1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2012 Chelsio Communications, Inc. 5 * All rights reserved. 6 * Written by: Navdeep Parhar <np@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include "opt_inet.h" 34 #include "opt_inet6.h" 35 #include "opt_kern_tls.h" 36 #include "opt_ratelimit.h" 37 38 #include <sys/param.h> 39 #include <sys/types.h> 40 #include <sys/systm.h> 41 #include <sys/kernel.h> 42 #include <sys/ktr.h> 43 #include <sys/lock.h> 44 #include <sys/limits.h> 45 #include <sys/module.h> 46 #include <sys/protosw.h> 47 #include <sys/domain.h> 48 #include <sys/refcount.h> 49 #include <sys/rmlock.h> 50 #include <sys/socket.h> 51 #include <sys/socketvar.h> 52 #include <sys/sysctl.h> 53 #include <sys/taskqueue.h> 54 #include <net/if.h> 55 #include <net/if_var.h> 56 #include <net/if_types.h> 57 #include <net/if_vlan_var.h> 58 #include <netinet/in.h> 59 #include <netinet/in_pcb.h> 60 #include <netinet/in_var.h> 61 #include <netinet/ip.h> 62 #include <netinet/ip6.h> 63 #include <netinet6/scope6_var.h> 64 #define TCPSTATES 65 #include <netinet/tcp_fsm.h> 66 #include <netinet/tcp_seq.h> 67 #include <netinet/tcp_timer.h> 68 #include <netinet/tcp_var.h> 69 #include <netinet/toecore.h> 70 #include <netinet/cc/cc.h> 71 72 #ifdef TCP_OFFLOAD 73 #include "common/common.h" 74 #include "common/t4_msg.h" 75 #include "common/t4_regs.h" 76 #include "common/t4_regs_values.h" 77 #include "common/t4_tcb.h" 78 #include "t4_clip.h" 79 #include "tom/t4_tom_l2t.h" 80 #include "tom/t4_tom.h" 81 #include "tom/t4_tls.h" 82 83 static struct protosw *tcp_protosw; 84 static struct protosw toe_protosw; 85 static struct pr_usrreqs toe_usrreqs; 86 87 static struct protosw *tcp6_protosw; 88 static struct protosw toe6_protosw; 89 static struct pr_usrreqs toe6_usrreqs; 90 91 /* Module ops */ 92 static int t4_tom_mod_load(void); 93 static int t4_tom_mod_unload(void); 94 static int t4_tom_modevent(module_t, int, void *); 95 96 /* ULD ops and helpers */ 97 static int t4_tom_activate(struct adapter *); 98 static int t4_tom_deactivate(struct adapter *); 99 100 static struct uld_info tom_uld_info = { 101 .uld_id = ULD_TOM, 102 .activate = t4_tom_activate, 103 .deactivate = t4_tom_deactivate, 104 }; 105 106 static void release_offload_resources(struct toepcb *); 107 static int alloc_tid_tabs(struct tid_info *); 108 static void free_tid_tabs(struct tid_info *); 109 static void free_tom_data(struct adapter *, struct tom_data *); 110 static void reclaim_wr_resources(void *, int); 111 112 struct toepcb * 113 alloc_toepcb(struct vi_info *vi, int flags) 114 { 115 struct port_info *pi = vi->pi; 116 struct adapter *sc = pi->adapter; 117 struct toepcb *toep; 118 int tx_credits, txsd_total, len; 119 120 /* 121 * The firmware counts tx work request credits in units of 16 bytes 122 * each. Reserve room for an ABORT_REQ so the driver never has to worry 123 * about tx credits if it wants to abort a connection. 124 */ 125 tx_credits = sc->params.ofldq_wr_cred; 126 tx_credits -= howmany(sizeof(struct cpl_abort_req), 16); 127 128 /* 129 * Shortest possible tx work request is a fw_ofld_tx_data_wr + 1 byte 130 * immediate payload, and firmware counts tx work request credits in 131 * units of 16 byte. Calculate the maximum work requests possible. 132 */ 133 txsd_total = tx_credits / 134 howmany(sizeof(struct fw_ofld_tx_data_wr) + 1, 16); 135 136 len = offsetof(struct toepcb, txsd) + 137 txsd_total * sizeof(struct ofld_tx_sdesc); 138 139 toep = malloc(len, M_CXGBE, M_ZERO | flags); 140 if (toep == NULL) 141 return (NULL); 142 143 refcount_init(&toep->refcount, 1); 144 toep->td = sc->tom_softc; 145 toep->vi = vi; 146 toep->tid = -1; 147 toep->tx_total = tx_credits; 148 toep->tx_credits = tx_credits; 149 mbufq_init(&toep->ulp_pduq, INT_MAX); 150 mbufq_init(&toep->ulp_pdu_reclaimq, INT_MAX); 151 toep->txsd_total = txsd_total; 152 toep->txsd_avail = txsd_total; 153 toep->txsd_pidx = 0; 154 toep->txsd_cidx = 0; 155 aiotx_init_toep(toep); 156 157 return (toep); 158 } 159 160 /* 161 * Initialize a toepcb after its params have been filled out. 162 */ 163 int 164 init_toepcb(struct vi_info *vi, struct toepcb *toep) 165 { 166 struct conn_params *cp = &toep->params; 167 struct port_info *pi = vi->pi; 168 struct adapter *sc = pi->adapter; 169 struct tx_cl_rl_params *tc; 170 171 if (cp->tc_idx >= 0 && cp->tc_idx < sc->params.nsched_cls) { 172 tc = &pi->sched_params->cl_rl[cp->tc_idx]; 173 mtx_lock(&sc->tc_lock); 174 if (tc->state != CS_HW_CONFIGURED) { 175 CH_ERR(vi, "tid %d cannot be bound to traffic class %d " 176 "because it is not configured (its state is %d)\n", 177 toep->tid, cp->tc_idx, tc->state); 178 cp->tc_idx = -1; 179 } else { 180 tc->refcount++; 181 } 182 mtx_unlock(&sc->tc_lock); 183 } 184 toep->ofld_txq = &sc->sge.ofld_txq[cp->txq_idx]; 185 toep->ofld_rxq = &sc->sge.ofld_rxq[cp->rxq_idx]; 186 toep->ctrlq = &sc->sge.ctrlq[pi->port_id]; 187 188 tls_init_toep(toep); 189 if (ulp_mode(toep) == ULP_MODE_TCPDDP) 190 ddp_init_toep(toep); 191 192 toep->flags |= TPF_INITIALIZED; 193 194 return (0); 195 } 196 197 struct toepcb * 198 hold_toepcb(struct toepcb *toep) 199 { 200 201 refcount_acquire(&toep->refcount); 202 return (toep); 203 } 204 205 void 206 free_toepcb(struct toepcb *toep) 207 { 208 209 if (refcount_release(&toep->refcount) == 0) 210 return; 211 212 KASSERT(!(toep->flags & TPF_ATTACHED), 213 ("%s: attached to an inpcb", __func__)); 214 KASSERT(!(toep->flags & TPF_CPL_PENDING), 215 ("%s: CPL pending", __func__)); 216 217 if (toep->flags & TPF_INITIALIZED) { 218 if (ulp_mode(toep) == ULP_MODE_TCPDDP) 219 ddp_uninit_toep(toep); 220 tls_uninit_toep(toep); 221 } 222 free(toep, M_CXGBE); 223 } 224 225 /* 226 * Set up the socket for TCP offload. 227 */ 228 void 229 offload_socket(struct socket *so, struct toepcb *toep) 230 { 231 struct tom_data *td = toep->td; 232 struct inpcb *inp = sotoinpcb(so); 233 struct tcpcb *tp = intotcpcb(inp); 234 struct sockbuf *sb; 235 236 INP_WLOCK_ASSERT(inp); 237 238 /* Update socket */ 239 sb = &so->so_snd; 240 SOCKBUF_LOCK(sb); 241 sb->sb_flags |= SB_NOCOALESCE; 242 SOCKBUF_UNLOCK(sb); 243 sb = &so->so_rcv; 244 SOCKBUF_LOCK(sb); 245 sb->sb_flags |= SB_NOCOALESCE; 246 if (inp->inp_vflag & INP_IPV6) 247 so->so_proto = &toe6_protosw; 248 else 249 so->so_proto = &toe_protosw; 250 SOCKBUF_UNLOCK(sb); 251 252 /* Update TCP PCB */ 253 tp->tod = &td->tod; 254 tp->t_toe = toep; 255 tp->t_flags |= TF_TOE; 256 257 /* Install an extra hold on inp */ 258 toep->inp = inp; 259 toep->flags |= TPF_ATTACHED; 260 in_pcbref(inp); 261 262 /* Add the TOE PCB to the active list */ 263 mtx_lock(&td->toep_list_lock); 264 TAILQ_INSERT_HEAD(&td->toep_list, toep, link); 265 mtx_unlock(&td->toep_list_lock); 266 } 267 268 void 269 restore_so_proto(struct socket *so, bool v6) 270 { 271 if (v6) 272 so->so_proto = tcp6_protosw; 273 else 274 so->so_proto = tcp_protosw; 275 } 276 277 /* This is _not_ the normal way to "unoffload" a socket. */ 278 void 279 undo_offload_socket(struct socket *so) 280 { 281 struct inpcb *inp = sotoinpcb(so); 282 struct tcpcb *tp = intotcpcb(inp); 283 struct toepcb *toep = tp->t_toe; 284 struct tom_data *td = toep->td; 285 struct sockbuf *sb; 286 287 INP_WLOCK_ASSERT(inp); 288 289 sb = &so->so_snd; 290 SOCKBUF_LOCK(sb); 291 sb->sb_flags &= ~SB_NOCOALESCE; 292 SOCKBUF_UNLOCK(sb); 293 sb = &so->so_rcv; 294 SOCKBUF_LOCK(sb); 295 sb->sb_flags &= ~SB_NOCOALESCE; 296 restore_so_proto(so, inp->inp_vflag & INP_IPV6); 297 SOCKBUF_UNLOCK(sb); 298 299 tp->tod = NULL; 300 tp->t_toe = NULL; 301 tp->t_flags &= ~TF_TOE; 302 303 toep->inp = NULL; 304 toep->flags &= ~TPF_ATTACHED; 305 if (in_pcbrele_wlocked(inp)) 306 panic("%s: inp freed.", __func__); 307 308 mtx_lock(&td->toep_list_lock); 309 TAILQ_REMOVE(&td->toep_list, toep, link); 310 mtx_unlock(&td->toep_list_lock); 311 } 312 313 static void 314 release_offload_resources(struct toepcb *toep) 315 { 316 struct tom_data *td = toep->td; 317 struct adapter *sc = td_adapter(td); 318 int tid = toep->tid; 319 320 KASSERT(!