1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2012 Chelsio Communications, Inc. 5 * All rights reserved. 6 * Written by: Navdeep Parhar <np@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 #include "opt_inet.h" 32 #include "opt_inet6.h" 33 #include "opt_kern_tls.h" 34 #include "opt_ratelimit.h" 35 36 #include <sys/param.h> 37 #include <sys/types.h> 38 #include <sys/systm.h> 39 #include <sys/kernel.h> 40 #include <sys/ktr.h> 41 #include <sys/lock.h> 42 #include <sys/limits.h> 43 #include <sys/module.h> 44 #include <sys/protosw.h> 45 #include <sys/domain.h> 46 #include <sys/refcount.h> 47 #include <sys/rmlock.h> 48 #include <sys/socket.h> 49 #include <sys/socketvar.h> 50 #include <sys/sysctl.h> 51 #include <sys/taskqueue.h> 52 #include <net/if.h> 53 #include <net/if_var.h> 54 #include <net/if_types.h> 55 #include <net/if_vlan_var.h> 56 #include <netinet/in.h> 57 #include <netinet/in_pcb.h> 58 #include <netinet/in_var.h> 59 #include <netinet/ip.h> 60 #include <netinet/ip6.h> 61 #include <netinet6/scope6_var.h> 62 #define TCPSTATES 63 #include <netinet/tcp_fsm.h> 64 #include <netinet/tcp_seq.h> 65 #include <netinet/tcp_timer.h> 66 #include <netinet/tcp_var.h> 67 #include <netinet/toecore.h> 68 #include <netinet/cc/cc.h> 69 70 #ifdef TCP_OFFLOAD 71 #include "common/common.h" 72 #include "common/t4_msg.h" 73 #include "common/t4_regs.h" 74 #include "common/t4_regs_values.h" 75 #include "common/t4_tcb.h" 76 #include "t4_clip.h" 77 #include "tom/t4_tom_l2t.h" 78 #include "tom/t4_tom.h" 79 #include "tom/t4_tls.h" 80 81 static struct protosw toe_protosw; 82 static struct protosw toe6_protosw; 83 84 /* Module ops */ 85 static int t4_tom_mod_load(void); 86 static int t4_tom_mod_unload(void); 87 static int t4_tom_modevent(module_t, int, void *); 88 89 /* ULD ops and helpers */ 90 static int t4_tom_activate(struct adapter *); 91 static int t4_tom_deactivate(struct adapter *); 92 static int t4_tom_stop(struct adapter *); 93 static int t4_tom_restart(struct adapter *); 94 95 static struct uld_info tom_uld_info = { 96 .uld_activate = t4_tom_activate, 97 .uld_deactivate = t4_tom_deactivate, 98 .uld_stop = t4_tom_stop, 99 .uld_restart = t4_tom_restart, 100 }; 101 102 static void release_offload_resources(struct toepcb *); 103 static void done_with_toepcb(struct toepcb *); 104 static int alloc_tid_tabs(struct adapter *); 105 static void free_tid_tabs(struct adapter *); 106 static void free_tom_data(struct adapter *, struct tom_data *); 107 static void reclaim_wr_resources(void *, int); 108 static void cleanup_stranded_tids(void *, int); 109 110 struct toepcb * 111 alloc_toepcb(struct vi_info *vi, int flags) 112 { 113 struct port_info *pi = vi->pi; 114 struct adapter *sc = pi->adapter; 115 struct toepcb *toep; 116 int tx_credits, txsd_total, len; 117 118 /* 119 * The firmware counts tx work request credits in units of 16 bytes 120 * each. Reserve room for an ABORT_REQ so the driver never has to worry 121 * about tx credits if it wants to abort a connection. 122 */ 123 tx_credits = sc->params.ofldq_wr_cred; 124 tx_credits -= howmany(sizeof(struct cpl_abort_req), 16); 125 126 /* 127 * Shortest possible tx work request is a fw_ofld_tx_data_wr + 1 byte 128 * immediate payload, and firmware counts tx work request credits in 129 * units of 16 byte. Calculate the maximum work requests possible. 130 */ 131 txsd_total = tx_credits / 132 howmany(sizeof(struct fw_ofld_tx_data_wr) + 1, 16); 133 134 len = offsetof(struct toepcb, txsd) + 135 txsd_total * sizeof(struct ofld_tx_sdesc); 136 137 toep = malloc(len, M_CXGBE, M_ZERO | flags); 138 if (toep == NULL) 139 return (NULL); 140 141 refcount_init(&toep->refcount, 1); 142 toep->td = sc->tom_softc; 143 toep->incarnation = sc->incarnation; 144 toep->vi = vi; 145 toep->tid = -1; 146 toep->tx_total = tx_credits; 147 toep->tx_credits = tx_credits; 148 mbufq_init(&toep->ulp_pduq, INT_MAX); 149 mbufq_init(&toep->ulp_pdu_reclaimq, INT_MAX); 150 toep->txsd_total = txsd_total; 151 toep->txsd_avail = txsd_total; 152 toep->txsd_pidx = 0; 153 toep->txsd_cidx = 0; 154 aiotx_init_toep(toep); 155 156 return (toep); 157 } 158 159 /* 160 * Initialize a toepcb after its params have been filled out. 161 */ 162 int 163 init_toepcb(struct vi_info *vi, struct toepcb *toep) 164 { 165 struct conn_params *cp = &toep->params; 166 struct port_info *pi = vi->pi; 167 struct adapter *sc = pi->adapter; 168 struct tx_cl_rl_params *tc; 169 170 if (cp->tc_idx >= 0 && cp->tc_idx < sc->params.nsched_cls) { 171 tc = &pi->sched_params->cl_rl[cp->tc_idx]; 172 mtx_lock(&sc->tc_lock); 173 if (tc->state != CS_HW_CONFIGURED) { 174 CH_ERR(vi, "tid %d cannot be bound to traffic class %d " 175 "because it is not configured (its state is %d)\n", 176 toep->tid, cp->tc_idx, tc->state); 177 cp->tc_idx = -1; 178 } else { 179 tc->refcount++; 180 } 181 mtx_unlock(&sc->tc_lock); 182 } 183 toep->ofld_txq = &sc->sge.ofld_txq[cp->txq_idx]; 184 toep->ofld_rxq = &sc->sge.ofld_rxq[cp->rxq_idx]; 185 toep->ctrlq = &sc->sge.ctrlq[pi->port_id]; 186 187 tls_init_toep(toep); 188 MPASS(ulp_mode(toep) != ULP_MODE_TCPDDP); 189 190 toep->flags |= TPF_INITIALIZED; 191 192 return (0); 193 } 194 195 struct toepcb * 196 hold_toepcb(struct toepcb *toep) 197 { 198 199 refcount_acquire(&toep->refcount); 200 return (toep); 201 } 202 203 void 204 free_toepcb(struct toepcb *toep) 205 { 206 207 if (refcount_release(&toep->refcount) == 0) 208 return; 209 210 KASSERT(!(toep->flags & TPF_ATTACHED), 211 ("%s: attached to an inpcb", __func__)); 212 KASSERT(!(toep->flags & TPF_CPL_PENDING), 213 ("%s: CPL pending", __func__)); 214 215 if (toep->flags & TPF_INITIALIZED) { 216 if (ulp_mode(toep) == ULP_MODE_TCPDDP) 217 ddp_uninit_toep(toep); 218 tls_uninit_toep(toep); 219 } 220 free(toep, M_CXGBE); 221 } 222 223 /* 224 * Set up the socket for TCP offload. 225 */ 226 void 227 offload_socket(struct socket *so, struct toepcb *toep) 228 { 229 struct tom_data *td = toep->td; 230 struct inpcb *inp = sotoinpcb(so); 231 struct tcpcb *tp = intotcpcb(inp); 232 struct sockbuf *sb; 233 234 INP_WLOCK_ASSERT(inp); 235 236 /* Update socket */ 237 sb = &so->so_snd; 238 SOCKBUF_LOCK(sb); 239 sb->sb_flags |= SB_NOCOALESCE; 240 SOCKBUF_UNLOCK(sb); 241 sb = &so->so_rcv; 242 SOCKBUF_LOCK(sb); 243 sb->sb_flags |= SB_NOCOALESCE; 244 if (inp->inp_vflag & INP_IPV6) 245 so->so_proto = &toe6_protosw; 246 else 247 so->so_proto = &toe_protosw; 248 SOCKBUF_UNLOCK(sb); 249 250 /* Update TCP PCB */ 251 tp->tod = &td->tod; 252 tp->t_toe = toep; 253 tp->t_flags |= TF_TOE; 254 255 /* Install an extra hold on inp */ 256 toep->inp = inp; 257 toep->flags |= TPF_ATTACHED; 258 in_pcbref(inp); 259 } 260 261 void 262 restore_so_proto(struct socket *so, bool v6) 263 { 264 if (v6) 265 so->so_proto = &tcp6_protosw; 266 else 267 so->so_proto = &tcp_protosw; 268 } 269 270 /* This is _not_ the normal way to "unoffload" a socket. */ 271 void 272 undo_offload_socket(struct socket *so) 273 { 274 struct inpcb *inp = sotoinpcb(so); 275 struct tcpcb *tp = intotcpcb(inp); 276 struct toepcb *toep = tp->t_toe; 277 struct sockbuf *sb; 278 279 INP_WLOCK_ASSERT(inp); 280 281 sb = &so->so_snd; 282 SOCKBUF_LOCK(sb); 283 sb->sb_flags &= ~SB_NOCOALESCE; 284 SOCKBUF_UNLOCK(sb); 285 sb = &so->so_rcv; 286 SOCKBUF_LOCK(sb); 287 sb->sb_flags &= ~SB_NOCOALESCE; 288 restore_so_proto(so, inp->inp_vflag & INP_IPV6); 289 SOCKBUF_UNLOCK(sb); 290 291 tp->tod = NULL; 292 tp->t_toe = NULL; 293 tp->t_flags &= ~TF_TOE; 294 295 toep->inp = NULL; 296 toep->flags &= ~TPF_ATTACHED; 297 if (in_pcbrele_wlocked(inp)) 298 panic("%s: inp freed.", __func__); 299 } 300 301 static void 302 release_offload_resources(struct toepcb *toep) 303 { 304 struct tom_data *td = toep->td; 305 struct adapter *sc = td_adapter(td); 306 int tid = toep->tid; 307 308 KASSERT(!(toep->flags & TPF_CPL_PENDING), 309 ("%s: %p has CPL pending.", __func__, toep)); 310 311 CTR5(KTR_CXGBE, "%s: toep %p (tid %d, l2te %p, ce %p)", 312 __func__, toep, tid, toep->l2te, toep->ce); 313 314 if (toep->l2te) { 315 t4_l2t_release(toep->l2te); 316 toep->l2te = NULL; 317 } 318 if (tid >= 0) { 319 remove_tid(sc, tid, toep->ce ? 