xref: /freebsd/sys/dev/cxgbe/tom/t4_tom.c (revision 184c1b943937986c81e1996d999d21626ec7a4ff)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2012 Chelsio Communications, Inc.
5  * All rights reserved.
6  * Written by: Navdeep Parhar <np@FreeBSD.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include "opt_inet.h"
34 #include "opt_inet6.h"
35 #include "opt_kern_tls.h"
36 #include "opt_ratelimit.h"
37 
38 #include <sys/param.h>
39 #include <sys/types.h>
40 #include <sys/systm.h>
41 #include <sys/kernel.h>
42 #include <sys/ktr.h>
43 #include <sys/lock.h>
44 #include <sys/limits.h>
45 #include <sys/module.h>
46 #include <sys/protosw.h>
47 #include <sys/domain.h>
48 #include <sys/refcount.h>
49 #include <sys/rmlock.h>
50 #include <sys/socket.h>
51 #include <sys/socketvar.h>
52 #include <sys/sysctl.h>
53 #include <sys/taskqueue.h>
54 #include <net/if.h>
55 #include <net/if_var.h>
56 #include <net/if_types.h>
57 #include <net/if_vlan_var.h>
58 #include <netinet/in.h>
59 #include <netinet/in_pcb.h>
60 #include <netinet/in_var.h>
61 #include <netinet/ip.h>
62 #include <netinet/ip6.h>
63 #include <netinet6/scope6_var.h>
64 #define TCPSTATES
65 #include <netinet/tcp_fsm.h>
66 #include <netinet/tcp_timer.h>
67 #include <netinet/tcp_var.h>
68 #include <netinet/toecore.h>
69 #include <netinet/cc/cc.h>
70 
71 #ifdef TCP_OFFLOAD
72 #include "common/common.h"
73 #include "common/t4_msg.h"
74 #include "common/t4_regs.h"
75 #include "common/t4_regs_values.h"
76 #include "common/t4_tcb.h"
77 #include "t4_clip.h"
78 #include "tom/t4_tom_l2t.h"
79 #include "tom/t4_tom.h"
80 #include "tom/t4_tls.h"
81 
82 static struct protosw toe_protosw;
83 static struct pr_usrreqs toe_usrreqs;
84 
85 static struct protosw toe6_protosw;
86 static struct pr_usrreqs toe6_usrreqs;
87 
88 /* Module ops */
89 static int t4_tom_mod_load(void);
90 static int t4_tom_mod_unload(void);
91 static int t4_tom_modevent(module_t, int, void *);
92 
93 /* ULD ops and helpers */
94 static int t4_tom_activate(struct adapter *);
95 static int t4_tom_deactivate(struct adapter *);
96 
97 static struct uld_info tom_uld_info = {
98 	.uld_id = ULD_TOM,
99 	.activate = t4_tom_activate,
100 	.deactivate = t4_tom_deactivate,
101 };
102 
103 static void release_offload_resources(struct toepcb *);
104 static int alloc_tid_tabs(struct tid_info *);
105 static void free_tid_tabs(struct tid_info *);
106 static void free_tom_data(struct adapter *, struct tom_data *);
107 static void reclaim_wr_resources(void *, int);
108 
109 struct toepcb *
110 alloc_toepcb(struct vi_info *vi, int flags)
111 {
112 	struct port_info *pi = vi->pi;
113 	struct adapter *sc = pi->adapter;
114 	struct toepcb *toep;
115 	int tx_credits, txsd_total, len;
116 
117 	/*
118 	 * The firmware counts tx work request credits in units of 16 bytes
119 	 * each.  Reserve room for an ABORT_REQ so the driver never has to worry
120 	 * about tx credits if it wants to abort a connection.
121 	 */
122 	tx_credits = sc->params.ofldq_wr_cred;
123 	tx_credits -= howmany(sizeof(struct cpl_abort_req), 16);
124 
125 	/*
126 	 * Shortest possible tx work request is a fw_ofld_tx_data_wr + 1 byte
127 	 * immediate payload, and firmware counts tx work request credits in
128 	 * units of 16 byte.  Calculate the maximum work requests possible.
129 	 */
130 	txsd_total = tx_credits /
131 	    howmany(sizeof(struct fw_ofld_tx_data_wr) + 1, 16);
132 
133 	len = offsetof(struct toepcb, txsd) +
134 	    txsd_total * sizeof(struct ofld_tx_sdesc);
135 
136 	toep = malloc(len, M_CXGBE, M_ZERO | flags);
137 	if (toep == NULL)
138 		return (NULL);
139 
140 	refcount_init(&toep->refcount, 1);
141 	toep->td = sc->tom_softc;
142 	toep->vi = vi;
143 	toep->tid = -1;
144 	toep->tx_total = tx_credits;
145 	toep->tx_credits = tx_credits;
146 	mbufq_init(&toep->ulp_pduq, INT_MAX);
147 	mbufq_init(&toep->ulp_pdu_reclaimq, INT_MAX);
148 	toep->txsd_total = txsd_total;
149 	toep->txsd_avail = txsd_total;
150 	toep->txsd_pidx = 0;
151 	toep->txsd_cidx = 0;
152 	aiotx_init_toep(toep);
153 
154 	return (toep);
155 }
156 
157 /*
158  * Initialize a toepcb after its params have been filled out.
159  */
160 int
161 init_toepcb(struct vi_info *vi, struct toepcb *toep)
162 {
163 	struct conn_params *cp = &toep->params;
164 	struct port_info *pi = vi->pi;
165 	struct adapter *sc = pi->adapter;
166 	struct tx_cl_rl_params *tc;
167 
168 	if (cp->tc_idx >= 0 && cp->tc_idx < sc->chip_params->nsched_cls) {
169 		tc = &pi->sched_params->cl_rl[cp->tc_idx];
170 		mtx_lock(&sc->tc_lock);
171 		if (tc->flags & CLRL_ERR) {
172 			log(LOG_ERR,
173 			    "%s: failed to associate traffic class %u with tid %u\n",
174 			    device_get_nameunit(vi->dev), cp->tc_idx,
175 			    toep->tid);
176 			cp->tc_idx = -1;
177 		} else {
178 			tc->refcount++;
179 		}
180 		mtx_unlock(&sc->tc_lock);
181 	}
182 	toep->ofld_txq = &sc->sge.ofld_txq[cp->txq_idx];
183 	toep->ofld_rxq = &sc->sge.ofld_rxq[cp->rxq_idx];
184 	toep->ctrlq = &sc->sge.ctrlq[pi->port_id];
185 
186 	tls_init_toep(toep);
187 	if (ulp_mode(toep) == ULP_MODE_TCPDDP)
188 		ddp_init_toep(toep);
189 
190 	toep->flags |= TPF_INITIALIZED;
191 
192 	return (0);
193 }
194 
195 struct toepcb *
196 hold_toepcb(struct toepcb *toep)
197 {
198 
199 	refcount_acquire(&toep->refcount);
200 	return (toep);
201 }
202 
203 void
204 free_toepcb(struct toepcb *toep)
205 {
206 
207 	if (refcount_release(&toep->refcount) == 0)
208 		return;
209 
210 	KASSERT(!(toep->flags & TPF_ATTACHED),
211 	    ("%s: attached to an inpcb", __func__));
212 	KASSERT(!(toep->flags & TPF_CPL_PENDING),
213 	    ("%s: CPL pending", __func__));
214 
215 	if (toep->flags & TPF_INITIALIZED) {
216 		if (ulp_mode(toep) == ULP_MODE_TCPDDP)
217 			ddp_uninit_toep(toep);
218 		tls_uninit_toep(toep);
219 	}
220 	free(toep, M_CXGBE);
221 }
222 
223 /*
224  * Set up the socket for TCP offload.
225  */
226 void
227 offload_socket(struct socket *so, struct toepcb *toep)
228 {
229 	struct tom_data *td = toep->td;
230 	struct inpcb *inp = sotoinpcb(so);
231 	struct tcpcb *tp = intotcpcb(inp);
232 	struct sockbuf *sb;
233 
234 	INP_WLOCK_ASSERT(inp);
235 
236 	/* Update socket */
237 	sb = &so->so_snd;
238 	SOCKBUF_LOCK(sb);
239 	sb->sb_flags |= SB_NOCOALESCE;
240 	SOCKBUF_UNLOCK(sb);
241 	sb = &so->so_rcv;
242 	SOCKBUF_LOCK(sb);
243 	sb->sb_flags |= SB_NOCOALESCE;
244 	if (inp->inp_vflag & INP_IPV6)
245 		so->so_proto = &toe6_protosw;
246 	else
247 		so->so_proto = &toe_protosw;
248 	SOCKBUF_UNLOCK(sb);
249 
250 	/* Update TCP PCB */
251 	tp->tod = &td->tod;
252 	tp->t_toe = toep;
253 	tp->t_flags |= TF_TOE;
254 
255 	/* Install an extra hold on inp */
256 	toep->inp = inp;
257 	toep->flags |= TPF_ATTACHED;
258 	in_pcbref(inp);
259 
260 	/* Add the TOE PCB to the active list */
261 	mtx_lock(&td->toep_list_lock);
262 	TAILQ_INSERT_HEAD(&td->toep_list, toep, link);
263 	mtx_unlock(&td->toep_list_lock);
264 }
265 
266 /* This is _not_ the normal way to "unoffload" a socket. */
267 void
268 undo_offload_socket(struct socket *so)
269 {
270 	struct inpcb *inp = sotoinpcb(so);
271 	struct tcpcb *tp = intotcpcb(inp);
272 	struct toepcb *toep = tp->t_toe;
273 	struct tom_data *td = toep->td;
274 	struct sockbuf *sb;
275 
276 	INP_WLOCK_ASSERT(inp);
277 
278 	sb = &so->so_snd;
279 	SOCKBUF_LOCK(sb);
280 	sb->sb_flags &= ~SB_NOCOALESCE;
281 	SOCKBUF_UNLOCK(sb);
282 	sb = &so->so_rcv;
283 	SOCKBUF_LOCK(sb);
284 	sb->sb_flags &= ~SB_NOCOALESCE;
285 	SOCKBUF_UNLOCK(sb);
286 
287 	tp->tod = NULL;
288 	tp->t_toe = NULL;
289 	tp->t_flags &= ~TF_TOE;
290 
291 	toep->inp = NULL;
292 	toep->flags &= ~TPF_ATTACHED;
293 	if (in_pcbrele_wlocked(inp))
294 		panic("%s: inp freed.", __func__);
295 
296 	mtx_lock(&td->toep_list_lock);
297 	TAILQ_REMOVE(&td->toep_list, toep, link);
298 	mtx_unlock(&td->toep_list_lock);
299 }
300 
301 static void
302 release_offload_resources(struct toepcb *toep)
303 {
304 	struct tom_data *td = toep->td;
305 	struct adapter *sc = td_adapter(td);
306 	int tid = toep->tid;
307 
308 	KASSERT(!(toep->flags & TPF_CPL_PENDING),
309 	    ("%s: %p has CPL pending.", __func__, toep));
310 	KASSERT(!(toep->flags & TPF_ATTACHED),
311 	    ("%s: %p is still attached.", __func__, toep));
312 
313 	CTR5(KTR_CXGBE, "%s: toep %p (tid %d, l2te %p, ce %p)",
314 	    __func__, toep, tid, toep->l2te, toep->ce);
315 
316 	/*
317 	 * These queues should have been emptied at approximately the same time
318 	 * that a normal connection's socket's so_snd would have been purged or
319 	 * drained.  Do _not_ clean up here.
