xref: /freebsd/sys/dev/cxgbe/tom/t4_tom.c (revision 2a2234c0f41da33b8cfc938e46b54a8234b64135)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2012 Chelsio Communications, Inc.
5  * All rights reserved.
6  * Written by: Navdeep Parhar <np@FreeBSD.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include "opt_inet.h"
34 #include "opt_inet6.h"
35 #include "opt_ratelimit.h"
36 
37 #include <sys/param.h>
38 #include <sys/types.h>
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/ktr.h>
42 #include <sys/lock.h>
43 #include <sys/limits.h>
44 #include <sys/module.h>
45 #include <sys/protosw.h>
46 #include <sys/domain.h>
47 #include <sys/refcount.h>
48 #include <sys/rmlock.h>
49 #include <sys/socket.h>
50 #include <sys/socketvar.h>
51 #include <sys/taskqueue.h>
52 #include <net/if.h>
53 #include <net/if_var.h>
54 #include <net/if_types.h>
55 #include <net/if_vlan_var.h>
56 #include <netinet/in.h>
57 #include <netinet/in_pcb.h>
58 #include <netinet/in_var.h>
59 #include <netinet/ip.h>
60 #include <netinet/ip6.h>
61 #include <netinet6/scope6_var.h>
62 #define TCPSTATES
63 #include <netinet/tcp_fsm.h>
64 #include <netinet/tcp_timer.h>
65 #include <netinet/tcp_var.h>
66 #include <netinet/toecore.h>
67 
68 #ifdef TCP_OFFLOAD
69 #include "common/common.h"
70 #include "common/t4_msg.h"
71 #include "common/t4_regs.h"
72 #include "common/t4_regs_values.h"
73 #include "common/t4_tcb.h"
74 #include "tom/t4_tom_l2t.h"
75 #include "tom/t4_tom.h"
76 #include "tom/t4_tls.h"
77 
78 static struct protosw toe_protosw;
79 static struct pr_usrreqs toe_usrreqs;
80 
81 static struct protosw toe6_protosw;
82 static struct pr_usrreqs toe6_usrreqs;
83 
84 /* Module ops */
85 static int t4_tom_mod_load(void);
86 static int t4_tom_mod_unload(void);
87 static int t4_tom_modevent(module_t, int, void *);
88 
89 /* ULD ops and helpers */
90 static int t4_tom_activate(struct adapter *);
91 static int t4_tom_deactivate(struct adapter *);
92 
93 static struct uld_info tom_uld_info = {
94 	.uld_id = ULD_TOM,
95 	.activate = t4_tom_activate,
96 	.deactivate = t4_tom_deactivate,
97 };
98 
99 static void queue_tid_release(struct adapter *, int);
100 static void release_offload_resources(struct toepcb *);
101 static int alloc_tid_tabs(struct tid_info *);
102 static void free_tid_tabs(struct tid_info *);
103 static int add_lip(struct adapter *, struct in6_addr *);
104 static int delete_lip(struct adapter *, struct in6_addr *);
105 static struct clip_entry *search_lip(struct tom_data *, struct in6_addr *);
106 static void init_clip_table(struct adapter *, struct tom_data *);
107 static void update_clip(struct adapter *, void *);
108 static void t4_clip_task(void *, int);
109 static void update_clip_table(struct adapter *, struct tom_data *);
110 static void destroy_clip_table(struct adapter *, struct tom_data *);
111 static void free_tom_data(struct adapter *, struct tom_data *);
112 static void reclaim_wr_resources(void *, int);
113 
114 static int in6_ifaddr_gen;
115 static eventhandler_tag ifaddr_evhandler;
116 static struct timeout_task clip_task;
117 
118 struct toepcb *
119 alloc_toepcb(struct vi_info *vi, int txqid, int rxqid, int flags)
120 {
121 	struct port_info *pi = vi->pi;
122 	struct adapter *sc = pi->adapter;
123 	struct toepcb *toep;
124 	int tx_credits, txsd_total, len;
125 
126 	/*
127 	 * The firmware counts tx work request credits in units of 16 bytes
128 	 * each.  Reserve room for an ABORT_REQ so the driver never has to worry
129 	 * about tx credits if it wants to abort a connection.
130 	 */
131 	tx_credits = sc->params.ofldq_wr_cred;
132 	tx_credits -= howmany(sizeof(struct cpl_abort_req), 16);
133 
134 	/*
135 	 * Shortest possible tx work request is a fw_ofld_tx_data_wr + 1 byte
136 	 * immediate payload, and firmware counts tx work request credits in
137 	 * units of 16 byte.  Calculate the maximum work requests possible.
138 	 */
139 	txsd_total = tx_credits /
140 	    howmany(sizeof(struct fw_ofld_tx_data_wr) + 1, 16);
141 
142 	KASSERT(txqid >= vi->first_ofld_txq &&
143 	    txqid < vi->first_ofld_txq + vi->nofldtxq,
144 	    ("%s: txqid %d for vi %p (first %d, n %d)", __func__, txqid, vi,
145 		vi->first_ofld_txq, vi->nofldtxq));
146 
147 	KASSERT(rxqid >= vi->first_ofld_rxq &&
148 	    rxqid < vi->first_ofld_rxq + vi->nofldrxq,
149 	    ("%s: rxqid %d for vi %p (first %d, n %d)", __func__, rxqid, vi,
150 		vi->first_ofld_rxq, vi->nofldrxq));
151 
152 	len = offsetof(struct toepcb, txsd) +
153 	    txsd_total * sizeof(struct ofld_tx_sdesc);
154 
155 	toep = malloc(len, M_CXGBE, M_ZERO | flags);
156 	if (toep == NULL)
157 		return (NULL);
158 
159 	refcount_init(&toep->refcount, 1);
160 	toep->td = sc->tom_softc;
161 	toep->vi = vi;
162 	toep->tc_idx = -1;
163 	toep->tx_total = tx_credits;
164 	toep->tx_credits = tx_credits;
165 	toep->ofld_txq = &sc->sge.ofld_txq[txqid];
166 	toep->ofld_rxq = &sc->sge.ofld_rxq[rxqid];
167 	toep->ctrlq = &sc->sge.ctrlq[pi->port_id];
168 	mbufq_init(&toep->ulp_pduq, INT_MAX);
169 	mbufq_init(&toep->ulp_pdu_reclaimq, INT_MAX);
170 	toep->txsd_total = txsd_total;
171 	toep->txsd_avail = txsd_total;
172 	toep->txsd_pidx = 0;
173 	toep->txsd_cidx = 0;
174 	aiotx_init_toep(toep);
175 
176 	return (toep);
177 }
178 
179 struct toepcb *
180 hold_toepcb(struct toepcb *toep)
181 {
182 
183 	refcount_acquire(&toep->refcount);
184 	return (toep);
185 }
186 
187 void
188 free_toepcb(struct toepcb *toep)
189 {
190 
191 	if (refcount_release(&toep->refcount) == 0)
192 		return;
193 
194 	KASSERT(!(toep->flags & TPF_ATTACHED),
195 	    ("%s: attached to an inpcb", __func__));
196 	KASSERT(!(toep->flags & TPF_CPL_PENDING),
197 	    ("%s: CPL pending", __func__));
198 
199 	if (toep->ulp_mode == ULP_MODE_TCPDDP)
200 		ddp_uninit_toep(toep);
201 	tls_uninit_toep(toep);
202 	free(toep, M_CXGBE);
203 }
204 
205 /*
206  * Set up the socket for TCP offload.
