1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2012 Chelsio Communications, Inc. 5 * All rights reserved. 6 * Written by: Navdeep Parhar <np@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include "opt_inet.h" 34 #include "opt_inet6.h" 35 #include "opt_ratelimit.h" 36 37 #include <sys/param.h> 38 #include <sys/types.h> 39 #include <sys/systm.h> 40 #include <sys/kernel.h> 41 #include <sys/ktr.h> 42 #include <sys/lock.h> 43 #include <sys/limits.h> 44 #include <sys/module.h> 45 #include <sys/protosw.h> 46 #include <sys/domain.h> 47 #include <sys/refcount.h> 48 #include <sys/rmlock.h> 49 #include <sys/socket.h> 50 #include <sys/socketvar.h> 51 #include <sys/taskqueue.h> 52 #include <net/if.h> 53 #include <net/if_var.h> 54 #include <net/if_types.h> 55 #include <net/if_vlan_var.h> 56 #include <netinet/in.h> 57 #include <netinet/in_pcb.h> 58 #include <netinet/in_var.h> 59 #include <netinet/ip.h> 60 #include <netinet/ip6.h> 61 #include <netinet6/scope6_var.h> 62 #define TCPSTATES 63 #include <netinet/tcp_fsm.h> 64 #include <netinet/tcp_timer.h> 65 #include <netinet/tcp_var.h> 66 #include <netinet/toecore.h> 67 68 #ifdef TCP_OFFLOAD 69 #include "common/common.h" 70 #include "common/t4_msg.h" 71 #include "common/t4_regs.h" 72 #include "common/t4_regs_values.h" 73 #include "common/t4_tcb.h" 74 #include "t4_clip.h" 75 #include "tom/t4_tom_l2t.h" 76 #include "tom/t4_tom.h" 77 #include "tom/t4_tls.h" 78 79 static struct protosw toe_protosw; 80 static struct pr_usrreqs toe_usrreqs; 81 82 static struct protosw toe6_protosw; 83 static struct pr_usrreqs toe6_usrreqs; 84 85 /* Module ops */ 86 static int t4_tom_mod_load(void); 87 static int t4_tom_mod_unload(void); 88 static int t4_tom_modevent(module_t, int, void *); 89 90 /* ULD ops and helpers */ 91 static int t4_tom_activate(struct adapter *); 92 static int t4_tom_deactivate(struct adapter *); 93 94 static struct uld_info tom_uld_info = { 95 .uld_id = ULD_TOM, 96 .activate = t4_tom_activate, 97 .deactivate = t4_tom_deactivate, 98 }; 99 100 static void release_offload_resources(struct toepcb *); 101 static int alloc_tid_tabs(struct tid_info *); 102 static void free_tid_tabs(struct tid_info *); 103 static void free_tom_data(struct adapter *, struct tom_data *); 104 static void reclaim_wr_resources(void *, int); 105 106 struct toepcb * 107 alloc_toepcb(struct vi_info *vi, int txqid, int rxqid, int flags) 108 { 109 struct port_info *pi = vi->pi; 110 struct adapter *sc = pi->adapter; 111 struct toepcb *toep; 112 int tx_credits, txsd_total, len; 113 114 /* 115 * The firmware counts tx work request credits in units of 16 bytes 116 * each. Reserve room for an ABORT_REQ so the driver never has to worry 117 * about tx credits if it wants to abort a connection. 118 */ 119 tx_credits = sc->params.ofldq_wr_cred; 120 tx_credits -= howmany(sizeof(struct cpl_abort_req), 16); 121 122 /* 123 * Shortest possible tx work request is a fw_ofld_tx_data_wr + 1 byte 124 * immediate payload, and firmware counts tx work request credits in 125 * units of 16 byte. Calculate the maximum work requests possible. 126 */ 127 txsd_total = tx_credits / 128 howmany(sizeof(struct fw_ofld_tx_data_wr) + 1, 16); 129 130 KASSERT(txqid >= vi->first_ofld_txq && 131 txqid < vi->first_ofld_txq + vi->nofldtxq, 132 ("%s: txqid %d for vi %p (first %d, n %d)", __func__, txqid, vi, 133 vi->first_ofld_txq, vi->nofldtxq)); 134 135 KASSERT(rxqid >= vi->first_ofld_rxq && 136 rxqid < vi->first_ofld_rxq + vi->nofldrxq, 137 ("%s: rxqid %d for vi %p (first %d, n %d)", __func__, rxqid, vi, 138 vi->first_ofld_rxq, vi->nofldrxq)); 139 140 len = offsetof(struct toepcb, txsd) + 141 txsd_total * sizeof(struct ofld_tx_sdesc); 142 143 toep = malloc(len, M_CXGBE, M_ZERO | flags); 144 if (toep == NULL) 145 return (NULL); 146 147 refcount_init(&toep->refcount, 1); 148 toep->td = sc->tom_softc; 149 toep->vi = vi; 150 toep->tc_idx = -1; 151 toep->tx_total = tx_credits; 152 toep->tx_credits = tx_credits; 153 toep->ofld_txq = &sc->sge.ofld_txq[txqid]; 154 toep->ofld_rxq = &sc->sge.ofld_rxq[rxqid]; 155 toep->ctrlq = &sc->sge.ctrlq[pi->port_id]; 156 mbufq_init(&toep->ulp_pduq, INT_MAX); 157 mbufq_init(&toep->ulp_pdu_reclaimq, INT_MAX); 158 toep->txsd_total = txsd_total; 159 toep->txsd_avail = txsd_total; 160 toep->txsd_pidx = 0; 161 toep->txsd_cidx = 0; 162 aiotx_init_toep(toep); 163 164 return (toep); 165 } 166 167 struct toepcb * 168 hold_toepcb(struct toepcb *toep) 169 { 170 171 refcount_acquire(&toep->refcount); 172 return (toep); 173 } 174 175 void 176 free_toepcb(struct toepcb *toep) 177 { 178 179 if (refcount_release(&toep->refcount) == 0) 180 return; 181 182 KASSERT(!(toep->flags & TPF_ATTACHED), 183 ("%s: attached to an inpcb", __func__)); 184 KASSERT(!(toep->flags & TPF_CPL_PENDING), 185 ("%s: CPL pending", __func__)); 186 187 if (toep->ulp_mode == ULP_MODE_TCPDDP) 188 ddp_uninit_toep(toep); 189 tls_uninit_toep(toep); 190 free(toep, M_CXGBE); 191 } 192 193 /* 194 * Set up the socket for TCP offload. 