320 	 */
321 	MPASS(mbufq_len(&toep->ulp_pduq) == 0);
322 	MPASS(mbufq_len(&toep->ulp_pdu_reclaimq) == 0);
323 #ifdef INVARIANTS
324 	if (ulp_mode(toep) == ULP_MODE_TCPDDP)
325 		ddp_assert_empty(toep);
326 #endif
327 	MPASS(TAILQ_EMPTY(&toep->aiotx_jobq));
328 
329 	if (toep->l2te)
330 		t4_l2t_release(toep->l2te);
331 
332 	if (tid >= 0) {
333 		remove_tid(sc, tid, toep->ce ? 2 : 1);
334 		release_tid(sc, tid, toep->ctrlq);
335 	}
336 
337 	if (toep->ce)
338 		t4_release_lip(sc, toep->ce);
339 
340 	if (toep->params.tc_idx != -1)
341 		t4_release_cl_rl(sc, toep->vi->pi->port_id, toep->params.tc_idx);
342 
343 	mtx_lock(&td->toep_list_lock);
344 	TAILQ_REMOVE(&td->toep_list, toep, link);
345 	mtx_unlock(&td->toep_list_lock);
346 
347 	free_toepcb(toep);
348 }
349 
350 /*
351  * The kernel is done with the TCP PCB and this is our opportunity to unhook the
352  * toepcb hanging off of it.  If the TOE driver is also done with the toepcb (no
353  * pending CPL) then it is time to release all resources tied to the toepcb.
354  *
355  * Also gets called when an offloaded active open fails and the TOM wants the
356  * kernel to take the TCP PCB back.
357  */
358 static void
359 t4_pcb_detach(struct toedev *tod __unused, struct tcpcb *tp)
360 {
361 #if defined(KTR) || defined(INVARIANTS)
362 	struct inpcb *inp = tp->t_inpcb;
363 #endif
364 	struct toepcb *toep = tp->t_toe;
365 
366 	INP_WLOCK_ASSERT(inp);
367 
368 	KASSERT(toep != NULL, ("%s: toep is NULL", __func__));
369 	KASSERT(toep->flags & TPF_ATTACHED,
370 	    ("%s: not attached", __func__));
371 
372 #ifdef KTR
373 	if (tp->t_state == TCPS_SYN_SENT) {
374 		CTR6(KTR_CXGBE, "%s: atid %d, toep %p (0x%x), inp %p (0x%x)",
375 		    __func__, toep->tid, toep, toep->flags, inp,
376 		    inp->inp_flags);
377 	} else {
378 		CTR6(KTR_CXGBE,
379 		    "t4_pcb_detach: tid %d (%s), toep %p (0x%x), inp %p (0x%x)",
380 		    toep->tid, tcpstates[tp->t_state], toep, toep->flags, inp,
381 		    inp->inp_flags);
382 	}
383 #endif
384 
385 	if (ulp_mode(toep) == ULP_MODE_TLS)
386 		tls_detach(toep);
387 
388 	tp->tod = NULL;
389 	tp->t_toe = NULL;
390 	tp->t_flags &= ~TF_TOE;
391 	toep->flags &= ~TPF_ATTACHED;
392 
393 	if (!(toep->flags & TPF_CPL_PENDING))
394 		release_offload_resources(toep);
395 }
396 
397 /*
398  * setsockopt handler.
399  */
400 static void
401 t4_ctloutput(struct toedev *tod, struct tcpcb *tp, int dir, int name)
402 {
403 	struct adapter *sc = tod->tod_softc;
404 	struct toepcb *toep = tp->t_toe;
405 
406 	if (dir == SOPT_GET)
407 		return;
408 
409 	CTR4(KTR_CXGBE, "%s: tp %p, dir %u, name %u", __func__, tp, dir, name);
410 
411 	switch (name) {
412 	case TCP_NODELAY:
413 		if (tp->t_state != TCPS_ESTABLISHED)
414 			break;
415 		toep->params.nagle = tp->t_flags & TF_NODELAY ? 0 : 1;
416 		t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_T_FLAGS,
417 		    V_TF_NAGLE(1), V_TF_NAGLE(toep->params.nagle), 0, 0);
418 		break;
419 	default:
420 		break;
421 	}
422 }
423 
424 static inline uint64_t
425 get_tcb_tflags(const uint64_t *tcb)
426 {
427 
428 	return ((be64toh(tcb[14]) << 32) | (be64toh(tcb[15]) >> 32));
429 }
430 
431 static inline uint32_t
432 get_tcb_field(const uint64_t *tcb, u_int word, uint32_t mask, u_int shift)
433 {
434 #define LAST_WORD ((TCB_SIZE / 4) - 1)
435 	uint64_t t1, t2;
436 	int flit_idx;
437 
438 	MPASS(mask != 0);
439 	MPASS(word <= LAST_WORD);
440 	MPASS(shift < 32);
441 
442 	flit_idx = (LAST_WORD - word) / 2;
443 	if (word & 0x1)
444 		shift += 32;
445 	t1 = be64toh(tcb[flit_idx]) >> shift;
446 	t2 = 0;
447 	if (fls(mask) > 64 - shift) {
448 		/*
449 		 * Will spill over into the next logical flit, which is the flit
450 		 * before this one.  The flit_idx before this one must be valid.
451 		 */
452 		MPASS(flit_idx > 0);
453 		t2 = be64toh(tcb[flit_idx - 1]) << (64 - shift);
454 	}
455 	return ((t2 | t1) & mask);
456 #undef LAST_WORD
457 }
458 #define GET_TCB_FIELD(tcb, F) \
459     get_tcb_field(tcb, W_TCB_##F, M_TCB_##F, S_TCB_##F)
460 
461 /*
462  * Issues a CPL_GET_TCB to read the entire TCB for the tid.
463  */
464 static int
465 send_get_tcb(struct adapter *sc, u_int tid)
466 {
467 	struct cpl_get_tcb *cpl;
468 	struct wrq_cookie cookie;
469 
470 	MPASS(tid < sc->tids.ntids);
471 
472 	cpl = start_wrq_wr(&sc->sge.ctrlq[0], howmany(sizeof(*cpl), 16),
473 	    &cookie);
474 	if (__predict_false(cpl == NULL))
475 		return (ENOMEM);
476 	bzero(cpl, sizeof(*cpl));
477 	INIT_TP_WR(cpl, tid);
478 	OPCODE_TID(cpl) = htobe32(MK_OPCODE_TID(CPL_GET_TCB, tid));
479 	cpl->reply_ctrl = htobe16(V_REPLY_CHAN(0) |
480 	    V_QUEUENO(sc->sge.ofld_rxq[0].iq.cntxt_id));
481 	cpl->cookie = 0xff;
482 	commit_wrq_wr(&sc->sge.ctrlq[0], cpl, &cookie);
483 
484 	return (0);
485 }
486 
487 static struct tcb_histent *
488 alloc_tcb_histent(struct adapter *sc, u_int tid, int flags)
489 {
490 	struct tcb_histent *te;
491 
492 	MPASS(flags == M_NOWAIT || flags == M_WAITOK);
493 
494 	te = malloc(sizeof(*te), M_CXGBE, M_ZERO | flags);
495 	if (te == NULL)
496 		return (NULL);
497 	mtx_init(&te->te_lock, "TCB entry", NULL, MTX_DEF);
498 	callout_init_mtx(&te->te_callout, &te->te_lock, 0);
499 	te->te_adapter = sc;
500 	te->te_tid = tid;
501 
502 	return (te);
503 }
504 
505 static void
506 free_tcb_histent(struct tcb_histent *te)
507 {
508 
509 	mtx_destroy(&te->te_lock);
510 	free(te, M_CXGBE);
511 }
512 
513 /*
514  * Start tracking the tid in the TCB history.