207  */
208 void
209 offload_socket(struct socket *so, struct toepcb *toep)
210 {
211 	struct tom_data *td = toep->td;
212 	struct inpcb *inp = sotoinpcb(so);
213 	struct tcpcb *tp = intotcpcb(inp);
214 	struct sockbuf *sb;
215 
216 	INP_WLOCK_ASSERT(inp);
217 
218 	/* Update socket */
219 	sb = &so->so_snd;
220 	SOCKBUF_LOCK(sb);
221 	sb->sb_flags |= SB_NOCOALESCE;
222 	SOCKBUF_UNLOCK(sb);
223 	sb = &so->so_rcv;
224 	SOCKBUF_LOCK(sb);
225 	sb->sb_flags |= SB_NOCOALESCE;
226 	if (inp->inp_vflag & INP_IPV6)
227 		so->so_proto = &toe6_protosw;
228 	else
229 		so->so_proto = &toe_protosw;
230 	SOCKBUF_UNLOCK(sb);
231 
232 	/* Update TCP PCB */
233 	tp->tod = &td->tod;
234 	tp->t_toe = toep;
235 	tp->t_flags |= TF_TOE;
236 
237 	/* Install an extra hold on inp */
238 	toep->inp = inp;
239 	toep->flags |= TPF_ATTACHED;
240 	in_pcbref(inp);
241 
242 	/* Add the TOE PCB to the active list */
243 	mtx_lock(&td->toep_list_lock);
244 	TAILQ_INSERT_HEAD(&td->toep_list, toep, link);
245 	mtx_unlock(&td->toep_list_lock);
246 }
247 
248 /* This is _not_ the normal way to "unoffload" a socket. */
249 void
250 undo_offload_socket(struct socket *so)
251 {
252 	struct inpcb *inp = sotoinpcb(so);
253 	struct tcpcb *tp = intotcpcb(inp);
254 	struct toepcb *toep = tp->t_toe;
255 	struct tom_data *td = toep->td;
256 	struct sockbuf *sb;
257 
258 	INP_WLOCK_ASSERT(inp);
259 
260 	sb = &so->so_snd;
261 	SOCKBUF_LOCK(sb);
262 	sb->sb_flags &= ~SB_NOCOALESCE;
263 	SOCKBUF_UNLOCK(sb);
264 	sb = &so->so_rcv;
265 	SOCKBUF_LOCK(sb);
266 	sb->sb_flags &= ~SB_NOCOALESCE;
267 	SOCKBUF_UNLOCK(sb);
268 
269 	tp->tod = NULL;
270 	tp->t_toe = NULL;
271 	tp->t_flags &= ~TF_TOE;
272 
273 	toep->inp = NULL;
274 	toep->flags &= ~TPF_ATTACHED;
275 	if (in_pcbrele_wlocked(inp))
276 		panic("%s: inp freed.", __func__);
277 
278 	mtx_lock(&td->toep_list_lock);
279 	TAILQ_REMOVE(&td->toep_list, toep, link);
280 	mtx_unlock(&td->toep_list_lock);
281 }
282 
283 static void
284 release_offload_resources(struct toepcb *toep)
285 {
286 	struct tom_data *td = toep->td;
287 	struct adapter *sc = td_adapter(td);
288 	int tid = toep->tid;
289 
290 	KASSERT(!(toep->flags & TPF_CPL_PENDING),
291 	    ("%s: %p has CPL pending.", __func__, toep));
292 	KASSERT(!(toep->flags & TPF_ATTACHED),
293 	    ("%s: %p is still attached.", __func__, toep));
294 
295 	CTR5(KTR_CXGBE, "%s: toep %p (tid %d, l2te %p, ce %p)",
296 	    __func__, toep, tid, toep->l2te, toep->ce);
297 
298 	/*
299 	 * These queues should have been emptied at approximately the same time
300 	 * that a normal connection's socket's so_snd would have been purged or
301 	 * drained.  Do _not_ clean up here.
302 	 */
303 	MPASS(mbufq_len(&toep->ulp_pduq) == 0);
304 	MPASS(mbufq_len(&toep->ulp_pdu_reclaimq) == 0);
305 #ifdef INVARIANTS
306 	if (toep->ulp_mode == ULP_MODE_TCPDDP)
307 		ddp_assert_empty(toep);
308 #endif
309 
310 	if (toep->l2te)
311 		t4_l2t_release(toep->l2te);
312 
313 	if (tid >= 0) {
314 		remove_tid(sc, tid, toep->ce ? 2 : 1);
315 		release_tid(sc, tid, toep->ctrlq);
316 	}
317 
318 	if (toep->ce)
319 		release_lip(td, toep->ce);
320 
321 #ifdef RATELIMIT
322 	if (toep->tc_idx != -1)
323 		t4_release_cl_rl_kbps(sc, toep->vi->pi->port_id, toep->tc_idx);
324 #endif
325 	mtx_lock(&td->toep_list_lock);
326 	TAILQ_REMOVE(&td->toep_list, toep, link);
327 	mtx_unlock(&td->toep_list_lock);
328 
329 	free_toepcb(toep);
330 }
331 
332 /*
333  * The kernel is done with the TCP PCB and this is our opportunity to unhook the
334  * toepcb hanging off of it.  If the TOE driver is also done with the toepcb (no
335  * pending CPL) then it is time to release all resources tied to the toepcb.
336  *
337  * Also gets called when an offloaded active open fails and the TOM wants the
338  * kernel to take the TCP PCB back.
339  */
340 static void
341 t4_pcb_detach(struct toedev *tod __unused, struct tcpcb *tp)
342 {
343 #if defined(KTR) || defined(INVARIANTS)
344 	struct inpcb *inp = tp->t_inpcb;
345 #endif
346 	struct toepcb *toep = tp->t_toe;
347 
348 	INP_WLOCK_ASSERT(inp);
349 
350 	KASSERT(toep != NULL, ("%s: toep is NULL", __func__));
351 	KASSERT(toep->flags & TPF_ATTACHED,
352 	    ("%s: not attached", __func__));
353 
354 #ifdef KTR
355 	if (tp->t_state == TCPS_SYN_SENT) {
356 		CTR6(KTR_CXGBE, "%s: atid %d, toep %p (0x%x), inp %p (0x%x)",
357 		    __func__, toep->tid, toep, toep->flags, inp,
358 		    inp->inp_flags);
359 	} else {
360 		CTR6(KTR_CXGBE,
361 		    "t4_pcb_detach: tid %d (%s), toep %p (0x%x), inp %p (0x%x)",
362 		    toep->tid, tcpstates[tp->t_state], toep, toep->flags, inp,
363 		    inp->inp_flags);
364 	}
365 #endif
366 
367 	tp->t_toe = NULL;
368 	tp->t_flags &= ~TF_TOE;
369 	toep->flags &= ~TPF_ATTACHED;
370 
371 	if (!(toep->flags & TPF_CPL_PENDING))
372 		release_offload_resources(toep);
373 }
374 
375 /*
376  * setsockopt handler.
377  */
378 static void
379 t4_ctloutput(struct toedev *tod, struct tcpcb *tp, int dir, int name)
380 {
381 	struct adapter *sc = tod->tod_softc;
382 	struct toepcb *toep = tp->t_toe;
383 
384 	if (dir == SOPT_GET)
385 		return;
386 
387 	CTR4(KTR_CXGBE, "%s: tp %p, dir %u, name %u", __func__, tp, dir, name);
388 
389 	switch (name) {
390 	case TCP_NODELAY:
391 		if (tp->t_state != TCPS_ESTABLISHED)
392 			break;
393 		t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_T_FLAGS,
394 		    V_TF_NAGLE(1), V_TF_NAGLE(tp->t_flags & TF_NODELAY ? 0 : 1),
395 		    0, 0);
396 		break;
397 	default:
398 		break;
399 	}
400 }
401 
402 static inline int
403 get_tcb_bit(u_char *tcb, int bit)
404 {
405 	int ix, shift;
406 
407 	ix = 127 - (bit >> 3);
408 	shift = bit & 0x7;
409 
410 	return ((tcb[ix] >> shift) & 1);
411 }
412 
413 static inline uint64_t
414 get_tcb_bits(u_char *tcb, int hi, int lo)
415 {
416 	uint64_t rc = 0;
417 
418 	while (hi >= lo) {
419 		rc = (rc << 1) | get_tcb_bit(tcb, hi);
420 		--hi;
421 	}
422 
423 	return (rc);
424 }
425 
426 /*
427  * Called by the kernel to allow the TOE driver to "refine" values filled up in
428  * the tcp_info for an offloaded connection.