(toep->flags & TPF_CPL_PENDING), 321 ("%s: %p has CPL pending.", __func__, toep)); 322 KASSERT(!(toep->flags & TPF_ATTACHED), 323 ("%s: %p is still attached.", __func__, toep)); 324 325 CTR5(KTR_CXGBE, "%s: toep %p (tid %d, l2te %p, ce %p)", 326 __func__, toep, tid, toep->l2te, toep->ce); 327 328 /* 329 * These queues should have been emptied at approximately the same time 330 * that a normal connection's socket's so_snd would have been purged or 331 * drained. Do _not_ clean up here. 332 */ 333 MPASS(mbufq_len(&toep->ulp_pduq) == 0); 334 MPASS(mbufq_len(&toep->ulp_pdu_reclaimq) == 0); 335 #ifdef INVARIANTS 336 if (ulp_mode(toep) == ULP_MODE_TCPDDP) 337 ddp_assert_empty(toep); 338 #endif 339 MPASS(TAILQ_EMPTY(&toep->aiotx_jobq)); 340 341 if (toep->l2te) 342 t4_l2t_release(toep->l2te); 343 344 if (tid >= 0) { 345 remove_tid(sc, tid, toep->ce ? 2 : 1); 346 release_tid(sc, tid, toep->ctrlq); 347 } 348 349 if (toep->ce) 350 t4_release_clip_entry(sc, toep->ce); 351 352 if (toep->params.tc_idx != -1) 353 t4_release_cl_rl(sc, toep->vi->pi->port_id, toep->params.tc_idx); 354 355 mtx_lock(&td->toep_list_lock); 356 TAILQ_REMOVE(&td->toep_list, toep, link); 357 mtx_unlock(&td->toep_list_lock); 358 359 free_toepcb(toep); 360 } 361 362 /* 363 * The kernel is done with the TCP PCB and this is our opportunity to unhook the 364 * toepcb hanging off of it. If the TOE driver is also done with the toepcb (no 365 * pending CPL) then it is time to release all resources tied to the toepcb. 366 * 367 * Also gets called when an offloaded active open fails and the TOM wants the 368 * kernel to take the TCP PCB back. 369 */ 370 static void 371 t4_pcb_detach(struct toedev *tod __unused, struct tcpcb *tp) 372 { 373 #if defined(KTR) || defined(INVARIANTS) 374 struct inpcb *inp = tp->t_inpcb; 375 #endif 376 struct toepcb *toep = tp->t_toe; 377 378 INP_WLOCK_ASSERT(inp); 379 380 KASSERT(toep != NULL, ("%s: toep is NULL", __func__)); 381 KASSERT(toep->flags & TPF_ATTACHED, 382 ("%s: not attached", __func__)); 383 384 #ifdef KTR 385 if (tp->t_state == TCPS_SYN_SENT) { 386 CTR6(KTR_CXGBE, "%s: atid %d, toep %p (0x%x), inp %p (0x%x)", 387 __func__, toep->tid, toep, toep->flags, inp, 388 inp->inp_flags); 389 } else { 390 CTR6(KTR_CXGBE, 391 "t4_pcb_detach: tid %d (%s), toep %p (0x%x), inp %p (0x%x)", 392 toep->tid, tcpstates[tp->t_state], toep, toep->flags, inp, 393 inp->inp_flags); 394 } 395 #endif 396 397 if (ulp_mode(toep) == ULP_MODE_TLS) 398 tls_detach(toep); 399 400 tp->tod = NULL; 401 tp->t_toe = NULL; 402 tp->t_flags &= ~TF_TOE; 403 toep->flags &= ~TPF_ATTACHED; 404 405 if (!(toep->flags & TPF_CPL_PENDING)) 406 release_offload_resources(toep); 407 } 408 409 /* 410 * setsockopt handler. 411 */ 412 static void 413 t4_ctloutput(struct toedev *tod, struct tcpcb *tp, int dir, int name) 414 { 415 struct adapter *sc = tod->tod_softc; 416 struct toepcb *toep = tp->t_toe; 417 418 if (dir == SOPT_GET) 419 return; 420 421 CTR4(KTR_CXGBE, "%s: tp %p, dir %u, name %u", __func__, tp, dir, name); 422 423 switch (name) { 424 case TCP_NODELAY: 425 if (tp->t_state != TCPS_ESTABLISHED) 426 break; 427 toep->params.nagle = tp->t_flags & TF_NODELAY ? 0 : 1; 428 t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_T_FLAGS, 429 V_TF_NAGLE(1), V_TF_NAGLE(toep->params.nagle), 0, 0); 430 break; 431 default: 432 break; 433 } 434 } 435 436 static inline uint64_t 437 get_tcb_tflags(const uint64_t *tcb) 438 { 439 440 return ((be64toh(tcb[14]) << 32) | (be64toh(tcb[15]) >> 32)); 441 } 442 443 static inline uint32_t 444 get_tcb_field(const uint64_t *tcb, u_int word, uint32_t mask, u_int shift) 445 { 446 #define LAST_WORD ((TCB_SIZE / 4) - 1) 447 uint64_t t1, t2; 448 int flit_idx; 449 450 MPASS(mask != 0); 451 MPASS(word <= LAST_WORD); 452 MPASS(shift < 32); 453 454 flit_idx = (LAST_WORD - word) / 2; 455 if (word & 0x1) 456 shift += 32; 457 t1 = be64toh(tcb[flit_idx]) >> shift; 458 t2 = 0; 459 if (fls(mask) > 64 - shift) { 460 /* 461 * Will spill over into the next logical flit, which is the flit 462 * before this one. The flit_idx before this one must be valid. 463 */ 464 MPASS(flit_idx > 0); 465 t2 = be64toh(tcb[flit_idx - 1]) << (64 - shift); 466 } 467 return ((t2 | t1) & mask); 468 #undef LAST_WORD 469 } 470 #define GET_TCB_FIELD(tcb, F) \ 471 get_tcb_field(tcb, W_TCB_##F, M_TCB_##F, S_TCB_##F) 472 473 /* 474 * Issues a CPL_GET_TCB to read the entire TCB for the tid. 475 */ 476 static int 477 send_get_tcb(struct adapter *sc, u_int tid) 478 { 479 struct cpl_get_tcb *cpl; 480 struct wrq_cookie cookie; 481 482 MPASS(tid < sc->tids.ntids); 483 484 cpl = start_wrq_wr(&sc->sge.ctrlq[0], howmany(sizeof(*cpl), 16), 485 &cookie); 486 if (__predict_false(cpl == NULL)) 487 return (ENOMEM); 488 bzero(cpl, sizeof(*cpl)); 489 INIT_TP_WR(cpl, tid); 490 OPCODE_TID(cpl) = htobe32(MK_OPCODE_TID(CPL_GET_TCB, tid)); 491 cpl->reply_ctrl = htobe16(V_REPLY_CHAN(0) | 492 V_QUEUENO(sc->sge.ofld_rxq[0].iq.cntxt_id)); 493 cpl->cookie = 0xff; 494 commit_wrq_wr(&sc->sge.ctrlq[0], cpl, &cookie); 495 496 return (0); 497 } 498 499 static struct tcb_histent * 500 alloc_tcb_histent(struct adapter *sc, u_int tid, int flags) 501 { 502 struct tcb_histent *te; 503 504 MPASS(flags == M_NOWAIT || flags == M_WAITOK); 505 506 te = malloc(sizeof(*te), M_CXGBE, M_ZERO | flags); 507 if (te == NULL) 508 return (NULL); 509 mtx_init(&te->te_lock, "TCB entry", NULL, MTX_DEF); 510 callout_init_mtx(&te->te_callout, &te->te_lock, 0); 511 te->te_adapter = sc; 512 te->te_tid = tid; 513 514 return (te); 515 } 516 517 static void 518 free_tcb_histent(struct tcb_histent *te) 519 { 520 521 mtx_destroy(&te->te_lock); 522 free(te, M_CXGBE); 523 } 524 525 /* 526 * Start tracking the tid in the TCB history. 