 1153 else 1154 cp->nagle = tp->t_flags & TF_NODELAY ? 0 : 1; 1155 1156 /* TCP Keepalive. */ 1157 if (V_tcp_always_keepalive || so_options_get(so) & SO_KEEPALIVE) 1158 cp->keepalive = 1; 1159 else 1160 cp->keepalive = 0; 1161 1162 /* Optimization that's specific to T5 @ 40G. */ 1163 if (tt->tx_align >= 0) 1164 cp->tx_align = tt->tx_align > 0 ? 1 : 0; 1165 else if (chip_id(sc) == CHELSIO_T5 && 1166 (port_top_speed(pi) > 10 || sc->params.nports > 2)) 1167 cp->tx_align = 1; 1168 else 1169 cp->tx_align = 0; 1170 1171 /* ULP mode. */ 1172 if (can_tls_offload(sc) && 1173 (s->tls > 0 || (s->tls < 0 && is_tls_sock(so, sc)))) 1174 cp->ulp_mode = ULP_MODE_TLS; 1175 else if (s->ddp > 0 || 1176 (s->ddp < 0 && sc->tt.ddp && (so_options_get(so) & SO_NO_DDP) == 0)) 1177 cp->ulp_mode = ULP_MODE_TCPDDP; 1178 else 1179 cp->ulp_mode = ULP_MODE_NONE; 1180 1181 /* Rx coalescing. */ 1182 if (s->rx_coalesce >= 0) 1183 cp->rx_coalesce = s->rx_coalesce > 0 ? 1 : 0; 1184 else if (cp->ulp_mode == ULP_MODE_TLS) 1185 cp->rx_coalesce = 0; 1186 else if (tt->rx_coalesce >= 0) 1187 cp->rx_coalesce = tt->rx_coalesce > 0 ? 1 : 0; 1188 else 1189 cp->rx_coalesce = 1; /* default */ 1190 1191 /* 1192 * Index in the PMTU table. This controls the MSS that we announce in 1193 * our SYN initially, but after ESTABLISHED it controls the MSS that we 1194 * use to send data. 1195 */ 1196 cp->mtu_idx = find_best_mtu_idx(sc, inc, s); 1197 1198 /* Tx queue for this connection. */ 1199 if (s->txq >= 0 && s->txq < vi->nofldtxq) 1200 cp->txq_idx = s->txq; 1201 else 1202 cp->txq_idx = arc4random() % vi->nofldtxq; 1203 cp->txq_idx += vi->first_ofld_txq; 1204 1205 /* Rx queue for this connection. */ 1206 if (s->rxq >= 0 && s->rxq < vi->nofldrxq) 1207 cp->rxq_idx = s->rxq; 1208 else 1209 cp->rxq_idx = arc4random() % vi->nofldrxq; 1210 cp->rxq_idx += vi->first_ofld_rxq; 1211 1212 if (SOLISTENING(so)) { 1213 /* Passive open */ 1214 MPASS(tcpopt != NULL); 1215 1216 /* TCP timestamp option */ 1217 if (tcpopt->tstamp && 1218 (s->tstamp > 0 || (s->tstamp < 0 && V_tcp_do_rfc1323))) 1219 cp->tstamp = 1; 1220 else 1221 cp->tstamp = 0; 1222 1223 /* SACK */ 1224 if (tcpopt->sack && 1225 (s->sack > 0 || (s->sack < 0 && V_tcp_do_sack))) 1226 cp->sack = 1; 1227 else 1228 cp->sack = 0; 1229 1230 /* Receive window scaling. */ 1231 if (tcpopt->wsf > 0 && tcpopt->wsf < 15 && V_tcp_do_rfc1323) 1232 cp->wscale = select_rcv_wscale(); 1233 else 1234 cp->wscale = 0; 1235 1236 /* ECN */ 1237 if (tcpopt->ecn && /* XXX: review. */ 1238 (s->ecn > 0 || (s->ecn < 0 && V_tcp_do_ecn))) 1239 cp->ecn = 1; 1240 else 1241 cp->ecn = 0; 1242 1243 wnd = max(so->sol_sbrcv_hiwat, MIN_RCV_WND); 1244 cp->opt0_bufsize = min(wnd >> 10, M_RCV_BUFSIZ); 