515  */
516 int
517 add_tid_to_history(struct adapter *sc, u_int tid)
518 {
519 	struct tcb_histent *te = NULL;
520 	struct tom_data *td = sc->tom_softc;
521 	int rc;
522 
523 	MPASS(tid < sc->tids.ntids);
524 
525 	if (td->tcb_history == NULL)
526 		return (ENXIO);
527 
528 	rw_wlock(&td->tcb_history_lock);
529 	if (td->tcb_history[tid] != NULL) {
530 		rc = EEXIST;
531 		goto done;
532 	}
533 	te = alloc_tcb_histent(sc, tid, M_NOWAIT);
534 	if (te == NULL) {
535 		rc = ENOMEM;
536 		goto done;
537 	}
538 	mtx_lock(&te->te_lock);
539 	rc = send_get_tcb(sc, tid);
540 	if (rc == 0) {
541 		te->te_flags |= TE_RPL_PENDING;
542 		td->tcb_history[tid] = te;
543 	} else {
544 		free(te, M_CXGBE);
545 	}
546 	mtx_unlock(&te->te_lock);
547 done:
548 	rw_wunlock(&td->tcb_history_lock);
549 	return (rc);
550 }
551 
552 static void
553 remove_tcb_histent(struct tcb_histent *te)
554 {
555 	struct adapter *sc = te->te_adapter;
556 	struct tom_data *td = sc->tom_softc;
557 
558 	rw_assert(&td->tcb_history_lock, RA_WLOCKED);
559 	mtx_assert(&te->te_lock, MA_OWNED);
560 	MPASS(td->tcb_history[te->te_tid] == te);
561 
562 	td->tcb_history[te->te_tid] = NULL;
563 	free_tcb_histent(te);
564 	rw_wunlock(&td->tcb_history_lock);
565 }
566 
567 static inline struct tcb_histent *
568 lookup_tcb_histent(struct adapter *sc, u_int tid, bool addrem)
569 {
570 	struct tcb_histent *te;
571 	struct tom_data *td = sc->tom_softc;
572 
573 	MPASS(tid < sc->tids.ntids);
574 
575 	if (td->tcb_history == NULL)
576 		return (NULL);
577 
578 	if (addrem)
579 		rw_wlock(&td->tcb_history_lock);
580 	else
581 		rw_rlock(&td->tcb_history_lock);
582 	te = td->tcb_history[tid];
583 	if (te != NULL) {
584 		mtx_lock(&te->te_lock);
585 		return (te);	/* with both locks held */
586 	}
587 	if (addrem)
588 		rw_wunlock(&td->tcb_history_lock);
589 	else
590 		rw_runlock(&td->tcb_history_lock);
591 
592 	return (te);
593 }
594 
595 static inline void
596 release_tcb_histent(struct tcb_histent *te)
597 {
598 	struct adapter *sc = te->te_adapter;
599 	struct tom_data *td = sc->tom_softc;
600 
601 	mtx_assert(&te->te_lock, MA_OWNED);
602 	mtx_unlock(&te->te_lock);
603 	rw_assert(&td->tcb_history_lock, RA_RLOCKED);
604 	rw_runlock(&td->tcb_history_lock);
605 }
606 
607 static void
608 request_tcb(void *arg)
609 {
610 	struct tcb_histent *te = arg;
611 
612 	mtx_assert(&te->te_lock, MA_OWNED);
613 
614 	/* Noone else is supposed to update the histent. */
615 	MPASS(!(te->te_flags & TE_RPL_PENDING));
616 	if (send_get_tcb(te->te_adapter, te->te_tid) == 0)
617 		te->te_flags |= TE_RPL_PENDING;
618 	else
619 		callout_schedule(&te->te_callout, hz / 100);
620 }
621 
622 static void
623 update_tcb_histent(struct tcb_histent *te, const uint64_t *tcb)
624 {
625 	struct tom_data *td = te->te_adapter->tom_softc;
626 	uint64_t tflags = get_tcb_tflags(tcb);
627 	uint8_t sample = 0;
628 
629 	if (GET_TCB_FIELD(tcb, SND_MAX_RAW) != GET_TCB_FIELD(tcb, SND_UNA_RAW)) {
630 		if (GET_TCB_FIELD(tcb, T_RXTSHIFT) != 0)
631 			sample |= TS_RTO;
632 		if (GET_TCB_FIELD(tcb, T_DUPACKS) != 0)
633 			sample |= TS_DUPACKS;
634 		if (GET_TCB_FIELD(tcb, T_DUPACKS) >= td->dupack_threshold)
635 			sample |= TS_FASTREXMT;
636 	}
637 
638 	if (GET_TCB_FIELD(tcb, SND_MAX_RAW) != 0) {
639 		uint32_t snd_wnd;
640 
641 		sample |= TS_SND_BACKLOGGED;	/* for whatever reason. */
642 
643 		snd_wnd = GET_TCB_FIELD(tcb, RCV_ADV);
644 		if (tflags & V_TF_RECV_SCALE(1))
645 			snd_wnd <<= GET_TCB_FIELD(tcb, RCV_SCALE);
646 		if (GET_TCB_FIELD(tcb, SND_CWND) < snd_wnd)
647 			sample |= TS_CWND_LIMITED;	/* maybe due to CWND */
648 	}
649 
650 	if (tflags & V_TF_CCTRL_ECN(1)) {
651 
652 		/*
653 		 * CE marker on incoming IP hdr, echoing ECE back in the TCP
654 		 * hdr.  Indicates congestion somewhere on the way from the peer
655 		 * to this node.
656 		 */
657 		if (tflags & V_TF_CCTRL_ECE(1))
658 			sample |= TS_ECN_ECE;
659 
660 		/*
661 		 * ECE seen and CWR sent (or about to be sent).  Might indicate
662 		 * congestion on the way to the peer.  This node is reducing its
663 		 * congestion window in response.
664 		 */
665 		if (tflags & (V_TF_CCTRL_CWR(1) | V_TF_CCTRL_RFR(1)))
666 			sample |= TS_ECN_CWR;
667 	}
668 
669 	te->te_sample[te->te_pidx] = sample;
670 	if (++te->te_pidx == nitems(te->te_sample))
671 		te->te_pidx = 0;
672 	memcpy(te->te_tcb, tcb, TCB_SIZE);
673 	te->te_flags |= TE_ACTIVE;
674 }
675 
676 static int
677 do_get_tcb_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
678 {
679 	struct adapter *sc = iq->adapter;
680 	const struct cpl_get_tcb_rpl *cpl = mtod(m, const void *);
681 	const uint64_t *tcb = (const uint64_t *)(const void *)(cpl + 1);
682 	struct tcb_histent *te;
683 	const u_int tid = GET_TID(cpl);
684 	bool remove;
685 
686 	remove = GET_TCB_FIELD(tcb, T_STATE) == TCPS_CLOSED;
687 	te = lookup_tcb_histent(sc, tid, remove);
688 	if (te == NULL) {
689 		/* Not in the history.  Who issued the GET_TCB for this? */
690 		device_printf(sc->dev, "tcb %u: flags 0x%016jx, state %u, "
691 		    "srtt %u, sscale %u, rscale %u, cookie 0x%x\n", tid,
692 		    (uintmax_t)get_tcb_tflags(tcb), GET_TCB_FIELD(tcb, T_STATE),
693 		    GET_TCB_FIELD(tcb, T_SRTT), GET_TCB_FIELD(tcb, SND_SCALE),
694 		    GET_TCB_FIELD(tcb, RCV_SCALE), cpl->cookie);
695 		goto done;
696 	}
697 
698 	MPASS(te->te_flags & TE_RPL_PENDING);
699 	te->te_flags &= ~TE_RPL_PENDING;
700 	if (remove) {
701 		remove_tcb_histent(te);
702 	} else {
703 		update_tcb_histent(te, tcb);
704 		callout_reset(&te->te_callout, hz / 10, request_tcb, te);
705 		release_tcb_histent(te);
706 	}
707 done:
708 	m_freem(m);
709 	return (0);
710 }
711 
712 static void
713 fill_tcp_info_from_tcb(struct adapter *sc, uint64_t *tcb, struct tcp_info *ti)
714 {
715 	uint32_t v;
716 
717 	ti->tcpi_state = GET_TCB_FIELD(tcb, T_STATE);
718 
719 	v = GET_TCB_FIELD(tcb, T_SRTT);
720 	ti->tcpi_rtt = tcp_ticks_to_us(sc, v);
721 
722 	v = GET_TCB_FIELD(tcb, T_RTTVAR);
723 	ti->tcpi_rttvar = tcp_ticks_to_us(sc, v);
724 
725 	ti->tcpi_snd_ssthresh = GET_TCB_FIELD(tcb, SND_SSTHRESH);
726 	ti->tcpi_snd_cwnd = GET_TCB_FIELD(tcb, SND_CWND);
727 	ti->tcpi_rcv_nxt = GET_TCB_FIELD(tcb, RCV_NXT);
728 
729 	v = GET_TCB_FIELD(tcb, TX_MAX);
730 	ti->tcpi_snd_nxt = v - GET_TCB_FIELD(tcb, SND_NXT_RAW);
731 
732 	/* Receive window being advertised by us. */
733 	ti->tcpi_rcv_wscale = GET_TCB_FIELD(tcb, SND_SCALE);	/* Yes, SND. */
734 	ti->tcpi_rcv_space = GET_TCB_FIELD(tcb, RCV_WND);
735 
736 	/* Send window */
737 	ti->tcpi_snd_wscale = GET_TCB_FIELD(tcb, RCV_SCALE);	/* Yes, RCV. */
738 	ti->tcpi_snd_wnd = GET_TCB_FIELD(tcb, RCV_ADV);
739 	if (get_tcb_tflags(tcb) & V_TF_RECV_SCALE(1))
740 		ti->tcpi_snd_wnd <<= ti->tcpi_snd_wscale;
741 	else
742 		ti->tcpi_snd_wscale = 0;
743 
744 }
745 
746 static void
747 fill_tcp_info_from_history(struct adapter *sc, struct tcb_histent *te,
748     struct tcp_info *ti)
749 {
750 
751 	fill_tcp_info_from_tcb(sc, te->te_tcb, ti);
752 }
753 
754 /*
755  * Reads the TCB for the given tid using a memory window and copies it to 'buf'
756  * in the same format as CPL_GET_TCB_RPL.