527 */ 528 int 529 add_tid_to_history(struct adapter *sc, u_int tid) 530 { 531 struct tcb_histent *te = NULL; 532 struct tom_data *td = sc->tom_softc; 533 int rc; 534 535 MPASS(tid < sc->tids.ntids); 536 537 if (td->tcb_history == NULL) 538 return (ENXIO); 539 540 rw_wlock(&td->tcb_history_lock); 541 if (td->tcb_history[tid] != NULL) { 542 rc = EEXIST; 543 goto done; 544 } 545 te = alloc_tcb_histent(sc, tid, M_NOWAIT); 546 if (te == NULL) { 547 rc = ENOMEM; 548 goto done; 549 } 550 mtx_lock(&te->te_lock); 551 rc = send_get_tcb(sc, tid); 552 if (rc == 0) { 553 te->te_flags |= TE_RPL_PENDING; 554 td->tcb_history[tid] = te; 555 } else { 556 free(te, M_CXGBE); 557 } 558 mtx_unlock(&te->te_lock); 559 done: 560 rw_wunlock(&td->tcb_history_lock); 561 return (rc); 562 } 563 564 static void 565 remove_tcb_histent(struct tcb_histent *te) 566 { 567 struct adapter *sc = te->te_adapter; 568 struct tom_data *td = sc->tom_softc; 569 570 rw_assert(&td->tcb_history_lock, RA_WLOCKED); 571 mtx_assert(&te->te_lock, MA_OWNED); 572 MPASS(td->tcb_history[te->te_tid] == te); 573 574 td->tcb_history[te->te_tid] = NULL; 575 free_tcb_histent(te); 576 rw_wunlock(&td->tcb_history_lock); 577 } 578 579 static inline struct tcb_histent * 580 lookup_tcb_histent(struct adapter *sc, u_int tid, bool addrem) 581 { 582 struct tcb_histent *te; 583 struct tom_data *td = sc->tom_softc; 584 585 MPASS(tid < sc->tids.ntids); 586 587 if (td->tcb_history == NULL) 588 return (NULL); 589 590 if (addrem) 591 rw_wlock(&td->tcb_history_lock); 592 else 593 rw_rlock(&td->tcb_history_lock); 594 te = td->tcb_history[tid]; 595 if (te != NULL) { 596 mtx_lock(&te->te_lock); 597 return (te); /* with both locks held */ 598 } 599 if (addrem) 600 rw_wunlock(&td->tcb_history_lock); 601 else 602 rw_runlock(&td->tcb_history_lock); 603 604 return (te); 605 } 606 607 static inline void 608 release_tcb_histent(struct tcb_histent *te) 609 { 610 struct adapter *sc = te->te_adapter; 611 struct tom_data *td = sc->tom_softc; 612 613 mtx_assert(&te->te_lock, MA_OWNED); 614 mtx_unlock(&te->te_lock); 615 rw_assert(&td->tcb_history_lock, RA_RLOCKED); 616 rw_runlock(&td->tcb_history_lock); 617 } 618 619 static void 620 request_tcb(void *arg) 621 { 622 struct tcb_histent *te = arg; 623 624 mtx_assert(&te->te_lock, MA_OWNED); 625 626 /* Noone else is supposed to update the histent. */ 627 MPASS(!(te->te_flags & TE_RPL_PENDING)); 628 if (send_get_tcb(te->te_adapter, te->te_tid) == 0) 629 te->te_flags |= TE_RPL_PENDING; 630 else 631 callout_schedule(&te->te_callout, hz / 100); 632 } 633 634 static void 635 update_tcb_histent(struct tcb_histent *te, const uint64_t *tcb) 636 { 637 struct tom_data *td = te->te_adapter->tom_softc; 638 uint64_t tflags = get_tcb_tflags(tcb); 639 uint8_t sample = 0; 640 641 if (GET_TCB_FIELD(tcb, SND_MAX_RAW) != GET_TCB_FIELD(tcb, SND_UNA_RAW)) { 642 if (GET_TCB_FIELD(tcb, T_RXTSHIFT) != 0) 643 sample |= TS_RTO; 644 if (GET_TCB_FIELD(tcb, T_DUPACKS) != 0) 645 sample |= TS_DUPACKS; 646 if (GET_TCB_FIELD(tcb, T_DUPACKS) >= td->dupack_threshold) 647 sample |= TS_FASTREXMT; 648 } 649 650 if (GET_TCB_FIELD(tcb, SND_MAX_RAW) != 0) { 651 uint32_t snd_wnd; 652 653 sample |= TS_SND_BACKLOGGED; /* for whatever reason. */ 654 655 snd_wnd = GET_TCB_FIELD(tcb, RCV_ADV); 656 if (tflags & V_TF_RECV_SCALE(1)) 657 snd_wnd <<= GET_TCB_FIELD(tcb, RCV_SCALE); 658 if (GET_TCB_FIELD(tcb, SND_CWND) < snd_wnd) 659 sample |= TS_CWND_LIMITED; /* maybe due to CWND */ 660 } 661 662 if (tflags & V_TF_CCTRL_ECN(1)) { 663 664 /* 665 * CE marker on incoming IP hdr, echoing ECE back in the TCP 666 * hdr. Indicates congestion somewhere on the way from the peer 667 * to this node. 668 */ 669 if (tflags & V_TF_CCTRL_ECE(1)) 670 sample |= TS_ECN_ECE; 671 672 /* 673 * ECE seen and CWR sent (or about to be sent). Might indicate 674 * congestion on the way to the peer. This node is reducing its 675 * congestion window in response. 676 */ 677 if (tflags & (V_TF_CCTRL_CWR(1) | V_TF_CCTRL_RFR(1))) 678 sample |= TS_ECN_CWR; 679 } 680 681 te->te_sample[te->te_pidx] = sample; 682 if (++te->te_pidx == nitems(te->te_sample)) 683 te->te_pidx = 0; 684 memcpy(te->te_tcb, tcb, TCB_SIZE); 685 te->te_flags |= TE_ACTIVE; 686 } 687 688 static int 689 do_get_tcb_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 690 { 691 struct adapter *sc = iq->adapter; 692 const struct cpl_get_tcb_rpl *cpl = mtod(m, const void *); 693 const uint64_t *tcb = (const uint64_t *)(const void *)(cpl + 1); 694 struct tcb_histent *te; 695 const u_int tid = GET_TID(cpl); 696 bool remove; 697 698 remove = GET_TCB_FIELD(tcb, T_STATE) == TCPS_CLOSED; 699 te = lookup_tcb_histent(sc, tid, remove); 700 if (te == NULL) { 701 /* Not in the history. Who issued the GET_TCB for this? */ 702 device_printf(sc->dev, "tcb %u: flags 0x%016jx, state %u, " 703 "srtt %u, sscale %u, rscale %u, cookie 0x%x\n", tid, 704 (uintmax_t)get_tcb_tflags(tcb), GET_TCB_FIELD(tcb, T_STATE), 705 GET_TCB_FIELD(tcb, T_SRTT), GET_TCB_FIELD(tcb, SND_SCALE), 706 GET_TCB_FIELD(tcb, RCV_SCALE), cpl->cookie); 707 goto done; 708 } 709 710 MPASS(te->te_flags & TE_RPL_PENDING); 711 te->te_flags &= ~TE_RPL_PENDING; 712 if (remove) { 713 remove_tcb_histent(te); 714 } else { 715 update_tcb_histent(te, tcb); 716 callout_reset(&te->te_callout, hz / 10, request_tcb, te); 717 release_tcb_histent(te); 718 } 719 done: 720 m_freem(m); 721 return (0); 722 } 723 724 static void 725 fill_tcp_info_from_tcb(struct adapter *sc, uint64_t *tcb, struct tcp_info *ti) 726 { 727 uint32_t v; 728 729 ti->tcpi_state = GET_TCB_FIELD(tcb, T_STATE); 730 731 v = GET_TCB_FIELD(tcb, T_SRTT); 732 ti->tcpi_rtt = tcp_ticks_to_us(sc, v); 733 734 v = GET_TCB_FIELD(tcb, T_RTTVAR); 735 ti->tcpi_rttvar = tcp_ticks_to_us(sc, v); 736 737 ti->tcpi_snd_ssthresh = GET_TCB_FIELD(tcb, SND_SSTHRESH); 738 ti->tcpi_snd_cwnd = GET_TCB_FIELD(tcb, SND_CWND); 739 ti->tcpi_rcv_nxt = GET_TCB_FIELD(tcb, RCV_NXT); 740 741 v = GET_TCB_FIELD(tcb, TX_MAX); 742 ti->tcpi_snd_nxt = v - GET_TCB_FIELD(tcb, SND_NXT_RAW); 743 744 /* Receive window being advertised by us. */ 745 ti->tcpi_rcv_wscale = GET_TCB_FIELD(tcb, SND_SCALE); /* Yes, SND. */ 746 ti->tcpi_rcv_space = GET_TCB_FIELD(tcb, RCV_WND); 747 748 /* Send window */ 749 ti->tcpi_snd_wscale = GET_TCB_FIELD(tcb, RCV_SCALE); /* Yes, RCV. */ 750 ti->tcpi_snd_wnd = GET_TCB_FIELD(tcb, RCV_ADV); 751 if (get_tcb_tflags(tcb) & V_TF_RECV_SCALE(1)) 752 ti->tcpi_snd_wnd <<= ti->tcpi_snd_wscale; 753 else 754 ti->tcpi_snd_wscale = 0; 755 756 } 757 758 static void 759 fill_tcp_info_from_history(struct adapter *sc, struct tcb_histent *te, 760 struct tcp_info *ti) 761 { 762 763 fill_tcp_info_from_tcb(sc, te->te_tcb, ti); 764 } 765 766 /* 767 * Reads the TCB for the given tid using a memory window and copies it to 'buf' 768 * in the same format as CPL_GET_TCB_RPL. 769 */ 770 static void 771 read_tcb_using_memwin(struct adapter *sc, u_int tid, uint64_t *buf) 772 { 773 int i, j, k, rc; 774 uint32_t addr; 775 u_char *tcb, tmp; 776 777 MPASS(tid < sc->tids.ntids); 778 779 addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE) + tid * TCB_SIZE; 780 rc = read_via_memwin(sc, 2, addr, (uint32_t *)buf, TCB_SIZE); 781 if (rc != 0) 782 return; 783 784 tcb = (u_char *)buf; 785 for (i = 0, j = TCB_SIZE - 16; i < j; i += 16, j -= 16) { 786 for (k = 0; k < 16; k++) { 787 tmp = tcb[i + k]; 788 tcb[i + k] = tcb[j + k]; 789 tcb[j + k] = tmp; 790 } 791 } 792 } 793 794 static void 795 fill_tcp_info(struct adapter *sc, u_int tid, struct tcp_info *ti) 796 { 797 uint64_t tcb[TCB_SIZE / sizeof(uint64_t)]; 798 struct tcb_histent *te; 799 800 ti->tcpi_toe_tid = tid; 801 te = lookup_tcb_histent(sc, tid, false); 802 if (te != NULL) { 803 fill_tcp_info_from_history(sc, te, ti); 804 release_tcb_histent(te); 805 } else { 806 if (!(sc->debug_flags & DF_DISABLE_TCB_CACHE)) { 807 /* XXX: tell firmware to flush TCB cache. */ 808 } 809 read_tcb_using_memwin(sc, tid, tcb); 810 fill_tcp_info_from_tcb(sc, tcb, ti); 811 } 812 } 813 814 /* 815 * Called by the kernel to allow the TOE driver to "refine" values filled up in 816 * the tcp_info for an offloaded connection. 