429  */
430 static void
431 t4_tcp_info(struct toedev *tod, struct tcpcb *tp, struct tcp_info *ti)
432 {
433 	int i, j, k, rc;
434 	struct adapter *sc = tod->tod_softc;
435 	struct toepcb *toep = tp->t_toe;
436 	uint32_t addr, v;
437 	uint32_t buf[TCB_SIZE / sizeof(uint32_t)];
438 	u_char *tcb, tmp;
439 
440 	INP_WLOCK_ASSERT(tp->t_inpcb);
441 	MPASS(ti != NULL);
442 
443 	addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE) + toep->tid * TCB_SIZE;
444 	rc = read_via_memwin(sc, 2, addr, &buf[0], TCB_SIZE);
445 	if (rc != 0)
446 		return;
447 
448 	tcb = (u_char *)&buf[0];
449 	for (i = 0, j = TCB_SIZE - 16; i < j; i += 16, j -= 16) {
450 		for (k = 0; k < 16; k++) {
451 			tmp = tcb[i + k];
452 			tcb[i + k] = tcb[j + k];
453 			tcb[j + k] = tmp;
454 		}
455 	}
456 
457 	ti->tcpi_state = get_tcb_bits(tcb, 115, 112);
458 
459 	v = get_tcb_bits(tcb, 271, 256);
460 	ti->tcpi_rtt = tcp_ticks_to_us(sc, v);
461 
462 	v = get_tcb_bits(tcb, 287, 272);
463 	ti->tcpi_rttvar = tcp_ticks_to_us(sc, v);
464 
465 	ti->tcpi_snd_ssthresh = get_tcb_bits(tcb, 487, 460);
466 	ti->tcpi_snd_cwnd = get_tcb_bits(tcb, 459, 432);
467 	ti->tcpi_rcv_nxt = get_tcb_bits(tcb, 553, 522);
468 
469 	ti->tcpi_snd_nxt = get_tcb_bits(tcb, 319, 288) -
470 	    get_tcb_bits(tcb, 375, 348);
471 
472 	/* Receive window being advertised by us. */
473 	ti->tcpi_rcv_space = get_tcb_bits(tcb, 581, 554);
474 
475 	/* Send window ceiling. */
476 	v = get_tcb_bits(tcb, 159, 144) << get_tcb_bits(tcb, 131, 128);
477 	ti->tcpi_snd_wnd = min(v, ti->tcpi_snd_cwnd);
478 }
479 
480 /*
481  * The TOE driver will not receive any more CPLs for the tid associated with the
482  * toepcb; release the hold on the inpcb.
483  */
484 void
485 final_cpl_received(struct toepcb *toep)
486 {
487 	struct inpcb *inp = toep->inp;
488 
489 	KASSERT(inp != NULL, ("%s: inp is NULL", __func__));
490 	INP_WLOCK_ASSERT(inp);
491 	KASSERT(toep->flags & TPF_CPL_PENDING,
492 	    ("%s: CPL not pending already?", __func__));
493 
494 	CTR6(KTR_CXGBE, "%s: tid %d, toep %p (0x%x), inp %p (0x%x)",
495 	    __func__, toep->tid, toep, toep->flags, inp, inp->inp_flags);
496 
497 	if (toep->ulp_mode == ULP_MODE_TCPDDP)
498 		release_ddp_resources(toep);
499 	toep->inp = NULL;
500 	toep->flags &= ~TPF_CPL_PENDING;
501 	mbufq_drain(&toep->ulp_pdu_reclaimq);
502 
503 	if (!(toep->flags & TPF_ATTACHED))
504 		release_offload_resources(toep);
505 
506 	if (!in_pcbrele_wlocked(inp))
507 		INP_WUNLOCK(inp);
508 }
509 
510 void
511 insert_tid(struct adapter *sc, int tid, void *ctx, int ntids)
512 {
513 	struct tid_info *t = &sc->tids;
514 
515 	t->tid_tab[tid] = ctx;
516 	atomic_add_int(&t->tids_in_use, ntids);
517 }
518 
519 void *
520 lookup_tid(struct adapter *sc, int tid)
521 {
522 	struct tid_info *t = &sc->tids;
523 
524 	return (t->tid_tab[tid]);
525 }
526 
527 void
528 update_tid(struct adapter *sc, int tid, void *ctx)
529 {
530 	struct tid_info *t = &sc->tids;
531 
532 	t->tid_tab[tid] = ctx;
533 }
534 
535 void
536 remove_tid(struct adapter *sc, int tid, int ntids)
537 {
538 	struct tid_info *t = &sc->tids;
539 
540 	t->tid_tab[tid] = NULL;
541 	atomic_subtract_int(&t->tids_in_use, ntids);
542 }
543 
544 void
545 release_tid(struct adapter *sc, int tid, struct sge_wrq *ctrlq)
546 {
547 	struct wrqe *wr;
548 	struct cpl_tid_release *req;
549 
550 	wr = alloc_wrqe(sizeof(*req), ctrlq);
551 	if (wr == NULL) {
552 		queue_tid_release(sc, tid);	/* defer */
553 		return;
554 	}
555 	req = wrtod(wr);
556 
557 	INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid);
558 
559 	t4_wrq_tx(sc, wr);
560 }
561 
562 static void
563 queue_tid_release(struct adapter *sc, int tid)
564 {
565 
566 	CXGBE_UNIMPLEMENTED("deferred tid release");
567 }
568 
569 /*
570  * What mtu_idx to use, given a 4-tuple.  Note that both s->mss and tcp_mssopt
571  * have the MSS that we should advertise in our SYN.  Advertised MSS doesn't
572  * account for any TCP options so the effective MSS (only payload, no headers or
573  * options) could be different.  We fill up tp->t_maxseg with the effective MSS
574  * at the end of the 3-way handshake.
575  */
576 int
577 find_best_mtu_idx(struct adapter *sc, struct in_conninfo *inc,
578     struct offload_settings *s)
579 {
580 	unsigned short *mtus = &sc->params.mtus[0];
581 	int i, mss, mtu;
582 
583 	MPASS(inc != NULL);
584 
585 	mss = s->mss > 0 ? s->mss : tcp_mssopt(inc);
586 	if (inc->inc_flags & INC_ISIPV6)
587 		mtu = mss + sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
588 	else
589 		mtu = mss + sizeof(struct ip) + sizeof(struct tcphdr);
590 
591 	for (i = 0; i < NMTUS - 1 && mtus[i + 1] <= mtu; i++)
592 		continue;
593 
594 	return (i);
595 }
596 
597 /*
598  * Determine the receive window size for a socket.
599  */
600 u_long
601 select_rcv_wnd(struct socket *so)
602 {
603 	unsigned long wnd;
604 
605 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
606 
607 	wnd = sbspace(&so->so_rcv);
608 	if (wnd < MIN_RCV_WND)
609 		wnd = MIN_RCV_WND;
610 
611 	return min(wnd, MAX_RCV_WND);
612 }
613 
614 int
615 select_rcv_wscale(void)
616 {
617 	int wscale = 0;
618 	unsigned long space = sb_max;
619 
620 	if (space > MAX_RCV_WND)
621 		space = MAX_RCV_WND;
622 
623 	while (wscale < TCP_MAX_WINSHIFT && (TCP_MAXWIN << wscale) < space)
624 		wscale++;
625 
626 	return (wscale);
627 }
628 
629 /*
630  * socket so could be a listening socket too.