2 : 1); 320 release_tid(sc, tid, toep->ctrlq); 321 toep->tid = -1; 322 mtx_lock(&td->toep_list_lock); 323 if (toep->flags & TPF_IN_TOEP_LIST) { 324 toep->flags &= ~TPF_IN_TOEP_LIST; 325 TAILQ_REMOVE(&td->toep_list, toep, link); 326 } 327 mtx_unlock(&td->toep_list_lock); 328 } 329 if (toep->ce) { 330 t4_release_clip_entry(sc, toep->ce); 331 toep->ce = NULL; 332 } 333 if (toep->params.tc_idx != -1) 334 t4_release_cl_rl(sc, toep->vi->pi->port_id, toep->params.tc_idx); 335 } 336 337 /* 338 * Both the driver and kernel are done with the toepcb. 339 */ 340 static void 341 done_with_toepcb(struct toepcb *toep) 342 { 343 KASSERT(!(toep->flags & TPF_CPL_PENDING), 344 ("%s: %p has CPL pending.", __func__, toep)); 345 KASSERT(!(toep->flags & TPF_ATTACHED), 346 ("%s: %p is still attached.", __func__, toep)); 347 348 CTR(KTR_CXGBE, "%s: toep %p (0x%x)", __func__, toep, toep->flags); 349 350 /* 351 * These queues should have been emptied at approximately the same time 352 * that a normal connection's socket's so_snd would have been purged or 353 * drained. Do _not_ clean up here. 354 */ 355 MPASS(mbufq_empty(&toep->ulp_pduq)); 356 MPASS(mbufq_empty(&toep->ulp_pdu_reclaimq)); 357 #ifdef INVARIANTS 358 if (ulp_mode(toep) == ULP_MODE_TCPDDP) 359 ddp_assert_empty(toep); 360 #endif 361 MPASS(TAILQ_EMPTY(&toep->aiotx_jobq)); 362 MPASS(toep->tid == -1); 363 MPASS(toep->l2te == NULL); 364 MPASS(toep->ce == NULL); 365 MPASS((toep->flags & TPF_IN_TOEP_LIST) == 0); 366 367 free_toepcb(toep); 368 } 369 370 /* 371 * The kernel is done with the TCP PCB and this is our opportunity to unhook the 372 * toepcb hanging off of it. If the TOE driver is also done with the toepcb (no 373 * pending CPL) then it is time to release all resources tied to the toepcb. 374 * 375 * Also gets called when an offloaded active open fails and the TOM wants the 376 * kernel to take the TCP PCB back. 377 */ 378 void 379 t4_pcb_detach(struct toedev *tod __unused, struct tcpcb *tp) 380 { 381 #if defined(KTR) || defined(INVARIANTS) 382 struct inpcb *inp = tptoinpcb(tp); 383 #endif 384 struct toepcb *toep = tp->t_toe; 385 386 INP_WLOCK_ASSERT(inp); 387 388 KASSERT(toep != NULL, ("%s: toep is NULL", __func__)); 389 KASSERT(toep->flags & TPF_ATTACHED, 390 ("%s: not attached", __func__)); 391 392 #ifdef KTR 393 if (tp->t_state == TCPS_SYN_SENT) { 394 CTR6(KTR_CXGBE, "%s: atid %d, toep %p (0x%x), inp %p (0x%x)", 395 __func__, toep->tid, toep, toep->flags, inp, 396 inp->inp_flags); 397 } else { 398 CTR6(KTR_CXGBE, 399 "t4_pcb_detach: tid %d (%s), toep %p (0x%x), inp %p (0x%x)", 400 toep->tid, tcpstates[tp->t_state], toep, toep->flags, inp, 401 inp->inp_flags); 402 } 403 #endif 404 405 tp->tod = NULL; 406 tp->t_toe = NULL; 407 tp->t_flags &= ~TF_TOE; 408 toep->flags &= ~TPF_ATTACHED; 409 410 if (!(toep->flags & TPF_CPL_PENDING)) 411 done_with_toepcb(toep); 412 } 413 414 /* 415 * setsockopt handler. 416 */ 417 static void 418 t4_ctloutput(struct toedev *tod, struct tcpcb *tp, int dir, int name) 419 { 420 struct adapter *sc = tod->tod_softc; 421 struct toepcb *toep = tp->t_toe; 422 423 if (dir == SOPT_GET) 424 return; 425 426 CTR4(KTR_CXGBE, "%s: tp %p, dir %u, name %u", __func__, tp, dir, name); 427 428 switch (name) { 429 case TCP_NODELAY: 430 if (tp->t_state != TCPS_ESTABLISHED) 431 break; 432 toep->params.nagle = tp->t_flags & TF_NODELAY ? 0 : 1; 433 t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_T_FLAGS, 434 V_TF_NAGLE(1), V_TF_NAGLE(toep->params.nagle), 0, 0); 435 break; 436 default: 437 break; 438 } 439 } 440 441 static inline uint64_t 442 get_tcb_tflags(const uint64_t *tcb) 443 { 444 445 return ((be64toh(tcb[14]) << 32) | (be64toh(tcb[15]) >> 32)); 446 } 447 448 static inline uint32_t 449 get_tcb_field(const uint64_t *tcb, u_int word, uint32_t mask, u_int shift) 450 { 451 #define LAST_WORD ((TCB_SIZE / 4) - 1) 452 uint64_t t1, t2; 453 int flit_idx; 454 455 MPASS(mask != 0); 456 MPASS(word <= LAST_WORD); 457 MPASS(shift < 32); 458 459 flit_idx = (LAST_WORD - word) / 2; 460 if (word & 0x1) 461 shift += 32; 462 t1 = be64toh(tcb[flit_idx]) >> shift; 463 t2 = 0; 464 if (fls(mask) > 64 - shift) { 465 /* 466 * Will spill over into the next logical flit, which is the flit 467 * before this one. The flit_idx before this one must be valid. 468 */ 469 MPASS(flit_idx > 0); 470 t2 = be64toh(tcb[flit_idx - 1]) << (64 - shift); 471 } 472 return ((t2 | t1) & mask); 473 #undef LAST_WORD 474 } 475 #define GET_TCB_FIELD(tcb, F) \ 476 get_tcb_field(tcb, W_TCB_##F, M_TCB_##F, S_TCB_##F) 477 478 /* 479 * Issues a CPL_GET_TCB to read the entire TCB for the tid. 480 */ 481 static int 482 send_get_tcb(struct adapter *sc, u_int tid) 483 { 484 struct cpl_get_tcb *cpl; 485 struct wrq_cookie cookie; 486 487 MPASS(tid >= sc->tids.tid_base); 488 MPASS(tid - sc->tids.tid_base < sc->tids.ntids); 489 490 cpl = start_wrq_wr(&sc->sge.ctrlq[0], howmany(sizeof(*cpl), 16), 491 &cookie); 492 if (__predict_false(cpl == NULL)) 493 return (ENOMEM); 494 bzero(cpl, sizeof(*cpl)); 495 INIT_TP_WR(cpl, tid); 496 OPCODE_TID(cpl) = htobe32(MK_OPCODE_TID(CPL_GET_TCB, tid)); 497 cpl->reply_ctrl = htobe16(V_REPLY_CHAN(0) | 498 V_QUEUENO(sc->sge.ofld_rxq[0].iq.cntxt_id)); 499 cpl->cookie = 0xff; 500 commit_wrq_wr(&sc->sge.ctrlq[0], cpl, &cookie); 501 502 return (0); 503 } 504 505 static struct tcb_histent * 506 alloc_tcb_histent(struct adapter *sc, u_int tid, int flags) 507 { 508 struct tcb_histent *te; 509 510 MPASS(flags == M_NOWAIT || flags == M_WAITOK); 511 512 te = malloc(sizeof(*te), M_CXGBE, M_ZERO | flags); 513 if (te == NULL) 514 return (NULL); 515 mtx_init(&te->te_lock, "TCB entry", NULL, MTX_DEF); 516 callout_init_mtx(&te->te_callout, &te->te_lock, 0); 517 te->te_adapter = sc; 518 te->te_tid = tid; 519 520 return (te); 521 } 522 523 static void 524 free_tcb_histent(struct tcb_histent *te) 525 { 526 527 mtx_destroy(&te->te_lock); 528 free(te, M_CXGBE); 529 } 530 531 /* 532 * Start tracking the tid in the TCB history. 533 */ 534 int 535 add_tid_to_history(struct adapter *sc, u_int tid) 536 { 537 struct tcb_histent *te = NULL; 538 struct tom_data *td = sc->tom_softc; 539 int rc; 540 541 MPASS(tid >= sc->tids.tid_base); 542 MPASS(tid - sc->tids.tid_base < sc->tids.ntids); 543 544 if (td->tcb_history == NULL) 545 return (ENXIO); 546 547 rw_wlock(&td->tcb_history_lock); 548 if (td->tcb_history[tid] != NULL) { 549 rc = EEXIST; 550 goto done; 551 } 552 te = alloc_tcb_histent(sc, tid, M_NOWAIT); 553 if (te == NULL) { 554 rc = ENOMEM; 555 goto done; 556 } 557 mtx_lock(&te->te_lock); 558 rc = send_get_tcb(sc, tid); 559 if (rc == 0) { 560 te->te_flags |= TE_RPL_PENDING; 561 td->tcb_history[tid] = te; 562 } else { 563 free(te, M_CXGBE); 564 } 565 mtx_unlock(&te->te_lock); 566 done: 567 rw_wunlock(&td->tcb_history_lock); 568 return (rc); 569 } 570 571 static void 572 remove_tcb_histent(struct tcb_histent *te) 573 { 574 struct adapter *sc = te->te_adapter; 575 struct tom_data *td = sc->tom_softc; 576 577 rw_assert(&td->tcb_history_lock, RA_WLOCKED); 578 mtx_assert(&te->te_lock, MA_OWNED); 579 MPASS(td->tcb_history[te->te_tid] == te); 580 581 td->tcb_history[te->te_tid] = NULL; 582 free_tcb_histent(te); 583 rw_wunlock(&td->tcb_history_lock); 584 } 585 586 static inline struct tcb_histent * 587 lookup_tcb_histent(struct adapter *sc, u_int tid, bool addrem) 588 { 589 struct tcb_histent *te; 590 struct tom_data *td = sc->tom_softc; 591 592 MPASS(tid >= sc->tids.tid_base); 593 MPASS(tid - sc->tids.tid_base < sc->tids.ntids); 594 595 if (td->tcb_history == NULL) 596 return (NULL); 597 598 if (addrem) 599 rw_wlock(&td->tcb_history_lock); 600 else 601 rw_rlock(&td->tcb_history_lock); 602 te = td->tcb_history[tid]; 603 if (te != NULL) { 604 mtx_lock(&te->te_lock); 605 return (te); /* with both locks held */ 606 } 607 if (addrem) 608 rw_wunlock(&td->tcb_history_lock); 609 else 610 rw_runlock(&td->tcb_history_lock); 611 612 return (te); 613 } 614 615 static inline void 616 release_tcb_histent(struct tcb_histent *te) 617 { 618 struct adapter *sc = te->te_adapter; 619 struct tom_data *td = sc->tom_softc; 620 621 mtx_assert(&te->te_lock, MA_OWNED); 622 mtx_unlock(&te->te_lock); 623 rw_assert(&td->tcb_history_lock, RA_RLOCKED); 624 rw_runlock(&td->tcb_history_lock); 625 } 626 627 static void 628 request_tcb(void *arg) 629 { 630 struct tcb_histent *te = arg; 631 632 mtx_assert(&te->te_lock, MA_OWNED); 633 634 /* Noone else is supposed to update the histent. */ 635 MPASS(!