1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2012 Chelsio Communications, Inc. 5 * All rights reserved. 6 * Written by: Navdeep Parhar <np@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include "opt_inet.h" 34 #include "opt_inet6.h" 35 #include "opt_kern_tls.h" 36 #include "opt_ratelimit.h" 37 38 #include <sys/param.h> 39 #include <sys/types.h> 40 #include <sys/systm.h> 41 #include <sys/kernel.h> 42 #include <sys/ktr.h> 43 #include <sys/lock.h> 44 #include <sys/limits.h> 45 #include <sys/module.h> 46 #include <sys/protosw.h> 47 #include <sys/domain.h> 48 #include <sys/refcount.h> 49 #include <sys/rmlock.h> 50 #include <sys/socket.h> 51 #include <sys/socketvar.h> 52 #include <sys/sysctl.h> 53 #include <sys/taskqueue.h> 54 #include <net/if.h> 55 #include <net/if_var.h> 56 #include <net/if_types.h> 57 #include <net/if_vlan_var.h> 58 #include <netinet/in.h> 59 #include <netinet/in_pcb.h> 60 #include <netinet/in_var.h> 61 #include <netinet/ip.h> 62 #include <netinet/ip6.h> 63 #include <netinet6/scope6_var.h> 64 #define TCPSTATES 65 #include <netinet/tcp_fsm.h> 66 #include <netinet/tcp_timer.h> 67 #include <netinet/tcp_var.h> 68 #include <netinet/toecore.h> 69 #include <netinet/cc/cc.h> 70 71 #ifdef TCP_OFFLOAD 72 #include "common/common.h" 73 #include "common/t4_msg.h" 74 #include "common/t4_regs.h" 75 #include "common/t4_regs_values.h" 76 #include "common/t4_tcb.h" 77 #include "t4_clip.h" 78 #include "tom/t4_tom_l2t.h" 79 #include "tom/t4_tom.h" 80 #include "tom/t4_tls.h" 81 82 static struct protosw toe_protosw; 83 static struct pr_usrreqs toe_usrreqs; 84 85 static struct protosw toe6_protosw; 86 static struct pr_usrreqs toe6_usrreqs; 87 88 /* Module ops */ 89 static int t4_tom_mod_load(void); 90 static int t4_tom_mod_unload(void); 91 static int t4_tom_modevent(module_t, int, void *); 92 93 /* ULD ops and helpers */ 94 static int t4_tom_activate(struct adapter *); 95 static int t4_tom_deactivate(struct adapter *); 96 97 static struct uld_info tom_uld_info = { 98 .uld_id = ULD_TOM, 99 .activate = t4_tom_activate, 100 .deactivate = t4_tom_deactivate, 101 }; 102 103 static void release_offload_resources(struct toepcb *); 104 static int alloc_tid_tabs(struct tid_info *); 105 static void free_tid_tabs(struct tid_info *); 106 static void free_tom_data(struct adapter *, struct tom_data *); 107 static void reclaim_wr_resources(void *, int); 108 109 struct toepcb * 110 alloc_toepcb(struct vi_info *vi, int flags) 111 { 112 struct port_info *pi = vi->pi; 113 struct adapter *sc = pi->adapter; 114 struct toepcb *toep; 115 int tx_credits, txsd_total, len; 116 117 /* 118 * The firmware counts tx work request credits in units of 16 bytes 119 * each. Reserve room for an ABORT_REQ so the driver never has to worry 120 * about tx credits if it wants to abort a connection. 121 */ 122 tx_credits = sc->params.ofldq_wr_cred; 123 tx_credits -= howmany(sizeof(struct cpl_abort_req), 16); 124 125 /* 126 * Shortest possible tx work request is a fw_ofld_tx_data_wr + 1 byte 127 * immediate payload, and firmware counts tx work request credits in 128 * units of 16 byte. Calculate the maximum work requests possible. 129 */ 130 txsd_total = tx_credits / 131 howmany(sizeof(struct fw_ofld_tx_data_wr) + 1, 16); 132 133 len = offsetof(struct toepcb, txsd) + 134 txsd_total * sizeof(struct ofld_tx_sdesc); 135 136 toep = malloc(len, M_CXGBE, M_ZERO | flags); 137 if (toep == NULL) 138 return (NULL); 139 140 refcount_init(&toep->refcount, 1); 141 toep->td = sc->tom_softc; 142 toep->vi = vi; 143 toep->tid = -1; 144 toep->tx_total = tx_credits; 145 toep->tx_credits = tx_credits; 146 mbufq_init(&toep->ulp_pduq, INT_MAX); 147 mbufq_init(&toep->ulp_pdu_reclaimq, INT_MAX); 148 toep->txsd_total = txsd_total; 149 toep->txsd_avail = txsd_total; 150 toep->txsd_pidx = 0; 151 toep->txsd_cidx = 0; 152 aiotx_init_toep(toep); 153 154 return (toep); 155 } 156 157 /* 158 * Initialize a toepcb after its params have been filled out. 159 */ 160 int 161 init_toepcb(struct vi_info *vi, struct toepcb *toep) 162 { 163 struct conn_params *cp = &toep->params; 164 struct port_info *pi = vi->pi; 165 struct adapter *sc = pi->adapter; 166 struct tx_cl_rl_params *tc; 167 168 if (cp->tc_idx >= 0 && cp->tc_idx < sc->chip_params->nsched_cls) { 169 tc = &pi->sched_params->cl_rl[cp->tc_idx]; 170 mtx_lock(&sc->tc_lock); 171 if (tc->flags & CLRL_ERR) { 172 log(LOG_ERR, 173 "%s: failed to associate traffic class %u with tid %u\n", 174 device_get_nameunit(vi->dev), cp->tc_idx, 175 toep->tid); 176 cp->tc_idx = -1; 177 } else { 178 tc->refcount++; 179 } 180 mtx_unlock(&sc->tc_lock); 181 } 182 toep->ofld_txq = &sc->sge.ofld_txq[cp->txq_idx]; 183 toep->ofld_rxq = &sc->sge.ofld_rxq[cp->rxq_idx]; 184 toep->ctrlq = &sc->sge.ctrlq[pi->port_id]; 185 186 tls_init_toep(toep); 187 if (ulp_mode(toep) == ULP_MODE_TCPDDP) 188 ddp_init_toep(toep); 189 190 toep->flags |= TPF_INITIALIZED; 191 192 return (0); 193 } 194 195 struct toepcb * 196 hold_toepcb(struct toepcb *toep) 197 { 198 199 refcount_acquire(&toep->refcount); 200 return (toep); 201 } 202 203 void 204 free_toepcb(struct toepcb *toep) 205 { 206 207 if (refcount_release(&toep->refcount) == 0) 208 return; 209 210 KASSERT(!(toep->flags & TPF_ATTACHED), 211 ("%s: attached to an inpcb", __func__)); 212 KASSERT(!(toep->flags & TPF_CPL_PENDING), 213 ("%s: CPL pending", __func__)); 214 215 if (toep->flags & TPF_INITIALIZED) { 216 if (ulp_mode(toep) == ULP_MODE_TCPDDP) 217 ddp_uninit_toep(toep); 218 tls_uninit_toep(toep); 219 } 220 free(toep, M_CXGBE); 221 } 222 223 /* 224 * Set up the socket for TCP offload. 225 */ 226 void 227 offload_socket(struct socket *so, struct toepcb *toep) 228 { 229 struct tom_data *td = toep->td; 230 struct inpcb *inp = sotoinpcb(so); 231 struct tcpcb *tp = intotcpcb(inp); 232 struct sockbuf *sb; 233 234 INP_WLOCK_ASSERT(inp); 235 236 /* Update socket */ 237 sb = &so->so_snd; 238 SOCKBUF_LOCK(sb); 239 sb->sb_flags |= SB_NOCOALESCE; 240 SOCKBUF_UNLOCK(sb); 241 sb = &so->so_rcv; 242 SOCKBUF_LOCK(sb); 243 sb->sb_flags |= SB_NOCOALESCE; 244 if (inp->inp_vflag & INP_IPV6) 245 so->so_proto = &toe6_protosw; 246 else 247 so->so_proto = &toe_protosw; 248 SOCKBUF_UNLOCK(sb); 249 250 /* Update TCP PCB */ 251 tp->tod = &td->tod; 252 tp->t_toe = toep; 253 tp->t_flags |= TF_TOE; 254 255 /* Install an extra hold on inp */ 256 toep->inp = inp; 257 toep->flags |= TPF_ATTACHED; 258 in_pcbref(inp); 259 260 /* Add the TOE PCB to the active list */ 261 mtx_lock(&td->toep_list_lock); 262 TAILQ_INSERT_HEAD(&td->toep_list, toep, link); 263 mtx_unlock(&td->toep_list_lock); 264 } 265 266 /* This is _not_ the normal way to "unoffload" a socket. */ 267 void 268 undo_offload_socket(struct socket *so) 269 { 270 struct inpcb *inp = sotoinpcb(so); 271 struct tcpcb *tp = intotcpcb(inp); 272 struct toepcb *toep = tp->t_toe; 273 struct tom_data *td = toep->td; 274 struct sockbuf *sb; 275 276 INP_WLOCK_ASSERT(inp); 277 278 sb = &so->so_snd; 279 SOCKBUF_LOCK(sb); 280 sb->sb_flags &= ~SB_NOCOALESCE; 281 SOCKBUF_UNLOCK(sb); 282 sb = &so->so_rcv; 283 SOCKBUF_LOCK(sb); 284 sb->sb_flags &= ~SB_NOCOALESCE; 285 SOCKBUF_UNLOCK(sb); 286 287 tp->tod = NULL; 288 tp->t_toe = NULL; 289 tp->t_flags &= ~TF_TOE; 290 291 toep->inp = NULL; 292 toep->flags &= ~TPF_ATTACHED; 293 if (in_pcbrele_wlocked(inp)) 294 panic("%s: inp freed.", __func__); 295 296 mtx_lock(&td->toep_list_lock); 297 TAILQ_REMOVE(&td->toep_list, toep, link); 298 mtx_unlock(&td->toep_list_lock); 299 } 300 301 static void 302 release_offload_resources(struct toepcb *toep) 303 { 304 struct tom_data *td = toep->td; 305 struct adapter *sc = td_adapter(td); 306 int tid = toep->tid; 307 308 KASSERT(!(toep->flags & TPF_CPL_PENDING), 309 ("%s: %p has CPL pending.", __func__, toep)); 310 KASSERT(!(toep->flags & TPF_ATTACHED), 311 ("%s: %p is still attached.", __func__, toep)); 312 313 CTR5(KTR_CXGBE, "%s: toep %p (tid %d, l2te %p, ce %p)", 314 __func__, toep, tid, toep->l2te, toep->ce); 315 316 /* 317 * These queues should have been emptied at approximately the same time 318 * that a normal connection's socket's so_snd would have been purged or 319 * drained. Do _not_ clean up here. 320 */ 321 MPASS(mbufq_len(&toep->ulp_pduq) == 0); 322 MPASS(mbufq_len(&toep->ulp_pdu_reclaimq) == 0); 323 #ifdef INVARIANTS 324 if (ulp_mode(toep) == ULP_MODE_TCPDDP) 325 ddp_assert_empty(toep); 326 #endif 327 MPASS(TAILQ_EMPTY(&toep->aiotx_jobq)); 328 329 if (toep->l2te) 330 t4_l2t_release(toep->l2te); 331 332 if (tid >= 0) { 333 remove_tid(sc, tid, toep->ce ? 2 : 1); 334 release_tid(sc, tid, toep->ctrlq); 335 } 336 337 if (toep->ce) 338 t4_release_lip(sc, toep->ce); 339 340 if (toep->params.tc_idx != -1) 341 t4_release_cl_rl(sc, toep->vi->pi->port_id, toep->params.tc_idx); 342 343 mtx_lock(&td->toep_list_lock); 344 TAILQ_REMOVE(&td->toep_list, toep, link); 345 mtx_unlock(&td->toep_list_lock); 346 347 free_toepcb(toep); 348 } 349 350 /* 351 * The kernel is done with the TCP PCB and this is our opportunity to unhook the 352 * toepcb hanging off of it. If the TOE driver is also done with the toepcb (no 353 * pending CPL) then it is time to release all resources tied to the toepcb. 354 * 355 * Also gets called when an offloaded active open fails and the TOM wants the 356 * kernel to take the TCP PCB back. 357 */ 358 static void 359 t4_pcb_detach(struct toedev *tod __unused, struct tcpcb *tp) 360 { 361 #if defined(KTR) || defined(INVARIANTS) 362 struct inpcb *inp = tp->t_inpcb; 363 #endif 364 struct toepcb *toep = tp->t_toe; 365 366 INP_WLOCK_ASSERT(inp); 367 368 KASSERT(toep != NULL, ("%s: toep is NULL", __func__)); 369 KASSERT(toep->flags & TPF_ATTACHED, 370 ("%s: not attached", __func__)); 371 372 #ifdef KTR 373 if (tp->t_state == TCPS_SYN_SENT) { 374 CTR6(KTR_CXGBE, "%s: atid %d, toep %p (0x%x), inp %p (0x%x)", 375 __func__, toep->tid, toep, toep->flags, inp, 376 inp->inp_flags); 377 } else { 378 CTR6(KTR_CXGBE, 379 "t4_pcb_detach: tid %d (%s), toep %p (0x%x), inp %p (0x%x)", 380 toep->tid, tcpstates[tp->t_state], toep, toep->flags, inp, 381 inp->inp_flags); 382 } 383 #endif 384 385 tp->tod = NULL; 386 tp->t_toe = NULL; 387 tp->t_flags &= ~TF_TOE; 388 toep->flags &= ~TPF_ATTACHED; 389 390 if (!(toep->flags & TPF_CPL_PENDING)) 391 release_offload_resources(toep); 392 } 393 394 /* 395 * setsockopt handler. 396 */ 397 static void 398 t4_ctloutput(struct toedev *tod, struct tcpcb *tp, int dir, int name) 399 { 400 struct adapter *sc = tod->tod_softc; 401 struct toepcb *toep = tp->t_toe; 402 403 if (dir == SOPT_GET) 404 return; 405 406 CTR4(KTR_CXGBE, "%s: tp %p, dir %u, name %u", __func__, tp, dir, name); 407 408 switch (name) { 409 case TCP_NODELAY: 410 if (tp->t_state != TCPS_ESTABLISHED) 411 break; 412 toep->params.nagle = tp->t_flags & TF_NODELAY ? 0 : 1; 413 t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_T_FLAGS, 414 V_TF_NAGLE(1), V_TF_NAGLE(toep->params.nagle), 0, 0); 415 break; 416 default: 417 break; 418 } 419 } 420 421 static inline uint64_t 422 get_tcb_tflags(const uint64_t *tcb) 423 { 424 425 return ((be64toh(tcb[14]) << 32) | (be64toh(tcb[15]) >> 32)); 426 } 427 428 static inline uint32_t 429 get_tcb_field(const uint64_t *tcb, u_int word, uint32_t mask, u_int shift) 430 { 431 #define LAST_WORD ((TCB_SIZE / 4) - 1) 432 uint64_t t1, t2; 433 int flit_idx; 434 435 MPASS(mask != 0); 436 MPASS(word <= LAST_WORD); 437 MPASS(shift < 32); 438 439 flit_idx = (LAST_WORD - word) / 2; 440 if (word & 0x1) 441 shift += 32; 442 t1 = be64toh(tcb[flit_idx]) >> shift; 443 t2 = 0; 444 if (fls(mask) > 64 - shift) { 445 /* 446 * Will spill over into the next logical flit, which is the flit 447 * before this one. The flit_idx before this one must be valid. 448 */ 449 MPASS(flit_idx > 0); 450 t2 = be64toh(tcb[flit_idx - 1]) << (64 - shift); 451 } 452 return ((t2 | t1) & mask); 453 #undef LAST_WORD 454 } 455 #define GET_TCB_FIELD(tcb, F) \ 456 get_tcb_field(tcb, W_TCB_##F, M_TCB_##F, S_TCB_##F) 457 458 /* 459 * Issues a CPL_GET_TCB to read the entire TCB for the tid. 460 */ 461 static int 462 send_get_tcb(struct adapter *sc, u_int tid) 463 { 464 struct cpl_get_tcb *cpl; 465 struct wrq_cookie cookie; 466 467 MPASS(tid < sc->tids.ntids); 468 469 cpl = start_wrq_wr(&sc->sge.ctrlq[0], howmany(sizeof(*cpl), 16), 470 &cookie); 471 if (__predict_false(cpl == NULL)) 472 return (ENOMEM); 473 bzero(cpl, sizeof(*cpl)); 474 INIT_TP_WR(cpl, tid); 475 OPCODE_TID(cpl) = htobe32(MK_OPCODE_TID(CPL_GET_TCB, tid)); 476 cpl->reply_ctrl = htobe16(V_REPLY_CHAN(0) | 477 V_QUEUENO(sc->sge.ofld_rxq[0].iq.cntxt_id)); 478 cpl->cookie = 0xff; 479 commit_wrq_wr(&sc->sge.ctrlq[0], cpl, &cookie); 480 481 return (0); 482 } 483 484 static struct tcb_histent * 485 alloc_tcb_histent(struct adapter *sc, u_int tid, int flags) 486 { 487 struct tcb_histent *te; 488 489 MPASS(flags == M_NOWAIT || flags == M_WAITOK); 490 491 te = malloc(sizeof(*te), M_CXGBE, M_ZERO | flags); 492 if (te == NULL) 493 return (NULL); 494 mtx_init(&te->te_lock, "TCB entry", NULL, MTX_DEF); 495 callout_init_mtx(&te->te_callout, &te->te_lock, 0); 496 te->te_adapter = sc; 497 te->te_tid = tid; 498 499 return (te); 500 } 501 502 static void 503 free_tcb_histent(struct tcb_histent *te) 504 { 505 506 mtx_destroy(&te->te_lock); 507 free(te, M_CXGBE); 508 } 509 510 /* 511 * Start tracking the tid in the TCB history. 