817 */ 818 static void 819 t4_tcp_info(struct toedev *tod, struct tcpcb *tp, struct tcp_info *ti) 820 { 821 struct adapter *sc = tod->tod_softc; 822 struct toepcb *toep = tp->t_toe; 823 824 INP_WLOCK_ASSERT(tp->t_inpcb); 825 MPASS(ti != NULL); 826 827 fill_tcp_info(sc, toep->tid, ti); 828 } 829 830 #ifdef KERN_TLS 831 static int 832 t4_alloc_tls_session(struct toedev *tod, struct tcpcb *tp, 833 struct ktls_session *tls, int direction) 834 { 835 struct toepcb *toep = tp->t_toe; 836 837 INP_WLOCK_ASSERT(tp->t_inpcb); 838 MPASS(tls != NULL); 839 840 return (tls_alloc_ktls(toep, tls, direction)); 841 } 842 #endif 843 844 /* SET_TCB_FIELD sent as a ULP command looks like this */ 845 #define LEN__SET_TCB_FIELD_ULP (sizeof(struct ulp_txpkt) + \ 846 sizeof(struct ulptx_idata) + sizeof(struct cpl_set_tcb_field_core)) 847 848 static void * 849 mk_set_tcb_field_ulp(struct ulp_txpkt *ulpmc, uint64_t word, uint64_t mask, 850 uint64_t val, uint32_t tid) 851 { 852 struct ulptx_idata *ulpsc; 853 struct cpl_set_tcb_field_core *req; 854 855 ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0)); 856 ulpmc->len = htobe32(howmany(LEN__SET_TCB_FIELD_ULP, 16)); 857 858 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 859 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 860 ulpsc->len = htobe32(sizeof(*req)); 861 862 req = (struct cpl_set_tcb_field_core *)(ulpsc + 1); 863 OPCODE_TID(req) = htobe32(MK_OPCODE_TID(CPL_SET_TCB_FIELD, tid)); 864 req->reply_ctrl = htobe16(V_NO_REPLY(1)); 865 req->word_cookie = htobe16(V_WORD(word) | V_COOKIE(0)); 866 req->mask = htobe64(mask); 867 req->val = htobe64(val); 868 869 ulpsc = (struct ulptx_idata *)(req + 1); 870 if (LEN__SET_TCB_FIELD_ULP % 16) { 871 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP)); 872 ulpsc->len = htobe32(0); 873 return (ulpsc + 1); 874 } 875 return (ulpsc); 876 } 877 878 static void 879 send_mss_flowc_wr(struct adapter *sc, struct toepcb *toep) 880 { 881 struct wrq_cookie cookie; 882 struct fw_flowc_wr *flowc; 883 struct ofld_tx_sdesc *txsd; 884 const int flowclen = sizeof(*flowc) + sizeof(struct fw_flowc_mnemval); 885 const int flowclen16 = howmany(flowclen, 16); 886 887 if (toep->tx_credits < flowclen16 || toep->txsd_avail == 0) { 888 CH_ERR(sc, "%s: tid %u out of tx credits (%d, %d).\n", __func__, 889 toep->tid, toep->tx_credits, toep->txsd_avail); 890 return; 891 } 892 893 flowc = start_wrq_wr(&toep->ofld_txq->wrq, flowclen16, &cookie); 894 if (__predict_false(flowc == NULL)) { 895 CH_ERR(sc, "ENOMEM in %s for tid %u.\n", __func__, toep->tid); 896 return; 897 } 898 flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) | 899 V_FW_FLOWC_WR_NPARAMS(1)); 900 flowc->flowid_len16 = htonl(V_FW_WR_LEN16(flowclen16) | 901 V_FW_WR_FLOWID(toep->tid)); 902 flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_MSS; 903 flowc->mnemval[0].val = htobe32(toep->params.emss); 904 905 txsd = &toep->txsd[toep->txsd_pidx]; 906 txsd->tx_credits = flowclen16; 907 txsd->plen = 0; 908 toep->tx_credits -= txsd->tx_credits; 909 if (__predict_false(++toep->txsd_pidx == toep->txsd_total)) 910 toep->txsd_pidx = 0; 911 toep->txsd_avail--; 912 commit_wrq_wr(&toep->ofld_txq->wrq, flowc, &cookie); 913 } 914 915 static void 916 t4_pmtu_update(struct toedev *tod, struct tcpcb *tp, tcp_seq seq, int mtu) 917 { 918 struct work_request_hdr *wrh; 919 struct ulp_txpkt *ulpmc; 920 int idx, len; 921 struct wrq_cookie cookie; 922 struct inpcb *inp = tp->t_inpcb; 923 struct toepcb *toep = tp->t_toe; 924 struct adapter *sc = td_adapter(toep->td); 925 unsigned short *mtus = &sc->params.mtus[0]; 926 927 INP_WLOCK_ASSERT(inp); 928 MPASS(mtu > 0); /* kernel is supposed to provide something usable. */ 929 930 /* tp->snd_una and snd_max are in host byte order too. */ 931 seq = be32toh(seq); 932 933 CTR6(KTR_CXGBE, "%s: tid %d, seq 0x%08x, mtu %u, mtu_idx %u (%d)", 934 __func__, toep->tid, seq, mtu, toep->params.mtu_idx, 935 mtus[toep->params.mtu_idx]); 936 937 if (ulp_mode(toep) == ULP_MODE_NONE && /* XXX: Read TCB otherwise? */ 938 (SEQ_LT(seq, tp->snd_una) || SEQ_GEQ(seq, tp->snd_max))) { 939 CTR5(KTR_CXGBE, 940 "%s: tid %d, seq 0x%08x not in range [0x%08x, 0x%08x).", 941 __func__, toep->tid, seq, tp->snd_una, tp->snd_max); 942 return; 943 } 944 945 /* Find the best mtu_idx for the suggested MTU. */ 946 for (idx = 0; idx < NMTUS - 1 && mtus[idx + 1] <= mtu; idx++) 947 continue; 948 if (idx >= toep->params.mtu_idx) 949 return; /* Never increase the PMTU (just like the kernel). */ 950 951 /* 952 * We'll send a compound work request with 2 SET_TCB_FIELDs -- the first 953 * one updates the mtu_idx and the second one triggers a retransmit. 954 */ 955 len = sizeof(*wrh) + 2 * roundup2(LEN__SET_TCB_FIELD_ULP, 16); 956 wrh = start_wrq_wr(toep->ctrlq, howmany(len, 16), &cookie); 957 if (wrh == NULL) { 958 CH_ERR(sc, "failed to change mtu_idx of tid %d (%u -> %u).\n", 959 toep->tid, toep->params.mtu_idx, idx); 960 return; 961 } 962 INIT_ULPTX_WRH(wrh, len, 1, 0); /* atomic */ 963 ulpmc = (struct ulp_txpkt *)(wrh + 1); 964 ulpmc = mk_set_tcb_field_ulp(ulpmc, W_TCB_T_MAXSEG, 965 V_TCB_T_MAXSEG(M_TCB_T_MAXSEG), V_TCB_T_MAXSEG(idx), toep->tid); 966 ulpmc = mk_set_tcb_field_ulp(ulpmc, W_TCB_TIMESTAMP, 967 V_TCB_TIMESTAMP(0x7FFFFULL << 11), 0, toep->tid); 968 commit_wrq_wr(toep->ctrlq, wrh, &cookie); 969 970 /* Update the software toepcb and tcpcb. */ 971 toep->params.mtu_idx = idx; 972 tp->t_maxseg = mtus[toep->params.mtu_idx]; 973 if (inp->inp_inc.inc_flags & INC_ISIPV6) 974 tp->t_maxseg -= sizeof(struct ip6_hdr) + sizeof(struct tcphdr); 975 else 976 tp->t_maxseg -= sizeof(struct ip) + sizeof(struct tcphdr); 977 toep->params.emss = tp->t_maxseg; 978 if (tp->t_flags & TF_RCVD_TSTMP) 979 toep->params.emss -= TCPOLEN_TSTAMP_APPA; 980 981 /* Update the firmware flowc. */ 982 send_mss_flowc_wr(sc, toep); 983 984 /* Update the MTU in the kernel's hostcache. */ 985 if (sc->tt.update_hc_on_pmtu_change != 0) { 986 struct in_conninfo inc = {0}; 987 988 inc.inc_fibnum = inp->inp_inc.inc_fibnum; 989 if (inp->inp_inc.inc_flags & INC_ISIPV6) { 990 inc.inc_flags |= INC_ISIPV6; 991 inc.inc6_faddr = inp->inp_inc.inc6_faddr; 992 } else { 993 inc.inc_faddr = inp->inp_inc.inc_faddr; 994 } 995 tcp_hc_updatemtu(&inc, mtu); 996 } 997 998 CTR6(KTR_CXGBE, "%s: tid %d, mtu_idx %u (%u), t_maxseg %u, emss %u", 999 __func__, toep->tid, toep->params.mtu_idx, 1000 mtus[toep->params.mtu_idx], tp->t_maxseg, toep->params.emss); 1001 } 1002 1003 /* 1004 * The TOE driver will not receive any more CPLs for the tid associated with the 1005 * toepcb; release the hold on the inpcb. 1006 */ 1007 void 1008 final_cpl_received(struct toepcb *toep) 1009 { 1010 struct inpcb *inp = toep->inp; 1011 bool need_wakeup; 1012 1013 KASSERT(inp != NULL, ("%s: inp is NULL", __func__)); 1014 INP_WLOCK_ASSERT(inp); 1015 KASSERT(toep->flags & TPF_CPL_PENDING, 1016 ("%s: CPL not pending already?", __func__)); 1017 1018 CTR6(KTR_CXGBE, "%s: tid %d, toep %p (0x%x), inp %p (0x%x)", 1019 __func__, toep->tid, toep, toep->flags, inp, inp->inp_flags); 1020 1021 if (ulp_mode(toep) == ULP_MODE_TCPDDP) 1022 release_ddp_resources(toep); 1023 else if (ulp_mode(toep) == ULP_MODE_TLS) 1024 tls_detach(toep); 1025 toep->inp = NULL; 1026 need_wakeup = (toep->flags & TPF_WAITING_FOR_FINAL) != 0; 1027 toep->flags &= ~(TPF_CPL_PENDING | TPF_WAITING_FOR_FINAL); 1028 mbufq_drain(&toep->ulp_pduq); 1029 mbufq_drain(&toep->ulp_pdu_reclaimq); 1030 1031 if (!