195 */ 196 void 197 offload_socket(struct socket *so, struct toepcb *toep) 198 { 199 struct tom_data *td = toep->td; 200 struct inpcb *inp = sotoinpcb(so); 201 struct tcpcb *tp = intotcpcb(inp); 202 struct sockbuf *sb; 203 204 INP_WLOCK_ASSERT(inp); 205 206 /* Update socket */ 207 sb = &so->so_snd; 208 SOCKBUF_LOCK(sb); 209 sb->sb_flags |= SB_NOCOALESCE; 210 SOCKBUF_UNLOCK(sb); 211 sb = &so->so_rcv; 212 SOCKBUF_LOCK(sb); 213 sb->sb_flags |= SB_NOCOALESCE; 214 if (inp->inp_vflag & INP_IPV6) 215 so->so_proto = &toe6_protosw; 216 else 217 so->so_proto = &toe_protosw; 218 SOCKBUF_UNLOCK(sb); 219 220 /* Update TCP PCB */ 221 tp->tod = &td->tod; 222 tp->t_toe = toep; 223 tp->t_flags |= TF_TOE; 224 225 /* Install an extra hold on inp */ 226 toep->inp = inp; 227 toep->flags |= TPF_ATTACHED; 228 in_pcbref(inp); 229 230 /* Add the TOE PCB to the active list */ 231 mtx_lock(&td->toep_list_lock); 232 TAILQ_INSERT_HEAD(&td->toep_list, toep, link); 233 mtx_unlock(&td->toep_list_lock); 234 } 235 236 /* This is _not_ the normal way to "unoffload" a socket. */ 237 void 238 undo_offload_socket(struct socket *so) 239 { 240 struct inpcb *inp = sotoinpcb(so); 241 struct tcpcb *tp = intotcpcb(inp); 242 struct toepcb *toep = tp->t_toe; 243 struct tom_data *td = toep->td; 244 struct sockbuf *sb; 245 246 INP_WLOCK_ASSERT(inp); 247 248 sb = &so->so_snd; 249 SOCKBUF_LOCK(sb); 250 sb->sb_flags &= ~SB_NOCOALESCE; 251 SOCKBUF_UNLOCK(sb); 252 sb = &so->so_rcv; 253 SOCKBUF_LOCK(sb); 254 sb->sb_flags &= ~SB_NOCOALESCE; 255 SOCKBUF_UNLOCK(sb); 256 257 tp->tod = NULL; 258 tp->t_toe = NULL; 259 tp->t_flags &= ~TF_TOE; 260 261 toep->inp = NULL; 262 toep->flags &= ~TPF_ATTACHED; 263 if (in_pcbrele_wlocked(inp)) 264 panic("%s: inp freed.", __func__); 265 266 mtx_lock(&td->toep_list_lock); 267 TAILQ_REMOVE(&td->toep_list, toep, link); 268 mtx_unlock(&td->toep_list_lock); 269 } 270 271 static void 272 release_offload_resources(struct toepcb *toep) 273 { 274 struct tom_data *td = toep->td; 275 struct adapter *sc = td_adapter(td); 276 int tid = toep->tid; 277 278 KASSERT(!(toep->flags & TPF_CPL_PENDING), 279 ("%s: %p has CPL pending.", __func__, toep)); 280 KASSERT(!(toep->flags & TPF_ATTACHED), 281 ("%s: %p is still attached.", __func__, toep)); 282 283 CTR5(KTR_CXGBE, "%s: toep %p (tid %d, l2te %p, ce %p)", 284 __func__, toep, tid, toep->l2te, toep->ce); 285 286 /* 287 * These queues should have been emptied at approximately the same time 288 * that a normal connection's socket's so_snd would have been purged or 289 * drained. Do _not_ clean up here. 290 */ 291 MPASS(mbufq_len(&toep->ulp_pduq) == 0); 292 MPASS(mbufq_len(&toep->ulp_pdu_reclaimq) == 0); 293 #ifdef INVARIANTS 294 if (toep->ulp_mode == ULP_MODE_TCPDDP) 295 ddp_assert_empty(toep); 296 #endif 297 MPASS(TAILQ_EMPTY(&toep->aiotx_jobq)); 298 299 if (toep->l2te) 300 t4_l2t_release(toep->l2te); 301 302 if (tid >= 0) { 303 remove_tid(sc, tid, toep->ce ? 2 : 1); 304 release_tid(sc, tid, toep->ctrlq); 305 } 306 307 if (toep->ce) 308 t4_release_lip(sc, toep->ce); 309 310 if (toep->tc_idx != -1) 311 t4_release_cl_rl(sc, toep->vi->pi->port_id, toep->tc_idx); 312 313 mtx_lock(&td->toep_list_lock); 314 TAILQ_REMOVE(&td->toep_list, toep, link); 315 mtx_unlock(&td->toep_list_lock); 316 317 free_toepcb(toep); 318 } 319 320 /* 321 * The kernel is done with the TCP PCB and this is our opportunity to unhook the 322 * toepcb hanging off of it. If the TOE driver is also done with the toepcb (no 323 * pending CPL) then it is time to release all resources tied to the toepcb. 324 * 325 * Also gets called when an offloaded active open fails and the TOM wants the 326 * kernel to take the TCP PCB back. 327 */ 328 static void 329 t4_pcb_detach(struct toedev *tod __unused, struct tcpcb *tp) 330 { 331 #if defined(KTR) || defined(INVARIANTS) 332 struct inpcb *inp = tp->t_inpcb; 333 #endif 334 struct toepcb *toep = tp->t_toe; 335 336 INP_WLOCK_ASSERT(inp); 337 338 KASSERT(toep != NULL, ("%s: toep is NULL", __func__)); 339 KASSERT(toep->flags & TPF_ATTACHED, 340 ("%s: not attached", __func__)); 341 342 #ifdef KTR 343 if (tp->t_state == TCPS_SYN_SENT) { 344 CTR6(KTR_CXGBE, "%s: atid %d, toep %p (0x%x), inp %p (0x%x)", 345 __func__, toep->tid, toep, toep->flags, inp, 346 inp->inp_flags); 347 } else { 348 CTR6(KTR_CXGBE, 349 "t4_pcb_detach: tid %d (%s), toep %p (0x%x), inp %p (0x%x)", 350 toep->tid, tcpstates[tp->t_state], toep, toep->flags, inp, 351 inp->inp_flags); 352 } 353 #endif 354 355 tp->t_toe = NULL; 356 tp->t_flags &= ~TF_TOE; 357 toep->flags &= ~TPF_ATTACHED; 358 359 if (!(toep->flags & TPF_CPL_PENDING)) 360 release_offload_resources(toep); 361 } 362 363 /* 364 * setsockopt handler. 365 */ 366 static void 367 t4_ctloutput(struct toedev *tod, struct tcpcb *tp, int dir, int name) 368 { 369 struct adapter *sc = tod->tod_softc; 370 struct toepcb *toep = tp->t_toe; 371 372 if (dir == SOPT_GET) 373 return; 374 375 CTR4(KTR_CXGBE, "%s: tp %p, dir %u, name %u", __func__, tp, dir, name); 376 377 switch (name) { 378 case TCP_NODELAY: 379 if (tp->t_state != TCPS_ESTABLISHED) 380 break; 381 t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_T_FLAGS, 382 V_TF_NAGLE(1), V_TF_NAGLE(tp->t_flags & TF_NODELAY ? 0 : 1), 383 0, 0); 384 break; 385 default: 386 break; 387 } 388 } 389 390 static inline uint64_t 391 get_tcb_tflags(const uint64_t *tcb) 392 { 393 394 return ((be64toh(tcb[14]) << 32) | (be64toh(tcb[15]) >> 32)); 395 } 396 397 static inline uint32_t 398 get_tcb_field(const uint64_t *tcb, u_int word, uint32_t mask, u_int shift) 399 { 400 #define LAST_WORD ((TCB_SIZE / 4) - 1) 401 uint64_t t1, t2; 402 int flit_idx; 403 404 MPASS(mask != 0); 405 MPASS(word <= LAST_WORD); 406 MPASS(shift < 32); 407 408 flit_idx = (LAST_WORD - word) / 2; 409 if (word & 0x1) 410 shift += 32; 411 t1 = be64toh(tcb[flit_idx]) >> shift; 412 t2 = 0; 413 if (fls(mask) > 64 - shift) { 414 /* 415 * Will spill over into the next logical flit, which is the flit 416 * before this one. The flit_idx before this one must be valid. 