512 */ 513 int 514 add_tid_to_history(struct adapter *sc, u_int tid) 515 { 516 struct tcb_histent *te = NULL; 517 struct tom_data *td = sc->tom_softc; 518 int rc; 519 520 MPASS(tid < sc->tids.ntids); 521 522 if (td->tcb_history == NULL) 523 return (ENXIO); 524 525 rw_wlock(&td->tcb_history_lock); 526 if (td->tcb_history[tid] != NULL) { 527 rc = EEXIST; 528 goto done; 529 } 530 te = alloc_tcb_histent(sc, tid, M_NOWAIT); 531 if (te == NULL) { 532 rc = ENOMEM; 533 goto done; 534 } 535 mtx_lock(&te->te_lock); 536 rc = send_get_tcb(sc, tid); 537 if (rc == 0) { 538 te->te_flags |= TE_RPL_PENDING; 539 td->tcb_history[tid] = te; 540 } else { 541 free(te, M_CXGBE); 542 } 543 mtx_unlock(&te->te_lock); 544 done: 545 rw_wunlock(&td->tcb_history_lock); 546 return (rc); 547 } 548 549 static void 550 remove_tcb_histent(struct tcb_histent *te) 551 { 552 struct adapter *sc = te->te_adapter; 553 struct tom_data *td = sc->tom_softc; 554 555 rw_assert(&td->tcb_history_lock, RA_WLOCKED); 556 mtx_assert(&te->te_lock, MA_OWNED); 557 MPASS(td->tcb_history[te->te_tid] == te); 558 559 td->tcb_history[te->te_tid] = NULL; 560 free_tcb_histent(te); 561 rw_wunlock(&td->tcb_history_lock); 562 } 563 564 static inline struct tcb_histent * 565 lookup_tcb_histent(struct adapter *sc, u_int tid, bool addrem) 566 { 567 struct tcb_histent *te; 568 struct tom_data *td = sc->tom_softc; 569 570 MPASS(tid < sc->tids.ntids); 571 572 if (td->tcb_history == NULL) 573 return (NULL); 574 575 if (addrem) 576 rw_wlock(&td->tcb_history_lock); 577 else 578 rw_rlock(&td->tcb_history_lock); 579 te = td->tcb_history[tid]; 580 if (te != NULL) { 581 mtx_lock(&te->te_lock); 582 return (te); /* with both locks held */ 583 } 584 if (addrem) 585 rw_wunlock(&td->tcb_history_lock); 586 else 587 rw_runlock(&td->tcb_history_lock); 588 589 return (te); 590 } 591 592 static inline void 593 release_tcb_histent(struct tcb_histent *te) 594 { 595 struct adapter *sc = te->te_adapter; 596 struct tom_data *td = sc->tom_softc; 597 598 mtx_assert(&te->te_lock, MA_OWNED); 599 mtx_unlock(&te->te_lock); 600 rw_assert(&td->tcb_history_lock, RA_RLOCKED); 601 rw_runlock(&td->tcb_history_lock); 602 } 603 604 static void 605 request_tcb(void *arg) 606 { 607 struct tcb_histent *te = arg; 608 609 mtx_assert(&te->te_lock, MA_OWNED); 610 611 /* Noone else is supposed to update the histent. */ 612 MPASS(!(te->te_flags & TE_RPL_PENDING)); 613 if (send_get_tcb(te->te_adapter, te->te_tid) == 0) 614 te->te_flags |= TE_RPL_PENDING; 615 else 616 callout_schedule(&te->te_callout, hz / 100); 617 } 618 619 static void 620 update_tcb_histent(struct tcb_histent *te, const uint64_t *tcb) 621 { 622 struct tom_data *td = te->te_adapter->tom_softc; 623 uint64_t tflags = get_tcb_tflags(tcb); 624 uint8_t sample = 0; 625 626 if (GET_TCB_FIELD(tcb, SND_MAX_RAW) != GET_TCB_FIELD(tcb, SND_UNA_RAW)) { 627 if (GET_TCB_FIELD(tcb, T_RXTSHIFT) != 0) 628 sample |= TS_RTO; 629 if (GET_TCB_FIELD(tcb, T_DUPACKS) != 0) 630 sample |= TS_DUPACKS; 631 if (GET_TCB_FIELD(tcb, T_DUPACKS) >= td->dupack_threshold) 632 sample |= TS_FASTREXMT; 633 } 634 635 if (GET_TCB_FIELD(tcb, SND_MAX_RAW) != 0) { 636 uint32_t snd_wnd; 637 638 sample |= TS_SND_BACKLOGGED; /* for whatever reason. */ 639 640 snd_wnd = GET_TCB_FIELD(tcb, RCV_ADV); 641 if (tflags & V_TF_RECV_SCALE(1)) 642 snd_wnd <<= GET_TCB_FIELD(tcb, RCV_SCALE); 643 if (GET_TCB_FIELD(tcb, SND_CWND) < snd_wnd) 644 sample |= TS_CWND_LIMITED; /* maybe due to CWND */ 645 } 646 647 if (tflags & V_TF_CCTRL_ECN(1)) { 648 649 /* 650 * CE marker on incoming IP hdr, echoing ECE back in the TCP 651 * hdr. Indicates congestion somewhere on the way from the peer 652 * to this node. 653 */ 654 if (tflags & V_TF_CCTRL_ECE(1)) 655 sample |= TS_ECN_ECE; 656 657 /* 658 * ECE seen and CWR sent (or about to be sent). Might indicate 659 * congestion on the way to the peer. This node is reducing its 660 * congestion window in response. 661 */ 662 if (tflags & (V_TF_CCTRL_CWR(1) | V_TF_CCTRL_RFR(1))) 663 sample |= TS_ECN_CWR; 664 } 665 666 te->te_sample[te->te_pidx] = sample; 667 if (++te->te_pidx == nitems(te->te_sample)) 668 te->te_pidx = 0; 669 memcpy(te->te_tcb, tcb, TCB_SIZE); 670 te->te_flags |= TE_ACTIVE; 671 } 672 673 static int 674 do_get_tcb_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 675 { 676 struct adapter *sc = iq->adapter; 677 const struct cpl_get_tcb_rpl *cpl = mtod(m, const void *); 678 const uint64_t *tcb = (const uint64_t *)(const void *)(cpl + 1); 679 struct tcb_histent *te; 680 const u_int tid = GET_TID(cpl); 681 bool remove; 682 683 remove = GET_TCB_FIELD(tcb, T_STATE) == TCPS_CLOSED; 684 te = lookup_tcb_histent(sc, tid, remove); 685 if (te == NULL) { 686 /* Not in the history. Who issued the GET_TCB for this? */ 687 device_printf(sc->dev, "tcb %u: flags 0x%016jx, state %u, " 688 "srtt %u, sscale %u, rscale %u, cookie 0x%x\n", tid, 689 (uintmax_t)get_tcb_tflags(tcb), GET_TCB_FIELD(tcb, T_STATE), 690 GET_TCB_FIELD(tcb, T_SRTT), GET_TCB_FIELD(tcb, SND_SCALE), 691 GET_TCB_FIELD(tcb, RCV_SCALE), cpl->cookie); 692 goto done; 693 } 694 695 MPASS(te->te_flags & TE_RPL_PENDING); 696 te->te_flags &= ~TE_RPL_PENDING; 697 if (remove) { 698 remove_tcb_histent(te); 699 } else { 700 update_tcb_histent(te, tcb); 701 callout_reset(&te->te_callout, hz / 10, request_tcb, te); 702 release_tcb_histent(te); 703 } 704 done: 705 m_freem(m); 706 return (0); 707 } 708 709 static void 710 fill_tcp_info_from_tcb(struct adapter *sc, uint64_t *tcb, struct tcp_info *ti) 711 { 712 uint32_t v; 713 714 ti->tcpi_state = GET_TCB_FIELD(tcb, T_STATE); 715 716 v = GET_TCB_FIELD(tcb, T_SRTT); 717 ti->tcpi_rtt = tcp_ticks_to_us(sc, v); 718 719 v = GET_TCB_FIELD(tcb, T_RTTVAR); 720 ti->tcpi_rttvar = tcp_ticks_to_us(sc, v); 721 722 ti->tcpi_snd_ssthresh = GET_TCB_FIELD(tcb, SND_SSTHRESH); 723 ti->tcpi_snd_cwnd = GET_TCB_FIELD(tcb, SND_CWND); 724 ti->tcpi_rcv_nxt = GET_TCB_FIELD(tcb, RCV_NXT); 725 726 v = GET_TCB_FIELD(tcb, TX_MAX); 727 ti->tcpi_snd_nxt = v - GET_TCB_FIELD(tcb, SND_NXT_RAW); 728 729 /* Receive window being advertised by us. */ 730 ti->tcpi_rcv_wscale = GET_TCB_FIELD(tcb, SND_SCALE); /* Yes, SND. */ 731 ti->tcpi_rcv_space = GET_TCB_FIELD(tcb, RCV_WND); 732 733 /* Send window */ 734 ti->tcpi_snd_wscale = GET_TCB_FIELD(tcb, RCV_SCALE); /* Yes, RCV. */ 735 ti->tcpi_snd_wnd = GET_TCB_FIELD(tcb, RCV_ADV); 736 if (get_tcb_tflags(tcb) & V_TF_RECV_SCALE(1)) 737 ti->tcpi_snd_wnd <<= ti->tcpi_snd_wscale; 738 else 