1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2017-2018 Chelsio Communications, Inc. 5 * All rights reserved. 6 * Written by: John Baldwin <jhb@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include "opt_inet.h" 31 #include "opt_kern_tls.h" 32 33 #include <sys/cdefs.h> 34 __FBSDID("$FreeBSD$"); 35 36 #include <sys/param.h> 37 #include <sys/ktr.h> 38 #ifdef KERN_TLS 39 #include <sys/ktls.h> 40 #endif 41 #include <sys/sglist.h> 42 #include <sys/socket.h> 43 #include <sys/socketvar.h> 44 #include <sys/systm.h> 45 #include <netinet/in.h> 46 #include <netinet/in_pcb.h> 47 #include <netinet/tcp_var.h> 48 #include <netinet/toecore.h> 49 #ifdef KERN_TLS 50 #include <opencrypto/cryptodev.h> 51 #include <opencrypto/xform.h> 52 #endif 53 54 #ifdef TCP_OFFLOAD 55 #include "common/common.h" 56 #include "common/t4_tcb.h" 57 #include "crypto/t4_crypto.h" 58 #include "tom/t4_tom_l2t.h" 59 #include "tom/t4_tom.h" 60 61 /* 62 * The TCP sequence number of a CPL_TLS_DATA mbuf is saved here while 63 * the mbuf is in the ulp_pdu_reclaimq. 64 */ 65 #define tls_tcp_seq PH_loc.thirtytwo[0] 66 67 /* 68 * Handshake lock used for the handshake timer. Having a global lock 69 * is perhaps not ideal, but it avoids having to use callout_drain() 70 * in tls_uninit_toep() which can't block. Also, the timer shouldn't 71 * actually fire for most connections. 72 */ 73 static struct mtx tls_handshake_lock; 74 75 static void 76 t4_set_tls_tcb_field(struct toepcb *toep, uint16_t word, uint64_t mask, 77 uint64_t val) 78 { 79 struct adapter *sc = td_adapter(toep->td); 80 81 t4_set_tcb_field(sc, toep->ofld_txq, toep, word, mask, val, 0, 0); 82 } 83 84 /* TLS and DTLS common routines */ 85 bool 86 can_tls_offload(struct adapter *sc) 87 { 88 89 return (sc->tt.tls && sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS); 90 } 91 92 int 93 tls_tx_key(struct toepcb *toep) 94 { 95 struct tls_ofld_info *tls_ofld = &toep->tls; 96 97 return (tls_ofld->tx_key_addr >= 0); 98 } 99 100 int 101 tls_rx_key(struct toepcb *toep) 102 { 103 struct tls_ofld_info *tls_ofld = &toep->tls; 104 105 return (tls_ofld->rx_key_addr >= 0); 106 } 107 108 static int 109 key_size(struct toepcb *toep) 110 { 111 struct tls_ofld_info *tls_ofld = &toep->tls; 112 113 return ((tls_ofld->key_location == TLS_SFO_WR_CONTEXTLOC_IMMEDIATE) ? 114 tls_ofld->k_ctx.tx_key_info_size : KEY_IN_DDR_SIZE); 115 } 116 117 /* Set TLS Key-Id in TCB */ 118 static void 119 t4_set_tls_keyid(struct toepcb *toep, unsigned int key_id) 120 { 121 122 t4_set_tls_tcb_field(toep, W_TCB_RX_TLS_KEY_TAG, 123 V_TCB_RX_TLS_KEY_TAG(M_TCB_RX_TLS_BUF_TAG), 124 V_TCB_RX_TLS_KEY_TAG(key_id)); 125 } 126 127 /* Clear TF_RX_QUIESCE to re-enable receive. */ 128 static void 129 t4_clear_rx_quiesce(struct toepcb *toep) 130 { 131 132 t4_set_tls_tcb_field(toep, W_TCB_T_FLAGS, V_TF_RX_QUIESCE(1), 0); 133 } 134 135 static void 136 tls_clr_ofld_mode(struct toepcb *toep) 137 { 138 139 tls_stop_handshake_timer(toep); 140 141 /* Operate in PDU extraction mode only. */ 142 t4_set_tls_tcb_field(toep, W_TCB_ULP_RAW, 143 V_TCB_ULP_RAW(M_TCB_ULP_RAW), 144 V_TCB_ULP_RAW(V_TF_TLS_ENABLE(1))); 145 t4_clear_rx_quiesce(toep); 146 } 147 148 static void 149 tls_clr_quiesce(struct toepcb *toep) 150 { 151 152 tls_stop_handshake_timer(toep); 153 t4_clear_rx_quiesce(toep); 154 } 155 156 /* 157 * Calculate the TLS data expansion size 158 */ 159 static int 160 tls_expansion_size(struct toepcb *toep, int data_len, int full_pdus_only, 161 unsigned short *pdus_per_ulp) 162 { 163 struct tls_ofld_info *tls_ofld = &toep->tls; 164 struct tls_scmd *scmd = &tls_ofld->scmd0; 165 int expn_size = 0, frag_count = 0, pad_per_pdu = 0, 166 pad_last_pdu = 0, last_frag_size = 0, max_frag_size = 0; 167 int exp_per_pdu = 0; 168 int hdr_len = TLS_HEADER_LENGTH; 169 170 do { 171 max_frag_size = tls_ofld->k_ctx.frag_size; 172 if (G_SCMD_CIPH_MODE(scmd->seqno_numivs) == 173 SCMD_CIPH_MODE_AES_GCM) { 174 frag_count = (data_len / max_frag_size); 175 exp_per_pdu = GCM_TAG_SIZE + AEAD_EXPLICIT_DATA_SIZE + 176 hdr_len; 177 expn_size = frag_count * exp_per_pdu; 178 if (full_pdus_only) { 179 *pdus_per_ulp = data_len / (exp_per_pdu + 180 max_frag_size); 181 if (*pdus_per_ulp > 32) 182 *pdus_per_ulp = 32; 183 else if(!*pdus_per_ulp) 184 *pdus_per_ulp = 1; 185 expn_size = (*pdus_per_ulp) * exp_per_pdu; 186 break; 187 } 188 if ((last_frag_size = data_len % max_frag_size) > 0) { 189 frag_count += 1; 190 expn_size += exp_per_pdu; 191 } 192 break; 193 } else if (G_SCMD_CIPH_MODE(scmd->seqno_numivs) != 194 SCMD_CIPH_MODE_NOP) { 195 /* Calculate the number of fragments we can make */ 196 frag_count = (data_len / max_frag_size); 197 if (frag_count > 0) { 198 pad_per_pdu = (((howmany((max_frag_size + 199 tls_ofld->mac_length), 200 CIPHER_BLOCK_SIZE)) * 201 CIPHER_BLOCK_SIZE) - 202 (max_frag_size + 203 tls_ofld->mac_length)); 204 if (!pad_per_pdu) 205 pad_per_pdu = CIPHER_BLOCK_SIZE; 206 exp_per_pdu = pad_per_pdu + 207 tls_ofld->mac_length + 208 hdr_len + CIPHER_BLOCK_SIZE; 209 expn_size = frag_count * exp_per_pdu; 210 } 211 if (full_pdus_only) { 212 *pdus_per_ulp = data_len / (exp_per_pdu + 213 max_frag_size); 214 if (*pdus_per_ulp > 32) 215 *pdus_per_ulp = 32; 216 else if (!*pdus_per_ulp) 217 *pdus_per_ulp = 1; 218 expn_size = (*pdus_per_ulp) * exp_per_pdu; 219 break; 220 } 221 /* Consider the last fragment */ 222 if ((last_frag_size = data_len % max_frag_size) > 0) { 223 pad_last_pdu = (((howmany((last_frag_size + 224 tls_ofld->mac_length), 225 CIPHER_BLOCK_SIZE)) * 226 CIPHER_BLOCK_SIZE) - 227 (last_frag_size + 228 tls_ofld->mac_length)); 229 if (!pad_last_pdu) 230 pad_last_pdu = CIPHER_BLOCK_SIZE; 231 expn_size += (pad_last_pdu + 232 tls_ofld->mac_length + hdr_len + 233 CIPHER_BLOCK_SIZE); 234 } 235 } 236 } while (0); 237 238 return (expn_size); 239 } 240 241 /* Copy Key to WR */ 242 static void 243 tls_copy_tx_key(struct toepcb *toep, void *dst) 244 { 245 struct tls_ofld_info *tls_ofld = &toep->tls; 246 struct ulptx_sc_memrd *sc_memrd; 247 struct ulptx_idata *sc; 248 249 if (tls_ofld->k_ctx.tx_key_info_size <= 0) 250 return; 251 252 if (tls_ofld->key_location == TLS_SFO_WR_CONTEXTLOC_DDR) { 253 sc = dst; 254 sc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP)); 255 sc->len = htobe32(0); 256 sc_memrd = (struct ulptx_sc_memrd *)(sc + 1); 257 sc_memrd->cmd_to_len = htobe32(V_ULPTX_CMD(ULP_TX_SC_MEMRD) | 258 V_ULP_TX_SC_MORE(1) | 259 V_ULPTX_LEN16(tls_ofld->k_ctx.tx_key_info_size >> 