757  */
758 static void
759 read_tcb_using_memwin(struct adapter *sc, u_int tid, uint64_t *buf)
760 {
761 	int i, j, k, rc;
762 	uint32_t addr;
763 	u_char *tcb, tmp;
764 
765 	MPASS(tid < sc->tids.ntids);
766 
767 	addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE) + tid * TCB_SIZE;
768 	rc = read_via_memwin(sc, 2, addr, (uint32_t *)buf, TCB_SIZE);
769 	if (rc != 0)
770 		return;
771 
772 	tcb = (u_char *)buf;
773 	for (i = 0, j = TCB_SIZE - 16; i < j; i += 16, j -= 16) {
774 		for (k = 0; k < 16; k++) {
775 			tmp = tcb[i + k];
776 			tcb[i + k] = tcb[j + k];
777 			tcb[j + k] = tmp;
778 		}
779 	}
780 }
781 
782 static void
783 fill_tcp_info(struct adapter *sc, u_int tid, struct tcp_info *ti)
784 {
785 	uint64_t tcb[TCB_SIZE / sizeof(uint64_t)];
786 	struct tcb_histent *te;
787 
788 	ti->tcpi_toe_tid = tid;
789 	te = lookup_tcb_histent(sc, tid, false);
790 	if (te != NULL) {
791 		fill_tcp_info_from_history(sc, te, ti);
792 		release_tcb_histent(te);
793 	} else {
794 		if (!(sc->debug_flags & DF_DISABLE_TCB_CACHE)) {
795 			/* XXX: tell firmware to flush TCB cache. */
796 		}
797 		read_tcb_using_memwin(sc, tid, tcb);
798 		fill_tcp_info_from_tcb(sc, tcb, ti);
799 	}
800 }
801 
802 /*
803  * Called by the kernel to allow the TOE driver to "refine" values filled up in
804  * the tcp_info for an offloaded connection.
805  */
806 static void
807 t4_tcp_info(struct toedev *tod, struct tcpcb *tp, struct tcp_info *ti)
808 {
809 	struct adapter *sc = tod->tod_softc;
810 	struct toepcb *toep = tp->t_toe;
811 
812 	INP_WLOCK_ASSERT(tp->t_inpcb);
813 	MPASS(ti != NULL);
814 
815 	fill_tcp_info(sc, toep->tid, ti);
816 }
817 
818 #ifdef KERN_TLS
819 static int
820 t4_alloc_tls_session(struct toedev *tod, struct tcpcb *tp,
821     struct ktls_session *tls, int direction)
822 {
823 	struct toepcb *toep = tp->t_toe;
824 
825 	INP_WLOCK_ASSERT(tp->t_inpcb);
826 	MPASS(tls != NULL);
827 
828 	return (tls_alloc_ktls(toep, tls, direction));
829 }
830 #endif
831 
832 /*
833  * The TOE driver will not receive any more CPLs for the tid associated with the
834  * toepcb; release the hold on the inpcb.
835  */
836 void
837 final_cpl_received(struct toepcb *toep)
838 {
839 	struct inpcb *inp = toep->inp;
840 
841 	KASSERT(inp != NULL, ("%s: inp is NULL", __func__));
842 	INP_WLOCK_ASSERT(inp);
843 	KASSERT(toep->flags & TPF_CPL_PENDING,
844 	    ("%s: CPL not pending already?", __func__));
845 
846 	CTR6(KTR_CXGBE, "%s: tid %d, toep %p (0x%x), inp %p (0x%x)",
847 	    __func__, toep->tid, toep, toep->flags, inp, inp->inp_flags);
848 
849 	if (ulp_mode(toep) == ULP_MODE_TCPDDP)
850 		release_ddp_resources(toep);
851 	else if (ulp_mode(toep) == ULP_MODE_TLS)
852 		tls_detach(toep);
853 	toep->inp = NULL;
854 	toep->flags &= ~TPF_CPL_PENDING;
855 	mbufq_drain(&toep->ulp_pdu_reclaimq);
856 
857 	if (!(toep->flags & TPF_ATTACHED))
858 		release_offload_resources(toep);
859 
860 	if (!in_pcbrele_wlocked(inp))
861 		INP_WUNLOCK(inp);
862 }
863 
864 void
865 insert_tid(struct adapter *sc, int tid, void *ctx, int ntids)
866 {
867 	struct tid_info *t = &sc->tids;
868 
869 	MPASS(tid >= t->tid_base);
870 	MPASS(tid - t->tid_base < t->ntids);
871 
872 	t->tid_tab[tid - t->tid_base] = ctx;
873 	atomic_add_int(&t->tids_in_use, ntids);
874 }
875 
876 void *
877 lookup_tid(struct adapter *sc, int tid)
878 {
879 	struct tid_info *t = &sc->tids;
880 
881 	return (t->tid_tab[tid - t->tid_base]);
882 }
883 
884 void
885 update_tid(struct adapter *sc, int tid, void *ctx)
886 {
887 	struct tid_info *t = &sc->tids;
888 
889 	t->tid_tab[tid - t->tid_base] = ctx;
890 }
891 
892 void
893 remove_tid(struct adapter *sc, int tid, int ntids)
894 {
895 	struct tid_info *t = &sc->tids;
896 
897 	t->tid_tab[tid - t->tid_base] = NULL;
898 	atomic_subtract_int(&t->tids_in_use, ntids);
899 }
900 
901 /*
902  * What mtu_idx to use, given a 4-tuple.  Note that both s->mss and tcp_mssopt
903  * have the MSS that we should advertise in our SYN.  Advertised MSS doesn't
904  * account for any TCP options so the effective MSS (only payload, no headers or
905  * options) could be different.
906  */
907 static int
908 find_best_mtu_idx(struct adapter *sc, struct in_conninfo *inc,
909     struct offload_settings *s)
910 {
911 	unsigned short *mtus = &sc->params.mtus[0];
912 	int i, mss, mtu;
913 
914 	MPASS(inc != NULL);
915 
916 	mss = s->mss > 0 ? s->mss : tcp_mssopt(inc);
917 	if (inc->inc_flags & INC_ISIPV6)
918 		mtu = mss + sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
919 	else
920 		mtu = mss + sizeof(struct ip) + sizeof(struct tcphdr);
921 
922 	for (i = 0; i < NMTUS - 1 && mtus[i + 1] <= mtu; i++)
923 		continue;
924 
925 	return (i);
926 }
927 
928 /*
929  * Determine the receive window size for a socket.
930  */
931 u_long
932 select_rcv_wnd(struct socket *so)
933 {
934 	unsigned long wnd;
935 
936 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
937 
938 	wnd = sbspace(&so->so_rcv);
939 	if (wnd < MIN_RCV_WND)
940 		wnd = MIN_RCV_WND;
941 
942 	return min(wnd, MAX_RCV_WND);
943 }
944 
945 int
946 select_rcv_wscale(void)
947 {
948 	int wscale = 0;
949 	unsigned long space = sb_max;
950 
951 	if (space > MAX_RCV_WND)
952 		space = MAX_RCV_WND;
953 
954 	while (wscale < TCP_MAX_WINSHIFT && (TCP_MAXWIN << wscale) < space)
955 		wscale++;
956 
957 	return (wscale);
958 }
959 
960 __be64
961 calc_options0(struct vi_info *vi, struct conn_params *cp)
962 {
963 	uint64_t opt0 = 0;
964 
965 	opt0 |= F_TCAM_BYPASS;
966 
967 	MPASS(cp->wscale >= 0 && cp->wscale <= M_WND_SCALE);
968 	opt0 |= V_WND_SCALE(cp->wscale);
969 
970 	MPASS(cp->mtu_idx >= 0 && cp->mtu_idx < NMTUS);
971 	opt0 |= V_MSS_IDX(cp->mtu_idx);
972 
973 	MPASS(cp->ulp_mode >= 0 && cp->ulp_mode <= M_ULP_MODE);
974 	opt0 |= V_ULP_MODE(cp->ulp_mode);
975 
976 	MPASS(cp->opt0_bufsize >= 0 && cp->opt0_bufsize <= M_RCV_BUFSIZ);
977 	opt0 |= V_RCV_BUFSIZ(cp->opt0_bufsize);
978 
979 	MPASS(cp->l2t_idx >= 0 && cp->l2t_idx < vi->adapter->vres.l2t.size);
980 	opt0 |= V_L2T_IDX(cp->l2t_idx);
981 
982 	opt0 |= V_SMAC_SEL(vi->smt_idx);
983 	opt0 |= V_TX_CHAN(vi->pi->tx_chan);
984 
985 	MPASS(cp->keepalive == 0 || cp->keepalive == 1);
986 	opt0 |= V_KEEP_ALIVE(cp->keepalive);
987 
988 	MPASS(cp->nagle == 0 || cp->nagle == 1);
989 	opt0 |= V_NAGLE(cp->nagle);
990 
991 	return (htobe64(opt0));
992 }
993 
994 __be32
995 calc_options2(struct vi_info *vi, struct conn_params *cp)
996 {
997 	uint32_t opt2 = 0;
998 	struct port_info *pi = vi->pi;
999 	struct adapter *sc = pi->adapter;
1000 
1001 	/*
1002 	 * rx flow control, rx coalesce, congestion control, and tx pace are all
1003 	 * explicitly set by the driver.  On T5+ the ISS is also set by the
1004 	 * driver to the value picked by the kernel.
