1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2012 Chelsio Communications, Inc. 5 * All rights reserved. 6 * Written by: Navdeep Parhar <np@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include "opt_inet.h" 34 #include "opt_inet6.h" 35 #include "opt_kern_tls.h" 36 #include "opt_ratelimit.h" 37 38 #include <sys/param.h> 39 #include <sys/types.h> 40 #include <sys/systm.h> 41 #include <sys/kernel.h> 42 #include <sys/ktr.h> 43 #include <sys/lock.h> 44 #include <sys/limits.h> 45 #include <sys/module.h> 46 #include <sys/protosw.h> 47 #include <sys/domain.h> 48 #include <sys/refcount.h> 49 #include <sys/rmlock.h> 50 #include <sys/socket.h> 51 #include <sys/socketvar.h> 52 #include <sys/sysctl.h> 53 #include <sys/taskqueue.h> 54 #include <net/if.h> 55 #include <net/if_var.h> 56 #include <net/if_types.h> 57 #include <net/if_vlan_var.h> 58 #include <netinet/in.h> 59 #include <netinet/in_pcb.h> 60 #include <netinet/in_var.h> 61 #include <netinet/ip.h> 62 #include <netinet/ip6.h> 63 #include <netinet6/scope6_var.h> 64 #define TCPSTATES 65 #include <netinet/tcp_fsm.h> 66 #include <netinet/tcp_seq.h> 67 #include <netinet/tcp_timer.h> 68 #include <netinet/tcp_var.h> 69 #include <netinet/toecore.h> 70 #include <netinet/cc/cc.h> 71 72 #ifdef TCP_OFFLOAD 73 #include "common/common.h" 74 #include "common/t4_msg.h" 75 #include "common/t4_regs.h" 76 #include "common/t4_regs_values.h" 77 #include "common/t4_tcb.h" 78 #include "t4_clip.h" 79 #include "tom/t4_tom_l2t.h" 80 #include "tom/t4_tom.h" 81 #include "tom/t4_tls.h" 82 83 static struct protosw toe_protosw; 84 static struct protosw toe6_protosw; 85 86 /* Module ops */ 87 static int t4_tom_mod_load(void); 88 static int t4_tom_mod_unload(void); 89 static int t4_tom_modevent(module_t, int, void *); 90 91 /* ULD ops and helpers */ 92 static int t4_tom_activate(struct adapter *); 93 static int t4_tom_deactivate(struct adapter *); 94 95 static struct uld_info tom_uld_info = { 96 .uld_id = ULD_TOM, 97 .activate = t4_tom_activate, 98 .deactivate = t4_tom_deactivate, 99 }; 100 101 static void release_offload_resources(struct toepcb *); 102 static int alloc_tid_tabs(struct tid_info *); 103 static void free_tid_tabs(struct tid_info *); 104 static void free_tom_data(struct adapter *, struct tom_data *); 105 static void reclaim_wr_resources(void *, int); 106 107 struct toepcb * 108 alloc_toepcb(struct vi_info *vi, int flags) 109 { 110 struct port_info *pi = vi->pi; 111 struct adapter *sc = pi->adapter; 112 struct toepcb *toep; 113 int tx_credits, txsd_total, len; 114 115 /* 116 * The firmware counts tx work request credits in units of 16 bytes 117 * each. Reserve room for an ABORT_REQ so the driver never has to worry 118 * about tx credits if it wants to abort a connection. 119 */ 120 tx_credits = sc->params.ofldq_wr_cred; 121 tx_credits -= howmany(sizeof(struct cpl_abort_req), 16); 122 123 /* 124 * Shortest possible tx work request is a fw_ofld_tx_data_wr + 1 byte 125 * immediate payload, and firmware counts tx work request credits in 126 * units of 16 byte. Calculate the maximum work requests possible. 127 */ 128 txsd_total = tx_credits / 129 howmany(sizeof(struct fw_ofld_tx_data_wr) + 1, 16); 130 131 len = offsetof(struct toepcb, txsd) + 132 txsd_total * sizeof(struct ofld_tx_sdesc); 133 134 toep = malloc(len, M_CXGBE, M_ZERO | flags); 135 if (toep == NULL) 136 return (NULL); 137 138 refcount_init(&toep->refcount, 1); 139 toep->td = sc->tom_softc; 140 toep->vi = vi; 141 toep->tid = -1; 142 toep->tx_total = tx_credits; 143 toep->tx_credits = tx_credits; 144 mbufq_init(&toep->ulp_pduq, INT_MAX); 145 mbufq_init(&toep->ulp_pdu_reclaimq, INT_MAX); 146 toep->txsd_total = txsd_total; 147 toep->txsd_avail = txsd_total; 148 toep->txsd_pidx = 0; 149 toep->txsd_cidx = 0; 150 aiotx_init_toep(toep); 151 152 return (toep); 153 } 154 155 /* 156 * Initialize a toepcb after its params have been filled out. 157 */ 158 int 159 init_toepcb(struct vi_info *vi, struct toepcb *toep) 160 { 161 struct conn_params *cp = &toep->params; 162 struct port_info *pi = vi->pi; 163 struct adapter *sc = pi->adapter; 164 struct tx_cl_rl_params *tc; 165 166 if (cp->tc_idx >= 0 && cp->tc_idx < sc->params.nsched_cls) { 167 tc = &pi->sched_params->cl_rl[cp->tc_idx]; 168 mtx_lock(&sc->tc_lock); 169 if (tc->state != CS_HW_CONFIGURED) { 170 CH_ERR(vi, "tid %d cannot be bound to traffic class %d " 171 "because it is not configured (its state is %d)\n", 172 toep->tid, cp->tc_idx, tc->state); 173 cp->tc_idx = -1; 174 } else { 175 tc->refcount++; 176 } 177 mtx_unlock(&sc->tc_lock); 178 } 179 toep->ofld_txq = &sc->sge.ofld_txq[cp->txq_idx]; 180 toep->ofld_rxq = &sc->sge.ofld_rxq[cp->rxq_idx]; 181 toep->ctrlq = &sc->sge.ctrlq[pi->port_id]; 182 183 tls_init_toep(toep); 184 if (ulp_mode(toep) == ULP_MODE_TCPDDP) 185 ddp_init_toep(toep); 186 187 toep->flags |= TPF_INITIALIZED; 188 189 return (0); 190 } 191 192 struct toepcb * 193 hold_toepcb(struct toepcb *toep) 194 { 195 196 refcount_acquire(&toep->refcount); 197 return (toep); 198 } 199 200 void 201 free_toepcb(struct toepcb *toep) 202 { 203 204 if (refcount_release(&toep->refcount) == 0) 205 return; 206 207 KASSERT(!(toep->flags & TPF_ATTACHED), 208 ("%s: attached to an inpcb", __func__)); 209 KASSERT(!(toep->flags & TPF_CPL_PENDING), 210 ("%s: CPL pending", __func__)); 211 212 if (toep->flags & TPF_INITIALIZED) { 213 if (ulp_mode(toep) == ULP_MODE_TCPDDP) 214 ddp_uninit_toep(toep); 215 tls_uninit_toep(toep); 216 } 217 free(toep, M_CXGBE); 218 } 219 220 /* 221 * Set up the socket for TCP offload. 222 */ 223 void 224 offload_socket(struct socket *so, struct toepcb *toep) 225 { 226 struct tom_data *td = toep->td; 227 struct inpcb *inp = sotoinpcb(so); 228 struct tcpcb *tp = intotcpcb(inp); 229 struct sockbuf *sb; 230 231 INP_WLOCK_ASSERT(inp); 232 233 /* Update socket */ 234 sb = &so->so_snd; 235 SOCKBUF_LOCK(sb); 236 sb->sb_flags |= SB_NOCOALESCE; 237 SOCKBUF_UNLOCK(sb); 238 sb = &so->so_rcv; 239 SOCKBUF_LOCK(sb); 240 sb->sb_flags |= SB_NOCOALESCE; 241 if (inp->inp_vflag & INP_IPV6) 242 so->so_proto = &toe6_protosw; 243 else 244 so->so_proto = &toe_protosw; 245 SOCKBUF_UNLOCK(sb); 246 247 /* Update TCP PCB */ 248 tp->tod = &td->tod; 249 tp->t_toe = toep; 250 tp->t_flags |= TF_TOE; 251 252 /* Install an extra hold on inp */ 253 toep->inp = inp; 254 toep->flags |= TPF_ATTACHED; 255 in_pcbref(inp); 256 257 /* Add the TOE PCB to the active list */ 258 mtx_lock(&td->toep_list_lock); 259 TAILQ_INSERT_HEAD(&td->toep_list, toep, link); 260 mtx_unlock(&td->toep_list_lock); 261 } 262 263 void 264 restore_so_proto(struct socket *so, bool v6) 265 { 266 if (v6) 267 so->so_proto = &tcp6_protosw; 268 else 269 so->so_proto = &tcp_protosw; 270 } 271 272 /* This is _not_ the normal way to "unoffload" a socket. */ 273 void 274 undo_offload_socket(struct socket *so) 275 { 276 struct inpcb *inp = sotoinpcb(so); 277 struct tcpcb *tp = intotcpcb(inp); 278 struct toepcb *toep = tp->t_toe; 279 struct tom_data *td = toep->td; 280 struct sockbuf *sb; 281 282 INP_WLOCK_ASSERT(inp); 283 284 sb = &so->so_snd; 285 SOCKBUF_LOCK(sb); 286 sb->sb_flags &= ~SB_NOCOALESCE; 287 SOCKBUF_UNLOCK(sb); 288 sb = &so->so_rcv; 289 SOCKBUF_LOCK(sb); 290 sb->sb_flags &= ~SB_NOCOALESCE; 291 restore_so_proto(so, inp->inp_vflag & INP_IPV6); 292 SOCKBUF_UNLOCK(sb); 293 294 tp->tod = NULL; 295 tp->t_toe = NULL; 296 tp->t_flags &= ~TF_TOE; 297 298 toep->inp = NULL; 299 toep->flags &= ~TPF_ATTACHED; 300 if (in_pcbrele_wlocked(inp)) 301 panic("%s: inp freed.", __func__); 302 303 mtx_lock(&td->toep_list_lock); 304 TAILQ_REMOVE(&td->toep_list, toep, link); 305 mtx_unlock(&td->toep_list_lock); 306 } 307 308 static void 309 release_offload_resources(struct toepcb *toep) 310 { 311 struct tom_data *td = toep->td; 312 struct adapter *sc = td_adapter(td); 313 int tid = toep->tid; 314 315 KASSERT(!