417 */ 418 MPASS(flit_idx > 0); 419 t2 = be64toh(tcb[flit_idx - 1]) << (64 - shift); 420 } 421 return ((t2 | t1) & mask); 422 #undef LAST_WORD 423 } 424 #define GET_TCB_FIELD(tcb, F) \ 425 get_tcb_field(tcb, W_TCB_##F, M_TCB_##F, S_TCB_##F) 426 427 /* 428 * Issues a CPL_GET_TCB to read the entire TCB for the tid. 429 */ 430 static int 431 send_get_tcb(struct adapter *sc, u_int tid) 432 { 433 struct cpl_get_tcb *cpl; 434 struct wrq_cookie cookie; 435 436 MPASS(tid < sc->tids.ntids); 437 438 cpl = start_wrq_wr(&sc->sge.ctrlq[0], howmany(sizeof(*cpl), 16), 439 &cookie); 440 if (__predict_false(cpl == NULL)) 441 return (ENOMEM); 442 bzero(cpl, sizeof(*cpl)); 443 INIT_TP_WR(cpl, tid); 444 OPCODE_TID(cpl) = htobe32(MK_OPCODE_TID(CPL_GET_TCB, tid)); 445 cpl->reply_ctrl = htobe16(V_REPLY_CHAN(0) | 446 V_QUEUENO(sc->sge.ofld_rxq[0].iq.cntxt_id)); 447 cpl->cookie = 0xff; 448 commit_wrq_wr(&sc->sge.ctrlq[0], cpl, &cookie); 449 450 return (0); 451 } 452 453 static struct tcb_histent * 454 alloc_tcb_histent(struct adapter *sc, u_int tid, int flags) 455 { 456 struct tcb_histent *te; 457 458 MPASS(flags == M_NOWAIT || flags == M_WAITOK); 459 460 te = malloc(sizeof(*te), M_CXGBE, M_ZERO | flags); 461 if (te == NULL) 462 return (NULL); 463 mtx_init(&te->te_lock, "TCB entry", NULL, MTX_DEF); 464 callout_init_mtx(&te->te_callout, &te->te_lock, 0); 465 te->te_adapter = sc; 466 te->te_tid = tid; 467 468 return (te); 469 } 470 471 static void 472 free_tcb_histent(struct tcb_histent *te) 473 { 474 475 mtx_destroy(&te->te_lock); 476 free(te, M_CXGBE); 477 } 478 479 /* 480 * Start tracking the tid in the TCB history. 481 */ 482 int 483 add_tid_to_history(struct adapter *sc, u_int tid) 484 { 485 struct tcb_histent *te = NULL; 486 struct tom_data *td = sc->tom_softc; 487 int rc; 488 489 MPASS(tid < sc->tids.ntids); 490 491 if (td->tcb_history == NULL) 492 return (ENXIO); 493 494 rw_wlock(&td->tcb_history_lock); 495 if (td->tcb_history[tid] != NULL) { 496 rc = EEXIST; 497 goto done; 498 } 499 te = alloc_tcb_histent(sc, tid, M_NOWAIT); 500 if (te == NULL) { 501 rc = ENOMEM; 502 goto done; 503 } 504 mtx_lock(&te->te_lock); 505 rc = send_get_tcb(sc, tid); 506 if (rc == 0) { 507 te->te_flags |= TE_RPL_PENDING; 508 td->tcb_history[tid] = te; 509 } else { 510 free(te, M_CXGBE); 511 } 512 mtx_unlock(&te->te_lock); 513 done: 514 rw_wunlock(&td->tcb_history_lock); 515 return (rc); 516 } 517 518 static void 519 remove_tcb_histent(struct tcb_histent *te) 520 { 521 struct adapter *sc = te->te_adapter; 522 struct tom_data *td = sc->tom_softc; 523 524 rw_assert(&td->tcb_history_lock, RA_WLOCKED); 525 mtx_assert(&te->te_lock, MA_OWNED); 526 MPASS(td->tcb_history[te->te_tid] == te); 527 528 td->tcb_history[te->te_tid] = NULL; 529 free_tcb_histent(te); 530 rw_wunlock(&td->tcb_history_lock); 531 } 532 533 static inline struct tcb_histent * 534 lookup_tcb_histent(struct adapter *sc, u_int tid, bool addrem) 535 { 536 struct tcb_histent *te; 537 struct tom_data *td = sc->tom_softc; 538 539 MPASS(tid < sc->tids.ntids); 540 541 if (td->tcb_history == NULL) 542 return (NULL); 543 544 if (addrem) 545 rw_wlock(&td->tcb_history_lock); 546 else 547 rw_rlock(&td->tcb_history_lock); 548 te = td->tcb_history[tid]; 549 if (te != NULL) { 550 mtx_lock(&te->te_lock); 551 return (te); /* with both locks held */ 552 } 553 if (addrem) 554 rw_wunlock(&td->tcb_history_lock); 555 else 556 rw_runlock(&td->tcb_history_lock); 557 558 return (te); 559 } 560 561 static inline void 562 release_tcb_histent(struct tcb_histent *te) 563 { 564 struct adapter *sc = te->te_adapter; 565 struct tom_data *td = sc->tom_softc; 566 567 mtx_assert(&te->te_lock, MA_OWNED); 568 mtx_unlock(&te->te_lock); 569 rw_assert(&td->tcb_history_lock, RA_RLOCKED); 570 rw_runlock(&td->tcb_history_lock); 571 } 572 573 static void 574 request_tcb(void *arg) 575 { 576 struct tcb_histent *te = arg; 577 578 mtx_assert(&te->te_lock, MA_OWNED); 579 580 /* Noone else is supposed to update the histent. */ 581 MPASS(!(te->te_flags & TE_RPL_PENDING)); 582 if (send_get_tcb(te->te_adapter, te->te_tid) == 0) 583 te->te_flags |= TE_RPL_PENDING; 584 else 585 callout_schedule(&te->te_callout, hz / 100); 586 } 587 588 static void 589 update_tcb_histent(struct tcb_histent *te, const uint64_t *tcb) 590 { 591 struct tom_data *td = te->te_adapter->tom_softc; 592 uint64_t tflags = get_tcb_tflags(tcb); 593 uint8_t sample = 0; 594 595 if (GET_TCB_FIELD(tcb, SND_MAX_RAW) != GET_TCB_FIELD(tcb, SND_UNA_RAW)) { 596 if (GET_TCB_FIELD(tcb, T_RXTSHIFT) != 0) 597 sample |= TS_RTO; 598 if (GET_TCB_FIELD(tcb, T_DUPACKS) != 0) 599 sample |= TS_DUPACKS; 600 if (GET_TCB_FIELD(tcb, T_DUPACKS) >= td->dupack_threshold) 601 sample |= TS_FASTREXMT; 602 } 603 604 if (GET_TCB_FIELD(tcb, SND_MAX_RAW) != 0) { 605 uint32_t snd_wnd; 606 607 sample |= TS_SND_BACKLOGGED; /* for whatever reason. */ 608 609 snd_wnd = GET_TCB_FIELD(tcb, RCV_ADV); 610 if (tflags & V_TF_RECV_SCALE(1)) 611 snd_wnd <<= GET_TCB_FIELD(tcb, RCV_SCALE); 612 if (GET_TCB_FIELD(tcb, SND_CWND) < snd_wnd) 613 sample |= TS_CWND_LIMITED; /* maybe due to CWND */ 614 } 615 616 if (tflags & V_TF_CCTRL_ECN(1)) { 617 618 /* 619 * CE marker on incoming IP hdr, echoing ECE back in the TCP 620 * hdr. Indicates congestion somewhere on the way from the peer 621 * to this node. 622 */ 623 if (tflags & V_TF_CCTRL_ECE(1)) 624 sample |= TS_ECN_ECE; 625 626 /* 627 * ECE seen and CWR sent (or about to be sent). Might indicate 628 * congestion on the way to the peer. This node is reducing its 629 * congestion window in response. 