1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2012 Chelsio Communications, Inc. 5 * All rights reserved. 6 * Written by: Navdeep Parhar <np@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include "opt_inet.h" 34 #include "opt_inet6.h" 35 #include "opt_kern_tls.h" 36 #include "opt_ratelimit.h" 37 38 #include <sys/param.h> 39 #include <sys/types.h> 40 #include <sys/systm.h> 41 #include <sys/kernel.h> 42 #include <sys/ktr.h> 43 #include <sys/lock.h> 44 #include <sys/limits.h> 45 #include <sys/module.h> 46 #include <sys/protosw.h> 47 #include <sys/domain.h> 48 #include <sys/refcount.h> 49 #include <sys/rmlock.h> 50 #include <sys/socket.h> 51 #include <sys/socketvar.h> 52 #include <sys/sysctl.h> 53 #include <sys/taskqueue.h> 54 #include <net/if.h> 55 #include <net/if_var.h> 56 #include <net/if_types.h> 57 #include <net/if_vlan_var.h> 58 #include <netinet/in.h> 59 #include <netinet/in_pcb.h> 60 #include <netinet/in_var.h> 61 #include <netinet/ip.h> 62 #include <netinet/ip6.h> 63 #include <netinet6/scope6_var.h> 64 #define TCPSTATES 65 #include <netinet/tcp_fsm.h> 66 #include <netinet/tcp_timer.h> 67 #include <netinet/tcp_var.h> 68 #include <netinet/toecore.h> 69 #include <netinet/cc/cc.h> 70 71 #ifdef TCP_OFFLOAD 72 #include "common/common.h" 73 #include "common/t4_msg.h" 74 #include "common/t4_regs.h" 75 #include "common/t4_regs_values.h" 76 #include "common/t4_tcb.h" 77 #include "t4_clip.h" 78 #include "tom/t4_tom_l2t.h" 79 #include "tom/t4_tom.h" 80 #include "tom/t4_tls.h" 81 82 static struct protosw toe_protosw; 83 static struct pr_usrreqs toe_usrreqs; 84 85 static struct protosw toe6_protosw; 86 static struct pr_usrreqs toe6_usrreqs; 87 88 /* Module ops */ 89 static int t4_tom_mod_load(void); 90 static int t4_tom_mod_unload(void); 91 static int t4_tom_modevent(module_t, int, void *); 92 93 /* ULD ops and helpers */ 94 static int t4_tom_activate(struct adapter *); 95 static int t4_tom_deactivate(struct adapter *); 96 97 static struct uld_info tom_uld_info = { 98 .uld_id = ULD_TOM, 99 .activate = t4_tom_activate, 100 .deactivate = t4_tom_deactivate, 101 }; 102 103 static void release_offload_resources(struct toepcb *); 104 static int alloc_tid_tabs(struct tid_info *); 105 static void free_tid_tabs(struct tid_info *); 106 static void free_tom_data(struct adapter *, struct tom_data *); 107 static void reclaim_wr_resources(void *, int); 108 109 struct toepcb * 110 alloc_toepcb(struct vi_info *vi, int flags) 111 { 112 struct port_info *pi = vi->pi; 113 struct adapter *sc = pi->adapter; 114 struct toepcb *toep; 115 int tx_credits, txsd_total, len; 116 117 /* 118 * The firmware counts tx work request credits in units of 16 bytes 119 * each. Reserve room for an ABORT_REQ so the driver never has to worry 120 * about tx credits if it wants to abort a connection. 121 */ 122 tx_credits = sc->params.ofldq_wr_cred; 123 tx_credits -= howmany(sizeof(struct cpl_abort_req), 16); 124 125 /* 126 * Shortest possible tx work request is a fw_ofld_tx_data_wr + 1 byte 127 * immediate payload, and firmware counts tx work request credits in 128 * units of 16 byte. Calculate the maximum work requests possible. 129 */ 130 txsd_total = tx_credits / 131 howmany(sizeof(struct fw_ofld_tx_data_wr) + 1, 16); 132 133 len = offsetof(struct toepcb, txsd) + 134 txsd_total * sizeof(struct ofld_tx_sdesc); 135 136 toep = malloc(len, M_CXGBE, M_ZERO | flags); 137 if (toep == NULL) 138 return (NULL); 139 140 refcount_init(&toep->refcount, 1); 141 toep->td = sc->tom_softc; 142 toep->vi = vi; 143 toep->tid = -1; 144 toep->tx_total = tx_credits; 145 toep->tx_credits = tx_credits; 146 mbufq_init(&toep->ulp_pduq, INT_MAX); 147 mbufq_init(&toep->ulp_pdu_reclaimq, INT_MAX); 148 toep->txsd_total = txsd_total; 149 toep->txsd_avail = txsd_total; 150 toep->txsd_pidx = 0; 151 toep->txsd_cidx = 0; 152 aiotx_init_toep(toep); 153 154 return (toep); 155 } 156 157 /* 158 * Initialize a toepcb after its params have been filled out. 159 */ 160 int 161 init_toepcb(struct vi_info *vi, struct toepcb *toep) 162 { 163 struct conn_params *cp = &toep->params; 164 struct port_info *pi = vi->pi; 165 struct adapter *sc = pi->adapter; 166 struct tx_cl_rl_params *tc; 167 168 if (cp->tc_idx >= 0 && cp->tc_idx < sc->chip_params->nsched_cls) { 169 tc = &pi->sched_params->cl_rl[cp->tc_idx]; 170 mtx_lock(&sc->tc_lock); 171 if (tc->flags & CLRL_ERR) { 172 log(LOG_ERR, 173 "%s: failed to associate traffic class %u with tid %u\n", 174 device_get_nameunit(vi->dev), cp->tc_idx, 175 toep->tid); 176 cp->tc_idx = -1; 177 } else { 178 tc->refcount++; 179 } 180 mtx_unlock(&sc->tc_lock); 181 } 182 toep->ofld_txq = &sc->sge.ofld_txq[cp->txq_idx]; 183 toep->ofld_rxq = &sc->sge.ofld_rxq[cp->rxq_idx]; 184 toep->ctrlq = &sc->sge.ctrlq[pi->port_id]; 185 186 tls_init_toep(toep); 187 if (ulp_mode(toep) == ULP_MODE_TCPDDP) 188 ddp_init_toep(toep); 189 190 return (0); 191 } 192 193 struct toepcb * 194 hold_toepcb(struct toepcb *toep) 195 { 196 197 refcount_acquire(&toep->refcount); 198 return (toep); 199 } 200 201 void 202 free_toepcb(struct toepcb *toep) 203 { 204 205 if (refcount_release(&toep->refcount) == 0) 206 return; 207 208 KASSERT(!(toep->flags & TPF_ATTACHED), 209 ("%s: attached to an inpcb", __func__)); 210 KASSERT(!(toep->flags & TPF_CPL_PENDING), 211 ("%s: CPL pending", __func__)); 212 213 if (ulp_mode(toep) == ULP_MODE_TCPDDP) 214 ddp_uninit_toep(toep); 215 tls_uninit_toep(toep); 216 free(toep, M_CXGBE); 217 } 218 219 /* 220 * Set up the socket for TCP offload. 221 */ 222 void 223 offload_socket(struct socket *so, struct toepcb *toep) 224 { 225 struct tom_data *td = toep->td; 226 struct inpcb *inp = sotoinpcb(so); 227 struct tcpcb *tp = intotcpcb(inp); 228 struct sockbuf *sb; 229 230 INP_WLOCK_ASSERT(inp); 231 232 /* Update socket */ 233 sb = &so->so_snd; 234 SOCKBUF_LOCK(sb); 235 sb->sb_flags |= SB_NOCOALESCE; 236 SOCKBUF_UNLOCK(sb); 237 sb = &so->so_rcv; 238 SOCKBUF_LOCK(sb); 239 sb->sb_flags |= SB_NOCOALESCE; 240 if (inp->inp_vflag & INP_IPV6) 241 so->so_proto = &toe6_protosw; 242 else 243 so->so_proto = &toe_protosw; 244 SOCKBUF_UNLOCK(sb); 245 246 /* Update TCP PCB */ 247 tp->tod = &td->tod; 248 tp->t_toe = toep; 249 tp->t_flags |= TF_TOE; 250 251 /* Install an extra hold on inp */ 252 toep->inp = inp; 253 toep->flags |= TPF_ATTACHED; 254 in_pcbref(inp); 255 256 /* Add the TOE PCB to the active list */ 257 mtx_lock(&td->toep_list_lock); 258 TAILQ_INSERT_HEAD(&td->toep_list, toep, link); 259 mtx_unlock(&td->toep_list_lock); 260 } 261 262 /* This is _not_ the normal way to "unoffload" a socket. */ 263 