(toep->flags & TPF_CPL_PENDING), 316 ("%s: %p has CPL pending.", __func__, toep)); 317 KASSERT(!(toep->flags & TPF_ATTACHED), 318 ("%s: %p is still attached.", __func__, toep)); 319 320 CTR5(KTR_CXGBE, "%s: toep %p (tid %d, l2te %p, ce %p)", 321 __func__, toep, tid, toep->l2te, toep->ce); 322 323 /* 324 * These queues should have been emptied at approximately the same time 325 * that a normal connection's socket's so_snd would have been purged or 326 * drained. Do _not_ clean up here. 327 */ 328 MPASS(mbufq_len(&toep->ulp_pduq) == 0); 329 MPASS(mbufq_len(&toep->ulp_pdu_reclaimq) == 0); 330 #ifdef INVARIANTS 331 if (ulp_mode(toep) == ULP_MODE_TCPDDP) 332 ddp_assert_empty(toep); 333 #endif 334 MPASS(TAILQ_EMPTY(&toep->aiotx_jobq)); 335 336 if (toep->l2te) 337 t4_l2t_release(toep->l2te); 338 339 if (tid >= 0) { 340 remove_tid(sc, tid, toep->ce ? 2 : 1); 341 release_tid(sc, tid, toep->ctrlq); 342 } 343 344 if (toep->ce) 345 t4_release_clip_entry(sc, toep->ce); 346 347 if (toep->params.tc_idx != -1) 348 t4_release_cl_rl(sc, toep->vi->pi->port_id, toep->params.tc_idx); 349 350 mtx_lock(&td->toep_list_lock); 351 TAILQ_REMOVE(&td->toep_list, toep, link); 352 mtx_unlock(&td->toep_list_lock); 353 354 free_toepcb(toep); 355 } 356 357 /* 358 * The kernel is done with the TCP PCB and this is our opportunity to unhook the 359 * toepcb hanging off of it. If the TOE driver is also done with the toepcb (no 360 * pending CPL) then it is time to release all resources tied to the toepcb. 361 * 362 * Also gets called when an offloaded active open fails and the TOM wants the 363 * kernel to take the TCP PCB back. 364 */ 365 static void 366 t4_pcb_detach(struct toedev *tod __unused, struct tcpcb *tp) 367 { 368 #if defined(KTR) || defined(INVARIANTS) 369 struct inpcb *inp = tp->t_inpcb; 370 #endif 371 struct toepcb *toep = tp->t_toe; 372 373 INP_WLOCK_ASSERT(inp); 374 375 KASSERT(toep != NULL, ("%s: toep is NULL", __func__)); 376 KASSERT(toep->flags & TPF_ATTACHED, 377 ("%s: not attached", __func__)); 378 379 #ifdef KTR 380 if (tp->t_state == TCPS_SYN_SENT) { 381 CTR6(KTR_CXGBE, "%s: atid %d, toep %p (0x%x), inp %p (0x%x)", 382 __func__, toep->tid, toep, toep->flags, inp, 383 inp->inp_flags); 384 } else { 385 CTR6(KTR_CXGBE, 386 "t4_pcb_detach: tid %d (%s), toep %p (0x%x), inp %p (0x%x)", 387 toep->tid, tcpstates[tp->t_state], toep, toep->flags, inp, 388 inp->inp_flags); 389 } 390 #endif 391 392 if (ulp_mode(toep) == ULP_MODE_TLS) 393 tls_detach(toep); 394 395 tp->tod = NULL; 396 tp->t_toe = NULL; 397 tp->t_flags &= ~TF_TOE; 398 toep->flags &= ~TPF_ATTACHED; 399 400 if (!(toep->flags & TPF_CPL_PENDING)) 401 release_offload_resources(toep); 402 } 403 404 /* 405 * setsockopt handler. 406 */ 407 static void 408 t4_ctloutput(struct toedev *tod, struct tcpcb *tp, int dir, int name) 409 { 410 struct adapter *sc = tod->tod_softc; 411 struct toepcb *toep = tp->t_toe; 412 413 if (dir == SOPT_GET) 414 return; 415 416 CTR4(KTR_CXGBE, "%s: tp %p, dir %u, name %u", __func__, tp, dir, name); 417 418 switch (name) { 419 case TCP_NODELAY: 420 if (tp->t_state != TCPS_ESTABLISHED) 421 break; 422 toep->params.nagle = tp->t_flags & TF_NODELAY ? 0 : 1; 423 t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_T_FLAGS, 424 V_TF_NAGLE(1), V_TF_NAGLE(toep->params.nagle), 0, 0); 425 break; 426 default: 427 break; 428 } 429 } 430 431 static inline uint64_t 432 get_tcb_tflags(const uint64_t *tcb) 433 { 434 435 return ((be64toh(tcb[14]) << 32) | (be64toh(tcb[15]) >> 32)); 436 } 437 438 static inline uint32_t 439 get_tcb_field(const uint64_t *tcb, u_int word, uint32_t mask, u_int shift) 440 { 441 #define LAST_WORD ((TCB_SIZE / 4) - 1) 442 uint64_t t1, t2; 443 int flit_idx; 444 445 MPASS(mask != 0); 446 MPASS(word <= LAST_WORD); 447 MPASS(shift < 32); 448 449 flit_idx = (LAST_WORD - word) / 2; 450 if (word & 0x1) 451 shift += 32; 452 t1 = be64toh(tcb[flit_idx]) >> shift; 453 t2 = 0; 454 if (fls(mask) > 64 - shift) { 455 /* 456 * Will spill over into the next logical flit, which is the flit 457 * before this one. The flit_idx before this one must be valid. 458 */ 459 MPASS(flit_idx > 0); 460 t2 = be64toh(tcb[flit_idx - 1]) << (64 - shift); 461 } 462 return ((t2 | t1) & mask); 463 #undef LAST_WORD 464 } 465 #define GET_TCB_FIELD(tcb, F) \ 466 get_tcb_field(tcb, W_TCB_##F, M_TCB_##F, S_TCB_##F) 467 468 /* 469 * Issues a CPL_GET_TCB to read the entire TCB for the tid. 470 */ 471 static int 472 send_get_tcb(struct adapter *sc, u_int tid) 473 { 474 struct cpl_get_tcb *cpl; 475 struct wrq_cookie cookie; 476 477 MPASS(tid < sc->tids.ntids); 478 479 cpl = start_wrq_wr(&sc->sge.ctrlq[0], howmany(sizeof(*cpl), 16), 480 &cookie); 481 if (__predict_false(cpl == NULL)) 482 return (ENOMEM); 483 bzero(cpl, sizeof(*cpl)); 484 INIT_TP_WR(cpl, tid); 485 OPCODE_TID(cpl) = htobe32(MK_OPCODE_TID(CPL_GET_TCB, tid)); 486 cpl->reply_ctrl = htobe16(V_REPLY_CHAN(0) | 487 V_QUEUENO(sc->sge.ofld_rxq[0].iq.cntxt_id)); 488 cpl->cookie = 0xff; 489 commit_wrq_wr(&sc->sge.ctrlq[0], cpl, &cookie); 490 491 return (0); 492 } 493 494 static struct tcb_histent * 495 alloc_tcb_histent(struct adapter *sc, u_int tid, int flags) 496 { 497 struct tcb_histent *te; 498 499 MPASS(flags == M_NOWAIT || flags == M_WAITOK); 500 501 te = malloc(sizeof(*te), M_CXGBE, M_ZERO | flags); 502 if (te == NULL) 503 return (NULL); 504 mtx_init(&te->te_lock, "TCB entry", NULL, MTX_DEF); 505 callout_init_mtx(&te->te_callout, &te->te_lock, 0); 506 te->te_adapter = sc; 507 te->te_tid = tid; 508 509 return (te); 510 } 511 512 static void 513 free_tcb_histent(struct tcb_histent *te) 514 { 515 516 mtx_destroy(&te->te_lock); 517 free(te, M_CXGBE); 518 } 519 520 /* 521 * Start tracking the tid in the TCB history. 