(te->te_flags & TE_RPL_PENDING)); 636 if (send_get_tcb(te->te_adapter, te->te_tid) == 0) 637 te->te_flags |= TE_RPL_PENDING; 638 else 639 callout_schedule(&te->te_callout, hz / 100); 640 } 641 642 static void 643 update_tcb_histent(struct tcb_histent *te, const uint64_t *tcb) 644 { 645 struct tom_data *td = te->te_adapter->tom_softc; 646 uint64_t tflags = get_tcb_tflags(tcb); 647 uint8_t sample = 0; 648 649 if (GET_TCB_FIELD(tcb, SND_MAX_RAW) != GET_TCB_FIELD(tcb, SND_UNA_RAW)) { 650 if (GET_TCB_FIELD(tcb, T_RXTSHIFT) != 0) 651 sample |= TS_RTO; 652 if (GET_TCB_FIELD(tcb, T_DUPACKS) != 0) 653 sample |= TS_DUPACKS; 654 if (GET_TCB_FIELD(tcb, T_DUPACKS) >= td->dupack_threshold) 655 sample |= TS_FASTREXMT; 656 } 657 658 if (GET_TCB_FIELD(tcb, SND_MAX_RAW) != 0) { 659 uint32_t snd_wnd; 660 661 sample |= TS_SND_BACKLOGGED; /* for whatever reason. */ 662 663 snd_wnd = GET_TCB_FIELD(tcb, RCV_ADV); 664 if (tflags & V_TF_RECV_SCALE(1)) 665 snd_wnd <<= GET_TCB_FIELD(tcb, RCV_SCALE); 666 if (GET_TCB_FIELD(tcb, SND_CWND) < snd_wnd) 667 sample |= TS_CWND_LIMITED; /* maybe due to CWND */ 668 } 669 670 if (tflags & V_TF_CCTRL_ECN(1)) { 671 672 /* 673 * CE marker on incoming IP hdr, echoing ECE back in the TCP 674 * hdr. Indicates congestion somewhere on the way from the peer 675 * to this node. 676 */ 677 if (tflags & V_TF_CCTRL_ECE(1)) 678 sample |= TS_ECN_ECE; 679 680 /* 681 * ECE seen and CWR sent (or about to be sent). Might indicate 682 * congestion on the way to the peer. This node is reducing its 683 * congestion window in response. 684 */ 685 if (tflags & (V_TF_CCTRL_CWR(1) | V_TF_CCTRL_RFR(1))) 686 sample |= TS_ECN_CWR; 687 } 688 689 te->te_sample[te->te_pidx] = sample; 690 if (++te->te_pidx == nitems(te->te_sample)) 691 te->te_pidx = 0; 692 memcpy(te->te_tcb, tcb, TCB_SIZE); 693 te->te_flags |= TE_ACTIVE; 694 } 695 696 static int 697 do_get_tcb_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 698 { 699 struct adapter *sc = iq->adapter; 700 const struct cpl_get_tcb_rpl *cpl = mtod(m, const void *); 701 const uint64_t *tcb = (const uint64_t *)(const void *)(cpl + 1); 702 struct tcb_histent *te; 703 const u_int tid = GET_TID(cpl); 704 bool remove; 705 706 remove = GET_TCB_FIELD(tcb, T_STATE) == TCPS_CLOSED; 707 te = lookup_tcb_histent(sc, tid, remove); 708 if (te == NULL) { 709 /* Not in the history. Who issued the GET_TCB for this? */ 710 device_printf(sc->dev, "tcb %u: flags 0x%016jx, state %u, " 711 "srtt %u, sscale %u, rscale %u, cookie 0x%x\n", tid, 712 (uintmax_t)get_tcb_tflags(tcb), GET_TCB_FIELD(tcb, T_STATE), 713 GET_TCB_FIELD(tcb, T_SRTT), GET_TCB_FIELD(tcb, SND_SCALE), 714 GET_TCB_FIELD(tcb, RCV_SCALE), cpl->cookie); 715 goto done; 716 } 717 718 MPASS(te->te_flags & TE_RPL_PENDING); 719 te->te_flags &= ~TE_RPL_PENDING; 720 if (remove) { 721 remove_tcb_histent(te); 722 } else { 723 update_tcb_histent(te, tcb); 724 callout_reset(&te->te_callout, hz / 10, request_tcb, te); 725 release_tcb_histent(te); 726 } 727 done: 728 m_freem(m); 729 return (0); 730 } 731 732 static void 733 fill_tcp_info_from_tcb(struct adapter *sc, uint64_t *tcb, struct tcp_info *ti) 734 { 735 uint32_t v; 736 737 ti->tcpi_state = GET_TCB_FIELD(tcb, T_STATE); 738 739 v = GET_TCB_FIELD(tcb, T_SRTT); 740 ti->tcpi_rtt = tcp_ticks_to_us(sc, v); 741 742 v = GET_TCB_FIELD(tcb, T_RTTVAR); 743 ti->tcpi_rttvar = tcp_ticks_to_us(sc, v); 744 745 ti->tcpi_snd_ssthresh = GET_TCB_FIELD(tcb, SND_SSTHRESH); 746 ti->tcpi_snd_cwnd = GET_TCB_FIELD(tcb, SND_CWND); 747 ti->tcpi_rcv_nxt = GET_TCB_FIELD(tcb, RCV_NXT); 748 ti->tcpi_rcv_adv = GET_TCB_FIELD(tcb, RCV_ADV); 749 ti->tcpi_dupacks = GET_TCB_FIELD(tcb, T_DUPACKS); 750 751 v = GET_TCB_FIELD(tcb, TX_MAX); 752 ti->tcpi_snd_nxt = v - GET_TCB_FIELD(tcb, SND_NXT_RAW); 753 ti->tcpi_snd_una = v - GET_TCB_FIELD(tcb, SND_UNA_RAW); 754 ti->tcpi_snd_max = v - GET_TCB_FIELD(tcb, SND_MAX_RAW); 755 756 /* Receive window being advertised by us. */ 757 ti->tcpi_rcv_wscale = GET_TCB_FIELD(tcb, SND_SCALE); /* Yes, SND. */ 758 ti->tcpi_rcv_space = GET_TCB_FIELD(tcb, RCV_WND); 759 760 /* Send window */ 761 ti->tcpi_snd_wscale = GET_TCB_FIELD(tcb, RCV_SCALE); /* Yes, RCV. */ 762 ti->tcpi_snd_wnd = GET_TCB_FIELD(tcb, RCV_ADV); 763 if (get_tcb_tflags(tcb) & V_TF_RECV_SCALE(1)) 764 ti->tcpi_snd_wnd <<= ti->tcpi_snd_wscale; 765 else 766 ti->tcpi_snd_wscale = 0; 767 768 } 769 770 static void 771 fill_tcp_info_from_history(struct adapter *sc, struct tcb_histent *te, 772 struct tcp_info *ti) 773 { 774 775 fill_tcp_info_from_tcb(sc, te->te_tcb, ti); 776 } 777 778 /* 779 * Reads the TCB for the given tid using a memory window and copies it to 'buf' 780 * in the same format as CPL_GET_TCB_RPL. 781 */ 782 static void 783 read_tcb_using_memwin(struct adapter *sc, u_int tid, uint64_t *buf) 784 { 785 int i, j, k, rc; 786 uint32_t addr; 787 u_char *tcb, tmp; 788 789 MPASS(tid >= sc->tids.tid_base); 790 MPASS(tid - sc->tids.tid_base < sc->tids.ntids); 791 792 addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE) + tid * TCB_SIZE; 793 rc = read_via_memwin(sc, 2, addr, (uint32_t *)buf, TCB_SIZE); 794 if (rc != 0) 795 return; 796 797 tcb = (u_char *)buf; 798 for (i = 0, j = TCB_SIZE - 16; i < j; i += 16, j -= 16) { 799 for (k = 0; k < 16; k++) { 800 tmp = tcb[i + k]; 801 tcb[i + k] = tcb[j + k]; 802 tcb[j + k] = tmp; 803 } 804 } 805 } 806 807 static void 808 fill_tcp_info(struct adapter *sc, u_int tid, struct tcp_info *ti) 809 { 810 uint64_t tcb[TCB_SIZE / sizeof(uint64_t)]; 811 struct tcb_histent *te; 812 813 ti->tcpi_toe_tid = tid; 814 te = lookup_tcb_histent(sc, tid, false); 815 if (te != NULL) { 816 fill_tcp_info_from_history(sc, te, ti); 817 release_tcb_histent(te); 818 } else { 819 if (!(sc->debug_flags & DF_DISABLE_TCB_CACHE)) { 820 /* XXX: tell firmware to flush TCB cache. */ 821 } 822 read_tcb_using_memwin(sc, tid, tcb); 823 fill_tcp_info_from_tcb(sc, tcb, ti); 824 } 825 } 826 827 /* 828 * Called by the kernel to allow the TOE driver to "refine" values filled up in 829 * the tcp_info for an offloaded connection. 830 */ 831 static void 832 t4_tcp_info(struct toedev *tod, const struct tcpcb *tp, struct tcp_info *ti) 833 { 834 struct adapter *sc = tod->tod_softc; 835 struct toepcb *toep = tp->t_toe; 836 837 INP_LOCK_ASSERT(tptoinpcb(tp)); 838 MPASS(ti != NULL); 839 840 fill_tcp_info(sc, toep->tid, ti); 841 } 842 843 #ifdef KERN_TLS 844 static int 845 t4_alloc_tls_session(struct toedev *tod, struct tcpcb *tp, 846 struct ktls_session *tls, int direction) 847 { 848 struct toepcb *toep = tp->t_toe; 849 850 INP_WLOCK_ASSERT(tptoinpcb(tp)); 851 MPASS(tls != NULL); 852 853 return (tls_alloc_ktls(toep, tls, direction)); 854 } 855 #endif 856 857 static void 858 send_mss_flowc_wr(struct adapter *sc, struct toepcb *toep) 859 { 860 struct wrq_cookie cookie; 861 struct fw_flowc_wr *flowc; 862 struct ofld_tx_sdesc *txsd; 863 const int flowclen = sizeof(*flowc) + sizeof(struct fw_flowc_mnemval); 864 const int flowclen16 = howmany(flowclen, 16); 865 866 if (toep->tx_credits < flowclen16 || toep->txsd_avail == 0) { 867 CH_ERR(sc, "%s: tid %u out of tx credits (%d, %d).\n", __func__, 868 toep->tid, toep->tx_credits, toep->txsd_avail); 869 return; 870 } 871 872 flowc = start_wrq_wr(&toep->ofld_txq->wrq, flowclen16, &cookie); 873 if (__predict_false(flowc == NULL)) { 874 CH_ERR(sc, "ENOMEM in %s for tid %u.