void 264 undo_offload_socket(struct socket *so) 265 { 266 struct inpcb *inp = sotoinpcb(so); 267 struct tcpcb *tp = intotcpcb(inp); 268 struct toepcb *toep = tp->t_toe; 269 struct tom_data *td = toep->td; 270 struct sockbuf *sb; 271 272 INP_WLOCK_ASSERT(inp); 273 274 sb = &so->so_snd; 275 SOCKBUF_LOCK(sb); 276 sb->sb_flags &= ~SB_NOCOALESCE; 277 SOCKBUF_UNLOCK(sb); 278 sb = &so->so_rcv; 279 SOCKBUF_LOCK(sb); 280 sb->sb_flags &= ~SB_NOCOALESCE; 281 SOCKBUF_UNLOCK(sb); 282 283 tp->tod = NULL; 284 tp->t_toe = NULL; 285 tp->t_flags &= ~TF_TOE; 286 287 toep->inp = NULL; 288 toep->flags &= ~TPF_ATTACHED; 289 if (in_pcbrele_wlocked(inp)) 290 panic("%s: inp freed.", __func__); 291 292 mtx_lock(&td->toep_list_lock); 293 TAILQ_REMOVE(&td->toep_list, toep, link); 294 mtx_unlock(&td->toep_list_lock); 295 } 296 297 static void 298 release_offload_resources(struct toepcb *toep) 299 { 300 struct tom_data *td = toep->td; 301 struct adapter *sc = td_adapter(td); 302 int tid = toep->tid; 303 304 KASSERT(!(toep->flags & TPF_CPL_PENDING), 305 ("%s: %p has CPL pending.", __func__, toep)); 306 KASSERT(!(toep->flags & TPF_ATTACHED), 307 ("%s: %p is still attached.", __func__, toep)); 308 309 CTR5(KTR_CXGBE, "%s: toep %p (tid %d, l2te %p, ce %p)", 310 __func__, toep, tid, toep->l2te, toep->ce); 311 312 /* 313 * These queues should have been emptied at approximately the same time 314 * that a normal connection's socket's so_snd would have been purged or 315 * drained. Do _not_ clean up here. 316 */ 317 MPASS(mbufq_len(&toep->ulp_pduq) == 0); 318 MPASS(mbufq_len(&toep->ulp_pdu_reclaimq) == 0); 319 #ifdef INVARIANTS 320 if (ulp_mode(toep) == ULP_MODE_TCPDDP) 321 ddp_assert_empty(toep); 322 #endif 323 MPASS(TAILQ_EMPTY(&toep->aiotx_jobq)); 324 325 if (toep->l2te) 326 t4_l2t_release(toep->l2te); 327 328 if (tid >= 0) { 329 remove_tid(sc, tid, toep->ce ? 2 : 1); 330 release_tid(sc, tid, toep->ctrlq); 331 } 332 333 if (toep->ce) 334 t4_release_lip(sc, toep->ce); 335 336 if (toep->params.tc_idx != -1) 337 t4_release_cl_rl(sc, toep->vi->pi->port_id, toep->params.tc_idx); 338 339 mtx_lock(&td->toep_list_lock); 340 TAILQ_REMOVE(&td->toep_list, toep, link); 341 mtx_unlock(&td->toep_list_lock); 342 343 free_toepcb(toep); 344 } 345 346 /* 347 * The kernel is done with the TCP PCB and this is our opportunity to unhook the 348 * toepcb hanging off of it. If the TOE driver is also done with the toepcb (no 349 * pending CPL) then it is time to release all resources tied to the toepcb. 350 * 351 * Also gets called when an offloaded active open fails and the TOM wants the 352 * kernel to take the TCP PCB back. 353 */ 354 static void 355 t4_pcb_detach(struct toedev *tod __unused, struct tcpcb *tp) 356 { 357 #if defined(KTR) || defined(INVARIANTS) 358 struct inpcb *inp = tp->t_inpcb; 359 #endif 360 struct toepcb *toep = tp->t_toe; 361 362 INP_WLOCK_ASSERT(inp); 363 364 KASSERT(toep != NULL, ("%s: toep is NULL", __func__)); 365 KASSERT(toep->flags & TPF_ATTACHED, 366 ("%s: not attached", __func__)); 367 368 #ifdef KTR 369 if (tp->t_state == TCPS_SYN_SENT) { 370 CTR6(KTR_CXGBE, "%s: atid %d, toep %p (0x%x), inp %p (0x%x)", 371 __func__, toep->tid, toep, toep->flags, inp, 372 inp->inp_flags); 373 } else { 374 CTR6(KTR_CXGBE, 375 "t4_pcb_detach: tid %d (%s), toep %p (0x%x), inp %p (0x%x)", 376 toep->tid, tcpstates[tp->t_state], toep, toep->flags, inp, 377 inp->inp_flags); 378 } 379 #endif 380 381 tp->t_toe = NULL; 382 tp->t_flags &= ~TF_TOE; 383 toep->flags &= ~TPF_ATTACHED; 384 385 if (!(toep->flags & TPF_CPL_PENDING)) 386 release_offload_resources(toep); 387 } 388 389 /* 390 * setsockopt handler. 391 */ 392 static void 393 t4_ctloutput(struct toedev *tod, struct tcpcb *tp, int dir, int name) 394 { 395 struct adapter *sc = tod->tod_softc; 396 struct toepcb *toep = tp->t_toe; 397 398 if (dir == SOPT_GET) 399 return; 400 401 CTR4(KTR_CXGBE, "%s: tp %p, dir %u, name %u", __func__, tp, dir, name); 402 403 switch (name) { 404 case TCP_NODELAY: 405 if (tp->t_state != TCPS_ESTABLISHED) 406 break; 407 toep->params.nagle = tp->t_flags & TF_NODELAY ? 0 : 1; 408 t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_T_FLAGS, 409 V_TF_NAGLE(1), V_TF_NAGLE(toep->params.nagle), 0, 0); 410 break; 411 default: 412 break; 413 } 414 } 415 416 static inline uint64_t 417 get_tcb_tflags(const uint64_t *tcb) 418 { 419 420 return ((be64toh(tcb[14]) << 32) | (be64toh(tcb[15]) >> 32)); 421 } 422 423 static inline uint32_t 424 get_tcb_field(const uint64_t *tcb, u_int word, uint32_t mask, u_int shift) 425 { 426 #define LAST_WORD ((TCB_SIZE / 4) - 1) 427 uint64_t t1, t2; 428 int flit_idx; 429 430 MPASS(mask != 0); 431 MPASS(word <= LAST_WORD); 432 MPASS(shift < 32); 433 434 flit_idx = (LAST_WORD - word) / 2; 435 if (word & 0x1) 436 shift += 32; 437 t1 = be64toh(tcb[flit_idx]) >> shift; 438 t2 = 0; 439 if (fls(mask) > 64 - shift) { 440 /* 441 * Will spill over into the next logical flit, which is the flit 442 * before this one. The flit_idx before this one must be valid. 443 */ 444 MPASS(flit_idx > 0); 445 t2 = be64toh(tcb[flit_idx - 1]) << (64 - shift); 446 } 447 return ((t2 | t1) & mask); 448 #undef LAST_WORD 449 } 450 #define GET_TCB_FIELD(tcb, F) \ 451 get_tcb_field(tcb, W_TCB_##F, M_TCB_##F, S_TCB_##F) 452 453 /* 454 * Issues a CPL_GET_TCB to read the entire TCB for the tid. 455 */ 456 static int 457 send_get_tcb(struct adapter *sc, u_int tid) 458 { 459 struct cpl_get_tcb *cpl; 460 struct wrq_cookie cookie; 461 462 MPASS(tid < sc->tids.ntids); 463 464 cpl = start_wrq_wr(&sc->sge.ctrlq[0], howmany(sizeof(*cpl), 16), 465 &cookie); 466 if (__predict_false(cpl == NULL)) 467 return (ENOMEM); 468 bzero(cpl, sizeof(*cpl)); 469 INIT_TP_WR(cpl, tid); 470 OPCODE_TID(cpl) = htobe32(MK_OPCODE_TID(CPL_GET_TCB, tid)); 471 cpl->reply_ctrl = htobe16(V_REPLY_CHAN(0) | 472 V_QUEUENO(sc->sge.ofld_rxq[0].iq.cntxt_id)); 473 cpl->cookie = 0xff; 474 commit_wrq_wr(&sc->sge.ctrlq[0], cpl, &cookie); 475 476 return (0); 477 } 478 479 static struct tcb_histent * 480 alloc_tcb_histent(struct adapter *sc, u_int tid, int flags) 481 { 482 struct tcb_histent *te; 483 484 MPASS(flags == M_NOWAIT || flags == M_WAITOK); 485 486 te = malloc(sizeof(*te), M_CXGBE, M_ZERO | flags); 487 if (te == NULL) 488 return (NULL); 489 mtx_init(&te->te_lock, "TCB entry", NULL, MTX_DEF); 490 callout_init_mtx(&te->te_callout, &te->te_lock, 0); 491 te->te_adapter = sc; 492 te->te_tid = tid; 493 494 return (te); 495 } 496 497 static void 498 free_tcb_histent(struct tcb_histent *te) 499 { 500 501 mtx_destroy(&te->te_lock); 502 free(te, M_CXGBE); 503 } 504 505 /* 506 * Start tracking the tid in the TCB history. 