4)); 260 sc_memrd->addr = htobe32(tls_ofld->tx_key_addr >> 5); 261 } else if (tls_ofld->key_location == TLS_SFO_WR_CONTEXTLOC_IMMEDIATE) { 262 memcpy(dst, &tls_ofld->k_ctx.tx, 263 tls_ofld->k_ctx.tx_key_info_size); 264 } 265 } 266 267 /* TLS/DTLS content type for CPL SFO */ 268 static inline unsigned char 269 tls_content_type(unsigned char content_type) 270 { 271 /* 272 * XXX: Shouldn't this map CONTENT_TYPE_APP_DATA to DATA and 273 * default to "CUSTOM" for all other types including 274 * heartbeat? 275 */ 276 switch (content_type) { 277 case CONTENT_TYPE_CCS: 278 return CPL_TX_TLS_SFO_TYPE_CCS; 279 case CONTENT_TYPE_ALERT: 280 return CPL_TX_TLS_SFO_TYPE_ALERT; 281 case CONTENT_TYPE_HANDSHAKE: 282 return CPL_TX_TLS_SFO_TYPE_HANDSHAKE; 283 case CONTENT_TYPE_HEARTBEAT: 284 return CPL_TX_TLS_SFO_TYPE_HEARTBEAT; 285 } 286 return CPL_TX_TLS_SFO_TYPE_DATA; 287 } 288 289 static unsigned char 290 get_cipher_key_size(unsigned int ck_size) 291 { 292 switch (ck_size) { 293 case AES_NOP: /* NOP */ 294 return 15; 295 case AES_128: /* AES128 */ 296 return CH_CK_SIZE_128; 297 case AES_192: /* AES192 */ 298 return CH_CK_SIZE_192; 299 case AES_256: /* AES256 */ 300 return CH_CK_SIZE_256; 301 default: 302 return CH_CK_SIZE_256; 303 } 304 } 305 306 static unsigned char 307 get_mac_key_size(unsigned int mk_size) 308 { 309 switch (mk_size) { 310 case SHA_NOP: /* NOP */ 311 return CH_MK_SIZE_128; 312 case SHA_GHASH: /* GHASH */ 313 case SHA_512: /* SHA512 */ 314 return CH_MK_SIZE_512; 315 case SHA_224: /* SHA2-224 */ 316 return CH_MK_SIZE_192; 317 case SHA_256: /* SHA2-256*/ 318 return CH_MK_SIZE_256; 319 case SHA_384: /* SHA384 */ 320 return CH_MK_SIZE_512; 321 case SHA1: /* SHA1 */ 322 default: 323 return CH_MK_SIZE_160; 324 } 325 } 326 327 static unsigned int 328 get_proto_ver(int proto_ver) 329 { 330 switch (proto_ver) { 331 case TLS1_2_VERSION: 332 return TLS_1_2_VERSION; 333 case TLS1_1_VERSION: 334 return TLS_1_1_VERSION; 335 case DTLS1_2_VERSION: 336 return DTLS_1_2_VERSION; 337 default: 338 return TLS_VERSION_MAX; 339 } 340 } 341 342 static void 343 tls_rxkey_flit1(struct tls_keyctx *kwr, struct tls_key_context *kctx) 344 { 345 346 if (kctx->state.enc_mode == CH_EVP_CIPH_GCM_MODE) { 347 kwr->u.rxhdr.ivinsert_to_authinsrt = 348 htobe64(V_TLS_KEYCTX_TX_WR_IVINSERT(6ULL) | 349 V_TLS_KEYCTX_TX_WR_AADSTRTOFST(1ULL) | 350 V_TLS_KEYCTX_TX_WR_AADSTOPOFST(5ULL) | 351 V_TLS_KEYCTX_TX_WR_AUTHSRTOFST(14ULL) | 352 V_TLS_KEYCTX_TX_WR_AUTHSTOPOFST(16ULL) | 353 V_TLS_KEYCTX_TX_WR_CIPHERSRTOFST(14ULL) | 354 V_TLS_KEYCTX_TX_WR_CIPHERSTOPOFST(0ULL) | 355 V_TLS_KEYCTX_TX_WR_AUTHINSRT(16ULL)); 356 kwr->u.rxhdr.ivpresent_to_rxmk_size &= 357 ~(V_TLS_KEYCTX_TX_WR_RXOPAD_PRESENT(1)); 358 kwr->u.rxhdr.authmode_to_rxvalid &= 359 ~(V_TLS_KEYCTX_TX_WR_CIPHAUTHSEQCTRL(1)); 360 } else { 361 kwr->u.rxhdr.ivinsert_to_authinsrt = 362 htobe64(V_TLS_KEYCTX_TX_WR_IVINSERT(6ULL) | 363 V_TLS_KEYCTX_TX_WR_AADSTRTOFST(1ULL) | 364 V_TLS_KEYCTX_TX_WR_AADSTOPOFST(5ULL) | 365 V_TLS_KEYCTX_TX_WR_AUTHSRTOFST(22ULL) | 366 V_TLS_KEYCTX_TX_WR_AUTHSTOPOFST(0ULL) | 367 V_TLS_KEYCTX_TX_WR_CIPHERSRTOFST(22ULL) | 368 V_TLS_KEYCTX_TX_WR_CIPHERSTOPOFST(0ULL) | 369 V_TLS_KEYCTX_TX_WR_AUTHINSRT(0ULL)); 370 } 371 } 372 373 /* Rx