\n", __func__, toep->tid); 875 return; 876 } 877 flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) | 878 V_FW_FLOWC_WR_NPARAMS(1)); 879 flowc->flowid_len16 = htonl(V_FW_WR_LEN16(flowclen16) | 880 V_FW_WR_FLOWID(toep->tid)); 881 flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_MSS; 882 flowc->mnemval[0].val = htobe32(toep->params.emss); 883 884 txsd = &toep->txsd[toep->txsd_pidx]; 885 txsd->tx_credits = flowclen16; 886 txsd->plen = 0; 887 toep->tx_credits -= txsd->tx_credits; 888 if (__predict_false(++toep->txsd_pidx == toep->txsd_total)) 889 toep->txsd_pidx = 0; 890 toep->txsd_avail--; 891 commit_wrq_wr(&toep->ofld_txq->wrq, flowc, &cookie); 892 } 893 894 static void 895 t4_pmtu_update(struct toedev *tod, struct tcpcb *tp, tcp_seq seq, int mtu) 896 { 897 struct work_request_hdr *wrh; 898 struct ulp_txpkt *ulpmc; 899 int idx, len; 900 struct wrq_cookie cookie; 901 struct inpcb *inp = tptoinpcb(tp); 902 struct toepcb *toep = tp->t_toe; 903 struct adapter *sc = td_adapter(toep->td); 904 unsigned short *mtus = &sc->params.mtus[0]; 905 906 INP_WLOCK_ASSERT(inp); 907 MPASS(mtu > 0); /* kernel is supposed to provide something usable. */ 908 909 /* tp->snd_una and snd_max are in host byte order too. */ 910 seq = be32toh(seq); 911 912 CTR6(KTR_CXGBE, "%s: tid %d, seq 0x%08x, mtu %u, mtu_idx %u (%d)", 913 __func__, toep->tid, seq, mtu, toep->params.mtu_idx, 914 mtus[toep->params.mtu_idx]); 915 916 if (ulp_mode(toep) == ULP_MODE_NONE && /* XXX: Read TCB otherwise? */ 917 (SEQ_LT(seq, tp->snd_una) || SEQ_GEQ(seq, tp->snd_max))) { 918 CTR5(KTR_CXGBE, 919 "%s: tid %d, seq 0x%08x not in range [0x%08x, 0x%08x).", 920 __func__, toep->tid, seq, tp->snd_una, tp->snd_max); 921 return; 922 } 923 924 /* Find the best mtu_idx for the suggested MTU. */ 925 for (idx = 0; idx < NMTUS - 1 && mtus[idx + 1] <= mtu; idx++) 926 continue; 927 if (idx >= toep->params.mtu_idx) 928 return; /* Never increase the PMTU (just like the kernel). */ 929 930 /* 931 * We'll send a compound work request with 2 SET_TCB_FIELDs -- the first 932 * one updates the mtu_idx and the second one triggers a retransmit. 933 */ 934 len = sizeof(*wrh) + 2 * roundup2(LEN__SET_TCB_FIELD_ULP, 16); 935 wrh = start_wrq_wr(toep->ctrlq, howmany(len, 16), &cookie); 936 if (wrh == NULL) { 937 CH_ERR(sc, "failed to change mtu_idx of tid %d (%u -> %u).\n", 938 toep->tid, toep->params.mtu_idx, idx); 939 return; 940 } 941 INIT_ULPTX_WRH(wrh, len, 1, 0); /* atomic */ 942 ulpmc = (struct ulp_txpkt *)(wrh + 1); 943 ulpmc = mk_set_tcb_field_ulp(sc, ulpmc, toep->tid, W_TCB_T_MAXSEG, 944 V_TCB_T_MAXSEG(M_TCB_T_MAXSEG), V_TCB_T_MAXSEG(idx)); 945 ulpmc = mk_set_tcb_field_ulp(sc, ulpmc, toep->tid, W_TCB_TIMESTAMP, 946 V_TCB_TIMESTAMP(0x7FFFFULL << 11), 0); 947 commit_wrq_wr(toep->ctrlq, wrh, &cookie); 948 949 /* Update the software toepcb and tcpcb. */ 950 toep->params.mtu_idx = idx; 951 tp->t_maxseg = mtus[toep->params.mtu_idx]; 952 if (inp->inp_inc.inc_flags & INC_ISIPV6) 953 tp->t_maxseg -= sizeof(struct ip6_hdr) + sizeof(struct tcphdr); 954 else 955 tp->t_maxseg -= sizeof(struct ip) + sizeof(struct tcphdr); 956 toep->params.emss = tp->t_maxseg; 957 if (tp->t_flags & TF_RCVD_TSTMP) 958 toep->params.emss -= TCPOLEN_TSTAMP_APPA; 959 960 /* Update the firmware flowc. */ 961 send_mss_flowc_wr(sc, toep); 962 963 /* Update the MTU in the kernel's hostcache. */ 964 if (sc->tt.update_hc_on_pmtu_change != 0) { 965 struct in_conninfo inc = {0}; 966 967 inc.inc_fibnum = inp->inp_inc.inc_fibnum; 968 if (inp->inp_inc.inc_flags & INC_ISIPV6) { 969 inc.inc_flags |= INC_ISIPV6; 970 inc.inc6_faddr = inp->inp_inc.inc6_faddr; 971 } else { 972 inc.inc_faddr = inp->inp_inc.inc_faddr; 973 } 974 tcp_hc_updatemtu(&inc, mtu); 975 } 976 977 CTR6(KTR_CXGBE, "%s: tid %d, mtu_idx %u (%u), t_maxseg %u, emss %u", 978 __func__, toep->tid, toep->params.mtu_idx, 979 mtus[toep->params.mtu_idx], tp->t_maxseg, toep->params.emss); 980 } 981 982 /* 983 * The TOE driver will not receive any more CPLs for the tid associated with the 984 * toepcb; release the hold on the inpcb. 985 */ 986 void 987 final_cpl_received(struct toepcb *toep) 988 { 989 struct inpcb *inp = toep->inp; 990 bool need_wakeup; 991 992 KASSERT(inp != NULL, ("%s: inp is NULL", __func__)); 993 INP_WLOCK_ASSERT(inp); 994 KASSERT(toep->flags & TPF_CPL_PENDING, 995 ("%s: CPL not pending already?", __func__)); 996 997 CTR6(KTR_CXGBE, "%s: tid %d, toep %p (0x%x), inp %p (0x%x)", 998 __func__, toep->tid, toep, toep->flags, inp, inp->inp_flags); 999 1000 if (ulp_mode(toep) == ULP_MODE_TCPDDP) 1001 release_ddp_resources(toep); 1002 toep->inp = NULL; 1003 need_wakeup = (toep->flags & TPF_WAITING_FOR_FINAL) != 0; 1004 toep->flags &= ~(TPF_CPL_PENDING | TPF_WAITING_FOR_FINAL); 1005 mbufq_drain(&toep->ulp_pduq); 1006 mbufq_drain(&toep->ulp_pdu_reclaimq); 1007 release_offload_resources(toep); 1008 if (!(toep->flags & TPF_ATTACHED)) 1009 done_with_toepcb(toep); 1010 1011 if (!in_pcbrele_wlocked(inp)) 1012 INP_WUNLOCK(inp); 1013 1014 if (need_wakeup) { 1015 struct mtx *lock = mtx_pool_find(mtxpool_sleep, toep); 1016 1017 mtx_lock(lock); 1018 wakeup(toep); 1019 mtx_unlock(lock); 1020 } 1021 } 1022 1023 void 1024 insert_tid(struct adapter *sc, int tid, void *ctx, int ntids) 1025 { 1026 struct tid_info *t = &sc->tids; 1027 1028 MPASS(tid >= t->tid_base); 1029 MPASS(tid - t->tid_base < t->ntids); 1030 1031 t->tid_tab[tid - t->tid_base] = ctx; 1032 atomic_add_int(&t->tids_in_use, ntids); 1033 } 1034 1035 void * 1036 lookup_tid(struct adapter *sc, int tid) 1037 { 1038 struct tid_info *t = &sc->tids; 1039 1040 return (t->tid_tab[tid - t->tid_base]); 1041 } 1042 1043 void 1044 update_tid(struct adapter *sc, int tid, void *ctx) 1045 { 1046 struct tid_info *t = &sc->tids; 1047 1048 t->tid_tab[tid - t->tid_base] = ctx; 1049 } 1050 1051 void 1052 remove_tid(struct adapter *sc, int tid, int ntids) 1053 { 1054 struct tid_info *t = &sc->tids; 1055 1056 t->tid_tab[tid - t->tid_base] = NULL; 1057 atomic_subtract_int(&t->tids_in_use, ntids); 1058 } 1059 1060 /* 1061 * What mtu_idx to use, given a 4-tuple. Note that both s->mss and tcp_mssopt 1062 * have the MSS that we should advertise in our SYN. Advertised MSS doesn't 1063 * account for any TCP options so the effective MSS (only payload, no headers or 1064 * options) could be different. 1065 */ 1066 static int 1067 find_best_mtu_idx(struct adapter *sc, struct in_conninfo *inc, 1068 struct offload_settings *s) 1069 { 1070 unsigned short *mtus = &sc->params.mtus[0]; 1071 int i, mss, mtu; 1072 1073 MPASS(inc != NULL); 1074 1075 mss = s->mss > 0 ? s->mss : tcp_mssopt(inc); 1076 if (inc->inc_flags & INC_ISIPV6) 1077 mtu = mss + sizeof(struct ip6_hdr) + sizeof(struct tcphdr); 1078 else 1079 mtu = mss + sizeof(struct ip) + sizeof(struct tcphdr); 1080 1081 for (i = 0; i < NMTUS - 1 && mtus[i + 1] <= mtu; i++) 1082 continue; 1083 1084 return (i); 1085 } 1086 1087 /* 1088 * Determine the receive window size for a socket. 1089 */ 1090 u_long 1091 select_rcv_wnd(struct socket *so) 1092 { 1093 unsigned long wnd; 1094 1095 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1096 1097 wnd = sbspace(&so->so_rcv); 1098 if (wnd < MIN_RCV_WND) 1099 wnd = MIN_RCV_WND; 1100 1101 return min(wnd, MAX_RCV_WND); 1102 } 1103 1104 int 1105 select_rcv_wscale(void) 1106 { 1107 int wscale = 0; 1108 unsigned long space = sb_max; 1109 1110 if (space > MAX_RCV_WND) 1111 space = MAX_RCV_WND; 1112 1113 while (wscale < TCP_MAX_WINSHIFT && (TCP_MAXWIN << wscale) < space) 1114 wscale++; 1115 1116 return (wscale); 1117 } 1118 1119 __be64 1120 calc_options0(struct vi_info *vi, struct conn_params *cp) 1121 { 1122 uint64_t opt0 = 0; 1123 1124 opt0 |= F_TCAM_BYPASS; 1125 1126 MPASS(cp->wscale >= 0 && cp->wscale <= M_WND_SCALE); 1127 opt0 |= V_WND_SCALE(cp->wscale); 1128 1129 MPASS(cp->mtu_idx >= 0 && cp->mtu_idx < NMTUS); 1130 opt0 |= V_MSS_IDX(cp->mtu_idx); 1131 1132 MPASS(cp->ulp_mode >= 0 && cp->ulp_mode <= M_ULP_MODE); 1133 opt0 |= V_ULP_MODE(cp->ulp_mode); 1134 1135 MPASS(cp->opt0_bufsize >= 0 && cp->opt0_bufsize <= M_RCV_BUFSIZ); 1136 opt0 |= V_RCV_BUFSIZ(cp->opt0_bufsize); 1137 1138 MPASS(cp->l2t_idx >= 0 && cp->l2t_idx < vi->adapter->vres.l2t.size); 1139 opt0 |= V_L2T_IDX(cp->l2t_idx); 1140 1141 opt0 |= V_SMAC_SEL(vi->smt_idx); 1142 opt0 |= V_TX_CHAN(vi->pi->tx_chan); 1143 1144 MPASS(cp->keepalive == 0 || cp->keepalive == 1); 1145 opt0 |= V_KEEP_ALIVE(cp->keepalive); 1146 1147 MPASS(cp->nagle == 0 || cp->nagle == 1); 1148 opt0 |= V_NAGLE(cp->nagle); 1149 1150 return (htobe64(opt0)); 1151 } 1152 1153 __be32 1154 calc_options2(struct vi_info *vi, struct conn_params *cp) 1155 { 1156 uint32_t opt2 = 0; 1157 struct port_info *pi = vi->pi; 1158 struct adapter *sc = pi->adapter; 1159 1160 /* 1161 * rx flow control, rx coalesce, congestion control, and tx pace are all 1162 * explicitly set by the driver. On T5+ the ISS is also set by the 1163 * driver to the value picked by the kernel. 