507 */ 508 int 509 add_tid_to_history(struct adapter *sc, u_int tid) 510 { 511 struct tcb_histent *te = NULL; 512 struct tom_data *td = sc->tom_softc; 513 int rc; 514 515 MPASS(tid < sc->tids.ntids); 516 517 if (td->tcb_history == NULL) 518 return (ENXIO); 519 520 rw_wlock(&td->tcb_history_lock); 521 if (td->tcb_history[tid] != NULL) { 522 rc = EEXIST; 523 goto done; 524 } 525 te = alloc_tcb_histent(sc, tid, M_NOWAIT); 526 if (te == NULL) { 527 rc = ENOMEM; 528 goto done; 529 } 530 mtx_lock(&te->te_lock); 531 rc = send_get_tcb(sc, tid); 532 if (rc == 0) { 533 te->te_flags |= TE_RPL_PENDING; 534 td->tcb_history[tid] = te; 535 } else { 536 free(te, M_CXGBE); 537 } 538 mtx_unlock(&te->te_lock); 539 done: 540 rw_wunlock(&td->tcb_history_lock); 541 return (rc); 542 } 543 544 static void 545 remove_tcb_histent(struct tcb_histent *te) 546 { 547 struct adapter *sc = te->te_adapter; 548 struct tom_data *td = sc->tom_softc; 549 550 rw_assert(&td->tcb_history_lock, RA_WLOCKED); 551 mtx_assert(&te->te_lock, MA_OWNED); 552 MPASS(td->tcb_history[te->te_tid] == te); 553 554 td->tcb_history[te->te_tid] = NULL; 555 free_tcb_histent(te); 556 rw_wunlock(&td->tcb_history_lock); 557 } 558 559 static inline struct tcb_histent * 560 lookup_tcb_histent(struct adapter *sc, u_int tid, bool addrem) 561 { 562 struct tcb_histent *te; 563 struct tom_data *td = sc->tom_softc; 564 565 MPASS(tid < sc->tids.ntids); 566 567 if (td->tcb_history == NULL) 568 return (NULL); 569 570 if (addrem) 571 rw_wlock(&td->tcb_history_lock); 572 else 573 rw_rlock(&td->tcb_history_lock); 574 te = td->tcb_history[tid]; 575 if (te != NULL) { 576 mtx_lock(&te->te_lock); 577 return (te); /* with both locks held */ 578 } 579 if (addrem) 580 rw_wunlock(&td->tcb_history_lock); 581 else 582 rw_runlock(&td->tcb_history_lock); 583 584 return (te); 585 } 586 587 static inline void 588 release_tcb_histent(struct tcb_histent *te) 589 { 590 struct adapter *sc = te->te_adapter; 591 struct tom_data *td = sc->tom_softc; 592 593 mtx_assert(&te->te_lock, MA_OWNED); 594 mtx_unlock(&te->te_lock); 595 rw_assert(&td->tcb_history_lock, RA_RLOCKED); 596 rw_runlock(&td->tcb_history_lock); 597 } 598 599 static void 600 request_tcb(void *arg) 601 { 602 struct tcb_histent *te = arg; 603 604 mtx_assert(&te->te_lock, MA_OWNED); 605 606 /* Noone else is supposed to update the histent. */ 607 MPASS(!(te->te_flags & TE_RPL_PENDING)); 608 if (send_get_tcb(te->te_adapter, te->te_tid) == 0) 609 te->te_flags |= TE_RPL_PENDING; 610 else 611 callout_schedule(&te->te_callout, hz / 100); 612 } 613 614 static void 615 update_tcb_histent(struct tcb_histent *te, const uint64_t *tcb) 616 { 617 struct tom_data *td = te->te_adapter->tom_softc; 618 uint64_t tflags = get_tcb_tflags(tcb); 619 uint8_t sample = 0; 620 621 if (GET_TCB_FIELD(tcb, SND_MAX_RAW) != GET_TCB_FIELD(tcb, SND_UNA_RAW)) { 622 if (GET_TCB_FIELD(tcb, T_RXTSHIFT) != 0) 623 sample |= TS_RTO; 624 if (GET_TCB_FIELD(tcb, T_DUPACKS) != 0) 625 sample |= TS_DUPACKS; 626 if (GET_TCB_FIELD(tcb, T_DUPACKS) >= td->dupack_threshold) 627 sample |= TS_FASTREXMT; 628 } 629 630 if (GET_TCB_FIELD(tcb, SND_MAX_RAW) != 0) { 631 uint32_t snd_wnd; 632 633 sample |= TS_SND_BACKLOGGED; /* for whatever reason. */ 634 635 snd_wnd = GET_TCB_FIELD(tcb, RCV_ADV); 636 if (tflags & V_TF_RECV_SCALE(1)) 637 snd_wnd <<= GET_TCB_FIELD(tcb, RCV_SCALE); 638 if (GET_TCB_FIELD(tcb, SND_CWND) < snd_wnd) 639 sample |= TS_CWND_LIMITED; /* maybe due to CWND */ 640 } 641 642 if (tflags & V_TF_CCTRL_ECN(1)) { 643 644 /* 645 * CE marker on incoming IP hdr, echoing ECE back in the TCP 646 * hdr. Indicates congestion somewhere on the way from the peer 647 * to this node. 648 */ 649 if (tflags & V_TF_CCTRL_ECE(1)) 650 sample |= TS_ECN_ECE; 651 652 /* 653 * ECE seen and CWR sent (or about to be sent). Might indicate 654 * congestion on the way to the peer. This node is reducing its 655 * congestion window in response. 656 */ 657 if (tflags & (V_TF_CCTRL_CWR(1) | V_TF_CCTRL_RFR(1))) 658 sample |= TS_ECN_CWR; 659 } 660 661 te->te_sample[te->te_pidx] = sample; 662 if (++te->te_pidx == nitems(te->te_sample)) 663 te->te_pidx = 0; 664 memcpy(te->te_tcb, tcb, TCB_SIZE); 665 te->te_flags |= TE_ACTIVE; 666 } 667 668 static int 669 do_get_tcb_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 670 { 671 struct adapter *sc = iq->adapter; 672 const struct cpl_get_tcb_rpl *cpl = mtod(m, const void *); 673 const uint64_t *tcb = (const uint64_t *)(const void *)(cpl + 1); 674 struct tcb_histent *te; 675 const u_int tid = GET_TID(cpl); 676 bool remove; 677 678 remove = GET_TCB_FIELD(tcb, T_STATE) == TCPS_CLOSED; 679 te = lookup_tcb_histent(sc, tid, remove); 680 if (te == NULL) { 681 /* Not in the history. Who issued the GET_TCB for this? */ 682 device_printf(sc->dev, "tcb %u: flags 0x%016jx, state %u, " 683 "srtt %u, sscale %u, rscale %u, cookie 0x%x\n", tid, 684 (uintmax_t)get_tcb_tflags(tcb), GET_TCB_FIELD(tcb, T_STATE), 685 GET_TCB_FIELD(tcb, T_SRTT), GET_TCB_FIELD(tcb, SND_SCALE), 686 GET_TCB_FIELD(tcb, RCV_SCALE), cpl->cookie); 687 goto done; 688 } 689 690 MPASS(te->te_flags & TE_RPL_PENDING); 691 te->te_flags &= ~TE_RPL_PENDING; 692 if (remove) { 693 remove_tcb_histent(te); 694 } else { 695 update_tcb_histent(te, tcb); 696 callout_reset(&te->te_callout, hz / 10, request_tcb, te); 697 release_tcb_histent(te); 698 } 699 done: 700 m_freem(m); 701 return (0); 702 } 703 704 static void 705 fill_tcp_info_from_tcb(struct adapter *sc, uint64_t *tcb, struct tcp_info *ti) 706 { 707 uint32_t v; 708 709 ti->tcpi_state = GET_TCB_FIELD(tcb, T_STATE); 710 711 v = GET_TCB_FIELD(tcb, T_SRTT); 712 ti->tcpi_rtt = tcp_ticks_to_us(sc, v); 713 714 v = GET_TCB_FIELD(tcb, T_RTTVAR); 715 ti->tcpi_rttvar = tcp_ticks_to_us(sc, v); 716 717 ti->tcpi_snd_ssthresh = GET_TCB_FIELD(tcb, SND_SSTHRESH); 718 ti->tcpi_snd_cwnd = GET_TCB_FIELD(tcb, SND_CWND); 719 ti->tcpi_rcv_nxt = GET_TCB_FIELD(tcb, RCV_NXT); 720 721 v = GET_TCB_FIELD(tcb, TX_MAX); 722 ti->tcpi_snd_nxt = v - GET_TCB_FIELD(tcb, SND_NXT_RAW); 723 724 /* Receive window being advertised by us. */ 725 ti->tcpi_rcv_wscale = GET_TCB_FIELD(tcb, SND_SCALE); /* Yes, SND. */ 726 ti->tcpi_rcv_space = GET_TCB_FIELD(tcb, RCV_WND); 727 728 /* Send window */ 729 ti->tcpi_snd_wscale = GET_TCB_FIELD(tcb, RCV_SCALE); /* Yes, RCV. */ 730 ti->tcpi_snd_wnd = GET_TCB_FIELD(tcb, RCV_ADV); 731 if (get_tcb_tflags(tcb) & V_TF_RECV_SCALE(1)) 732 ti->tcpi_snd_wnd <<= ti->tcpi_snd_wscale; 733 else 734 ti->tcpi_snd_wscale = 0; 735 736 } 737 738 static void 739 