key */ 374 static void 375 prepare_rxkey_wr(struct tls_keyctx *kwr, struct tls_key_context *kctx) 376 { 377 unsigned int ck_size = kctx->cipher_secret_size; 378 unsigned int mk_size = kctx->mac_secret_size; 379 int proto_ver = kctx->proto_ver; 380 381 kwr->u.rxhdr.flitcnt_hmacctrl = 382 ((kctx->rx_key_info_size >> 4) << 3) | kctx->hmac_ctrl; 383 384 kwr->u.rxhdr.protover_ciphmode = 385 V_TLS_KEYCTX_TX_WR_PROTOVER(get_proto_ver(proto_ver)) | 386 V_TLS_KEYCTX_TX_WR_CIPHMODE(kctx->state.enc_mode); 387 388 kwr->u.rxhdr.authmode_to_rxvalid = 389 V_TLS_KEYCTX_TX_WR_AUTHMODE(kctx->state.auth_mode) | 390 V_TLS_KEYCTX_TX_WR_CIPHAUTHSEQCTRL(1) | 391 V_TLS_KEYCTX_TX_WR_SEQNUMCTRL(3) | 392 V_TLS_KEYCTX_TX_WR_RXVALID(1); 393 394 kwr->u.rxhdr.ivpresent_to_rxmk_size = 395 V_TLS_KEYCTX_TX_WR_IVPRESENT(0) | 396 V_TLS_KEYCTX_TX_WR_RXOPAD_PRESENT(1) | 397 V_TLS_KEYCTX_TX_WR_RXCK_SIZE(get_cipher_key_size(ck_size)) | 398 V_TLS_KEYCTX_TX_WR_RXMK_SIZE(get_mac_key_size(mk_size)); 399 400 tls_rxkey_flit1(kwr, kctx); 401 402 /* No key reversal for GCM */ 403 if (kctx->state.enc_mode != CH_EVP_CIPH_GCM_MODE) { 404 t4_aes_getdeckey(kwr->keys.edkey, kctx->rx.key, 405 (kctx->cipher_secret_size << 3)); 406 memcpy(kwr->keys.edkey + kctx->cipher_secret_size, 407 kctx->rx.key + kctx->cipher_secret_size, 408 (IPAD_SIZE + OPAD_SIZE)); 409 } else { 410 memcpy(kwr->keys.edkey, kctx->rx.key, 411 (kctx->rx_key_info_size - SALT_SIZE)); 412 memcpy(kwr->u.rxhdr.rxsalt, kctx->rx.salt, SALT_SIZE); 413 } 414 } 415 416 /* Tx key */ 417 static void 418 prepare_txkey_wr(struct tls_keyctx *kwr, struct tls_key_context *kctx) 419 { 420 unsigned int ck_size = kctx->cipher_secret_size; 421 unsigned int mk_size = kctx->mac_secret_size; 422 423 kwr->u.txhdr.ctxlen = 424 (kctx->tx_key_info_size >> 4); 425 kwr->u.txhdr.dualck_to_txvalid = 426 V_TLS_KEYCTX_TX_WR_TXOPAD_PRESENT(1) | 427 V_TLS_KEYCTX_TX_WR_SALT_PRESENT(1) | 428 V_TLS_KEYCTX_TX_WR_TXCK_SIZE(get_cipher_key_size(ck_size)) | 429 V_TLS_KEYCTX_TX_WR_TXMK_SIZE(get_mac_key_size(mk_size)) | 430 V_TLS_KEYCTX_TX_WR_TXVALID(1); 431 432 memcpy(kwr->keys.edkey, kctx->tx.key, HDR_KCTX_SIZE); 433 if (kctx->state.enc_mode == CH_EVP_CIPH_GCM_MODE) { 434 memcpy(kwr->u.txhdr.txsalt, kctx->tx.salt, SALT_SIZE); 435 kwr->u.txhdr.dualck_to_txvalid &= 436 ~(V_TLS_KEYCTX_TX_WR_TXOPAD_PRESENT(1)); 437 } 438 kwr->u.txhdr.dualck_to_txvalid = htons(kwr->u.txhdr.dualck_to_txvalid); 439 } 440 441 /* TLS Key memory management */ 442 static int 443 get_new_keyid(struct toepcb *toep) 444 { 445 struct adapter *sc = td_adapter(toep->td); 446 vmem_addr_t addr; 447 448 if (vmem_alloc(sc->key_map, TLS_KEY_CONTEXT_SZ, M_NOWAIT | M_FIRSTFIT, 449 &addr) != 0) 450 return (-1); 451 452 return (addr); 453 } 454 455 static void 456 free_keyid(struct toepcb *toep, int keyid) 457 { 458 struct adapter *sc = td_adapter(toep->td); 459 460 vmem_free(sc->key_map, keyid, TLS_KEY_CONTEXT_SZ); 461 } 462 463 static void 464 clear_tls_keyid(struct toepcb *toep) 465 { 466 struct tls_ofld_info *tls_ofld = &toep->tls; 467 468 if (tls_ofld->rx_key_addr >= 0) { 469 free_keyid(toep, tls_ofld->rx_key_addr); 470 tls_ofld->rx_key_addr = -1; 471 } 472 if (tls_ofld->tx_key_addr >= 0) { 473 free_keyid(toep, tls_ofld->tx_key_addr); 