(toep->flags & TPF_ATTACHED)) 1032 release_offload_resources(toep); 1033 1034 if (!in_pcbrele_wlocked(inp)) 1035 INP_WUNLOCK(inp); 1036 1037 if (need_wakeup) { 1038 struct mtx *lock = mtx_pool_find(mtxpool_sleep, toep); 1039 1040 mtx_lock(lock); 1041 wakeup(toep); 1042 mtx_unlock(lock); 1043 } 1044 } 1045 1046 void 1047 insert_tid(struct adapter *sc, int tid, void *ctx, int ntids) 1048 { 1049 struct tid_info *t = &sc->tids; 1050 1051 MPASS(tid >= t->tid_base); 1052 MPASS(tid - t->tid_base < t->ntids); 1053 1054 t->tid_tab[tid - t->tid_base] = ctx; 1055 atomic_add_int(&t->tids_in_use, ntids); 1056 } 1057 1058 void * 1059 lookup_tid(struct adapter *sc, int tid) 1060 { 1061 struct tid_info *t = &sc->tids; 1062 1063 return (t->tid_tab[tid - t->tid_base]); 1064 } 1065 1066 void 1067 update_tid(struct adapter *sc, int tid, void *ctx) 1068 { 1069 struct tid_info *t = &sc->tids; 1070 1071 t->tid_tab[tid - t->tid_base] = ctx; 1072 } 1073 1074 void 1075 remove_tid(struct adapter *sc, int tid, int ntids) 1076 { 1077 struct tid_info *t = &sc->tids; 1078 1079 t->tid_tab[tid - t->tid_base] = NULL; 1080 atomic_subtract_int(&t->tids_in_use, ntids); 1081 } 1082 1083 /* 1084 * What mtu_idx to use, given a 4-tuple. Note that both s->mss and tcp_mssopt 1085 * have the MSS that we should advertise in our SYN. Advertised MSS doesn't 1086 * account for any TCP options so the effective MSS (only payload, no headers or 1087 * options) could be different. 1088 */ 1089 static int 1090 find_best_mtu_idx(struct adapter *sc, struct in_conninfo *inc, 1091 struct offload_settings *s) 1092 { 1093 unsigned short *mtus = &sc->params.mtus[0]; 1094 int i, mss, mtu; 1095 1096 MPASS(inc != NULL); 1097 1098 mss = s->mss > 0 ? s->mss : tcp_mssopt(inc); 1099 if (inc->inc_flags & INC_ISIPV6) 1100 mtu = mss + sizeof(struct ip6_hdr) + sizeof(struct tcphdr); 1101 else 1102 mtu = mss + sizeof(struct ip) + sizeof(struct tcphdr); 1103 1104 for (i = 0; i < NMTUS - 1 && mtus[i + 1] <= mtu; i++) 1105 continue; 1106 1107 return (i); 1108 } 1109 1110 /* 1111 * Determine the receive window size for a socket. 1112 */ 1113 u_long 1114 select_rcv_wnd(struct socket *so) 1115 { 1116 unsigned long wnd; 1117 1118 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1119 1120 wnd = sbspace(&so->so_rcv); 1121 if (wnd < MIN_RCV_WND) 1122 wnd = MIN_RCV_WND; 1123 1124 return min(wnd, MAX_RCV_WND); 1125 } 1126 1127 int 1128 select_rcv_wscale(void) 1129 { 1130 int wscale = 0; 1131 unsigned long space = sb_max; 1132 1133 if (space > MAX_RCV_WND) 1134 space = MAX_RCV_WND; 1135 1136 while (wscale < TCP_MAX_WINSHIFT && (TCP_MAXWIN << wscale) < space) 1137 wscale++; 1138 1139 return (wscale); 1140 } 1141 1142 __be64 1143 calc_options0(struct vi_info *vi, struct conn_params *cp) 1144 { 1145 uint64_t opt0 = 0; 1146 1147 opt0 |= F_TCAM_BYPASS; 1148 1149 MPASS(cp->wscale >= 0 && cp->wscale <= M_WND_SCALE); 1150 opt0 |= V_WND_SCALE(cp->wscale); 1151 1152 MPASS(cp->mtu_idx >= 0 && cp->mtu_idx < NMTUS); 1153 opt0 |= V_MSS_IDX(cp->mtu_idx); 1154 1155 MPASS(cp->ulp_mode >= 0 && cp->ulp_mode <= M_ULP_MODE); 1156 opt0 |= V_ULP_MODE(cp->ulp_mode); 1157 1158 MPASS(cp->opt0_bufsize >= 0 && cp->opt0_bufsize <= M_RCV_BUFSIZ); 1159 opt0 |= V_RCV_BUFSIZ(cp->opt0_bufsize); 1160 1161 MPASS(cp->l2t_idx >= 0 && cp->l2t_idx < vi->adapter->vres.l2t.size); 1162 opt0 |= V_L2T_IDX(cp->l2t_idx); 1163 1164 opt0 |= V_SMAC_SEL(vi->smt_idx); 1165 opt0 |= V_TX_CHAN(vi->pi->tx_chan); 1166 1167 MPASS(cp->keepalive == 0 || cp->keepalive == 1); 1168 opt0 |= V_KEEP_ALIVE(cp->keepalive); 1169 1170 MPASS(cp->nagle == 0 || cp->nagle == 1); 1171 opt0 |= V_NAGLE(cp->nagle); 1172 1173 return (htobe64(opt0)); 1174 } 1175 1176 __be32 1177 calc_options2(struct vi_info *vi, struct conn_params *cp) 1178 { 1179 uint32_t opt2 = 0; 1180 struct port_info *pi = vi->pi; 1181 struct adapter *sc = pi->adapter; 1182 1183 /* 1184 * rx flow control, rx coalesce, congestion control, and tx pace are all 1185 * explicitly set by the driver. On T5+ the ISS is also set by the 1186 * driver to the value picked by the kernel. 1187 */ 1188 if (is_t4(sc)) { 1189 opt2 |= F_RX_FC_VALID | F_RX_COALESCE_VALID; 1190 opt2 |= F_CONG_CNTRL_VALID | F_PACE_VALID; 1191 } else { 1192 opt2 |= F_T5_OPT_2_VALID; /* all 4 valid */ 1193 opt2 |= F_T5_ISS; /* ISS provided in CPL */ 1194 } 1195 1196 MPASS(cp->sack == 0 || cp->sack == 1); 1197 opt2 |= V_SACK_EN(cp->sack); 1198 1199 MPASS(cp->tstamp == 0 || cp->tstamp == 1); 1200 opt2 |= V_TSTAMPS_EN(cp->tstamp); 1201 1202 if (cp->wscale > 0) 1203 opt2 |= F_WND_SCALE_EN; 1204 1205 MPASS(cp->ecn == 0 || cp->ecn == 1); 1206 opt2 |= V_CCTRL_ECN(cp->ecn); 1207 1208 /* XXX: F_RX_CHANNEL for multiple rx c-chan support goes here. */ 1209 1210 opt2 |= V_TX_QUEUE(sc->params.tp.tx_modq[pi->tx_chan]); 1211 opt2 |= V_PACE(0); 1212 opt2 |= F_RSS_QUEUE_VALID; 1213 opt2 |= V_RSS_QUEUE(sc->sge.ofld_rxq[cp->rxq_idx].iq.abs_id); 1214 1215 MPASS(cp->cong_algo >= 0 && cp->cong_algo <= M_CONG_CNTRL); 1216 opt2 |= V_CONG_CNTRL(cp->cong_algo); 1217 1218 MPASS(cp->rx_coalesce == 0 || cp->rx_coalesce == 1); 1219 if (cp->rx_coalesce == 1) 1220 opt2 |= V_RX_COALESCE(M_RX_COALESCE); 1221 1222 opt2 |= V_RX_FC_DDP(0) | V_RX_FC_DISABLE(0); 1223 #ifdef USE_DDP_RX_FLOW_CONTROL 1224 if (cp->ulp_mode == ULP_MODE_TCPDDP) 1225 opt2 |= F_RX_FC_DDP; 1226 #endif 1227 1228 return (htobe32(opt2)); 1229 } 1230 1231 uint64_t 1232 select_ntuple(struct vi_info *vi, struct l2t_entry *e) 1233 { 1234 struct adapter *sc = vi->adapter; 1235 struct tp_params *tp = &sc->params.tp; 1236 uint64_t ntuple = 0; 1237 1238 /* 1239 * Initialize each of the fields which we care about which are present 1240 * in the Compressed Filter Tuple. 1241 */ 1242 if (tp->vlan_shift >= 0 && EVL_VLANOFTAG(e->vlan) != CPL_L2T_VLAN_NONE) 1243 ntuple |= (uint64_t)(F_FT_VLAN_VLD | e->vlan) << tp->vlan_shift; 1244 1245 if (tp->port_shift >= 0) 1246 ntuple |= (uint64_t)e->lport << tp->port_shift; 1247 1248 if (tp->protocol_shift >= 0) 1249 ntuple |= (uint64_t)IPPROTO_TCP << tp->protocol_shift; 1250 1251 if (tp->vnic_shift >= 0 && tp->vnic_mode == FW_VNIC_MODE_PF_VF) { 1252 ntuple |= (uint64_t)(V_FT_VNID_ID_VF(vi->vin) | 1253 V_FT_VNID_ID_PF(sc->pf) | V_FT_VNID_ID_VLD(vi->vfvld)) << 1254 tp->vnic_shift; 1255 } 1256 1257 if (is_t4(sc)) 1258 return (htobe32((uint32_t)ntuple)); 1259 else 1260 return (htobe64(V_FILTER_TUPLE(ntuple))); 1261 } 1262 1263 static int 1264 is_tls_sock(struct socket *so, struct adapter *sc) 1265 { 1266 struct inpcb *inp = sotoinpcb(so); 1267 int i, rc; 1268 1269 /* XXX: Eventually add a SO_WANT_TLS socket option perhaps? */ 1270 rc = 0; 1271 ADAPTER_LOCK(sc); 1272 for (i = 0; i < sc->tt.num_tls_rx_ports; i++) { 1273 if (inp->inp_lport == htons(sc->tt.tls_rx_ports[i]) || 1274 inp->inp_fport == htons(sc->tt.tls_rx_ports[i])) { 1275 rc = 1; 1276 break; 1277 } 1278 } 1279 ADAPTER_UNLOCK(sc); 1280 return (rc); 1281 } 1282 1283 /* 1284 * Initialize various connection parameters. 1285 */ 1286 void 1287 init_conn_params(struct vi_info *vi , struct offload_settings *s, 1288 struct in_conninfo *inc, struct socket *so, 1289 const struct tcp_options *tcpopt, int16_t l2t_idx, struct conn_params *cp) 1290 { 1291 struct port_info *pi = vi->pi; 1292 struct adapter *sc = pi->adapter; 1293 struct tom_tunables *tt = &sc->tt; 1294 struct inpcb *inp = sotoinpcb(so); 1295 struct tcpcb *tp = intotcpcb(inp); 1296 u_long wnd; 1297 1298 MPASS(s->offload != 0); 1299 1300 /* Congestion control algorithm */ 1301 if (s->cong_algo >= 0) 1302 cp->cong_algo = s->cong_algo & M_CONG_CNTRL; 1303 else if (sc->tt.cong_algorithm >= 0) 1304 cp->cong_algo = tt->cong_algorithm & M_CONG_CNTRL; 1305 else { 1306 struct cc_algo *cc = CC_ALGO(tp); 1307 1308 if (strcasecmp(cc->name, "reno") == 0) 1309 cp->cong_algo = CONG_ALG_RENO; 1310 else if (strcasecmp(cc->name, "tahoe") == 0) 1311 cp->cong_algo = CONG_ALG_TAHOE; 1312 if (strcasecmp(cc->name, "newreno") == 0) 1313 cp->cong_algo = CONG_ALG_NEWRENO; 1314 if (strcasecmp(cc->name, "highspeed") == 0) 1315 cp->cong_algo = CONG_ALG_HIGHSPEED; 1316 else { 1317 /* 1318 * Use newreno in case the algorithm selected by the 1319 * host stack is not supported by the hardware. 