522 */ 523 int 524 add_tid_to_history(struct adapter *sc, u_int tid) 525 { 526 struct tcb_histent *te = NULL; 527 struct tom_data *td = sc->tom_softc; 528 int rc; 529 530 MPASS(tid < sc->tids.ntids); 531 532 if (td->tcb_history == NULL) 533 return (ENXIO); 534 535 rw_wlock(&td->tcb_history_lock); 536 if (td->tcb_history[tid] != NULL) { 537 rc = EEXIST; 538 goto done; 539 } 540 te = alloc_tcb_histent(sc, tid, M_NOWAIT); 541 if (te == NULL) { 542 rc = ENOMEM; 543 goto done; 544 } 545 mtx_lock(&te->te_lock); 546 rc = send_get_tcb(sc, tid); 547 if (rc == 0) { 548 te->te_flags |= TE_RPL_PENDING; 549 td->tcb_history[tid] = te; 550 } else { 551 free(te, M_CXGBE); 552 } 553 mtx_unlock(&te->te_lock); 554 done: 555 rw_wunlock(&td->tcb_history_lock); 556 return (rc); 557 } 558 559 static void 560 remove_tcb_histent(struct tcb_histent *te) 561 { 562 struct adapter *sc = te->te_adapter; 563 struct tom_data *td = sc->tom_softc; 564 565 rw_assert(&td->tcb_history_lock, RA_WLOCKED); 566 mtx_assert(&te->te_lock, MA_OWNED); 567 MPASS(td->tcb_history[te->te_tid] == te); 568 569 td->tcb_history[te->te_tid] = NULL; 570 free_tcb_histent(te); 571 rw_wunlock(&td->tcb_history_lock); 572 } 573 574 static inline struct tcb_histent * 575 lookup_tcb_histent(struct adapter *sc, u_int tid, bool addrem) 576 { 577 struct tcb_histent *te; 578 struct tom_data *td = sc->tom_softc; 579 580 MPASS(tid < sc->tids.ntids); 581 582 if (td->tcb_history == NULL) 583 return (NULL); 584 585 if (addrem) 586 rw_wlock(&td->tcb_history_lock); 587 else 588 rw_rlock(&td->tcb_history_lock); 589 te = td->tcb_history[tid]; 590 if (te != NULL) { 591 mtx_lock(&te->te_lock); 592 return (te); /* with both locks held */ 593 } 594 if (addrem) 595 rw_wunlock(&td->tcb_history_lock); 596 else 597 rw_runlock(&td->tcb_history_lock); 598 599 return (te); 600 } 601 602 static inline void 603 release_tcb_histent(struct tcb_histent *te) 604 { 605 struct adapter *sc = te->te_adapter; 606 struct tom_data *td = sc->tom_softc; 607 608 mtx_assert(&te->te_lock, MA_OWNED); 609 mtx_unlock(&te->te_lock); 610 rw_assert(&td->tcb_history_lock, RA_RLOCKED); 611 rw_runlock(&td->tcb_history_lock); 612 } 613 614 static void 615 request_tcb(void *arg) 616 { 617 struct tcb_histent *te = arg; 618 619 mtx_assert(&te->te_lock, MA_OWNED); 620 621 /* Noone else is supposed to update the histent. */ 622 MPASS(!(te->te_flags & TE_RPL_PENDING)); 623 if (send_get_tcb(te->te_adapter, te->te_tid) == 0) 624 te->te_flags |= TE_RPL_PENDING; 625 else 626 callout_schedule(&te->te_callout, hz / 100); 627 } 628 629 static void 630 update_tcb_histent(struct tcb_histent *te, const uint64_t *tcb) 631 { 632 struct tom_data *td = te->te_adapter->tom_softc; 633 uint64_t tflags = get_tcb_tflags(tcb); 634 uint8_t sample = 0; 635 636 if (GET_TCB_FIELD(tcb, SND_MAX_RAW) != GET_TCB_FIELD(tcb, SND_UNA_RAW)) { 637 if (GET_TCB_FIELD(tcb, T_RXTSHIFT) != 0) 638 sample |= TS_RTO; 639 if (GET_TCB_FIELD(tcb, T_DUPACKS) != 0) 640 sample |= TS_DUPACKS; 641 if (GET_TCB_FIELD(tcb, T_DUPACKS) >= td->dupack_threshold) 642 sample |= TS_FASTREXMT; 643 } 644 645 if (GET_TCB_FIELD(tcb, SND_MAX_RAW) != 0) { 646 uint32_t snd_wnd; 647 648 sample |= TS_SND_BACKLOGGED; /* for whatever reason. */ 649 650 snd_wnd = GET_TCB_FIELD(tcb, RCV_ADV); 651 if (tflags & V_TF_RECV_SCALE(1)) 652 snd_wnd <<= GET_TCB_FIELD(tcb, RCV_SCALE); 653 if (GET_TCB_FIELD(tcb, SND_CWND) < snd_wnd) 654 sample |= TS_CWND_LIMITED; /* maybe due to CWND */ 655 } 656 657 if (tflags & V_TF_CCTRL_ECN(1)) { 658 659 /* 660 * CE marker on incoming IP hdr, echoing ECE back in the TCP 661 * hdr. Indicates congestion somewhere on the way from the peer 662 * to this node. 663 */ 664 if (tflags & V_TF_CCTRL_ECE(1)) 665 sample |= TS_ECN_ECE; 666 667 /* 668 * ECE seen and CWR sent (or about to be sent). Might indicate 669 * congestion on the way to the peer. This node is reducing its 670 * congestion window in response. 671 */ 672 if (tflags & (V_TF_CCTRL_CWR(1) | V_TF_CCTRL_RFR(1))) 673 sample |= TS_ECN_CWR; 674 } 675 676 te->te_sample[te->te_pidx] = sample; 677 if (++te->te_pidx == nitems(te->te_sample)) 678 te->te_pidx = 0; 679 memcpy(te->te_tcb, tcb, TCB_SIZE); 680 te->te_flags |= TE_ACTIVE; 681 } 682 683 static int 684 do_get_tcb_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 685 { 686 struct adapter *sc = iq->adapter; 687 const struct cpl_get_tcb_rpl *cpl = mtod(m, const void *); 688 const uint64_t *tcb = (const uint64_t *)(const void *)(cpl + 1); 689 struct tcb_histent *te; 690 const u_int tid = GET_TID(cpl); 691 bool remove; 692 693 remove = GET_TCB_FIELD(tcb, T_STATE) == TCPS_CLOSED; 694 te = lookup_tcb_histent(sc, tid, remove); 695 if (te == NULL) { 696 /* Not in the history. Who issued the GET_TCB for this? */ 697 device_printf(sc->dev, "tcb %u: flags 0x%016jx, state %u, " 698 "srtt %u, sscale %u, rscale %u, cookie 0x%x\n", tid, 699 (uintmax_t)get_tcb_tflags(tcb), GET_TCB_FIELD(tcb, T_STATE), 700 GET_TCB_FIELD(tcb, T_SRTT), GET_TCB_FIELD(tcb, SND_SCALE), 701 GET_TCB_FIELD(tcb, RCV_SCALE), cpl->cookie); 702 goto done; 703 } 704 705 MPASS(te->te_flags & TE_RPL_PENDING); 706 te->te_flags &= ~TE_RPL_PENDING; 707 if (remove) { 708 remove_tcb_histent(te); 709 } else { 710 update_tcb_histent(te, tcb); 711 callout_reset(&te->te_callout, hz / 10, request_tcb, te); 712 release_tcb_histent(te); 713 } 714 done: 715 m_freem(m); 716 return (0); 717 } 718 719 static void 720 fill_tcp_info_from_tcb(struct adapter *sc, uint64_t *tcb, struct tcp_info *ti) 721 { 722 uint32_t v; 723 724 ti->tcpi_state = GET_TCB_FIELD(tcb, T_STATE); 725 726 v = GET_TCB_FIELD(tcb, T_SRTT); 727 ti->tcpi_rtt = tcp_ticks_to_us(sc, v); 728 729 v = GET_TCB_FIELD(tcb, T_RTTVAR); 730 ti->tcpi_rttvar = tcp_ticks_to_us(sc, v); 731 732 ti->tcpi_snd_ssthresh = GET_TCB_FIELD(tcb, SND_SSTHRESH); 733 ti->tcpi_snd_cwnd = GET_TCB_FIELD(tcb, SND_CWND); 734 ti->tcpi_rcv_nxt = GET_TCB_FIELD(tcb, RCV_NXT); 735 736 v = GET_TCB_FIELD(tcb, TX_MAX); 737 ti->tcpi_snd_nxt = v - GET_TCB_FIELD(tcb, SND_NXT_RAW); 738 739 /* Receive window being advertised by us. */ 740 ti->tcpi_rcv_wscale = GET_TCB_FIELD(tcb, SND_SCALE); /* Yes, SND. */ 741 ti->tcpi_rcv_space = GET_TCB_FIELD(tcb, RCV_WND); 742 743 /* Send window */ 744 ti->tcpi_snd_wscale = GET_TCB_FIELD(tcb, RCV_SCALE); /* Yes, RCV. */ 745 ti->tcpi_snd_wnd = GET_TCB_FIELD(tcb, RCV_ADV); 746 if (get_tcb_tflags(tcb) & V_TF_RECV_SCALE(1)) 747 ti->tcpi_snd_wnd <<= ti->tcpi_snd_wscale; 748 else 749 ti->tcpi_snd_wscale = 0; 750 751 } 752 753 static void 754 fill_tcp_info_from_history(struct adapter *sc, struct tcb_histent *te, 755 struct tcp_info *ti) 756 { 757 758 fill_tcp_info_from_tcb(sc, te->te_tcb, ti); 759 } 760 761 /* 762 * Reads the TCB for the given tid using a memory window and copies it to 'buf' 763 * in the same format as CPL_GET_TCB_RPL. 764 */ 765 static void 766 read_tcb_using_memwin(struct adapter *sc, u_int tid, uint64_t *buf) 767 { 768 int i, j, k, rc; 769 uint32_t addr; 770 u_char *tcb, tmp; 771 772 MPASS(tid < sc->tids.ntids); 773 774 addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE) + tid * TCB_SIZE; 775 rc = read_via_memwin(sc, 2, addr, (uint32_t *)buf, TCB_SIZE); 776 if (rc != 0) 777 return; 778 779 tcb = (u_char *)buf; 780 for (i = 0, j = TCB_SIZE - 16; i < j; i += 16, j -= 16) { 781 for (k = 0; k < 16; k++) { 782 tmp = tcb[i + k]; 783 tcb[i + k] = tcb[j + k]; 784 tcb[j + k] = tmp; 785 } 786 } 787 } 788 789 static void 790 fill_tcp_info(struct adapter *sc, u_int tid, struct tcp_info *ti) 791 { 792 uint64_t tcb[TCB_SIZE / sizeof(uint64_t)]; 793 struct tcb_histent *te; 794 795 ti->tcpi_toe_tid = tid; 796 te = lookup_tcb_histent(sc, tid, false); 797 if (te != NULL) { 798 fill_tcp_info_from_history(sc, te, ti); 799 release_tcb_histent(te); 800 } else { 801 if (!(sc->debug_flags & DF_DISABLE_TCB_CACHE)) { 802 /* XXX: tell firmware to flush TCB cache. */ 803 } 804 read_tcb_using_memwin(sc, tid, tcb); 805 fill_tcp_info_from_tcb(sc, tcb, ti); 806 } 807 } 808 809 /* 810 * Called by the kernel to allow the TOE driver to "refine" values filled up in 811 * the tcp_info for an offloaded connection. 