1164 */ 1165 if (is_t4(sc)) { 1166 opt2 |= F_RX_FC_VALID | F_RX_COALESCE_VALID; 1167 opt2 |= F_CONG_CNTRL_VALID | F_PACE_VALID; 1168 } else { 1169 opt2 |= F_T5_OPT_2_VALID; /* all 4 valid */ 1170 opt2 |= F_T5_ISS; /* ISS provided in CPL */ 1171 } 1172 1173 MPASS(cp->sack == 0 || cp->sack == 1); 1174 opt2 |= V_SACK_EN(cp->sack); 1175 1176 MPASS(cp->tstamp == 0 || cp->tstamp == 1); 1177 opt2 |= V_TSTAMPS_EN(cp->tstamp); 1178 1179 if (cp->wscale > 0) 1180 opt2 |= F_WND_SCALE_EN; 1181 1182 MPASS(cp->ecn == 0 || cp->ecn == 1); 1183 opt2 |= V_CCTRL_ECN(cp->ecn); 1184 1185 opt2 |= V_TX_QUEUE(TX_MODQ(pi->tx_chan)); 1186 opt2 |= V_PACE(0); 1187 opt2 |= F_RSS_QUEUE_VALID; 1188 opt2 |= V_RSS_QUEUE(sc->sge.ofld_rxq[cp->rxq_idx].iq.abs_id); 1189 if (chip_id(sc) <= CHELSIO_T6) { 1190 MPASS(pi->rx_chan == 0 || pi->rx_chan == 1); 1191 opt2 |= V_RX_CHANNEL(pi->rx_chan); 1192 } 1193 1194 MPASS(cp->cong_algo >= 0 && cp->cong_algo <= M_CONG_CNTRL); 1195 opt2 |= V_CONG_CNTRL(cp->cong_algo); 1196 1197 MPASS(cp->rx_coalesce == 0 || cp->rx_coalesce == 1); 1198 if (cp->rx_coalesce == 1) 1199 opt2 |= V_RX_COALESCE(M_RX_COALESCE); 1200 1201 opt2 |= V_RX_FC_DDP(0) | V_RX_FC_DISABLE(0); 1202 MPASS(cp->ulp_mode != ULP_MODE_TCPDDP); 1203 1204 return (htobe32(opt2)); 1205 } 1206 1207 uint64_t 1208 select_ntuple(struct vi_info *vi, struct l2t_entry *e) 1209 { 1210 struct adapter *sc = vi->adapter; 1211 struct tp_params *tp = &sc->params.tp; 1212 uint64_t ntuple = 0; 1213 1214 /* 1215 * Initialize each of the fields which we care about which are present 1216 * in the Compressed Filter Tuple. 1217 */ 1218 if (tp->vlan_shift >= 0 && EVL_VLANOFTAG(e->vlan) != CPL_L2T_VLAN_NONE) 1219 ntuple |= (uint64_t)(F_FT_VLAN_VLD | e->vlan) << tp->vlan_shift; 1220 1221 if (tp->port_shift >= 0) 1222 ntuple |= (uint64_t)e->lport << tp->port_shift; 1223 1224 if (tp->protocol_shift >= 0) 1225 ntuple |= (uint64_t)IPPROTO_TCP << tp->protocol_shift; 1226 1227 if (tp->vnic_shift >= 0 && tp->vnic_mode == FW_VNIC_MODE_PF_VF) { 1228 ntuple |= (uint64_t)(V_FT_VNID_ID_VF(vi->vin) | 1229 V_FT_VNID_ID_PF(sc->pf) | V_FT_VNID_ID_VLD(vi->vfvld)) << 1230 tp->vnic_shift; 1231 } 1232 1233 if (is_t4(sc)) 1234 return (htobe32((uint32_t)ntuple)); 1235 else 1236 return (htobe64(V_FILTER_TUPLE(ntuple))); 1237 } 1238 1239 /* 1240 * Initialize various connection parameters. 1241 */ 1242 void 1243 init_conn_params(struct vi_info *vi , struct offload_settings *s, 1244 struct in_conninfo *inc, struct socket *so, 1245 const struct tcp_options *tcpopt, int16_t l2t_idx, struct conn_params *cp) 1246 { 1247 struct port_info *pi = vi->pi; 1248 struct adapter *sc = pi->adapter; 1249 struct tom_tunables *tt = &sc->tt; 1250 struct inpcb *inp = sotoinpcb(so); 1251 struct tcpcb *tp = intotcpcb(inp); 1252 u_long wnd; 1253 u_int q_idx; 1254 1255 MPASS(s->offload != 0); 1256 1257 /* Congestion control algorithm */ 1258 if (s->cong_algo >= 0) 1259 cp->cong_algo = s->cong_algo & M_CONG_CNTRL; 1260 else if (sc->tt.cong_algorithm >= 0) 1261 cp->cong_algo = tt->cong_algorithm & M_CONG_CNTRL; 1262 else { 1263 struct cc_algo *cc = CC_ALGO(tp); 1264 1265 if (strcasecmp(cc->name, "reno") == 0) 1266 cp->cong_algo = CONG_ALG_RENO; 1267 else if (strcasecmp(cc->name, "tahoe") == 0) 1268 cp->cong_algo = CONG_ALG_TAHOE; 1269 if (strcasecmp(cc->name, "newreno") == 0) 1270 cp->cong_algo = CONG_ALG_NEWRENO; 1271 if (strcasecmp(cc->name, "highspeed") == 0) 1272 cp->cong_algo = CONG_ALG_HIGHSPEED; 1273 else { 1274 /* 1275 * Use newreno in case the algorithm selected by the 1276 * host stack is not supported by the hardware. 1277 */ 1278 cp->cong_algo = CONG_ALG_NEWRENO; 1279 } 1280 } 1281 1282 /* Tx traffic scheduling class. */ 1283 if (s->sched_class >= 0 && s->sched_class < sc->params.nsched_cls) 1284 cp->tc_idx = s->sched_class; 1285 else 1286 cp->tc_idx = -1; 1287 1288 /* Nagle's algorithm. */ 1289 if (s->nagle >= 0) 1290 cp->nagle = s->nagle > 0 ? 1 : 0; 1291 else 1292 cp->nagle = tp->t_flags & TF_NODELAY ? 0 : 1; 1293 1294 /* TCP Keepalive. */ 1295 if (V_tcp_always_keepalive || so_options_get(so) & SO_KEEPALIVE) 1296 cp->keepalive = 1; 1297 else 1298 cp->keepalive = 0; 1299 1300 /* Optimization that's specific to T5 @ 40G. */ 1301 if (tt->tx_align >= 0) 1302 cp->tx_align = tt->tx_align > 0 ? 1 : 0; 1303 else if (chip_id(sc) == CHELSIO_T5 && 1304 (port_top_speed(pi) > 10 || sc->params.nports > 2)) 1305 cp->tx_align = 1; 1306 else 1307 cp->tx_align = 0; 1308 1309 /* ULP mode. */ 1310 cp->ulp_mode = ULP_MODE_NONE; 1311 1312 /* Rx coalescing. */ 1313 if (s->rx_coalesce >= 0) 1314 cp->rx_coalesce = s->rx_coalesce > 0 ? 1 : 0; 1315 else if (tt->rx_coalesce >= 0) 1316 cp->rx_coalesce = tt->rx_coalesce > 0 ? 1 : 0; 1317 else 1318 cp->rx_coalesce = 1; /* default */ 1319 1320 /* 1321 * Index in the PMTU table. This controls the MSS that we announce in 1322 * our SYN initially, but after ESTABLISHED it controls the MSS that we 1323 * use to send data. 1324 */ 1325 cp->mtu_idx = find_best_mtu_idx(sc, inc, s); 1326 1327 /* Tx queue for this connection. */ 1328 if (s->txq == QUEUE_RANDOM) 1329 q_idx = arc4random(); 1330 else if (s->txq == QUEUE_ROUNDROBIN) 1331 q_idx = atomic_fetchadd_int(&vi->txq_rr, 1); 1332 else 1333 q_idx = s->txq; 1334 cp->txq_idx = vi->first_ofld_txq + q_idx % vi->nofldtxq; 1335 1336 /* Rx queue for this connection. */ 1337 if (s->rxq == QUEUE_RANDOM) 1338 q_idx = arc4random(); 1339 else if (s->rxq == QUEUE_ROUNDROBIN) 1340 q_idx = atomic_fetchadd_int(&vi->rxq_rr, 1); 1341 else 1342 q_idx = s->rxq; 1343 cp->rxq_idx = vi->first_ofld_rxq + q_idx % vi->nofldrxq; 1344 1345 if (SOLISTENING(so)) { 1346 /* Passive open */ 1347 MPASS(tcpopt != NULL); 1348 1349 /* TCP timestamp option */ 1350 if (tcpopt->tstamp && 1351 (s->tstamp > 0 || (s->tstamp < 0 && V_tcp_do_rfc1323))) 1352 cp->tstamp = 1; 1353 else 1354 cp->tstamp = 0; 1355 1356 /* SACK */ 1357 if (tcpopt->sack && 1358 (s->sack > 0 || (s->sack < 0 && V_tcp_do_sack))) 1359 cp->sack = 1; 1360 else 1361 cp->sack = 0; 1362 1363 /* Receive window scaling. */ 1364 if (tcpopt->wsf > 0 && tcpopt->wsf < 15 && V_tcp_do_rfc1323) 1365 cp->wscale = select_rcv_wscale(); 1366 else 1367 cp->wscale = 0; 1368 1369 /* ECN */ 1370 if (tcpopt->ecn && /* XXX: review. */ 1371 (s->ecn > 0 || (s->ecn < 0 && V_tcp_do_ecn))) 1372 cp->ecn = 1; 1373 else 1374 cp->ecn = 0; 1375 1376 wnd = max(so->sol_sbrcv_hiwat, MIN_RCV_WND); 1377 cp->opt0_bufsize = min(wnd >> 10, M_RCV_BUFSIZ); 1378 1379 if (tt->sndbuf > 0) 1380 cp->sndbuf = tt->sndbuf; 1381 else if (so->sol_sbsnd_flags & SB_AUTOSIZE && 1382 V_tcp_do_autosndbuf) 1383 cp->sndbuf = 256 * 1024; 1384 else 1385 cp->sndbuf = so->sol_sbsnd_hiwat; 1386 } else { 1387 /* Active open */ 1388 1389 /* TCP timestamp option */ 1390 if (s->tstamp > 0 || 1391 (s->tstamp < 0 && (tp->t_flags & TF_REQ_TSTMP))) 1392 cp->tstamp = 1; 1393 else 1394 cp->tstamp = 0; 1395 1396 /* SACK */ 1397 if (s->sack > 0 || 1398 (s->sack < 0 && (tp->t_flags & TF_SACK_PERMIT))) 1399 cp->sack = 1; 1400 else 1401 cp->sack = 0; 1402 1403 /* Receive window scaling */ 1404 if (tp->t_flags & TF_REQ_SCALE) 1405 cp->wscale = select_rcv_wscale(); 1406 else 1407 cp->wscale = 0; 1408 1409 /* ECN */ 1410 if (s->ecn > 0 || (s->ecn < 0 && V_tcp_do_ecn == 1)) 1411 cp->ecn = 1; 1412 else 1413 cp->ecn = 0; 1414 1415 SOCKBUF_LOCK(&so->so_rcv); 1416 wnd = max(select_rcv_wnd(so), MIN_RCV_WND); 1417 SOCKBUF_UNLOCK(&so->so_rcv); 1418 cp->opt0_bufsize = min(wnd >> 10, M_RCV_BUFSIZ); 1419 1420 if (tt->sndbuf > 0) 1421 cp->sndbuf = tt->sndbuf; 1422 else { 1423 SOCKBUF_LOCK(&so->so_snd); 1424 if (so->so_snd.sb_flags & SB_AUTOSIZE && 1425 V_tcp_do_autosndbuf) 1426 cp->sndbuf = 256 * 1024; 1427 else 1428 cp->sndbuf = so->so_snd.sb_hiwat; 1429 SOCKBUF_UNLOCK(&so->so_snd); 1430 } 1431 } 1432 1433 cp->l2t_idx = l2t_idx; 1434 1435 /* This will be initialized on ESTABLISHED. */ 1436 cp->emss = 0; 1437 } 1438 1439 int 1440 negative_advice(int status) 1441 { 1442 1443 return (status == CPL_ERR_RTX_NEG_ADVICE || 1444 status == CPL_ERR_PERSIST_NEG_ADVICE || 1445 status == CPL_ERR_KEEPALV_NEG_ADVICE); 1446 } 1447 1448 static int 1449 alloc_tid_tab(struct adapter *sc) 1450 { 1451 struct tid_info *t = &sc->tids; 1452 1453 MPASS(t->ntids > 0); 1454 MPASS(t->tid_tab == NULL); 1455 1456 t->tid_tab = malloc(t->ntids * sizeof(*t->tid_tab), M_CXGBE, 1457 M_ZERO | M_NOWAIT); 1458 if (t->tid_tab == NULL) 1459 return (ENOMEM); 1460 atomic_store_rel_int(&t->tids_in_use, 0); 1461 1462 return (0); 1463 } 1464 1465 static void 1466 free_tid_tab(struct adapter *sc) 1467 { 1468 struct tid_info *t = &sc->tids; 1469 1470 KASSERT(t->tids_in_use == 0, 1471 ("%s: %d tids still in