1005 	 */
1006 	if (is_t4(sc)) {
1007 		opt2 |= F_RX_FC_VALID | F_RX_COALESCE_VALID;
1008 		opt2 |= F_CONG_CNTRL_VALID | F_PACE_VALID;
1009 	} else {
1010 		opt2 |= F_T5_OPT_2_VALID;	/* all 4 valid */
1011 		opt2 |= F_T5_ISS;		/* ISS provided in CPL */
1012 	}
1013 
1014 	MPASS(cp->sack == 0 || cp->sack == 1);
1015 	opt2 |= V_SACK_EN(cp->sack);
1016 
1017 	MPASS(cp->tstamp == 0 || cp->tstamp == 1);
1018 	opt2 |= V_TSTAMPS_EN(cp->tstamp);
1019 
1020 	if (cp->wscale > 0)
1021 		opt2 |= F_WND_SCALE_EN;
1022 
1023 	MPASS(cp->ecn == 0 || cp->ecn == 1);
1024 	opt2 |= V_CCTRL_ECN(cp->ecn);
1025 
1026 	/* XXX: F_RX_CHANNEL for multiple rx c-chan support goes here. */
1027 
1028 	opt2 |= V_TX_QUEUE(sc->params.tp.tx_modq[pi->tx_chan]);
1029 	opt2 |= V_PACE(0);
1030 	opt2 |= F_RSS_QUEUE_VALID;
1031 	opt2 |= V_RSS_QUEUE(sc->sge.ofld_rxq[cp->rxq_idx].iq.abs_id);
1032 
1033 	MPASS(cp->cong_algo >= 0 && cp->cong_algo <= M_CONG_CNTRL);
1034 	opt2 |= V_CONG_CNTRL(cp->cong_algo);
1035 
1036 	MPASS(cp->rx_coalesce == 0 || cp->rx_coalesce == 1);
1037 	if (cp->rx_coalesce == 1)
1038 		opt2 |= V_RX_COALESCE(M_RX_COALESCE);
1039 
1040 	opt2 |= V_RX_FC_DDP(0) | V_RX_FC_DISABLE(0);
1041 #ifdef USE_DDP_RX_FLOW_CONTROL
1042 	if (cp->ulp_mode == ULP_MODE_TCPDDP)
1043 		opt2 |= F_RX_FC_DDP;
1044 #endif
1045 
1046 	return (htobe32(opt2));
1047 }
1048 
1049 uint64_t
1050 select_ntuple(struct vi_info *vi, struct l2t_entry *e)
1051 {
1052 	struct adapter *sc = vi->adapter;
1053 	struct tp_params *tp = &sc->params.tp;
1054 	uint64_t ntuple = 0;
1055 
1056 	/*
1057 	 * Initialize each of the fields which we care about which are present
1058 	 * in the Compressed Filter Tuple.
1059 	 */
1060 	if (tp->vlan_shift >= 0 && EVL_VLANOFTAG(e->vlan) != CPL_L2T_VLAN_NONE)
1061 		ntuple |= (uint64_t)(F_FT_VLAN_VLD | e->vlan) << tp->vlan_shift;
1062 
1063 	if (tp->port_shift >= 0)
1064 		ntuple |= (uint64_t)e->lport << tp->port_shift;
1065 
1066 	if (tp->protocol_shift >= 0)
1067 		ntuple |= (uint64_t)IPPROTO_TCP << tp->protocol_shift;
1068 
1069 	if (tp->vnic_shift >= 0 && tp->ingress_config & F_VNIC) {
1070 		ntuple |= (uint64_t)(V_FT_VNID_ID_VF(vi->vin) |
1071 		    V_FT_VNID_ID_PF(sc->pf) | V_FT_VNID_ID_VLD(vi->vfvld)) <<
1072 		    tp->vnic_shift;
1073 	}
1074 
1075 	if (is_t4(sc))
1076 		return (htobe32((uint32_t)ntuple));
1077 	else
1078 		return (htobe64(V_FILTER_TUPLE(ntuple)));
1079 }
1080 
1081 static int
1082 is_tls_sock(struct socket *so, struct adapter *sc)
1083 {
1084 	struct inpcb *inp = sotoinpcb(so);
1085 	int i, rc;
1086 
1087 	/* XXX: Eventually add a SO_WANT_TLS socket option perhaps? */
1088 	rc = 0;
1089 	ADAPTER_LOCK(sc);
1090 	for (i = 0; i < sc->tt.num_tls_rx_ports; i++) {
1091 		if (inp->inp_lport == htons(sc->tt.tls_rx_ports[i]) ||
1092 		    inp->inp_fport == htons(sc->tt.tls_rx_ports[i])) {
1093 			rc = 1;
1094 			break;
1095 		}
1096 	}
1097 	ADAPTER_UNLOCK(sc);
1098 	return (rc);
1099 }
1100 
1101 /*
1102  * Initialize various connection parameters.
1103  */
1104 void
1105 init_conn_params(struct vi_info *vi , struct offload_settings *s,
1106     struct in_conninfo *inc, struct socket *so,
1107     const struct tcp_options *tcpopt, int16_t l2t_idx, struct conn_params *cp)
1108 {
1109 	struct port_info *pi = vi->pi;
1110 	struct adapter *sc = pi->adapter;
1111 	struct tom_tunables *tt = &sc->tt;
1112 	struct inpcb *inp = sotoinpcb(so);
1113 	struct tcpcb *tp = intotcpcb(inp);
1114 	u_long wnd;
1115 
1116 	MPASS(s->offload != 0);
1117 
1118 	/* Congestion control algorithm */
1119 	if (s->cong_algo >= 0)
1120 		cp->cong_algo = s->cong_algo & M_CONG_CNTRL;
1121 	else if (sc->tt.cong_algorithm >= 0)
1122 		cp->cong_algo = tt->cong_algorithm & M_CONG_CNTRL;
1123 	else {
1124 		struct cc_algo *cc = CC_ALGO(tp);
1125 
1126 		if (strcasecmp(cc->name, "reno") == 0)
1127 			cp->cong_algo = CONG_ALG_RENO;
1128 		else if (strcasecmp(cc->name, "tahoe") == 0)
1129 			cp->cong_algo = CONG_ALG_TAHOE;
1130 		if (strcasecmp(cc->name, "newreno") == 0)
1131 			cp->cong_algo = CONG_ALG_NEWRENO;
1132 		if (strcasecmp(cc->name, "highspeed") == 0)
1133 			cp->cong_algo = CONG_ALG_HIGHSPEED;
1134 		else {
1135 			/*
1136 			 * Use newreno in case the algorithm selected by the
1137 			 * host stack is not supported by the hardware.
1138 			 */
1139 			cp->cong_algo = CONG_ALG_NEWRENO;
1140 		}
1141 	}
1142 
1143 	/* Tx traffic scheduling class. */
1144 	if (s->sched_class >= 0 &&
1145 	    s->sched_class < sc->chip_params->nsched_cls) {
1146 	    cp->tc_idx = s->sched_class;
1147 	} else
1148 	    cp->tc_idx = -1;
1149 
1150 	/* Nagle's algorithm. */
1151 	if (s->nagle >= 0)
1152 		cp->nagle = s->nagle > 0 ? 1 : 0;
1153 	else
1154 		cp->nagle = tp->t_flags & TF_NODELAY ? 0 : 1;
1155 
1156 	/* TCP Keepalive. */
1157 	if (V_tcp_always_keepalive || so_options_get(so) & SO_KEEPALIVE)
1158 		cp->keepalive = 1;
1159 	else
1160 		cp->keepalive = 0;
1161 
1162 	/* Optimization that's specific to T5 @ 40G. */
1163 	if (tt->tx_align >= 0)
1164 		cp->tx_align =  tt->tx_align > 0 ? 1 : 0;
1165 	else if (chip_id(sc) == CHELSIO_T5 &&
1166 	    (port_top_speed(pi) > 10 || sc->params.nports > 2))
1167 		cp->tx_align = 1;
1168 	else
1169 		cp->tx_align = 0;
1170 
1171 	/* ULP mode. */
1172 	if (can_tls_offload(sc) &&
1173 	    (s->tls > 0 || (s->tls < 0 && is_tls_sock(so, sc))))
1174 		cp->ulp_mode = ULP_MODE_TLS;
1175 	else if (s->ddp > 0 ||
1176 	    (s->ddp < 0 && sc->tt.ddp && (so_options_get(so) & SO_NO_DDP) == 0))
1177 		cp->ulp_mode = ULP_MODE_TCPDDP;
1178 	else
1179 		cp->ulp_mode = ULP_MODE_NONE;
1180 
1181 	/* Rx coalescing. */
1182 	if (s->rx_coalesce >= 0)
1183 		cp->rx_coalesce = s->rx_coalesce > 0 ? 1 : 0;
1184 	else if (cp->ulp_mode == ULP_MODE_TLS)
1185 		cp->rx_coalesce = 0;
1186 	else if (tt->rx_coalesce >= 0)
1187 		cp->rx_coalesce = tt->rx_coalesce > 0 ? 1 : 0;
1188 	else
1189 		cp->rx_coalesce = 1;	/* default */
1190 
1191 	/*
1192 	 * Index in the PMTU table.  This controls the MSS that we announce in
1193 	 * our SYN initially, but after ESTABLISHED it controls the MSS that we
1194 	 * use to send data.
