1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2012 Chelsio Communications, Inc. 5 * All rights reserved. 6 * Written by: Navdeep Parhar <np@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 #include "opt_inet.h" 32 #include "opt_inet6.h" 33 #include "opt_kern_tls.h" 34 #include "opt_ratelimit.h" 35 36 #include <sys/param.h> 37 #include <sys/types.h> 38 #include <sys/systm.h> 39 #include <sys/kernel.h> 40 #include <sys/ktr.h> 41 #include <sys/lock.h> 42 #include <sys/limits.h> 43 #include <sys/module.h> 44 #include <sys/protosw.h> 45 #include <sys/domain.h> 46 #include <sys/refcount.h> 47 #include <sys/rmlock.h> 48 #include <sys/socket.h> 49 #include <sys/socketvar.h> 50 #include <sys/sysctl.h> 51 #include <sys/taskqueue.h> 52 #include <net/if.h> 53 #include <net/if_var.h> 54 #include <net/if_types.h> 55 #include <net/if_vlan_var.h> 56 #include <netinet/in.h> 57 #include <netinet/in_pcb.h> 58 #include <netinet/in_var.h> 59 #include <netinet/ip.h> 60 #include <netinet/ip6.h> 61 #include <netinet6/scope6_var.h> 62 #define TCPSTATES 63 #include <netinet/tcp_fsm.h> 64 #include <netinet/tcp_seq.h> 65 #include <netinet/tcp_timer.h> 66 #include <netinet/tcp_var.h> 67 #include <netinet/toecore.h> 68 #include <netinet/cc/cc.h> 69 70 #ifdef TCP_OFFLOAD 71 #include "common/common.h" 72 #include "common/t4_msg.h" 73 #include "common/t4_regs.h" 74 #include "common/t4_regs_values.h" 75 #include "common/t4_tcb.h" 76 #include "t4_clip.h" 77 #include "tom/t4_tom_l2t.h" 78 #include "tom/t4_tom.h" 79 #include "tom/t4_tls.h" 80 81 static struct protosw toe_protosw; 82 static struct protosw toe6_protosw; 83 84 /* Module ops */ 85 static int t4_tom_mod_load(void); 86 static int t4_tom_mod_unload(void); 87 static int t4_tom_modevent(module_t, int, void *); 88 89 /* ULD ops and helpers */ 90 static int t4_tom_activate(struct adapter *); 91 static int t4_tom_deactivate(struct adapter *); 92 93 static struct uld_info tom_uld_info = { 94 .uld_id = ULD_TOM, 95 .activate = t4_tom_activate, 96 .deactivate = t4_tom_deactivate, 97 }; 98 99 static void release_offload_resources(struct toepcb *); 100 static int alloc_tid_tabs(struct tid_info *); 101 static void free_tid_tabs(struct tid_info *); 102 static void free_tom_data(struct adapter *, struct tom_data *); 103 static void reclaim_wr_resources(void *, int); 104 105 struct toepcb * 106 alloc_toepcb(struct vi_info *vi, int flags) 107 { 108 struct port_info *pi = vi->pi; 109 struct adapter *sc = pi->adapter; 110 struct toepcb *toep; 111 int tx_credits, txsd_total, len; 112 113 /* 114 * The firmware counts tx work request credits in units of 16 bytes 115 * each. Reserve room for an ABORT_REQ so the driver never has to worry 116 * about tx credits if it wants to abort a connection. 117 */ 118 tx_credits = sc->params.ofldq_wr_cred; 119 tx_credits -= howmany(sizeof(struct cpl_abort_req), 16); 120 121 /* 122 * Shortest possible tx work request is a fw_ofld_tx_data_wr + 1 byte 123 * immediate payload, and firmware counts tx work request credits in 124 * units of 16 byte. Calculate the maximum work requests possible. 125 */ 126 txsd_total = tx_credits / 127 howmany(sizeof(struct fw_ofld_tx_data_wr) + 1, 16); 128 129 len = offsetof(struct toepcb, txsd) + 130 txsd_total * sizeof(struct ofld_tx_sdesc); 131 132 toep = malloc(len, M_CXGBE, M_ZERO | flags); 133 if (toep == NULL) 134 return (NULL); 135 136 refcount_init(&toep->refcount, 1); 137 toep->td = sc->tom_softc; 138 toep->vi = vi; 139 toep->tid = -1; 140 toep->tx_total = tx_credits; 141 toep->tx_credits = tx_credits; 142 mbufq_init(&toep->ulp_pduq, INT_MAX); 143 mbufq_init(&toep->ulp_pdu_reclaimq, INT_MAX); 144 toep->txsd_total = txsd_total; 145 toep->txsd_avail = txsd_total; 146 toep->txsd_pidx = 0; 147 toep->txsd_cidx = 0; 148 aiotx_init_toep(toep); 149 150 return (toep); 151 } 152 153 /* 154 * Initialize a toepcb after its params have been filled out. 155 */ 156 int 157 init_toepcb(struct vi_info *vi, struct toepcb *toep) 158 { 159 struct conn_params *cp = &toep->params; 160 struct port_info *pi = vi->pi; 161 struct adapter *sc = pi->adapter; 162 struct tx_cl_rl_params *tc; 163 164 if (cp->tc_idx >= 0 && cp->tc_idx < sc->params.nsched_cls) { 165 tc = &pi->sched_params->cl_rl[cp->tc_idx]; 166 mtx_lock(&sc->tc_lock); 167 if (tc->state != CS_HW_CONFIGURED) { 168 CH_ERR(vi, "tid %d cannot be bound to traffic class %d " 169 "because it is not configured (its state is %d)\n", 170 toep->tid, cp->tc_idx, tc->state); 171 cp->tc_idx = -1; 172 } else { 173 tc->refcount++; 174 } 175 mtx_unlock(&sc->tc_lock); 176 } 177 toep->ofld_txq = &sc->sge.ofld_txq[cp->txq_idx]; 178 toep->ofld_rxq = &sc->sge.ofld_rxq[cp->rxq_idx]; 179 toep->ctrlq = &sc->sge.ctrlq[pi->port_id]; 180 181 tls_init_toep(toep); 182 MPASS(ulp_mode(toep) != ULP_MODE_TCPDDP); 183 184 toep->flags |= TPF_INITIALIZED; 185 186 return (0); 187 } 188 189 struct toepcb * 190 hold_toepcb(struct toepcb *toep) 191 { 192 193 refcount_acquire(&toep->refcount); 194 return (toep); 195 } 196 197 void 198 free_toepcb(struct toepcb *toep) 199 { 200 201 if (refcount_release(&toep->refcount) == 0) 202 return; 203 204 KASSERT(!(toep->flags & TPF_ATTACHED), 205 ("%s: attached to an inpcb", __func__)); 206 KASSERT(!(toep->flags & TPF_CPL_PENDING), 207 ("%s: CPL pending", __func__)); 208 209 if (toep->flags & TPF_INITIALIZED) { 210 if (ulp_mode(toep) == ULP_MODE_TCPDDP) 211 ddp_uninit_toep(toep); 212 tls_uninit_toep(toep); 213 } 214 free(toep, M_CXGBE); 215 } 216 217 /* 218 * Set up the socket for TCP offload. 219 */ 220 void 221 offload_socket(struct socket *so, struct toepcb *toep) 222 { 223 struct tom_data *td = toep->td; 224 struct inpcb *inp = sotoinpcb(so); 225 struct tcpcb *tp = intotcpcb(inp); 226 struct sockbuf *sb; 227 228 INP_WLOCK_ASSERT(inp); 229 230 /* Update socket */ 231 sb = &so->so_snd; 232 SOCKBUF_LOCK(sb); 233 sb->sb_flags |= SB_NOCOALESCE; 234 SOCKBUF_UNLOCK(sb); 235 sb = &so->so_rcv; 236 SOCKBUF_LOCK(sb); 237 sb->sb_flags |= SB_NOCOALESCE; 238 if (inp->inp_vflag & INP_IPV6) 239 so->so_proto = &toe6_protosw; 240 else 241 so->so_proto = &toe_protosw; 242 SOCKBUF_UNLOCK(sb); 243 244 /* Update TCP PCB */ 245 tp->tod = &td->tod; 246 tp->t_toe = toep; 247 tp->t_flags |= TF_TOE; 248 249 /* Install an extra hold on inp */ 250 toep->inp = inp; 251 toep->flags |= TPF_ATTACHED; 252 in_pcbref(inp); 253 254 /* Add the TOE PCB to the active list */ 255 mtx_lock(&td->toep_list_lock); 256 TAILQ_INSERT_HEAD(&td->toep_list, toep, link); 257 mtx_unlock(&td->toep_list_lock); 258 } 259 260 void 261 restore_so_proto(struct socket *so, bool v6) 262 { 263 if (v6) 264 so->so_proto = &tcp6_protosw; 265 else 266 so->so_proto = &tcp_protosw; 267 } 268 269 /* This is _not_ the normal way to "unoffload" a socket. */ 270 void 271 undo_offload_socket(struct socket *so) 272 { 273 struct inpcb *inp = sotoinpcb(so); 274 struct tcpcb *tp = intotcpcb(inp); 275 struct toepcb *toep = tp->t_toe; 276 struct tom_data *td = toep->td; 277 struct sockbuf *sb; 278 279 INP_WLOCK_ASSERT(inp); 280 281 sb = &so->so_snd; 282 SOCKBUF_LOCK(sb); 283 sb->sb_flags &= ~SB_NOCOALESCE; 284 SOCKBUF_UNLOCK(sb); 285 sb = &so->so_rcv; 286 SOCKBUF_LOCK(sb); 287 sb->sb_flags &= ~SB_NOCOALESCE; 288 restore_so_proto(so, inp->inp_vflag & INP_IPV6); 289 SOCKBUF_UNLOCK(sb); 290 291 tp->tod = NULL; 292 tp->t_toe = NULL; 293 tp->t_flags &= ~TF_TOE; 294 295 toep->inp = NULL; 296 toep->flags &= ~TPF_ATTACHED; 297 if (in_pcbrele_wlocked(inp)) 298 panic("%s: inp freed.", __func__); 299 300 mtx_lock(&td->toep_list_lock); 301 TAILQ_REMOVE(&td->toep_list, toep, link); 302 mtx_unlock(&td->toep_list_lock); 303 } 304 305 static void 306 release_offload_resources(struct toepcb *toep) 307 { 308 struct tom_data *td = toep->td; 309 struct adapter *sc = td_adapter(td); 310 int tid = toep->tid; 311 312 KASSERT(!