739 ti->tcpi_snd_wscale = 0; 740 741 } 742 743 static void 744 fill_tcp_info_from_history(struct adapter *sc, struct tcb_histent *te, 745 struct tcp_info *ti) 746 { 747 748 fill_tcp_info_from_tcb(sc, te->te_tcb, ti); 749 } 750 751 /* 752 * Reads the TCB for the given tid using a memory window and copies it to 'buf' 753 * in the same format as CPL_GET_TCB_RPL. 754 */ 755 static void 756 read_tcb_using_memwin(struct adapter *sc, u_int tid, uint64_t *buf) 757 { 758 int i, j, k, rc; 759 uint32_t addr; 760 u_char *tcb, tmp; 761 762 MPASS(tid < sc->tids.ntids); 763 764 addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE) + tid * TCB_SIZE; 765 rc = read_via_memwin(sc, 2, addr, (uint32_t *)buf, TCB_SIZE); 766 if (rc != 0) 767 return; 768 769 tcb = (u_char *)buf; 770 for (i = 0, j = TCB_SIZE - 16; i < j; i += 16, j -= 16) { 771 for (k = 0; k < 16; k++) { 772 tmp = tcb[i + k]; 773 tcb[i + k] = tcb[j + k]; 774 tcb[j + k] = tmp; 775 } 776 } 777 } 778 779 static void 780 fill_tcp_info(struct adapter *sc, u_int tid, struct tcp_info *ti) 781 { 782 uint64_t tcb[TCB_SIZE / sizeof(uint64_t)]; 783 struct tcb_histent *te; 784 785 ti->tcpi_toe_tid = tid; 786 te = lookup_tcb_histent(sc, tid, false); 787 if (te != NULL) { 788 fill_tcp_info_from_history(sc, te, ti); 789 release_tcb_histent(te); 790 } else { 791 if (!(sc->debug_flags & DF_DISABLE_TCB_CACHE)) { 792 /* XXX: tell firmware to flush TCB cache. */ 793 } 794 read_tcb_using_memwin(sc, tid, tcb); 795 fill_tcp_info_from_tcb(sc, tcb, ti); 796 } 797 } 798 799 /* 800 * Called by the kernel to allow the TOE driver to "refine" values filled up in 801 * the tcp_info for an offloaded connection. 802 */ 803 static void 804 t4_tcp_info(struct toedev *tod, struct tcpcb *tp, struct tcp_info *ti) 805 { 806 struct adapter *sc = tod->tod_softc; 807 struct toepcb *toep = tp->t_toe; 808 809 INP_WLOCK_ASSERT(tp->t_inpcb); 810 MPASS(ti != NULL); 811 812 fill_tcp_info(sc, toep->tid, ti); 813 } 814 815 #ifdef KERN_TLS 816 static int 817 t4_alloc_tls_session(struct toedev *tod, struct tcpcb *tp, 818 struct ktls_session *tls, int direction) 819 { 820 struct toepcb *toep = tp->t_toe; 821 822 INP_WLOCK_ASSERT(tp->t_inpcb); 823 MPASS(tls != NULL); 824 825 return (tls_alloc_ktls(toep, tls, direction)); 826 } 827 #endif 828 829 /* 830 * The TOE driver will not receive any more CPLs for the tid associated with the 831 * toepcb; release the hold on the inpcb. 832 */ 833 void 834 final_cpl_received(struct toepcb *toep) 835 { 836 struct inpcb *inp = toep->inp; 837 838 KASSERT(inp != NULL, ("%s: inp is NULL", __func__)); 839 INP_WLOCK_ASSERT(inp); 840 KASSERT(toep->flags & TPF_CPL_PENDING, 841 ("%s: CPL not pending already?", __func__)); 842 843 CTR6(KTR_CXGBE, "%s: tid %d, toep %p (0x%x), inp %p (0x%x)", 844 __func__, toep->tid, toep, toep->flags, inp, inp->inp_flags); 845 846 if (ulp_mode(toep) == ULP_MODE_TCPDDP) 847 release_ddp_resources(toep); 848 toep->inp = NULL; 849 toep->flags &= ~TPF_CPL_PENDING; 850 mbufq_drain(&toep->ulp_pdu_reclaimq); 851 852 if (!(toep->flags & TPF_ATTACHED)) 853 release_offload_resources(toep); 854 855 if (!in_pcbrele_wlocked(inp)) 856 INP_WUNLOCK(inp); 857 } 858 859 void 860 insert_tid(struct adapter *sc, int tid, void *ctx, int ntids) 861 { 862 struct tid_info *t = &sc->tids; 863 864 MPASS(tid >= t->tid_base); 865 MPASS(tid - t->tid_base < t->ntids); 866 867 t->tid_tab[tid - t->tid_base] = ctx; 868 atomic_add_int(&t->tids_in_use, ntids); 869 } 870 871 void * 872 lookup_tid(struct adapter *sc, int tid) 873 { 874 struct tid_info *t = &sc->tids; 875 876 return (t->tid_tab[tid - t->tid_base]); 877 } 878 879 void 880 update_tid(struct adapter *sc, int tid, void *ctx) 881 { 882 struct tid_info *t = &sc->tids; 883 884 t->tid_tab[tid - t->tid_base] = ctx; 885 } 886 887 void 888 remove_tid(struct adapter *sc, int tid, int ntids) 889 { 890 struct tid_info *t = &sc->tids; 891 892 t->tid_tab[tid - t->tid_base] = NULL; 893 atomic_subtract_int(&t->tids_in_use, ntids); 894 } 895 896 /* 897 * What mtu_idx to use, given a 4-tuple. Note that both s->mss and tcp_mssopt 898 * have the MSS that we should advertise in our SYN. Advertised MSS doesn't 899 * account for any TCP options so the effective MSS (only payload, no headers or 900 * options) could be different. 901 */ 902 static int 903 find_best_mtu_idx(struct adapter *sc, struct in_conninfo *inc, 904 struct offload_settings *s) 905 { 906 unsigned short *mtus = &sc->params.mtus[0]; 907 int i, mss, mtu; 908 909 MPASS(inc != NULL); 910 911 mss = s->mss > 0 ? s->mss : tcp_mssopt(inc); 912 if (inc->inc_flags & INC_ISIPV6) 913 mtu = mss + sizeof(struct ip6_hdr) + sizeof(struct tcphdr); 914 else 915 mtu = mss + sizeof(struct ip) + sizeof(struct tcphdr); 916 917 for (i = 0; i < NMTUS - 1 && mtus[i + 1] <= mtu; i++) 918 continue; 919 920 return (i); 921 } 922 923 /* 924 * Determine the receive window size for a socket. 925 */ 926 u_long 927 select_rcv_wnd(struct socket *so) 928 { 929 unsigned long wnd; 930 931 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 932 933 wnd = sbspace(&so->so_rcv); 934 if (wnd < MIN_RCV_WND) 935 wnd = MIN_RCV_WND; 936 937 return min(wnd, MAX_RCV_WND); 938 } 939 940 int 941 select_rcv_wscale(void) 942 { 943 int wscale = 0; 944 unsigned long space = sb_max; 945 946 if (space > MAX_RCV_WND) 947 space = MAX_RCV_WND; 948 949 while (wscale < TCP_MAX_WINSHIFT && (TCP_MAXWIN << wscale) < space) 950 wscale++; 951 952 return (wscale); 953 } 954 955 __be64 956 calc_options0(struct vi_info *vi, struct conn_params *cp) 957 { 958 uint64_t opt0 = 0; 959 960 opt0 |= F_TCAM_BYPASS; 961 962 MPASS(cp->wscale >= 0 && cp->wscale <= M_WND_SCALE); 963 opt0 |= V_WND_SCALE(cp->wscale); 964 965 MPASS(cp->mtu_idx >= 0 && cp->mtu_idx < NMTUS); 966 opt0 |= V_MSS_IDX(cp->mtu_idx); 967 968 MPASS(cp->ulp_mode >= 0 && cp->ulp_mode <= M_ULP_MODE); 969 opt0 |= V_ULP_MODE(cp->ulp_mode); 970 971 MPASS(cp->opt0_bufsize >= 0 && cp->opt0_bufsize <= M_RCV_BUFSIZ); 972 opt0 |= V_RCV_BUFSIZ(cp->opt0_bufsize); 973 974 MPASS(cp->l2t_idx >= 0 && cp->l2t_idx < vi->adapter->vres.l2t.size); 975 opt0 |= V_L2T_IDX(cp->l2t_idx); 976 977 opt0 |= V_SMAC_SEL(vi->smt_idx); 978 opt0 |= V_TX_CHAN(vi->pi->tx_chan); 979 980 MPASS(cp->keepalive == 0 || cp->keepalive == 1); 981 opt0 |= V_KEEP_ALIVE(cp->keepalive); 982 983 MPASS(cp->nagle == 0 || cp->nagle == 1); 984 opt0 |= V_NAGLE(cp->nagle); 985 986 return (htobe64(opt0)); 987 } 988 989 __be32 990 calc_options2(struct vi_info *vi, struct conn_params *cp) 991 { 992 uint32_t opt2 = 0; 993 struct port_info *pi = vi->pi; 994 struct adapter *sc = pi->adapter; 995 996 /* 997 * rx flow control, rx coalesce, congestion control, and tx pace are all 998 * explicitly set by the driver. On T5+ the ISS is also set by the 999 * driver to the value picked by the kernel. 