812 */ 813 static void 814 t4_tcp_info(struct toedev *tod, struct tcpcb *tp, struct tcp_info *ti) 815 { 816 struct adapter *sc = tod->tod_softc; 817 struct toepcb *toep = tp->t_toe; 818 819 INP_WLOCK_ASSERT(tp->t_inpcb); 820 MPASS(ti != NULL); 821 822 fill_tcp_info(sc, toep->tid, ti); 823 } 824 825 #ifdef KERN_TLS 826 static int 827 t4_alloc_tls_session(struct toedev *tod, struct tcpcb *tp, 828 struct ktls_session *tls, int direction) 829 { 830 struct toepcb *toep = tp->t_toe; 831 832 INP_WLOCK_ASSERT(tp->t_inpcb); 833 MPASS(tls != NULL); 834 835 return (tls_alloc_ktls(toep, tls, direction)); 836 } 837 #endif 838 839 /* SET_TCB_FIELD sent as a ULP command looks like this */ 840 #define LEN__SET_TCB_FIELD_ULP (sizeof(struct ulp_txpkt) + \ 841 sizeof(struct ulptx_idata) + sizeof(struct cpl_set_tcb_field_core)) 842 843 static void * 844 mk_set_tcb_field_ulp(struct ulp_txpkt *ulpmc, uint64_t word, uint64_t mask, 845 uint64_t val, uint32_t tid) 846 { 847 struct ulptx_idata *ulpsc; 848 struct cpl_set_tcb_field_core *req; 849 850 ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0)); 851 ulpmc->len = htobe32(howmany(LEN__SET_TCB_FIELD_ULP, 16)); 852 853 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 854 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 855 ulpsc->len = htobe32(sizeof(*req)); 856 857 req = (struct cpl_set_tcb_field_core *)(ulpsc + 1); 858 OPCODE_TID(req) = htobe32(MK_OPCODE_TID(CPL_SET_TCB_FIELD, tid)); 859 req->reply_ctrl = htobe16(V_NO_REPLY(1)); 860 req->word_cookie = htobe16(V_WORD(word) | V_COOKIE(0)); 861 req->mask = htobe64(mask); 862 req->val = htobe64(val); 863 864 ulpsc = (struct ulptx_idata *)(req + 1); 865 if (LEN__SET_TCB_FIELD_ULP % 16) { 866 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP)); 867 ulpsc->len = htobe32(0); 868 return (ulpsc + 1); 869 } 870 return (ulpsc); 871 } 872 873 static void 874 send_mss_flowc_wr(struct adapter *sc, struct toepcb *toep) 875 { 876 struct wrq_cookie cookie; 877 struct fw_flowc_wr *flowc; 878 struct ofld_tx_sdesc *txsd; 879 const int flowclen = sizeof(*flowc) + sizeof(struct fw_flowc_mnemval); 880 const int flowclen16 = howmany(flowclen, 16); 881 882 if (toep->tx_credits < flowclen16 || toep->txsd_avail == 0) { 883 CH_ERR(sc, "%s: tid %u out of tx credits (%d, %d).\n", __func__, 884 toep->tid, toep->tx_credits, toep->txsd_avail); 885 return; 886 } 887 888 flowc = start_wrq_wr(&toep->ofld_txq->wrq, flowclen16, &cookie); 889 if (__predict_false(flowc == NULL)) { 890 CH_ERR(sc, "ENOMEM in %s for tid %u.\n", __func__, toep->tid); 891 return; 892 } 893 flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) | 894 V_FW_FLOWC_WR_NPARAMS(1)); 895 flowc->flowid_len16 = htonl(V_FW_WR_LEN16(flowclen16) | 896 V_FW_WR_FLOWID(toep->tid)); 897 flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_MSS; 898 flowc->mnemval[0].val = htobe32(toep->params.emss); 899 900 txsd = &toep->txsd[toep->txsd_pidx]; 901 txsd->tx_credits = flowclen16; 902 txsd->plen = 0; 903 toep->tx_credits -= txsd->tx_credits; 904 if (__predict_false(++toep->txsd_pidx == toep->txsd_total)) 905 toep->txsd_pidx = 0; 906 toep->txsd_avail--; 907 commit_wrq_wr(&toep->ofld_txq->wrq, flowc, &cookie); 908 } 909 910 static void 911 t4_pmtu_update(struct toedev *tod, struct tcpcb *tp, tcp_seq seq, int mtu) 912 { 913 struct work_request_hdr *wrh; 914 struct ulp_txpkt *ulpmc; 915 int idx, len; 916 struct wrq_cookie cookie; 917 struct inpcb *inp = tp->t_inpcb; 918 struct toepcb *toep = tp->t_toe; 919 struct adapter *sc = td_adapter(toep->td); 920 unsigned short *mtus = &sc->params.mtus[0]; 921 922 INP_WLOCK_ASSERT(inp); 923 MPASS(mtu > 0); /* kernel is supposed to provide something usable. */ 924 925 /* tp->snd_una and snd_max are in host byte order too. */ 926 seq = be32toh(seq); 927 928 CTR6(KTR_CXGBE, "%s: tid %d, seq 0x%08x, mtu %u, mtu_idx %u (%d)", 929 __func__, toep->tid, seq, mtu, toep->params.mtu_idx, 930 mtus[toep->params.mtu_idx]); 931 932 if (ulp_mode(toep) == ULP_MODE_NONE && /* XXX: Read TCB otherwise? */ 933 (SEQ_LT(seq, tp->snd_una) || SEQ_GEQ(seq, tp->snd_max))) { 934 CTR5(KTR_CXGBE, 935 "%s: tid %d, seq 0x%08x not in range [0x%08x, 0x%08x).", 936 __func__, toep->tid, seq, tp->snd_una, tp->snd_max); 937 return; 938 } 939 940 /* Find the best mtu_idx for the suggested MTU. */ 941 for (idx = 0; idx < NMTUS - 1 && mtus[idx + 1] <= mtu; idx++) 942 continue; 943 if (idx >= toep->params.mtu_idx) 944 return; /* Never increase the PMTU (just like the kernel). */ 945 946 /* 947 * We'll send a compound work request with 2 SET_TCB_FIELDs -- the first 948 * one updates the mtu_idx and the second one triggers a retransmit. 949 */ 950 len = sizeof(*wrh) + 2 * roundup2(LEN__SET_TCB_FIELD_ULP, 16); 951 wrh = start_wrq_wr(toep->ctrlq, howmany(len, 16), &cookie); 952 if (wrh == NULL) { 953 CH_ERR(sc, "failed to change mtu_idx of tid %d (%u -> %u).\n", 954 toep->tid, toep->params.mtu_idx, idx); 955 return; 956 } 957 INIT_ULPTX_WRH(wrh, len, 1, 0); /* atomic */ 958 ulpmc = (struct ulp_txpkt *)(wrh + 1); 959 ulpmc = mk_set_tcb_field_ulp(ulpmc, W_TCB_T_MAXSEG, 960 V_TCB_T_MAXSEG(M_TCB_T_MAXSEG), V_TCB_T_MAXSEG(idx), toep->tid); 961 ulpmc = mk_set_tcb_field_ulp(ulpmc, W_TCB_TIMESTAMP, 962 V_TCB_TIMESTAMP(0x7FFFFULL << 11), 0, toep->tid); 963 commit_wrq_wr(toep->ctrlq, wrh, &cookie); 964 965 /* Update the software toepcb and tcpcb. */ 966 toep->params.mtu_idx = idx; 967 tp->t_maxseg = mtus[toep->params.mtu_idx]; 968 if (inp->inp_inc.inc_flags & INC_ISIPV6) 969 tp->t_maxseg -= sizeof(struct ip6_hdr) + sizeof(struct tcphdr); 970 else 971 tp->t_maxseg -= sizeof(struct ip) + sizeof(struct tcphdr); 972 toep->params.emss = tp->t_maxseg; 973 if (tp->t_flags & TF_RCVD_TSTMP) 974 toep->params.emss -= TCPOLEN_TSTAMP_APPA; 975 976 /* Update the firmware flowc. */ 977 send_mss_flowc_wr(sc, toep); 978 979 /* Update the MTU in the kernel's hostcache. */ 980 if (sc->tt.update_hc_on_pmtu_change != 0) { 981 struct in_conninfo inc = {0}; 982 983 inc.inc_fibnum = inp->inp_inc.inc_fibnum; 984 if (inp->inp_inc.inc_flags & INC_ISIPV6) { 985 inc.inc_flags |= INC_ISIPV6; 986 inc.inc6_faddr = inp->inp_inc.inc6_faddr; 987 } else { 988 inc.inc_faddr = inp->inp_inc.inc_faddr; 989 } 990 tcp_hc_updatemtu(&inc, mtu); 991 } 992 993 CTR6(KTR_CXGBE, "%s: tid %d, mtu_idx %u (%u), t_maxseg %u, emss %u", 994 __func__, toep->tid, toep->params.mtu_idx, 995 mtus[toep->params.mtu_idx], tp->t_maxseg, toep->params.emss); 996 } 997 998 /* 999 * The TOE driver will not receive any more CPLs for the tid associated with the 1000 * toepcb; release the hold on the inpcb. 1001 */ 1002 void 1003 final_cpl_received(struct toepcb *toep) 1004 { 1005 struct inpcb *inp = toep->inp; 1006 bool need_wakeup; 1007 1008 KASSERT(inp != NULL, ("%s: inp is NULL", __func__)); 1009 INP_WLOCK_ASSERT(inp); 1010 KASSERT(toep->flags & TPF_CPL_PENDING, 1011 ("%s: CPL not pending already?", __func__)); 1012 1013 CTR6(KTR_CXGBE, "%s: tid %d, toep %p (0x%x), inp %p (0x%x)", 1014 __func__, toep->tid, toep, toep->flags, inp, inp->inp_flags); 1015 1016 if (ulp_mode(toep) == ULP_MODE_TCPDDP) 1017 release_ddp_resources(toep); 1018 else if (ulp_mode(toep) == ULP_MODE_TLS) 1019 tls_detach(toep); 1020 toep->inp = NULL; 1021 need_wakeup = (toep->flags & TPF_WAITING_FOR_FINAL) != 0; 1022 toep->flags &= ~(TPF_CPL_PENDING | TPF_WAITING_FOR_FINAL); 1023 mbufq_drain(&toep->ulp_pduq); 1024 mbufq_drain(&toep->ulp_pdu_reclaimq); 1025 1026 if (!