(toep->flags & TPF_CPL_PENDING), 313 ("%s: %p has CPL pending.", __func__, toep)); 314 KASSERT(!(toep->flags & TPF_ATTACHED), 315 ("%s: %p is still attached.", __func__, toep)); 316 317 CTR5(KTR_CXGBE, "%s: toep %p (tid %d, l2te %p, ce %p)", 318 __func__, toep, tid, toep->l2te, toep->ce); 319 320 /* 321 * These queues should have been emptied at approximately the same time 322 * that a normal connection's socket's so_snd would have been purged or 323 * drained. Do _not_ clean up here. 324 */ 325 MPASS(mbufq_empty(&toep->ulp_pduq)); 326 MPASS(mbufq_empty(&toep->ulp_pdu_reclaimq)); 327 #ifdef INVARIANTS 328 if (ulp_mode(toep) == ULP_MODE_TCPDDP) 329 ddp_assert_empty(toep); 330 #endif 331 MPASS(TAILQ_EMPTY(&toep->aiotx_jobq)); 332 333 if (toep->l2te) 334 t4_l2t_release(toep->l2te); 335 336 if (tid >= 0) { 337 remove_tid(sc, tid, toep->ce ? 2 : 1); 338 release_tid(sc, tid, toep->ctrlq); 339 } 340 341 if (toep->ce) 342 t4_release_clip_entry(sc, toep->ce); 343 344 if (toep->params.tc_idx != -1) 345 t4_release_cl_rl(sc, toep->vi->pi->port_id, toep->params.tc_idx); 346 347 mtx_lock(&td->toep_list_lock); 348 TAILQ_REMOVE(&td->toep_list, toep, link); 349 mtx_unlock(&td->toep_list_lock); 350 351 free_toepcb(toep); 352 } 353 354 /* 355 * The kernel is done with the TCP PCB and this is our opportunity to unhook the 356 * toepcb hanging off of it. If the TOE driver is also done with the toepcb (no 357 * pending CPL) then it is time to release all resources tied to the toepcb. 358 * 359 * Also gets called when an offloaded active open fails and the TOM wants the 360 * kernel to take the TCP PCB back. 361 */ 362 static void 363 t4_pcb_detach(struct toedev *tod __unused, struct tcpcb *tp) 364 { 365 #if defined(KTR) || defined(INVARIANTS) 366 struct inpcb *inp = tptoinpcb(tp); 367 #endif 368 struct toepcb *toep = tp->t_toe; 369 370 INP_WLOCK_ASSERT(inp); 371 372 KASSERT(toep != NULL, ("%s: toep is NULL", __func__)); 373 KASSERT(toep->flags & TPF_ATTACHED, 374 ("%s: not attached", __func__)); 375 376 #ifdef KTR 377 if (tp->t_state == TCPS_SYN_SENT) { 378 CTR6(KTR_CXGBE, "%s: atid %d, toep %p (0x%x), inp %p (0x%x)", 379 __func__, toep->tid, toep, toep->flags, inp, 380 inp->inp_flags); 381 } else { 382 CTR6(KTR_CXGBE, 383 "t4_pcb_detach: tid %d (%s), toep %p (0x%x), inp %p (0x%x)", 384 toep->tid, tcpstates[tp->t_state], toep, toep->flags, inp, 385 inp->inp_flags); 386 } 387 #endif 388 389 tp->tod = NULL; 390 tp->t_toe = NULL; 391 tp->t_flags &= ~TF_TOE; 392 toep->flags &= ~TPF_ATTACHED; 393 394 if (!(toep->flags & TPF_CPL_PENDING)) 395 release_offload_resources(toep); 396 } 397 398 /* 399 * setsockopt handler. 400 */ 401 static void 402 t4_ctloutput(struct toedev *tod, struct tcpcb *tp, int dir, int name) 403 { 404 struct adapter *sc = tod->tod_softc; 405 struct toepcb *toep = tp->t_toe; 406 407 if (dir == SOPT_GET) 408 return; 409 410 CTR4(KTR_CXGBE, "%s: tp %p, dir %u, name %u", __func__, tp, dir, name); 411 412 switch (name) { 413 case TCP_NODELAY: 414 if (tp->t_state != TCPS_ESTABLISHED) 415 break; 416 toep->params.nagle = tp->t_flags & TF_NODELAY ? 0 : 1; 417 t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_T_FLAGS, 418 V_TF_NAGLE(1), V_TF_NAGLE(toep->params.nagle), 0, 0); 419 break; 420 default: 421 break; 422 } 423 } 424 425 static inline uint64_t 426 get_tcb_tflags(const uint64_t *tcb) 427 { 428 429 return ((be64toh(tcb[14]) << 32) | (be64toh(tcb[15]) >> 32)); 430 } 431 432 static inline uint32_t 433 get_tcb_field(const uint64_t *tcb, u_int word, uint32_t mask, u_int shift) 434 { 435 #define LAST_WORD ((TCB_SIZE / 4) - 1) 436 uint64_t t1, t2; 437 int flit_idx; 438 439 MPASS(mask != 0); 440 MPASS(word <= LAST_WORD); 441 MPASS(shift < 32); 442 443 flit_idx = (LAST_WORD - word) / 2; 444 if (word & 0x1) 445 shift += 32; 446 t1 = be64toh(tcb[flit_idx]) >> shift; 447 t2 = 0; 448 if (fls(mask) > 64 - shift) { 449 /* 450 * Will spill over into the next logical flit, which is the flit 451 * before this one. The flit_idx before this one must be valid. 452 */ 453 MPASS(flit_idx > 0); 454 t2 = be64toh(tcb[flit_idx - 1]) << (64 - shift); 455 } 456 return ((t2 | t1) & mask); 457 #undef LAST_WORD 458 } 459 #define GET_TCB_FIELD(tcb, F) \ 460 get_tcb_field(tcb, W_TCB_##F, M_TCB_##F, S_TCB_##F) 461 462 /* 463 * Issues a CPL_GET_TCB to read the entire TCB for the tid. 464 */ 465 static int 466 send_get_tcb(struct adapter *sc, u_int tid) 467 { 468 struct cpl_get_tcb *cpl; 469 struct wrq_cookie cookie; 470 471 MPASS(tid >= sc->tids.tid_base); 472 MPASS(tid - sc->tids.tid_base < sc->tids.ntids); 473 474 cpl = start_wrq_wr(&sc->sge.ctrlq[0], howmany(sizeof(*cpl), 16), 475 &cookie); 476 if (__predict_false(cpl == NULL)) 477 return (ENOMEM); 478 bzero(cpl, sizeof(*cpl)); 479 INIT_TP_WR(cpl, tid); 480 OPCODE_TID(cpl) = htobe32(MK_OPCODE_TID(CPL_GET_TCB, tid)); 481 cpl->reply_ctrl = htobe16(V_REPLY_CHAN(0) | 482 V_QUEUENO(sc->sge.ofld_rxq[0].iq.cntxt_id)); 483 cpl->cookie = 0xff; 484 commit_wrq_wr(&sc->sge.ctrlq[0], cpl, &cookie); 485 486 return (0); 487 } 488 489 static struct tcb_histent * 490 alloc_tcb_histent(struct adapter *sc, u_int tid, int flags) 491 { 492 struct tcb_histent *te; 493 494 MPASS(flags == M_NOWAIT || flags == M_WAITOK); 495 496 te = malloc(sizeof(*te), M_CXGBE, M_ZERO | flags); 497 if (te == NULL) 498 return (NULL); 499 mtx_init(&te->te_lock, "TCB entry", NULL, MTX_DEF); 500 callout_init_mtx(&te->te_callout, &te->te_lock, 0); 501 te->te_adapter = sc; 502 te->te_tid = tid; 503 504 return (te); 505 } 506 507 static void 508 free_tcb_histent(struct tcb_histent *te) 509 { 510 511 mtx_destroy(&te->te_lock); 512 free(te, M_CXGBE); 513 } 514 515 /* 516 * Start tracking the tid in the TCB history. 