1000 */ 1001 if (is_t4(sc)) { 1002 opt2 |= F_RX_FC_VALID | F_RX_COALESCE_VALID; 1003 opt2 |= F_CONG_CNTRL_VALID | F_PACE_VALID; 1004 } else { 1005 opt2 |= F_T5_OPT_2_VALID; /* all 4 valid */ 1006 opt2 |= F_T5_ISS; /* ISS provided in CPL */ 1007 } 1008 1009 MPASS(cp->sack == 0 || cp->sack == 1); 1010 opt2 |= V_SACK_EN(cp->sack); 1011 1012 MPASS(cp->tstamp == 0 || cp->tstamp == 1); 1013 opt2 |= V_TSTAMPS_EN(cp->tstamp); 1014 1015 if (cp->wscale > 0) 1016 opt2 |= F_WND_SCALE_EN; 1017 1018 MPASS(cp->ecn == 0 || cp->ecn == 1); 1019 opt2 |= V_CCTRL_ECN(cp->ecn); 1020 1021 /* XXX: F_RX_CHANNEL for multiple rx c-chan support goes here. */ 1022 1023 opt2 |= V_TX_QUEUE(sc->params.tp.tx_modq[pi->tx_chan]); 1024 opt2 |= V_PACE(0); 1025 opt2 |= F_RSS_QUEUE_VALID; 1026 opt2 |= V_RSS_QUEUE(sc->sge.ofld_rxq[cp->rxq_idx].iq.abs_id); 1027 1028 MPASS(cp->cong_algo >= 0 && cp->cong_algo <= M_CONG_CNTRL); 1029 opt2 |= V_CONG_CNTRL(cp->cong_algo); 1030 1031 MPASS(cp->rx_coalesce == 0 || cp->rx_coalesce == 1); 1032 if (cp->rx_coalesce == 1) 1033 opt2 |= V_RX_COALESCE(M_RX_COALESCE); 1034 1035 opt2 |= V_RX_FC_DDP(0) | V_RX_FC_DISABLE(0); 1036 #ifdef USE_DDP_RX_FLOW_CONTROL 1037 if (cp->ulp_mode == ULP_MODE_TCPDDP) 1038 opt2 |= F_RX_FC_DDP; 1039 #endif 1040 1041 return (htobe32(opt2)); 1042 } 1043 1044 uint64_t 1045 select_ntuple(struct vi_info *vi, struct l2t_entry *e) 1046 { 1047 struct adapter *sc = vi->adapter; 1048 struct tp_params *tp = &sc->params.tp; 1049 uint64_t ntuple = 0; 1050 1051 /* 1052 * Initialize each of the fields which we care about which are present 1053 * in the Compressed Filter Tuple. 1054 */ 1055 if (tp->vlan_shift >= 0 && EVL_VLANOFTAG(e->vlan) != CPL_L2T_VLAN_NONE) 1056 ntuple |= (uint64_t)(F_FT_VLAN_VLD | e->vlan) << tp->vlan_shift; 1057 1058 if (tp->port_shift >= 0) 1059 ntuple |= (uint64_t)e->lport << tp->port_shift; 1060 1061 if (tp->protocol_shift >= 0) 1062 ntuple |= (uint64_t)IPPROTO_TCP << tp->protocol_shift; 1063 1064 if (tp->vnic_shift >= 0 && tp->ingress_config & F_VNIC) { 1065 ntuple |= (uint64_t)(V_FT_VNID_ID_VF(vi->vin) | 1066 V_FT_VNID_ID_PF(sc->pf) | V_FT_VNID_ID_VLD(vi->vfvld)) << 1067 tp->vnic_shift; 1068 } 1069 1070 if (is_t4(sc)) 1071 return (htobe32((uint32_t)ntuple)); 1072 else 1073 return (htobe64(V_FILTER_TUPLE(ntuple))); 1074 } 1075 1076 static int 1077 is_tls_sock(struct socket *so, struct adapter *sc) 1078 { 1079 struct inpcb *inp = sotoinpcb(so); 1080 int i, rc; 1081 1082 /* XXX: Eventually add a SO_WANT_TLS socket option perhaps? */ 1083 rc = 0; 1084 ADAPTER_LOCK(sc); 1085 for (i = 0; i < sc->tt.num_tls_rx_ports; i++) { 1086 if (inp->inp_lport == htons(sc->tt.tls_rx_ports[i]) || 1087 inp->inp_fport == htons(sc->tt.tls_rx_ports[i])) { 1088 rc = 1; 1089 break; 1090 } 1091 } 1092 ADAPTER_UNLOCK(sc); 1093 return (rc); 1094 } 1095 1096 /* 1097 * Initialize various connection parameters. 1098 */ 1099 void 1100 init_conn_params(struct vi_info *vi , struct offload_settings *s, 1101 struct in_conninfo *inc, struct socket *so, 1102 const struct tcp_options *tcpopt, int16_t l2t_idx, struct conn_params *cp) 1103 { 1104 struct port_info *pi = vi->pi; 1105 struct adapter *sc = pi->adapter; 1106 struct tom_tunables *tt = &sc->tt; 1107 struct inpcb *inp = sotoinpcb(so); 1108 struct tcpcb *tp = intotcpcb(inp); 1109 u_long wnd; 1110 1111 MPASS(s->offload != 0); 1112 1113 /* Congestion control algorithm */ 1114 if (s->cong_algo >= 0) 1115 cp->cong_algo = s->cong_algo & M_CONG_CNTRL; 1116 else if (sc->tt.cong_algorithm >= 0) 1117 cp->cong_algo = tt->cong_algorithm & M_CONG_CNTRL; 1118 else { 1119 struct cc_algo *cc = CC_ALGO(tp); 1120 1121 if (strcasecmp(cc->name, "reno") == 0) 1122 cp->cong_algo = CONG_ALG_RENO; 1123 else if (strcasecmp(cc->name, "tahoe") == 0) 1124 cp->cong_algo = CONG_ALG_TAHOE; 1125 if (strcasecmp(cc->name, "newreno") == 0) 1126 cp->cong_algo = CONG_ALG_NEWRENO; 1127 if (strcasecmp(cc->name, "highspeed") == 0) 1128 cp->cong_algo = CONG_ALG_HIGHSPEED; 1129 else { 1130 /* 1131 * Use newreno in case the algorithm selected by the 1132 * host stack is not supported by the hardware. 1133 */ 1134 cp->cong_algo = CONG_ALG_NEWRENO; 1135 } 1136 } 1137 1138 /* Tx traffic scheduling class. */ 1139 if (s->sched_class >= 0 && 1140 s->sched_class < sc->chip_params->nsched_cls) { 1141 cp->tc_idx = s->sched_class; 1142 } else 1143 cp->tc_idx = -1; 1144 1145 /* Nagle's algorithm. */ 1146 if (s->nagle >= 0) 1147 cp->nagle = s->nagle > 0 ? 1 : 0; 1148 else 1149 cp->nagle = tp->t_flags & TF_NODELAY ? 0 : 1; 1150 1151 /* TCP Keepalive. */ 1152 if (V_tcp_always_keepalive || so_options_get(so) & SO_KEEPALIVE) 1153 cp->keepalive = 1; 1154 else 1155 cp->keepalive = 0; 1156 1157 /* Optimization that's specific to T5 @ 40G. */ 1158 if (tt->tx_align >= 0) 1159 cp->tx_align = tt->tx_align > 0 ? 1 : 0; 1160 else if (chip_id(sc) == CHELSIO_T5 && 1161 (port_top_speed(pi) > 10 || sc->params.nports > 2)) 1162 cp->tx_align = 1; 1163 else 1164 cp->tx_align = 0; 1165 1166 /* ULP mode. */ 1167 if (can_tls_offload(sc) && 1168 (s->tls > 0 || (s->tls < 0 && is_tls_sock(so, sc)))) 1169 cp->ulp_mode = ULP_MODE_TLS; 1170 else if (s->ddp > 0 || 1171 (s->ddp < 0 && sc->tt.ddp && (so_options_get(so) & SO_NO_DDP) == 0)) 1172 cp->ulp_mode = ULP_MODE_TCPDDP; 1173 else 1174 cp->ulp_mode = ULP_MODE_NONE; 1175 1176 /* Rx coalescing. */ 1177 if (s->rx_coalesce >= 0) 1178 cp->rx_coalesce = s->rx_coalesce > 0 ? 1 : 0; 1179 else if (cp->ulp_mode == ULP_MODE_TLS) 1180 cp->rx_coalesce = 0; 1181 else if (tt->rx_coalesce >= 0) 1182 cp->rx_coalesce = tt->rx_coalesce > 0 ? 