fill_tcp_info_from_history(struct adapter *sc, struct tcb_histent *te, 740 struct tcp_info *ti) 741 { 742 743 fill_tcp_info_from_tcb(sc, te->te_tcb, ti); 744 } 745 746 /* 747 * Reads the TCB for the given tid using a memory window and copies it to 'buf' 748 * in the same format as CPL_GET_TCB_RPL. 749 */ 750 static void 751 read_tcb_using_memwin(struct adapter *sc, u_int tid, uint64_t *buf) 752 { 753 int i, j, k, rc; 754 uint32_t addr; 755 u_char *tcb, tmp; 756 757 MPASS(tid < sc->tids.ntids); 758 759 addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE) + tid * TCB_SIZE; 760 rc = read_via_memwin(sc, 2, addr, (uint32_t *)buf, TCB_SIZE); 761 if (rc != 0) 762 return; 763 764 tcb = (u_char *)buf; 765 for (i = 0, j = TCB_SIZE - 16; i < j; i += 16, j -= 16) { 766 for (k = 0; k < 16; k++) { 767 tmp = tcb[i + k]; 768 tcb[i + k] = tcb[j + k]; 769 tcb[j + k] = tmp; 770 } 771 } 772 } 773 774 static void 775 fill_tcp_info(struct adapter *sc, u_int tid, struct tcp_info *ti) 776 { 777 uint64_t tcb[TCB_SIZE / sizeof(uint64_t)]; 778 struct tcb_histent *te; 779 780 ti->tcpi_toe_tid = tid; 781 te = lookup_tcb_histent(sc, tid, false); 782 if (te != NULL) { 783 fill_tcp_info_from_history(sc, te, ti); 784 release_tcb_histent(te); 785 } else { 786 if (!(sc->debug_flags & DF_DISABLE_TCB_CACHE)) { 787 /* XXX: tell firmware to flush TCB cache. */ 788 } 789 read_tcb_using_memwin(sc, tid, tcb); 790 fill_tcp_info_from_tcb(sc, tcb, ti); 791 } 792 } 793 794 /* 795 * Called by the kernel to allow the TOE driver to "refine" values filled up in 796 * the tcp_info for an offloaded connection. 797 */ 798 static void 799 t4_tcp_info(struct toedev *tod, struct tcpcb *tp, struct tcp_info *ti) 800 { 801 struct adapter *sc = tod->tod_softc; 802 struct toepcb *toep = tp->t_toe; 803 804 INP_WLOCK_ASSERT(tp->t_inpcb); 805 MPASS(ti != NULL); 806 807 fill_tcp_info(sc, toep->tid, ti); 808 } 809 810 #ifdef KERN_TLS 811 static int 812 t4_alloc_tls_session(struct toedev *tod, struct tcpcb *tp, 813 struct ktls_session *tls) 814 { 815 struct toepcb *toep = tp->t_toe; 816 817 INP_WLOCK_ASSERT(tp->t_inpcb); 818 MPASS(tls != NULL); 819 820 return (tls_alloc_ktls(toep, tls)); 821 } 822 #endif 823 824 /* 825 * The TOE driver will not receive any more CPLs for the tid associated with the 826 * toepcb; release the hold on the inpcb. 827 */ 828 void 829 final_cpl_received(struct toepcb *toep) 830 { 831 struct inpcb *inp = toep->inp; 832 833 KASSERT(inp != NULL, ("%s: inp is NULL", __func__)); 834 INP_WLOCK_ASSERT(inp); 835 KASSERT(toep->flags & TPF_CPL_PENDING, 836 ("%s: CPL not pending already?", __func__)); 837 838 CTR6(KTR_CXGBE, "%s: tid %d, toep %p (0x%x), inp %p (0x%x)", 839 __func__, toep->tid, toep, toep->flags, inp, inp->inp_flags); 840 841 if (ulp_mode(toep) == ULP_MODE_TCPDDP) 842 release_ddp_resources(toep); 843 toep->inp = NULL; 844 toep->flags &= ~TPF_CPL_PENDING; 845 mbufq_drain(&toep->ulp_pdu_reclaimq); 846 847 if (!(toep->flags & TPF_ATTACHED)) 848 release_offload_resources(toep); 849 850 if (!in_pcbrele_wlocked(inp)) 851 INP_WUNLOCK(inp); 852 } 853 854 void 855 insert_tid(struct adapter *sc, int tid, void *ctx, int ntids) 856 { 857 struct tid_info *t = &sc->tids; 858 859 MPASS(tid >= t->tid_base); 860 MPASS(tid - t->tid_base < t->ntids); 861 862 t->tid_tab[tid - t->tid_base] = ctx; 863 atomic_add_int(&t->tids_in_use, ntids); 864 } 865 866 void * 867 lookup_tid(struct adapter *sc, int tid) 868 { 869 struct tid_info *t = &sc->tids; 870 871 return (t->tid_tab[tid - t->tid_base]); 872 } 873 874 void 875 update_tid(struct adapter *sc, int tid, void *ctx) 876 { 877 struct tid_info *t = &sc->tids; 878 879 t->tid_tab[tid - t->tid_base] = ctx; 880 } 881 882 void 883 remove_tid(struct adapter *sc, int tid, int ntids) 884 { 885 struct tid_info *t = &sc->tids; 886 887 t->tid_tab[tid - t->tid_base] = NULL; 888 atomic_subtract_int(&t->tids_in_use, ntids); 889 } 890 891 /* 892 * What mtu_idx to use, given a 4-tuple. Note that both s->mss and tcp_mssopt 893 * have the MSS that we should advertise in our SYN. Advertised MSS doesn't 894 * account for any TCP options so the effective MSS (only payload, no headers or 895 * options) could be different. 896 */ 897 static int 898 find_best_mtu_idx(struct adapter *sc, struct in_conninfo *inc, 899 struct offload_settings *s) 900 { 901 unsigned short *mtus = &sc->params.mtus[0]; 902 int i, mss, mtu; 903 904 MPASS(inc != NULL); 905 906 mss = s->mss > 0 ? s->mss : tcp_mssopt(inc); 907 if (inc->inc_flags & INC_ISIPV6) 908 mtu = mss + sizeof(struct ip6_hdr) + sizeof(struct tcphdr); 909 else 910 mtu = mss + sizeof(struct ip) + sizeof(struct tcphdr); 911 912 for (i = 0; i < NMTUS - 1 && mtus[i + 1] <= mtu; i++) 913 continue; 914 915 return (i); 916 } 917 918 /* 919 * Determine the receive window size for a socket. 920 */ 921 u_long 922 select_rcv_wnd(struct socket *so) 923 { 924 unsigned long wnd; 925 926 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 927 928 wnd = sbspace(&so->so_rcv); 929 if (wnd < MIN_RCV_WND) 930 wnd = MIN_RCV_WND; 931 932 return min(wnd, MAX_RCV_WND); 933 } 934 935 int 936 select_rcv_wscale(void) 937 { 938 int wscale = 0; 939 unsigned long space = sb_max; 940 941 if (space > MAX_RCV_WND) 942 space = MAX_RCV_WND; 943 944 while (wscale < TCP_MAX_WINSHIFT && (TCP_MAXWIN << wscale) < space) 945 wscale++; 946 947 return (wscale); 948 } 949 950 __be64 951 calc_options0(struct vi_info *vi, struct conn_params *cp) 952 { 953 uint64_t opt0 = 0; 954 955 opt0 |= F_TCAM_BYPASS; 956 957 MPASS(cp->wscale >= 0 && cp->wscale <= M_WND_SCALE); 958 opt0 |= V_WND_SCALE(cp->wscale); 959 960 MPASS(cp->mtu_idx >= 0 && cp->mtu_idx < NMTUS); 961 opt0 |= V_MSS_IDX(cp->mtu_idx); 962 963 MPASS(cp->ulp_mode >= 0 && cp->ulp_mode <= M_ULP_MODE); 964 opt0 |= V_ULP_MODE(cp->ulp_mode); 965 966 MPASS(cp->opt0_bufsize >= 0 && cp->opt0_bufsize <= M_RCV_BUFSIZ); 967 opt0 |= V_RCV_BUFSIZ(cp->opt0_bufsize); 968 969 MPASS(cp->l2t_idx >= 0 && cp->l2t_idx < vi->pi->adapter->vres.l2t.size); 970 opt0 |= V_L2T_IDX(cp->l2t_idx); 971 972 opt0 |= V_SMAC_SEL(vi->smt_idx); 973 opt0 |= V_TX_CHAN(vi->pi->tx_chan); 974 975 MPASS(cp->keepalive == 0 || cp->keepalive == 1); 976 opt0 |= V_KEEP_ALIVE(cp->keepalive); 977 978 MPASS(cp->nagle == 0 || cp->nagle == 1); 979 opt0 |= V_NAGLE(cp->nagle); 980 981 return (htobe64(opt0)); 982 } 983 984 __be32 985 calc_options2(struct vi_info *vi, struct conn_params *cp) 986 { 987 uint32_t opt2 = 0; 988 struct port_info *pi = vi->pi; 989 struct adapter *sc = pi->adapter; 990 991 /* 992 * rx flow control, rx coalesce, congestion control, and tx pace are all 993 * explicitly set by the driver. On T5+ the ISS is also set by the 994 * driver to the value picked by the kernel. 