517 */ 518 int 519 add_tid_to_history(struct adapter *sc, u_int tid) 520 { 521 struct tcb_histent *te = NULL; 522 struct tom_data *td = sc->tom_softc; 523 int rc; 524 525 MPASS(tid >= sc->tids.tid_base); 526 MPASS(tid - sc->tids.tid_base < sc->tids.ntids); 527 528 if (td->tcb_history == NULL) 529 return (ENXIO); 530 531 rw_wlock(&td->tcb_history_lock); 532 if (td->tcb_history[tid] != NULL) { 533 rc = EEXIST; 534 goto done; 535 } 536 te = alloc_tcb_histent(sc, tid, M_NOWAIT); 537 if (te == NULL) { 538 rc = ENOMEM; 539 goto done; 540 } 541 mtx_lock(&te->te_lock); 542 rc = send_get_tcb(sc, tid); 543 if (rc == 0) { 544 te->te_flags |= TE_RPL_PENDING; 545 td->tcb_history[tid] = te; 546 } else { 547 free(te, M_CXGBE); 548 } 549 mtx_unlock(&te->te_lock); 550 done: 551 rw_wunlock(&td->tcb_history_lock); 552 return (rc); 553 } 554 555 static void 556 remove_tcb_histent(struct tcb_histent *te) 557 { 558 struct adapter *sc = te->te_adapter; 559 struct tom_data *td = sc->tom_softc; 560 561 rw_assert(&td->tcb_history_lock, RA_WLOCKED); 562 mtx_assert(&te->te_lock, MA_OWNED); 563 MPASS(td->tcb_history[te->te_tid] == te); 564 565 td->tcb_history[te->te_tid] = NULL; 566 free_tcb_histent(te); 567 rw_wunlock(&td->tcb_history_lock); 568 } 569 570 static inline struct tcb_histent * 571 lookup_tcb_histent(struct adapter *sc, u_int tid, bool addrem) 572 { 573 struct tcb_histent *te; 574 struct tom_data *td = sc->tom_softc; 575 576 MPASS(tid >= sc->tids.tid_base); 577 MPASS(tid - sc->tids.tid_base < sc->tids.ntids); 578 579 if (td->tcb_history == NULL) 580 return (NULL); 581 582 if (addrem) 583 rw_wlock(&td->tcb_history_lock); 584 else 585 rw_rlock(&td->tcb_history_lock); 586 te = td->tcb_history[tid]; 587 if (te != NULL) { 588 mtx_lock(&te->te_lock); 589 return (te); /* with both locks held */ 590 } 591 if (addrem) 592 rw_wunlock(&td->tcb_history_lock); 593 else 594 rw_runlock(&td->tcb_history_lock); 595 596 return (te); 597 } 598 599 static inline void 600 release_tcb_histent(struct tcb_histent *te) 601 { 602 struct adapter *sc = te->te_adapter; 603 struct tom_data *td = sc->tom_softc; 604 605 mtx_assert(&te->te_lock, MA_OWNED); 606 mtx_unlock(&te->te_lock); 607 rw_assert(&td->tcb_history_lock, RA_RLOCKED); 608 rw_runlock(&td->tcb_history_lock); 609 } 610 611 static void 612 request_tcb(void *arg) 613 { 614 struct tcb_histent *te = arg; 615 616 mtx_assert(&te->te_lock, MA_OWNED); 617 618 /* Noone else is supposed to update the histent. */ 619 MPASS(!(te->te_flags & TE_RPL_PENDING)); 620 if (send_get_tcb(te->te_adapter, te->te_tid) == 0) 621 te->te_flags |= TE_RPL_PENDING; 622 else 623 callout_schedule(&te->te_callout, hz / 100); 624 } 625 626 static void 627 update_tcb_histent(struct tcb_histent *te, const uint64_t *tcb) 628 { 629 struct tom_data *td = te->te_adapter->tom_softc; 630 uint64_t tflags = get_tcb_tflags(tcb); 631 uint8_t sample = 0; 632 633 if (GET_TCB_FIELD(tcb, SND_MAX_RAW) != GET_TCB_FIELD(tcb, SND_UNA_RAW)) { 634 if (GET_TCB_FIELD(tcb, T_RXTSHIFT) != 0) 635 sample |= TS_RTO; 636 if (GET_TCB_FIELD(tcb, T_DUPACKS) != 0) 637 sample |= TS_DUPACKS; 638 if (GET_TCB_FIELD(tcb, T_DUPACKS) >= td->dupack_threshold) 639 sample |= TS_FASTREXMT; 640 } 641 642 if (GET_TCB_FIELD(tcb, SND_MAX_RAW) != 0) { 643 uint32_t snd_wnd; 644 645 sample |= TS_SND_BACKLOGGED; /* for whatever reason. */ 646 647 snd_wnd = GET_TCB_FIELD(tcb, RCV_ADV); 648 if (tflags & V_TF_RECV_SCALE(1)) 649 snd_wnd <<= GET_TCB_FIELD(tcb, RCV_SCALE); 650 if (GET_TCB_FIELD(tcb, SND_CWND) < snd_wnd) 651 sample |= TS_CWND_LIMITED; /* maybe due to CWND */ 652 } 653 654 if (tflags & V_TF_CCTRL_ECN(1)) { 655 656 /* 657 * CE marker on incoming IP hdr, echoing ECE back in the TCP 658 * hdr. Indicates congestion somewhere on the way from the peer 659 * to this node. 660 */ 661 if (tflags & V_TF_CCTRL_ECE(1)) 662 sample |= TS_ECN_ECE; 663 664 /* 665 * ECE seen and CWR sent (or about to be sent). Might indicate 666 * congestion on the way to the peer. This node is reducing its 667 * congestion window in response. 668 */ 669 if (tflags & (V_TF_CCTRL_CWR(1) | V_TF_CCTRL_RFR(1))) 670 sample |= TS_ECN_CWR; 671 } 672 673 te->te_sample[te->te_pidx] = sample; 674 if (++te->te_pidx == nitems(te->te_sample)) 675 te->te_pidx = 0; 676 memcpy(te->te_tcb, tcb, TCB_SIZE); 677 te->te_flags |= TE_ACTIVE; 678 } 679 680 static int 681 do_get_tcb_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 682 { 683 struct adapter *sc = iq->adapter; 684 const struct cpl_get_tcb_rpl *cpl = mtod(m, const void *); 685 const uint64_t *tcb = (const uint64_t *)(const void *)(cpl + 1); 686 struct tcb_histent *te; 687 const u_int tid = GET_TID(cpl); 688 bool remove; 689 690 remove = GET_TCB_FIELD(tcb, T_STATE) == TCPS_CLOSED; 691 te = lookup_tcb_histent(sc, tid, remove); 692 if (te == NULL) { 693 /* Not in the history. Who issued the GET_TCB for this? */ 694 device_printf(sc->dev, "tcb %u: flags 0x%016jx, state %u, " 695 "srtt %u, sscale %u, rscale %u, cookie 0x%x\n", tid, 696 (uintmax_t)get_tcb_tflags(tcb), GET_TCB_FIELD(tcb, T_STATE), 697 GET_TCB_FIELD(tcb, T_SRTT), GET_TCB_FIELD(tcb, SND_SCALE), 698 GET_TCB_FIELD(tcb, RCV_SCALE), cpl->cookie); 699 goto done; 700 } 701 702 MPASS(te->te_flags & TE_RPL_PENDING); 703 te->te_flags &= ~TE_RPL_PENDING; 704 if (remove) { 705 remove_tcb_histent(te); 706 } else { 707 update_tcb_histent(te, tcb); 708 callout_reset(&te->te_callout, hz / 10, request_tcb, te); 709 release_tcb_histent(te); 710 } 711 done: 712 m_freem(m); 713 return (0); 714 } 715 716 static void 717 fill_tcp_info_from_tcb(struct adapter *sc, uint64_t *tcb, struct tcp_info *ti) 718 { 719 uint32_t v; 720 721 ti->tcpi_state = GET_TCB_FIELD(tcb, T_STATE); 722 723 v = GET_TCB_FIELD(tcb, T_SRTT); 724 ti->tcpi_rtt = tcp_ticks_to_us(sc, v); 725 726 v = GET_TCB_FIELD(tcb, T_RTTVAR); 727 ti->tcpi_rttvar = tcp_ticks_to_us(sc, v); 728 729 ti->tcpi_snd_ssthresh = GET_TCB_FIELD(tcb, SND_SSTHRESH); 730 ti->tcpi_snd_cwnd = GET_TCB_FIELD(tcb, SND_CWND); 731 ti->tcpi_rcv_nxt = GET_TCB_FIELD(tcb, RCV_NXT); 732 ti->tcpi_rcv_adv = GET_TCB_FIELD(tcb, RCV_ADV); 733 ti->tcpi_dupacks = GET_TCB_FIELD(tcb, T_DUPACKS); 734 735 v = GET_TCB_FIELD(tcb, TX_MAX); 736 ti->tcpi_snd_nxt = v - GET_TCB_FIELD(tcb, SND_NXT_RAW); 737 ti->tcpi_snd_una = v - GET_TCB_FIELD(tcb, SND_UNA_RAW); 738 ti->tcpi_snd_max = v - GET_TCB_FIELD(tcb, SND_MAX_RAW); 739 740 /* Receive window being advertised by us. */ 741 ti->tcpi_rcv_wscale = GET_TCB_FIELD(tcb, SND_SCALE); /* Yes, SND. */ 742 ti->tcpi_rcv_space = GET_TCB_FIELD(tcb, RCV_WND); 743 744 /* Send window */ 745 ti->tcpi_snd_wscale = GET_TCB_FIELD(tcb, RCV_SCALE); /* Yes, RCV. */ 746 ti->tcpi_snd_wnd = GET_TCB_FIELD(tcb, RCV_ADV); 747 if (get_tcb_tflags(tcb) & V_TF_RECV_SCALE(1)) 748 ti->tcpi_snd_wnd <<= ti->tcpi_snd_wscale; 749 else 750 ti->tcpi_snd_wscale = 0; 751 752 } 753 754 static void 755 fill_tcp_info_from_history(struct adapter *sc, struct tcb_histent *te, 756 struct tcp_info *ti) 757 { 758 759 fill_tcp_info_from_tcb(sc, te->te_tcb, ti); 760 } 761 762 /* 763 * Reads the TCB for the given tid using a memory window and copies it to 'buf' 764 * in the same format as CPL_GET_TCB_RPL. 765 */ 766 static void 767 read_tcb_using_memwin(struct adapter *sc, u_int tid, uint64_t *buf) 768 { 769 int i, j, k, rc; 770 uint32_t addr; 771 u_char *tcb, tmp; 772 773 MPASS(tid >= sc->tids.tid_base); 774 MPASS(tid - sc->tids.tid_base < sc->tids.ntids); 775 776 addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE) + tid * TCB_SIZE; 777 rc = read_via_memwin(sc, 2, addr, (uint32_t *)buf, TCB_SIZE); 778 if (rc != 0) 779 return; 780 781 tcb = (u_char *)buf; 782 for (i = 0, j = TCB_SIZE - 16; i < j; i += 16, j -= 16) { 783 for (k = 0; k < 16; k++) { 784 tmp = tcb[i + k]; 785 tcb[i + k] = tcb[j + k]; 786 tcb[j + k] = tmp; 787 } 788 } 789 } 790 791 static void 792 fill_tcp_info(struct adapter *sc, u_int tid, struct tcp_info *ti) 793 { 794 uint64_t tcb[TCB_SIZE / sizeof(uint64_t)]; 795 struct tcb_histent *te; 796 797 ti->tcpi_toe_tid = tid; 798 te = lookup_tcb_histent(sc, tid, false); 799 if (te != NULL) { 800 fill_tcp_info_from_history(sc, te, ti); 801 release_tcb_histent(te); 802 } else { 803 if (!