630 */ 631 if (tflags & (V_TF_CCTRL_CWR(1) | V_TF_CCTRL_RFR(1))) 632 sample |= TS_ECN_CWR; 633 } 634 635 te->te_sample[te->te_pidx] = sample; 636 if (++te->te_pidx == nitems(te->te_sample)) 637 te->te_pidx = 0; 638 memcpy(te->te_tcb, tcb, TCB_SIZE); 639 te->te_flags |= TE_ACTIVE; 640 } 641 642 static int 643 do_get_tcb_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 644 { 645 struct adapter *sc = iq->adapter; 646 const struct cpl_get_tcb_rpl *cpl = mtod(m, const void *); 647 const uint64_t *tcb = (const uint64_t *)(const void *)(cpl + 1); 648 struct tcb_histent *te; 649 const u_int tid = GET_TID(cpl); 650 bool remove; 651 652 remove = GET_TCB_FIELD(tcb, T_STATE) == TCPS_CLOSED; 653 te = lookup_tcb_histent(sc, tid, remove); 654 if (te == NULL) { 655 /* Not in the history. Who issued the GET_TCB for this? */ 656 device_printf(sc->dev, "tcb %u: flags 0x%016jx, state %u, " 657 "srtt %u, sscale %u, rscale %u, cookie 0x%x\n", tid, 658 (uintmax_t)get_tcb_tflags(tcb), GET_TCB_FIELD(tcb, T_STATE), 659 GET_TCB_FIELD(tcb, T_SRTT), GET_TCB_FIELD(tcb, SND_SCALE), 660 GET_TCB_FIELD(tcb, RCV_SCALE), cpl->cookie); 661 goto done; 662 } 663 664 MPASS(te->te_flags & TE_RPL_PENDING); 665 te->te_flags &= ~TE_RPL_PENDING; 666 if (remove) { 667 remove_tcb_histent(te); 668 } else { 669 update_tcb_histent(te, tcb); 670 callout_reset(&te->te_callout, hz / 10, request_tcb, te); 671 release_tcb_histent(te); 672 } 673 done: 674 m_freem(m); 675 return (0); 676 } 677 678 static void 679 fill_tcp_info_from_tcb(struct adapter *sc, uint64_t *tcb, struct tcp_info *ti) 680 { 681 uint32_t v; 682 683 ti->tcpi_state = GET_TCB_FIELD(tcb, T_STATE); 684 685 v = GET_TCB_FIELD(tcb, T_SRTT); 686 ti->tcpi_rtt = tcp_ticks_to_us(sc, v); 687 688 v = GET_TCB_FIELD(tcb, T_RTTVAR); 689 ti->tcpi_rttvar = tcp_ticks_to_us(sc, v); 690 691 ti->tcpi_snd_ssthresh = GET_TCB_FIELD(tcb, SND_SSTHRESH); 692 ti->tcpi_snd_cwnd = GET_TCB_FIELD(tcb, SND_CWND); 693 ti->tcpi_rcv_nxt = GET_TCB_FIELD(tcb, RCV_NXT); 694 695 v = GET_TCB_FIELD(tcb, TX_MAX); 696 ti->tcpi_snd_nxt = v - GET_TCB_FIELD(tcb, SND_NXT_RAW); 697 698 /* Receive window being advertised by us. */ 699 ti->tcpi_rcv_wscale = GET_TCB_FIELD(tcb, SND_SCALE); /* Yes, SND. */ 700 ti->tcpi_rcv_space = GET_TCB_FIELD(tcb, RCV_WND); 701 702 /* Send window */ 703 ti->tcpi_snd_wscale = GET_TCB_FIELD(tcb, RCV_SCALE); /* Yes, RCV. */ 704 ti->tcpi_snd_wnd = GET_TCB_FIELD(tcb, RCV_ADV); 705 if (get_tcb_tflags(tcb) & V_TF_RECV_SCALE(1)) 706 ti->tcpi_snd_wnd <<= ti->tcpi_snd_wscale; 707 else 708 ti->tcpi_snd_wscale = 0; 709 710 } 711 712 static void 713 fill_tcp_info_from_history(struct adapter *sc, struct tcb_histent *te, 714 struct tcp_info *ti) 715 { 716 717 fill_tcp_info_from_tcb(sc, te->te_tcb, ti); 718 } 719 720 /* 721 * Reads the TCB for the given tid using a memory window and copies it to 'buf' 722 * in the same format as CPL_GET_TCB_RPL. 723 */ 724 static void 725 read_tcb_using_memwin(struct adapter *sc, u_int tid, uint64_t *buf) 726 { 727 int i, j, k, rc; 728 uint32_t addr; 729 u_char *tcb, tmp; 730 731 MPASS(tid < sc->tids.ntids); 732 733 addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE) + tid * TCB_SIZE; 734 rc = read_via_memwin(sc, 2, addr, (uint32_t *)buf, TCB_SIZE); 735 if (rc != 0) 736 return; 737 738 tcb = (u_char *)buf; 739 for (i = 0, j = TCB_SIZE - 16; i < j; i += 16, j -= 16) { 740 for (k = 0; k < 16; k++) { 741 tmp = tcb[i + k]; 742 tcb[i + k] = tcb[j + k]; 743 tcb[j + k] = tmp; 744 } 745 } 746 } 747 748 static void 749 fill_tcp_info(struct adapter *sc, u_int tid, struct tcp_info *ti) 750 { 751 uint64_t tcb[TCB_SIZE / sizeof(uint64_t)]; 752 struct tcb_histent *te; 753 754 ti->tcpi_toe_tid = tid; 755 te = lookup_tcb_histent(sc, tid, false); 756 if (te != NULL) { 757 fill_tcp_info_from_history(sc, te, ti); 758 release_tcb_histent(te); 759 } else { 760 if (!(sc->debug_flags & DF_DISABLE_TCB_CACHE)) { 761 /* XXX: tell firmware to flush TCB cache. */ 762 } 763 read_tcb_using_memwin(sc, tid, tcb); 764 fill_tcp_info_from_tcb(sc, tcb, ti); 765 } 766 } 767 768 /* 769 * Called by the kernel to allow the TOE driver to "refine" values filled up in 770 * the tcp_info for an offloaded connection. 771 */ 772 static void 773 t4_tcp_info(struct toedev *tod, struct tcpcb *tp, struct tcp_info *ti) 774 { 775 struct adapter *sc = tod->tod_softc; 776 struct toepcb *toep = tp->t_toe; 777 778 INP_WLOCK_ASSERT(tp->t_inpcb); 779 MPASS(ti != NULL); 780 781 fill_tcp_info(sc, toep->tid, ti); 782 } 783 784 /* 785 * The TOE driver will not receive any more CPLs for the tid associated with the 786 * toepcb; release the hold on the inpcb. 787 */ 788 void 789 final_cpl_received(struct toepcb *toep) 790 { 791 struct inpcb *inp = toep->inp; 792 793 KASSERT(inp != NULL, ("%s: inp is NULL", __func__)); 794 INP_WLOCK_ASSERT(inp); 795 KASSERT(toep->flags & TPF_CPL_PENDING, 796 ("%s: CPL not pending already?", __func__)); 797 798 CTR6(KTR_CXGBE, "%s: tid %d, toep %p (0x%x), inp %p (0x%x)", 799 __func__, toep->tid, toep, toep->flags, inp, inp->inp_flags); 800 801 if (toep->ulp_mode == ULP_MODE_TCPDDP) 802 release_ddp_resources(toep); 803 toep->inp = NULL; 804 toep->flags &= ~TPF_CPL_PENDING; 805 mbufq_drain(&toep->ulp_pdu_reclaimq); 806 807 if (!(toep->flags & TPF_ATTACHED)) 808 release_offload_resources(toep); 809 810 if (!in_pcbrele_wlocked(inp)) 811 INP_WUNLOCK(inp); 812 } 813 814 void 815 insert_tid(struct adapter *sc, int tid, void *ctx, int ntids) 816 { 817 struct tid_info *t = &sc->tids; 818 819 MPASS(tid >= t->tid_base); 820 MPASS(tid - t->tid_base < t->ntids); 821 822 t->tid_tab[tid - t->tid_base] = ctx; 823 atomic_add_int(&t->tids_in_use, ntids); 824 } 825 826 void * 827 lookup_tid(struct adapter *sc, int tid) 828 { 829 struct tid_info *t = &sc->tids; 830 831 return (t->tid_tab[tid - t->tid_base]); 832 } 833 834 void 835 update_tid(struct adapter *sc, int tid, void *ctx) 836 { 837 struct tid_info *t = &sc->tids; 838 839 t->tid_tab[tid - t->tid_base] = ctx; 840 } 841 842 void 843 remove_tid(struct adapter *sc, int tid, int ntids) 844 { 845 struct tid_info *t = &sc->tids; 846 847 t->tid_tab[tid - t->tid_base] = NULL; 848 atomic_subtract_int(&t->tids_in_use, ntids); 849 } 850 851 /* 852 * What mtu_idx to use, given a 4-tuple. Note that both s->mss and tcp_mssopt 853 * have the MSS that we should advertise in our SYN. Advertised MSS doesn't 854 * account for any TCP options so the effective MSS (only payload, no headers or 855 * options) could be different. 