995 */ 996 if (is_t4(sc)) { 997 opt2 |= F_RX_FC_VALID | F_RX_COALESCE_VALID; 998 opt2 |= F_CONG_CNTRL_VALID | F_PACE_VALID; 999 } else { 1000 opt2 |= F_T5_OPT_2_VALID; /* all 4 valid */ 1001 opt2 |= F_T5_ISS; /* ISS provided in CPL */ 1002 } 1003 1004 MPASS(cp->sack == 0 || cp->sack == 1); 1005 opt2 |= V_SACK_EN(cp->sack); 1006 1007 MPASS(cp->tstamp == 0 || cp->tstamp == 1); 1008 opt2 |= V_TSTAMPS_EN(cp->tstamp); 1009 1010 if (cp->wscale > 0) 1011 opt2 |= F_WND_SCALE_EN; 1012 1013 MPASS(cp->ecn == 0 || cp->ecn == 1); 1014 opt2 |= V_CCTRL_ECN(cp->ecn); 1015 1016 /* XXX: F_RX_CHANNEL for multiple rx c-chan support goes here. */ 1017 1018 opt2 |= V_TX_QUEUE(sc->params.tp.tx_modq[pi->tx_chan]); 1019 opt2 |= V_PACE(0); 1020 opt2 |= F_RSS_QUEUE_VALID; 1021 opt2 |= V_RSS_QUEUE(sc->sge.ofld_rxq[cp->rxq_idx].iq.abs_id); 1022 1023 MPASS(cp->cong_algo >= 0 && cp->cong_algo <= M_CONG_CNTRL); 1024 opt2 |= V_CONG_CNTRL(cp->cong_algo); 1025 1026 MPASS(cp->rx_coalesce == 0 || cp->rx_coalesce == 1); 1027 if (cp->rx_coalesce == 1) 1028 opt2 |= V_RX_COALESCE(M_RX_COALESCE); 1029 1030 opt2 |= V_RX_FC_DDP(0) | V_RX_FC_DISABLE(0); 1031 #ifdef USE_DDP_RX_FLOW_CONTROL 1032 if (cp->ulp_mode == ULP_MODE_TCPDDP) 1033 opt2 |= F_RX_FC_DDP; 1034 #endif 1035 if (cp->ulp_mode == ULP_MODE_TLS) 1036 opt2 |= F_RX_FC_DISABLE; 1037 1038 return (htobe32(opt2)); 1039 } 1040 1041 uint64_t 1042 select_ntuple(struct vi_info *vi, struct l2t_entry *e) 1043 { 1044 struct adapter *sc = vi->pi->adapter; 1045 struct tp_params *tp = &sc->params.tp; 1046 uint64_t ntuple = 0; 1047 1048 /* 1049 * Initialize each of the fields which we care about which are present 1050 * in the Compressed Filter Tuple. 1051 */ 1052 if (tp->vlan_shift >= 0 && EVL_VLANOFTAG(e->vlan) != CPL_L2T_VLAN_NONE) 1053 ntuple |= (uint64_t)(F_FT_VLAN_VLD | e->vlan) << tp->vlan_shift; 1054 1055 if (tp->port_shift >= 0) 1056 ntuple |= (uint64_t)e->lport << tp->port_shift; 1057 1058 if (tp->protocol_shift >= 0) 1059 ntuple |= (uint64_t)IPPROTO_TCP << tp->protocol_shift; 1060 1061 if (tp->vnic_shift >= 0 && tp->ingress_config & F_VNIC) { 1062 ntuple |= (uint64_t)(V_FT_VNID_ID_VF(vi->vin) | 1063 V_FT_VNID_ID_PF(sc->pf) | V_FT_VNID_ID_VLD(vi->vfvld)) << 1064 tp->vnic_shift; 1065 } 1066 1067 if (is_t4(sc)) 1068 return (htobe32((uint32_t)ntuple)); 1069 else 1070 return (htobe64(V_FILTER_TUPLE(ntuple))); 1071 } 1072 1073 static int 1074 is_tls_sock(struct socket *so, struct adapter *sc) 1075 { 1076 struct inpcb *inp = sotoinpcb(so); 1077 int i, rc; 1078 1079 /* XXX: Eventually add a SO_WANT_TLS socket option perhaps? */ 1080 rc = 0; 1081 ADAPTER_LOCK(sc); 1082 for (i = 0; i < sc->tt.num_tls_rx_ports; i++) { 1083 if (inp->inp_lport == htons(sc->tt.tls_rx_ports[i]) || 1084 inp->inp_fport == htons(sc->tt.tls_rx_ports[i])) { 1085 rc = 1; 1086 break; 1087 } 1088 } 1089 ADAPTER_UNLOCK(sc); 1090 return (rc); 1091 } 1092 1093 /* 1094 * Initialize various connection parameters. 1095 */ 1096 void 1097 init_conn_params(struct vi_info *vi , struct offload_settings *s, 1098 struct in_conninfo *inc, struct socket *so, 1099 const struct tcp_options *tcpopt, int16_t l2t_idx, struct conn_params *cp) 1100 { 1101 struct port_info *pi = vi->pi; 1102 struct adapter *sc = pi->adapter; 1103 struct tom_tunables *tt = &sc->tt; 1104 struct inpcb *inp = sotoinpcb(so); 1105 struct tcpcb *tp = intotcpcb(inp); 1106 u_long wnd; 1107 1108 MPASS(s->offload != 0); 1109 1110 /* Congestion control algorithm */ 1111 if (s->cong_algo >= 0) 1112 cp->cong_algo = s->cong_algo & M_CONG_CNTRL; 1113 else if (sc->tt.cong_algorithm >= 0) 1114 cp->cong_algo = tt->cong_algorithm & M_CONG_CNTRL; 1115 else { 1116 struct cc_algo *cc = CC_ALGO(tp); 1117 1118 if (strcasecmp(cc->name, "reno") == 0) 1119 cp->cong_algo = CONG_ALG_RENO; 1120 else if (strcasecmp(cc->name, "tahoe") == 0) 1121 cp->cong_algo = CONG_ALG_TAHOE; 1122 if (strcasecmp(cc->name, "newreno") == 0) 1123 cp->cong_algo = CONG_ALG_NEWRENO; 1124 if (strcasecmp(cc->name, "highspeed") == 0) 1125 cp->cong_algo = CONG_ALG_HIGHSPEED; 1126 else { 1127 /* 1128 * Use newreno in case the algorithm selected by the 1129 * host stack is not supported by the hardware. 1130 */ 1131 cp->cong_algo = CONG_ALG_NEWRENO; 1132 } 1133 } 1134 1135 /* Tx traffic scheduling class. */ 1136 if (s->sched_class >= 0 && 1137 s->sched_class < sc->chip_params->nsched_cls) { 1138 cp->tc_idx = s->sched_class; 1139 } else 1140 cp->tc_idx = -1; 1141 1142 /* Nagle's algorithm. */ 1143 if (s->nagle >= 0) 1144 cp->nagle = s->nagle > 0 ? 1 : 0; 1145 else 1146 cp->nagle = tp->t_flags & TF_NODELAY ? 0 : 1; 1147 1148 /* TCP Keepalive. */ 1149 if (V_tcp_always_keepalive || so_options_get(so) & SO_KEEPALIVE) 1150 cp->keepalive = 1; 1151 else 1152 cp->keepalive = 0; 1153 1154 /* Optimization that's specific to T5 @ 40G. */ 1155 if (tt->tx_align >= 0) 1156 cp->tx_align = tt->tx_align > 0 ? 1 : 0; 1157 else if (chip_id(sc) == CHELSIO_T5 && 1158 (port_top_speed(pi) > 10 || sc->params.nports > 2)) 1159 cp->tx_align = 1; 1160 else 1161 cp->tx_align = 0; 1162 1163 /* ULP mode. */ 1164 if (can_tls_offload(sc) && 1165 (s->tls > 0 || (s->tls < 0 && is_tls_sock(so, sc)))) 1166 cp->ulp_mode = ULP_MODE_TLS; 1167 else if (s->ddp > 0 || 1168 (s->ddp < 0 && sc->tt.ddp && (so_options_get(so) & SO_NO_DDP) == 0)) 1169 cp->ulp_mode = ULP_MODE_TCPDDP; 1170 else 1171 cp->ulp_mode = ULP_MODE_NONE; 1172 1173 /* Rx coalescing. */ 1174 if (s->rx_coalesce >= 0) 1175 cp->rx_coalesce = s->rx_coalesce > 0 ? 1 : 0; 1176 else if (cp->ulp_mode == ULP_MODE_TLS) 1177 cp->rx_coalesce = 0; 1178 else if (tt->rx_coalesce >= 0) 1179 cp->rx_coalesce = tt->rx_coalesce > 0 ? 