(toep->flags & TPF_ATTACHED)) 1027 release_offload_resources(toep); 1028 1029 if (!in_pcbrele_wlocked(inp)) 1030 INP_WUNLOCK(inp); 1031 1032 if (need_wakeup) { 1033 struct mtx *lock = mtx_pool_find(mtxpool_sleep, toep); 1034 1035 mtx_lock(lock); 1036 wakeup(toep); 1037 mtx_unlock(lock); 1038 } 1039 } 1040 1041 void 1042 insert_tid(struct adapter *sc, int tid, void *ctx, int ntids) 1043 { 1044 struct tid_info *t = &sc->tids; 1045 1046 MPASS(tid >= t->tid_base); 1047 MPASS(tid - t->tid_base < t->ntids); 1048 1049 t->tid_tab[tid - t->tid_base] = ctx; 1050 atomic_add_int(&t->tids_in_use, ntids); 1051 } 1052 1053 void * 1054 lookup_tid(struct adapter *sc, int tid) 1055 { 1056 struct tid_info *t = &sc->tids; 1057 1058 return (t->tid_tab[tid - t->tid_base]); 1059 } 1060 1061 void 1062 update_tid(struct adapter *sc, int tid, void *ctx) 1063 { 1064 struct tid_info *t = &sc->tids; 1065 1066 t->tid_tab[tid - t->tid_base] = ctx; 1067 } 1068 1069 void 1070 remove_tid(struct adapter *sc, int tid, int ntids) 1071 { 1072 struct tid_info *t = &sc->tids; 1073 1074 t->tid_tab[tid - t->tid_base] = NULL; 1075 atomic_subtract_int(&t->tids_in_use, ntids); 1076 } 1077 1078 /* 1079 * What mtu_idx to use, given a 4-tuple. Note that both s->mss and tcp_mssopt 1080 * have the MSS that we should advertise in our SYN. Advertised MSS doesn't 1081 * account for any TCP options so the effective MSS (only payload, no headers or 1082 * options) could be different. 1083 */ 1084 static int 1085 find_best_mtu_idx(struct adapter *sc, struct in_conninfo *inc, 1086 struct offload_settings *s) 1087 { 1088 unsigned short *mtus = &sc->params.mtus[0]; 1089 int i, mss, mtu; 1090 1091 MPASS(inc != NULL); 1092 1093 mss = s->mss > 0 ? s->mss : tcp_mssopt(inc); 1094 if (inc->inc_flags & INC_ISIPV6) 1095 mtu = mss + sizeof(struct ip6_hdr) + sizeof(struct tcphdr); 1096 else 1097 mtu = mss + sizeof(struct ip) + sizeof(struct tcphdr); 1098 1099 for (i = 0; i < NMTUS - 1 && mtus[i + 1] <= mtu; i++) 1100 continue; 1101 1102 return (i); 1103 } 1104 1105 /* 1106 * Determine the receive window size for a socket. 1107 */ 1108 u_long 1109 select_rcv_wnd(struct socket *so) 1110 { 1111 unsigned long wnd; 1112 1113 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1114 1115 wnd = sbspace(&so->so_rcv); 1116 if (wnd < MIN_RCV_WND) 1117 wnd = MIN_RCV_WND; 1118 1119 return min(wnd, MAX_RCV_WND); 1120 } 1121 1122 int 1123 select_rcv_wscale(void) 1124 { 1125 int wscale = 0; 1126 unsigned long space = sb_max; 1127 1128 if (space > MAX_RCV_WND) 1129 space = MAX_RCV_WND; 1130 1131 while (wscale < TCP_MAX_WINSHIFT && (TCP_MAXWIN << wscale) < space) 1132 wscale++; 1133 1134 return (wscale); 1135 } 1136 1137 __be64 1138 calc_options0(struct vi_info *vi, struct conn_params *cp) 1139 { 1140 uint64_t opt0 = 0; 1141 1142 opt0 |= F_TCAM_BYPASS; 1143 1144 MPASS(cp->wscale >= 0 && cp->wscale <= M_WND_SCALE); 1145 opt0 |= V_WND_SCALE(cp->wscale); 1146 1147 MPASS(cp->mtu_idx >= 0 && cp->mtu_idx < NMTUS); 1148 opt0 |= V_MSS_IDX(cp->mtu_idx); 1149 1150 MPASS(cp->ulp_mode >= 0 && cp->ulp_mode <= M_ULP_MODE); 1151 opt0 |= V_ULP_MODE(cp->ulp_mode); 1152 1153 MPASS(cp->opt0_bufsize >= 0 && cp->opt0_bufsize <= M_RCV_BUFSIZ); 1154 opt0 |= V_RCV_BUFSIZ(cp->opt0_bufsize); 1155 1156 MPASS(cp->l2t_idx >= 0 && cp->l2t_idx < vi->adapter->vres.l2t.size); 1157 opt0 |= V_L2T_IDX(cp->l2t_idx); 1158 1159 opt0 |= V_SMAC_SEL(vi->smt_idx); 1160 opt0 |= V_TX_CHAN(vi->pi->tx_chan); 1161 1162 MPASS(cp->keepalive == 0 || cp->keepalive == 1); 1163 opt0 |= V_KEEP_ALIVE(cp->keepalive); 1164 1165 MPASS(cp->nagle == 0 || cp->nagle == 1); 1166 opt0 |= V_NAGLE(cp->nagle); 1167 1168 return (htobe64(opt0)); 1169 } 1170 1171 __be32 1172 calc_options2(struct vi_info *vi, struct conn_params *cp) 1173 { 1174 uint32_t opt2 = 0; 1175 struct port_info *pi = vi->pi; 1176 struct adapter *sc = pi->adapter; 1177 1178 /* 1179 * rx flow control, rx coalesce, congestion control, and tx pace are all 1180 * explicitly set by the driver. On T5+ the ISS is also set by the 1181 * driver to the value picked by the kernel. 1182 */ 1183 if (is_t4(sc)) { 1184 opt2 |= F_RX_FC_VALID | F_RX_COALESCE_VALID; 1185 opt2 |= F_CONG_CNTRL_VALID | F_PACE_VALID; 1186 } else { 1187 opt2 |= F_T5_OPT_2_VALID; /* all 4 valid */ 1188 opt2 |= F_T5_ISS; /* ISS provided in CPL */ 1189 } 1190 1191 MPASS(cp->sack == 0 || cp->sack == 1); 1192 opt2 |= V_SACK_EN(cp->sack); 1193 1194 MPASS(cp->tstamp == 0 || cp->tstamp == 1); 1195 opt2 |= V_TSTAMPS_EN(cp->tstamp); 1196 1197 if (cp->wscale > 0) 1198 opt2 |= F_WND_SCALE_EN; 1199 1200 MPASS(cp->ecn == 0 || cp->ecn == 1); 1201 opt2 |= V_CCTRL_ECN(cp->ecn); 1202 1203 /* XXX: F_RX_CHANNEL for multiple rx c-chan support goes here. */ 1204 1205 opt2 |= V_TX_QUEUE(sc->params.tp.tx_modq[pi->tx_chan]); 1206 opt2 |= V_PACE(0); 1207 opt2 |= F_RSS_QUEUE_VALID; 1208 opt2 |= V_RSS_QUEUE(sc->sge.ofld_rxq[cp->rxq_idx].iq.abs_id); 1209 1210 MPASS(cp->cong_algo >= 0 && cp->cong_algo <= M_CONG_CNTRL); 1211 opt2 |= V_CONG_CNTRL(cp->cong_algo); 1212 1213 MPASS(cp->rx_coalesce == 0 || cp->rx_coalesce == 1); 1214 if (cp->rx_coalesce == 1) 1215 opt2 |= V_RX_COALESCE(M_RX_COALESCE); 1216 1217 opt2 |= V_RX_FC_DDP(0) | V_RX_FC_DISABLE(0); 1218 #ifdef USE_DDP_RX_FLOW_CONTROL 1219 if (cp->ulp_mode == ULP_MODE_TCPDDP) 1220 opt2 |= F_RX_FC_DDP; 1221 #endif 1222 1223 return (htobe32(opt2)); 1224 } 1225 1226 uint64_t 1227 select_ntuple(struct vi_info *vi, struct l2t_entry *e) 1228 { 1229 struct adapter *sc = vi->adapter; 1230 struct tp_params *tp = &sc->params.tp; 1231 uint64_t ntuple = 0; 1232 1233 /* 1234 * Initialize each of the fields which we care about which are present 1235 * in the Compressed Filter Tuple. 1236 */ 1237 if (tp->vlan_shift >= 0 && EVL_VLANOFTAG(e->vlan) != CPL_L2T_VLAN_NONE) 1238 ntuple |= (uint64_t)(F_FT_VLAN_VLD | e->vlan) << tp->vlan_shift; 1239 1240 if (tp->port_shift >= 0) 1241 ntuple |= (uint64_t)e->lport << tp->port_shift; 1242 1243 if (tp->protocol_shift >= 0) 1244 ntuple |= (uint64_t)IPPROTO_TCP << tp->protocol_shift; 1245 1246 if (tp->vnic_shift >= 0 && tp->vnic_mode == FW_VNIC_MODE_PF_VF) { 1247 ntuple |= (uint64_t)(V_FT_VNID_ID_VF(vi->vin) | 1248 V_FT_VNID_ID_PF(sc->pf) | V_FT_VNID_ID_VLD(vi->vfvld)) << 1249 tp->vnic_shift; 1250 } 1251 1252 if (is_t4(sc)) 1253 return (htobe32((uint32_t)ntuple)); 1254 else 1255 return (htobe64(V_FILTER_TUPLE(ntuple))); 1256 } 1257 1258 static int 1259 is_tls_sock(struct socket *so, struct adapter *sc) 1260 { 1261 struct inpcb *inp = sotoinpcb(so); 1262 int i, rc; 1263 1264 /* XXX: Eventually add a SO_WANT_TLS socket option perhaps? */ 1265 rc = 0; 1266 ADAPTER_LOCK(sc); 1267 for (i = 0; i < sc->tt.num_tls_rx_ports; i++) { 1268 if (inp->inp_lport == htons(sc->tt.tls_rx_ports[i]) || 1269 inp->inp_fport == htons(sc->tt.tls_rx_ports[i])) { 1270 rc = 1; 1271 break; 1272 } 1273 } 1274 ADAPTER_UNLOCK(sc); 1275 return (rc); 1276 } 1277 1278 /* 1279 * Initialize various connection parameters. 