(sc->debug_flags & DF_DISABLE_TCB_CACHE)) { 804 /* XXX: tell firmware to flush TCB cache. */ 805 } 806 read_tcb_using_memwin(sc, tid, tcb); 807 fill_tcp_info_from_tcb(sc, tcb, ti); 808 } 809 } 810 811 /* 812 * Called by the kernel to allow the TOE driver to "refine" values filled up in 813 * the tcp_info for an offloaded connection. 814 */ 815 static void 816 t4_tcp_info(struct toedev *tod, const struct tcpcb *tp, struct tcp_info *ti) 817 { 818 struct adapter *sc = tod->tod_softc; 819 struct toepcb *toep = tp->t_toe; 820 821 INP_LOCK_ASSERT(tptoinpcb(tp)); 822 MPASS(ti != NULL); 823 824 fill_tcp_info(sc, toep->tid, ti); 825 } 826 827 #ifdef KERN_TLS 828 static int 829 t4_alloc_tls_session(struct toedev *tod, struct tcpcb *tp, 830 struct ktls_session *tls, int direction) 831 { 832 struct toepcb *toep = tp->t_toe; 833 834 INP_WLOCK_ASSERT(tptoinpcb(tp)); 835 MPASS(tls != NULL); 836 837 return (tls_alloc_ktls(toep, tls, direction)); 838 } 839 #endif 840 841 static void 842 send_mss_flowc_wr(struct adapter *sc, struct toepcb *toep) 843 { 844 struct wrq_cookie cookie; 845 struct fw_flowc_wr *flowc; 846 struct ofld_tx_sdesc *txsd; 847 const int flowclen = sizeof(*flowc) + sizeof(struct fw_flowc_mnemval); 848 const int flowclen16 = howmany(flowclen, 16); 849 850 if (toep->tx_credits < flowclen16 || toep->txsd_avail == 0) { 851 CH_ERR(sc, "%s: tid %u out of tx credits (%d, %d).\n", __func__, 852 toep->tid, toep->tx_credits, toep->txsd_avail); 853 return; 854 } 855 856 flowc = start_wrq_wr(&toep->ofld_txq->wrq, flowclen16, &cookie); 857 if (__predict_false(flowc == NULL)) { 858 CH_ERR(sc, "ENOMEM in %s for tid %u.\n", __func__, toep->tid); 859 return; 860 } 861 flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) | 862 V_FW_FLOWC_WR_NPARAMS(1)); 863 flowc->flowid_len16 = htonl(V_FW_WR_LEN16(flowclen16) | 864 V_FW_WR_FLOWID(toep->tid)); 865 flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_MSS; 866 flowc->mnemval[0].val = htobe32(toep->params.emss); 867 868 txsd = &toep->txsd[toep->txsd_pidx]; 869 txsd->tx_credits = flowclen16; 870 txsd->plen = 0; 871 toep->tx_credits -= txsd->tx_credits; 872 if (__predict_false(++toep->txsd_pidx == toep->txsd_total)) 873 toep->txsd_pidx = 0; 874 toep->txsd_avail--; 875 commit_wrq_wr(&toep->ofld_txq->wrq, flowc, &cookie); 876 } 877 878 static void 879 t4_pmtu_update(struct toedev *tod, struct tcpcb *tp, tcp_seq seq, int mtu) 880 { 881 struct work_request_hdr *wrh; 882 struct ulp_txpkt *ulpmc; 883 int idx, len; 884 struct wrq_cookie cookie; 885 struct inpcb *inp = tptoinpcb(tp); 886 struct toepcb *toep = tp->t_toe; 887 struct adapter *sc = td_adapter(toep->td); 888 unsigned short *mtus = &sc->params.mtus[0]; 889 890 INP_WLOCK_ASSERT(inp); 891 MPASS(mtu > 0); /* kernel is supposed to provide something usable. */ 892 893 /* tp->snd_una and snd_max are in host byte order too. */ 894 seq = be32toh(seq); 895 896 CTR6(KTR_CXGBE, "%s: tid %d, seq 0x%08x, mtu %u, mtu_idx %u (%d)", 897 __func__, toep->tid, seq, mtu, toep->params.mtu_idx, 898 mtus[toep->params.mtu_idx]); 899 900 if (ulp_mode(toep) == ULP_MODE_NONE && /* XXX: Read TCB otherwise? */ 901 (SEQ_LT(seq, tp->snd_una) || SEQ_GEQ(seq, tp->snd_max))) { 902 CTR5(KTR_CXGBE, 903 "%s: tid %d, seq 0x%08x not in range [0x%08x, 0x%08x).", 904 __func__, toep->tid, seq, tp->snd_una, tp->snd_max); 905 return; 906 } 907 908 /* Find the best mtu_idx for the suggested MTU. */ 909 for (idx = 0; idx < NMTUS - 1 && mtus[idx + 1] <= mtu; idx++) 910 continue; 911 if (idx >= toep->params.mtu_idx) 912 return; /* Never increase the PMTU (just like the kernel). */ 913 914 /* 915 * We'll send a compound work request with 2 SET_TCB_FIELDs -- the first 916 * one updates the mtu_idx and the second one triggers a retransmit. 917 */ 918 len = sizeof(*wrh) + 2 * roundup2(LEN__SET_TCB_FIELD_ULP, 16); 919 wrh = start_wrq_wr(toep->ctrlq, howmany(len, 16), &cookie); 920 if (wrh == NULL) { 921 CH_ERR(sc, "failed to change mtu_idx of tid %d (%u -> %u).\n", 922 toep->tid, toep->params.mtu_idx, idx); 923 return; 924 } 925 INIT_ULPTX_WRH(wrh, len, 1, 0); /* atomic */ 926 ulpmc = (struct ulp_txpkt *)(wrh + 1); 927 ulpmc = mk_set_tcb_field_ulp(sc, ulpmc, toep->tid, W_TCB_T_MAXSEG, 928 V_TCB_T_MAXSEG(M_TCB_T_MAXSEG), V_TCB_T_MAXSEG(idx)); 929 ulpmc = mk_set_tcb_field_ulp(sc, ulpmc, toep->tid, W_TCB_TIMESTAMP, 930 V_TCB_TIMESTAMP(0x7FFFFULL << 11), 0); 931 commit_wrq_wr(toep->ctrlq, wrh, &cookie); 932 933 /* Update the software toepcb and tcpcb. */ 934 toep->params.mtu_idx = idx; 935 tp->t_maxseg = mtus[toep->params.mtu_idx]; 936 if (inp->inp_inc.inc_flags & INC_ISIPV6) 937 tp->t_maxseg -= sizeof(struct ip6_hdr) + sizeof(struct tcphdr); 938 else 939 tp->t_maxseg -= sizeof(struct ip) + sizeof(struct tcphdr); 940 toep->params.emss = tp->t_maxseg; 941 if (tp->t_flags & TF_RCVD_TSTMP) 942 toep->params.emss -= TCPOLEN_TSTAMP_APPA; 943 944 /* Update the firmware flowc. */ 945 send_mss_flowc_wr(sc, toep); 946 947 /* Update the MTU in the kernel's hostcache. */ 948 if (sc->tt.update_hc_on_pmtu_change != 0) { 949 struct in_conninfo inc = {0}; 950 951 inc.inc_fibnum = inp->inp_inc.inc_fibnum; 952 if (inp->inp_inc.inc_flags & INC_ISIPV6) { 953 inc.inc_flags |= INC_ISIPV6; 954 inc.inc6_faddr = inp->inp_inc.inc6_faddr; 955 } else { 956 inc.inc_faddr = inp->inp_inc.inc_faddr; 957 } 958 tcp_hc_updatemtu(&inc, mtu); 959 } 960 961 CTR6(KTR_CXGBE, "%s: tid %d, mtu_idx %u (%u), t_maxseg %u, emss %u", 962 __func__, toep->tid, toep->params.mtu_idx, 963 mtus[toep->params.mtu_idx], tp->t_maxseg, toep->params.emss); 964 } 965 966 /* 967 * The TOE driver will not receive any more CPLs for the tid associated with the 968 * toepcb; release the hold on the inpcb. 969 */ 970 void 971 final_cpl_received(struct toepcb *toep) 972 { 973 struct inpcb *inp = toep->inp; 974 bool need_wakeup; 975 976 KASSERT(inp != NULL, ("%s: inp is NULL", __func__)); 977 INP_WLOCK_ASSERT(inp); 978 KASSERT(toep->flags & TPF_CPL_PENDING, 979 ("%s: CPL not pending already?", __func__)); 980 981 CTR6(KTR_CXGBE, "%s: tid %d, toep %p (0x%x), inp %p (0x%x)", 982 __func__, toep->tid, toep, toep->flags, inp, inp->inp_flags); 983 984 if (ulp_mode(toep) == ULP_MODE_TCPDDP) 985 release_ddp_resources(toep); 986 toep->inp = NULL; 987 need_wakeup = (toep->flags & TPF_WAITING_FOR_FINAL) != 0; 988 toep->flags &= ~(TPF_CPL_PENDING | TPF_WAITING_FOR_FINAL); 989 mbufq_drain(&toep->ulp_pduq); 990 mbufq_drain(&toep->ulp_pdu_reclaimq); 991 992 if (!