use.", __func__, t->tids_in_use)); 1472 1473 free(t->tid_tab, M_CXGBE); 1474 t->tid_tab = NULL; 1475 } 1476 1477 static void 1478 free_tid_tabs(struct adapter *sc) 1479 { 1480 free_tid_tab(sc); 1481 free_stid_tab(sc); 1482 } 1483 1484 static int 1485 alloc_tid_tabs(struct adapter *sc) 1486 { 1487 int rc; 1488 1489 rc = alloc_tid_tab(sc); 1490 if (rc != 0) 1491 goto failed; 1492 1493 rc = alloc_stid_tab(sc); 1494 if (rc != 0) 1495 goto failed; 1496 1497 return (0); 1498 failed: 1499 free_tid_tabs(sc); 1500 return (rc); 1501 } 1502 1503 static inline void 1504 alloc_tcb_history(struct adapter *sc, struct tom_data *td) 1505 { 1506 1507 if (sc->tids.ntids == 0 || sc->tids.ntids > 1024) 1508 return; 1509 rw_init(&td->tcb_history_lock, "TCB history"); 1510 td->tcb_history = malloc(sc->tids.ntids * sizeof(*td->tcb_history), 1511 M_CXGBE, M_ZERO | M_NOWAIT); 1512 td->dupack_threshold = G_DUPACKTHRESH(t4_read_reg(sc, A_TP_PARA_REG0)); 1513 } 1514 1515 static inline void 1516 free_tcb_history(struct adapter *sc, struct tom_data *td) 1517 { 1518 #ifdef INVARIANTS 1519 int i; 1520 1521 if (td->tcb_history != NULL) { 1522 for (i = 0; i < sc->tids.ntids; i++) { 1523 MPASS(td->tcb_history[i] == NULL); 1524 } 1525 } 1526 #endif 1527 free(td->tcb_history, M_CXGBE); 1528 if (rw_initialized(&td->tcb_history_lock)) 1529 rw_destroy(&td->tcb_history_lock); 1530 } 1531 1532 static void 1533 free_tom_data(struct adapter *sc, struct tom_data *td) 1534 { 1535 1536 ASSERT_SYNCHRONIZED_OP(sc); 1537 1538 KASSERT(TAILQ_EMPTY(&td->toep_list), 1539 ("%s: TOE PCB list is not empty.", __func__)); 1540 KASSERT(td->lctx_count == 0, 1541 ("%s: lctx hash table is not empty.", __func__)); 1542 1543 t4_free_ppod_region(&td->pr); 1544 1545 if (td->listen_mask != 0) 1546 hashdestroy(td->listen_hash, M_CXGBE, td->listen_mask); 1547 1548 if (mtx_initialized(&td->unsent_wr_lock)) 1549 mtx_destroy(&td->unsent_wr_lock); 1550 if (mtx_initialized(&td->lctx_hash_lock)) 1551 mtx_destroy(&td->lctx_hash_lock); 1552 if (mtx_initialized(&td->toep_list_lock)) 1553 mtx_destroy(&td->toep_list_lock); 1554 1555 free_tcb_history(sc, td); 1556 free_tid_tabs(sc); 1557 free(td, M_CXGBE); 1558 } 1559 1560 static char * 1561 prepare_pkt(int open_type, uint16_t vtag, struct inpcb *inp, int *pktlen, 1562 int *buflen) 1563 { 1564 char *pkt; 1565 struct tcphdr *th; 1566 int ipv6, len; 1567 const int maxlen = 1568 max(sizeof(struct ether_header), sizeof(struct ether_vlan_header)) + 1569 max(sizeof(struct ip), sizeof(struct ip6_hdr)) + 1570 sizeof(struct tcphdr); 1571 1572 MPASS(open_type == OPEN_TYPE_ACTIVE || open_type == OPEN_TYPE_LISTEN); 1573 1574 pkt = malloc(maxlen, M_CXGBE, M_ZERO | M_NOWAIT); 1575 if (pkt == NULL) 1576 return (NULL); 1577 1578 ipv6 = inp->inp_vflag & INP_IPV6; 1579 len = 0; 1580 1581 if (EVL_VLANOFTAG(vtag) == 0xfff) { 1582 struct ether_header *eh = (void *)pkt; 1583 1584 if (ipv6) 1585 eh->ether_type = htons(ETHERTYPE_IPV6); 1586 else 1587 eh->ether_type = htons(ETHERTYPE_IP); 1588 1589 len += sizeof(*eh); 1590 } else { 1591 struct ether_vlan_header *evh = (void *)pkt; 1592 1593 evh->evl_encap_proto = htons(ETHERTYPE_VLAN); 1594 evh->evl_tag = htons(vtag); 1595 if (ipv6) 1596 evh->evl_proto = htons(ETHERTYPE_IPV6); 1597 else 1598 evh->evl_proto = htons(ETHERTYPE_IP); 1599 1600 len += sizeof(*evh); 1601 } 1602 1603 if (ipv6) { 1604 struct ip6_hdr *ip6 = (void *)&pkt[len]; 1605 1606 ip6->ip6_vfc = IPV6_VERSION; 1607 ip6->ip6_plen = htons(sizeof(struct tcphdr)); 1608 ip6->ip6_nxt = IPPROTO_TCP; 1609 if (open_type == OPEN_TYPE_ACTIVE) { 1610 ip6->ip6_src = inp->in6p_laddr; 1611 ip6->ip6_dst = inp->in6p_faddr; 1612 } else if (open_type == OPEN_TYPE_LISTEN) { 1613 ip6->ip6_src = inp->in6p_laddr; 1614 ip6->ip6_dst = ip6->ip6_src; 1615 } 1616 1617 len += sizeof(*ip6); 1618 } else { 1619 struct ip *ip = (void *)&pkt[len]; 1620 1621 ip->ip_v = IPVERSION; 1622 ip->ip_hl = sizeof(*ip) >> 2; 1623 ip->ip_tos = inp->inp_ip_tos; 1624 ip->ip_len = htons(sizeof(struct ip) + sizeof(struct tcphdr)); 1625 ip->ip_ttl = inp->inp_ip_ttl; 1626 ip->ip_p = IPPROTO_TCP; 1627 if (open_type == OPEN_TYPE_ACTIVE) { 1628 ip->ip_src = inp->inp_laddr; 1629 ip->ip_dst = inp->inp_faddr; 1630 } else if (open_type == OPEN_TYPE_LISTEN) { 1631 ip->ip_src = inp->inp_laddr; 1632 ip->ip_dst = ip->ip_src; 1633 } 1634 1635 len += sizeof(*ip); 1636 } 1637 1638 th = (void *)&pkt[len]; 1639 if (open_type == OPEN_TYPE_ACTIVE) { 1640 th->th_sport = inp->inp_lport; /* network byte order already */ 1641 th->th_dport = inp->inp_fport; /* ditto */ 1642 } else if (open_type == OPEN_TYPE_LISTEN) { 1643 th->th_sport = inp->inp_lport; /* network byte order already */ 1644 th->th_dport = th->th_sport; 1645 } 1646 len += sizeof(th); 1647 1648 *pktlen = *buflen = len; 1649 return (pkt); 1650 } 1651 1652 const struct offload_settings * 1653 lookup_offload_policy(struct adapter *sc, int open_type, struct mbuf *m, 1654 uint16_t vtag, struct inpcb *inp) 1655 { 1656 const struct t4_offload_policy *op; 1657 char *pkt; 1658 struct offload_rule *r; 1659 int i, matched, pktlen, buflen; 1660 static const struct offload_settings allow_offloading_settings = { 1661 .offload = 1, 1662 .rx_coalesce = -1, 1663 .cong_algo = -1, 1664 .sched_class = -1, 1665 .tstamp = -1, 1666 .sack = -1, 1667 .nagle = -1, 1668 .ecn = -1, 1669 .ddp = -1, 1670 .tls = -1, 1671 .txq = QUEUE_RANDOM, 1672 .rxq = QUEUE_RANDOM, 1673 .mss = -1, 1674 }; 1675 static const struct offload_settings disallow_offloading_settings = { 1676 .offload = 0, 1677 /* rest is irrelevant when offload is off. */ 1678 }; 1679 1680 rw_assert(&sc->policy_lock, RA_LOCKED); 1681 1682 /* 1683 * If there's no Connection Offloading Policy attached to the device 1684 * then we need to return a default static policy. If 1685 * "cop_managed_offloading" is true, then we need to disallow 1686 * offloading until a COP is attached to the device. Otherwise we 1687 * allow offloading ... 1688 */ 1689 op = sc->policy; 1690 if (op == NULL) { 1691 if (sc->tt.cop_managed_offloading) 1692 return (&disallow_offloading_settings); 1693 else 1694 return (&allow_offloading_settings); 1695 } 1696 1697 switch (open_type) { 1698 case OPEN_TYPE_ACTIVE: 1699 case OPEN_TYPE_LISTEN: 1700 pkt = prepare_pkt(open_type, vtag, inp, &pktlen, &buflen); 1701 break; 1702 case OPEN_TYPE_PASSIVE: 1703 MPASS(m != NULL); 1704 pkt = mtod(m, char *); 1705 MPASS(*pkt == CPL_PASS_ACCEPT_REQ); 1706 pkt += sizeof(struct cpl_pass_accept_req); 1707 pktlen = m->m_pkthdr.len - sizeof(struct cpl_pass_accept_req); 1708 buflen = m->m_len - sizeof(struct cpl_pass_accept_req); 1709 break; 1710 default: 1711 MPASS(0); 1712 return (&disallow_offloading_settings); 1713 } 1714 1715 if (pkt == NULL || pktlen == 0 || buflen == 0) 1716 return (&disallow_offloading_settings); 1717 1718 matched = 0; 1719 r = &op->rule[0]; 1720 for (i = 0; i < op->nrules; i++, r++) { 1721 if (r->open_type != open_type && 1722 r->open_type != OPEN_TYPE_DONTCARE) { 1723 continue; 1724 } 1725 matched = bpf_filter(r->bpf_prog.bf_insns, pkt, pktlen, buflen); 1726 if (matched) 1727 break; 1728 } 1729 1730 if (open_type == OPEN_TYPE_ACTIVE || open_type == OPEN_TYPE_LISTEN) 1731 free(pkt, M_CXGBE); 1732 1733 return (matched ? &r->settings : &disallow_offloading_settings); 1734 } 1735 1736 static void 1737 reclaim_wr_resources(void *arg, int count) 1738 { 1739 struct tom_data *td = arg; 1740 STAILQ_HEAD(, wrqe) twr_list = STAILQ_HEAD_INITIALIZER(twr_list); 1741 struct cpl_act_open_req *cpl; 1742 u_int opcode, atid, tid; 1743 struct wrqe *wr; 1744 struct adapter *sc = td_adapter(td); 1745 1746 mtx_lock(&td->unsent_wr_lock); 1747 STAILQ_SWAP(&td->unsent_wr_list, &twr_list, wrqe); 1748 mtx_unlock(&td->unsent_wr_lock); 1749 1750 while ((wr = STAILQ_FIRST(&twr_list)) != NULL) { 1751 STAILQ_REMOVE_HEAD(&twr_list, link); 1752 1753 cpl = wrtod(wr); 1754 opcode = GET_OPCODE(cpl); 1755 1756 switch (opcode) { 1757 case CPL_ACT_OPEN_REQ: 1758 case CPL_ACT_OPEN_REQ6: 1759 atid = G_TID_TID(be32toh(OPCODE_TID(cpl))); 1760 CTR2(KTR_CXGBE, "%s: atid %u ", __func__, atid); 1761 act_open_failure_cleanup(sc, lookup_atid(sc, atid), 1762 EHOSTUNREACH); 1763 free(wr, M_CXGBE); 1764 break; 1765 case CPL_PASS_ACCEPT_RPL: 1766 tid = GET_TID(cpl); 1767 CTR2(KTR_CXGBE, "%s: tid %u ", __func__, tid); 1768 synack_failure_cleanup(sc, lookup_tid(sc, tid)); 1769 free(wr, M_CXGBE); 1770 break; 1771 default: 1772 log(LOG_ERR, "%s: leaked work request %p, wr_len %d, " 1773 "opcode %x\n", __func__, wr, wr->wr_len, opcode); 1774 /* WR not freed here; go look at it with a debugger. */ 1775 } 1776 } 1777 } 1778 1779 /* 1780 * Based on do_abort_req. We treat an abrupt hardware stop as a connection 1781 * abort from the hardware. 