1280 */ 1281 void 1282 init_conn_params(struct vi_info *vi , struct offload_settings *s, 1283 struct in_conninfo *inc, struct socket *so, 1284 const struct tcp_options *tcpopt, int16_t l2t_idx, struct conn_params *cp) 1285 { 1286 struct port_info *pi = vi->pi; 1287 struct adapter *sc = pi->adapter; 1288 struct tom_tunables *tt = &sc->tt; 1289 struct inpcb *inp = sotoinpcb(so); 1290 struct tcpcb *tp = intotcpcb(inp); 1291 u_long wnd; 1292 u_int q_idx; 1293 1294 MPASS(s->offload != 0); 1295 1296 /* Congestion control algorithm */ 1297 if (s->cong_algo >= 0) 1298 cp->cong_algo = s->cong_algo & M_CONG_CNTRL; 1299 else if (sc->tt.cong_algorithm >= 0) 1300 cp->cong_algo = tt->cong_algorithm & M_CONG_CNTRL; 1301 else { 1302 struct cc_algo *cc = CC_ALGO(tp); 1303 1304 if (strcasecmp(cc->name, "reno") == 0) 1305 cp->cong_algo = CONG_ALG_RENO; 1306 else if (strcasecmp(cc->name, "tahoe") == 0) 1307 cp->cong_algo = CONG_ALG_TAHOE; 1308 if (strcasecmp(cc->name, "newreno") == 0) 1309 cp->cong_algo = CONG_ALG_NEWRENO; 1310 if (strcasecmp(cc->name, "highspeed") == 0) 1311 cp->cong_algo = CONG_ALG_HIGHSPEED; 1312 else { 1313 /* 1314 * Use newreno in case the algorithm selected by the 1315 * host stack is not supported by the hardware. 1316 */ 1317 cp->cong_algo = CONG_ALG_NEWRENO; 1318 } 1319 } 1320 1321 /* Tx traffic scheduling class. */ 1322 if (s->sched_class >= 0 && s->sched_class < sc->params.nsched_cls) 1323 cp->tc_idx = s->sched_class; 1324 else 1325 cp->tc_idx = -1; 1326 1327 /* Nagle's algorithm. */ 1328 if (s->nagle >= 0) 1329 cp->nagle = s->nagle > 0 ? 1 : 0; 1330 else 1331 cp->nagle = tp->t_flags & TF_NODELAY ? 0 : 1; 1332 1333 /* TCP Keepalive. */ 1334 if (V_tcp_always_keepalive || so_options_get(so) & SO_KEEPALIVE) 1335 cp->keepalive = 1; 1336 else 1337 cp->keepalive = 0; 1338 1339 /* Optimization that's specific to T5 @ 40G. */ 1340 if (tt->tx_align >= 0) 1341 cp->tx_align = tt->tx_align > 0 ? 1 : 0; 1342 else if (chip_id(sc) == CHELSIO_T5 && 1343 (port_top_speed(pi) > 10 || sc->params.nports > 2)) 1344 cp->tx_align = 1; 1345 else 1346 cp->tx_align = 0; 1347 1348 /* ULP mode. */ 1349 if (can_tls_offload(sc) && 1350 (s->tls > 0 || (s->tls < 0 && is_tls_sock(so, sc)))) 1351 cp->ulp_mode = ULP_MODE_TLS; 1352 else if (s->ddp > 0 || 1353 (s->ddp < 0 && sc->tt.ddp && (so_options_get(so) & SO_NO_DDP) == 0)) 1354 cp->ulp_mode = ULP_MODE_TCPDDP; 1355 else 1356 cp->ulp_mode = ULP_MODE_NONE; 1357 1358 /* Rx coalescing. */ 1359 if (s->rx_coalesce >= 0) 1360 cp->rx_coalesce = s->rx_coalesce > 0 ? 1 : 0; 1361 else if (cp->ulp_mode == ULP_MODE_TLS) 1362 cp->rx_coalesce = 0; 1363 else if (tt->rx_coalesce >= 0) 1364 cp->rx_coalesce = tt->rx_coalesce > 0 ? 1 : 0; 1365 else 1366 cp->rx_coalesce = 1; /* default */ 1367 1368 /* 1369 * Index in the PMTU table. This controls the MSS that we announce in 1370 * our SYN initially, but after ESTABLISHED it controls the MSS that we 1371 * use to send data. 1372 */ 1373 cp->mtu_idx = find_best_mtu_idx(sc, inc, s); 1374 1375 /* Tx queue for this connection. */ 1376 if (s->txq == QUEUE_RANDOM) 1377 q_idx = arc4random(); 1378 else if (s->txq == QUEUE_ROUNDROBIN) 1379 q_idx = atomic_fetchadd_int(&vi->txq_rr, 1); 1380 else 1381 q_idx = s->txq; 1382 cp->txq_idx = vi->first_ofld_txq + q_idx % vi->nofldtxq; 1383 1384 /* Rx queue for this connection. */ 1385 if (s->rxq == QUEUE_RANDOM) 1386 q_idx = arc4random(); 1387 else if (s->rxq == QUEUE_ROUNDROBIN) 1388 q_idx = atomic_fetchadd_int(&vi->rxq_rr, 1); 1389 else 1390 q_idx = s->rxq; 1391 cp->rxq_idx = vi->first_ofld_rxq + q_idx % vi->nofldrxq; 1392 1393 if (SOLISTENING(so)) { 1394 /* Passive open */ 1395 MPASS(tcpopt != NULL); 1396 1397 /* TCP timestamp option */ 1398 if (tcpopt->tstamp && 1399 (s->tstamp > 0 || (s->tstamp < 0 && V_tcp_do_rfc1323))) 1400 cp->tstamp = 1; 1401 else 1402 cp->tstamp = 0; 1403 1404 /* SACK */ 1405 if (tcpopt->sack && 1406 (s->sack > 0 || (s->sack < 0 && V_tcp_do_sack))) 1407 cp->sack = 1; 1408 else 1409 cp->sack = 0; 1410 1411 /* Receive window scaling. */ 1412 if (tcpopt->wsf > 0 && tcpopt->wsf < 15 && V_tcp_do_rfc1323) 1413 cp->wscale = select_rcv_wscale(); 1414 else 1415 cp->wscale = 0; 1416 1417 /* ECN */ 1418 if (tcpopt->ecn && /* XXX: review. */ 1419 (s->ecn > 0 || (s->ecn < 0 && V_tcp_do_ecn))) 1420 cp->ecn = 1; 1421 else 1422 cp->ecn = 0; 1423 1424 wnd = max(so->sol_sbrcv_hiwat, MIN_RCV_WND); 1425 cp->opt0_bufsize = min(wnd >> 10, M_RCV_BUFSIZ); 1426 1427 if (tt->sndbuf > 0) 1428 cp->sndbuf = tt->sndbuf; 1429 else if (so->sol_sbsnd_flags & SB_AUTOSIZE && 1430 V_tcp_do_autosndbuf) 1431 cp->sndbuf = 256 * 1024; 1432 else 1433 cp->sndbuf = so->sol_sbsnd_hiwat; 1434 } else { 1435 /* Active open */ 1436 1437 /* TCP timestamp option */ 1438 if (s->tstamp > 0 || 1439 (s->tstamp < 0 && (tp->t_flags & TF_REQ_TSTMP))) 1440 cp->tstamp = 1; 1441 else 1442 cp->tstamp = 0; 1443 1444 /* SACK */ 1445 if (s->sack > 0 || 1446 (s->sack < 0 && (tp->t_flags & TF_SACK_PERMIT))) 1447 cp->sack = 1; 1448 else 1449 cp->sack = 0; 1450 1451 /* Receive window scaling */ 1452 if (tp->t_flags & TF_REQ_SCALE) 1453 cp->wscale = select_rcv_wscale(); 1454 else 1455 cp->wscale = 0; 1456 1457 /* ECN */ 1458 if (s->ecn > 0 || (s->ecn < 0 && V_tcp_do_ecn == 1)) 1459 cp->ecn = 1; 1460 else 1461 cp->ecn = 0; 1462 1463 SOCKBUF_LOCK(&so->so_rcv); 1464 wnd = max(select_rcv_wnd(so), MIN_RCV_WND); 1465 SOCKBUF_UNLOCK(&so->so_rcv); 1466 cp->opt0_bufsize = min(wnd >> 10, M_RCV_BUFSIZ); 1467 1468 if (tt->sndbuf > 0) 1469 cp->sndbuf = tt->sndbuf; 1470 else { 1471 SOCKBUF_LOCK(&so->so_snd); 1472 if (so->so_snd.sb_flags & SB_AUTOSIZE && 1473 V_tcp_do_autosndbuf) 1474 cp->sndbuf = 256 * 1024; 1475 else 1476 cp->sndbuf = so->so_snd.sb_hiwat; 1477 SOCKBUF_UNLOCK(&so->so_snd); 1478 } 1479 } 1480 1481 cp->l2t_idx = l2t_idx; 1482 1483 /* This will be initialized on ESTABLISHED. */ 1484 cp->emss = 0; 1485 } 1486 1487 int 1488 negative_advice(int status) 1489 { 1490 1491 return (status == CPL_ERR_RTX_NEG_ADVICE || 1492 status == CPL_ERR_PERSIST_NEG_ADVICE || 1493 status == CPL_ERR_KEEPALV_NEG_ADVICE); 1494 } 1495 1496 static int 1497 alloc_tid_tab(struct tid_info *t, int flags) 1498 { 1499 1500 MPASS(t->ntids > 0); 1501 MPASS(t->tid_tab == NULL); 1502 1503 t->tid_tab = malloc(t->ntids * sizeof(*t->tid_tab), M_CXGBE, 1504 M_ZERO | flags); 1505 if (t->tid_tab == NULL) 1506 return (ENOMEM); 1507 atomic_store_rel_int(&t->tids_in_use, 0); 1508 1509 return (0); 1510 } 1511 1512 static void 1513 free_tid_tab(struct tid_info *t) 1514 { 1515 1516 KASSERT(t->tids_in_use == 0, 1517 ("%s: %d tids still in use.", __func__, t->tids_in_use)); 1518 1519 free(t->tid_tab, M_CXGBE); 1520 t->tid_tab = NULL; 1521 } 1522 1523 static int 1524 alloc_stid_tab(struct tid_info *t, int flags) 1525 { 1526 1527 MPASS(t->nstids > 0); 1528 MPASS(t->stid_tab == NULL); 1529 1530 t->stid_tab = malloc(t->nstids * sizeof(*t->stid_tab), M_CXGBE, 1531 M_ZERO | flags); 1532 if (t->stid_tab == NULL) 1533 return (ENOMEM); 1534 mtx_init(&t->stid_lock, "stid lock", NULL, MTX_DEF); 1535 t->stids_in_use = 0; 1536 TAILQ_INIT(&t->stids); 1537 t->nstids_free_head = t->nstids; 1538 1539 return (0); 1540 } 1541 1542 static void 1543 free_stid_tab(struct tid_info *t) 1544 { 1545 1546 KASSERT(t->stids_in_use == 0, 1547 ("%s: %d tids still in use.", __func__, t->stids_in_use)); 1548 1549 if (mtx_initialized(&t->stid_lock)) 1550 mtx_destroy(&t->stid_lock); 1551 free(t->stid_tab, M_CXGBE); 1552 t->stid_tab = NULL; 1553 } 1554 1555 static void 1556 free_tid_tabs(struct tid_info *t) 1557 { 1558 1559 free_tid_tab(t); 1560 free_stid_tab(t); 1561 } 1562 1563 static int 1564 alloc_tid_tabs(struct tid_info *t) 1565 { 1566 int rc; 1567 1568 rc = alloc_tid_tab(t, M_NOWAIT); 1569 if (rc != 0) 1570 goto failed; 1571 1572 rc = alloc_stid_tab(t, M_NOWAIT); 1573 if (rc != 0) 1574 goto failed; 1575 1576 return (0); 1577 failed: 1578 free_tid_tabs(t); 