474 tls_ofld->tx_key_addr = -1; 475 } 476 } 477 478 static int 479 get_keyid(struct tls_ofld_info *tls_ofld, unsigned int ops) 480 { 481 return (ops & KEY_WRITE_RX ? tls_ofld->rx_key_addr : 482 ((ops & KEY_WRITE_TX) ? tls_ofld->tx_key_addr : -1)); 483 } 484 485 static int 486 get_tp_plen_max(struct tls_ofld_info *tls_ofld) 487 { 488 int plen = ((min(3*4096, TP_TX_PG_SZ))/1448) * 1448; 489 490 return (tls_ofld->k_ctx.frag_size <= 8192 ? plen : FC_TP_PLEN_MAX); 491 } 492 493 /* Send request to get the key-id */ 494 static int 495 tls_program_key_id(struct toepcb *toep, struct tls_key_context *k_ctx) 496 { 497 struct tls_ofld_info *tls_ofld = &toep->tls; 498 struct adapter *sc = td_adapter(toep->td); 499 struct ofld_tx_sdesc *txsd; 500 int kwrlen, kctxlen, keyid, len; 501 struct wrqe *wr; 502 struct tls_key_req *kwr; 503 struct tls_keyctx *kctx; 504 505 kwrlen = sizeof(*kwr); 506 kctxlen = roundup2(sizeof(*kctx), 32); 507 len = roundup2(kwrlen + kctxlen, 16); 508 509 if (toep->txsd_avail == 0) 510 return (EAGAIN); 511 512 /* Dont initialize key for re-neg */ 513 if (!G_KEY_CLR_LOC(k_ctx->l_p_key)) { 514 if ((keyid = get_new_keyid(toep)) < 0) { 515 return (ENOSPC); 516 } 517 } else { 518 keyid = get_keyid(tls_ofld, k_ctx->l_p_key); 519 } 520 521 wr = alloc_wrqe(len, toep->ofld_txq); 522 if (wr == NULL) { 523 free_keyid(toep, keyid); 524 return (ENOMEM); 525 } 526 kwr = wrtod(wr); 527 memset(kwr, 0, kwrlen); 528 529 kwr->wr_hi = htobe32(V_FW_WR_OP(FW_ULPTX_WR) | F_FW_WR_COMPL | 530 F_FW_WR_ATOMIC); 531 kwr->wr_mid = htobe32(V_FW_WR_LEN16(DIV_ROUND_UP(len, 16)) | 532 V_FW_WR_FLOWID(toep->tid)); 533 kwr->protocol = get_proto_ver(k_ctx->proto_ver); 534 kwr->mfs = htons(k_ctx->frag_size); 535 kwr->reneg_to_write_rx = k_ctx->l_p_key; 536 537 /* master command */ 538 kwr->cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE) | 539 V_T5_ULP_MEMIO_ORDER(1) | V_T5_ULP_MEMIO_IMM(1)); 540 kwr->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(kctxlen >> 5)); 541 kwr->len16 = htobe32((toep->tid << 8) | 542 DIV_ROUND_UP(len - sizeof(struct work_request_hdr), 16)); 543 kwr->kaddr = htobe32(V_ULP_MEMIO_ADDR(keyid >> 5)); 544 545 /* sub command */ 546 kwr->sc_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 547 kwr->sc_len = htobe32(kctxlen); 548 549 kctx = (struct tls_keyctx *)(kwr + 1); 550 memset(kctx, 0, kctxlen); 551 552 if (G_KEY_GET_LOC(k_ctx->l_p_key) == KEY_WRITE_TX) { 553 tls_ofld->tx_key_addr = keyid; 554 prepare_txkey_wr(kctx, k_ctx); 555 } else if (G_KEY_GET_LOC(k_ctx->l_p_key) == KEY_WRITE_RX) { 556 tls_ofld->rx_key_addr = keyid; 557 prepare_rxkey_wr(kctx, k_ctx); 558 } 559 560 txsd = &toep->txsd[toep->txsd_pidx]; 561 txsd->tx_credits = DIV_ROUND_UP(len, 16); 562 txsd->plen = 0; 563 toep->tx_credits -= txsd->tx_credits; 564 if (__predict_false(++toep->txsd_pidx == toep->txsd_total)) 565 toep->txsd_pidx = 0; 566 toep->txsd_avail--; 567 568 t4_wrq_tx(sc, wr); 569 570 return (0); 571 } 572 573 /* Store a key received from SSL in DDR. */ 574 static int 575 program_key_context(struct tcpcb *tp, struct toepcb *toep, 576 struct tls_key_context *uk_ctx) 577 { 578 struct adapter *sc = td_adapter(toep->td); 579 struct tls_ofld_info *tls_ofld = &toep->tls; 580 struct tls_key_context *k_ctx; 581 int error, key_offset; 582 583 if (tp->t_state != TCPS_ESTABLISHED) { 584 /* 585 * XXX: Matches Linux driver, but not sure this is a 586 * very appropriate error. 