1245 1246 if (tt->sndbuf > 0) 1247 cp->sndbuf = tt->sndbuf; 1248 else if (so->sol_sbsnd_flags & SB_AUTOSIZE && 1249 V_tcp_do_autosndbuf) 1250 cp->sndbuf = 256 * 1024; 1251 else 1252 cp->sndbuf = so->sol_sbsnd_hiwat; 1253 } else { 1254 /* Active open */ 1255 1256 /* TCP timestamp option */ 1257 if (s->tstamp > 0 || 1258 (s->tstamp < 0 && (tp->t_flags & TF_REQ_TSTMP))) 1259 cp->tstamp = 1; 1260 else 1261 cp->tstamp = 0; 1262 1263 /* SACK */ 1264 if (s->sack > 0 || 1265 (s->sack < 0 && (tp->t_flags & TF_SACK_PERMIT))) 1266 cp->sack = 1; 1267 else 1268 cp->sack = 0; 1269 1270 /* Receive window scaling */ 1271 if (tp->t_flags & TF_REQ_SCALE) 1272 cp->wscale = select_rcv_wscale(); 1273 else 1274 cp->wscale = 0; 1275 1276 /* ECN */ 1277 if (s->ecn > 0 || (s->ecn < 0 && V_tcp_do_ecn == 1)) 1278 cp->ecn = 1; 1279 else 1280 cp->ecn = 0; 1281 1282 SOCKBUF_LOCK(&so->so_rcv); 1283 wnd = max(select_rcv_wnd(so), MIN_RCV_WND); 1284 SOCKBUF_UNLOCK(&so->so_rcv); 1285 cp->opt0_bufsize = min(wnd >> 10, M_RCV_BUFSIZ); 1286 1287 if (tt->sndbuf > 0) 1288 cp->sndbuf = tt->sndbuf; 1289 else { 1290 SOCKBUF_LOCK(&so->so_snd); 1291 if (so->so_snd.sb_flags & SB_AUTOSIZE && 1292 V_tcp_do_autosndbuf) 1293 cp->sndbuf = 256 * 1024; 1294 else 1295 cp->sndbuf = so->so_snd.sb_hiwat; 1296 SOCKBUF_UNLOCK(&so->so_snd); 1297 } 1298 } 1299 1300 cp->l2t_idx = l2t_idx; 1301 1302 /* This will be initialized on ESTABLISHED. */ 1303 cp->emss = 0; 1304 } 1305 1306 int 1307 negative_advice(int status) 1308 { 1309 1310 return (status == CPL_ERR_RTX_NEG_ADVICE || 1311 status == CPL_ERR_PERSIST_NEG_ADVICE || 1312 status == CPL_ERR_KEEPALV_NEG_ADVICE); 1313 } 1314 1315 static int 1316 alloc_tid_tab(struct tid_info *t, int flags) 1317 { 1318 1319 MPASS(t->ntids > 0); 1320 MPASS(t->tid_tab == NULL); 1321 1322 t->tid_tab = malloc(t->ntids * sizeof(*t->tid_tab), M_CXGBE, 1323 M_ZERO | flags); 1324 if (t->tid_tab == NULL) 1325 return (ENOMEM); 1326 atomic_store_rel_int(&t->tids_in_use, 0); 1327 1328 return (0); 1329 } 1330 1331 static void 1332 free_tid_tab(struct tid_info *t) 1333 { 1334 1335 KASSERT(t->tids_in_use == 0, 1336 ("%s: %d tids still in use.", __func__, t->tids_in_use)); 1337 1338 free(t->tid_tab, M_CXGBE); 1339 t->tid_tab = NULL; 1340 } 1341 1342 static int 1343 alloc_stid_tab(struct tid_info *t, int flags) 1344 { 1345 1346 MPASS(t->nstids > 0); 1347 MPASS(t->stid_tab == NULL); 1348 1349 t->stid_tab = malloc(t->nstids * sizeof(*t->stid_tab), M_CXGBE, 1350 M_ZERO | flags); 1351 if (t->stid_tab == NULL) 1352 return (ENOMEM); 1353 mtx_init(&t->stid_lock, "stid lock", NULL, MTX_DEF); 1354 t->stids_in_use = 0; 1355 TAILQ_INIT(&t->stids); 1356 t->nstids_free_head = t->nstids; 1357 1358 return (0); 1359 } 