1 : 0; 1183 else 1184 cp->rx_coalesce = 1; /* default */ 1185 1186 /* 1187 * Index in the PMTU table. This controls the MSS that we announce in 1188 * our SYN initially, but after ESTABLISHED it controls the MSS that we 1189 * use to send data. 1190 */ 1191 cp->mtu_idx = find_best_mtu_idx(sc, inc, s); 1192 1193 /* Tx queue for this connection. */ 1194 if (s->txq >= 0 && s->txq < vi->nofldtxq) 1195 cp->txq_idx = s->txq; 1196 else 1197 cp->txq_idx = arc4random() % vi->nofldtxq; 1198 cp->txq_idx += vi->first_ofld_txq; 1199 1200 /* Rx queue for this connection. */ 1201 if (s->rxq >= 0 && s->rxq < vi->nofldrxq) 1202 cp->rxq_idx = s->rxq; 1203 else 1204 cp->rxq_idx = arc4random() % vi->nofldrxq; 1205 cp->rxq_idx += vi->first_ofld_rxq; 1206 1207 if (SOLISTENING(so)) { 1208 /* Passive open */ 1209 MPASS(tcpopt != NULL); 1210 1211 /* TCP timestamp option */ 1212 if (tcpopt->tstamp && 1213 (s->tstamp > 0 || (s->tstamp < 0 && V_tcp_do_rfc1323))) 1214 cp->tstamp = 1; 1215 else 1216 cp->tstamp = 0; 1217 1218 /* SACK */ 1219 if (tcpopt->sack && 1220 (s->sack > 0 || (s->sack < 0 && V_tcp_do_sack))) 1221 cp->sack = 1; 1222 else 1223 cp->sack = 0; 1224 1225 /* Receive window scaling. */ 1226 if (tcpopt->wsf > 0 && tcpopt->wsf < 15 && V_tcp_do_rfc1323) 1227 cp->wscale = select_rcv_wscale(); 1228 else 1229 cp->wscale = 0; 1230 1231 /* ECN */ 1232 if (tcpopt->ecn && /* XXX: review. */ 1233 (s->ecn > 0 || (s->ecn < 0 && V_tcp_do_ecn))) 1234 cp->ecn = 1; 1235 else 1236 cp->ecn = 0; 1237 1238 wnd = max(so->sol_sbrcv_hiwat, MIN_RCV_WND); 1239 cp->opt0_bufsize = min(wnd >> 10, M_RCV_BUFSIZ); 1240 1241 if (tt->sndbuf > 0) 1242 cp->sndbuf = tt->sndbuf; 1243 else if (so->sol_sbsnd_flags & SB_AUTOSIZE && 1244 V_tcp_do_autosndbuf) 1245 cp->sndbuf = 256 * 1024; 1246 else 1247 cp->sndbuf = so->sol_sbsnd_hiwat; 1248 } else { 1249 /* Active open */ 1250 1251 /* TCP timestamp option */ 1252 if (s->tstamp > 0 || 1253 (s->tstamp < 0 && (tp->t_flags & TF_REQ_TSTMP))) 1254 cp->tstamp = 1; 1255 else 1256 cp->tstamp = 0; 1257 1258 /* SACK */ 1259 if (s->sack > 0 || 1260 (s->sack < 0 && (tp->t_flags & TF_SACK_PERMIT))) 1261 cp->sack = 1; 1262 else 1263 cp->sack = 0; 1264 1265 /* Receive window scaling */ 1266 if (tp->t_flags & TF_REQ_SCALE) 1267 cp->wscale = select_rcv_wscale(); 1268 else 1269 cp->wscale = 0; 1270 1271 /* ECN */ 1272 if (s->ecn > 0 || (s->ecn < 0 && V_tcp_do_ecn == 1)) 1273 cp->ecn = 1; 1274 else 1275 cp->ecn = 0; 1276 1277 SOCKBUF_LOCK(&so->so_rcv); 1278 wnd = max(select_rcv_wnd(so), MIN_RCV_WND); 1279 SOCKBUF_UNLOCK(&so->so_rcv); 1280 cp->opt0_bufsize = min(wnd >> 10, M_RCV_BUFSIZ); 1281 1282 if (tt->sndbuf > 0) 1283 cp->sndbuf = tt->sndbuf; 1284 else { 1285 SOCKBUF_LOCK(&so->so_snd); 1286 if (so->so_snd.sb_flags & SB_AUTOSIZE && 1287 V_tcp_do_autosndbuf) 1288 cp->sndbuf = 256 * 1024; 1289 else 1290 cp->sndbuf = so->so_snd.sb_hiwat; 1291 SOCKBUF_UNLOCK(&so->so_snd); 1292 } 1293 } 1294 1295 cp->l2t_idx = l2t_idx; 1296 1297 /* This will be initialized on ESTABLISHED. */ 1298 cp->emss = 0; 1299 } 1300 1301 int 1302 negative_advice(int status) 1303 { 1304 1305 return (status == CPL_ERR_RTX_NEG_ADVICE || 1306 status == CPL_ERR_PERSIST_NEG_ADVICE || 1307 status == CPL_ERR_KEEPALV_NEG_ADVICE); 1308 } 1309 1310 static int 1311 alloc_tid_tab(struct tid_info *t, int flags) 1312 { 1313 1314 MPASS(t->ntids > 0); 1315 MPASS(t->tid_tab == NULL); 1316 1317 t->tid_tab = malloc(t->ntids * sizeof(*t->tid_tab), M_CXGBE, 1318 M_ZERO | flags); 1319 if (t->tid_tab == NULL) 1320 return (ENOMEM); 1321 atomic_store_rel_int(&t->tids_in_use, 0); 1322 1323 return (0); 1324 } 1325 1326 static void 1327 free_tid_tab(struct tid_info *t) 1328 { 1329 1330 KASSERT(t->tids_in_use == 0, 1331 ("%s: %d tids still in use.", __func__, t->tids_in_use)); 1332 1333 free(t->tid_tab, M_CXGBE); 1334 t->tid_tab = NULL; 1335 } 1336 1337 static int 1338 alloc_stid_tab(struct tid_info *t, int flags) 1339 { 1340 1341 MPASS(t->nstids > 0); 1342 MPASS(t->stid_tab == NULL); 1343 1344 t->stid_tab = malloc(t->nstids * sizeof(*t->stid_tab), M_CXGBE, 1345 M_ZERO | flags); 1346 if (t->stid_tab == NULL) 1347 return (ENOMEM); 1348 mtx_init(&t->stid_lock, "stid lock", NULL, MTX_DEF); 1349 t->stids_in_use = 0; 1350 TAILQ_INIT(&t->stids); 1351 t->nstids_free_head = t->nstids; 1352 1353 return (0); 1354 } 1355 1356 static void 1357 free_stid_tab(struct tid_info *t) 1358 { 1359 1360 KASSERT(t->stids_in_use == 0, 1361 ("%s: %d tids still in use.", __func__, t->stids_in_use)); 1362 1363 if (mtx_initialized(&t->stid_lock)) 1364 mtx_destroy(&t->stid_lock); 1365 free(t->stid_tab, M_CXGBE); 1366 t->stid_tab = NULL; 1367 } 1368 1369 static void 1370 free_tid_tabs(struct tid_info *t) 1371 { 1372 1373 free_tid_tab(t); 1374 free_stid_tab(t); 1375 } 1376 1377 static int 1378 alloc_tid_tabs(struct tid_info *t) 1379 { 1380 int rc; 1381 1382 rc = alloc_tid_tab(t, M_NOWAIT); 1383 if (rc != 0) 1384 goto failed; 1385 1386 rc = alloc_stid_tab(t, M_NOWAIT); 1387 if (rc != 0) 1388 goto failed; 1389 1390 return (0); 1391 failed: 1392 free_tid_tabs(t); 1393 return (rc); 1394 } 1395 1396 static inline void 1397 alloc_tcb_history(struct adapter *sc, struct tom_data *td) 1398 { 1399 1400 if (sc->tids.ntids == 0 || sc->tids.ntids > 1024) 1401 return; 1402 rw_init(&td->tcb_history_lock, "TCB history"); 1403 td->tcb_history = malloc(sc->tids.ntids * sizeof(*td->tcb_history), 1404 M_CXGBE, M_ZERO | M_NOWAIT); 1405 td->dupack_threshold = G_DUPACKTHRESH(t4_read_reg(sc, A_TP_PARA_REG0)); 1406 } 1407 1408 static inline void 1409 free_tcb_history(struct adapter *sc, struct tom_data *td) 1410 { 1411 #ifdef INVARIANTS 1412 int i; 1413 1414 if (td->tcb_history != NULL) { 1415 for (i = 0; i < sc->tids.ntids; i++) { 1416 MPASS(td->tcb_history[i] == NULL); 1417 } 1418 } 1419 #endif 1420 free(td->tcb_history, M_CXGBE); 1421 if (rw_initialized(&td->tcb_history_lock)) 1422 rw_destroy(&td->tcb_history_lock); 1423 } 1424 1425 static void 1426 free_tom_data(struct adapter *sc, struct tom_data *td) 1427 { 1428 1429 ASSERT_SYNCHRONIZED_OP(sc); 1430 1431 KASSERT(TAILQ_EMPTY(&td->toep_list), 1432 ("%s: TOE PCB list is not empty.", __func__)); 1433 KASSERT(td->lctx_count == 0, 1434 ("%s: lctx hash table is not empty.", __func__)); 1435 1436 t4_free_ppod_region(&td->pr); 1437 1438 if (td->listen_mask != 0) 1439 hashdestroy(td->listen_hash, M_CXGBE, td->listen_mask); 1440 1441 if (mtx_initialized(&td->unsent_wr_lock)) 1442 mtx_destroy(&td->unsent_wr_lock); 1443 if (mtx_initialized(&td->lctx_hash_lock)) 1444 mtx_destroy(&td->lctx_hash_lock); 1445 if (mtx_initialized(&td->toep_list_lock)) 1446 mtx_destroy(&td->toep_list_lock); 1447 1448 free_tcb_history(sc, td); 1449 free_tid_tabs(&sc->tids); 1450 free(td, M_CXGBE); 1451 } 1452 1453 static char * 1454 prepare_pkt(int open_type, uint16_t vtag, struct inpcb *inp, int *pktlen, 1455 int *buflen) 1456 { 1457 char *pkt; 1458 struct tcphdr *th; 1459 int ipv6, len; 1460 const int maxlen = 1461 max(sizeof(struct ether_header), sizeof(struct ether_vlan_header)) + 1462 max(sizeof(struct ip), sizeof(struct ip6_hdr)) + 1463 sizeof(struct tcphdr); 1464 1465 MPASS(open_type == OPEN_TYPE_ACTIVE || open_type == OPEN_TYPE_LISTEN); 1466 1467 pkt = malloc(maxlen, M_CXGBE, M_ZERO | M_NOWAIT); 1468 if (pkt == NULL) 1469 return (NULL); 1470 1471 ipv6 = inp->inp_vflag & INP_IPV6; 1472 len = 0; 1473 1474 if (EVL_VLANOFTAG(vtag) == 0xfff) { 1475 struct