631  */
632 uint64_t
633 calc_opt0(struct socket *so, struct vi_info *vi, struct l2t_entry *e,
634     int mtu_idx, int rscale, int rx_credits, int ulp_mode,
635     struct offload_settings *s)
636 {
637 	int keepalive;
638 	uint64_t opt0;
639 
640 	MPASS(so != NULL);
641 	MPASS(vi != NULL);
642 	KASSERT(rx_credits <= M_RCV_BUFSIZ,
643 	    ("%s: rcv_bufsiz too high", __func__));
644 
645 	opt0 = F_TCAM_BYPASS | V_WND_SCALE(rscale) | V_MSS_IDX(mtu_idx) |
646 	    V_ULP_MODE(ulp_mode) | V_RCV_BUFSIZ(rx_credits) |
647 	    V_L2T_IDX(e->idx) | V_SMAC_SEL(vi->smt_idx) |
648 	    V_TX_CHAN(vi->pi->tx_chan);
649 
650 	keepalive = tcp_always_keepalive || so_options_get(so) & SO_KEEPALIVE;
651 	opt0 |= V_KEEP_ALIVE(keepalive != 0);
652 
653 	if (s->nagle < 0) {
654 		struct inpcb *inp = sotoinpcb(so);
655 		struct tcpcb *tp = intotcpcb(inp);
656 
657 		opt0 |= V_NAGLE((tp->t_flags & TF_NODELAY) == 0);
658 	} else
659 		opt0 |= V_NAGLE(s->nagle != 0);
660 
661 	return htobe64(opt0);
662 }
663 
664 uint64_t
665 select_ntuple(struct vi_info *vi, struct l2t_entry *e)
666 {
667 	struct adapter *sc = vi->pi->adapter;
668 	struct tp_params *tp = &sc->params.tp;
669 	uint16_t viid = vi->viid;
670 	uint64_t ntuple = 0;
671 
672 	/*
673 	 * Initialize each of the fields which we care about which are present
674 	 * in the Compressed Filter Tuple.
675 	 */
676 	if (tp->vlan_shift >= 0 && e->vlan != CPL_L2T_VLAN_NONE)
677 		ntuple |= (uint64_t)(F_FT_VLAN_VLD | e->vlan) << tp->vlan_shift;
678 
679 	if (tp->port_shift >= 0)
680 		ntuple |= (uint64_t)e->lport << tp->port_shift;
681 
682 	if (tp->protocol_shift >= 0)
683 		ntuple |= (uint64_t)IPPROTO_TCP << tp->protocol_shift;
684 
685 	if (tp->vnic_shift >= 0) {
686 		uint32_t vf = G_FW_VIID_VIN(viid);
687 		uint32_t pf = G_FW_VIID_PFN(viid);
688 		uint32_t vld = G_FW_VIID_VIVLD(viid);
689 
690 		ntuple |= (uint64_t)(V_FT_VNID_ID_VF(vf) | V_FT_VNID_ID_PF(pf) |
691 		    V_FT_VNID_ID_VLD(vld)) << tp->vnic_shift;
692 	}
693 
694 	if (is_t4(sc))
695 		return (htobe32((uint32_t)ntuple));
696 	else
697 		return (htobe64(V_FILTER_TUPLE(ntuple)));
698 }
699 
700 static int
701 is_tls_sock(struct socket *so, struct adapter *sc)
702 {
703 	struct inpcb *inp = sotoinpcb(so);
704 	int i, rc;
705 
706 	/* XXX: Eventually add a SO_WANT_TLS socket option perhaps? */
707 	rc = 0;
708 	ADAPTER_LOCK(sc);
709 	for (i = 0; i < sc->tt.num_tls_rx_ports; i++) {
710 		if (inp->inp_lport == htons(sc->tt.tls_rx_ports[i]) ||
711 		    inp->inp_fport == htons(sc->tt.tls_rx_ports[i])) {
712 			rc = 1;
713 			break;
714 		}
715 	}
716 	ADAPTER_UNLOCK(sc);
717 	return (rc);
718 }
719 
720 int
721 select_ulp_mode(struct socket *so, struct adapter *sc,
722     struct offload_settings *s)
723 {
724 
725 	if (can_tls_offload(sc) &&
726 	    (s->tls > 0 || (s->tls < 0 && is_tls_sock(so, sc))))
727 		return (ULP_MODE_TLS);
728 	else if (s->ddp > 0 ||
729 	    (s->ddp < 0 && sc->tt.ddp && (so->so_options & SO_NO_DDP) == 0))
730 		return (ULP_MODE_TCPDDP);
731 	else
732 		return (ULP_MODE_NONE);
733 }
734 
735 void
736 set_ulp_mode(struct toepcb *toep, int ulp_mode)
737 {
738 
739 	CTR4(KTR_CXGBE, "%s: toep %p (tid %d) ulp_mode %d",
740 	    __func__, toep, toep->tid, ulp_mode);
741 	toep->ulp_mode = ulp_mode;
742 	tls_init_toep(toep);
743 	if (toep->ulp_mode == ULP_MODE_TCPDDP)
744 		ddp_init_toep(toep);
745 }
746 
747 int
748 negative_advice(int status)
749 {
750 
751 	return (status == CPL_ERR_RTX_NEG_ADVICE ||
752 	    status == CPL_ERR_PERSIST_NEG_ADVICE ||
753 	    status == CPL_ERR_KEEPALV_NEG_ADVICE);
754 }
755 
756 static int
757 alloc_tid_tabs(struct tid_info *t)
758 {
759 	size_t size;
760 	unsigned int i;
761 
762 	size = t->ntids * sizeof(*t->tid_tab) +
763 	    t->natids * sizeof(*t->atid_tab) +
764 	    t->nstids * sizeof(*t->stid_tab);
765 
766 	t->tid_tab = malloc(size, M_CXGBE, M_ZERO | M_NOWAIT);
767 	if (t->tid_tab == NULL)
768 		return (ENOMEM);
769 
770 	mtx_init(&t->atid_lock, "atid lock", NULL, MTX_DEF);
771 	t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
772 	t->afree = t->atid_tab;
773 	t->atids_in_use = 0;
774 	for (i = 1; i < t->natids; i++)
775 		t->atid_tab[i - 1].next = &t->atid_tab[i];
776 	t->atid_tab[t->natids - 1].next = NULL;
777 
778 	mtx_init(&t->stid_lock, "stid lock", NULL, MTX_DEF);
779 	t->stid_tab = (struct listen_ctx **)&t->atid_tab[t->natids];
780 	t->stids_in_use = 0;
781 	TAILQ_INIT(&t->stids);
782 	t->nstids_free_head = t->nstids;
783 
784 	atomic_store_rel_int(&t->tids_in_use, 0);
785 
786 	return (0);
787 }
788 
789 static void
790 free_tid_tabs(struct tid_info *t)
791 {
792 	KASSERT(t->tids_in_use == 0,
793 	    ("%s: %d tids still in use.", __func__, t->tids_in_use));
794 	KASSERT(t->atids_in_use == 0,
795 	    ("%s: %d atids still in use.", __func__, t->atids_in_use));
796 	KASSERT(t->stids_in_use == 0,
797 	    ("%s: %d tids still in use.", __func__, t->stids_in_use));
798 
799 	free(t->tid_tab, M_CXGBE);
800 	t->tid_tab = NULL;
801 
802 	if (mtx_initialized(&t->atid_lock))
803 		mtx_destroy(&t->atid_lock);
804 	if (mtx_initialized(&t->stid_lock))
805 		mtx_destroy(&t->stid_lock);
806 }
807 
808 static int
809 add_lip(struct adapter *sc, struct in6_addr *lip)
810 {
811         struct fw_clip_cmd c;
812 
813 	ASSERT_SYNCHRONIZED_OP(sc);
814 	/* mtx_assert(&td->clip_table_lock, MA_OWNED); */
815 
816         memset(&c, 0, sizeof(c));
817 	c.op_to_write = htonl(V_FW_CMD_OP(FW_CLIP_CMD) | F_FW_CMD_REQUEST |
818 	    F_FW_CMD_WRITE);
819         c.alloc_to_len16 = htonl(F_FW_CLIP_CMD_ALLOC | FW_LEN16(c));