587 */ 588 return (ENOENT); 589 } 590 591 /* Stop timer on handshake completion */ 592 tls_stop_handshake_timer(toep); 593 594 toep->flags &= ~TPF_FORCE_CREDITS; 595 596 CTR4(KTR_CXGBE, "%s: tid %d %s proto_ver %#x", __func__, toep->tid, 597 G_KEY_GET_LOC(uk_ctx->l_p_key) == KEY_WRITE_RX ? "KEY_WRITE_RX" : 598 "KEY_WRITE_TX", uk_ctx->proto_ver); 599 600 if (G_KEY_GET_LOC(uk_ctx->l_p_key) == KEY_WRITE_RX && 601 ulp_mode(toep) != ULP_MODE_TLS) 602 return (EOPNOTSUPP); 603 604 /* Don't copy the 'tx' and 'rx' fields. */ 605 k_ctx = &tls_ofld->k_ctx; 606 memcpy(&k_ctx->l_p_key, &uk_ctx->l_p_key, 607 sizeof(*k_ctx) - offsetof(struct tls_key_context, l_p_key)); 608 609 /* TLS version != 1.1 and !1.2 OR DTLS != 1.2 */ 610 if (get_proto_ver(k_ctx->proto_ver) > DTLS_1_2_VERSION) { 611 if (G_KEY_GET_LOC(k_ctx->l_p_key) == KEY_WRITE_RX) { 612 tls_ofld->rx_key_addr = -1; 613 t4_clear_rx_quiesce(toep); 614 } else { 615 tls_ofld->tx_key_addr = -1; 616 } 617 return (0); 618 } 619 620 if (k_ctx->state.enc_mode == CH_EVP_CIPH_GCM_MODE) { 621 k_ctx->iv_size = 4; 622 k_ctx->mac_first = 0; 623 k_ctx->hmac_ctrl = 0; 624 } else { 625 k_ctx->iv_size = 8; /* for CBC, iv is 16B, unit of 2B */ 626 k_ctx->mac_first = 1; 627 } 628 629 tls_ofld->scmd0.seqno_numivs = 630 (V_SCMD_SEQ_NO_CTRL(3) | 631 V_SCMD_PROTO_VERSION(get_proto_ver(k_ctx->proto_ver)) | 632 V_SCMD_ENC_DEC_CTRL(SCMD_ENCDECCTRL_ENCRYPT) | 633 V_SCMD_CIPH_AUTH_SEQ_CTRL((k_ctx->mac_first == 0)) | 634 V_SCMD_CIPH_MODE(k_ctx->state.enc_mode) | 635 V_SCMD_AUTH_MODE(k_ctx->state.auth_mode) | 636 V_SCMD_HMAC_CTRL(k_ctx->hmac_ctrl) | 637 V_SCMD_IV_SIZE(k_ctx->iv_size)); 638 639 tls_ofld->scmd0.ivgen_hdrlen = 640 (V_SCMD_IV_GEN_CTRL(k_ctx->iv_ctrl) | 641 V_SCMD_KEY_CTX_INLINE(0) | 642 V_SCMD_TLS_FRAG_ENABLE(1)); 643 644 tls_ofld->mac_length = k_ctx->mac_secret_size; 645 646 if (G_KEY_GET_LOC(k_ctx->l_p_key) == KEY_WRITE_RX) { 647 k_ctx->rx = uk_ctx->rx; 648 /* Dont initialize key for re-neg */ 649 if (!G_KEY_CLR_LOC(k_ctx->l_p_key)) 650 tls_ofld->rx_key_addr = -1; 651 } else { 652 k_ctx->tx = uk_ctx->tx; 653 /* Dont initialize key for re-neg */ 654 if (!G_KEY_CLR_LOC(k_ctx->l_p_key)) 655 tls_ofld->tx_key_addr = -1; 656 } 657 658 /* Flush pending data before new Tx key becomes active */ 659 if (G_KEY_GET_LOC(k_ctx->l_p_key) == KEY_WRITE_TX) { 660 struct sockbuf *sb; 661 662 /* XXX: This might not drain everything. */ 663 t4_push_frames(sc, toep, 0); 664 sb = &toep->inp->inp_socket->so_snd; 665 SOCKBUF_LOCK(sb); 666 667 /* XXX: This asserts that everything has been pushed. */ 668 MPASS(sb->sb_sndptr == NULL || sb->sb_sndptr->m_next == NULL); 669 sb->sb_sndptr = NULL; 670 tls_ofld->sb_off = sbavail(sb); 671 SOCKBUF_UNLOCK(sb); 672 tls_ofld->tx_seq_no = 0; 673 } 674 675 if ((G_KEY_GET_LOC(k_ctx->l_p_key) == KEY_WRITE_RX) || 676 (tls_ofld->key_location == TLS_SFO_WR_CONTEXTLOC_DDR)) { 677 678 /* 679 * XXX: The userland library sets tx_key_info_size, not 680 * rx_key_info_size. 681 */ 682 k_ctx->rx_key_info_size = k_ctx->tx_key_info_size; 683 684 error = tls_program_key_id(toep, k_ctx); 685 if (error) { 686 /* XXX: Only clear quiesce for KEY_WRITE_RX? */ 687 t4_clear_rx_quiesce(toep); 688 return (error); 689 } 690 } 691 692 if (G_KEY_GET_LOC(k_ctx->l_p_key) == KEY_WRITE_RX) { 693 /* 694 * RX key tags are an index into the key portion of MA 695 * memory stored as an offset from the base address in 696 * units of 64 bytes. 