1360 1361 static void 1362 free_stid_tab(struct tid_info *t) 1363 { 1364 1365 KASSERT(t->stids_in_use == 0, 1366 ("%s: %d tids still in use.", __func__, t->stids_in_use)); 1367 1368 if (mtx_initialized(&t->stid_lock)) 1369 mtx_destroy(&t->stid_lock); 1370 free(t->stid_tab, M_CXGBE); 1371 t->stid_tab = NULL; 1372 } 1373 1374 static void 1375 free_tid_tabs(struct tid_info *t) 1376 { 1377 1378 free_tid_tab(t); 1379 free_stid_tab(t); 1380 } 1381 1382 static int 1383 alloc_tid_tabs(struct tid_info *t) 1384 { 1385 int rc; 1386 1387 rc = alloc_tid_tab(t, M_NOWAIT); 1388 if (rc != 0) 1389 goto failed; 1390 1391 rc = alloc_stid_tab(t, M_NOWAIT); 1392 if (rc != 0) 1393 goto failed; 1394 1395 return (0); 1396 failed: 1397 free_tid_tabs(t); 1398 return (rc); 1399 } 1400 1401 static inline void 1402 alloc_tcb_history(struct adapter *sc, struct tom_data *td) 1403 { 1404 1405 if (sc->tids.ntids == 0 || sc->tids.ntids > 1024) 1406 return; 1407 rw_init(&td->tcb_history_lock, "TCB history"); 1408 td->tcb_history = malloc(sc->tids.ntids * sizeof(*td->tcb_history), 1409 M_CXGBE, M_ZERO | M_NOWAIT); 1410 td->dupack_threshold = G_DUPACKTHRESH(t4_read_reg(sc, A_TP_PARA_REG0)); 1411 } 1412 1413 static inline void 1414 free_tcb_history(struct adapter *sc, struct tom_data *td) 1415 { 1416 #ifdef INVARIANTS 1417 int i; 1418 1419 if (td->tcb_history != NULL) { 1420 for (i = 0; i < sc->tids.ntids; i++) { 1421 MPASS(td->tcb_history[i] == NULL); 1422 } 1423 } 1424 #endif 1425 free(td->tcb_history, M_CXGBE); 1426 if (rw_initialized(&td->tcb_history_lock)) 1427 rw_destroy(&td->tcb_history_lock); 1428 } 1429 1430 static void 1431 free_tom_data(struct adapter *sc, struct tom_data *td) 1432 { 1433 1434 ASSERT_SYNCHRONIZED_OP(sc); 1435 1436 KASSERT(TAILQ_EMPTY(&td->toep_list), 1437 ("%s: TOE PCB list is not empty.", __func__)); 1438 KASSERT(td->lctx_count == 0, 1439 ("%s: lctx hash table is not empty.", __func__)); 1440 1441 t4_free_ppod_region(&td->pr); 1442 1443 if (td->listen_mask != 0) 1444 hashdestroy(td->listen_hash, M_CXGBE, td->listen_mask); 1445 1446 if (mtx_initialized(&td->unsent_wr_lock)) 1447 mtx_destroy(&td->unsent_wr_lock); 1448 if (mtx_initialized(&td->lctx_hash_lock)) 1449 mtx_destroy(&td->lctx_hash_lock); 1450 if (mtx_initialized(&td->toep_list_lock)) 1451 mtx_destroy(&td->toep_list_lock); 1452 1453 free_tcb_history(sc, td); 1454 free_tid_tabs(&sc->tids); 1455 free(td, M_CXGBE); 1456 } 1457 1458 static char * 1459 prepare_pkt(int open_type, uint16_t vtag, struct inpcb *inp, int *pktlen, 1460 int *buflen) 1461 { 1462 char *pkt; 1463 struct tcphdr *th; 1464 int ipv6, len; 1465 const int maxlen = 1466 max(sizeof(struct ether_header), sizeof(struct ether_vlan_header)) + 1467 