ether_header *eh = (void *)pkt; 1476 1477 if (ipv6) 1478 eh->ether_type = htons(ETHERTYPE_IPV6); 1479 else 1480 eh->ether_type = htons(ETHERTYPE_IP); 1481 1482 len += sizeof(*eh); 1483 } else { 1484 struct ether_vlan_header *evh = (void *)pkt; 1485 1486 evh->evl_encap_proto = htons(ETHERTYPE_VLAN); 1487 evh->evl_tag = htons(vtag); 1488 if (ipv6) 1489 evh->evl_proto = htons(ETHERTYPE_IPV6); 1490 else 1491 evh->evl_proto = htons(ETHERTYPE_IP); 1492 1493 len += sizeof(*evh); 1494 } 1495 1496 if (ipv6) { 1497 struct ip6_hdr *ip6 = (void *)&pkt[len]; 1498 1499 ip6->ip6_vfc = IPV6_VERSION; 1500 ip6->ip6_plen = htons(sizeof(struct tcphdr)); 1501 ip6->ip6_nxt = IPPROTO_TCP; 1502 if (open_type == OPEN_TYPE_ACTIVE) { 1503 ip6->ip6_src = inp->in6p_laddr; 1504 ip6->ip6_dst = inp->in6p_faddr; 1505 } else if (open_type == OPEN_TYPE_LISTEN) { 1506 ip6->ip6_src = inp->in6p_laddr; 1507 ip6->ip6_dst = ip6->ip6_src; 1508 } 1509 1510 len += sizeof(*ip6); 1511 } else { 1512 struct ip *ip = (void *)&pkt[len]; 1513 1514 ip->ip_v = IPVERSION; 1515 ip->ip_hl = sizeof(*ip) >> 2; 1516 ip->ip_tos = inp->inp_ip_tos; 1517 ip->ip_len = htons(sizeof(struct ip) + sizeof(struct tcphdr)); 1518 ip->ip_ttl = inp->inp_ip_ttl; 1519 ip->ip_p = IPPROTO_TCP; 1520 if (open_type == OPEN_TYPE_ACTIVE) { 1521 ip->ip_src = inp->inp_laddr; 1522 ip->ip_dst = inp->inp_faddr; 1523 } else if (open_type == OPEN_TYPE_LISTEN) { 1524 ip->ip_src = inp->inp_laddr; 1525 ip->ip_dst = ip->ip_src; 1526 } 1527 1528 len += sizeof(*ip); 1529 } 1530 1531 th = (void *)&pkt[len]; 1532 if (open_type == OPEN_TYPE_ACTIVE) { 1533 th->th_sport = inp->inp_lport; /* network byte order already */ 1534 th->th_dport = inp->inp_fport; /* ditto */ 1535 } else if (open_type == OPEN_TYPE_LISTEN) { 1536 th->th_sport = inp->inp_lport; /* network byte order already */ 1537 th->th_dport = th->th_sport; 1538 } 1539 len += sizeof(th); 1540 1541 *pktlen = *buflen = len; 1542 return (pkt); 1543 } 1544 1545 const struct offload_settings * 1546 lookup_offload_policy(struct adapter *sc, int open_type, struct mbuf *m, 1547 uint16_t vtag, struct inpcb *inp) 1548 { 1549 const struct t4_offload_policy *op; 1550 char *pkt; 1551 struct offload_rule *r; 1552 int i, matched, pktlen, buflen; 1553 static const struct offload_settings allow_offloading_settings = { 1554 .offload = 1, 1555 .rx_coalesce = -1, 1556 .cong_algo = -1, 1557 .sched_class = -1, 1558 .tstamp = -1, 1559 .sack = -1, 1560 .nagle = -1, 1561 .ecn = -1, 1562 .ddp = -1, 1563 .tls = -1, 1564 .txq = -1, 1565 .rxq = -1, 1566 .mss = -1, 1567 }; 1568 static const struct offload_settings disallow_offloading_settings = { 1569 .offload = 0, 1570 /* rest is irrelevant when offload is off. */ 1571 }; 1572 1573 rw_assert(&sc->policy_lock, RA_LOCKED); 1574 1575 /* 1576 * If there's no Connection Offloading Policy attached to the device 1577 * then we need to return a default static policy. If 1578 * "cop_managed_offloading" is true, then we need to disallow 1579 * offloading until a COP is attached to the device. Otherwise we 1580 * allow offloading ... 1581 */ 1582 op = sc->policy; 1583 if (op == NULL) { 1584 if (sc->tt.cop_managed_offloading) 1585 return (&disallow_offloading_settings); 1586 else 1587 return (&allow_offloading_settings); 1588 } 1589 1590 switch (open_type) { 1591 case OPEN_TYPE_ACTIVE: 1592 case OPEN_TYPE_LISTEN: 1593 pkt = prepare_pkt(open_type, vtag, inp, &pktlen, &buflen); 1594 break; 1595 case OPEN_TYPE_PASSIVE: 1596 MPASS(m != NULL); 1597 pkt = mtod(m, char *); 1598 MPASS(*pkt == CPL_PASS_ACCEPT_REQ); 1599 pkt += sizeof(struct cpl_pass_accept_req); 1600 pktlen = m->m_pkthdr.len - sizeof(struct cpl_pass_accept_req); 1601 buflen = m->m_len - sizeof(struct cpl_pass_accept_req); 1602 break; 1603 default: 1604 MPASS(0); 1605 return (&disallow_offloading_settings); 1606 } 1607 1608 if (pkt == NULL || pktlen == 0 || buflen == 0) 1609 return (&disallow_offloading_settings); 1610 1611 matched = 0; 1612 r = &op->rule[0]; 1613 for (i = 0; i < op->nrules; i++, r++) { 1614 if (r->open_type != open_type && 1615 r->open_type != OPEN_TYPE_DONTCARE) { 1616 continue; 1617 } 1618 matched = bpf_filter(r->bpf_prog.bf_insns, pkt, pktlen, buflen); 1619 if (matched) 1620 break; 1621 } 1622 1623 if (open_type == OPEN_TYPE_ACTIVE || open_type == OPEN_TYPE_LISTEN) 1624 free(pkt, M_CXGBE); 1625 1626 return (matched ? &r->settings : &disallow_offloading_settings); 1627 } 1628 1629 static void 1630 reclaim_wr_resources(void *arg, int count) 1631 { 1632 struct tom_data *td = arg; 1633 STAILQ_HEAD(, wrqe) twr_list = STAILQ_HEAD_INITIALIZER(twr_list); 1634 struct cpl_act_open_req *cpl; 1635 u_int opcode, atid, tid; 1636 struct wrqe *wr; 1637 struct adapter *sc = td_adapter(td); 1638 1639 mtx_lock(&td->unsent_wr_lock); 1640 STAILQ_SWAP(&td->unsent_wr_list, &twr_list, wrqe); 1641 mtx_unlock(&td->unsent_wr_lock); 1642 1643 while ((wr = STAILQ_FIRST(&twr_list)) != NULL) { 1644 STAILQ_REMOVE_HEAD(&twr_list, link); 1645 1646 cpl = wrtod(wr); 1647 opcode = GET_OPCODE(cpl); 1648 1649 switch (opcode) { 1650 case CPL_ACT_OPEN_REQ: 1651 case CPL_ACT_OPEN_REQ6: 1652 atid = G_TID_TID(be32toh(OPCODE_TID(cpl))); 1653 CTR2(KTR_CXGBE, "%s: atid %u ", __func__, atid); 1654 act_open_failure_cleanup(sc, atid, EHOSTUNREACH); 1655 free(wr, M_CXGBE); 1656 break; 1657 case CPL_PASS_ACCEPT_RPL: 1658 tid = GET_TID(cpl); 1659 CTR2(KTR_CXGBE, "%s: tid %u ", __func__, tid); 1660 synack_failure_cleanup(sc, tid); 1661 free(wr, M_CXGBE); 1662 break; 1663 default: 1664 log(LOG_ERR, "%s: leaked work request %p, wr_len %d, " 1665 "opcode %x\n", __func__, wr, wr->wr_len, opcode); 1666 /* WR not freed here; go look at it with a debugger. */ 1667 } 1668 } 1669 } 1670 1671 /* 1672 * Ground control to Major TOM 1673 * Commencing countdown, engines on 1674 */ 1675 static int 1676 t4_tom_activate(struct adapter *sc) 1677 { 1678 struct tom_data *td; 1679 struct toedev *tod; 1680 struct vi_info *vi; 1681 int i, rc, v; 1682 1683 ASSERT_SYNCHRONIZED_OP(sc); 1684 1685 /* per-adapter softc for TOM */ 1686 td = malloc(sizeof(*td), M_CXGBE, M_ZERO | M_NOWAIT); 1687 if (td == NULL) 1688 return (ENOMEM); 1689 1690 /* List of TOE PCBs and associated lock */ 1691 mtx_init(&td->toep_list_lock, "PCB list lock", NULL, MTX_DEF); 1692 TAILQ_INIT(&td->toep_list); 1693 1694 /* Listen context */ 1695 mtx_init(&td->lctx_hash_lock, "lctx hash lock", NULL, MTX_DEF); 1696 td->listen_hash = hashinit_flags(LISTEN_HASH_SIZE, M_CXGBE, 1697 &td->listen_mask, HASH_NOWAIT); 1698 1699 /* List of WRs for which L2 resolution failed */ 1700 mtx_init(&td->unsent_wr_lock, "Unsent