1 : 0; 1180 else 1181 cp->rx_coalesce = 1; /* default */ 1182 1183 /* 1184 * Index in the PMTU table. This controls the MSS that we announce in 1185 * our SYN initially, but after ESTABLISHED it controls the MSS that we 1186 * use to send data. 1187 */ 1188 cp->mtu_idx = find_best_mtu_idx(sc, inc, s); 1189 1190 /* Tx queue for this connection. */ 1191 if (s->txq >= 0 && s->txq < vi->nofldtxq) 1192 cp->txq_idx = s->txq; 1193 else 1194 cp->txq_idx = arc4random() % vi->nofldtxq; 1195 cp->txq_idx += vi->first_ofld_txq; 1196 1197 /* Rx queue for this connection. */ 1198 if (s->rxq >= 0 && s->rxq < vi->nofldrxq) 1199 cp->rxq_idx = s->rxq; 1200 else 1201 cp->rxq_idx = arc4random() % vi->nofldrxq; 1202 cp->rxq_idx += vi->first_ofld_rxq; 1203 1204 if (SOLISTENING(so)) { 1205 /* Passive open */ 1206 MPASS(tcpopt != NULL); 1207 1208 /* TCP timestamp option */ 1209 if (tcpopt->tstamp && 1210 (s->tstamp > 0 || (s->tstamp < 0 && V_tcp_do_rfc1323))) 1211 cp->tstamp = 1; 1212 else 1213 cp->tstamp = 0; 1214 1215 /* SACK */ 1216 if (tcpopt->sack && 1217 (s->sack > 0 || (s->sack < 0 && V_tcp_do_sack))) 1218 cp->sack = 1; 1219 else 1220 cp->sack = 0; 1221 1222 /* Receive window scaling. */ 1223 if (tcpopt->wsf > 0 && tcpopt->wsf < 15 && V_tcp_do_rfc1323) 1224 cp->wscale = select_rcv_wscale(); 1225 else 1226 cp->wscale = 0; 1227 1228 /* ECN */ 1229 if (tcpopt->ecn && /* XXX: review. */ 1230 (s->ecn > 0 || (s->ecn < 0 && V_tcp_do_ecn))) 1231 cp->ecn = 1; 1232 else 1233 cp->ecn = 0; 1234 1235 wnd = max(so->sol_sbrcv_hiwat, MIN_RCV_WND); 1236 cp->opt0_bufsize = min(wnd >> 10, M_RCV_BUFSIZ); 1237 1238 if (tt->sndbuf > 0) 1239 cp->sndbuf = tt->sndbuf; 1240 else if (so->sol_sbsnd_flags & SB_AUTOSIZE && 1241 V_tcp_do_autosndbuf) 1242 cp->sndbuf = 256 * 1024; 1243 else 1244 cp->sndbuf = so->sol_sbsnd_hiwat; 1245 } else { 1246 /* Active open */ 1247 1248 /* TCP timestamp option */ 1249 if (s->tstamp > 0 || 1250 (s->tstamp < 0 && (tp->t_flags & TF_REQ_TSTMP))) 1251 cp->tstamp = 1; 1252 else 1253 cp->tstamp = 0; 1254 1255 /* SACK */ 1256 if (s->sack > 0 || 1257 (s->sack < 0 && (tp->t_flags & TF_SACK_PERMIT))) 1258 cp->sack = 1; 1259 else 1260 cp->sack = 0; 1261 1262 /* Receive window scaling */ 1263 if (tp->t_flags & TF_REQ_SCALE) 1264 cp->wscale = select_rcv_wscale(); 1265 else 1266 cp->wscale = 0; 1267 1268 /* ECN */ 1269 if (s->ecn > 0 || (s->ecn < 0 && V_tcp_do_ecn == 1)) 1270 cp->ecn = 1; 1271 else 1272 cp->ecn = 0; 1273 1274 SOCKBUF_LOCK(&so->so_rcv); 1275 wnd = max(select_rcv_wnd(so), MIN_RCV_WND); 1276 SOCKBUF_UNLOCK(&so->so_rcv); 1277 cp->opt0_bufsize = min(wnd >> 10, M_RCV_BUFSIZ); 1278 1279 if (tt->sndbuf > 0) 1280 cp->sndbuf = tt->sndbuf; 1281 else { 1282 SOCKBUF_LOCK(&so->so_snd); 1283 if (so->so_snd.sb_flags & SB_AUTOSIZE && 1284 V_tcp_do_autosndbuf) 1285 cp->sndbuf = 256 * 1024; 1286 else 1287 cp->sndbuf = so->so_snd.sb_hiwat; 1288 SOCKBUF_UNLOCK(&so->so_snd); 1289 } 1290 } 1291 1292 cp->l2t_idx = l2t_idx; 1293 1294 /* This will be initialized on ESTABLISHED. */ 1295 cp->emss = 0; 1296 } 1297 1298 int 1299 negative_advice(int status) 1300 { 1301 1302 return (status == CPL_ERR_RTX_NEG_ADVICE || 1303 status == CPL_ERR_PERSIST_NEG_ADVICE || 1304 status == CPL_ERR_KEEPALV_NEG_ADVICE); 1305 } 1306 1307 static int 1308 alloc_tid_tab(struct tid_info *t, int flags) 1309 { 1310 1311 MPASS(t->ntids > 0); 1312 MPASS(t->tid_tab == NULL); 1313 1314 t->tid_tab = malloc(t->ntids * sizeof(*t->tid_tab), M_CXGBE, 1315 M_ZERO | flags); 1316 if (t->tid_tab == NULL) 1317 return (ENOMEM); 1318 atomic_store_rel_int(&t->tids_in_use, 0); 1319 1320 return (0); 1321 } 1322 1323 static void 1324 free_tid_tab(struct tid_info *t) 1325 { 1326 1327 KASSERT(t->tids_in_use == 0, 1328 ("%s: %d tids still in use.", __func__, t->tids_in_use)); 1329 1330 free(t->tid_tab, M_CXGBE); 1331 t->tid_tab = NULL; 1332 } 1333 1334 static int 1335 alloc_stid_tab(struct tid_info *t, int flags) 1336 { 1337 1338 MPASS(t->nstids > 0); 1339 MPASS(t->stid_tab == NULL); 1340 1341 t->stid_tab = malloc(t->nstids * sizeof(*t->stid_tab), M_CXGBE, 1342 M_ZERO | flags); 1343 if (t->stid_tab == NULL) 1344 return (ENOMEM); 1345 mtx_init(&t->stid_lock, "stid lock", NULL, MTX_DEF); 1346 t->stids_in_use = 0; 1347 TAILQ_INIT(&t->stids); 1348 t->nstids_free_head = t->nstids; 1349 1350 return (0); 1351 } 1352 1353 static void 1354 free_stid_tab(struct tid_info *t) 1355 { 1356 1357 KASSERT(t->stids_in_use == 0, 1358 ("%s: %d tids still in use.", __func__, t->stids_in_use)); 1359 1360 if (mtx_initialized(&t->stid_lock)) 1361 mtx_destroy(&t->stid_lock); 1362 free(t->stid_tab, M_CXGBE); 1363 t->stid_tab = NULL; 1364 } 1365 1366 static void 1367 free_tid_tabs(struct tid_info *t) 1368 { 1369 1370 free_tid_tab(t); 1371 free_stid_tab(t); 1372 } 1373 1374 static int 1375 alloc_tid_tabs(struct tid_info *t) 1376 { 1377 int rc; 1378 1379 rc = alloc_tid_tab(t, M_NOWAIT); 1380 if (rc != 0) 1381 goto failed; 1382 1383 rc = alloc_stid_tab(t, M_NOWAIT); 1384 if (rc != 0) 1385 goto failed; 1386 1387 return (0); 1388 failed: 1389 free_tid_tabs(t); 1390 return (rc); 1391 } 1392 1393 static inline void 1394 alloc_tcb_history(struct adapter *sc, struct tom_data *td) 1395 { 1396 1397 if (sc->tids.ntids == 0 || sc->tids.ntids > 1024) 1398 return; 1399 rw_init(&td->tcb_history_lock, "TCB history"); 1400 td->tcb_history = malloc(sc->tids.ntids * sizeof(*td->tcb_history), 1401 M_CXGBE, M_ZERO | M_NOWAIT); 1402 td->dupack_threshold = G_DUPACKTHRESH(t4_read_reg(sc, A_TP_PARA_REG0)); 1403 } 1404 1405 static inline void 1406 free_tcb_history(struct adapter *sc, struct tom_data *td) 1407 { 1408 #ifdef INVARIANTS 1409 int i; 1410 1411 if (td->tcb_history != NULL) { 1412 for (i = 0; i < sc->tids.ntids; i++) { 1413 MPASS(td->tcb_history[i] == NULL); 1414 } 1415 } 1416 #endif 1417 free(td->tcb_history, M_CXGBE); 1418 if (rw_initialized(&td->tcb_history_lock)) 1419 rw_destroy(&td->tcb_history_lock); 1420 } 1421 1422 static void 1423 free_tom_data(struct adapter *sc, struct tom_data *td) 1424 { 1425 1426 ASSERT_SYNCHRONIZED_OP(sc); 1427 1428 KASSERT(TAILQ_EMPTY(&td->toep_list), 1429 ("%s: TOE PCB list is not empty.", __func__)); 1430 KASSERT(td->lctx_count == 0, 1431 ("%s: lctx hash table is not empty.", __func__)); 1432 1433 t4_free_ppod_region(&td->pr); 1434 1435 if (td->listen_mask != 0) 1436 hashdestroy(td->listen_hash, M_CXGBE, td->listen_mask); 1437 1438 if (mtx_initialized(&td->unsent_wr_lock)) 1439 mtx_destroy(&td->unsent_wr_lock); 1440 if (mtx_initialized(&td->lctx_hash_lock)) 1441 mtx_destroy(&td->lctx_hash_lock); 1442 if (mtx_initialized(&td->toep_list_lock)) 1443 mtx_destroy(&td->toep_list_lock); 1444 1445 free_tcb_history(sc, td); 1446 free_tid_tabs(&sc->tids); 1447 free(td, M_CXGBE); 1448 } 1449 1450 static char * 1451 prepare_pkt(int open_type, uint16_t vtag, struct inpcb *inp, int *pktlen, 1452 int *buflen) 1453 { 1454 char *pkt; 1455 struct tcphdr *th; 1456 int ipv6, len; 1457 const int maxlen = 1458 max(sizeof(struct ether_header), sizeof(struct ether_vlan_header)) + 1459 max(sizeof(struct ip), sizeof(struct ip6_hdr)) + 1460 sizeof(struct tcphdr); 1461 1462 MPASS(open_type == OPEN_TYPE_ACTIVE || open_type == OPEN_TYPE_LISTEN); 1463 1464 pkt = malloc(maxlen, M_CXGBE, M_ZERO | M_NOWAIT); 1465 if (pkt == NULL) 1466 return (NULL); 1467 1468 ipv6 = inp->inp_vflag & INP_IPV6; 1469 len = 0; 1470 1471 if (EVL_VLANOFTAG(vtag) == 