(toep->flags & TPF_ATTACHED)) 993 release_offload_resources(toep); 994 995 if (!in_pcbrele_wlocked(inp)) 996 INP_WUNLOCK(inp); 997 998 if (need_wakeup) { 999 struct mtx *lock = mtx_pool_find(mtxpool_sleep, toep); 1000 1001 mtx_lock(lock); 1002 wakeup(toep); 1003 mtx_unlock(lock); 1004 } 1005 } 1006 1007 void 1008 insert_tid(struct adapter *sc, int tid, void *ctx, int ntids) 1009 { 1010 struct tid_info *t = &sc->tids; 1011 1012 MPASS(tid >= t->tid_base); 1013 MPASS(tid - t->tid_base < t->ntids); 1014 1015 t->tid_tab[tid - t->tid_base] = ctx; 1016 atomic_add_int(&t->tids_in_use, ntids); 1017 } 1018 1019 void * 1020 lookup_tid(struct adapter *sc, int tid) 1021 { 1022 struct tid_info *t = &sc->tids; 1023 1024 return (t->tid_tab[tid - t->tid_base]); 1025 } 1026 1027 void 1028 update_tid(struct adapter *sc, int tid, void *ctx) 1029 { 1030 struct tid_info *t = &sc->tids; 1031 1032 t->tid_tab[tid - t->tid_base] = ctx; 1033 } 1034 1035 void 1036 remove_tid(struct adapter *sc, int tid, int ntids) 1037 { 1038 struct tid_info *t = &sc->tids; 1039 1040 t->tid_tab[tid - t->tid_base] = NULL; 1041 atomic_subtract_int(&t->tids_in_use, ntids); 1042 } 1043 1044 /* 1045 * What mtu_idx to use, given a 4-tuple. Note that both s->mss and tcp_mssopt 1046 * have the MSS that we should advertise in our SYN. Advertised MSS doesn't 1047 * account for any TCP options so the effective MSS (only payload, no headers or 1048 * options) could be different. 1049 */ 1050 static int 1051 find_best_mtu_idx(struct adapter *sc, struct in_conninfo *inc, 1052 struct offload_settings *s) 1053 { 1054 unsigned short *mtus = &sc->params.mtus[0]; 1055 int i, mss, mtu; 1056 1057 MPASS(inc != NULL); 1058 1059 mss = s->mss > 0 ? s->mss : tcp_mssopt(inc); 1060 if (inc->inc_flags & INC_ISIPV6) 1061 mtu = mss + sizeof(struct ip6_hdr) + sizeof(struct tcphdr); 1062 else 1063 mtu = mss + sizeof(struct ip) + sizeof(struct tcphdr); 1064 1065 for (i = 0; i < NMTUS - 1 && mtus[i + 1] <= mtu; i++) 1066 continue; 1067 1068 return (i); 1069 } 1070 1071 /* 1072 * Determine the receive window size for a socket. 1073 */ 1074 u_long 1075 select_rcv_wnd(struct socket *so) 1076 { 1077 unsigned long wnd; 1078 1079 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1080 1081 wnd = sbspace(&so->so_rcv); 1082 if (wnd < MIN_RCV_WND) 1083 wnd = MIN_RCV_WND; 1084 1085 return min(wnd, MAX_RCV_WND); 1086 } 1087 1088 int 1089 select_rcv_wscale(void) 1090 { 1091 int wscale = 0; 1092 unsigned long space = sb_max; 1093 1094 if (space > MAX_RCV_WND) 1095 space = MAX_RCV_WND; 1096 1097 while (wscale < TCP_MAX_WINSHIFT && (TCP_MAXWIN << wscale) < space) 1098 wscale++; 1099 1100 return (wscale); 1101 } 1102 1103 __be64 1104 calc_options0(struct vi_info *vi, struct conn_params *cp) 1105 { 1106 uint64_t opt0 = 0; 1107 1108 opt0 |= F_TCAM_BYPASS; 1109 1110 MPASS(cp->wscale >= 0 && cp->wscale <= M_WND_SCALE); 1111 opt0 |= V_WND_SCALE(cp->wscale); 1112 1113 MPASS(cp->mtu_idx >= 0 && cp->mtu_idx < NMTUS); 1114 opt0 |= V_MSS_IDX(cp->mtu_idx); 1115 1116 MPASS(cp->ulp_mode >= 0 && cp->ulp_mode <= M_ULP_MODE); 1117 opt0 |= V_ULP_MODE(cp->ulp_mode); 1118 1119 MPASS(cp->opt0_bufsize >= 0 && cp->opt0_bufsize <= M_RCV_BUFSIZ); 1120 opt0 |= V_RCV_BUFSIZ(cp->opt0_bufsize); 1121 1122 MPASS(cp->l2t_idx >= 0 && cp->l2t_idx < vi->adapter->vres.l2t.size); 1123 opt0 |= V_L2T_IDX(cp->l2t_idx); 1124 1125 opt0 |= V_SMAC_SEL(vi->smt_idx); 1126 opt0 |= V_TX_CHAN(vi->pi->tx_chan); 1127 1128 MPASS(cp->keepalive == 0 || cp->keepalive == 1); 1129 opt0 |= V_KEEP_ALIVE(cp->keepalive); 1130 1131 MPASS(cp->nagle == 0 || cp->nagle == 1); 1132 opt0 |= V_NAGLE(cp->nagle); 1133 1134 return (htobe64(opt0)); 1135 } 1136 1137 __be32 1138 calc_options2(struct vi_info *vi, struct conn_params *cp) 1139 { 1140 uint32_t opt2 = 0; 1141 struct port_info *pi = vi->pi; 1142 struct adapter *sc = pi->adapter; 1143 1144 /* 1145 * rx flow control, rx coalesce, congestion control, and tx pace are all 1146 * explicitly set by the driver. On T5+ the ISS is also set by the 1147 * driver to the value picked by the kernel. 1148 */ 1149 if (is_t4(sc)) { 1150 opt2 |= F_RX_FC_VALID | F_RX_COALESCE_VALID; 1151 opt2 |= F_CONG_CNTRL_VALID | F_PACE_VALID; 1152 } else { 1153 opt2 |= F_T5_OPT_2_VALID; /* all 4 valid */ 1154 opt2 |= F_T5_ISS; /* ISS provided in CPL */ 1155 } 1156 1157 MPASS(cp->sack == 0 || cp->sack == 1); 1158 opt2 |= V_SACK_EN(cp->sack); 1159 1160 MPASS(cp->tstamp == 0 || cp->tstamp == 1); 1161 opt2 |= V_TSTAMPS_EN(cp->tstamp); 1162 1163 if (cp->wscale > 0) 1164 opt2 |= F_WND_SCALE_EN; 1165 1166 MPASS(cp->ecn == 0 || cp->ecn == 1); 1167 opt2 |= V_CCTRL_ECN(cp->ecn); 1168 1169 opt2 |= V_TX_QUEUE(TX_MODQ(pi->tx_chan)); 1170 opt2 |= V_PACE(0); 1171 opt2 |= F_RSS_QUEUE_VALID; 1172 opt2 |= V_RSS_QUEUE(sc->sge.ofld_rxq[cp->rxq_idx].iq.abs_id); 1173 if (chip_id(sc) <= CHELSIO_T6) { 1174 MPASS(pi->rx_chan == 0 || pi->rx_chan == 1); 1175 opt2 |= V_RX_CHANNEL(pi->rx_chan); 1176 } 1177 1178 MPASS(cp->cong_algo >= 0 && cp->cong_algo <= M_CONG_CNTRL); 1179 opt2 |= V_CONG_CNTRL(cp->cong_algo); 1180 1181 MPASS(cp->rx_coalesce == 0 || cp->rx_coalesce == 1); 1182 if (cp->rx_coalesce == 1) 1183 opt2 |= V_RX_COALESCE(M_RX_COALESCE); 1184 1185 opt2 |= V_RX_FC_DDP(0) | V_RX_FC_DISABLE(0); 1186 MPASS(cp->ulp_mode != ULP_MODE_TCPDDP); 1187 1188 return (htobe32(opt2)); 1189 } 1190 1191 uint64_t 1192 select_ntuple(struct vi_info *vi, struct l2t_entry *e) 1193 { 1194 struct adapter *sc = vi->adapter; 1195 struct tp_params *tp = &sc->params.tp; 1196 uint64_t ntuple = 0; 1197 1198 /* 1199 * Initialize each of the fields which we care about which are present 1200 * in the Compressed Filter Tuple. 1201 */ 1202 if (tp->vlan_shift >= 0 && EVL_VLANOFTAG(e->vlan) != CPL_L2T_VLAN_NONE) 1203 ntuple |= (uint64_t)(F_FT_VLAN_VLD | e->vlan) << tp->vlan_shift; 1204 1205 if (tp->port_shift >= 0) 1206 ntuple |= (uint64_t)e->lport << tp->port_shift; 1207 1208 if (tp->protocol_shift >= 0) 1209 ntuple |= (uint64_t)IPPROTO_TCP << tp->protocol_shift; 1210 1211 if (tp->vnic_shift >= 0 && tp->vnic_mode == FW_VNIC_MODE_PF_VF) { 1212 ntuple |= (uint64_t)(V_FT_VNID_ID_VF(vi->vin) | 1213 V_FT_VNID_ID_PF(sc->pf) | V_FT_VNID_ID_VLD(vi->vfvld)) << 1214 tp->vnic_shift; 1215 } 1216 1217 if (is_t4(sc)) 1218 return (htobe32((uint32_t)ntuple)); 1219 else 1220 return (htobe64(V_FILTER_TUPLE(ntuple))); 1221 } 1222 1223 /* 1224 * Initialize various connection parameters. 1225 */ 1226 void 1227 init_conn_params(struct vi_info *vi , struct offload_settings *s, 1228 struct in_conninfo *inc, struct socket *so, 1229 const struct tcp_options *tcpopt, int16_t l2t_idx, struct conn_params *cp) 1230 { 1231 struct port_info *pi = vi->pi; 1232 struct adapter *sc = pi->adapter; 1233 struct tom_tunables *tt = &sc->tt; 1234 struct inpcb *inp = sotoinpcb(so); 1235 struct tcpcb *tp = intotcpcb(inp); 1236 u_long wnd; 1237 u_int q_idx; 1238 1239 MPASS(s->offload != 0); 1240 1241 /* Congestion control algorithm */ 1242 if (s->cong_algo >= 0) 1243 cp->cong_algo = s->cong_algo & M_CONG_CNTRL; 1244 else if (sc->tt.cong_algorithm >= 0) 1245 cp->cong_algo = tt->cong_algorithm & M_CONG_CNTRL; 1246 else { 1247 struct cc_algo *cc = CC_ALGO(tp); 1248 1249 if (strcasecmp(cc->name, "reno") == 0) 1250 cp->cong_algo = CONG_ALG_RENO; 1251 else if (strcasecmp(cc->name, "tahoe") == 0) 1252 cp->cong_algo = CONG_ALG_TAHOE; 1253 if (strcasecmp(cc->name, "newreno") == 0) 1254 cp->cong_algo = CONG_ALG_NEWRENO; 1255 if (strcasecmp(cc->name, "highspeed") == 0) 1256 cp->cong_algo = CONG_ALG_HIGHSPEED; 1257 else { 1258 /* 1259 * Use newreno in case the algorithm selected by the 1260 * host stack is not supported by the hardware. 1261 */ 1262 cp->cong_algo = CONG_ALG_NEWRENO; 1263 } 1264 } 1265 1266 /* Tx traffic scheduling class. */ 1267 if (s->sched_class >= 0 && s->sched_class < sc->params.nsched_cls) 1268 cp->tc_idx = s->sched_class; 1269 else 1270 cp->tc_idx = -1; 1271 1272 /* Nagle's algorithm. */ 1273 if (s->nagle >= 0) 1274 cp->nagle = s->nagle > 0 ? 