820         c.ip_hi = *(uint64_t *)&lip->s6_addr[0];
821         c.ip_lo = *(uint64_t *)&lip->s6_addr[8];
822 
823 	return (-t4_wr_mbox_ns(sc, sc->mbox, &c, sizeof(c), &c));
824 }
825 
826 static int
827 delete_lip(struct adapter *sc, struct in6_addr *lip)
828 {
829 	struct fw_clip_cmd c;
830 
831 	ASSERT_SYNCHRONIZED_OP(sc);
832 	/* mtx_assert(&td->clip_table_lock, MA_OWNED); */
833 
834 	memset(&c, 0, sizeof(c));
835 	c.op_to_write = htonl(V_FW_CMD_OP(FW_CLIP_CMD) | F_FW_CMD_REQUEST |
836 	    F_FW_CMD_READ);
837         c.alloc_to_len16 = htonl(F_FW_CLIP_CMD_FREE | FW_LEN16(c));
838         c.ip_hi = *(uint64_t *)&lip->s6_addr[0];
839         c.ip_lo = *(uint64_t *)&lip->s6_addr[8];
840 
841 	return (-t4_wr_mbox_ns(sc, sc->mbox, &c, sizeof(c), &c));
842 }
843 
844 static struct clip_entry *
845 search_lip(struct tom_data *td, struct in6_addr *lip)
846 {
847 	struct clip_entry *ce;
848 
849 	mtx_assert(&td->clip_table_lock, MA_OWNED);
850 
851 	TAILQ_FOREACH(ce, &td->clip_table, link) {
852 		if (IN6_ARE_ADDR_EQUAL(&ce->lip, lip))
853 			return (ce);
854 	}
855 
856 	return (NULL);
857 }
858 
859 struct clip_entry *
860 hold_lip(struct tom_data *td, struct in6_addr *lip, struct clip_entry *ce)
861 {
862 
863 	mtx_lock(&td->clip_table_lock);
864 	if (ce == NULL)
865 		ce = search_lip(td, lip);
866 	if (ce != NULL)
867 		ce->refcount++;
868 	mtx_unlock(&td->clip_table_lock);
869 
870 	return (ce);
871 }
872 
873 void
874 release_lip(struct tom_data *td, struct clip_entry *ce)
875 {
876 
877 	mtx_lock(&td->clip_table_lock);
878 	KASSERT(search_lip(td, &ce->lip) == ce,
879 	    ("%s: CLIP entry %p p not in CLIP table.", __func__, ce));
880 	KASSERT(ce->refcount > 0,
881 	    ("%s: CLIP entry %p has refcount 0", __func__, ce));
882 	--ce->refcount;
883 	mtx_unlock(&td->clip_table_lock);
884 }
885 
886 static void
887 init_clip_table(struct adapter *sc, struct tom_data *td)
888 {
889 
890 	ASSERT_SYNCHRONIZED_OP(sc);
891 
892 	mtx_init(&td->clip_table_lock, "CLIP table lock", NULL, MTX_DEF);
893 	TAILQ_INIT(&td->clip_table);
894 	td->clip_gen = -1;
895 
896 	update_clip_table(sc, td);
897 }
898 
899 static void
900 update_clip(struct adapter *sc, void *arg __unused)
901 {
902 
903 	if (begin_synchronized_op(sc, NULL, HOLD_LOCK, "t4tomuc"))
904 		return;
905 
906 	if (uld_active(sc, ULD_TOM))
907 		update_clip_table(sc, sc->tom_softc);
908 
909 	end_synchronized_op(sc, LOCK_HELD);
910 }
911 
912 static void
913 t4_clip_task(void *arg, int count)
914 {
915 
916 	t4_iterate(update_clip, NULL);
917 }
918 
919 static void
920 update_clip_table(struct adapter *sc, struct tom_data *td)
921 {
922 	struct rm_priotracker in6_ifa_tracker;
923 	struct in6_ifaddr *ia;
924 	struct in6_addr *lip, tlip;
925 	struct clip_head stale;
926 	struct clip_entry *ce, *ce_temp;
927 	struct vi_info *vi;
928 	int rc, gen, i, j;
929 	uintptr_t last_vnet;
930 
931 	ASSERT_SYNCHRONIZED_OP(sc);
932 
933 	IN6_IFADDR_RLOCK(&in6_ifa_tracker);
934 	mtx_lock(&td->clip_table_lock);
935 
936 	gen = atomic_load_acq_int(&in6_ifaddr_gen);
937 	if (gen == td->clip_gen)
938 		goto done;
939 
940 	TAILQ_INIT(&stale);
941 	TAILQ_CONCAT(&stale, &td->clip_table, link);
942 
943 	/*
944 	 * last_vnet optimizes the common cases where all if_vnet = NULL (no
945 	 * VIMAGE) or all if_vnet = vnet0.
946 	 */
947 	last_vnet = (uintptr_t)(-1);
948 	for_each_port(sc, i)
949 	for_each_vi(sc->port[i], j, vi) {
950 		if (last_vnet == (uintptr_t)vi->ifp->if_vnet)
951 			continue;
952 
953 		/* XXX: races with if_vmove */
954 		CURVNET_SET(vi->ifp->if_vnet);
955 		TAILQ_FOREACH(ia, &V_in6_ifaddrhead, ia_link) {
956 			lip = &ia->ia_addr.sin6_addr;
957 
958 			KASSERT(!IN6_IS_ADDR_MULTICAST(lip),
959 			    ("%s: mcast address in in6_ifaddr list", __func__));
960 
961 			if (IN6_IS_ADDR_LOOPBACK(lip))
962 				continue;
963 			if (IN6_IS_SCOPE_EMBED(lip)) {
964 				/* Remove the embedded scope */
965 				tlip = *lip;
966 				lip = &tlip;
967 				in6_clearscope(lip);
968 			}
969 			/*
970 			 * XXX: how to weed out the link local address for the
971 			 * loopback interface?  It's fe80::1 usually (always?).
972 			 */
973 
974 			/*
975 			 * If it's in the main list then we already know it's
976 			 * not stale.
977 			 */
978 			TAILQ_FOREACH(ce, &td->clip_table, link) {
979 				if (IN6_ARE_ADDR_EQUAL(&ce->lip, lip))
980 					goto next;
981 			}
982 
983 			/*
984 			 * If it's in the stale list we should move it to the
985 			 * main list.
986 			 */
987 			TAILQ_FOREACH(ce, &stale, link) {
988 				if (IN6_ARE_ADDR_EQUAL(&ce->lip, lip)) {
989 					TAILQ_REMOVE(&stale, ce, link);
990 					TAILQ_INSERT_TAIL(&td->clip_table, ce,
991 					    link);
992 					goto next;
993 				}
994 			}
995 
996 			/* A new IP6 address; add it to the CLIP table */
997 			ce = malloc(sizeof(*ce), M_CXGBE, M_NOWAIT);
998 			memcpy(&ce->lip, lip, sizeof(ce->lip));
999 			ce->refcount = 0;
1000 			rc = add_lip(sc, lip);
1001 			if (rc == 0)
1002 				TAILQ_INSERT_TAIL(&td->clip_table, ce, link);
1003 			else {
1004 				char ip[INET6_ADDRSTRLEN];
1005 
1006 				inet_ntop(AF_INET6, &ce->lip, &ip[0],
1007 				    sizeof(ip));
1008 				log(LOG_ERR, "%s: could not add %s (%d)\n",
1009 				    __func__, ip, rc);
1010 				free(ce, M_CXGBE);
1011 			}
1012 next:
1013 			continue;
1014 		}
1015 		CURVNET_RESTORE();
1016 		last_vnet = (uintptr_t)vi->ifp->if_vnet;
1017 	}
1018 
1019 	/*
1020 	 * Remove stale addresses (those no longer in V_in6_ifaddrhead) that are
1021 	 * no longer referenced by the driver.