1195 	 */
1196 	cp->mtu_idx = find_best_mtu_idx(sc, inc, s);
1197 
1198 	/* Tx queue for this connection. */
1199 	if (s->txq >= 0 && s->txq < vi->nofldtxq)
1200 		cp->txq_idx = s->txq;
1201 	else
1202 		cp->txq_idx = arc4random() % vi->nofldtxq;
1203 	cp->txq_idx += vi->first_ofld_txq;
1204 
1205 	/* Rx queue for this connection. */
1206 	if (s->rxq >= 0 && s->rxq < vi->nofldrxq)
1207 		cp->rxq_idx = s->rxq;
1208 	else
1209 		cp->rxq_idx = arc4random() % vi->nofldrxq;
1210 	cp->rxq_idx += vi->first_ofld_rxq;
1211 
1212 	if (SOLISTENING(so)) {
1213 		/* Passive open */
1214 		MPASS(tcpopt != NULL);
1215 
1216 		/* TCP timestamp option */
1217 		if (tcpopt->tstamp &&
1218 		    (s->tstamp > 0 || (s->tstamp < 0 && V_tcp_do_rfc1323)))
1219 			cp->tstamp = 1;
1220 		else
1221 			cp->tstamp = 0;
1222 
1223 		/* SACK */
1224 		if (tcpopt->sack &&
1225 		    (s->sack > 0 || (s->sack < 0 && V_tcp_do_sack)))
1226 			cp->sack = 1;
1227 		else
1228 			cp->sack = 0;
1229 
1230 		/* Receive window scaling. */
1231 		if (tcpopt->wsf > 0 && tcpopt->wsf < 15 && V_tcp_do_rfc1323)
1232 			cp->wscale = select_rcv_wscale();
1233 		else
1234 			cp->wscale = 0;
1235 
1236 		/* ECN */
1237 		if (tcpopt->ecn &&	/* XXX: review. */
1238 		    (s->ecn > 0 || (s->ecn < 0 && V_tcp_do_ecn)))
1239 			cp->ecn = 1;
1240 		else
1241 			cp->ecn = 0;
1242 
1243 		wnd = max(so->sol_sbrcv_hiwat, MIN_RCV_WND);
1244 		cp->opt0_bufsize = min(wnd >> 10, M_RCV_BUFSIZ);
1245 
1246 		if (tt->sndbuf > 0)
1247 			cp->sndbuf = tt->sndbuf;
1248 		else if (so->sol_sbsnd_flags & SB_AUTOSIZE &&
1249 		    V_tcp_do_autosndbuf)
1250 			cp->sndbuf = 256 * 1024;
1251 		else
1252 			cp->sndbuf = so->sol_sbsnd_hiwat;
1253 	} else {
1254 		/* Active open */
1255 
1256 		/* TCP timestamp option */
1257 		if (s->tstamp > 0 ||
1258 		    (s->tstamp < 0 && (tp->t_flags & TF_REQ_TSTMP)))
1259 			cp->tstamp = 1;
1260 		else
1261 			cp->tstamp = 0;
1262 
1263 		/* SACK */
1264 		if (s->sack > 0 ||
1265 		    (s->sack < 0 && (tp->t_flags & TF_SACK_PERMIT)))
1266 			cp->sack = 1;
1267 		else
1268 			cp->sack = 0;
1269 
1270 		/* Receive window scaling */
1271 		if (tp->t_flags & TF_REQ_SCALE)
1272 			cp->wscale = select_rcv_wscale();
1273 		else
1274 			cp->wscale = 0;
1275 
1276 		/* ECN */
1277 		if (s->ecn > 0 || (s->ecn < 0 && V_tcp_do_ecn == 1))
1278 			cp->ecn = 1;
1279 		else
1280 			cp->ecn = 0;
1281 
1282 		SOCKBUF_LOCK(&so->so_rcv);
1283 		wnd = max(select_rcv_wnd(so), MIN_RCV_WND);
1284 		SOCKBUF_UNLOCK(&so->so_rcv);
1285 		cp->opt0_bufsize = min(wnd >> 10, M_RCV_BUFSIZ);
1286 
1287 		if (tt->sndbuf > 0)
1288 			cp->sndbuf = tt->sndbuf;
1289 		else {
1290 			SOCKBUF_LOCK(&so->so_snd);
1291 			if (so->so_snd.sb_flags & SB_AUTOSIZE &&
1292 			    V_tcp_do_autosndbuf)
1293 				cp->sndbuf = 256 * 1024;
1294 			else
1295 				cp->sndbuf = so->so_snd.sb_hiwat;
1296 			SOCKBUF_UNLOCK(&so->so_snd);
1297 		}
1298 	}
1299 
1300 	cp->l2t_idx = l2t_idx;
1301 
1302 	/* This will be initialized on ESTABLISHED. */
1303 	cp->emss = 0;
1304 }
1305 
1306 int
1307 negative_advice(int status)
1308 {
1309 
1310 	return (status == CPL_ERR_RTX_NEG_ADVICE ||
1311 	    status == CPL_ERR_PERSIST_NEG_ADVICE ||
1312 	    status == CPL_ERR_KEEPALV_NEG_ADVICE);
1313 }
1314 
1315 static int
1316 alloc_tid_tab(struct tid_info *t, int flags)
1317 {
1318 
1319 	MPASS(t->ntids > 0);
1320 	MPASS(t->tid_tab == NULL);
1321 
1322 	t->tid_tab = malloc(t->ntids * sizeof(*t->tid_tab), M_CXGBE,
1323 	    M_ZERO | flags);
1324 	if (t->tid_tab == NULL)
1325 		return (ENOMEM);
1326 	atomic_store_rel_int(&t->tids_in_use, 0);
1327 
1328 	return (0);
1329 }
1330 
1331 static void
1332 free_tid_tab(struct tid_info *t)
1333 {
1334 
1335 	KASSERT(t->tids_in_use == 0,
1336 	    ("%s: %d tids still in use.", __func__, t->tids_in_use));
1337 
1338 	free(t->tid_tab, M_CXGBE);
1339 	t->tid_tab = NULL;
1340 }
1341 
1342 static int
1343 alloc_stid_tab(struct tid_info *t, int flags)
1344 {
1345 
1346 	MPASS(t->nstids > 0);
1347 	MPASS(t->stid_tab == NULL);
1348 
1349 	t->stid_tab = malloc(t->nstids * sizeof(*t->stid_tab), M_CXGBE,
1350 	    M_ZERO | flags);
1351 	if (t->stid_tab == NULL)
1352 		return (ENOMEM);
1353 	mtx_init(&t->stid_lock, "stid lock", NULL, MTX_DEF);
1354 	t->stids_in_use = 0;
1355 	TAILQ_INIT(&t->stids);
1356 	t->nstids_free_head = t->nstids;
1357 
1358 	return (0);
1359 }
1360 
1361 static void
1362 free_stid_tab(struct tid_info *t)
1363 {
1364 
1365 	KASSERT(t->stids_in_use == 0,
1366 	    ("%s: %d tids still in use.", __func__, t->stids_in_use));
1367 
1368 	if (mtx_initialized(&t->stid_lock))
1369 		mtx_destroy(&t->stid_lock);
1370 	free(t->stid_tab, M_CXGBE);
1371 	t->stid_tab = NULL;
1372 }
1373 
1374 static void
1375 free_tid_tabs(struct tid_info *t)
1376 {
1377 
1378 	free_tid_tab(t);
1379 	free_stid_tab(t);
1380 }
1381 
1382 static int
1383 alloc_tid_tabs(struct tid_info *t)
1384 {
1385 	int rc;
1386 
1387 	rc = alloc_tid_tab(t, M_NOWAIT);
1388 	if (rc != 0)
1389 		goto failed;
1390 
1391 	rc = alloc_stid_tab(t, M_NOWAIT);
1392 	if (rc != 0)
1393 		goto failed;
1394 
1395 	return (0);
1396 failed:
1397 	free_tid_tabs(t);
1398 	return (rc);
1399 }
1400 
1401 static inline void
1402 alloc_tcb_history(struct adapter *sc, struct tom_data *td)
1403 {
1404 
1405 	if (sc->tids.ntids == 0 || sc->tids.ntids > 1024)
1406 		return;
1407 	rw_init(&td->tcb_history_lock, "TCB history");
1408 	td->tcb_history = malloc(sc->tids.ntids * sizeof(*td->tcb_history),
1409 	    M_CXGBE, M_ZERO | M_NOWAIT);
1410 	td->dupack_threshold = G_DUPACKTHRESH(t4_read_reg(sc, A_TP_PARA_REG0));
1411 }
1412 
1413 static inline void
1414 free_tcb_history(struct adapter *sc, struct tom_data *td)
1415 {
1416 #ifdef INVARIANTS
1417 	int i;
1418 
1419 	if (td->tcb_history != NULL) {
1420 		for (i = 0; i < sc->tids.ntids; i++) {
1421 			MPASS(td->tcb_history[i] == NULL);
1422 		}
1423 	}
1424 #endif
1425 	free(td->tcb_history, M_CXGBE);
1426 	if (rw_initialized(&td->tcb_history_lock))
1427 		rw_destroy(&td->tcb_history_lock);
1428 }
1429 
1430 static void
1431 free_tom_data(struct adapter *sc, struct tom_data *td)
1432 {
1433 
1434 	ASSERT_SYNCHRONIZED_OP(sc);
1435 
1436 	KASSERT(TAILQ_EMPTY(&td->toep_list),
1437 	    ("%s: TOE PCB list is not empty.", __func__));
1438 	KASSERT(td->lctx_count == 0,
1439 	    ("%s: lctx hash table is not empty.", __func__));
1440 
1441 	t4_free_ppod_region(&td->pr);
1442 
1443 	if (td->listen_mask != 0)
1444 		hashdestroy(td->listen_hash, M_CXGBE, td->listen_mask);
1445 
1446 	if (mtx_initialized(&td->unsent_wr_lock))
1447 		mtx_destroy(&td->unsent_wr_lock);
1448 	if (mtx_initialized(&td->lctx_hash_lock))
1449 		mtx_destroy(&td->lctx_hash_lock);
1450 	if (mtx_initialized(&td->toep_list_lock))
1451 		mtx_destroy(&td->toep_list_lock);
1452 
1453 	free_tcb_history(sc, td);
1454 	free_tid_tabs(&sc->tids);
1455 	free(td, M_CXGBE);
1456 }
1457 
1458 static char *
1459 prepare_pkt(int open_type, uint16_t vtag, struct inpcb *inp, int *pktlen,
1460     int *buflen)
1461 {
1462 	char *pkt;
1463 	struct tcphdr *th;
1464 	int ipv6, len;
1465 	const int maxlen =