1782 */ 1783 static void 1784 live_tid_failure_cleanup(struct adapter *sc, struct toepcb *toep, u_int status) 1785 { 1786 struct inpcb *inp; 1787 struct tcpcb *tp; 1788 struct epoch_tracker et; 1789 1790 MPASS(!(toep->flags & TPF_SYNQE)); 1791 1792 inp = toep->inp; 1793 CURVNET_SET(toep->vnet); 1794 NET_EPOCH_ENTER(et); /* for tcp_close */ 1795 INP_WLOCK(inp); 1796 tp = intotcpcb(inp); 1797 toep->flags |= TPF_ABORT_SHUTDOWN; 1798 if ((inp->inp_flags & INP_DROPPED) == 0) { 1799 struct socket *so = inp->inp_socket; 1800 1801 if (so != NULL) 1802 so_error_set(so, status); 1803 tp = tcp_close(tp); 1804 if (tp == NULL) 1805 INP_WLOCK(inp); /* re-acquire */ 1806 } 1807 final_cpl_received(toep); 1808 NET_EPOCH_EXIT(et); 1809 CURVNET_RESTORE(); 1810 } 1811 1812 static void 1813 cleanup_stranded_tids(void *arg, int count) 1814 { 1815 TAILQ_HEAD(, toepcb) tlist = TAILQ_HEAD_INITIALIZER(tlist); 1816 TAILQ_HEAD(, synq_entry) slist = TAILQ_HEAD_INITIALIZER(slist); 1817 struct tom_data *td = arg; 1818 struct adapter *sc = td_adapter(td); 1819 struct toepcb *toep; 1820 struct synq_entry *synqe; 1821 1822 /* Clean up synq entries. */ 1823 mtx_lock(&td->toep_list_lock); 1824 TAILQ_SWAP(&td->stranded_synqe, &slist, synq_entry, link); 1825 mtx_unlock(&td->toep_list_lock); 1826 while ((synqe = TAILQ_FIRST(&slist)) != NULL) { 1827 TAILQ_REMOVE(&slist, synqe, link); 1828 MPASS(synqe->tid >= 0); /* stale, was kept around for debug */ 1829 synqe->tid = -1; 1830 synack_failure_cleanup(sc, synqe); 1831 } 1832 1833 /* Clean up in-flight active opens. */ 1834 mtx_lock(&td->toep_list_lock); 1835 TAILQ_SWAP(&td->stranded_atids, &tlist, toepcb, link); 1836 mtx_unlock(&td->toep_list_lock); 1837 while ((toep = TAILQ_FIRST(&tlist)) != NULL) { 1838 TAILQ_REMOVE(&tlist, toep, link); 1839 MPASS(toep->tid >= 0); /* stale, was kept around for debug */ 1840 toep->tid = -1; 1841 act_open_failure_cleanup(sc, toep, EHOSTUNREACH); 1842 } 1843 1844 /* Clean up live connections. */ 1845 mtx_lock(&td->toep_list_lock); 1846 TAILQ_SWAP(&td->stranded_tids, &tlist, toepcb, link); 1847 mtx_unlock(&td->toep_list_lock); 1848 while ((toep = TAILQ_FIRST(&tlist)) != NULL) { 1849 TAILQ_REMOVE(&tlist, toep, link); 1850 MPASS(toep->tid >= 0); /* stale, was kept around for debug */ 1851 toep->tid = -1; 1852 live_tid_failure_cleanup(sc, toep, ECONNABORTED); 1853 } 1854 } 1855 1856 /* 1857 * Ground control to Major TOM 1858 * Commencing countdown, engines on 1859 */ 1860 static int 1861 t4_tom_activate(struct adapter *sc) 1862 { 1863 struct tom_data *td; 1864 struct toedev *tod; 1865 struct vi_info *vi; 1866 int i, rc, v; 1867 1868 ASSERT_SYNCHRONIZED_OP(sc); 1869 1870 /* per-adapter softc for TOM */ 1871 td = malloc(sizeof(*td), M_CXGBE, M_ZERO | M_NOWAIT); 1872 if (td == NULL) 1873 return (ENOMEM); 1874 1875 /* List of TOE PCBs and associated lock */ 1876 mtx_init(&td->toep_list_lock, "PCB list lock", NULL, MTX_DEF); 1877 TAILQ_INIT(&td->toep_list); 1878 TAILQ_INIT(&td->synqe_list); 1879 TAILQ_INIT(&td->stranded_atids); 1880 TAILQ_INIT(&td->stranded_tids); 1881 TASK_INIT(&td->cleanup_stranded_tids, 0, cleanup_stranded_tids, td); 1882 1883 /* Listen context */ 1884 mtx_init(&td->lctx_hash_lock, "lctx hash lock", NULL, MTX_DEF); 1885 td->listen_hash = hashinit_flags(LISTEN_HASH_SIZE, M_CXGBE, 1886 &td->listen_mask, HASH_NOWAIT); 1887 1888 /* List of WRs for which L2 resolution failed */ 1889 mtx_init(&td->unsent_wr_lock, "Unsent WR list lock", NULL, MTX_DEF); 1890 STAILQ_INIT(&td->unsent_wr_list); 1891 TASK_INIT(&td->reclaim_wr_resources, 0, reclaim_wr_resources, td); 1892 1893 /* TID tables */ 1894 rc = alloc_tid_tabs(sc); 1895 if (rc != 0) 1896 goto done; 1897 1898 rc = t4_init_ppod_region(&td->pr, &sc->vres.ddp, 1899 t4_read_reg(sc, A_ULP_RX_TDDP_PSZ), "TDDP page pods"); 1900 if (rc != 0) 1901 goto done; 1902 t4_set_reg_field(sc, A_ULP_RX_TDDP_TAGMASK, 1903 V_TDDPTAGMASK(M_TDDPTAGMASK), td->pr.pr_tag_mask); 1904 1905 alloc_tcb_history(sc, td); 1906 1907 /* toedev ops */ 1908 tod = &td->tod; 1909 init_toedev(tod); 1910 tod->tod_softc = sc; 1911 tod->tod_connect = t4_connect; 1912 tod->tod_listen_start = t4_listen_start; 1913 tod->tod_listen_stop = t4_listen_stop; 1914 tod->tod_rcvd = t4_rcvd; 1915 tod->tod_output = t4_tod_output; 1916 tod->tod_send_rst = t4_send_rst; 1917 tod->tod_send_fin = t4_send_fin; 1918 tod->tod_pcb_detach = t4_pcb_detach; 1919 tod->tod_l2_update = t4_l2_update; 1920 tod->tod_syncache_added = t4_syncache_added; 1921 tod->tod_syncache_removed = t4_syncache_removed; 1922 tod->tod_syncache_respond = t4_syncache_respond; 1923 tod->tod_offload_socket = t4_offload_socket; 1924 tod->tod_ctloutput = t4_ctloutput; 1925 tod->tod_tcp_info = t4_tcp_info; 1926 #ifdef KERN_TLS 1927 tod->tod_alloc_tls_session = t4_alloc_tls_session; 1928 #endif 1929 tod->tod_pmtu_update = t4_pmtu_update; 1930 1931 for_each_port(sc, i) { 1932 for_each_vi(sc->port[i], v, vi) { 1933 SETTOEDEV(vi->ifp, &td->tod); 1934 } 1935 } 1936 1937 sc->tom_softc = td; 1938 register_toedev(sc->tom_softc); 1939 1940 done: 1941 if (rc != 0) 1942 free_tom_data(sc, td); 1943 return (rc); 1944 } 1945 1946 static int 1947 t4_tom_deactivate(struct adapter *sc) 1948 { 1949 int rc = 0, i, v; 1950 struct tom_data *td = sc->tom_softc; 1951 struct vi_info *vi; 1952 1953 ASSERT_SYNCHRONIZED_OP(sc); 1954 1955 if (td == NULL) 1956 return (0); /* XXX. KASSERT? */ 1957 1958 if (uld_active(sc, ULD_IWARP) || uld_active(sc, ULD_ISCSI)) 1959 return (EBUSY); /* both iWARP and iSCSI rely on the TOE. */ 1960 1961 if (sc->offload_map != 0) { 1962 for_each_port(sc, i) { 1963 for_each_vi(sc->port[i], v, vi) { 1964 toe_capability(vi, false); 1965 if_setcapenablebit(vi->ifp, 0, IFCAP_TOE); 1966 SETTOEDEV(vi->ifp, NULL); 1967 } 1968 } 1969 MPASS(sc->offload_map == 0); 1970 } 1971 1972 mtx_lock(&td->toep_list_lock); 1973 if (!TAILQ_EMPTY(&td->toep_list)) 1974 rc = EBUSY; 1975 MPASS(TAILQ_EMPTY(&td->synqe_list)); 1976 MPASS(TAILQ_EMPTY(&td->stranded_tids)); 1977 mtx_unlock(&td->toep_list_lock); 1978 1979 mtx_lock(&td->lctx_hash_lock); 1980 if (td->lctx_count > 0) 1981 rc = EBUSY; 1982 mtx_unlock(&td->lctx_hash_lock); 1983 1984 taskqueue_drain(taskqueue_thread, &td->reclaim_wr_resources); 1985 taskqueue_drain(taskqueue_thread, &td->cleanup_stranded_tids); 1986 mtx_lock(&td->unsent_wr_lock); 1987 if (!STAILQ_EMPTY(&td->unsent_wr_list)) 1988 rc = EBUSY; 1989 mtx_unlock(&td->unsent_wr_lock); 1990 1991 if (rc == 0) { 1992 unregister_toedev(sc->tom_softc); 1993 free_tom_data(sc, td); 1994 sc->tom_softc = NULL; 1995 } 1996 1997 return (rc); 1998 } 1999 2000 static void 2001 stop_atids(struct adapter *sc) 2002 { 2003 struct tom_data *td = sc->tom_softc; 2004 struct tid_info *t = &sc->tids; 2005 struct toepcb *toep; 2006 int atid; 2007 2008 /* 2009 * Hashfilters and T6-KTLS are the only other users of atids but they're 2010 * both mutually exclusive with TOE. That means t4_tom owns all the 2011 * atids in the table. 2012 */ 2013 MPASS(!is_hashfilter(sc)); 2014 if (is_t6(sc)) 2015 MPASS(!(sc->flags & KERN_TLS_ON)); 2016 2017 /* New atids are not being allocated. */ 2018 #ifdef INVARIANTS 2019 mtx_lock(&t->atid_lock); 2020 MPASS(t->atid_alloc_stopped == true); 2021 mtx_unlock(&t->atid_lock); 2022 #endif 2023 2024 /* 2025 * In-use atids fall in one of these two categories: 2026 * a) Those waiting for L2 resolution before being submitted to 2027 * hardware. 2028 * b) Those that have been submitted to hardware and are awaiting 2029 * replies that will never arrive because the LLD is stopped. 2030 */ 2031 for (atid = 0; atid < t->natids; atid++) { 2032 toep = lookup_atid(sc, atid); 2033 if ((uintptr_t)toep >= (uintptr_t)&t->atid_tab[0] && 2034 (uintptr_t)toep < (uintptr_t)&t->atid_tab[t->natids]) 2035 continue; 2036 if (__predict_false(toep == NULL)) 2037 continue; 2038 MPASS(toep->tid == atid); 2039 MPASS(toep->incarnation == sc->incarnation); 2040 /* 2041 * Take the atid out of the lookup table. toep->tid is stale 2042 * after this but useful for debug. 