1022 	 */
1023 	TAILQ_FOREACH_SAFE(ce, &stale, link, ce_temp) {
1024 		if (ce->refcount == 0) {
1025 			rc = delete_lip(sc, &ce->lip);
1026 			if (rc == 0) {
1027 				TAILQ_REMOVE(&stale, ce, link);
1028 				free(ce, M_CXGBE);
1029 			} else {
1030 				char ip[INET6_ADDRSTRLEN];
1031 
1032 				inet_ntop(AF_INET6, &ce->lip, &ip[0],
1033 				    sizeof(ip));
1034 				log(LOG_ERR, "%s: could not delete %s (%d)\n",
1035 				    __func__, ip, rc);
1036 			}
1037 		}
1038 	}
1039 	/* The ones that are still referenced need to stay in the CLIP table */
1040 	TAILQ_CONCAT(&td->clip_table, &stale, link);
1041 
1042 	td->clip_gen = gen;
1043 done:
1044 	mtx_unlock(&td->clip_table_lock);
1045 	IN6_IFADDR_RUNLOCK(&in6_ifa_tracker);
1046 }
1047 
1048 static void
1049 destroy_clip_table(struct adapter *sc, struct tom_data *td)
1050 {
1051 	struct clip_entry *ce, *ce_temp;
1052 
1053 	if (mtx_initialized(&td->clip_table_lock)) {
1054 		mtx_lock(&td->clip_table_lock);
1055 		TAILQ_FOREACH_SAFE(ce, &td->clip_table, link, ce_temp) {
1056 			KASSERT(ce->refcount == 0,
1057 			    ("%s: CLIP entry %p still in use (%d)", __func__,
1058 			    ce, ce->refcount));
1059 			TAILQ_REMOVE(&td->clip_table, ce, link);
1060 			delete_lip(sc, &ce->lip);
1061 			free(ce, M_CXGBE);
1062 		}
1063 		mtx_unlock(&td->clip_table_lock);
1064 		mtx_destroy(&td->clip_table_lock);
1065 	}
1066 }
1067 
1068 static void
1069 free_tom_data(struct adapter *sc, struct tom_data *td)
1070 {
1071 
1072 	ASSERT_SYNCHRONIZED_OP(sc);
1073 
1074 	KASSERT(TAILQ_EMPTY(&td->toep_list),
1075 	    ("%s: TOE PCB list is not empty.", __func__));
1076 	KASSERT(td->lctx_count == 0,
1077 	    ("%s: lctx hash table is not empty.", __func__));
1078 
1079 	tls_free_kmap(td);
1080 	t4_free_ppod_region(&td->pr);
1081 	destroy_clip_table(sc, td);
1082 
1083 	if (td->listen_mask != 0)
1084 		hashdestroy(td->listen_hash, M_CXGBE, td->listen_mask);
1085 
1086 	if (mtx_initialized(&td->unsent_wr_lock))
1087 		mtx_destroy(&td->unsent_wr_lock);
1088 	if (mtx_initialized(&td->lctx_hash_lock))
1089 		mtx_destroy(&td->lctx_hash_lock);
1090 	if (mtx_initialized(&td->toep_list_lock))
1091 		mtx_destroy(&td->toep_list_lock);
1092 
1093 	free_tid_tabs(&sc->tids);
1094 	free(td, M_CXGBE);
1095 }
1096 
1097 static char *
1098 prepare_pkt(int open_type, uint16_t vtag, struct inpcb *inp, int *pktlen,
1099     int *buflen)
1100 {
1101 	char *pkt;
1102 	struct tcphdr *th;
1103 	int ipv6, len;
1104 	const int maxlen =
1105 	    max(sizeof(struct ether_header), sizeof(struct ether_vlan_header)) +
1106 	    max(sizeof(struct ip), sizeof(struct ip6_hdr)) +
1107 	    sizeof(struct tcphdr);
1108 
1109 	MPASS(open_type == OPEN_TYPE_ACTIVE || open_type == OPEN_TYPE_LISTEN);
1110 
1111 	pkt = malloc(maxlen, M_CXGBE, M_ZERO | M_NOWAIT);
1112 	if (pkt == NULL)
1113 		return (NULL);
1114 
1115 	ipv6 = inp->inp_vflag & INP_IPV6;
1116 	len = 0;
1117 
1118 	if (vtag == 0xffff) {
1119 		struct ether_header *eh = (void *)pkt;
1120 
1121 		if (ipv6)
1122 			eh->ether_type = htons(ETHERTYPE_IPV6);
1123 		else
1124 			eh->ether_type = htons(ETHERTYPE_IP);
1125 
1126 		len += sizeof(*eh);
1127 	} else {
1128 		struct ether_vlan_header *evh = (void *)pkt;
1129 
1130 		evh->evl_encap_proto = htons(ETHERTYPE_VLAN);
1131 		evh->evl_tag = htons(vtag);
1132 		if (ipv6)
1133 			evh->evl_proto = htons(ETHERTYPE_IPV6);
1134 		else
1135 			evh->evl_proto = htons(ETHERTYPE_IP);
1136 
1137 		len += sizeof(*evh);
1138 	}
1139 
1140 	if (ipv6) {
1141 		struct ip6_hdr *ip6 = (void *)&pkt[len];
1142 
1143 		ip6->ip6_vfc = IPV6_VERSION;
1144 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
1145 		ip6->ip6_nxt = IPPROTO_TCP;
1146 		if (open_type == OPEN_TYPE_ACTIVE) {
1147 			ip6->ip6_src = inp->in6p_laddr;
1148 			ip6->ip6_dst = inp->in6p_faddr;
1149 		} else if (open_type == OPEN_TYPE_LISTEN) {
1150 			ip6->ip6_src = inp->in6p_laddr;
1151 			ip6->ip6_dst = ip6->ip6_src;
1152 		}
1153 
1154 		len += sizeof(*ip6);
1155 	} else {
1156 		struct ip *ip = (void *)&pkt[len];
1157 
1158 		ip->ip_v = IPVERSION;
1159 		ip->ip_hl = sizeof(*ip) >> 2;
1160 		ip->ip_tos = inp->inp_ip_tos;
1161 		ip->ip_len = htons(sizeof(struct ip) + sizeof(struct tcphdr));
1162 		ip->ip_ttl = inp->inp_ip_ttl;
1163 		ip->ip_p = IPPROTO_TCP;
1164 		if (open_type == OPEN_TYPE_ACTIVE) {
1165 			ip->ip_src = inp->inp_laddr;
1166 			ip->ip_dst = inp->inp_faddr;
1167 		} else if (open_type == OPEN_TYPE_LISTEN) {
1168 			ip->ip_src = inp->inp_laddr;
1169 			ip->ip_dst = ip->ip_src;
1170 		}
1171 
1172 		len += sizeof(*ip);
1173 	}
1174 
1175 	th = (void *)&pkt[len];
1176 	if (open_type == OPEN_TYPE_ACTIVE) {
1177 		th->th_sport = inp->inp_lport;	/* network byte order already */
1178 		th->th_dport = inp->inp_fport;	/* ditto */
1179 	} else if (open_type == OPEN_TYPE_LISTEN) {
1180 		th->th_sport = inp->inp_lport;	/* network byte order already */
1181 		th->th_dport = th->th_sport;
1182 	}
1183 	len += sizeof(th);
1184 
1185 	*pktlen = *buflen = len;
1186 	return (pkt);
1187 }
1188 
1189 const struct offload_settings *
1190 lookup_offload_policy(struct adapter *sc, int open_type, struct mbuf *m,
1191     uint16_t vtag, struct inpcb *inp)
1192 {
1193 	const struct t4_offload_policy *op;
1194 	char *pkt;
1195 	struct offload_rule *r;
1196 	int i, matched, pktlen, buflen;
1197 	static const struct offload_settings allow_offloading_settings = {
1198 		.offload = 1,
1199 		.rx_coalesce = -1,
1200 		.cong_algo = -1,
1201 		.sched_class = -1,
1202 		.tstamp = -1,
1203 		.sack = -1,
1204 		.nagle = -1,
1205 		.ecn = -1,
1206 		.ddp = -1,
1207 		.tls = -1,
1208 		.txq = -1,
1209 		.rxq = -1,
1210 		.mss = -1,
1211 	};
1212 	static const struct offload_settings disallow_offloading_settings = {
1213 		.offload = 0,
1214 		/* rest is irrelevant when offload is off. */
1215 	};
1216 
1217 	rw_assert(&sc->policy_lock, RA_LOCKED);
1218 
1219 	/*
1220 	 * If there's no Connection Offloading Policy attached to the device
1221 	 * then we need to return a default static policy.  If
1222 	 * "cop_managed_offloading" is true, then we need to disallow
1223 	 * offloading until a COP is attached to the device.  Otherwise we
1224 	 * allow offloading ...