1579 return (rc); 1580 } 1581 1582 static inline void 1583 alloc_tcb_history(struct adapter *sc, struct tom_data *td) 1584 { 1585 1586 if (sc->tids.ntids == 0 || sc->tids.ntids > 1024) 1587 return; 1588 rw_init(&td->tcb_history_lock, "TCB history"); 1589 td->tcb_history = malloc(sc->tids.ntids * sizeof(*td->tcb_history), 1590 M_CXGBE, M_ZERO | M_NOWAIT); 1591 td->dupack_threshold = G_DUPACKTHRESH(t4_read_reg(sc, A_TP_PARA_REG0)); 1592 } 1593 1594 static inline void 1595 free_tcb_history(struct adapter *sc, struct tom_data *td) 1596 { 1597 #ifdef INVARIANTS 1598 int i; 1599 1600 if (td->tcb_history != NULL) { 1601 for (i = 0; i < sc->tids.ntids; i++) { 1602 MPASS(td->tcb_history[i] == NULL); 1603 } 1604 } 1605 #endif 1606 free(td->tcb_history, M_CXGBE); 1607 if (rw_initialized(&td->tcb_history_lock)) 1608 rw_destroy(&td->tcb_history_lock); 1609 } 1610 1611 static void 1612 free_tom_data(struct adapter *sc, struct tom_data *td) 1613 { 1614 1615 ASSERT_SYNCHRONIZED_OP(sc); 1616 1617 KASSERT(TAILQ_EMPTY(&td->toep_list), 1618 ("%s: TOE PCB list is not empty.", __func__)); 1619 KASSERT(td->lctx_count == 0, 1620 ("%s: lctx hash table is not empty.", __func__)); 1621 1622 t4_free_ppod_region(&td->pr); 1623 1624 if (td->listen_mask != 0) 1625 hashdestroy(td->listen_hash, M_CXGBE, td->listen_mask); 1626 1627 if (mtx_initialized(&td->unsent_wr_lock)) 1628 mtx_destroy(&td->unsent_wr_lock); 1629 if (mtx_initialized(&td->lctx_hash_lock)) 1630 mtx_destroy(&td->lctx_hash_lock); 1631 if (mtx_initialized(&td->toep_list_lock)) 1632 mtx_destroy(&td->toep_list_lock); 1633 1634 free_tcb_history(sc, td); 1635 free_tid_tabs(&sc->tids); 1636 free(td, M_CXGBE); 1637 } 1638 1639 static char * 1640 prepare_pkt(int open_type, uint16_t vtag, struct inpcb *inp, int *pktlen, 1641 int *buflen) 1642 { 1643 char *pkt; 1644 struct tcphdr *th; 1645 int ipv6, len; 1646 const int maxlen = 1647 max(sizeof(struct ether_header), sizeof(struct ether_vlan_header)) + 1648 max(sizeof(struct ip), sizeof(struct ip6_hdr)) + 1649 sizeof(struct tcphdr); 1650 1651 MPASS(open_type == OPEN_TYPE_ACTIVE || open_type == OPEN_TYPE_LISTEN); 1652 1653 pkt = malloc(maxlen, M_CXGBE, M_ZERO | M_NOWAIT); 1654 if (pkt == NULL) 1655 return (NULL); 1656 1657 ipv6 = inp->inp_vflag & INP_IPV6; 1658 len = 0; 1659 1660 if (EVL_VLANOFTAG(vtag) == 0xfff) { 1661 struct ether_header *eh = (void *)pkt; 1662 1663 if (ipv6) 1664 eh->ether_type = htons(ETHERTYPE_IPV6); 1665 else 1666 eh->ether_type = htons(ETHERTYPE_IP); 1667 1668 len += sizeof(*eh); 1669 } else { 1670 struct ether_vlan_header *evh = (void *)pkt; 1671 1672 evh->evl_encap_proto = htons(ETHERTYPE_VLAN); 1673 evh->evl_tag = htons(vtag); 1674 if (ipv6) 1675 evh->evl_proto = htons(ETHERTYPE_IPV6); 1676 else 1677 evh->evl_proto = htons(ETHERTYPE_IP); 1678 1679 len += sizeof(*evh); 1680 } 1681 1682 if (ipv6) { 1683 struct ip6_hdr *ip6 = (void *)&pkt[len]; 1684 1685 ip6->ip6_vfc = IPV6_VERSION; 1686 ip6->ip6_plen = htons(sizeof(struct tcphdr)); 1687 ip6->ip6_nxt = IPPROTO_TCP; 1688 if (open_type == OPEN_TYPE_ACTIVE) { 1689 ip6->ip6_src = inp->in6p_laddr; 1690 ip6->ip6_dst = inp->in6p_faddr; 1691 } else if (open_type == OPEN_TYPE_LISTEN) { 1692 ip6->ip6_src = inp->in6p_laddr; 1693 ip6->ip6_dst = ip6->ip6_src; 1694 } 1695 1696 len += sizeof(*ip6); 1697 } else { 1698 struct ip *ip = (void *)&pkt[len]; 1699 1700 ip->ip_v = IPVERSION; 1701 ip->ip_hl = sizeof(*ip) >> 2; 1702 ip->ip_tos = inp->inp_ip_tos; 1703 ip->ip_len = htons(sizeof(struct ip) + sizeof(struct tcphdr)); 1704 ip->ip_ttl = inp->inp_ip_ttl; 1705 ip->ip_p = IPPROTO_TCP; 1706 if (open_type == OPEN_TYPE_ACTIVE) { 1707 ip->ip_src = inp->inp_laddr; 1708 ip->ip_dst = inp->inp_faddr; 1709 } else if (open_type == OPEN_TYPE_LISTEN) { 1710 ip->ip_src = inp->inp_laddr; 1711 ip->ip_dst = ip->ip_src; 1712 } 1713 1714 len += sizeof(*ip); 1715 } 1716 1717 th = (void *)&pkt[len]; 1718 if (open_type == OPEN_TYPE_ACTIVE) { 1719 th->th_sport = inp->inp_lport; /* network byte order already */ 1720 th->th_dport = inp->inp_fport; /* ditto */ 1721 } else if (open_type == OPEN_TYPE_LISTEN) { 1722 th->th_sport = inp->inp_lport; /* network byte order already */ 1723 th->th_dport = th->th_sport; 1724 } 1725 len += sizeof(th); 1726 1727 *pktlen = *buflen = len; 1728 return (pkt); 1729 } 1730 1731 const struct offload_settings * 1732 lookup_offload_policy(struct adapter *sc, int open_type, struct mbuf *m, 1733 uint16_t vtag, struct inpcb *inp) 1734 { 1735 const struct t4_offload_policy *op; 1736 char *pkt; 1737 struct offload_rule *r; 1738 int i, matched, pktlen, buflen; 1739 static const struct offload_settings allow_offloading_settings = { 1740 .offload = 1, 1741 .rx_coalesce = -1, 1742 .cong_algo = -1, 1743 .sched_class = -1, 1744 .tstamp = -1, 1745 .sack = -1, 1746 .nagle = -1, 1747 .ecn = -1, 1748 .ddp = -1, 1749 .tls = -1, 1750 .txq = QUEUE_RANDOM, 1751 .rxq = QUEUE_RANDOM, 1752 .mss = -1, 1753 }; 1754 static const struct offload_settings disallow_offloading_settings = { 1755 .offload = 0, 1756 /* rest is irrelevant when offload is off. */ 1757 }; 1758 1759 rw_assert(&sc->policy_lock, RA_LOCKED); 1760 1761 /* 1762 * If there's no Connection Offloading Policy attached to the device 1763 * then we need to return a default static policy. If 1764 * "cop_managed_offloading" is true, then we need to disallow 1765 * offloading until a COP is attached to the device. Otherwise we 1766 * allow offloading ... 1767 */ 1768 op = sc->policy; 1769 if (op == NULL) { 1770 if (sc->tt.cop_managed_offloading) 1771 return (&disallow_offloading_settings); 1772 else 1773 return (&allow_offloading_settings); 1774 } 1775 1776 switch (open_type) { 1777 case OPEN_TYPE_ACTIVE: 1778 case OPEN_TYPE_LISTEN: 1779 pkt = prepare_pkt(open_type, vtag, inp, &pktlen, &buflen); 1780 break; 1781 case OPEN_TYPE_PASSIVE: 1782 MPASS(m != NULL); 1783 pkt = mtod(m, char *); 1784 MPASS(*pkt == CPL_PASS_ACCEPT_REQ); 1785 pkt += sizeof(struct cpl_pass_accept_req); 1786 pktlen = m->m_pkthdr.len - sizeof(struct cpl_pass_accept_req); 1787 buflen = m->m_len - sizeof(struct cpl_pass_accept_req); 1788 break; 1789 default: 1790 MPASS(0); 1791 return (&disallow_offloading_settings); 1792 } 1793 1794 if (pkt == NULL || pktlen == 0 || buflen == 0) 1795 return (&disallow_offloading_settings); 1796 1797 matched = 0; 1798 r = &op->rule[0]; 1799 for (i = 0; i < op->nrules; i++, r++) { 1800 if (r->open_type != open_type && 1801 r->open_type != OPEN_TYPE_DONTCARE) { 1802 continue; 1803 } 1804 matched = bpf_filter(r->bpf_prog.bf_insns, pkt, pktlen, buflen); 1805 if (matched) 1806 break; 1807 } 1808 1809 if (open_type == OPEN_TYPE_ACTIVE || open_type == OPEN_TYPE_LISTEN) 1810 free(pkt, M_CXGBE); 1811 1812 return (matched ? &r->settings : &disallow_offloading_settings); 1813 } 1814 1815 static void 1816 reclaim_wr_resources(void *arg, int count) 1817 { 1818 struct tom_data *td = arg; 1819 STAILQ_HEAD(, wrqe) twr_list = STAILQ_HEAD_INITIALIZER(twr_list); 1820 struct cpl_act_open_req *cpl; 1821 u_int opcode, atid, tid; 1822 struct wrqe *wr; 1823 struct adapter *sc = td_adapter(td); 1824 1825 mtx_lock(&td->unsent_wr_lock); 1826 STAILQ_SWAP(&td->unsent_wr_list, &twr_list, wrqe); 1827 mtx_unlock(&td->unsent_wr_lock); 1828 1829 while ((wr = STAILQ_FIRST(&twr_list)) != NULL) { 1830 STAILQ_REMOVE_HEAD(&twr_list, link); 