0xfff) { 1472 struct ether_header *eh = (void *)pkt; 1473 1474 if (ipv6) 1475 eh->ether_type = htons(ETHERTYPE_IPV6); 1476 else 1477 eh->ether_type = htons(ETHERTYPE_IP); 1478 1479 len += sizeof(*eh); 1480 } else { 1481 struct ether_vlan_header *evh = (void *)pkt; 1482 1483 evh->evl_encap_proto = htons(ETHERTYPE_VLAN); 1484 evh->evl_tag = htons(vtag); 1485 if (ipv6) 1486 evh->evl_proto = htons(ETHERTYPE_IPV6); 1487 else 1488 evh->evl_proto = htons(ETHERTYPE_IP); 1489 1490 len += sizeof(*evh); 1491 } 1492 1493 if (ipv6) { 1494 struct ip6_hdr *ip6 = (void *)&pkt[len]; 1495 1496 ip6->ip6_vfc = IPV6_VERSION; 1497 ip6->ip6_plen = htons(sizeof(struct tcphdr)); 1498 ip6->ip6_nxt = IPPROTO_TCP; 1499 if (open_type == OPEN_TYPE_ACTIVE) { 1500 ip6->ip6_src = inp->in6p_laddr; 1501 ip6->ip6_dst = inp->in6p_faddr; 1502 } else if (open_type == OPEN_TYPE_LISTEN) { 1503 ip6->ip6_src = inp->in6p_laddr; 1504 ip6->ip6_dst = ip6->ip6_src; 1505 } 1506 1507 len += sizeof(*ip6); 1508 } else { 1509 struct ip *ip = (void *)&pkt[len]; 1510 1511 ip->ip_v = IPVERSION; 1512 ip->ip_hl = sizeof(*ip) >> 2; 1513 ip->ip_tos = inp->inp_ip_tos; 1514 ip->ip_len = htons(sizeof(struct ip) + sizeof(struct tcphdr)); 1515 ip->ip_ttl = inp->inp_ip_ttl; 1516 ip->ip_p = IPPROTO_TCP; 1517 if (open_type == OPEN_TYPE_ACTIVE) { 1518 ip->ip_src = inp->inp_laddr; 1519 ip->ip_dst = inp->inp_faddr; 1520 } else if (open_type == OPEN_TYPE_LISTEN) { 1521 ip->ip_src = inp->inp_laddr; 1522 ip->ip_dst = ip->ip_src; 1523 } 1524 1525 len += sizeof(*ip); 1526 } 1527 1528 th = (void *)&pkt[len]; 1529 if (open_type == OPEN_TYPE_ACTIVE) { 1530 th->th_sport = inp->inp_lport; /* network byte order already */ 1531 th->th_dport = inp->inp_fport; /* ditto */ 1532 } else if (open_type == OPEN_TYPE_LISTEN) { 1533 th->th_sport = inp->inp_lport; /* network byte order already */ 1534 th->th_dport = th->th_sport; 1535 } 1536 len += sizeof(th); 1537 1538 *pktlen = *buflen = len; 1539 return (pkt); 1540 } 1541 1542 const struct offload_settings * 1543 lookup_offload_policy(struct adapter *sc, int open_type, struct mbuf *m, 1544 uint16_t vtag, struct inpcb *inp) 1545 { 1546 const struct t4_offload_policy *op; 1547 char *pkt; 1548 struct offload_rule *r; 1549 int i, matched, pktlen, buflen; 1550 static const struct offload_settings allow_offloading_settings = { 1551 .offload = 1, 1552 .rx_coalesce = -1, 1553 .cong_algo = -1, 1554 .sched_class = -1, 1555 .tstamp = -1, 1556 .sack = -1, 1557 .nagle = -1, 1558 .ecn = -1, 1559 .ddp = -1, 1560 .tls = -1, 1561 .txq = -1, 1562 .rxq = -1, 1563 .mss = -1, 1564 }; 1565 static const struct offload_settings disallow_offloading_settings = { 1566 .offload = 0, 1567 /* rest is irrelevant when offload is off. */ 1568 }; 1569 1570 rw_assert(&sc->policy_lock, RA_LOCKED); 1571 1572 /* 1573 * If there's no Connection Offloading Policy attached to the device 1574 * then we need to return a default static policy. If 1575 * "cop_managed_offloading" is true, then we need to disallow 1576 * offloading until a COP is attached to the device. Otherwise we 1577 * allow offloading ... 1578 */ 1579 op = sc->policy; 1580 if (op == NULL) { 1581 if (sc->tt.cop_managed_offloading) 1582 return (&disallow_offloading_settings); 1583 else 1584 return (&allow_offloading_settings); 1585 } 1586 1587 switch (open_type) { 1588 case OPEN_TYPE_ACTIVE: 1589 case OPEN_TYPE_LISTEN: 1590 pkt = prepare_pkt(open_type, vtag, inp, &pktlen, &buflen); 1591 break; 1592 case OPEN_TYPE_PASSIVE: 1593 MPASS(m != NULL); 1594 pkt = mtod(m, char *); 1595 MPASS(*pkt == CPL_PASS_ACCEPT_REQ); 1596 pkt += sizeof(struct cpl_pass_accept_req); 1597 pktlen = m->m_pkthdr.len - sizeof(struct cpl_pass_accept_req); 1598 buflen = m->m_len - sizeof(struct cpl_pass_accept_req); 1599 break; 1600 default: 1601 MPASS(0); 1602 return (&disallow_offloading_settings); 1603 } 1604 1605 if (pkt == NULL || pktlen == 0 || buflen == 0) 1606 return (&disallow_offloading_settings); 1607 1608 matched = 0; 1609 r = &op->rule[0]; 1610 for (i = 0; i < op->nrules; i++, r++) { 1611 if (r->open_type != open_type && 1612 r->open_type != OPEN_TYPE_DONTCARE) { 1613 continue; 1614 } 1615 matched = bpf_filter(r->bpf_prog.bf_insns, pkt, pktlen, buflen); 1616 if (matched) 1617 break; 1618 } 1619 1620 if (open_type == OPEN_TYPE_ACTIVE || open_type == OPEN_TYPE_LISTEN) 1621 free(pkt, M_CXGBE); 1622 1623 return (matched ? &r->settings : &disallow_offloading_settings); 1624 } 1625 1626 static void 1627 reclaim_wr_resources(void *arg, int count) 1628 { 1629 struct tom_data *td = arg; 1630 STAILQ_HEAD(, wrqe) twr_list = STAILQ_HEAD_INITIALIZER(twr_list); 1631 struct cpl_act_open_req *cpl; 1632 u_int opcode, atid, tid; 1633 struct wrqe *wr; 1634 struct adapter *sc = td_adapter(td); 1635 1636 mtx_lock(&td->unsent_wr_lock); 1637 STAILQ_SWAP(&td->unsent_wr_list, &twr_list, wrqe); 1638 mtx_unlock(&td->unsent_wr_lock); 1639 1640 while ((wr = STAILQ_FIRST(&twr_list)) != NULL) { 1641 STAILQ_REMOVE_HEAD(&twr_list, link); 1642 1643 cpl = wrtod(wr); 1644 opcode = GET_OPCODE(cpl); 1645 1646 switch (opcode) { 1647 case CPL_ACT_OPEN_REQ: 1648 case CPL_ACT_OPEN_REQ6: 1649 atid = G_TID_TID(be32toh(OPCODE_TID(cpl))); 1650 CTR2(KTR_CXGBE, "%s: atid %u ", __func__, atid); 1651 act_open_failure_cleanup(sc, atid, EHOSTUNREACH); 1652 free(wr, M_CXGBE); 1653 break; 1654 case CPL_PASS_ACCEPT_RPL: 1655 tid = GET_TID(cpl); 1656 CTR2(KTR_CXGBE, "%s: tid %u ", __func__, tid); 1657 synack_failure_cleanup(sc, tid); 1658 free(wr, M_CXGBE); 1659 break; 1660 default: 1661 log(LOG_ERR, "%s: leaked work request %p, wr_len %d, " 1662 "opcode %x\n", __func__, wr, wr->wr_len, opcode); 1663 /* WR not freed here; go look at it with a debugger. */ 1664 } 1665 } 1666 } 1667 1668 /* 1669 * Ground control to Major TOM 1670 * Commencing countdown, engines on 1671 */ 1672 static int 1673 t4_tom_activate(struct adapter *sc) 1674 { 1675 struct tom_data *td; 1676 struct toedev *tod; 1677 struct vi_info *vi; 1678 int i, rc, v; 1679 1680 ASSERT_SYNCHRONIZED_OP(sc); 1681 1682 /* per-adapter softc for TOM */ 1683 td = malloc(sizeof(*td), M_CXGBE, M_ZERO | M_NOWAIT); 1684 if (td == NULL) 1685 return (ENOMEM); 1686 1687 /* List of TOE PCBs and associated lock */ 1688 mtx_init(&td->toep_list_lock, "PCB list lock", NULL, MTX_DEF); 1689 TAILQ_INIT(&td->toep_list); 1690 1691 /* Listen context */ 1692 mtx_init(&td->lctx_hash_lock, "lctx hash lock", NULL, MTX_DEF); 1693 td->listen_hash = hashinit_flags(LISTEN_HASH_SIZE, M_CXGBE, 1694 &td->listen_mask, HASH_NOWAIT); 1695 1696 /* List of WRs for which L2 resolution failed */ 1697 