max(sizeof(struct ip), sizeof(struct ip6_hdr)) + 1468 sizeof(struct tcphdr); 1469 1470 MPASS(open_type == OPEN_TYPE_ACTIVE || open_type == OPEN_TYPE_LISTEN); 1471 1472 pkt = malloc(maxlen, M_CXGBE, M_ZERO | M_NOWAIT); 1473 if (pkt == NULL) 1474 return (NULL); 1475 1476 ipv6 = inp->inp_vflag & INP_IPV6; 1477 len = 0; 1478 1479 if (EVL_VLANOFTAG(vtag) == 0xfff) { 1480 struct ether_header *eh = (void *)pkt; 1481 1482 if (ipv6) 1483 eh->ether_type = htons(ETHERTYPE_IPV6); 1484 else 1485 eh->ether_type = htons(ETHERTYPE_IP); 1486 1487 len += sizeof(*eh); 1488 } else { 1489 struct ether_vlan_header *evh = (void *)pkt; 1490 1491 evh->evl_encap_proto = htons(ETHERTYPE_VLAN); 1492 evh->evl_tag = htons(vtag); 1493 if (ipv6) 1494 evh->evl_proto = htons(ETHERTYPE_IPV6); 1495 else 1496 evh->evl_proto = htons(ETHERTYPE_IP); 1497 1498 len += sizeof(*evh); 1499 } 1500 1501 if (ipv6) { 1502 struct ip6_hdr *ip6 = (void *)&pkt[len]; 1503 1504 ip6->ip6_vfc = IPV6_VERSION; 1505 ip6->ip6_plen = htons(sizeof(struct tcphdr)); 1506 ip6->ip6_nxt = IPPROTO_TCP; 1507 if (open_type == OPEN_TYPE_ACTIVE) { 1508 ip6->ip6_src = inp->in6p_laddr; 1509 ip6->ip6_dst = inp->in6p_faddr; 1510 } else if (open_type == OPEN_TYPE_LISTEN) { 1511 ip6->ip6_src = inp->in6p_laddr; 1512 ip6->ip6_dst = ip6->ip6_src; 1513 } 1514 1515 len += sizeof(*ip6); 1516 } else { 1517 struct ip *ip = (void *)&pkt[len]; 1518 1519 ip->ip_v = IPVERSION; 1520 ip->ip_hl = sizeof(*ip) >> 2; 1521 ip->ip_tos = inp->inp_ip_tos; 1522 ip->ip_len = htons(sizeof(struct ip) + sizeof(struct tcphdr)); 1523 ip->ip_ttl = inp->inp_ip_ttl; 1524 ip->ip_p = IPPROTO_TCP; 1525 if (open_type == OPEN_TYPE_ACTIVE) { 1526 ip->ip_src = inp->inp_laddr; 1527 ip->ip_dst = inp->inp_faddr; 1528 } else if (open_type == OPEN_TYPE_LISTEN) { 1529 ip->ip_src = inp->inp_laddr; 1530 ip->ip_dst = ip->ip_src; 1531 } 1532 1533 len += sizeof(*ip); 1534 } 1535 1536 th = (void *)&pkt[len]; 1537 if (open_type == OPEN_TYPE_ACTIVE) { 1538 th->th_sport = inp->inp_lport; /* network byte order already */ 1539 th->th_dport = inp->inp_fport; /* ditto */ 1540 } else if (open_type == OPEN_TYPE_LISTEN) { 1541 th->th_sport = inp->inp_lport; /* network byte order already */ 1542 th->th_dport = th->th_sport; 1543 } 1544 len += sizeof(th); 1545 1546 *pktlen = *buflen = len; 1547 return (pkt); 1548 } 1549 1550 const struct offload_settings * 1551 lookup_offload_policy(struct adapter *sc, int open_type, struct mbuf *m, 1552 uint16_t vtag, struct inpcb *inp) 1553 { 1554 const struct t4_offload_policy *op; 1555 char *pkt; 1556 struct offload_rule *r; 1557 int i, matched, pktlen, buflen; 1558 static const struct offload_settings allow_offloading_settings = { 1559 .offload = 1, 1560 .rx_coalesce = -1, 1561 .cong_algo = -1, 1562 .sched_class = -1, 1563 .tstamp = -1, 1564 .sack = -1, 1565 .nagle = -1, 1566 .ecn = -1, 1567 .ddp = -1, 1568 .tls = -1, 1569 .txq = -1, 1570 .rxq = -1, 1571 .mss = -1, 1572 }; 1573 static const struct offload_settings disallow_offloading_settings = { 1574 .offload = 0, 1575 /* rest is irrelevant when offload is off. */ 1576 }; 1577 1578 rw_assert(&sc->policy_lock, RA_LOCKED); 1579 1580 /* 1581 * If there's no Connection Offloading Policy attached to the device 1582 * then we need to return a default static policy. If 1583 * "cop_managed_offloading" is true, then we need to disallow 1584 * offloading until a COP is attached to the device. Otherwise we 1585 * allow offloading ... 1586 */ 1587 op = sc->policy; 1588 if (op == NULL) { 1589 if (sc->tt.cop_managed_offloading) 1590 return (&disallow_offloading_settings); 1591 else 1592 return (&allow_offloading_settings); 1593 } 1594 1595 switch (open_type) { 1596 case OPEN_TYPE_ACTIVE: 1597 case OPEN_TYPE_LISTEN: 1598 pkt = prepare_pkt(open_type, vtag, inp, &pktlen, &buflen); 1599 break; 1600 case OPEN_TYPE_PASSIVE: 1601 MPASS(m != NULL); 1602 pkt = mtod(m, char *); 1603 MPASS(*pkt == CPL_PASS_ACCEPT_REQ); 1604 pkt += sizeof(struct cpl_pass_accept_req); 1605 pktlen = m->m_pkthdr.len - sizeof(struct cpl_pass_accept_req); 1606 buflen = m->m_len - sizeof(struct cpl_pass_accept_req); 1607 break; 1608 default: 1609 MPASS(0); 1610 return (&disallow_offloading_settings); 1611 } 1612 1613 if (pkt == NULL || pktlen == 0 || buflen == 0) 1614 return (&disallow_offloading_settings); 1615 1616 matched = 0; 1617 r = &op->rule[0]; 1618 for (i = 0; i < op->nrules; i++, r++) { 1619 if (r->open_type != open_type && 1620 r->open_type != OPEN_TYPE_DONTCARE) { 1621 continue; 1622 } 1623 matched = bpf_filter(r->bpf_prog.bf_insns, pkt, pktlen, buflen); 1624 if (matched) 1625 break; 1626 } 1627 1628 if (open_type == OPEN_TYPE_ACTIVE || open_type == OPEN_TYPE_LISTEN) 1629 free(pkt, M_CXGBE); 1630 1631 return (matched ? &r->settings : &disallow_offloading_settings); 1632 } 1633 1634 static void 1635 reclaim_wr_resources(void *arg, int count) 1636 { 1637 struct tom_data *td = arg; 1638 STAILQ_HEAD(, wrqe) twr_list = STAILQ_HEAD_INITIALIZER(twr_list); 1639 struct cpl_act_open_req *cpl; 1640 u_int opcode, atid, tid; 1641 struct wrqe *wr; 1642 struct adapter *sc = td_adapter(td); 1643 1644 mtx_lock(&td->unsent_wr_lock); 1645 STAILQ_SWAP(&td->unsent_wr_list, &twr_list, wrqe); 1646 mtx_unlock(&td->unsent_wr_lock); 1647 1648 while ((wr = STAILQ_FIRST(&twr_list)) != NULL) { 1649 STAILQ_REMOVE_HEAD(&twr_list, link); 1650 1651 cpl = wrtod(wr); 1652 opcode = GET_OPCODE(cpl); 1653 1654 switch (opcode) { 