856 */ 857 int 858 find_best_mtu_idx(struct adapter *sc, struct in_conninfo *inc, 859 struct offload_settings *s) 860 { 861 unsigned short *mtus = &sc->params.mtus[0]; 862 int i, mss, mtu; 863 864 MPASS(inc != NULL); 865 866 mss = s->mss > 0 ? s->mss : tcp_mssopt(inc); 867 if (inc->inc_flags & INC_ISIPV6) 868 mtu = mss + sizeof(struct ip6_hdr) + sizeof(struct tcphdr); 869 else 870 mtu = mss + sizeof(struct ip) + sizeof(struct tcphdr); 871 872 for (i = 0; i < NMTUS - 1 && mtus[i + 1] <= mtu; i++) 873 continue; 874 875 return (i); 876 } 877 878 /* 879 * Determine the receive window size for a socket. 880 */ 881 u_long 882 select_rcv_wnd(struct socket *so) 883 { 884 unsigned long wnd; 885 886 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 887 888 wnd = sbspace(&so->so_rcv); 889 if (wnd < MIN_RCV_WND) 890 wnd = MIN_RCV_WND; 891 892 return min(wnd, MAX_RCV_WND); 893 } 894 895 int 896 select_rcv_wscale(void) 897 { 898 int wscale = 0; 899 unsigned long space = sb_max; 900 901 if (space > MAX_RCV_WND) 902 space = MAX_RCV_WND; 903 904 while (wscale < TCP_MAX_WINSHIFT && (TCP_MAXWIN << wscale) < space) 905 wscale++; 906 907 return (wscale); 908 } 909 910 /* 911 * socket so could be a listening socket too. 912 */ 913 uint64_t 914 calc_opt0(struct socket *so, struct vi_info *vi, struct l2t_entry *e, 915 int mtu_idx, int rscale, int rx_credits, int ulp_mode, 916 struct offload_settings *s) 917 { 918 int keepalive; 919 uint64_t opt0; 920 921 MPASS(so != NULL); 922 MPASS(vi != NULL); 923 KASSERT(rx_credits <= M_RCV_BUFSIZ, 924 ("%s: rcv_bufsiz too high", __func__)); 925 926 opt0 = F_TCAM_BYPASS | V_WND_SCALE(rscale) | V_MSS_IDX(mtu_idx) | 927 V_ULP_MODE(ulp_mode) | V_RCV_BUFSIZ(rx_credits) | 928 V_L2T_IDX(e->idx) | V_SMAC_SEL(vi->smt_idx) | 929 V_TX_CHAN(vi->pi->tx_chan); 930 931 keepalive = tcp_always_keepalive || so_options_get(so) & SO_KEEPALIVE; 932 opt0 |= V_KEEP_ALIVE(keepalive != 0); 933 934 if (s->nagle < 0) { 935 struct inpcb *inp = sotoinpcb(so); 936 struct tcpcb *tp = intotcpcb(inp); 937 938 opt0 |= V_NAGLE((tp->t_flags & TF_NODELAY) == 0); 939 } else 940 opt0 |= V_NAGLE(s->nagle != 0); 941 942 return htobe64(opt0); 943 } 944 945 uint64_t 946 select_ntuple(struct vi_info *vi, struct l2t_entry *e) 947 { 948 struct adapter *sc = vi->pi->adapter; 949 struct tp_params *tp = &sc->params.tp; 950 uint64_t ntuple = 0; 951 952 /* 953 * Initialize each of the fields which we care about which are present 954 * in the Compressed Filter Tuple. 955 */ 956 if (tp->vlan_shift >= 0 && EVL_VLANOFTAG(e->vlan) != CPL_L2T_VLAN_NONE) 957 ntuple |= (uint64_t)(F_FT_VLAN_VLD | e->vlan) << tp->vlan_shift; 958 959 if (tp->port_shift >= 0) 960 ntuple |= (uint64_t)e->lport << tp->port_shift; 961 962 if (tp->protocol_shift >= 0) 963 ntuple |= (uint64_t)IPPROTO_TCP << tp->protocol_shift; 964 965 if (tp->vnic_shift >= 0 && tp->ingress_config & F_VNIC) { 966 ntuple |= (uint64_t)(V_FT_VNID_ID_VF(vi->vin) | 967 V_FT_VNID_ID_PF(sc->pf) | V_FT_VNID_ID_VLD(vi->vfvld)) << 968 tp->vnic_shift; 969 } 970 971 if (is_t4(sc)) 972 return (htobe32((uint32_t)ntuple)); 973 else 974 return (htobe64(V_FILTER_TUPLE(ntuple))); 975 } 976 977 static int 978 is_tls_sock(struct socket *so, struct adapter *sc) 979 { 980 struct inpcb *inp = sotoinpcb(so); 981 int i, rc; 982 983 /* XXX: Eventually add a SO_WANT_TLS socket option perhaps? */ 984 rc = 0; 985 ADAPTER_LOCK(sc); 986 for (i = 0; i < sc->tt.num_tls_rx_ports; i++) { 987 if (inp->inp_lport == htons(sc->tt.tls_rx_ports[i]) || 988 inp->inp_fport == htons(sc->tt.tls_rx_ports[i])) { 989 rc = 1; 990 break; 991 } 992 } 993 ADAPTER_UNLOCK(sc); 994 return (rc); 995 } 996 997 int 998 select_ulp_mode(struct socket *so, struct adapter *sc, 999 struct offload_settings *s) 1000 { 1001 1002 if (can_tls_offload(sc) && 1003 (s->tls > 0 || (s->tls < 0 && is_tls_sock(so, sc)))) 1004 return (ULP_MODE_TLS); 1005 else if (s->ddp > 0 || 1006 (s->ddp < 0 && sc->tt.ddp && (so->so_options & SO_NO_DDP) == 0)) 1007 return (ULP_MODE_TCPDDP); 1008 else 1009 return (ULP_MODE_NONE); 1010 } 1011 1012 void 1013 set_ulp_mode(struct toepcb *toep, int ulp_mode) 1014 { 1015 1016 CTR4(KTR_CXGBE, "%s: toep %p (tid %d) ulp_mode %d", 1017 __func__, toep, toep->tid, ulp_mode); 1018 toep->ulp_mode = ulp_mode; 1019 tls_init_toep(toep); 1020 if (toep->ulp_mode == ULP_MODE_TCPDDP) 1021 ddp_init_toep(toep); 1022 } 1023 1024 int 1025 negative_advice(int status) 1026 { 1027 1028 return (status == CPL_ERR_RTX_NEG_ADVICE || 1029 status == CPL_ERR_PERSIST_NEG_ADVICE || 1030 status == CPL_ERR_KEEPALV_NEG_ADVICE); 1031 } 1032 1033 static int 1034 alloc_tid_tab(struct tid_info *t, int flags) 1035 { 1036 1037 MPASS(t->ntids > 0); 1038 MPASS(t->tid_tab == NULL); 1039 1040 t->tid_tab = malloc(t->ntids * sizeof(*t->tid_tab), M_CXGBE, 1041 M_ZERO | flags); 1042 if (t->tid_tab == NULL) 1043 return (ENOMEM); 1044 atomic_store_rel_int(&t->tids_in_use, 0); 1045 1046 return (0); 1047 } 1048 1049 static void 1050 free_tid_tab(struct tid_info *t) 1051 { 1052 1053 KASSERT(t->tids_in_use == 0, 1054 ("%s: %d tids still in use.", __func__, t->tids_in_use)); 1055 1056 free(t->tid_tab, M_CXGBE); 1057 t->tid_tab = NULL; 1058 } 1059 1060 static int 1061 alloc_stid_tab(struct tid_info *t, int flags) 1062 { 1063 1064 MPASS(t->nstids > 0); 1065 MPASS(t->stid_tab == NULL); 1066 1067 t->stid_tab = malloc(t->nstids * sizeof(*t->stid_tab), M_CXGBE, 1068 M_ZERO | flags); 1069 if (t->stid_tab == NULL) 1070 return (ENOMEM); 1071 mtx_init(&t->stid_lock, "stid lock", NULL, MTX_DEF); 1072 t->stids_in_use = 0; 1073 TAILQ_INIT(&t->stids); 1074 t->nstids_free_head = t->nstids; 1075 1076 return (0); 1077 } 1078 1079 static void 1080 free_stid_tab(struct tid_info *t) 1081 { 1082 1083 KASSERT(t->stids_in_use == 0, 1084 ("%s: %d tids still in use.", __func__, t->stids_in_use)); 1085 1086 if (mtx_initialized(&t->stid_lock)) 1087 mtx_destroy(&t->stid_lock); 1088 free(t->stid_tab, M_CXGBE); 1089 t->stid_tab = NULL; 1090 } 1091 1092 static void 1093 free_tid_tabs(struct tid_info *t) 1094 { 1095 1096 free_tid_tab(t); 1097 free_atid_tab(t); 1098 free_stid_tab(t); 1099 } 1100 1101 static int 1102 alloc_tid_tabs(struct tid_info *t) 1103 { 1104 int rc; 1105 1106 rc = alloc_tid_tab(t, M_NOWAIT); 1107 if (rc != 0) 1108 goto failed; 1109 1110 rc = alloc_atid_tab(t, M_NOWAIT); 1111 if (rc != 0) 1112 goto failed; 1113 1114 rc = alloc_stid_tab(t, M_NOWAIT); 1115 if (rc != 0) 1116 goto failed; 1117 1118 return (0); 1119 failed: 1120 free_tid_tabs(t); 1121 return (rc); 1122 } 1123 1124 static inline void 1125 alloc_tcb_history(struct adapter *sc, struct tom_data *td) 1126 { 1127 1128 if (sc->tids.ntids == 0 || sc->tids.ntids > 1024) 1129 return; 1130 rw_init(&td->tcb_history_lock, "TCB history"); 1131 td->tcb_history = malloc(sc->tids.ntids * sizeof(*td->tcb_history), 1132 M_CXGBE, M_ZERO | M_NOWAIT); 1133 td->dupack_threshold = G_DUPACKTHRESH(t4_read_reg(sc, A_TP_PARA_REG0)); 1134 } 1135 1136 static inline void 1137 free_tcb_history(struct adapter *sc, struct tom_data *td) 1138 { 1139 #ifdef INVARIANTS 1140 int i; 1141 1142 if (td->tcb_history != NULL) { 1143 for (i = 0; i < sc->tids.ntids; i++) { 1144 MPASS(td->tcb_history[i] == NULL); 1145 } 1146 } 1147 #endif 1148 free(td->tcb_history, M_CXGBE); 1149 if (rw_initialized(&td->tcb_history_lock)) 1150 rw_destroy(&td->tcb_history_lock); 1151 } 1152 1153 static void 1154 free_tom_data(struct adapter *sc, struct tom_data *td) 1155 { 1156 1157 ASSERT_SYNCHRONIZED_OP(sc); 1158 1159 KASSERT(TAILQ_EMPTY(&td->toep_list), 1160 ("%s: TOE PCB list is not empty.", __func__)); 1161 KASSERT(td->lctx_count == 0, 1162 ("%s: lctx hash table is not empty.", __func__)); 1163 1164 t4_free_ppod_region(&td->pr); 1165 1166 if (td->listen_mask != 0) 1167 hashdestroy(td->listen_hash, M_CXGBE, td->listen_mask); 1168 1169 if (mtx_initialized(&td->unsent_wr_lock)) 1170 mtx_destroy(&td->unsent_wr_lock); 1171 if (mtx_initialized(&td->lctx_hash_lock)) 1172 mtx_destroy(&td->lctx_hash_lock); 1173 if (mtx_initialized(&td->toep_list_lock)) 1174 mtx_destroy(&td->toep_list_lock); 1175 1176 free_tcb_history(sc, td); 1177 free_tid_tabs(&sc->tids); 1178 free(td, M_CXGBE); 1179 } 1180 1181 static char * 1182 prepare_pkt(int open_type, uint16_t vtag, struct inpcb *inp, int *pktlen, 1183 int *buflen) 1184 { 1185 char *pkt; 1186 struct tcphdr *th; 1187 int ipv6, len; 1188 const int maxlen = 1189 max(sizeof(struct ether_header), sizeof(struct ether_vlan_header)) + 1190 max(sizeof(struct ip), sizeof(struct ip6_hdr)) + 1191 sizeof(struct tcphdr); 1192 1193 MPASS(open_type == OPEN_TYPE_ACTIVE || open_type == OPEN_TYPE_LISTEN); 1194 1195 pkt = malloc(maxlen, M_CXGBE, M_ZERO | M_NOWAIT); 1196 if (pkt == NULL) 1197 return (NULL); 1198 1199 ipv6 = inp->inp_vflag & INP_IPV6; 1200 len = 0; 1201 1202 if (EVL_VLANOFTAG(vtag) == 0xfff) { 1203 struct ether_header *eh = (void *)pkt; 1204 1205 if (ipv6) 1206 eh->ether_type = htons(ETHERTYPE_IPV6); 1207 else 1208 eh->ether_type = htons(ETHERTYPE_IP); 1209 1210 len += sizeof(*eh); 1211 } else { 1212 struct ether_vlan_header *evh = (void *)pkt; 1213 1214 evh->evl_encap_proto = htons(ETHERTYPE_VLAN); 1215 evh->evl_tag = htons(vtag); 1216 if (ipv6) 1217 evh->evl_proto = htons(ETHERTYPE_IPV6); 1218 else 1219 evh->evl_proto = htons(ETHERTYPE_IP); 1220 1221 len += sizeof(*evh); 1222 } 1223 1224 if (ipv6) { 1225 struct ip6_hdr *ip6 = (void *)&pkt[len]; 1226 1227 ip6->ip6_vfc = IPV6_VERSION; 1228 ip6->ip6_plen = htons(sizeof(struct tcphdr)); 1229 ip6->ip6_nxt = IPPROTO_TCP; 1230 if (open_type == OPEN_TYPE_ACTIVE) { 1231 ip6->ip6_src = inp->in6p_laddr; 1232 ip6->ip6_dst = inp->in6p_faddr; 1233 } else if (open_type == OPEN_TYPE_LISTEN) { 1234 ip6->ip6_src = inp->in6p_laddr; 1235 ip6->ip6_dst = ip6->ip6_src; 1236 } 1237 1238 len += sizeof(*ip6); 1239 } else { 1240 struct ip *ip = (void *)&pkt[len]; 1241 1242 ip->ip_v = IPVERSION; 1243 ip->ip_hl = sizeof(*ip) >> 2; 1244 ip->ip_tos = inp->inp_ip_tos; 1245 ip->ip_len = htons(sizeof(struct ip) + sizeof(struct tcphdr)); 1246 ip->ip_ttl = inp->inp_ip_ttl; 1247 ip->ip_p = IPPROTO_TCP; 1248 if (open_type == OPEN_TYPE_ACTIVE) { 1249 ip->ip_src = inp->inp_laddr; 1250 ip->ip_dst = inp->inp_faddr; 1251 } else if (open_type == OPEN_TYPE_LISTEN) { 1252 ip->ip_src = inp->inp_laddr; 1253 ip->ip_dst = ip->ip_src; 1254 } 1255 1256 len += sizeof(*ip); 1257 } 1258 1259 th = (void *)&pkt[len]; 1260 if (open_type == OPEN_TYPE_ACTIVE) { 1261 th->th_sport = inp->inp_lport; /* network byte order already */ 1262 th->th_dport = inp->inp_fport; /* ditto */ 1263 } else if (open_type == OPEN_TYPE_LISTEN) { 1264 th->th_sport = inp->inp_lport; /* network byte order