697 */ 698 key_offset = tls_ofld->rx_key_addr - sc->vres.key.start; 699 t4_set_tls_keyid(toep, key_offset / 64); 700 t4_set_tls_tcb_field(toep, W_TCB_ULP_RAW, 701 V_TCB_ULP_RAW(M_TCB_ULP_RAW), 702 V_TCB_ULP_RAW((V_TF_TLS_KEY_SIZE(3) | 703 V_TF_TLS_CONTROL(1) | 704 V_TF_TLS_ACTIVE(1) | 705 V_TF_TLS_ENABLE(1)))); 706 t4_set_tls_tcb_field(toep, W_TCB_TLS_SEQ, 707 V_TCB_TLS_SEQ(M_TCB_TLS_SEQ), 708 V_TCB_TLS_SEQ(0)); 709 t4_clear_rx_quiesce(toep); 710 } else { 711 unsigned short pdus_per_ulp; 712 713 if (tls_ofld->key_location == TLS_SFO_WR_CONTEXTLOC_IMMEDIATE) 714 tls_ofld->tx_key_addr = 1; 715 716 tls_ofld->fcplenmax = get_tp_plen_max(tls_ofld); 717 tls_ofld->expn_per_ulp = tls_expansion_size(toep, 718 tls_ofld->fcplenmax, 1, &pdus_per_ulp); 719 tls_ofld->pdus_per_ulp = pdus_per_ulp; 720 tls_ofld->adjusted_plen = tls_ofld->pdus_per_ulp * 721 ((tls_ofld->expn_per_ulp/tls_ofld->pdus_per_ulp) + 722 tls_ofld->k_ctx.frag_size); 723 } 724 725 return (0); 726 } 727 728 /* 729 * In some cases a client connection can hang without sending the 730 * ServerHelloDone message from the NIC to the host. Send a dummy 731 * RX_DATA_ACK with RX_MODULATE to unstick the connection. 732 */ 733 static void 734 tls_send_handshake_ack(void *arg) 735 { 736 struct toepcb *toep = arg; 737 struct tls_ofld_info *tls_ofld = &toep->tls; 738 struct adapter *sc = td_adapter(toep->td); 739 740 /* 741 * XXX: Does not have the t4_get_tcb() checks to refine the 742 * workaround. 743 */ 744 callout_schedule(&tls_ofld->handshake_timer, TLS_SRV_HELLO_RD_TM * hz); 745 746 CTR2(KTR_CXGBE, "%s: tid %d sending RX_DATA_ACK", __func__, toep->tid); 747 send_rx_modulate(sc, toep); 748 } 749 750 static void 751 tls_start_handshake_timer(struct toepcb *toep) 752 { 753 struct tls_ofld_info *tls_ofld = &toep->tls; 754 755 mtx_lock(&tls_handshake_lock); 756 callout_reset(&tls_ofld->handshake_timer, TLS_SRV_HELLO_BKOFF_TM * hz, 757 tls_send_handshake_ack, toep); 758 mtx_unlock(&tls_handshake_lock); 759 } 760 761 void 762 tls_stop_handshake_timer(struct toepcb *toep) 763 { 764 struct tls_ofld_info *tls_ofld = &toep->tls; 765 766 mtx_lock(&tls_handshake_lock); 767 callout_stop(&tls_ofld->handshake_timer); 768 mtx_unlock(&tls_handshake_lock); 769 } 770 771 int 772 t4_ctloutput_tls(struct socket *so, struct sockopt *sopt) 773 { 774 struct tls_key_context uk_ctx; 775 struct inpcb *inp; 776 struct tcpcb *tp; 777 struct toepcb *toep; 778 int error, optval; 779 780 error = 0; 781 if (sopt->sopt_dir == SOPT_SET && 782 sopt->sopt_name == TCP_TLSOM_SET_TLS_CONTEXT) { 783 error = sooptcopyin(sopt, &uk_ctx, sizeof(uk_ctx), 784 sizeof(uk_ctx)); 785 if (error) 786 return (error); 787 } 788 789 inp = sotoinpcb(so); 790 KASSERT(inp != NULL, ("tcp_ctloutput: inp == NULL")); 791 INP_WLOCK(inp); 792 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 793 