1831 1832 cpl = wrtod(wr); 1833 opcode = GET_OPCODE(cpl); 1834 1835 switch (opcode) { 1836 case CPL_ACT_OPEN_REQ: 1837 case CPL_ACT_OPEN_REQ6: 1838 atid = G_TID_TID(be32toh(OPCODE_TID(cpl))); 1839 CTR2(KTR_CXGBE, "%s: atid %u ", __func__, atid); 1840 act_open_failure_cleanup(sc, atid, EHOSTUNREACH); 1841 free(wr, M_CXGBE); 1842 break; 1843 case CPL_PASS_ACCEPT_RPL: 1844 tid = GET_TID(cpl); 1845 CTR2(KTR_CXGBE, "%s: tid %u ", __func__, tid); 1846 synack_failure_cleanup(sc, tid); 1847 free(wr, M_CXGBE); 1848 break; 1849 default: 1850 log(LOG_ERR, "%s: leaked work request %p, wr_len %d, " 1851 "opcode %x\n", __func__, wr, wr->wr_len, opcode); 1852 /* WR not freed here; go look at it with a debugger. */ 1853 } 1854 } 1855 } 1856 1857 /* 1858 * Ground control to Major TOM 1859 * Commencing countdown, engines on 1860 */ 1861 static int 1862 t4_tom_activate(struct adapter *sc) 1863 { 1864 struct tom_data *td; 1865 struct toedev *tod; 1866 struct vi_info *vi; 1867 int i, rc, v; 1868 1869 ASSERT_SYNCHRONIZED_OP(sc); 1870 1871 /* per-adapter softc for TOM */ 1872 td = malloc(sizeof(*td), M_CXGBE, M_ZERO | M_NOWAIT); 1873 if (td == NULL) 1874 return (ENOMEM); 1875 1876 /* List of TOE PCBs and associated lock */ 1877 mtx_init(&td->toep_list_lock, "PCB list lock", NULL, MTX_DEF); 1878 TAILQ_INIT(&td->toep_list); 1879 1880 /* Listen context */ 1881 mtx_init(&td->lctx_hash_lock, "lctx hash lock", NULL, MTX_DEF); 1882 td->listen_hash = hashinit_flags(LISTEN_HASH_SIZE, M_CXGBE, 1883 &td->listen_mask, HASH_NOWAIT); 1884 1885 /* List of WRs for which L2 resolution failed */ 1886 mtx_init(&td->unsent_wr_lock, "Unsent WR list lock", NULL, MTX_DEF); 1887 STAILQ_INIT(&td->unsent_wr_list); 1888 TASK_INIT(&td->reclaim_wr_resources, 0, reclaim_wr_resources, td); 1889 1890 /* TID tables */ 1891 rc = alloc_tid_tabs(&sc->tids); 1892 if (rc != 0) 1893 goto done; 1894 1895 rc = t4_init_ppod_region(&td->pr, &sc->vres.ddp, 1896 t4_read_reg(sc, A_ULP_RX_TDDP_PSZ), "TDDP page pods"); 1897 if (rc != 0) 1898 goto done; 1899 t4_set_reg_field(sc, A_ULP_RX_TDDP_TAGMASK, 1900 V_TDDPTAGMASK(M_TDDPTAGMASK), td->pr.pr_tag_mask); 1901 1902 alloc_tcb_history(sc, td); 1903 1904 /* toedev ops */ 1905 tod = &td->tod; 1906 init_toedev(tod); 1907 tod->tod_softc = sc; 1908 tod->tod_connect = t4_connect; 1909 tod->tod_listen_start = t4_listen_start; 1910 tod->tod_listen_stop = t4_listen_stop; 1911 tod->tod_rcvd = t4_rcvd; 1912 tod->tod_output = t4_tod_output; 1913 tod->tod_send_rst = t4_send_rst; 1914 tod->tod_send_fin = t4_send_fin; 1915 tod->tod_pcb_detach = t4_pcb_detach; 1916 tod->tod_l2_update = t4_l2_update; 1917 tod->tod_syncache_added = t4_syncache_added; 1918 tod->tod_syncache_removed = t4_syncache_removed; 1919 tod->tod_syncache_respond = t4_syncache_respond; 1920 tod->tod_offload_socket = t4_offload_socket; 1921 tod->tod_ctloutput = t4_ctloutput; 1922 tod->tod_tcp_info = t4_tcp_info; 1923 #ifdef KERN_TLS 1924 tod->tod_alloc_tls_session = t4_alloc_tls_session; 1925 #endif 1926 tod->tod_pmtu_update = t4_pmtu_update; 1927 1928 for_each_port(sc, i) { 1929 for_each_vi(sc->port[i], v, vi) { 1930 TOEDEV(vi->ifp) = &td->tod; 1931 } 1932 } 1933 1934 sc->tom_softc = td; 1935 register_toedev(sc->tom_softc); 1936 1937 done: 1938 if (rc != 0) 1939 free_tom_data(sc, td); 1940 return (rc); 1941 } 1942 1943 static int 1944 t4_tom_deactivate(struct adapter *sc) 1945 { 1946 int rc = 0; 1947 struct tom_data *td = sc->tom_softc; 1948 1949 ASSERT_SYNCHRONIZED_OP(sc); 1950 1951 if (td == NULL) 1952 return (0); /* XXX. KASSERT? */ 1953 1954 if (sc->offload_map != 0) 1955 return (EBUSY); /* at least one port has IFCAP_TOE enabled */ 1956 1957 if (uld_active(sc, ULD_IWARP) || uld_active(sc, ULD_ISCSI)) 1958 return (EBUSY); /* both iWARP and iSCSI rely on the TOE. */ 1959 1960 mtx_lock(&td->toep_list_lock); 1961 if (!TAILQ_EMPTY(&td->toep_list)) 1962 rc = EBUSY; 1963 mtx_unlock(&td->toep_list_lock); 1964 1965 mtx_lock(&td->lctx_hash_lock); 1966 if (td->lctx_count > 0) 1967 rc = EBUSY; 1968 mtx_unlock(&td->lctx_hash_lock); 1969 1970 taskqueue_drain(taskqueue_thread, &td->reclaim_wr_resources); 1971 mtx_lock(&td->unsent_wr_lock); 1972 if (!STAILQ_EMPTY(&td->unsent_wr_list)) 1973 rc = EBUSY; 1974 mtx_unlock(&td->unsent_wr_lock); 1975 1976 if (rc == 0) { 1977 unregister_toedev(sc->tom_softc); 1978 free_tom_data(sc, td); 1979 sc->tom_softc = NULL; 1980 } 1981 1982 return (rc); 1983 } 1984 1985 static int 1986 t4_aio_queue_tom(struct socket *so, struct kaiocb *job) 1987 { 1988 struct tcpcb *tp = so_sototcpcb(so); 1989 struct toepcb *toep = tp->t_toe; 1990 int error; 1991 1992 /* 1993 * No lock is needed as TOE sockets never change between 1994 * active and passive. 1995 */ 1996 if (SOLISTENING(so)) 1997 return (EINVAL); 1998 1999 if (ulp_mode(toep) == ULP_MODE_TCPDDP) { 2000 error = t4_aio_queue_ddp(so, job); 2001 if (error != EOPNOTSUPP) 2002 return (error); 2003 } 2004 2005 return (t4_aio_queue_aiotx(so, job)); 2006 } 2007 2008 static int 2009 t4_tom_mod_load(void) 2010 { 2011 /* CPL handlers */ 2012 t4_register_cpl_handler(CPL_GET_TCB_RPL, do_get_tcb_rpl); 2013 t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, do_l2t_write_rpl2, 2014 CPL_COOKIE_TOM); 2015 t4_init_connect_cpl_handlers(); 2016 t4_init_listen_cpl_handlers(); 2017 t4_init_cpl_io_handlers(); 2018 2019 t4_ddp_mod_load(); 2020 t4_tls_mod_load(); 2021 2022 bcopy(&tcp_protosw, &toe_protosw, sizeof(toe_protosw)); 2023 toe_protosw.pr_aio_queue = t4_aio_queue_tom; 2024 2025 bcopy(&tcp6_protosw, &toe6_protosw, sizeof(toe6_protosw)); 2026 toe6_protosw.pr_aio_queue = t4_aio_queue_tom; 2027 2028 return (t4_register_uld(&tom_uld_info)); 2029 } 2030 2031 static void 2032 tom_uninit(struct adapter *sc, void *arg __unused) 2033 { 2034 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4tomun")) 2035 return; 2036 2037 /* Try to free resources (works only if no port has IFCAP_TOE) */ 2038 if (uld_active(sc, ULD_TOM)) 2039 t4_deactivate_uld(sc, ULD_TOM); 2040 2041 end_synchronized_op(sc, 0); 2042 } 2043 2044 static int 2045 t4_tom_mod_unload(void) 2046 { 2047 t4_iterate(tom_uninit, NULL); 2048 2049 if (t4_unregister_uld(&tom_uld_info) == EBUSY) 2050 return (EBUSY); 2051 2052 t4_tls_mod_unload(); 2053 t4_ddp_mod_unload(); 2054 2055 t4_uninit_connect_cpl_handlers(); 2056 t4_uninit_listen_cpl_handlers(); 2057 t4_uninit_cpl_io_handlers(); 2058 t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, NULL, CPL_COOKIE_TOM); 2059 t4_register_cpl_handler(CPL_GET_TCB_RPL, NULL); 2060 2061 return (0); 2062 } 2063 #endif /* TCP_OFFLOAD */ 2064 2065 static int 2066 t4_tom_modevent(module_t mod, int cmd, void *arg) 2067 { 2068 int rc = 0; 2069 2070 #ifdef TCP_OFFLOAD 2071 switch (cmd) { 2072 case MOD_LOAD: 2073 rc = t4_tom_mod_load(); 2074 break; 2075 2076 case MOD_UNLOAD: 2077 rc = t4_tom_mod_unload(); 2078 break; 2079 2080 default: 2081 rc = EINVAL; 2082 } 2083 #else 2084 printf("t4_tom: compiled without TCP_OFFLOAD support.\n"); 2085 rc = EOPNOTSUPP; 2086 #endif 2087 return (rc); 2088 } 2089 2090 static moduledata_t t4_tom_moddata= { 2091 "t4_tom", 2092 t4_tom_modevent, 2093 0 2094 }; 2095 2096 MODULE_VERSION(t4_tom, 1); 2097 MODULE_DEPEND(t4_tom, toecore, 1, 1, 1); 2098 MODULE_DEPEND(t4_tom, t4nex, 1, 1, 1); 2099 DECLARE_MODULE(t4_tom, t4_tom_moddata, SI_SUB_EXEC, SI_ORDER_ANY); 2100