1 : 0; 1275 else 1276 cp->nagle = tp->t_flags & TF_NODELAY ? 0 : 1; 1277 1278 /* TCP Keepalive. */ 1279 if (V_tcp_always_keepalive || so_options_get(so) & SO_KEEPALIVE) 1280 cp->keepalive = 1; 1281 else 1282 cp->keepalive = 0; 1283 1284 /* Optimization that's specific to T5 @ 40G. */ 1285 if (tt->tx_align >= 0) 1286 cp->tx_align = tt->tx_align > 0 ? 1 : 0; 1287 else if (chip_id(sc) == CHELSIO_T5 && 1288 (port_top_speed(pi) > 10 || sc->params.nports > 2)) 1289 cp->tx_align = 1; 1290 else 1291 cp->tx_align = 0; 1292 1293 /* ULP mode. */ 1294 cp->ulp_mode = ULP_MODE_NONE; 1295 1296 /* Rx coalescing. */ 1297 if (s->rx_coalesce >= 0) 1298 cp->rx_coalesce = s->rx_coalesce > 0 ? 1 : 0; 1299 else if (tt->rx_coalesce >= 0) 1300 cp->rx_coalesce = tt->rx_coalesce > 0 ? 1 : 0; 1301 else 1302 cp->rx_coalesce = 1; /* default */ 1303 1304 /* 1305 * Index in the PMTU table. This controls the MSS that we announce in 1306 * our SYN initially, but after ESTABLISHED it controls the MSS that we 1307 * use to send data. 1308 */ 1309 cp->mtu_idx = find_best_mtu_idx(sc, inc, s); 1310 1311 /* Tx queue for this connection. */ 1312 if (s->txq == QUEUE_RANDOM) 1313 q_idx = arc4random(); 1314 else if (s->txq == QUEUE_ROUNDROBIN) 1315 q_idx = atomic_fetchadd_int(&vi->txq_rr, 1); 1316 else 1317 q_idx = s->txq; 1318 cp->txq_idx = vi->first_ofld_txq + q_idx % vi->nofldtxq; 1319 1320 /* Rx queue for this connection. */ 1321 if (s->rxq == QUEUE_RANDOM) 1322 q_idx = arc4random(); 1323 else if (s->rxq == QUEUE_ROUNDROBIN) 1324 q_idx = atomic_fetchadd_int(&vi->rxq_rr, 1); 1325 else 1326 q_idx = s->rxq; 1327 cp->rxq_idx = vi->first_ofld_rxq + q_idx % vi->nofldrxq; 1328 1329 if (SOLISTENING(so)) { 1330 /* Passive open */ 1331 MPASS(tcpopt != NULL); 1332 1333 /* TCP timestamp option */ 1334 if (tcpopt->tstamp && 1335 (s->tstamp > 0 || (s->tstamp < 0 && V_tcp_do_rfc1323))) 1336 cp->tstamp = 1; 1337 else 1338 cp->tstamp = 0; 1339 1340 /* SACK */ 1341 if (tcpopt->sack && 1342 (s->sack > 0 || (s->sack < 0 && V_tcp_do_sack))) 1343 cp->sack = 1; 1344 else 1345 cp->sack = 0; 1346 1347 /* Receive window scaling. */ 1348 if (tcpopt->wsf > 0 && tcpopt->wsf < 15 && V_tcp_do_rfc1323) 1349 cp->wscale = select_rcv_wscale(); 1350 else 1351 cp->wscale = 0; 1352 1353 /* ECN */ 1354 if (tcpopt->ecn && /* XXX: review. */ 1355 (s->ecn > 0 || (s->ecn < 0 && V_tcp_do_ecn))) 1356 cp->ecn = 1; 1357 else 1358 cp->ecn = 0; 1359 1360 wnd = max(so->sol_sbrcv_hiwat, MIN_RCV_WND); 1361 cp->opt0_bufsize = min(wnd >> 10, M_RCV_BUFSIZ); 1362 1363 if (tt->sndbuf > 0) 1364 cp->sndbuf = tt->sndbuf; 1365 else if (so->sol_sbsnd_flags & SB_AUTOSIZE && 1366 V_tcp_do_autosndbuf) 1367 cp->sndbuf = 256 * 1024; 1368 else 1369 cp->sndbuf = so->sol_sbsnd_hiwat; 1370 } else { 1371 /* Active open */ 1372 1373 /* TCP timestamp option */ 1374 if (s->tstamp > 0 || 1375 (s->tstamp < 0 && (tp->t_flags & TF_REQ_TSTMP))) 1376 cp->tstamp = 1; 1377 else 1378 cp->tstamp = 0; 1379 1380 /* SACK */ 1381 if (s->sack > 0 || 1382 (s->sack < 0 && (tp->t_flags & TF_SACK_PERMIT))) 1383 cp->sack = 1; 1384 else 1385 cp->sack = 0; 1386 1387 /* Receive window scaling */ 1388 if (tp->t_flags & TF_REQ_SCALE) 1389 cp->wscale = select_rcv_wscale(); 1390 else 1391 cp->wscale = 0; 1392 1393 /* ECN */ 1394 if (s->ecn > 0 || (s->ecn < 0 && V_tcp_do_ecn == 1)) 1395 cp->ecn = 1; 1396 else 1397 cp->ecn = 0; 1398 1399 SOCKBUF_LOCK(&so->so_rcv); 1400 wnd = max(select_rcv_wnd(so), MIN_RCV_WND); 1401 SOCKBUF_UNLOCK(&so->so_rcv); 1402 cp->opt0_bufsize = min(wnd >> 10, M_RCV_BUFSIZ); 1403 1404 if (tt->sndbuf > 0) 1405 cp->sndbuf = tt->sndbuf; 1406 else { 1407 SOCKBUF_LOCK(&so->so_snd); 1408 if (so->so_snd.sb_flags & SB_AUTOSIZE && 1409 V_tcp_do_autosndbuf) 1410 cp->sndbuf = 256 * 1024; 1411 else 1412 cp->sndbuf = so->so_snd.sb_hiwat; 1413 SOCKBUF_UNLOCK(&so->so_snd); 1414 } 1415 } 1416 1417 cp->l2t_idx = l2t_idx; 1418 1419 /* This will be initialized on ESTABLISHED. */ 1420 cp->emss = 0; 1421 } 1422 1423 int 1424 negative_advice(int status) 1425 { 1426 1427 return (status == CPL_ERR_RTX_NEG_ADVICE || 1428 status == CPL_ERR_PERSIST_NEG_ADVICE || 1429 status == CPL_ERR_KEEPALV_NEG_ADVICE); 1430 } 1431 1432 static int 1433 alloc_tid_tab(struct tid_info *t, int flags) 1434 { 1435 1436 MPASS(t->ntids > 0); 1437 MPASS(t->tid_tab == NULL); 1438 1439 t->tid_tab = malloc(t->ntids * sizeof(*t->tid_tab), M_CXGBE, 1440 M_ZERO | flags); 1441 if (t->tid_tab == NULL) 1442 return (ENOMEM); 1443 atomic_store_rel_int(&t->tids_in_use, 0); 1444 1445 return (0); 1446 } 1447 1448 static void 1449 free_tid_tab(struct tid_info *t) 1450 { 1451 1452 KASSERT(t->tids_in_use == 0, 1453 ("%s: %d tids still in use.", __func__, t->tids_in_use)); 1454 1455 free(t->tid_tab, M_CXGBE); 1456 t->tid_tab = NULL; 1457 } 1458 1459 static int 1460 alloc_stid_tab(struct tid_info *t, int flags) 1461 { 1462 1463 MPASS(t->nstids > 0); 1464 MPASS(t->stid_tab == NULL); 1465 1466 t->stid_tab = malloc(t->nstids * sizeof(*t->stid_tab), M_CXGBE, 1467 M_ZERO | flags); 1468 if (t->stid_tab == NULL) 1469 return (ENOMEM); 1470 mtx_init(&t->stid_lock, "stid lock", NULL, MTX_DEF); 1471 t->stids_in_use = 0; 1472 TAILQ_INIT(&t->stids); 1473 t->nstids_free_head = t->nstids; 1474 1475 return (0); 1476 } 1477 1478 static void 1479 free_stid_tab(struct tid_info *t) 1480 { 1481 1482 KASSERT(t->stids_in_use == 0, 1483 ("%s: %d tids still in use.", __func__, t->stids_in_use)); 1484 1485 if (mtx_initialized(&t->stid_lock)) 1486 mtx_destroy(&t->stid_lock); 1487 free(t->stid_tab, M_CXGBE); 1488 t->stid_tab = NULL; 1489 } 1490 1491 static void 1492 free_tid_tabs(struct tid_info *t) 1493 { 1494 1495 free_tid_tab(t); 1496 free_stid_tab(t); 1497 } 1498 1499 static int 1500 alloc_tid_tabs(struct tid_info *t) 1501 { 1502 int rc; 1503 1504 rc = alloc_tid_tab(t, M_NOWAIT); 1505 if (rc != 0) 1506 goto failed; 1507 1508 rc = alloc_stid_tab(t, M_NOWAIT); 1509 if (rc != 0) 1510 goto failed; 1511 1512 return (0); 1513 failed: 1514 free_tid_tabs(t); 1515 return (rc); 1516 } 1517 1518 static inline void 1519 alloc_tcb_history(struct adapter *sc, struct tom_data *td) 1520 { 1521 1522 if (sc->tids.ntids == 0 || sc->tids.ntids > 1024) 1523 return; 1524 rw_init(&td->tcb_history_lock, "TCB history"); 1525 td->tcb_history = malloc(sc->tids.ntids * sizeof(*td->tcb_history), 1526 M_CXGBE, M_ZERO | M_NOWAIT); 1527 td->dupack_threshold = G_DUPACKTHRESH(t4_read_reg(sc, A_TP_PARA_REG0)); 1528 } 1529 1530 static inline void 1531 free_tcb_history(struct adapter *sc, struct tom_data *td) 1532 { 1533 #ifdef INVARIANTS 1534 int i; 1535 1536 if (td->tcb_history != NULL) { 1537 for (i = 0; i < sc->tids.ntids; i++) { 1538 MPASS(td->tcb_history[i] == NULL); 1539 } 1540 } 1541 #endif 1542 free(td->tcb_history, M_CXGBE); 1543 if (rw_initialized(&td->tcb_history_lock)) 1544 rw_destroy(&td->tcb_history_lock); 1545 } 1546 1547 static void 1548 free_tom_data(struct adapter *sc, struct tom_data *td) 1549 { 1550 1551 ASSERT_SYNCHRONIZED_OP(sc); 1552 1553 KASSERT(TAILQ_EMPTY(&td->toep_list), 1554 ("%s: TOE PCB list is not empty.", __func__)); 1555 KASSERT(td->lctx_count == 0, 1556 ("%s: lctx hash table is not empty.", __func__)); 1557 1558 t4_free_ppod_region(&td->pr); 1559 1560 if (td->listen_mask != 0) 1561 hashdestroy(td->listen_hash, M_CXGBE, td->listen_mask); 1562 1563 if (mtx_initialized(&td->unsent_wr_lock)) 1564 mtx_destroy(&td->unsent_wr_lock); 1565 if (mtx_initialized(&td->lctx_hash_lock)) 1566 mtx_destroy(&td->lctx_hash_lock); 1567 if (mtx_initialized(&td->toep_list_lock)) 1568 mtx_destroy(&td->toep_list_lock); 1569 1570 free_tcb_history(sc, td); 1571 free_tid_tabs(&sc->tids); 1572 free(td, M_CXGBE); 1573 } 1574 1575 static char * 1576 prepare_pkt(int open_type, uint16_t vtag, struct inpcb *inp, int *pktlen, 1577 int *buflen) 1578 { 1579 char *pkt; 1580 struct tcphdr *th; 1581 int ipv6, len; 1582 const int maxlen = 1583 max(sizeof(struct ether_header), sizeof(struct ether_vlan_header)) + 1584 max(sizeof(struct ip), sizeof(struct ip6_hdr)) + 1585 sizeof(struct tcphdr); 1586 1587 MPASS(open_type == OPEN_TYPE_ACTIVE || open_type == OPEN_TYPE_LISTEN); 1588 1589 pkt = malloc(maxlen, M_CXGBE, M_ZERO | M_NOWAIT); 1590 if (pkt == NULL) 1591 return (NULL); 1592 1593 ipv6 = inp->inp_vflag & INP_IPV6; 1594 len = 0; 1595 1596 if (EVL_VLANOFTAG(vtag) == 0xfff) { 1597 struct ether_header *eh = (void *)pkt; 1598 1599 if (ipv6) 1600 eh->ether_type = htons(ETHERTYPE_IPV6); 1601 else 1602 eh->ether_type = htons(ETHERTYPE_IP); 1603 1604 len += sizeof(*eh); 1605 } else { 1606 struct ether_vlan_header *evh = (void *)pkt; 1607 1608 evh->evl_encap_proto = htons(ETHERTYPE_VLAN); 1609 evh->evl_tag = htons(vtag); 1610 if (ipv6) 1611 evh->evl_proto = htons(ETHERTYPE_IPV6); 1612 else 1613 evh->evl_proto = htons(ETHERTYPE_IP); 1614 1615 len += sizeof(*evh); 1616 } 1617 1618 if (ipv6) { 1619 struct ip6_hdr *ip6 = (void *)&pkt[len]; 1620 1621 ip6->ip6_vfc = IPV6_VERSION; 1622 ip6->ip6_plen = htons(sizeof(struct tcphdr)); 1623 ip6->ip6_nxt = IPPROTO_TCP; 1624 if (open_type == OPEN_TYPE_ACTIVE) { 1625 ip6->ip6_src = inp->in6p_laddr; 1626 ip6->ip6_dst = inp->in6p_faddr; 1627 } else if (open_type == OPEN_TYPE_LISTEN) { 1628 ip6->ip6_src = inp->in6p_laddr; 1629 ip6->ip6_dst = ip6->ip6_src; 1630 } 1631 1632 len += sizeof(*ip6); 1633 } else { 1634 struct ip *ip = (void *)&pkt[len]; 1635 1636 ip->ip_v = IPVERSION; 1637 ip->ip_hl = sizeof(*ip) >> 2; 1638 ip->ip_tos = inp->inp_ip_tos; 1639 ip->ip_len = htons(sizeof(struct ip) + sizeof(struct tcphdr)); 1640 ip->ip_ttl = inp->inp_ip_ttl; 1641 ip->ip_p = IPPROTO_TCP; 1642 if (open_type == OPEN_TYPE_ACTIVE) { 1643 ip->ip_src = inp->inp_laddr; 1644 ip->ip_dst = inp->inp_faddr; 1645 } else if (open_type == OPEN_TYPE_LISTEN) { 1646 ip->ip_src = inp->inp_laddr; 1647 ip->ip_dst = ip->ip_src; 1648 } 1649 1650 len += sizeof(*ip); 1651 } 1652 1653 th = (void *)&pkt[len]; 1654 if (open_type == OPEN_TYPE_ACTIVE) { 1655 th->th_sport = inp->inp_lport; /* network byte order already */ 1656 th->th_dport = inp->inp_fport; /* ditto */ 1657 } else if (open_type == OPEN_TYPE_LISTEN) { 1658 th->th_sport = inp->inp_lport; /* network byte order already */ 1659 th->th_dport = th->th_sport; 1660 } 1661 len += sizeof(th); 1662 1663 *pktlen = *buflen = len; 1664 return (pkt); 1665 } 1666 1667 const struct offload_settings * 1668 lookup_offload_policy(struct adapter *sc, int open_type, struct mbuf *m, 1669 uint16_t vtag, struct inpcb *inp) 1670 { 1671 const struct t4_offload_policy *op; 1672 char *pkt; 1673 struct offload_rule *r; 1674 int i, matched, pktlen, buflen; 1675 static const struct offload_settings allow_offloading_settings = { 1676 .offload = 1, 1677 .rx_coalesce = -1, 1678 .cong_algo = -1, 1679 .sched_class = -1, 1680 .tstamp = -1, 1681 .sack = -1, 1682 .nagle = -1, 1683 .ecn = -1, 1684 .ddp = -1, 1685 .tls = -1, 1686 .txq = QUEUE_RANDOM, 1687 .rxq = QUEUE_RANDOM, 1688 .mss = -1, 1689 }; 1690 static const struct offload_settings disallow_offloading_settings = { 1691 .offload = 0, 1692 /* rest is irrelevant when offload is off. */ 1693 }; 1694 1695 rw_assert(&sc->policy_lock, RA_LOCKED); 1696 1697 /* 1698 * If there's no Connection Offloading Policy attached to the device 1699 * then we need to return a default static policy. If 1700 * "cop_managed_offloading" is true, then we need to disallow 1701 * offloading until a COP is attached to the device. Otherwise we 1702 * allow offloading ... 1703 */ 1704 op = sc->policy; 1705 if (op == NULL) { 1706 if (sc->tt.cop_managed_offloading) 1707 return (&disallow_offloading_settings); 1708 else 1709 return (&allow_offloading_settings); 1710 } 1711 1712 switch (open_type) { 1713 case OPEN_TYPE_ACTIVE: 1714 case OPEN_TYPE_LISTEN: 1715 pkt = prepare_pkt(open_type, vtag, inp, &pktlen, &buflen); 1716 break; 1717 case OPEN_TYPE_PASSIVE: 1718 MPASS(m != NULL); 1719 pkt = mtod(m, char *); 1720 MPASS(*pkt == CPL_PASS_ACCEPT_REQ); 1721 pkt += sizeof(struct cpl_pass_accept_req); 1722 pktlen = m->m_pkthdr.len - sizeof(struct cpl_pass_accept_req); 1723 buflen = m->m_len - sizeof(struct cpl_pass_accept_req); 1724 break; 1725 default: 1726 MPASS(0); 1727 return (&disallow_offloading_settings); 1728 } 1729 1730 if (pkt == NULL || pktlen == 0 || buflen == 0) 1731 return (&disallow_offloading_settings); 1732 1733 matched = 0; 1734 r = &op->rule[0]; 1735 for (i = 0; i < op->nrules; i++, r++) { 1736 if (r->open_type != open_type && 1737 r->open_type != OPEN_TYPE_DONTCARE) { 1738 continue; 1739 } 1740 matched = bpf_filter(r->bpf_prog.bf_insns, pkt, pktlen, buflen); 1741 if (matched) 1742 break; 1743 } 1744 1745 if (open_type == OPEN_TYPE_ACTIVE || open_type == OPEN_TYPE_LISTEN) 1746 free(pkt, M_CXGBE); 1747 1748 return (matched ? &r->settings : &disallow_offloading_settings); 1749 } 1750 1751 static void 1752 reclaim_wr_resources(void *arg, int count) 1753 { 1754 struct tom_data *td = arg; 1755 STAILQ_HEAD(, wrqe) twr_list = STAILQ_HEAD_INITIALIZER(twr_list); 1756 struct cpl_act_open_req *cpl; 1757 u_int opcode, atid, tid; 1758 struct wrqe *wr; 1759 struct adapter *sc = td_adapter(td); 1760 1761 mtx_lock(&td->unsent_wr_lock); 1762 STAILQ_SWAP(&td->unsent_wr_list, &twr_list, wrqe); 1763 mtx_unlock(&td->unsent_wr_lock); 1764 1765 while ((wr = STAILQ_FIRST(&twr_list)) != NULL) { 1766 STAILQ_REMOVE_HEAD(&twr_list, link); 1767 1768 cpl = wrtod(wr); 1769 opcode = GET_OPCODE(cpl); 1770 1771 switch (opcode) { 1772 case CPL_ACT_OPEN_REQ: 1773 case CPL_ACT_OPEN_REQ6: 1774 atid = G_TID_TID(be32toh(OPCODE_TID(cpl))); 1775 CTR2(KTR_CXGBE, "%s: atid %u ", __func__, atid); 1776 act_open_failure_cleanup(sc, atid, EHOSTUNREACH); 1777 free(wr, M_CXGBE); 1778 break; 1779 case CPL_PASS_ACCEPT_RPL: 1780 tid = GET_TID(cpl); 1781 CTR2(KTR_CXGBE, "%s: tid %u ", __func__, tid); 1782 synack_failure_cleanup(sc, tid); 1783 free(wr, M_CXGBE); 1784 break; 1785 default: 1786 log(LOG_ERR, "%s: leaked work request %p, wr_len %d, " 1787 "opcode %x\n", __func__, wr, wr->wr_len, opcode); 1788 /* WR not freed here; go look at it with a debugger. */ 1789 } 1790 } 1791 } 1792 1793 /* 1794 * Ground control to Major TOM 1795 * Commencing countdown, engines on 1796 */ 1797 static int 1798 t4_tom_activate(struct adapter *sc) 1799 { 1800 struct tom_data *td; 1801 struct toedev *tod; 1802 struct vi_info *vi; 1803 int i, rc, v; 