WR list lock", NULL, MTX_DEF); 1701 STAILQ_INIT(&td->unsent_wr_list); 1702 TASK_INIT(&td->reclaim_wr_resources, 0, reclaim_wr_resources, td); 1703 1704 /* TID tables */ 1705 rc = alloc_tid_tabs(&sc->tids); 1706 if (rc != 0) 1707 goto done; 1708 1709 rc = t4_init_ppod_region(&td->pr, &sc->vres.ddp, 1710 t4_read_reg(sc, A_ULP_RX_TDDP_PSZ), "TDDP page pods"); 1711 if (rc != 0) 1712 goto done; 1713 t4_set_reg_field(sc, A_ULP_RX_TDDP_TAGMASK, 1714 V_TDDPTAGMASK(M_TDDPTAGMASK), td->pr.pr_tag_mask); 1715 1716 alloc_tcb_history(sc, td); 1717 1718 /* toedev ops */ 1719 tod = &td->tod; 1720 init_toedev(tod); 1721 tod->tod_softc = sc; 1722 tod->tod_connect = t4_connect; 1723 tod->tod_listen_start = t4_listen_start; 1724 tod->tod_listen_stop = t4_listen_stop; 1725 tod->tod_rcvd = t4_rcvd; 1726 tod->tod_output = t4_tod_output; 1727 tod->tod_send_rst = t4_send_rst; 1728 tod->tod_send_fin = t4_send_fin; 1729 tod->tod_pcb_detach = t4_pcb_detach; 1730 tod->tod_l2_update = t4_l2_update; 1731 tod->tod_syncache_added = t4_syncache_added; 1732 tod->tod_syncache_removed = t4_syncache_removed; 1733 tod->tod_syncache_respond = t4_syncache_respond; 1734 tod->tod_offload_socket = t4_offload_socket; 1735 tod->tod_ctloutput = t4_ctloutput; 1736 tod->tod_tcp_info = t4_tcp_info; 1737 #ifdef KERN_TLS 1738 tod->tod_alloc_tls_session = t4_alloc_tls_session; 1739 #endif 1740 1741 for_each_port(sc, i) { 1742 for_each_vi(sc->port[i], v, vi) { 1743 TOEDEV(vi->ifp) = &td->tod; 1744 } 1745 } 1746 1747 sc->tom_softc = td; 1748 register_toedev(sc->tom_softc); 1749 1750 done: 1751 if (rc != 0) 1752 free_tom_data(sc, td); 1753 return (rc); 1754 } 1755 1756 static int 1757 t4_tom_deactivate(struct adapter *sc) 1758 { 1759 int rc = 0; 1760 struct tom_data *td = sc->tom_softc; 1761 1762 ASSERT_SYNCHRONIZED_OP(sc); 1763 1764 if (td == NULL) 1765 return (0); /* XXX. KASSERT? */ 1766 1767 if (sc->offload_map != 0) 1768 return (EBUSY); /* at least one port has IFCAP_TOE enabled */ 1769 1770 if (uld_active(sc, ULD_IWARP) || uld_active(sc, ULD_ISCSI)) 1771 return (EBUSY); /* both iWARP and iSCSI rely on the TOE. */ 1772 1773 mtx_lock(&td->toep_list_lock); 1774 if (!TAILQ_EMPTY(&td->toep_list)) 1775 rc = EBUSY; 1776 mtx_unlock(&td->toep_list_lock); 1777 1778 mtx_lock(&td->lctx_hash_lock); 1779 if (td->lctx_count > 0) 1780 rc = EBUSY; 1781 mtx_unlock(&td->lctx_hash_lock); 1782 1783 taskqueue_drain(taskqueue_thread, &td->reclaim_wr_resources); 1784 mtx_lock(&td->unsent_wr_lock); 1785 if (!STAILQ_EMPTY(&td->unsent_wr_list)) 1786 rc = EBUSY; 1787 mtx_unlock(&td->unsent_wr_lock); 1788 1789 if (rc == 0) { 1790 unregister_toedev(sc->tom_softc); 1791 free_tom_data(sc, td); 1792 sc->tom_softc = NULL; 1793 } 1794 1795 return (rc); 1796 } 1797 1798 static int 1799 t4_aio_queue_tom(struct socket *so, struct kaiocb *job) 1800 { 1801 struct tcpcb *tp = so_sototcpcb(so); 1802 struct toepcb *toep = tp->t_toe; 1803 int error; 1804 1805 if (ulp_mode(toep) == ULP_MODE_TCPDDP) { 1806 error = t4_aio_queue_ddp(so, job); 1807 if (error != EOPNOTSUPP) 1808 return (error); 1809 } 1810 1811 return (t4_aio_queue_aiotx(so, job)); 1812 } 1813 1814 static int 1815 t4_ctloutput_tom(struct socket *so, struct sockopt *sopt) 1816 { 1817 1818 if (sopt->sopt_level != IPPROTO_TCP) 1819 return (tcp_ctloutput(so, sopt)); 1820 1821 switch (sopt->sopt_name) { 1822 case TCP_TLSOM_SET_TLS_CONTEXT: 1823 case TCP_TLSOM_GET_TLS_TOM: 1824 case TCP_TLSOM_CLR_TLS_TOM: 1825 case TCP_TLSOM_CLR_QUIES: 1826 return (t4_ctloutput_tls(so, sopt)); 1827 default: 1828 return (tcp_ctloutput(so, sopt)); 1829 } 1830 } 1831 1832 static int 1833 t4_tom_mod_load(void) 1834 { 1835 struct protosw *tcp_protosw, *tcp6_protosw; 1836 1837 /* CPL handlers */ 1838 t4_register_cpl_handler(CPL_GET_TCB_RPL, do_get_tcb_rpl); 1839 t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, do_l2t_write_rpl2, 1840 CPL_COOKIE_TOM); 1841 t4_init_connect_cpl_handlers(); 1842 t4_init_listen_cpl_handlers(); 1843 t4_init_cpl_io_handlers(); 1844 1845 t4_ddp_mod_load(); 1846 t4_tls_mod_load(); 1847 1848 tcp_protosw = pffindproto(PF_INET, IPPROTO_TCP, SOCK_STREAM); 1849 if (tcp_protosw == NULL) 1850 return (ENOPROTOOPT); 1851 bcopy(tcp_protosw, &toe_protosw, sizeof(toe_protosw)); 1852 bcopy(tcp_protosw->pr_usrreqs, &toe_usrreqs, sizeof(toe_usrreqs)); 1853 toe_usrreqs.pru_aio_queue = t4_aio_queue_tom; 1854 toe_protosw.pr_ctloutput = t4_ctloutput_tom; 1855 toe_protosw.pr_usrreqs = &toe_usrreqs; 1856 1857 tcp6_protosw = pffindproto(PF_INET6, IPPROTO_TCP, SOCK_STREAM); 1858 if (tcp6_protosw == NULL) 1859 return (ENOPROTOOPT); 1860 bcopy(tcp6_protosw, &toe6_protosw, sizeof(toe6_protosw)); 1861 bcopy(tcp6_protosw->pr_usrreqs, &toe6_usrreqs, sizeof(toe6_usrreqs)); 1862 toe6_usrreqs.pru_aio_queue = t4_aio_queue_tom; 1863 toe6_protosw.pr_ctloutput = t4_ctloutput_tom; 1864 toe6_protosw.pr_usrreqs = &toe6_usrreqs; 1865 1866 return (t4_register_uld(&tom_uld_info)); 1867 } 1868 1869 static void 1870 tom_uninit(struct adapter *sc, void *arg __unused) 1871 { 1872 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4tomun")) 1873 return; 1874 1875 /* Try to free resources (works only if no port has IFCAP_TOE) */ 1876 if (uld_active(sc, ULD_TOM)) 1877 t4_deactivate_uld(sc, ULD_TOM); 1878 1879 end_synchronized_op(sc, 0); 1880 } 1881 1882 static int 1883 t4_tom_mod_unload(void) 1884 { 1885 t4_iterate(tom_uninit, NULL); 1886 1887 if (t4_unregister_uld(&tom_uld_info) == EBUSY) 1888 return (EBUSY); 1889 1890 t4_tls_mod_unload(); 1891 t4_ddp_mod_unload(); 1892 1893 t4_uninit_connect_cpl_handlers(); 1894 t4_uninit_listen_cpl_handlers(); 1895 t4_uninit_cpl_io_handlers(); 1896 t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, NULL, CPL_COOKIE_TOM); 1897 t4_register_cpl_handler(CPL_GET_TCB_RPL, NULL); 1898 1899 return (0); 1900 } 1901 #endif /* TCP_OFFLOAD */ 1902 1903 static int 1904 t4_tom_modevent(module_t mod, int cmd, void *arg) 1905 { 1906 int rc = 0; 1907 1908 #ifdef TCP_OFFLOAD 1909 switch (cmd) { 1910 case MOD_LOAD: 1911 rc = t4_tom_mod_load(); 1912 break; 1913 1914 case MOD_UNLOAD: 1915 rc = t4_tom_mod_unload(); 1916 break; 1917 1918 default: 1919 rc = EINVAL; 1920 } 1921 #else 1922 printf("t4_tom: compiled without TCP_OFFLOAD support.\n"); 1923 rc = EOPNOTSUPP; 1924 #endif 1925 return (rc); 1926 } 1927 1928 static moduledata_t t4_tom_moddata= { 1929 "t4_tom", 1930 t4_tom_modevent, 1931 0 1932 }; 1933 1934 MODULE_VERSION(t4_tom, 1); 1935 MODULE_DEPEND(t4_tom, toecore, 1, 1, 1); 1936 MODULE_DEPEND(t4_tom, t4nex, 1, 1, 1); 1937 DECLARE_MODULE(t4_tom, t4_tom_moddata, SI_SUB_EXEC, SI_ORDER_ANY); 1938