1225 	 */
1226 	op = sc->policy;
1227 	if (op == NULL) {
1228 		if (sc->tt.cop_managed_offloading)
1229 			return (&disallow_offloading_settings);
1230 		else
1231 			return (&allow_offloading_settings);
1232 	}
1233 
1234 	switch (open_type) {
1235 	case OPEN_TYPE_ACTIVE:
1236 	case OPEN_TYPE_LISTEN:
1237 		pkt = prepare_pkt(open_type, vtag, inp, &pktlen, &buflen);
1238 		break;
1239 	case OPEN_TYPE_PASSIVE:
1240 		MPASS(m != NULL);
1241 		pkt = mtod(m, char *);
1242 		MPASS(*pkt == CPL_PASS_ACCEPT_REQ);
1243 		pkt += sizeof(struct cpl_pass_accept_req);
1244 		pktlen = m->m_pkthdr.len - sizeof(struct cpl_pass_accept_req);
1245 		buflen = m->m_len - sizeof(struct cpl_pass_accept_req);
1246 		break;
1247 	default:
1248 		MPASS(0);
1249 		return (&disallow_offloading_settings);
1250 	}
1251 
1252 	if (pkt == NULL || pktlen == 0 || buflen == 0)
1253 		return (&disallow_offloading_settings);
1254 
1255 	r = &op->rule[0];
1256 	for (i = 0; i < op->nrules; i++, r++) {
1257 		if (r->open_type != open_type &&
1258 		    r->open_type != OPEN_TYPE_DONTCARE) {
1259 			continue;
1260 		}
1261 		matched = bpf_filter(r->bpf_prog.bf_insns, pkt, pktlen, buflen);
1262 		if (matched)
1263 			break;
1264 	}
1265 
1266 	if (open_type == OPEN_TYPE_ACTIVE || open_type == OPEN_TYPE_LISTEN)
1267 		free(pkt, M_CXGBE);
1268 
1269 	return (matched ? &r->settings : &disallow_offloading_settings);
1270 }
1271 
1272 static void
1273 reclaim_wr_resources(void *arg, int count)
1274 {
1275 	struct tom_data *td = arg;
1276 	STAILQ_HEAD(, wrqe) twr_list = STAILQ_HEAD_INITIALIZER(twr_list);
1277 	struct cpl_act_open_req *cpl;
1278 	u_int opcode, atid;
1279 	struct wrqe *wr;
1280 	struct adapter *sc;
1281 
1282 	mtx_lock(&td->unsent_wr_lock);
1283 	STAILQ_SWAP(&td->unsent_wr_list, &twr_list, wrqe);
1284 	mtx_unlock(&td->unsent_wr_lock);
1285 
1286 	while ((wr = STAILQ_FIRST(&twr_list)) != NULL) {
1287 		STAILQ_REMOVE_HEAD(&twr_list, link);
1288 
1289 		cpl = wrtod(wr);
1290 		opcode = GET_OPCODE(cpl);
1291 
1292 		switch (opcode) {
1293 		case CPL_ACT_OPEN_REQ:
1294 		case CPL_ACT_OPEN_REQ6:
1295 			atid = G_TID_TID(be32toh(OPCODE_TID(cpl)));
1296 			sc = td_adapter(td);
1297 
1298 			CTR2(KTR_CXGBE, "%s: atid %u ", __func__, atid);
1299 			act_open_failure_cleanup(sc, atid, EHOSTUNREACH);
1300 			free(wr, M_CXGBE);
1301 			break;
1302 		default:
1303 			log(LOG_ERR, "%s: leaked work request %p, wr_len %d, "
1304 			    "opcode %x\n", __func__, wr, wr->wr_len, opcode);
1305 			/* WR not freed here; go look at it with a debugger.  */
1306 		}
1307 	}
1308 }
1309 
1310 /*
1311  * Ground control to Major TOM
1312  * Commencing countdown, engines on
1313  */
1314 static int
1315 t4_tom_activate(struct adapter *sc)
1316 {
1317 	struct tom_data *td;
1318 	struct toedev *tod;
1319 	struct vi_info *vi;
1320 	struct sge_ofld_rxq *ofld_rxq;
1321 	int i, j, rc, v;
1322 
1323 	ASSERT_SYNCHRONIZED_OP(sc);
1324 
1325 	/* per-adapter softc for TOM */
1326 	td = malloc(sizeof(*td), M_CXGBE, M_ZERO | M_NOWAIT);
1327 	if (td == NULL)
1328 		return (ENOMEM);
1329 
1330 	/* List of TOE PCBs and associated lock */
1331 	mtx_init(&td->toep_list_lock, "PCB list lock", NULL, MTX_DEF);
1332 	TAILQ_INIT(&td->toep_list);
1333 
1334 	/* Listen context */
1335 	mtx_init(&td->lctx_hash_lock, "lctx hash lock", NULL, MTX_DEF);
1336 	td->listen_hash = hashinit_flags(LISTEN_HASH_SIZE, M_CXGBE,
1337 	    &td->listen_mask, HASH_NOWAIT);
1338 
1339 	/* List of WRs for which L2 resolution failed */
1340 	mtx_init(&td->unsent_wr_lock, "Unsent WR list lock", NULL, MTX_DEF);
1341 	STAILQ_INIT(&td->unsent_wr_list);
1342 	TASK_INIT(&td->reclaim_wr_resources, 0, reclaim_wr_resources, td);
1343 
1344 	/* TID tables */
1345 	rc = alloc_tid_tabs(&sc->tids);
1346 	if (rc != 0)
1347 		goto done;
1348 
1349 	rc = t4_init_ppod_region(&td->pr, &sc->vres.ddp,
1350 	    t4_read_reg(sc, A_ULP_RX_TDDP_PSZ), "TDDP page pods");
1351 	if (rc != 0)
1352 		goto done;
1353 	t4_set_reg_field(sc, A_ULP_RX_TDDP_TAGMASK,
1354 	    V_TDDPTAGMASK(M_TDDPTAGMASK), td->pr.pr_tag_mask);
1355 
1356 	/* CLIP table for IPv6 offload */
1357 	init_clip_table(sc, td);
1358 
1359 	if (sc->vres.key.size != 0) {
1360 		rc = tls_init_kmap(sc, td);
1361 		if (rc != 0)
1362 			goto done;
1363 	}
1364 
1365 	/* toedev ops */
1366 	tod = &td->tod;
1367 	init_toedev(tod);
1368 	tod->tod_softc = sc;
1369 	tod->tod_connect = t4_connect;
1370 	tod->tod_listen_start = t4_listen_start;
1371 	tod->tod_listen_stop = t4_listen_stop;
1372 	tod->tod_rcvd = t4_rcvd;
1373 	tod->tod_output = t4_tod_output;
1374 	tod->tod_send_rst = t4_send_rst;
1375 	tod->tod_send_fin = t4_send_fin;
1376 	tod->tod_pcb_detach = t4_pcb_detach;
1377 	tod->tod_l2_update = t4_l2_update;
1378 	tod->tod_syncache_added = t4_syncache_added;
1379 	tod->tod_syncache_removed = t4_syncache_removed;
1380 	tod->tod_syncache_respond = t4_syncache_respond;
1381 	tod->tod_offload_socket = t4_offload_socket;
1382 	tod->tod_ctloutput = t4_ctloutput;
1383 	tod->tod_tcp_info = t4_tcp_info;
1384 
1385 	for_each_port(sc, i) {
1386 		for_each_vi(sc->port[i], v, vi) {
1387 			TOEDEV(vi->ifp) = &td->tod;
1388 			for_each_ofld_rxq(vi, j, ofld_rxq) {
1389 				ofld_rxq->iq.set_tcb_rpl = do_set_tcb_rpl;
1390 				ofld_rxq->iq.l2t_write_rpl = do_l2t_write_rpl2;
1391 			}
1392 		}
1393 	}
1394 
1395 	sc->tom_softc = td;
1396 	register_toedev(sc->tom_softc);
1397 
1398 done:
1399 	if (rc != 0)
1400 		free_tom_data(sc, td);