1804 1805 ASSERT_SYNCHRONIZED_OP(sc); 1806 1807 /* per-adapter softc for TOM */ 1808 td = malloc(sizeof(*td), M_CXGBE, M_ZERO | M_NOWAIT); 1809 if (td == NULL) 1810 return (ENOMEM); 1811 1812 /* List of TOE PCBs and associated lock */ 1813 mtx_init(&td->toep_list_lock, "PCB list lock", NULL, MTX_DEF); 1814 TAILQ_INIT(&td->toep_list); 1815 1816 /* Listen context */ 1817 mtx_init(&td->lctx_hash_lock, "lctx hash lock", NULL, MTX_DEF); 1818 td->listen_hash = hashinit_flags(LISTEN_HASH_SIZE, M_CXGBE, 1819 &td->listen_mask, HASH_NOWAIT); 1820 1821 /* List of WRs for which L2 resolution failed */ 1822 mtx_init(&td->unsent_wr_lock, "Unsent WR list lock", NULL, MTX_DEF); 1823 STAILQ_INIT(&td->unsent_wr_list); 1824 TASK_INIT(&td->reclaim_wr_resources, 0, reclaim_wr_resources, td); 1825 1826 /* TID tables */ 1827 rc = alloc_tid_tabs(&sc->tids); 1828 if (rc != 0) 1829 goto done; 1830 1831 rc = t4_init_ppod_region(&td->pr, &sc->vres.ddp, 1832 t4_read_reg(sc, A_ULP_RX_TDDP_PSZ), "TDDP page pods"); 1833 if (rc != 0) 1834 goto done; 1835 t4_set_reg_field(sc, A_ULP_RX_TDDP_TAGMASK, 1836 V_TDDPTAGMASK(M_TDDPTAGMASK), td->pr.pr_tag_mask); 1837 1838 alloc_tcb_history(sc, td); 1839 1840 /* toedev ops */ 1841 tod = &td->tod; 1842 init_toedev(tod); 1843 tod->tod_softc = sc; 1844 tod->tod_connect = t4_connect; 1845 tod->tod_listen_start = t4_listen_start; 1846 tod->tod_listen_stop = t4_listen_stop; 1847 tod->tod_rcvd = t4_rcvd; 1848 tod->tod_output = t4_tod_output; 1849 tod->tod_send_rst = t4_send_rst; 1850 tod->tod_send_fin = t4_send_fin; 1851 tod->tod_pcb_detach = t4_pcb_detach; 1852 tod->tod_l2_update = t4_l2_update; 1853 tod->tod_syncache_added = t4_syncache_added; 1854 tod->tod_syncache_removed = t4_syncache_removed; 1855 tod->tod_syncache_respond = t4_syncache_respond; 1856 tod->tod_offload_socket = t4_offload_socket; 1857 tod->tod_ctloutput = t4_ctloutput; 1858 tod->tod_tcp_info = t4_tcp_info; 1859 #ifdef KERN_TLS 1860 tod->tod_alloc_tls_session = t4_alloc_tls_session; 1861 #endif 1862 tod->tod_pmtu_update = t4_pmtu_update; 1863 1864 for_each_port(sc, i) { 1865 for_each_vi(sc->port[i], v, vi) { 1866 SETTOEDEV(vi->ifp, &td->tod); 1867 } 1868 } 1869 1870 sc->tom_softc = td; 1871 register_toedev(sc->tom_softc); 1872 1873 done: 1874 if (rc != 0) 1875 free_tom_data(sc, td); 1876 return (rc); 1877 } 1878 1879 static int 1880 t4_tom_deactivate(struct adapter *sc) 1881 { 1882 int rc = 0; 1883 struct tom_data *td = sc->tom_softc; 1884 1885 ASSERT_SYNCHRONIZED_OP(sc); 1886 1887 if (td == NULL) 1888 return (0); /* XXX. KASSERT? */ 1889 1890 if (sc->offload_map != 0) 1891 return (EBUSY); /* at least one port has IFCAP_TOE enabled */ 1892 1893 if (uld_active(sc, ULD_IWARP) || uld_active(sc, ULD_ISCSI)) 1894 return (EBUSY); /* both iWARP and iSCSI rely on the TOE. */ 1895 1896 mtx_lock(&td->toep_list_lock); 1897 if (!TAILQ_EMPTY(&td->toep_list)) 1898 rc = EBUSY; 1899 mtx_unlock(&td->toep_list_lock); 1900 1901 mtx_lock(&td->lctx_hash_lock); 1902 if (td->lctx_count > 0) 1903 rc = EBUSY; 1904 mtx_unlock(&td->lctx_hash_lock); 1905 1906 taskqueue_drain(taskqueue_thread, &td->reclaim_wr_resources); 1907 mtx_lock(&td->unsent_wr_lock); 1908 if (!STAILQ_EMPTY(&td->unsent_wr_list)) 1909 rc = EBUSY; 1910 mtx_unlock(&td->unsent_wr_lock); 1911 1912 if (rc == 0) { 1913 unregister_toedev(sc->tom_softc); 1914 free_tom_data(sc, td); 1915 sc->tom_softc = NULL; 1916 } 1917 1918 return (rc); 1919 } 1920 1921 static int 1922 t4_ctloutput_tom(struct socket *so, struct sockopt *sopt) 1923 { 1924 struct tcpcb *tp = sototcpcb(so); 1925 struct toepcb *toep = tp->t_toe; 1926 int error, optval; 1927 1928 if (sopt->sopt_level == IPPROTO_TCP && sopt->sopt_name == TCP_USE_DDP) { 1929 if (sopt->sopt_dir != SOPT_SET) 1930 return (EOPNOTSUPP); 1931 1932 if (sopt->sopt_td != NULL) { 1933 /* Only settable by the kernel. */ 1934 return (EPERM); 1935 } 1936 1937 error = sooptcopyin(sopt, &optval, sizeof(optval), 1938 sizeof(optval)); 1939 if (error != 0) 1940 return (error); 1941 1942 if (optval != 0) 1943 return (t4_enable_ddp_rcv(so, toep)); 1944 else 1945 return (EOPNOTSUPP); 1946 } 1947 return (tcp_ctloutput(so, sopt)); 1948 } 1949 1950 static int 1951 t4_aio_queue_tom(struct socket *so, struct kaiocb *job) 1952 { 1953 struct tcpcb *tp = sototcpcb(so); 1954 struct toepcb *toep = tp->t_toe; 1955 int error; 1956 1957 /* 1958 * No lock is needed as TOE sockets never change between 1959 * active and passive. 1960 */ 1961 if (SOLISTENING(so)) 1962 return (EINVAL); 1963 1964 if (ulp_mode(toep) == ULP_MODE_TCPDDP || 1965 ulp_mode(toep) == ULP_MODE_NONE) { 1966 error = t4_aio_queue_ddp(so, job); 1967 if (error != EOPNOTSUPP) 1968 return (error); 1969 } 1970 1971 return (t4_aio_queue_aiotx(so, job)); 1972 } 1973 1974 static int 1975 t4_tom_mod_load(void) 1976 { 1977 /* CPL handlers */ 1978 t4_register_cpl_handler(CPL_GET_TCB_RPL, do_get_tcb_rpl); 1979 t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, do_l2t_write_rpl2, 1980 CPL_COOKIE_TOM); 1981 t4_init_connect_cpl_handlers(); 1982 t4_init_listen_cpl_handlers(); 1983 t4_init_cpl_io_handlers(); 1984 1985 t4_ddp_mod_load(); 1986 t4_tls_mod_load(); 1987 1988 bcopy(&tcp_protosw, &toe_protosw, sizeof(toe_protosw)); 1989 toe_protosw.pr_ctloutput = t4_ctloutput_tom; 1990 toe_protosw.pr_aio_queue = t4_aio_queue_tom; 1991 1992 bcopy(&tcp6_protosw, &toe6_protosw, sizeof(toe6_protosw)); 1993 toe6_protosw.pr_ctloutput = t4_ctloutput_tom; 1994 toe6_protosw.pr_aio_queue = t4_aio_queue_tom; 1995 1996 return (t4_register_uld(&tom_uld_info)); 1997 } 1998 1999 static void 2000 tom_uninit(struct adapter *sc, void *arg __unused) 2001 { 2002 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4tomun")) 2003 return; 2004 2005 /* Try to free resources (works only if no port has IFCAP_TOE) */ 2006 if (uld_active(sc, ULD_TOM)) 2007 t4_deactivate_uld(sc, ULD_TOM); 2008 2009 end_synchronized_op(sc, 0); 2010 } 2011 2012 static int 2013 t4_tom_mod_unload(void) 2014 { 2015 t4_iterate(tom_uninit, NULL); 2016 2017 if (t4_unregister_uld(&tom_uld_info) == EBUSY) 2018 return (EBUSY); 2019 2020 t4_tls_mod_unload(); 2021 t4_ddp_mod_unload(); 2022 2023 t4_uninit_connect_cpl_handlers(); 2024 t4_uninit_listen_cpl_handlers(); 2025 t4_uninit_cpl_io_handlers(); 2026 t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, NULL, CPL_COOKIE_TOM); 2027 t4_register_cpl_handler(CPL_GET_TCB_RPL, NULL); 2028 2029 return (0); 2030 } 2031 #endif /* TCP_OFFLOAD */ 2032 2033 static int 2034 t4_tom_modevent(module_t mod, int cmd, void *arg) 2035 { 2036 int rc = 0; 2037 2038 #ifdef TCP_OFFLOAD 2039 switch (cmd) { 2040 case MOD_LOAD: 2041 rc = t4_tom_mod_load(); 2042 break; 2043 2044 case MOD_UNLOAD: 2045 rc = t4_tom_mod_unload(); 2046 break; 2047 2048 default: 2049 rc = EINVAL; 2050 } 2051 #else 2052 printf("t4_tom: compiled without TCP_OFFLOAD support.\n"); 2053 rc = EOPNOTSUPP; 2054 #endif 2055 return (rc); 2056 } 2057 2058 static moduledata_t t4_tom_moddata= { 2059 "t4_tom", 2060 t4_tom_modevent, 2061 0 2062 }; 2063 2064 MODULE_VERSION(t4_tom, 1); 2065 MODULE_DEPEND(t4_tom, toecore, 1, 1, 1); 2066 MODULE_DEPEND(t4_tom, t4nex, 1, 1, 1); 2067 DECLARE_MODULE(t4_tom, t4_tom_moddata, SI_SUB_EXEC, SI_ORDER_ANY); 2068