1655 case CPL_ACT_OPEN_REQ: 1656 case CPL_ACT_OPEN_REQ6: 1657 atid = G_TID_TID(be32toh(OPCODE_TID(cpl))); 1658 CTR2(KTR_CXGBE, "%s: atid %u ", __func__, atid); 1659 act_open_failure_cleanup(sc, atid, EHOSTUNREACH); 1660 free(wr, M_CXGBE); 1661 break; 1662 case CPL_PASS_ACCEPT_RPL: 1663 tid = GET_TID(cpl); 1664 CTR2(KTR_CXGBE, "%s: tid %u ", __func__, tid); 1665 synack_failure_cleanup(sc, tid); 1666 free(wr, M_CXGBE); 1667 break; 1668 default: 1669 log(LOG_ERR, "%s: leaked work request %p, wr_len %d, " 1670 "opcode %x\n", __func__, wr, wr->wr_len, opcode); 1671 /* WR not freed here; go look at it with a debugger. */ 1672 } 1673 } 1674 } 1675 1676 /* 1677 * Ground control to Major TOM 1678 * Commencing countdown, engines on 1679 */ 1680 static int 1681 t4_tom_activate(struct adapter *sc) 1682 { 1683 struct tom_data *td; 1684 struct toedev *tod; 1685 struct vi_info *vi; 1686 int i, rc, v; 1687 1688 ASSERT_SYNCHRONIZED_OP(sc); 1689 1690 /* per-adapter softc for TOM */ 1691 td = malloc(sizeof(*td), M_CXGBE, M_ZERO | M_NOWAIT); 1692 if (td == NULL) 1693 return (ENOMEM); 1694 1695 /* List of TOE PCBs and associated lock */ 1696 mtx_init(&td->toep_list_lock, "PCB list lock", NULL, MTX_DEF); 1697 TAILQ_INIT(&td->toep_list); 1698 1699 /* Listen context */ 1700 mtx_init(&td->lctx_hash_lock, "lctx hash lock", NULL, MTX_DEF); 1701 td->listen_hash = hashinit_flags(LISTEN_HASH_SIZE, M_CXGBE, 1702 &td->listen_mask, HASH_NOWAIT); 1703 1704 /* List of WRs for which L2 resolution failed */ 1705 mtx_init(&td->unsent_wr_lock, "Unsent WR list lock", NULL, MTX_DEF); 1706 STAILQ_INIT(&td->unsent_wr_list); 1707 TASK_INIT(&td->reclaim_wr_resources, 0, reclaim_wr_resources, td); 1708 1709 /* TID tables */ 1710 rc = alloc_tid_tabs(&sc->tids); 1711 if (rc != 0) 1712 goto done; 1713 1714 rc = t4_init_ppod_region(&td->pr, &sc->vres.ddp, 1715 t4_read_reg(sc, A_ULP_RX_TDDP_PSZ), "TDDP page pods"); 1716 if (rc != 0) 1717 goto done; 1718 t4_set_reg_field(sc, A_ULP_RX_TDDP_TAGMASK, 1719 V_TDDPTAGMASK(M_TDDPTAGMASK), td->pr.pr_tag_mask); 1720 1721 alloc_tcb_history(sc, td); 1722 1723 /* toedev ops */ 1724 tod = &td->tod; 1725 init_toedev(tod); 1726 tod->tod_softc = sc; 1727 tod->tod_connect = t4_connect; 1728 tod->tod_listen_start = t4_listen_start; 1729 tod->tod_listen_stop = t4_listen_stop; 1730 tod->tod_rcvd = t4_rcvd; 1731 tod->tod_output = t4_tod_output; 1732 tod->tod_send_rst = t4_send_rst; 1733 tod->tod_send_fin = t4_send_fin; 1734 tod->tod_pcb_detach = t4_pcb_detach; 1735 tod->tod_l2_update = t4_l2_update; 1736 tod->tod_syncache_added = t4_syncache_added; 1737 tod->tod_syncache_removed = t4_syncache_removed; 1738 tod->tod_syncache_respond = t4_syncache_respond; 1739 tod->tod_offload_socket = t4_offload_socket; 1740 tod->tod_ctloutput = t4_ctloutput; 1741 tod->tod_tcp_info = t4_tcp_info; 1742 #ifdef KERN_TLS 1743 tod->tod_alloc_tls_session = t4_alloc_tls_session; 1744 #endif 1745 1746 for_each_port(sc, i) { 1747 for_each_vi(sc->port[i], v, vi) { 1748 TOEDEV(vi->ifp) = &td->tod; 1749 } 1750 } 1751 1752 sc->tom_softc = td; 1753 register_toedev(sc->tom_softc); 1754 1755 done: 1756 if (rc != 0) 1757 free_tom_data(sc, td); 1758 return (rc); 1759 } 1760 1761 static int 1762 t4_tom_deactivate(struct adapter *sc) 1763 { 1764 int rc = 0; 1765 struct tom_data *td = sc->tom_softc; 1766 1767 ASSERT_SYNCHRONIZED_OP(sc); 1768 1769 if (td == NULL) 1770 return (0); /* XXX. KASSERT? */ 1771 1772 if (sc->offload_map != 0) 1773 return (EBUSY); /* at least one port has IFCAP_TOE enabled */ 1774 1775 if (uld_active(sc, ULD_IWARP) || uld_active(sc, ULD_ISCSI)) 1776 return (EBUSY); /* both iWARP and iSCSI rely on the TOE. */ 1777 1778 mtx_lock(&td->toep_list_lock); 1779 if (!TAILQ_EMPTY(&td->toep_list)) 1780 rc = EBUSY; 1781 mtx_unlock(&td->toep_list_lock); 1782 1783 mtx_lock(&td->lctx_hash_lock); 1784 if (td->lctx_count > 0) 1785 rc = EBUSY; 1786 mtx_unlock(&td->lctx_hash_lock); 1787 1788 taskqueue_drain(taskqueue_thread, &td->reclaim_wr_resources); 1789 mtx_lock(&td->unsent_wr_lock); 1790 if (!STAILQ_EMPTY(&td->unsent_wr_list)) 1791 rc = EBUSY; 1792 mtx_unlock(&td->unsent_wr_lock); 1793 1794 if (rc == 0) { 1795 unregister_toedev(sc->tom_softc); 1796 free_tom_data(sc, td); 1797 sc->tom_softc = NULL; 1798 } 1799 1800 return (rc); 1801 } 1802 1803 static int 1804 t4_aio_queue_tom(struct socket *so, struct kaiocb *job) 1805 { 1806 struct tcpcb *tp = so_sototcpcb(so); 1807 struct toepcb *toep = tp->t_toe; 1808 int error; 1809 1810 if (ulp_mode(toep) == ULP_MODE_TCPDDP) { 1811 error = t4_aio_queue_ddp(so, job); 1812 if (error != EOPNOTSUPP) 1813 return (error); 1814 } 1815 1816 return (t4_aio_queue_aiotx(so, job)); 1817 } 1818 1819 static int 1820 t4_ctloutput_tom(struct socket *so, struct sockopt *sopt) 1821 { 1822 1823 if (sopt->sopt_level != IPPROTO_TCP) 1824 return (tcp_ctloutput(so, sopt)); 1825 1826 switch (sopt->sopt_name) { 1827 case TCP_TLSOM_SET_TLS_CONTEXT: 1828 case TCP_TLSOM_GET_TLS_TOM: 1829 case TCP_TLSOM_CLR_TLS_TOM: 1830 case TCP_TLSOM_CLR_QUIES: 1831 return (t4_ctloutput_tls(so, sopt)); 1832 default: 1833 return (tcp_ctloutput(so, sopt)); 1834 } 1835 } 1836 1837 static int 1838 t4_tom_mod_load(void) 1839 { 1840 struct protosw *tcp_protosw, *tcp6_protosw; 1841 1842 /* CPL handlers */ 1843 t4_register_cpl_handler(CPL_GET_TCB_RPL, do_get_tcb_rpl); 1844 t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, do_l2t_write_rpl2, 1845 CPL_COOKIE_TOM); 