mtx_init(&td->unsent_wr_lock, "Unsent WR list lock", NULL, MTX_DEF); 1698 STAILQ_INIT(&td->unsent_wr_list); 1699 TASK_INIT(&td->reclaim_wr_resources, 0, reclaim_wr_resources, td); 1700 1701 /* TID tables */ 1702 rc = alloc_tid_tabs(&sc->tids); 1703 if (rc != 0) 1704 goto done; 1705 1706 rc = t4_init_ppod_region(&td->pr, &sc->vres.ddp, 1707 t4_read_reg(sc, A_ULP_RX_TDDP_PSZ), "TDDP page pods"); 1708 if (rc != 0) 1709 goto done; 1710 t4_set_reg_field(sc, A_ULP_RX_TDDP_TAGMASK, 1711 V_TDDPTAGMASK(M_TDDPTAGMASK), td->pr.pr_tag_mask); 1712 1713 alloc_tcb_history(sc, td); 1714 1715 /* toedev ops */ 1716 tod = &td->tod; 1717 init_toedev(tod); 1718 tod->tod_softc = sc; 1719 tod->tod_connect = t4_connect; 1720 tod->tod_listen_start = t4_listen_start; 1721 tod->tod_listen_stop = t4_listen_stop; 1722 tod->tod_rcvd = t4_rcvd; 1723 tod->tod_output = t4_tod_output; 1724 tod->tod_send_rst = t4_send_rst; 1725 tod->tod_send_fin = t4_send_fin; 1726 tod->tod_pcb_detach = t4_pcb_detach; 1727 tod->tod_l2_update = t4_l2_update; 1728 tod->tod_syncache_added = t4_syncache_added; 1729 tod->tod_syncache_removed = t4_syncache_removed; 1730 tod->tod_syncache_respond = t4_syncache_respond; 1731 tod->tod_offload_socket = t4_offload_socket; 1732 tod->tod_ctloutput = t4_ctloutput; 1733 tod->tod_tcp_info = t4_tcp_info; 1734 #ifdef KERN_TLS 1735 tod->tod_alloc_tls_session = t4_alloc_tls_session; 1736 #endif 1737 1738 for_each_port(sc, i) { 1739 for_each_vi(sc->port[i], v, vi) { 1740 TOEDEV(vi->ifp) = &td->tod; 1741 } 1742 } 1743 1744 sc->tom_softc = td; 1745 register_toedev(sc->tom_softc); 1746 1747 done: 1748 if (rc != 0) 1749 free_tom_data(sc, td); 1750 return (rc); 1751 } 1752 1753 static int 1754 t4_tom_deactivate(struct adapter *sc) 1755 { 1756 int rc = 0; 1757 struct tom_data *td = sc->tom_softc; 1758 1759 ASSERT_SYNCHRONIZED_OP(sc); 1760 1761 if (td == NULL) 1762 return (0); /* XXX. KASSERT? */ 1763 1764 if (sc->offload_map != 0) 1765 return (EBUSY); /* at least one port has IFCAP_TOE enabled */ 1766 1767 if (uld_active(sc, ULD_IWARP) || uld_active(sc, ULD_ISCSI)) 1768 return (EBUSY); /* both iWARP and iSCSI rely on the TOE. */ 1769 1770 mtx_lock(&td->toep_list_lock); 1771 if (!TAILQ_EMPTY(&td->toep_list)) 1772 rc = EBUSY; 1773 mtx_unlock(&td->toep_list_lock); 1774 1775 mtx_lock(&td->lctx_hash_lock); 1776 if (td->lctx_count > 0) 1777 rc = EBUSY; 1778 mtx_unlock(&td->lctx_hash_lock); 1779 1780 taskqueue_drain(taskqueue_thread, &td->reclaim_wr_resources); 1781 mtx_lock(&td->unsent_wr_lock); 1782 if (!STAILQ_EMPTY(&td->unsent_wr_list)) 1783 rc = EBUSY; 1784 mtx_unlock(&td->unsent_wr_lock); 1785 1786 if (rc == 0) { 1787 unregister_toedev(sc->tom_softc); 1788 free_tom_data(sc, td); 1789 sc->tom_softc = NULL; 1790 } 1791 1792 return (rc); 1793 } 1794 1795 static int 1796 t4_aio_queue_tom(struct socket *so, struct kaiocb *job) 1797 { 1798 struct tcpcb *tp = so_sototcpcb(so); 1799 struct toepcb *toep = tp->t_toe; 1800 int error; 1801 1802 if (ulp_mode(toep) == ULP_MODE_TCPDDP) { 1803 error = t4_aio_queue_ddp(so, job); 1804 if (error != EOPNOTSUPP) 1805 return (error); 1806 } 1807 1808 return (t4_aio_queue_aiotx(so, job)); 1809 } 1810 1811 static int 1812 t4_ctloutput_tom(struct socket *so, struct sockopt *sopt) 1813 { 1814 1815 if (sopt->sopt_level != IPPROTO_TCP) 1816 return (tcp_ctloutput(so, sopt)); 1817 1818 switch (sopt->sopt_name) { 1819 case TCP_TLSOM_SET_TLS_CONTEXT: 1820 case TCP_TLSOM_GET_TLS_TOM: 1821 case TCP_TLSOM_CLR_TLS_TOM: 1822 case TCP_TLSOM_CLR_QUIES: 1823 return (t4_ctloutput_tls(so, sopt)); 1824 default: 1825 return (tcp_ctloutput(so, sopt)); 1826 } 1827 } 1828 1829 static int 1830 t4_tom_mod_load(void) 1831 { 1832 struct protosw *tcp_protosw, *tcp6_protosw; 1833 1834 /* CPL handlers */ 1835 t4_register_cpl_handler(CPL_GET_TCB_RPL, do_get_tcb_rpl); 1836 t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, do_l2t_write_rpl2, 1837 CPL_COOKIE_TOM); 1838 t4_init_connect_cpl_handlers(); 1839 t4_init_listen_cpl_handlers(); 1840 t4_init_cpl_io_handlers(); 1841 1842 t4_ddp_mod_load(); 1843 t4_tls_mod_load(); 1844 1845 tcp_protosw = pffindproto(PF_INET, IPPROTO_TCP, SOCK_STREAM); 1846 if (tcp_protosw == NULL) 1847 return (ENOPROTOOPT); 1848 bcopy(tcp_protosw, &toe_protosw, sizeof(toe_protosw)); 1849 bcopy(tcp_protosw->pr_usrreqs, &toe_usrreqs, sizeof(toe_usrreqs)); 1850 toe_usrreqs.pru_aio_queue = t4_aio_queue_tom; 1851 toe_protosw.pr_ctloutput = t4_ctloutput_tom; 1852 toe_protosw.pr_usrreqs = &toe_usrreqs; 1853 1854 tcp6_protosw = pffindproto(PF_INET6, IPPROTO_TCP, SOCK_STREAM); 1855 if (tcp6_protosw == NULL) 1856 return (ENOPROTOOPT); 1857 bcopy(tcp6_protosw, &toe6_protosw, sizeof(toe6_protosw)); 1858 bcopy(tcp6_protosw->pr_usrreqs, &toe6_usrreqs, sizeof(toe6_usrreqs)); 1859 toe6_usrreqs.pru_aio_queue = t4_aio_queue_tom; 1860 toe6_protosw.pr_ctloutput = t4_ctloutput_tom; 1861 toe6_protosw.pr_usrreqs = &toe6_usrreqs; 1862 1863 return (t4_register_uld(&tom_uld_info)); 1864 } 1865 1866 static void 1867 tom_uninit(struct adapter *sc, void *arg __unused) 1868 { 1869 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4tomun")) 1870 return; 1871 1872 /* Try to free resources (works only if no port has IFCAP_TOE) */ 1873 if (uld_active(sc, ULD_TOM)) 1874 t4_deactivate_uld(sc, ULD_TOM); 1875 1876 end_synchronized_op(sc, 0); 1877 } 1878 1879 static int 1880 t4_tom_mod_unload(void) 1881 { 1882 t4_iterate(tom_uninit, NULL); 1883 1884 if (t4_unregister_uld(&tom_uld_info) == EBUSY) 1885 return (EBUSY); 1886 1887 t4_tls_mod_unload(); 1888 t4_ddp_mod_unload(); 1889 1890 t4_uninit_connect_cpl_handlers(); 1891 t4_uninit_listen_cpl_handlers(); 1892 t4_uninit_cpl_io_handlers(); 1893 t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, NULL, CPL_COOKIE_TOM); 1894 1895 return (0); 1896 } 1897 #endif /* TCP_OFFLOAD */ 1898 1899 static int 1900 t4_tom_modevent(module_t mod, int cmd, void *arg) 1901 { 1902 int rc = 0; 1903 1904 #ifdef TCP_OFFLOAD 1905 switch (cmd) { 1906 case MOD_LOAD: 1907 rc = t4_tom_mod_load(); 1908 break; 1909 1910 case MOD_UNLOAD: 1911 rc = t4_tom_mod_unload(); 1912 break; 1913 1914 default: 1915 rc = EINVAL; 1916 } 1917 #else 1918 printf("t4_tom: compiled without TCP_OFFLOAD support.\n"); 1919 rc = EOPNOTSUPP; 1920 #endif 1921 return (rc); 1922 } 1923 1924 static moduledata_t t4_tom_moddata= { 1925 "t4_tom", 1926 t4_tom_modevent, 1927 0 1928 }; 1929 1930 MODULE_VERSION(t4_tom, 1); 1931 MODULE_DEPEND(t4_tom, toecore, 1, 1, 1); 1932 MODULE_DEPEND(t4_tom, t4nex, 1, 1, 1); 1933 DECLARE_MODULE(t4_tom, t4_tom_moddata, SI_SUB_EXEC, SI_ORDER_ANY); 1934