already */ 1265 th->th_dport = th->th_sport; 1266 } 1267 len += sizeof(th); 1268 1269 *pktlen = *buflen = len; 1270 return (pkt); 1271 } 1272 1273 const struct offload_settings * 1274 lookup_offload_policy(struct adapter *sc, int open_type, struct mbuf *m, 1275 uint16_t vtag, struct inpcb *inp) 1276 { 1277 const struct t4_offload_policy *op; 1278 char *pkt; 1279 struct offload_rule *r; 1280 int i, matched, pktlen, buflen; 1281 static const struct offload_settings allow_offloading_settings = { 1282 .offload = 1, 1283 .rx_coalesce = -1, 1284 .cong_algo = -1, 1285 .sched_class = -1, 1286 .tstamp = -1, 1287 .sack = -1, 1288 .nagle = -1, 1289 .ecn = -1, 1290 .ddp = -1, 1291 .tls = -1, 1292 .txq = -1, 1293 .rxq = -1, 1294 .mss = -1, 1295 }; 1296 static const struct offload_settings disallow_offloading_settings = { 1297 .offload = 0, 1298 /* rest is irrelevant when offload is off. */ 1299 }; 1300 1301 rw_assert(&sc->policy_lock, RA_LOCKED); 1302 1303 /* 1304 * If there's no Connection Offloading Policy attached to the device 1305 * then we need to return a default static policy. If 1306 * "cop_managed_offloading" is true, then we need to disallow 1307 * offloading until a COP is attached to the device. Otherwise we 1308 * allow offloading ... 1309 */ 1310 op = sc->policy; 1311 if (op == NULL) { 1312 if (sc->tt.cop_managed_offloading) 1313 return (&disallow_offloading_settings); 1314 else 1315 return (&allow_offloading_settings); 1316 } 1317 1318 switch (open_type) { 1319 case OPEN_TYPE_ACTIVE: 1320 case OPEN_TYPE_LISTEN: 1321 pkt = prepare_pkt(open_type, vtag, inp, &pktlen, &buflen); 1322 break; 1323 case OPEN_TYPE_PASSIVE: 1324 MPASS(m != NULL); 1325 pkt = mtod(m, char *); 1326 MPASS(*pkt == CPL_PASS_ACCEPT_REQ); 1327 pkt += sizeof(struct cpl_pass_accept_req); 1328 pktlen = m->m_pkthdr.len - sizeof(struct cpl_pass_accept_req); 1329 buflen = m->m_len - sizeof(struct cpl_pass_accept_req); 1330 break; 1331 default: 1332 MPASS(0); 1333 return (&disallow_offloading_settings); 1334 } 1335 1336 if (pkt == NULL || pktlen == 0 || buflen == 0) 1337 return (&disallow_offloading_settings); 1338 1339 matched = 0; 1340 r = &op->rule[0]; 1341 for (i = 0; i < op->nrules; i++, r++) { 1342 if (r->open_type != open_type && 1343 r->open_type != OPEN_TYPE_DONTCARE) { 1344 continue; 1345 } 1346 matched = bpf_filter(r->bpf_prog.bf_insns, pkt, pktlen, buflen); 1347 if (matched) 1348 break; 1349 } 1350 1351 if (open_type == OPEN_TYPE_ACTIVE || open_type == OPEN_TYPE_LISTEN) 1352 free(pkt, M_CXGBE); 1353 1354 return (matched ? &r->settings : &disallow_offloading_settings); 1355 } 1356 1357 static void 1358 reclaim_wr_resources(void *arg, int count) 1359 { 1360 struct tom_data *td = arg; 1361 STAILQ_HEAD(, wrqe) twr_list = STAILQ_HEAD_INITIALIZER(twr_list); 1362 struct cpl_act_open_req *cpl; 1363 u_int opcode, atid, tid; 1364 struct wrqe *wr; 1365 struct adapter *sc = td_adapter(td); 1366 1367 mtx_lock(&td->unsent_wr_lock); 1368 STAILQ_SWAP(&td->unsent_wr_list, &twr_list, wrqe); 1369 mtx_unlock(&td->unsent_wr_lock); 1370 1371 while ((wr = STAILQ_FIRST(&twr_list)) != NULL) { 1372 STAILQ_REMOVE_HEAD(&twr_list, link); 1373 1374 cpl = wrtod(wr); 1375 opcode = GET_OPCODE(cpl); 1376 1377 switch (opcode) { 1378 case CPL_ACT_OPEN_REQ: 1379 case CPL_ACT_OPEN_REQ6: 1380 atid = G_TID_TID(be32toh(OPCODE_TID(cpl))); 1381 CTR2(KTR_CXGBE, "%s: atid %u ", __func__, atid); 1382 act_open_failure_cleanup(sc, atid, EHOSTUNREACH); 1383 free(wr, M_CXGBE); 1384 break; 1385 case CPL_PASS_ACCEPT_RPL: 1386 tid = GET_TID(cpl); 1387 CTR2(KTR_CXGBE, "%s: tid %u ", __func__, tid); 1388 synack_failure_cleanup(sc, tid); 1389 free(wr, M_CXGBE); 1390 break; 1391 default: 1392 log(LOG_ERR, "%s: leaked work request %p, wr_len %d, " 1393 "opcode %x\n", __func__, wr, wr->wr_len, opcode); 1394 /* WR not freed here; go look at it with a debugger. */ 1395 } 1396 } 1397 } 1398 1399 /* 1400 * Ground control to Major TOM 1401 * Commencing countdown, engines on 1402 */ 1403 static int 1404 t4_tom_activate(struct adapter *sc) 1405 { 1406 struct tom_data *td; 1407 struct toedev *tod; 1408 struct vi_info *vi; 1409 int i, rc, v; 1410 1411 ASSERT_SYNCHRONIZED_OP(sc); 1412 1413 /* per-adapter softc for TOM */ 1414 td = malloc(sizeof(*td), M_CXGBE, M_ZERO | M_NOWAIT); 1415 if (td == NULL) 1416 return (ENOMEM); 1417 1418 /* List of TOE PCBs and associated lock */ 1419 mtx_init(&td->toep_list_lock, "PCB list lock", NULL, MTX_DEF); 1420 TAILQ_INIT(&td->toep_list); 1421 1422 /* Listen context */ 1423 mtx_init(&td->lctx_hash_lock, "lctx hash lock", NULL, MTX_DEF); 1424 td->listen_hash = hashinit_flags(LISTEN_HASH_SIZE, M_CXGBE, 1425 &td->listen_mask, HASH_NOWAIT); 1426 1427 /* List of WRs for which L2 resolution failed */ 1428 mtx_init(&td->unsent_wr_lock, "Unsent WR list lock", NULL, MTX_DEF); 1429 STAILQ_INIT(&td->unsent_wr_list); 1430 TASK_INIT(&td->reclaim_wr_resources, 0, reclaim_wr_resources, td); 1431 1432 /* TID tables */ 1433 rc = alloc_tid_tabs(&sc->tids); 1434 if (rc != 0) 1435 goto done; 1436 1437 rc = t4_init_ppod_region(&td->pr, &sc->vres.ddp, 1438 t4_read_reg(sc, A_ULP_RX_TDDP_PSZ), "TDDP page pods"); 1439 if (rc != 0) 1440 goto done; 1441 t4_set_reg_field(sc, A_ULP_RX_TDDP_TAGMASK, 1442 V_TDDPTAGMASK(M_TDDPTAGMASK), td->pr.pr_tag_mask); 1443 1444 alloc_tcb_history(sc, td); 1445 1446 /* toedev ops */ 1447 tod = &td->tod; 1448 init_toedev(tod); 1449 tod->tod_softc = sc; 1450 tod->tod_connect = t4_connect; 1451 tod->tod_listen_start = t4_listen_start; 1452 tod->tod_listen_stop = t4_listen_stop; 1453 tod->tod_rcvd = t4_rcvd; 1454 tod->tod_output = t4_tod_output; 1455 