1466 	    max(sizeof(struct ether_header), sizeof(struct ether_vlan_header)) +
1467 	    max(sizeof(struct ip), sizeof(struct ip6_hdr)) +
1468 	    sizeof(struct tcphdr);
1469 
1470 	MPASS(open_type == OPEN_TYPE_ACTIVE || open_type == OPEN_TYPE_LISTEN);
1471 
1472 	pkt = malloc(maxlen, M_CXGBE, M_ZERO | M_NOWAIT);
1473 	if (pkt == NULL)
1474 		return (NULL);
1475 
1476 	ipv6 = inp->inp_vflag & INP_IPV6;
1477 	len = 0;
1478 
1479 	if (EVL_VLANOFTAG(vtag) == 0xfff) {
1480 		struct ether_header *eh = (void *)pkt;
1481 
1482 		if (ipv6)
1483 			eh->ether_type = htons(ETHERTYPE_IPV6);
1484 		else
1485 			eh->ether_type = htons(ETHERTYPE_IP);
1486 
1487 		len += sizeof(*eh);
1488 	} else {
1489 		struct ether_vlan_header *evh = (void *)pkt;
1490 
1491 		evh->evl_encap_proto = htons(ETHERTYPE_VLAN);
1492 		evh->evl_tag = htons(vtag);
1493 		if (ipv6)
1494 			evh->evl_proto = htons(ETHERTYPE_IPV6);
1495 		else
1496 			evh->evl_proto = htons(ETHERTYPE_IP);
1497 
1498 		len += sizeof(*evh);
1499 	}
1500 
1501 	if (ipv6) {
1502 		struct ip6_hdr *ip6 = (void *)&pkt[len];
1503 
1504 		ip6->ip6_vfc = IPV6_VERSION;
1505 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
1506 		ip6->ip6_nxt = IPPROTO_TCP;
1507 		if (open_type == OPEN_TYPE_ACTIVE) {
1508 			ip6->ip6_src = inp->in6p_laddr;
1509 			ip6->ip6_dst = inp->in6p_faddr;
1510 		} else if (open_type == OPEN_TYPE_LISTEN) {
1511 			ip6->ip6_src = inp->in6p_laddr;
1512 			ip6->ip6_dst = ip6->ip6_src;
1513 		}
1514 
1515 		len += sizeof(*ip6);
1516 	} else {
1517 		struct ip *ip = (void *)&pkt[len];
1518 
1519 		ip->ip_v = IPVERSION;
1520 		ip->ip_hl = sizeof(*ip) >> 2;
1521 		ip->ip_tos = inp->inp_ip_tos;
1522 		ip->ip_len = htons(sizeof(struct ip) + sizeof(struct tcphdr));
1523 		ip->ip_ttl = inp->inp_ip_ttl;
1524 		ip->ip_p = IPPROTO_TCP;
1525 		if (open_type == OPEN_TYPE_ACTIVE) {
1526 			ip->ip_src = inp->inp_laddr;
1527 			ip->ip_dst = inp->inp_faddr;
1528 		} else if (open_type == OPEN_TYPE_LISTEN) {
1529 			ip->ip_src = inp->inp_laddr;
1530 			ip->ip_dst = ip->ip_src;
1531 		}
1532 
1533 		len += sizeof(*ip);
1534 	}
1535 
1536 	th = (void *)&pkt[len];
1537 	if (open_type == OPEN_TYPE_ACTIVE) {
1538 		th->th_sport = inp->inp_lport;	/* network byte order already */
1539 		th->th_dport = inp->inp_fport;	/* ditto */
1540 	} else if (open_type == OPEN_TYPE_LISTEN) {
1541 		th->th_sport = inp->inp_lport;	/* network byte order already */
1542 		th->th_dport = th->th_sport;
1543 	}
1544 	len += sizeof(th);
1545 
1546 	*pktlen = *buflen = len;
1547 	return (pkt);
1548 }
1549 
1550 const struct offload_settings *
1551 lookup_offload_policy(struct adapter *sc, int open_type, struct mbuf *m,
1552     uint16_t vtag, struct inpcb *inp)
1553 {
1554 	const struct t4_offload_policy *op;
1555 	char *pkt;
1556 	struct offload_rule *r;
1557 	int i, matched, pktlen, buflen;
1558 	static const struct offload_settings allow_offloading_settings = {
1559 		.offload = 1,
1560 		.rx_coalesce = -1,
1561 		.cong_algo = -1,
1562 		.sched_class = -1,
1563 		.tstamp = -1,
1564 		.sack = -1,
1565 		.nagle = -1,
1566 		.ecn = -1,
1567 		.ddp = -1,
1568 		.tls = -1,
1569 		.txq = -1,
1570 		.rxq = -1,
1571 		.mss = -1,
1572 	};
1573 	static const struct offload_settings disallow_offloading_settings = {
1574 		.offload = 0,
1575 		/* rest is irrelevant when offload is off. */
1576 	};
1577 
1578 	rw_assert(&sc->policy_lock, RA_LOCKED);
1579 
1580 	/*
1581 	 * If there's no Connection Offloading Policy attached to the device
1582 	 * then we need to return a default static policy.  If
1583 	 * "cop_managed_offloading" is true, then we need to disallow
1584 	 * offloading until a COP is attached to the device.  Otherwise we
1585 	 * allow offloading ...
1586 	 */
1587 	op = sc->policy;
1588 	if (op == NULL) {
1589 		if (sc->tt.cop_managed_offloading)
1590 			return (&disallow_offloading_settings);
1591 		else
1592 			return (&allow_offloading_settings);
1593 	}
1594 
1595 	switch (open_type) {
1596 	case OPEN_TYPE_ACTIVE:
1597 	case OPEN_TYPE_LISTEN:
1598 		pkt = prepare_pkt(open_type, vtag, inp, &pktlen, &buflen);
1599 		break;
1600 	case OPEN_TYPE_PASSIVE:
1601 		MPASS(m != NULL);
1602 		pkt = mtod(m, char *);
1603 		MPASS(*pkt == CPL_PASS_ACCEPT_REQ);
1604 		pkt += sizeof(struct cpl_pass_accept_req);
1605 		pktlen = m->m_pkthdr.len - sizeof(struct cpl_pass_accept_req);
1606 		buflen = m->m_len - sizeof(struct cpl_pass_accept_req);
1607 		break;
1608 	default:
1609 		MPASS(0);
1610 		return (&disallow_offloading_settings);
1611 	}
1612 
1613 	if (pkt == NULL || pktlen == 0 || buflen == 0)
1614 		return (&disallow_offloading_settings);
1615 
1616 	matched = 0;
1617 	r = &op->rule[0];
1618 	for (i = 0; i < op->nrules; i++, r++) {
1619 		if (r->open_type != open_type &&
1620 		    r->open_type != OPEN_TYPE_DONTCARE) {
1621 			continue;
1622 		}
1623 		matched = bpf_filter(r->bpf_prog.bf_insns, pkt, pktlen, buflen);
1624 		if (matched)
1625 			break;
1626 	}
1627 
1628 	if (open_type == OPEN_TYPE_ACTIVE || open_type == OPEN_TYPE_LISTEN)
1629 		free(pkt, M_CXGBE);
1630 
1631 	return (matched ? &r->settings : &disallow_offloading_settings);
1632 }
1633 
1634 static void
1635 reclaim_wr_resources(void *arg, int count)
1636 {
1637 	struct tom_data *td = arg;
1638 	STAILQ_HEAD(, wrqe) twr_list = STAILQ_HEAD_INITIALIZER(twr_list);
1639 	struct cpl_act_open_req *cpl;
1640 	u_int opcode, atid, tid;
1641 	struct wrqe *wr;
1642 	struct adapter *sc = td_adapter(td);
1643 
1644 	mtx_lock(&td->unsent_wr_lock);
1645 	STAILQ_SWAP(&td->unsent_wr_list, &twr_list, wrqe);
1646 	mtx_unlock(&td->unsent_wr_lock);
1647 
1648 	while ((wr = STAILQ_FIRST(&twr_list)) != NULL) {
1649 		STAILQ_REMOVE_HEAD(&twr_list, link);
1650 
1651 		cpl = wrtod(wr);
1652 		opcode = GET_OPCODE(cpl);
1653 
1654 		switch (opcode) {
1655 		case CPL_ACT_OPEN_REQ:
1656 		case CPL_ACT_OPEN_REQ6:
1657 			atid = G_TID_TID(be32toh(OPCODE_TID(cpl)));
1658 			CTR2(KTR_CXGBE, "%s: atid %u ", __func__, atid);
1659 			act_open_failure_cleanup(sc, atid, EHOSTUNREACH);
1660 			free(wr, M_CXGBE);
1661 			break;
1662 		case CPL_PASS_ACCEPT_RPL:
1663 			tid = GET_TID(cpl);
1664 			CTR2(KTR_CXGBE, "%s: tid %u ", __func__, tid);
1665 			synack_failure_cleanup(sc, tid);
1666 			free(wr, M_CXGBE);
1667 			break;
1668 		default:
1669 			log(LOG_ERR, "%s: leaked work request %p, wr_len %d, "
1670 			    "opcode %x\n", __func__, wr, wr->wr_len, opcode);
1671 			/* WR not freed here; go look at it with a debugger.  */
1672 		}
1673 	}
1674 }
1675 
1676 /*
1677  * Ground control to Major TOM
1678  * Commencing countdown, engines on
1679  */
1680 static int
1681 t4_tom_activate(struct adapter *sc)
1682 {
1683 	struct tom_data *td;
1684 	struct toedev *tod;
1685 	struct vi_info *vi;
1686 	int i, rc, v;
1687 
1688 	ASSERT_SYNCHRONIZED_OP(sc);
1689 
1690 	/* per-adapter softc for TOM */
1691 	td = malloc(sizeof(*td), M_CXGBE, M_ZERO | M_NOWAIT);
1692 	if (td == NULL)
1693 		return (ENOMEM);
1694 
1695 	/* List of TOE PCBs and associated lock */
1696 	mtx_init(&td->toep_list_lock, "PCB list lock", NULL, MTX_DEF);
1697 	TAILQ_INIT(&td->toep_list);
1698 