1846 t4_init_connect_cpl_handlers(); 1847 t4_init_listen_cpl_handlers(); 1848 t4_init_cpl_io_handlers(); 1849 1850 t4_ddp_mod_load(); 1851 t4_tls_mod_load(); 1852 1853 tcp_protosw = pffindproto(PF_INET, IPPROTO_TCP, SOCK_STREAM); 1854 if (tcp_protosw == NULL) 1855 return (ENOPROTOOPT); 1856 bcopy(tcp_protosw, &toe_protosw, sizeof(toe_protosw)); 1857 bcopy(tcp_protosw->pr_usrreqs, &toe_usrreqs, sizeof(toe_usrreqs)); 1858 toe_usrreqs.pru_aio_queue = t4_aio_queue_tom; 1859 toe_protosw.pr_ctloutput = t4_ctloutput_tom; 1860 toe_protosw.pr_usrreqs = &toe_usrreqs; 1861 1862 tcp6_protosw = pffindproto(PF_INET6, IPPROTO_TCP, SOCK_STREAM); 1863 if (tcp6_protosw == NULL) 1864 return (ENOPROTOOPT); 1865 bcopy(tcp6_protosw, &toe6_protosw, sizeof(toe6_protosw)); 1866 bcopy(tcp6_protosw->pr_usrreqs, &toe6_usrreqs, sizeof(toe6_usrreqs)); 1867 toe6_usrreqs.pru_aio_queue = t4_aio_queue_tom; 1868 toe6_protosw.pr_ctloutput = t4_ctloutput_tom; 1869 toe6_protosw.pr_usrreqs = &toe6_usrreqs; 1870 1871 return (t4_register_uld(&tom_uld_info)); 1872 } 1873 1874 static void 1875 tom_uninit(struct adapter *sc, void *arg __unused) 1876 { 1877 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4tomun")) 1878 return; 1879 1880 /* Try to free resources (works only if no port has IFCAP_TOE) */ 1881 if (uld_active(sc, ULD_TOM)) 1882 t4_deactivate_uld(sc, ULD_TOM); 1883 1884 end_synchronized_op(sc, 0); 1885 } 1886 1887 static int 1888 t4_tom_mod_unload(void) 1889 { 1890 t4_iterate(tom_uninit, NULL); 1891 1892 if (t4_unregister_uld(&tom_uld_info) == EBUSY) 1893 return (EBUSY); 1894 1895 t4_tls_mod_unload(); 1896 t4_ddp_mod_unload(); 1897 1898 t4_uninit_connect_cpl_handlers(); 1899 t4_uninit_listen_cpl_handlers(); 1900 t4_uninit_cpl_io_handlers(); 1901 t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, NULL, CPL_COOKIE_TOM); 1902 t4_register_cpl_handler(CPL_GET_TCB_RPL, NULL); 1903 1904 return (0); 1905 } 1906 #endif /* TCP_OFFLOAD */ 1907 1908 static int 1909 t4_tom_modevent(module_t mod, int cmd, void *arg) 1910 { 1911 int rc = 0; 1912 1913 #ifdef TCP_OFFLOAD 1914 switch (cmd) { 1915 case MOD_LOAD: 1916 rc = t4_tom_mod_load(); 1917 break; 1918 1919 case MOD_UNLOAD: 1920 rc = t4_tom_mod_unload(); 1921 break; 1922 1923 default: 1924 rc = EINVAL; 1925 } 1926 #else 1927 printf("t4_tom: compiled without TCP_OFFLOAD support.\n"); 1928 rc = EOPNOTSUPP; 1929 #endif 1930 return (rc); 1931 } 1932 1933 static moduledata_t t4_tom_moddata= { 1934 "t4_tom", 1935 t4_tom_modevent, 1936 0 1937 }; 1938 1939 MODULE_VERSION(t4_tom, 1); 1940 MODULE_DEPEND(t4_tom, toecore, 1, 1, 1); 1941 MODULE_DEPEND(t4_tom, t4nex, 1, 1, 1); 1942 DECLARE_MODULE(t4_tom, t4_tom_moddata, SI_SUB_EXEC, SI_ORDER_ANY); 1943