tod->tod_send_rst = t4_send_rst; 1456 tod->tod_send_fin = t4_send_fin; 1457 tod->tod_pcb_detach = t4_pcb_detach; 1458 tod->tod_l2_update = t4_l2_update; 1459 tod->tod_syncache_added = t4_syncache_added; 1460 tod->tod_syncache_removed = t4_syncache_removed; 1461 tod->tod_syncache_respond = t4_syncache_respond; 1462 tod->tod_offload_socket = t4_offload_socket; 1463 tod->tod_ctloutput = t4_ctloutput; 1464 tod->tod_tcp_info = t4_tcp_info; 1465 1466 for_each_port(sc, i) { 1467 for_each_vi(sc->port[i], v, vi) { 1468 TOEDEV(vi->ifp) = &td->tod; 1469 } 1470 } 1471 1472 sc->tom_softc = td; 1473 register_toedev(sc->tom_softc); 1474 1475 done: 1476 if (rc != 0) 1477 free_tom_data(sc, td); 1478 return (rc); 1479 } 1480 1481 static int 1482 t4_tom_deactivate(struct adapter *sc) 1483 { 1484 int rc = 0; 1485 struct tom_data *td = sc->tom_softc; 1486 1487 ASSERT_SYNCHRONIZED_OP(sc); 1488 1489 if (td == NULL) 1490 return (0); /* XXX. KASSERT? */ 1491 1492 if (sc->offload_map != 0) 1493 return (EBUSY); /* at least one port has IFCAP_TOE enabled */ 1494 1495 if (uld_active(sc, ULD_IWARP) || uld_active(sc, ULD_ISCSI)) 1496 return (EBUSY); /* both iWARP and iSCSI rely on the TOE. */ 1497 1498 mtx_lock(&td->toep_list_lock); 1499 if (!TAILQ_EMPTY(&td->toep_list)) 1500 rc = EBUSY; 1501 mtx_unlock(&td->toep_list_lock); 1502 1503 mtx_lock(&td->lctx_hash_lock); 1504 if (td->lctx_count > 0) 1505 rc = EBUSY; 1506 mtx_unlock(&td->lctx_hash_lock); 1507 1508 taskqueue_drain(taskqueue_thread, &td->reclaim_wr_resources); 1509 mtx_lock(&td->unsent_wr_lock); 1510 if (!STAILQ_EMPTY(&td->unsent_wr_list)) 1511 rc = EBUSY; 1512 mtx_unlock(&td->unsent_wr_lock); 1513 1514 if (rc == 0) { 1515 unregister_toedev(sc->tom_softc); 1516 free_tom_data(sc, td); 1517 sc->tom_softc = NULL; 1518 } 1519 1520 return (rc); 1521 } 1522 1523 static int 1524 t4_aio_queue_tom(struct socket *so, struct kaiocb *job) 1525 { 1526 struct tcpcb *tp = so_sototcpcb(so); 1527 struct toepcb *toep = tp->t_toe; 1528 int error; 1529 1530 if (toep->ulp_mode == ULP_MODE_TCPDDP) { 1531 error = t4_aio_queue_ddp(so, job); 1532 if (error != EOPNOTSUPP) 1533 return (error); 1534 } 1535 1536 return (t4_aio_queue_aiotx(so, job)); 1537 } 1538 1539 static int 1540 t4_ctloutput_tom(struct socket *so, struct sockopt *sopt) 1541 { 1542 1543 if (sopt->sopt_level != IPPROTO_TCP) 1544 return (tcp_ctloutput(so, sopt)); 1545 1546 switch (sopt->sopt_name) { 1547 case TCP_TLSOM_SET_TLS_CONTEXT: 1548 case TCP_TLSOM_GET_TLS_TOM: 1549 case TCP_TLSOM_CLR_TLS_TOM: 1550 case TCP_TLSOM_CLR_QUIES: 1551 return (t4_ctloutput_tls(so, sopt)); 1552 default: 1553 return (tcp_ctloutput(so, sopt)); 1554 } 1555 } 1556 1557 static int 1558 t4_tom_mod_load(void) 1559 { 1560 struct protosw *tcp_protosw, *tcp6_protosw; 1561 1562 /* CPL handlers */ 1563 t4_register_cpl_handler(CPL_GET_TCB_RPL, do_get_tcb_rpl); 1564 t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, do_l2t_write_rpl2, 1565 CPL_COOKIE_TOM); 1566 t4_init_connect_cpl_handlers(); 1567 t4_init_listen_cpl_handlers(); 1568 t4_init_cpl_io_handlers(); 1569 1570 t4_ddp_mod_load(); 1571 t4_tls_mod_load(); 1572 1573 tcp_protosw = pffindproto(PF_INET, IPPROTO_TCP, SOCK_STREAM); 1574 if (tcp_protosw == NULL) 1575 return (ENOPROTOOPT); 1576 bcopy(tcp_protosw, &toe_protosw, sizeof(toe_protosw)); 1577 bcopy(tcp_protosw->pr_usrreqs, &toe_usrreqs, sizeof(toe_usrreqs)); 1578 toe_usrreqs.pru_aio_queue = t4_aio_queue_tom; 1579 toe_protosw.pr_ctloutput = t4_ctloutput_tom; 1580 toe_protosw.pr_usrreqs = &toe_usrreqs; 1581 1582 tcp6_protosw = pffindproto(PF_INET6, IPPROTO_TCP, SOCK_STREAM); 1583 if (tcp6_protosw == NULL) 1584 return (ENOPROTOOPT); 1585 bcopy(tcp6_protosw, &toe6_protosw, sizeof(toe6_protosw)); 1586 bcopy(tcp6_protosw->pr_usrreqs, &toe6_usrreqs, sizeof(toe6_usrreqs)); 1587 toe6_usrreqs.pru_aio_queue = t4_aio_queue_tom; 1588 toe6_protosw.pr_ctloutput = t4_ctloutput_tom; 1589 toe6_protosw.pr_usrreqs = &toe6_usrreqs; 1590 1591 return (t4_register_uld(&tom_uld_info)); 1592 } 1593 1594 static void 1595 tom_uninit(struct adapter *sc, void *arg __unused) 1596 { 1597 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4tomun")) 1598 return; 1599 1600 /* Try to free resources (works only if no port has IFCAP_TOE) */ 1601 if (uld_active(sc, ULD_TOM)) 1602 t4_deactivate_uld(sc, ULD_TOM); 1603 1604 end_synchronized_op(sc, 0); 1605 } 1606 1607 static int 1608 t4_tom_mod_unload(void) 1609 { 1610 t4_iterate(tom_uninit, NULL); 1611 1612 if (t4_unregister_uld(&tom_uld_info) == EBUSY) 1613 return (EBUSY); 1614 1615 t4_tls_mod_unload(); 1616 t4_ddp_mod_unload(); 1617 1618 t4_uninit_connect_cpl_handlers(); 1619 t4_uninit_listen_cpl_handlers(); 1620 t4_uninit_cpl_io_handlers(); 1621 t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, NULL, CPL_COOKIE_TOM); 1622 1623 return (0); 1624 } 1625 #endif /* TCP_OFFLOAD */ 1626 1627 static int 1628 t4_tom_modevent(module_t mod, int cmd, void *arg) 1629 { 1630 int rc = 0; 1631 1632 #ifdef TCP_OFFLOAD 1633 switch (cmd) { 1634 case MOD_LOAD: 1635 rc = t4_tom_mod_load(); 1636 break; 1637 1638 case MOD_UNLOAD: 1639 rc = t4_tom_mod_unload(); 1640 break; 1641 1642 default: 1643 rc = EINVAL; 1644 } 1645 #else 1646 printf("t4_tom: compiled without TCP_OFFLOAD support.\n"); 1647 rc = EOPNOTSUPP; 1648 #endif 1649 return (rc); 1650 } 1651 1652 static moduledata_t t4_tom_moddata= { 1653 "t4_tom", 1654 t4_tom_modevent, 1655 0 1656 }; 1657 1658 MODULE_VERSION(t4_tom, 1); 1659 MODULE_DEPEND(t4_tom, toecore, 1, 1, 1); 1660 MODULE_DEPEND(t4_tom, t4nex, 1, 1, 1); 1661 DECLARE_MODULE(t4_tom, t4_tom_moddata, SI_SUB_EXEC, SI_ORDER_ANY); 1662