1401 	return (rc);
1402 }
1403 
1404 static int
1405 t4_tom_deactivate(struct adapter *sc)
1406 {
1407 	int rc = 0;
1408 	struct tom_data *td = sc->tom_softc;
1409 
1410 	ASSERT_SYNCHRONIZED_OP(sc);
1411 
1412 	if (td == NULL)
1413 		return (0);	/* XXX. KASSERT? */
1414 
1415 	if (sc->offload_map != 0)
1416 		return (EBUSY);	/* at least one port has IFCAP_TOE enabled */
1417 
1418 	if (uld_active(sc, ULD_IWARP) || uld_active(sc, ULD_ISCSI))
1419 		return (EBUSY);	/* both iWARP and iSCSI rely on the TOE. */
1420 
1421 	mtx_lock(&td->toep_list_lock);
1422 	if (!TAILQ_EMPTY(&td->toep_list))
1423 		rc = EBUSY;
1424 	mtx_unlock(&td->toep_list_lock);
1425 
1426 	mtx_lock(&td->lctx_hash_lock);
1427 	if (td->lctx_count > 0)
1428 		rc = EBUSY;
1429 	mtx_unlock(&td->lctx_hash_lock);
1430 
1431 	taskqueue_drain(taskqueue_thread, &td->reclaim_wr_resources);
1432 	mtx_lock(&td->unsent_wr_lock);
1433 	if (!STAILQ_EMPTY(&td->unsent_wr_list))
1434 		rc = EBUSY;
1435 	mtx_unlock(&td->unsent_wr_lock);
1436 
1437 	if (rc == 0) {
1438 		unregister_toedev(sc->tom_softc);
1439 		free_tom_data(sc, td);
1440 		sc->tom_softc = NULL;
1441 	}
1442 
1443 	return (rc);
1444 }
1445 
1446 static void
1447 t4_tom_ifaddr_event(void *arg __unused, struct ifnet *ifp)
1448 {
1449 
1450 	atomic_add_rel_int(&in6_ifaddr_gen, 1);
1451 	taskqueue_enqueue_timeout(taskqueue_thread, &clip_task, -hz / 4);
1452 }
1453 
1454 static int
1455 t4_aio_queue_tom(struct socket *so, struct kaiocb *job)
1456 {
1457 	struct tcpcb *tp = so_sototcpcb(so);
1458 	struct toepcb *toep = tp->t_toe;
1459 	int error;
1460 
1461 	if (toep->ulp_mode == ULP_MODE_TCPDDP) {
1462 		error = t4_aio_queue_ddp(so, job);
1463 		if (error != EOPNOTSUPP)
1464 			return (error);
1465 	}
1466 
1467 	return (t4_aio_queue_aiotx(so, job));
1468 }
1469 
1470 static int
1471 t4_ctloutput_tom(struct socket *so, struct sockopt *sopt)
1472 {
1473 
1474 	if (sopt->sopt_level != IPPROTO_TCP)
1475 		return (tcp_ctloutput(so, sopt));
1476 
1477 	switch (sopt->sopt_name) {
1478 	case TCP_TLSOM_SET_TLS_CONTEXT:
1479 	case TCP_TLSOM_GET_TLS_TOM:
1480 	case TCP_TLSOM_CLR_TLS_TOM:
1481 	case TCP_TLSOM_CLR_QUIES:
1482 		return (t4_ctloutput_tls(so, sopt));
1483 	default:
1484 		return (tcp_ctloutput(so, sopt));
1485 	}
1486 }
1487 
1488 static int
1489 t4_tom_mod_load(void)
1490 {
1491 	struct protosw *tcp_protosw, *tcp6_protosw;
1492 
1493 	/* CPL handlers */
1494 	t4_init_connect_cpl_handlers();
1495 	t4_init_listen_cpl_handlers();
1496 	t4_init_cpl_io_handlers();
1497 
1498 	t4_ddp_mod_load();
1499 	t4_tls_mod_load();
1500 
1501 	tcp_protosw = pffindproto(PF_INET, IPPROTO_TCP, SOCK_STREAM);
1502 	if (tcp_protosw == NULL)
1503 		return (ENOPROTOOPT);
1504 	bcopy(tcp_protosw, &toe_protosw, sizeof(toe_protosw));
1505 	bcopy(tcp_protosw->pr_usrreqs, &toe_usrreqs, sizeof(toe_usrreqs));
1506 	toe_usrreqs.pru_aio_queue = t4_aio_queue_tom;
1507 	toe_protosw.pr_ctloutput = t4_ctloutput_tom;
1508 	toe_protosw.pr_usrreqs = &toe_usrreqs;
1509 
1510 	tcp6_protosw = pffindproto(PF_INET6, IPPROTO_TCP, SOCK_STREAM);
1511 	if (tcp6_protosw == NULL)
1512 		return (ENOPROTOOPT);
1513 	bcopy(tcp6_protosw, &toe6_protosw, sizeof(toe6_protosw));
1514 	bcopy(tcp6_protosw->pr_usrreqs, &toe6_usrreqs, sizeof(toe6_usrreqs));
1515 	toe6_usrreqs.pru_aio_queue = t4_aio_queue_tom;
1516 	toe6_protosw.pr_ctloutput = t4_ctloutput_tom;
1517 	toe6_protosw.pr_usrreqs = &toe6_usrreqs;
1518 
1519 	TIMEOUT_TASK_INIT(taskqueue_thread, &clip_task, 0, t4_clip_task, NULL);
1520 	ifaddr_evhandler = EVENTHANDLER_REGISTER(ifaddr_event,
1521 	    t4_tom_ifaddr_event, NULL, EVENTHANDLER_PRI_ANY);
1522 
1523 	return (t4_register_uld(&tom_uld_info));
1524 }
1525 
1526 static void
1527 tom_uninit(struct adapter *sc, void *arg __unused)
1528 {
1529 	if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4tomun"))
1530 		return;
1531 
1532 	/* Try to free resources (works only if no port has IFCAP_TOE) */
1533 	if (uld_active(sc, ULD_TOM))
1534 		t4_deactivate_uld(sc, ULD_TOM);
1535 
1536 	end_synchronized_op(sc, 0);
1537 }
1538 
1539 static int
1540 t4_tom_mod_unload(void)
1541 {
1542 	t4_iterate(tom_uninit, NULL);
1543 
1544 	if (t4_unregister_uld(&tom_uld_info) == EBUSY)
1545 		return (EBUSY);
1546 
1547 	if (ifaddr_evhandler) {
1548 		EVENTHANDLER_DEREGISTER(ifaddr_event, ifaddr_evhandler);
1549 		taskqueue_cancel_timeout(taskqueue_thread, &clip_task, NULL);
1550 	}
1551 
1552 	t4_tls_mod_unload();
1553 	t4_ddp_mod_unload();
1554 
1555 	t4_uninit_connect_cpl_handlers();
1556 	t4_uninit_listen_cpl_handlers();
1557 	t4_uninit_cpl_io_handlers();
1558 
1559 	return (0);
1560 }
1561 #endif	/* TCP_OFFLOAD */
1562 
1563 static int
1564 t4_tom_modevent(module_t mod, int cmd, void *arg)
1565 {
1566 	int rc = 0;
1567 
1568 #ifdef TCP_OFFLOAD
1569 	switch (cmd) {
1570 	case MOD_LOAD:
1571 		rc = t4_tom_mod_load();
1572 		break;
1573 
1574 	case MOD_UNLOAD:
1575 		rc = t4_tom_mod_unload();
1576 		break;
1577 
1578 	default:
1579 		rc = EINVAL;
1580 	}
1581 #else
1582 	printf("t4_tom: compiled without TCP_OFFLOAD support.\n");
1583 	rc = EOPNOTSUPP;
1584 #endif
1585 	return (rc);
1586 }
1587 
1588 static moduledata_t t4_tom_moddata= {
1589 	"t4_tom",
1590 	t4_tom_modevent,
1591 	0
1592 };
1593 
1594 MODULE_VERSION(t4_tom, 1);
1595 MODULE_DEPEND(t4_tom, toecore, 1, 1, 1);
1596 MODULE_DEPEND(t4_tom, t4nex, 1, 1, 1);
1597 DECLARE_MODULE(t4_tom, t4_tom_moddata, SI_SUB_EXEC, SI_ORDER_ANY);
1598