1320 */ 1321 cp->cong_algo = CONG_ALG_NEWRENO; 1322 } 1323 } 1324 1325 /* Tx traffic scheduling class. */ 1326 if (s->sched_class >= 0 && s->sched_class < sc->params.nsched_cls) 1327 cp->tc_idx = s->sched_class; 1328 else 1329 cp->tc_idx = -1; 1330 1331 /* Nagle's algorithm. */ 1332 if (s->nagle >= 0) 1333 cp->nagle = s->nagle > 0 ? 1 : 0; 1334 else 1335 cp->nagle = tp->t_flags & TF_NODELAY ? 0 : 1; 1336 1337 /* TCP Keepalive. */ 1338 if (V_tcp_always_keepalive || so_options_get(so) & SO_KEEPALIVE) 1339 cp->keepalive = 1; 1340 else 1341 cp->keepalive = 0; 1342 1343 /* Optimization that's specific to T5 @ 40G. */ 1344 if (tt->tx_align >= 0) 1345 cp->tx_align = tt->tx_align > 0 ? 1 : 0; 1346 else if (chip_id(sc) == CHELSIO_T5 && 1347 (port_top_speed(pi) > 10 || sc->params.nports > 2)) 1348 cp->tx_align = 1; 1349 else 1350 cp->tx_align = 0; 1351 1352 /* ULP mode. */ 1353 if (can_tls_offload(sc) && 1354 (s->tls > 0 || (s->tls < 0 && is_tls_sock(so, sc)))) 1355 cp->ulp_mode = ULP_MODE_TLS; 1356 else if (s->ddp > 0 || 1357 (s->ddp < 0 && sc->tt.ddp && (so_options_get(so) & SO_NO_DDP) == 0)) 1358 cp->ulp_mode = ULP_MODE_TCPDDP; 1359 else 1360 cp->ulp_mode = ULP_MODE_NONE; 1361 1362 /* Rx coalescing. */ 1363 if (s->rx_coalesce >= 0) 1364 cp->rx_coalesce = s->rx_coalesce > 0 ? 1 : 0; 1365 else if (cp->ulp_mode == ULP_MODE_TLS) 1366 cp->rx_coalesce = 0; 1367 else if (tt->rx_coalesce >= 0) 1368 cp->rx_coalesce = tt->rx_coalesce > 0 ? 1 : 0; 1369 else 1370 cp->rx_coalesce = 1; /* default */ 1371 1372 /* 1373 * Index in the PMTU table. This controls the MSS that we announce in 1374 * our SYN initially, but after ESTABLISHED it controls the MSS that we 1375 * use to send data. 1376 */ 1377 cp->mtu_idx = find_best_mtu_idx(sc, inc, s); 1378 1379 /* Tx queue for this connection. */ 1380 if (s->txq >= 0 && s->txq < vi->nofldtxq) 1381 cp->txq_idx = s->txq; 1382 else 1383 cp->txq_idx = arc4random() % vi->nofldtxq; 1384 cp->txq_idx += vi->first_ofld_txq; 1385 1386 /* Rx queue for this connection. */ 1387 if (s->rxq >= 0 && s->rxq < vi->nofldrxq) 1388 cp->rxq_idx = s->rxq; 1389 else 1390 cp->rxq_idx = arc4random() % vi->nofldrxq; 1391 cp->rxq_idx += vi->first_ofld_rxq; 1392 1393 if (SOLISTENING(so)) { 1394 /* Passive open */ 1395 MPASS(tcpopt != NULL); 1396 1397 /* TCP timestamp option */ 1398 if (tcpopt->tstamp && 1399 (s->tstamp > 0 || (s->tstamp < 0 && V_tcp_do_rfc1323))) 1400 cp->tstamp = 1; 1401 else 1402 cp->tstamp = 0; 1403 1404 /* SACK */ 1405 if (tcpopt->sack && 1406 (s->sack > 0 || (s->sack < 0 && V_tcp_do_sack))) 1407 cp->sack = 1; 1408 else 1409 cp->sack = 0; 1410 1411 /* Receive window scaling. */ 1412 if (tcpopt->wsf > 0 && tcpopt->wsf < 15 && V_tcp_do_rfc1323) 1413 cp->wscale = select_rcv_wscale(); 1414 else 1415 cp->wscale = 0; 1416 1417 /* ECN */ 1418 if (tcpopt->ecn && /* XXX: review. */ 1419 (s->ecn > 0 || (s->ecn < 0 && V_tcp_do_ecn))) 1420 cp->ecn = 1; 1421 else 1422 cp->ecn = 0; 1423 1424 wnd = max(so->sol_sbrcv_hiwat, MIN_RCV_WND); 1425 cp->opt0_bufsize = min(wnd >> 10, M_RCV_BUFSIZ); 1426 1427 if (tt->sndbuf > 0) 1428 cp->sndbuf = tt->sndbuf; 1429 else if (so->sol_sbsnd_flags & SB_AUTOSIZE && 1430 V_tcp_do_autosndbuf) 1431 cp->sndbuf = 256 * 1024; 1432 else 1433 cp->sndbuf = so->sol_sbsnd_hiwat; 1434 } else { 1435 /* Active open */ 1436 1437 /* TCP timestamp option */ 1438 if (s->tstamp > 0 || 1439 (s->tstamp < 0 && (tp->t_flags & TF_REQ_TSTMP))) 1440 cp->tstamp = 1; 1441 else 1442 cp->tstamp = 0; 1443 1444 /* SACK */ 1445 if (s->sack > 0 || 1446 (s->sack < 0 && (tp->t_flags & TF_SACK_PERMIT))) 1447 cp->sack = 1; 1448 else 1449 cp->sack = 0; 1450 1451 /* Receive window scaling */ 1452 if (tp->t_flags & TF_REQ_SCALE) 1453 cp->wscale = select_rcv_wscale(); 1454 else 1455 cp->wscale = 0; 1456 1457 /* ECN */ 1458 if (s->ecn > 0 || (s->ecn < 0 && V_tcp_do_ecn == 1)) 1459 cp->ecn = 1; 1460 else 1461 cp->ecn = 0; 1462 1463 SOCKBUF_LOCK(&so->so_rcv); 1464 wnd = max(select_rcv_wnd(so), MIN_RCV_WND); 1465 SOCKBUF_UNLOCK(&so->so_rcv); 1466 cp->opt0_bufsize = min(wnd >> 10, M_RCV_BUFSIZ); 1467 1468 if (tt->sndbuf > 0) 1469 cp->sndbuf = tt->sndbuf; 1470 else { 1471 SOCKBUF_LOCK(&so->so_snd); 1472 if (so->so_snd.sb_flags & SB_AUTOSIZE && 1473 V_tcp_do_autosndbuf) 1474 cp->sndbuf = 256 * 1024; 1475 else 1476 cp->sndbuf = so->so_snd.sb_hiwat; 1477 SOCKBUF_UNLOCK(&so->so_snd); 1478 } 1479 } 1480 1481 cp->l2t_idx = l2t_idx; 1482 1483 /* This will be initialized on ESTABLISHED. */ 1484 cp->emss = 0; 1485 } 1486 1487 int 1488 negative_advice(int status) 1489 { 1490 1491 return (status == CPL_ERR_RTX_NEG_ADVICE || 1492 status == CPL_ERR_PERSIST_NEG_ADVICE || 1493 status == CPL_ERR_KEEPALV_NEG_ADVICE); 1494 } 1495 1496 static int 1497 alloc_tid_tab(struct tid_info *t, int flags) 1498 { 1499 1500 MPASS(t->ntids > 0); 1501 MPASS(t->tid_tab == NULL); 1502 1503 t->tid_tab = malloc(t->ntids * sizeof(*t->tid_tab), M_CXGBE, 1504 M_ZERO | flags); 1505 if (t->tid_tab == NULL) 1506 return (ENOMEM); 1507 atomic_store_rel_int(&t->tids_in_use, 0); 1508 1509 return (0); 1510 } 1511 1512 static void 1513 free_tid_tab(struct tid_info *t) 1514 { 1515 1516 KASSERT(t->tids_in_use == 0, 1517 ("%s: %d tids still in use.", __func__, t->tids_in_use)); 1518 1519 free(t->tid_tab, M_CXGBE); 1520 t->tid_tab = NULL; 1521 } 1522 1523 static int 1524 alloc_stid_tab(struct tid_info *t, int flags) 1525 { 1526 1527 MPASS(t->nstids > 0); 1528 MPASS(t->stid_tab == NULL); 1529 1530 t->stid_tab = malloc(t->nstids * sizeof(*t->stid_tab), M_CXGBE, 1531 M_ZERO | flags); 1532 if (t->stid_tab == NULL) 1533 return (ENOMEM); 1534 mtx_init(&t->stid_lock, "stid lock", NULL, MTX_DEF); 1535 t->stids_in_use = 0; 1536 TAILQ_INIT(&t->stids); 1537 t->nstids_free_head = t->nstids; 1538 1539 return (0); 1540 } 1541 1542 static void 1543 free_stid_tab(struct tid_info *t) 1544 { 1545 1546 KASSERT(t->stids_in_use == 0, 1547 ("%s: %d tids still in use.", __func__, t->stids_in_use)); 1548 1549 if (mtx_initialized(&t->stid_lock)) 1550 mtx_destroy(&t->stid_lock); 1551 free(t->stid_tab, M_CXGBE); 1552 t->stid_tab = NULL; 1553 } 1554 1555 static void 1556 free_tid_tabs(struct tid_info *t) 1557 { 1558 1559 free_tid_tab(t); 1560 free_stid_tab(t); 1561 } 1562 1563 static int 1564 alloc_tid_tabs(struct tid_info *t) 1565 { 1566 int rc; 1567 1568 rc = alloc_tid_tab(t, M_NOWAIT); 1569 if (rc != 0) 1570 goto failed; 1571 1572 rc = alloc_stid_tab(t, M_NOWAIT); 1573 if (rc != 0) 1574 goto failed; 1575 1576 return (0); 1577 failed: 1578 free_tid_tabs(t); 1579 return (rc); 1580 } 1581 1582 static inline void 1583 alloc_tcb_history(struct adapter *sc, struct tom_data *td) 1584 { 1585 1586 if (sc->tids.ntids == 0 || sc->tids.ntids > 1024) 1587 return; 1588 rw_init(&td->tcb_history_lock, "TCB history"); 1589 td->tcb_history = malloc(sc->tids.ntids * sizeof(*td->tcb_history), 1590 M_CXGBE, M_ZERO | M_NOWAIT); 1591 td->dupack_threshold = G_DUPACKTHRESH(t4_read_reg(sc, A_TP_PARA_REG0)); 1592 } 1593 1594 static inline void 1595 free_tcb_history(struct adapter *sc, struct tom_data *td) 1596 { 1597 #ifdef INVARIANTS 1598 int i; 1599 1600 if (td->tcb_history != NULL) { 1601 for (i = 0; i < sc->tids.ntids; i++) { 1602 MPASS(td->tcb_history[i] == NULL); 1603 } 1604 } 1605 #endif 1606 free(td->tcb_history, M_CXGBE); 1607 if (rw_initialized(&td->tcb_history_lock)) 1608 rw_destroy(&td->tcb_history_lock); 1609 } 1610 1611 static void 1612 free_tom_data(struct adapter *sc, struct tom_data *td) 1613 { 1614 1615 ASSERT_SYNCHRONIZED_OP(sc); 1616 1617 KASSERT(TAILQ_EMPTY(&td->toep_list), 1618 ("%s: TOE PCB list is not empty.", __func__)); 1619 KASSERT(td->lctx_count == 0, 1620 ("%s: lctx hash table is not empty.", __func__)); 1621 1622 t4_free_ppod_region(&td->pr); 1623 1624 if (td->listen_mask != 0) 1625 hashdestroy(td->listen_hash, M_CXGBE, td->listen_mask); 1626 1627 if (mtx_initialized(&td->unsent_wr_lock)) 1628 mtx_destroy(&td->unsent_wr_lock); 1629 if (mtx_initialized(&td->lctx_hash_lock)) 1630 mtx_destroy(&td->lctx_hash_lock); 1631 if (mtx_initialized(&td->toep_list_lock)) 1632 mtx_destroy(&td->toep_list_lock); 1633 1634 free_tcb_history(sc, td); 1635 free_tid_tabs(&sc->tids); 1636 free(td, M_CXGBE); 1637 } 1638 1639 static char * 1640 prepare_pkt(int open_type, uint16_t vtag, struct inpcb *inp, int *pktlen, 1641 int *buflen) 1642 { 1643 char *pkt; 1644 struct tcphdr *th; 1645 int ipv6, len; 1646 const int maxlen = 1647 max(sizeof(struct ether_header), sizeof(struct ether_vlan_header)) + 1648 max(sizeof(struct ip), sizeof(struct ip6_hdr)) + 1649 sizeof(struct tcphdr); 1650 1651 MPASS(open_type == OPEN_TYPE_ACTIVE || open_type == OPEN_TYPE_LISTEN); 1652 1653 pkt = malloc(maxlen, M_CXGBE, M_ZERO | M_NOWAIT); 1654 if (pkt == NULL) 1655 return (NULL); 1656 1657 ipv6 = inp->inp_vflag & INP_IPV6; 1658 len = 0; 1659 1660 if (EVL_VLANOFTAG(vtag) == 0xfff) { 1661 struct ether_header *eh = (void *)pkt; 1662 1663 if (ipv6) 1664 eh->ether_type = htons(ETHERTYPE_IPV6); 1665 else 1666 eh->ether_type = htons(ETHERTYPE_IP); 1667 1668 len += sizeof(*eh); 1669 } else { 1670 struct ether_vlan_header *evh = (void *)pkt; 1671 1672 evh->evl_encap_proto = htons(ETHERTYPE_VLAN); 1673 evh->evl_tag = htons(vtag); 1674 if (ipv6) 1675 evh->evl_proto = htons(ETHERTYPE_IPV6); 1676 else 1677 evh->evl_proto = htons(ETHERTYPE_IP); 1678 1679 len += sizeof(*evh); 1680 } 1681 1682 if (ipv6) { 1683 struct ip6_hdr *ip6 = (void *)&pkt[len]; 1684 1685 ip6->ip6_vfc = IPV6_VERSION; 1686 ip6->ip6_plen = htons(sizeof(struct tcphdr)); 1687 ip6->ip6_nxt = IPPROTO_TCP; 1688 if (open_type == OPEN_TYPE_ACTIVE) { 1689 ip6->ip6_src = inp->in6p_laddr; 1690 ip6->ip6_dst = inp->in6p_faddr; 1691 } else if (open_type == OPEN_TYPE_LISTEN) { 1692 ip6->ip6_src = inp->in6p_laddr; 1693 ip6->ip6_dst = ip6->ip6_src; 1694 } 1695 1696 len += sizeof(*ip6); 1697 } else { 1698 struct ip *ip = (void *)&pkt[len]; 1699 1700 ip->ip_v = IPVERSION; 1701 ip->ip_hl = sizeof(*ip) >> 2; 1702 ip->ip_tos = inp->inp_ip_tos; 1703 ip->ip_len = htons(sizeof(struct ip) + sizeof(struct tcphdr)); 1704 ip->ip_ttl = inp->inp_ip_ttl; 1705 ip->ip_p = IPPROTO_TCP; 1706 if (open_type == OPEN_TYPE_ACTIVE) { 1707 ip->ip_src = inp->inp_laddr; 1708 ip->ip_dst = inp->inp_faddr; 1709 } else if (open_type == OPEN_TYPE_LISTEN) { 1710 ip->ip_src = inp->inp_laddr; 1711 ip->ip_dst = ip->ip_src; 1712 } 1713 1714 len += sizeof(*ip); 1715 } 1716 1717 th = (void *)&pkt[len]; 1718 if (open_type == OPEN_TYPE_ACTIVE) { 1719 th->th_sport = inp->inp_lport; /* network byte order already */ 1720 th->th_dport = inp->inp_fport; /* ditto */ 1721 } else if (open_type == OPEN_TYPE_LISTEN) { 1722 th->th_sport = inp->inp_lport; /* network byte order already */ 1723 th->th_dport = th->th_sport; 1724 } 1725 len += sizeof(th); 1726 1727 *pktlen = *buflen = len; 1728 return (pkt); 1729 } 1730 1731 const struct offload_settings * 1732 lookup_offload_policy(struct adapter *sc, int open_type, struct mbuf *m, 1733 uint16_t vtag, struct inpcb *inp) 1734 { 1735 const struct t4_offload_policy *op; 1736 char *pkt; 1737 struct offload_rule *r; 1738 int i, matched, pktlen, buflen; 1739 static const struct offload_settings allow_offloading_settings = { 1740 .offload = 1, 1741 .rx_coalesce = -1, 1742 .cong_algo = -1, 1743 .sched_class = -1, 1744 .tstamp = -1, 1745 .sack = -1, 1746 .nagle = -1, 1747 .ecn = -1, 1748 .ddp = -1, 1749 .tls = -1, 1750 .txq = -1, 1751 .rxq = -1, 1752 .mss = -1, 1753 }; 1754 static const struct offload_settings disallow_offloading_settings = { 1755 .offload = 0, 1756 /* rest is irrelevant when offload is off. */ 1757 }; 1758 1759 rw_assert(&sc->policy_lock, RA_LOCKED); 1760 1761 /* 1762 * If there's no Connection Offloading Policy attached to the device 1763 * then we need to return a default static policy. If 1764 * "cop_managed_offloading" is true, then we need to disallow 1765 * offloading until a COP is attached to the device. Otherwise we 1766 * allow offloading ... 1767 */ 1768 op = sc->policy; 1769 if (op == NULL) { 1770 if (sc->tt.cop_managed_offloading) 1771 return (&disallow_offloading_settings); 1772 else 1773 return (&allow_offloading_settings); 1774 } 1775 1776 switch (open_type) { 1777 case OPEN_TYPE_ACTIVE: 1778 case OPEN_TYPE_LISTEN: 1779 pkt = prepare_pkt(open_type, vtag, inp, &pktlen, &buflen); 1780 break; 1781 case OPEN_TYPE_PASSIVE: 1782 MPASS(m != NULL); 1783 pkt = mtod(m, char *); 1784 MPASS(*pkt == CPL_PASS_ACCEPT_REQ); 1785 pkt += sizeof(struct cpl_pass_accept_req); 1786 pktlen = m->m_pkthdr.len - sizeof(struct cpl_pass_accept_req); 1787 buflen = m->m_len - sizeof(struct cpl_pass_accept_req); 1788 break; 1789 default: 1790 MPASS(0); 1791 return (&disallow_offloading_settings); 1792 } 1793 1794 if (pkt == NULL || pktlen == 0 || buflen == 0) 1795 return (&disallow_offloading_settings); 1796 1797 matched = 0; 1798 r = &op->rule[0]; 1799 for (i = 0; i < op->nrules; i++, r++) { 1800 if (r->open_type != open_type && 1801 r->open_type != OPEN_TYPE_DONTCARE) { 1802 continue; 1803 } 1804 matched = bpf_filter(r->bpf_prog.bf_insns, pkt, pktlen, buflen); 1805 if (matched) 1806 break; 1807 } 1808 1809 if (open_type == OPEN_TYPE_ACTIVE || open_type == OPEN_TYPE_LISTEN) 1810 free(pkt, M_CXGBE); 1811 1812 return (matched ? &r->settings : &disallow_offloading_settings); 1813 } 1814 1815 static void 1816 reclaim_wr_resources(void *arg, int count) 1817 { 1818 struct tom_data *td = arg; 1819 STAILQ_HEAD(, wrqe) twr_list = STAILQ_HEAD_INITIALIZER(twr_list); 1820 struct cpl_act_open_req *cpl; 1821 u_int opcode, atid, tid; 1822 struct wrqe *wr; 1823 struct adapter *sc = td_adapter(td); 1824 1825 mtx_lock(&td->unsent_wr_lock); 1826 STAILQ_SWAP(&td->unsent_wr_list, &twr_list, wrqe); 1827 mtx_unlock(&td->unsent_wr_lock); 1828 1829 while ((wr = STAILQ_FIRST(&twr_list)) != NULL) { 1830 STAILQ_REMOVE_HEAD(&twr_list, link); 1831 1832 cpl = wrtod(wr); 1833 opcode = GET_OPCODE(cpl); 1834 1835 switch (opcode) { 1836 case CPL_ACT_OPEN_REQ: 1837 case CPL_ACT_OPEN_REQ6: 1838 atid = G_TID_TID(be32toh(OPCODE_TID(cpl))); 1839 CTR2(KTR_CXGBE, "%s: atid %u ", __func__, atid); 1840 act_open_failure_cleanup(sc, atid, EHOSTUNREACH); 1841 free(wr, M_CXGBE); 1842 break; 1843 case CPL_PASS_ACCEPT_RPL: 1844 tid = GET_TID(cpl); 1845 CTR2(KTR_CXGBE, "%s: tid %u ", __func__, tid); 1846 synack_failure_cleanup(sc, tid); 1847 free(wr, M_CXGBE); 1848 break; 1849 default: 1850 log(LOG_ERR, "%s: leaked work request %p, wr_len %d, " 1851 "opcode %x\n", __func__, wr, wr->wr_len, opcode); 1852 /* WR not freed here; go look at it with a debugger. */ 1853 } 1854 } 1855 } 1856 1857 /* 1858 * Ground control to Major TOM 1859 * Commencing countdown, engines on 1860 */ 1861 static int 1862 t4_tom_activate(struct adapter *sc) 1863 { 1864 struct tom_data *td; 1865 struct toedev *tod; 1866 struct vi_info *vi; 1867 int i, rc, v; 1868 1869 ASSERT_SYNCHRONIZED_OP(sc); 1870 1871 /* per-adapter softc for TOM */ 1872 td = malloc(sizeof(*td), M_CXGBE, M_ZERO | M_NOWAIT); 1873 if (td == NULL) 1874 return (ENOMEM); 1875 1876 /* List of TOE PCBs and associated lock */ 1877 mtx_init(&td->toep_list_lock, "PCB list lock", NULL, MTX_DEF); 1878 TAILQ_INIT(&td->toep_list); 1879 1880 /* Listen context */ 1881 mtx_init(&td->lctx_hash_lock, "lctx hash lock", NULL, MTX_DEF); 1882 td->listen_hash = hashinit_flags(LISTEN_HASH_SIZE, M_CXGBE, 1883 &td->listen_mask, HASH_NOWAIT); 1884 1885 /* List of WRs for which L2 resolution failed */ 1886 mtx_init(&td->unsent_wr_lock, "Unsent WR list lock", NULL, MTX_DEF); 1887 STAILQ_INIT(&td->unsent_wr_list); 1888 TASK_INIT(&td->reclaim_wr_resources, 0, reclaim_wr_resources, td); 1889 1890 /* TID tables */ 1891 rc = alloc_tid_tabs(&sc->tids); 1892 if (rc != 0) 1893 goto done; 1894 1895 rc = t4_init_ppod_region(&td->pr, &sc->vres.ddp, 1896 t4_read_reg(sc, A_ULP_RX_TDDP_PSZ), "TDDP page pods"); 1897 if (rc != 0) 1898 goto done; 1899 t4_set_reg_field(sc, A_ULP_RX_TDDP_TAGMASK, 1900 V_TDDPTAGMASK(M_TDDPTAGMASK), td->pr.pr_tag_mask); 1901 1902 alloc_tcb_history(sc, td); 1903 1904 /* toedev ops */ 1905 tod = &td->tod; 1906 init_toedev(tod); 1907 tod->tod_softc = sc; 1908 tod->tod_connect = t4_connect; 1909 tod->tod_listen_start = t4_listen_start; 1910 tod->tod_listen_stop = t4_listen_stop; 1911 tod->tod_rcvd = t4_rcvd; 1912 tod->tod_output = t4_tod_output; 1913 tod->tod_send_rst = t4_send_rst; 1914 tod->tod_send_fin = t4_send_fin; 1915 tod->tod_pcb_detach = t4_pcb_detach; 1916 tod->tod_l2_update = t4_l2_update; 1917 tod->tod_syncache_added = t4_syncache_added; 1918 tod->tod_syncache_removed = t4_syncache_removed; 1919 tod->tod_syncache_respond = t4_syncache_respond; 1920 tod->tod_offload_socket = t4_offload_socket; 1921 tod->tod_ctloutput = t4_ctloutput; 1922 tod->tod_tcp_info = t4_tcp_info; 1923 #ifdef KERN_TLS 1924 tod->tod_alloc_tls_session = t4_alloc_tls_session; 1925 #endif 1926 tod->tod_pmtu_update = t4_pmtu_update; 1927 1928 for_each_port(sc, i) { 1929 for_each_vi(sc->port[i], v, vi) { 1930 TOEDEV(vi->ifp) = &td->tod; 1931 } 1932 } 1933 1934 sc->tom_softc = td; 1935 register_toedev(sc->tom_softc); 1936 1937 done: 1938 if (rc != 0) 1939 free_tom_data(sc, td); 1940 return (rc); 1941 } 1942 1943 static int 1944 t4_tom_deactivate(struct adapter *sc) 1945 { 1946 int rc = 0; 1947 struct tom_data *td = sc->tom_softc; 1948 1949 ASSERT_SYNCHRONIZED_OP(sc); 1950 1951 if (td == NULL) 1952 return (0); /* XXX. KASSERT? */ 1953 1954 if (sc->offload_map != 0) 1955 return (EBUSY); /* at least one port has IFCAP_TOE enabled */ 1956 1957 if (uld_active(sc, ULD_IWARP) || uld_active(sc, ULD_ISCSI)) 1958 return (EBUSY); /* both iWARP and iSCSI rely on the TOE. */ 1959 1960 mtx_lock(&td->toep_list_lock); 1961 if (!TAILQ_EMPTY(&td->toep_list)) 1962 rc = EBUSY; 1963 mtx_unlock(&td->toep_list_lock); 1964 1965 mtx_lock(&td->lctx_hash_lock); 1966 if (td->lctx_count > 0) 1967 rc = EBUSY; 1968 mtx_unlock(&td->lctx_hash_lock); 1969 1970 taskqueue_drain(taskqueue_thread, &td->reclaim_wr_resources); 1971 mtx_lock(&td->unsent_wr_lock); 1972 if (!STAILQ_EMPTY(&td->unsent_wr_list)) 1973 rc = EBUSY; 1974 mtx_unlock(&td->unsent_wr_lock); 1975 1976 if (rc == 0) { 1977 unregister_toedev(sc->tom_softc); 1978 free_tom_data(sc, td); 1979 sc->tom_softc = NULL; 1980 } 1981 1982 return (rc); 1983 } 1984 1985 static int 1986 t4_aio_queue_tom(struct socket *so, struct kaiocb *job) 1987 { 1988 struct tcpcb *tp = so_sototcpcb(so); 1989 struct toepcb *toep = tp->t_toe; 1990 int error; 1991 1992 /* 1993 * No lock is needed as TOE sockets never change between 1994 * active and passive. 1995 */ 1996 if (SOLISTENING(so)) 1997 return (EINVAL); 1998 1999 if (ulp_mode(toep) == ULP_MODE_TCPDDP) { 2000 error = t4_aio_queue_ddp(so, job); 2001 if (error != EOPNOTSUPP) 2002 return (error); 2003 } 2004 2005 return (t4_aio_queue_aiotx(so, job)); 2006 } 2007 2008 static int 2009 t4_tom_mod_load(void) 2010 { 2011 /* CPL handlers */ 2012 t4_register_cpl_handler(CPL_GET_TCB_RPL, do_get_tcb_rpl); 2013 t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, do_l2t_write_rpl2, 2014 CPL_COOKIE_TOM); 2015 t4_init_connect_cpl_handlers(); 2016 t4_init_listen_cpl_handlers(); 2017 t4_init_cpl_io_handlers(); 2018 2019 t4_ddp_mod_load(); 2020 t4_tls_mod_load(); 2021 2022 tcp_protosw = pffindproto(PF_INET, IPPROTO_TCP, SOCK_STREAM); 2023 if (tcp_protosw == NULL) 2024 return (ENOPROTOOPT); 2025 bcopy(tcp_protosw, &toe_protosw, sizeof(toe_protosw)); 2026 bcopy(tcp_protosw->pr_usrreqs, &toe_usrreqs, sizeof(toe_usrreqs)); 2027 toe_usrreqs.pru_aio_queue = t4_aio_queue_tom; 2028 toe_protosw.pr_usrreqs = &toe_usrreqs; 2029 2030 tcp6_protosw = pffindproto(PF_INET6, IPPROTO_TCP, SOCK_STREAM); 2031 if (tcp6_protosw == NULL) 2032 return (ENOPROTOOPT); 2033 bcopy(tcp6_protosw, &toe6_protosw, sizeof(toe6_protosw)); 2034 bcopy(tcp6_protosw->pr_usrreqs, &toe6_usrreqs, sizeof(toe6_usrreqs)); 2035 toe6_usrreqs.pru_aio_queue = t4_aio_queue_tom; 2036 toe6_protosw.pr_usrreqs = &toe6_usrreqs; 2037 2038 return (t4_register_uld(&tom_uld_info)); 2039 } 2040 2041 static void 2042 tom_uninit(struct adapter *sc, void *arg __unused) 2043 { 2044 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4tomun")) 2045 return; 2046 2047 /* Try to free resources (works only if no port has IFCAP_TOE) */ 2048 if (uld_active(sc, ULD_TOM)) 2049 t4_deactivate_uld(sc, ULD_TOM); 2050 2051 end_synchronized_op(sc, 0); 2052 } 2053 2054 static int 2055 t4_tom_mod_unload(void) 2056 { 2057 t4_iterate(tom_uninit, NULL); 2058 2059 if (t4_unregister_uld(&tom_uld_info) == EBUSY) 2060 return (EBUSY); 2061 2062 t4_tls_mod_unload(); 2063 t4_ddp_mod_unload(); 2064 2065 t4_uninit_connect_cpl_handlers(); 2066 t4_uninit_listen_cpl_handlers(); 2067 t4_uninit_cpl_io_handlers(); 2068 t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, NULL, CPL_COOKIE_TOM); 2069 t4_register_cpl_handler(CPL_GET_TCB_RPL, NULL); 2070 2071 return (0); 2072 } 2073 #endif /* TCP_OFFLOAD */ 2074 2075 static int 2076 t4_tom_modevent(module_t mod, int cmd, void *arg) 2077 { 2078 int rc = 0; 2079 2080 #ifdef TCP_OFFLOAD 2081 switch (cmd) { 2082 case MOD_LOAD: 2083 rc = t4_tom_mod_load(); 2084 break; 2085 2086 case MOD_UNLOAD: 2087 rc = t4_tom_mod_unload(); 2088 break; 2089 2090 default: 2091 rc = EINVAL; 2092 } 2093 #else 2094 printf("t4_tom: compiled without TCP_OFFLOAD support.\n"); 2095 rc = EOPNOTSUPP; 2096 #endif 2097 return (rc); 2098 } 2099 2100 static moduledata_t t4_tom_moddata= { 2101 "t4_tom", 2102 t4_tom_modevent, 2103 0 2104 }; 2105 2106 MODULE_VERSION(t4_tom, 1); 2107 MODULE_DEPEND(t4_tom, toecore, 1, 1, 1); 2108 MODULE_DEPEND(t4_tom, t4nex, 1, 1, 1); 2109 DECLARE_MODULE(t4_tom, t4_tom_moddata, SI_SUB_EXEC, SI_ORDER_ANY); 2110