2043 */ 2044 CTR(KTR_CXGBE, "%s: atid %d@%d STRANDED, removed from table", 2045 __func__, atid, toep->incarnation); 2046 free_atid(sc, toep->tid); 2047 #if 0 2048 toep->tid = -1; 2049 #endif 2050 mtx_lock(&td->toep_list_lock); 2051 toep->flags &= ~TPF_IN_TOEP_LIST; 2052 TAILQ_REMOVE(&td->toep_list, toep, link); 2053 TAILQ_INSERT_TAIL(&td->stranded_atids, toep, link); 2054 mtx_unlock(&td->toep_list_lock); 2055 } 2056 MPASS(atomic_load_int(&t->atids_in_use) == 0); 2057 } 2058 2059 static void 2060 stop_tids(struct adapter *sc) 2061 { 2062 struct tom_data *td = sc->tom_softc; 2063 struct toepcb *toep; 2064 #ifdef INVARIANTS 2065 struct tid_info *t = &sc->tids; 2066 #endif 2067 2068 /* 2069 * The LLD's offload queues are stopped so do_act_establish and 2070 * do_pass_accept_req cannot run and insert tids in parallel with this 2071 * thread. stop_stid_tab has also run and removed the synq entries' 2072 * tids from the table. The only tids in the table are for connections 2073 * at or beyond ESTABLISHED that are still waiting for the final CPL. 2074 */ 2075 mtx_lock(&td->toep_list_lock); 2076 TAILQ_FOREACH(toep, &td->toep_list, link) { 2077 MPASS(sc->incarnation == toep->incarnation); 2078 MPASS(toep->tid >= 0); 2079 MPASS(toep == lookup_tid(sc, toep->tid)); 2080 /* Remove tid from the lookup table immediately. */ 2081 CTR(KTR_CXGBE, "%s: tid %d@%d STRANDED, removed from table", 2082 __func__, toep->tid, toep->incarnation); 2083 remove_tid(sc, toep->tid, toep->ce ? 2 : 1); 2084 #if 0 2085 /* toep->tid is stale now but left alone for debug. */ 2086 toep->tid = -1; 2087 #endif 2088 /* All toep in this list will get bulk moved to stranded_tids */ 2089 toep->flags &= ~TPF_IN_TOEP_LIST; 2090 } 2091 MPASS(TAILQ_EMPTY(&td->stranded_tids)); 2092 TAILQ_CONCAT(&td->stranded_tids, &td->toep_list, link); 2093 MPASS(TAILQ_EMPTY(&td->toep_list)); 2094 mtx_unlock(&td->toep_list_lock); 2095 2096 MPASS(atomic_load_int(&t->tids_in_use) == 0); 2097 } 2098 2099 /* 2100 * L2T is stable because 2101 * 1. stop_lld stopped all new allocations. 2102 * 2. stop_lld also stopped the tx wrq so nothing is enqueueing new WRs to the 2103 * queue or to l2t_entry->wr_list. 2104 * 3. t4_l2t_update is ignoring all L2 updates. 2105 */ 2106 static void 2107 stop_tom_l2t(struct adapter *sc) 2108 { 2109 struct l2t_data *d = sc->l2t; 2110 struct tom_data *td = sc->tom_softc; 2111 struct l2t_entry *e; 2112 struct wrqe *wr; 2113 int i; 2114 2115 /* 2116 * This task cannot be enqueued because L2 state changes are not being 2117 * processed. But if it's already scheduled or running then we need to 2118 * wait for it to cleanup the atids in the unsent_wr_list. 2119 */ 2120 taskqueue_drain(taskqueue_thread, &td->reclaim_wr_resources); 2121 MPASS(STAILQ_EMPTY(&td->unsent_wr_list)); 2122 2123 for (i = 0; i < d->l2t_size; i++) { 2124 e = &d->l2tab[i]; 2125 mtx_lock(&e->lock); 2126 if (e->state == L2T_STATE_VALID || e->state == L2T_STATE_STALE) 2127 e->state = L2T_STATE_RESOLVING; 2128 /* 2129 * stop_atids is going to clean up _all_ atids in use, including 2130 * these that were pending L2 resolution. Just discard the WRs. 2131 */ 2132 while ((wr = STAILQ_FIRST(&e->wr_list)) != NULL) { 2133 STAILQ_REMOVE_HEAD(&e->wr_list, link); 2134 free(wr, M_CXGBE); 2135 } 2136 mtx_unlock(&e->lock); 2137 } 2138 } 2139 2140 static int 2141 t4_tom_stop(struct adapter *sc) 2142 { 2143 struct tid_info *t = &sc->tids; 2144 struct tom_data *td = sc->tom_softc; 2145 2146 ASSERT_SYNCHRONIZED_OP(sc); 2147 2148 stop_tom_l2t(sc); 2149 if (atomic_load_int(&t->atids_in_use) > 0) 2150 stop_atids(sc); 2151 if (atomic_load_int(&t->stids_in_use) > 0) 2152 stop_stid_tab(sc); 2153 if (atomic_load_int(&t->tids_in_use) > 0) 2154 stop_tids(sc); 2155 taskqueue_enqueue(taskqueue_thread, &td->cleanup_stranded_tids); 2156 2157 /* 2158 * L2T and atid_tab are restarted before t4_tom_restart so this assert 2159 * is not valid in t4_tom_restart. This is the next best place for it. 2160 */ 2161 MPASS(STAILQ_EMPTY(&td->unsent_wr_list)); 2162 2163 return (0); 2164 } 2165 2166 static int 2167 t4_tom_restart(struct adapter *sc) 2168 { 2169 ASSERT_SYNCHRONIZED_OP(sc); 2170 2171 restart_stid_tab(sc); 2172 2173 return (0); 2174 } 2175 2176 static int 2177 t4_ctloutput_tom(struct socket *so, struct sockopt *sopt) 2178 { 2179 struct tcpcb *tp = sototcpcb(so); 2180 struct toepcb *toep = tp->t_toe; 2181 int error, optval; 2182 2183 if (sopt->sopt_level == IPPROTO_TCP && sopt->sopt_name == TCP_USE_DDP) { 2184 if (sopt->sopt_dir != SOPT_SET) 2185 return (EOPNOTSUPP); 2186 2187 if (sopt->sopt_td != NULL) { 2188 /* Only settable by the kernel. */ 2189 return (EPERM); 2190 } 2191 2192 error = sooptcopyin(sopt, &optval, sizeof(optval), 2193 sizeof(optval)); 2194 if (error != 0) 2195 return (error); 2196 2197 if (optval != 0) 2198 return (t4_enable_ddp_rcv(so, toep)); 2199 else 2200 return (EOPNOTSUPP); 2201 } 2202 return (tcp_ctloutput(so, sopt)); 2203 } 2204 2205 static int 2206 t4_aio_queue_tom(struct socket *so, struct kaiocb *job) 2207 { 2208 struct tcpcb *tp = sototcpcb(so); 2209 struct toepcb *toep = tp->t_toe; 2210 int error; 2211 2212 /* 2213 * No lock is needed as TOE sockets never change between 2214 * active and passive. 2215 */ 2216 if (SOLISTENING(so)) 2217 return (EINVAL); 2218 2219 if (ulp_mode(toep) == ULP_MODE_TCPDDP || 2220 ulp_mode(toep) == ULP_MODE_NONE) { 2221 error = t4_aio_queue_ddp(so, job); 2222 if (error != EOPNOTSUPP) 2223 return (error); 2224 } 2225 2226 return (t4_aio_queue_aiotx(so, job)); 2227 } 2228 2229 static int 2230 t4_tom_mod_load(void) 2231 { 2232 /* CPL handlers */ 2233 t4_register_cpl_handler(CPL_GET_TCB_RPL, do_get_tcb_rpl); 2234 t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, do_l2t_write_rpl2, 2235 CPL_COOKIE_TOM); 2236 t4_init_connect_cpl_handlers(); 2237 t4_init_listen_cpl_handlers(); 2238 t4_init_cpl_io_handlers(); 2239 2240 t4_ddp_mod_load(); 2241 t4_tls_mod_load(); 2242 2243 bcopy(&tcp_protosw, &toe_protosw, sizeof(toe_protosw)); 2244 toe_protosw.pr_ctloutput = t4_ctloutput_tom; 2245 toe_protosw.pr_aio_queue = t4_aio_queue_tom; 2246 2247 bcopy(&tcp6_protosw, &toe6_protosw, sizeof(toe6_protosw)); 2248 toe6_protosw.pr_ctloutput = t4_ctloutput_tom; 2249 toe6_protosw.pr_aio_queue = t4_aio_queue_tom; 2250 2251 return (t4_register_uld(&tom_uld_info, ULD_TOM)); 2252 } 2253 2254 static void 2255 tom_uninit(struct adapter *sc, void *arg) 2256 { 2257 bool *ok_to_unload = arg; 2258 2259 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4tomun")) 2260 return; 2261 2262 /* Try to free resources (works only if no port has IFCAP_TOE) */ 2263 if (uld_active(sc, ULD_TOM) && t4_deactivate_uld(sc, ULD_TOM) != 0) 2264 *ok_to_unload = false; 2265 2266 end_synchronized_op(sc, 0); 2267 } 2268 2269 static int 2270 t4_tom_mod_unload(void) 2271 { 2272 bool ok_to_unload = true; 2273 2274 t4_iterate(tom_uninit, &ok_to_unload); 2275 if (!ok_to_unload) 2276 return (EBUSY); 2277 2278 if (t4_unregister_uld(&tom_uld_info, ULD_TOM) == EBUSY) 2279 return (EBUSY); 2280 2281 t4_tls_mod_unload(); 2282 t4_ddp_mod_unload(); 2283 2284 t4_uninit_connect_cpl_handlers(); 2285 t4_uninit_listen_cpl_handlers(); 2286 t4_uninit_cpl_io_handlers(); 2287 t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, NULL, CPL_COOKIE_TOM); 2288 t4_register_cpl_handler(CPL_GET_TCB_RPL, NULL); 2289 2290 return (0); 2291 } 2292 #endif /* TCP_OFFLOAD */ 2293 2294 static int 2295 t4_tom_modevent(module_t mod, int cmd, void *arg) 2296 { 2297 int rc = 0; 2298 2299 #ifdef TCP_OFFLOAD 2300 switch (cmd) { 2301 case MOD_LOAD: 2302 rc = t4_tom_mod_load(); 2303 break; 2304 2305 case MOD_UNLOAD: 2306 rc = t4_tom_mod_unload(); 2307 break; 2308 2309 default: 2310 rc = EINVAL; 2311 } 2312 #else 2313 printf("t4_tom: compiled without TCP_OFFLOAD support.\n"); 2314 rc = EOPNOTSUPP; 2315 #endif 2316 return (rc); 2317 } 2318 2319 static moduledata_t t4_tom_moddata= { 2320 "t4_tom", 2321 t4_tom_modevent, 2322 0 2323 }; 2324 2325 MODULE_VERSION(t4_tom, 1); 2326 MODULE_DEPEND(t4_tom, toecore, 1, 1, 1); 2327 MODULE_DEPEND(t4_tom, t4nex, 1, 1, 1); 2328 DECLARE_MODULE(t4_tom, t4_tom_moddata, SI_SUB_EXEC, SI_ORDER_ANY); 2329