1699 	/* Listen context */
1700 	mtx_init(&td->lctx_hash_lock, "lctx hash lock", NULL, MTX_DEF);
1701 	td->listen_hash = hashinit_flags(LISTEN_HASH_SIZE, M_CXGBE,
1702 	    &td->listen_mask, HASH_NOWAIT);
1703 
1704 	/* List of WRs for which L2 resolution failed */
1705 	mtx_init(&td->unsent_wr_lock, "Unsent WR list lock", NULL, MTX_DEF);
1706 	STAILQ_INIT(&td->unsent_wr_list);
1707 	TASK_INIT(&td->reclaim_wr_resources, 0, reclaim_wr_resources, td);
1708 
1709 	/* TID tables */
1710 	rc = alloc_tid_tabs(&sc->tids);
1711 	if (rc != 0)
1712 		goto done;
1713 
1714 	rc = t4_init_ppod_region(&td->pr, &sc->vres.ddp,
1715 	    t4_read_reg(sc, A_ULP_RX_TDDP_PSZ), "TDDP page pods");
1716 	if (rc != 0)
1717 		goto done;
1718 	t4_set_reg_field(sc, A_ULP_RX_TDDP_TAGMASK,
1719 	    V_TDDPTAGMASK(M_TDDPTAGMASK), td->pr.pr_tag_mask);
1720 
1721 	alloc_tcb_history(sc, td);
1722 
1723 	/* toedev ops */
1724 	tod = &td->tod;
1725 	init_toedev(tod);
1726 	tod->tod_softc = sc;
1727 	tod->tod_connect = t4_connect;
1728 	tod->tod_listen_start = t4_listen_start;
1729 	tod->tod_listen_stop = t4_listen_stop;
1730 	tod->tod_rcvd = t4_rcvd;
1731 	tod->tod_output = t4_tod_output;
1732 	tod->tod_send_rst = t4_send_rst;
1733 	tod->tod_send_fin = t4_send_fin;
1734 	tod->tod_pcb_detach = t4_pcb_detach;
1735 	tod->tod_l2_update = t4_l2_update;
1736 	tod->tod_syncache_added = t4_syncache_added;
1737 	tod->tod_syncache_removed = t4_syncache_removed;
1738 	tod->tod_syncache_respond = t4_syncache_respond;
1739 	tod->tod_offload_socket = t4_offload_socket;
1740 	tod->tod_ctloutput = t4_ctloutput;
1741 	tod->tod_tcp_info = t4_tcp_info;
1742 #ifdef KERN_TLS
1743 	tod->tod_alloc_tls_session = t4_alloc_tls_session;
1744 #endif
1745 
1746 	for_each_port(sc, i) {
1747 		for_each_vi(sc->port[i], v, vi) {
1748 			TOEDEV(vi->ifp) = &td->tod;
1749 		}
1750 	}
1751 
1752 	sc->tom_softc = td;
1753 	register_toedev(sc->tom_softc);
1754 
1755 done:
1756 	if (rc != 0)
1757 		free_tom_data(sc, td);
1758 	return (rc);
1759 }
1760 
1761 static int
1762 t4_tom_deactivate(struct adapter *sc)
1763 {
1764 	int rc = 0;
1765 	struct tom_data *td = sc->tom_softc;
1766 
1767 	ASSERT_SYNCHRONIZED_OP(sc);
1768 
1769 	if (td == NULL)
1770 		return (0);	/* XXX. KASSERT? */
1771 
1772 	if (sc->offload_map != 0)
1773 		return (EBUSY);	/* at least one port has IFCAP_TOE enabled */
1774 
1775 	if (uld_active(sc, ULD_IWARP) || uld_active(sc, ULD_ISCSI))
1776 		return (EBUSY);	/* both iWARP and iSCSI rely on the TOE. */
1777 
1778 	mtx_lock(&td->toep_list_lock);
1779 	if (!TAILQ_EMPTY(&td->toep_list))
1780 		rc = EBUSY;
1781 	mtx_unlock(&td->toep_list_lock);
1782 
1783 	mtx_lock(&td->lctx_hash_lock);
1784 	if (td->lctx_count > 0)
1785 		rc = EBUSY;
1786 	mtx_unlock(&td->lctx_hash_lock);
1787 
1788 	taskqueue_drain(taskqueue_thread, &td->reclaim_wr_resources);
1789 	mtx_lock(&td->unsent_wr_lock);
1790 	if (!STAILQ_EMPTY(&td->unsent_wr_list))
1791 		rc = EBUSY;
1792 	mtx_unlock(&td->unsent_wr_lock);
1793 
1794 	if (rc == 0) {
1795 		unregister_toedev(sc->tom_softc);
1796 		free_tom_data(sc, td);
1797 		sc->tom_softc = NULL;
1798 	}
1799 
1800 	return (rc);
1801 }
1802 
1803 static int
1804 t4_aio_queue_tom(struct socket *so, struct kaiocb *job)
1805 {
1806 	struct tcpcb *tp = so_sototcpcb(so);
1807 	struct toepcb *toep = tp->t_toe;
1808 	int error;
1809 
1810 	if (ulp_mode(toep) == ULP_MODE_TCPDDP) {
1811 		error = t4_aio_queue_ddp(so, job);
1812 		if (error != EOPNOTSUPP)
1813 			return (error);
1814 	}
1815 
1816 	return (t4_aio_queue_aiotx(so, job));
1817 }
1818 
1819 static int
1820 t4_ctloutput_tom(struct socket *so, struct sockopt *sopt)
1821 {
1822 
1823 	if (sopt->sopt_level != IPPROTO_TCP)
1824 		return (tcp_ctloutput(so, sopt));
1825 
1826 	switch (sopt->sopt_name) {
1827 	case TCP_TLSOM_SET_TLS_CONTEXT:
1828 	case TCP_TLSOM_GET_TLS_TOM:
1829 	case TCP_TLSOM_CLR_TLS_TOM:
1830 	case TCP_TLSOM_CLR_QUIES:
1831 		return (t4_ctloutput_tls(so, sopt));
1832 	default:
1833 		return (tcp_ctloutput(so, sopt));
1834 	}
1835 }
1836 
1837 static int
1838 t4_tom_mod_load(void)
1839 {
1840 	struct protosw *tcp_protosw, *tcp6_protosw;
1841 
1842 	/* CPL handlers */
1843 	t4_register_cpl_handler(CPL_GET_TCB_RPL, do_get_tcb_rpl);
1844 	t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, do_l2t_write_rpl2,
1845 	    CPL_COOKIE_TOM);
1846 	t4_init_connect_cpl_handlers();
1847 	t4_init_listen_cpl_handlers();
1848 	t4_init_cpl_io_handlers();
1849 
1850 	t4_ddp_mod_load();
1851 	t4_tls_mod_load();
1852 
1853 	tcp_protosw = pffindproto(PF_INET, IPPROTO_TCP, SOCK_STREAM);
1854 	if (tcp_protosw == NULL)
1855 		return (ENOPROTOOPT);
1856 	bcopy(tcp_protosw, &toe_protosw, sizeof(toe_protosw));
1857 	bcopy(tcp_protosw->pr_usrreqs, &toe_usrreqs, sizeof(toe_usrreqs));
1858 	toe_usrreqs.pru_aio_queue = t4_aio_queue_tom;
1859 	toe_protosw.pr_ctloutput = t4_ctloutput_tom;
1860 	toe_protosw.pr_usrreqs = &toe_usrreqs;
1861 
1862 	tcp6_protosw = pffindproto(PF_INET6, IPPROTO_TCP, SOCK_STREAM);
1863 	if (tcp6_protosw == NULL)
1864 		return (ENOPROTOOPT);
1865 	bcopy(tcp6_protosw, &toe6_protosw, sizeof(toe6_protosw));
1866 	bcopy(tcp6_protosw->pr_usrreqs, &toe6_usrreqs, sizeof(toe6_usrreqs));
1867 	toe6_usrreqs.pru_aio_queue = t4_aio_queue_tom;
1868 	toe6_protosw.pr_ctloutput = t4_ctloutput_tom;
1869 	toe6_protosw.pr_usrreqs = &toe6_usrreqs;
1870 
1871 	return (t4_register_uld(&tom_uld_info));
1872 }
1873 
1874 static void
1875 tom_uninit(struct adapter *sc, void *arg __unused)
1876 {
1877 	if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4tomun"))
1878 		return;
1879 
1880 	/* Try to free resources (works only if no port has IFCAP_TOE) */
1881 	if (uld_active(sc, ULD_TOM))
1882 		t4_deactivate_uld(sc, ULD_TOM);
1883 
1884 	end_synchronized_op(sc, 0);
1885 }
1886 
1887 static int
1888 t4_tom_mod_unload(void)
1889 {
1890 	t4_iterate(tom_uninit, NULL);
1891 
1892 	if (t4_unregister_uld(&tom_uld_info) == EBUSY)
1893 		return (EBUSY);
1894 
1895 	t4_tls_mod_unload();
1896 	t4_ddp_mod_unload();
1897 
1898 	t4_uninit_connect_cpl_handlers();
1899 	t4_uninit_listen_cpl_handlers();
1900 	t4_uninit_cpl_io_handlers();
1901 	t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, NULL, CPL_COOKIE_TOM);
1902 	t4_register_cpl_handler(CPL_GET_TCB_RPL, NULL);
1903 
1904 	return (0);
1905 }
1906 #endif	/* TCP_OFFLOAD */
1907 
1908 static int
1909 t4_tom_modevent(module_t mod, int cmd, void *arg)
1910 {
1911 	int rc = 0;
1912 
1913 #ifdef TCP_OFFLOAD
1914 	switch (cmd) {
1915 	case MOD_LOAD:
1916 		rc = t4_tom_mod_load();
1917 		break;
1918 
1919 	case MOD_UNLOAD:
1920 		rc = t4_tom_mod_unload();
1921 		break;
1922 
1923 	default:
1924 		rc = EINVAL;
1925 	}
1926 #else
1927 	printf("t4_tom: compiled without TCP_OFFLOAD support.\n");
1928 	rc = EOPNOTSUPP;
1929 #endif
1930 	return (rc);
1931 }
1932 
1933 static moduledata_t t4_tom_moddata= {
1934 	"t4_tom",
1935 	t4_tom_modevent,
1936 	0
1937 };
1938 
1939 MODULE_VERSION(t4_tom, 1);
1940 MODULE_DEPEND(t4_tom, toecore, 1, 1, 1);
1941 MODULE_DEPEND(t4_tom, t4nex, 1, 1, 1);
1942 DECLARE_MODULE(t4_tom, t4_tom_moddata, SI_SUB_EXEC, SI_ORDER_ANY);
1943