INP_WUNLOCK(inp); 794 return (ECONNRESET); 795 } 796 tp = intotcpcb(inp); 797 toep = tp->t_toe; 798 switch (sopt->sopt_dir) { 799 case SOPT_SET: 800 switch (sopt->sopt_name) { 801 case TCP_TLSOM_SET_TLS_CONTEXT: 802 if (toep->tls.mode == TLS_MODE_KTLS) 803 error = EINVAL; 804 else { 805 error = program_key_context(tp, toep, &uk_ctx); 806 if (error == 0) 807 toep->tls.mode = TLS_MODE_TLSOM; 808 } 809 INP_WUNLOCK(inp); 810 break; 811 case TCP_TLSOM_CLR_TLS_TOM: 812 if (toep->tls.mode == TLS_MODE_KTLS) 813 error = EINVAL; 814 else if (ulp_mode(toep) == ULP_MODE_TLS) { 815 CTR2(KTR_CXGBE, "%s: tid %d CLR_TLS_TOM", 816 __func__, toep->tid); 817 tls_clr_ofld_mode(toep); 818 } else 819 error = EOPNOTSUPP; 820 INP_WUNLOCK(inp); 821 break; 822 case TCP_TLSOM_CLR_QUIES: 823 if (toep->tls.mode == TLS_MODE_KTLS) 824 error = EINVAL; 825 else if (ulp_mode(toep) == ULP_MODE_TLS) { 826 CTR2(KTR_CXGBE, "%s: tid %d CLR_QUIES", 827 __func__, toep->tid); 828 tls_clr_quiesce(toep); 829 } else 830 error = EOPNOTSUPP; 831 INP_WUNLOCK(inp); 832 break; 833 default: 834 INP_WUNLOCK(inp); 835 error = EOPNOTSUPP; 836 break; 837 } 838 break; 839 case SOPT_GET: 840 switch (sopt->sopt_name) { 841 case TCP_TLSOM_GET_TLS_TOM: 842 /* 843 * TLS TX is permitted on any TOE socket, but 844 * TLS RX requires a TLS ULP mode. 845 */ 846 optval = TLS_TOM_NONE; 847 if (can_tls_offload(td_adapter(toep->td)) && 848 toep->tls.mode != TLS_MODE_KTLS) { 849 switch (ulp_mode(toep)) { 850 case ULP_MODE_NONE: 851 case ULP_MODE_TCPDDP: 852 optval = TLS_TOM_TXONLY; 853 break; 854 case ULP_MODE_TLS: 855 optval = TLS_TOM_BOTH; 856 break; 857 } 858 } 859 CTR3(KTR_CXGBE, "%s: tid %d GET_TLS_TOM = %d", 860 __func__, toep->tid, optval); 861 INP_WUNLOCK(inp); 862 error = sooptcopyout(sopt, &optval, sizeof(optval)); 863 break; 864 default: 865 INP_WUNLOCK(inp); 866 error = EOPNOTSUPP; 867 break; 868 } 869 break; 870 } 871 return (error); 872 } 873 874 #ifdef KERN_TLS 875 static void 876 init_ktls_key_context(struct ktls_session *tls, struct tls_key_context *k_ctx, 877 int direction) 878 { 879 struct auth_hash *axf; 880 u_int key_info_size, mac_key_size; 881 char *hash, *key; 882 883 k_ctx->l_p_key = V_KEY_GET_LOC(direction == KTLS_TX ? KEY_WRITE_TX : 884 KEY_WRITE_RX); 885 k_ctx->proto_ver = tls->params.tls_vmajor << 8 | tls->params.tls_vminor; 886 k_ctx->cipher_secret_size = tls->params.cipher_key_len; 887 key_info_size = sizeof(struct tx_keyctx_hdr) + 888 k_ctx->cipher_secret_size; 889 if (direction == KTLS_TX) 890 key = k_ctx->tx.key; 891 else 892 key = k_ctx->rx.key; 893 memcpy(key, tls->params.cipher_key, tls->params.cipher_key_len); 894 hash = key + tls->params.cipher_key_len; 895 if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16) { 896 k_ctx->state.auth_mode = SCMD_AUTH_MODE_GHASH; 897 k_ctx->state.enc_mode = SCMD_CIPH_MODE_AES_GCM; 898 k_ctx->iv_size = 4; 899 k_ctx->mac_first = 0; 900 k_ctx->hmac_ctrl = SCMD_HMAC_CTRL_NOP; 901 key_info_size += GMAC_BLOCK_LEN; 902 k_ctx->mac_secret_size = 0; 903 if (direction == KTLS_TX) 904 memcpy(k_ctx->tx.salt, tls->params.iv, SALT_SIZE); 905 else 906 memcpy(k_ctx->rx.salt, tls->params.iv, SALT_SIZE); 907 t4_init_gmac_hash(tls->params.cipher_key, 908 tls->params.cipher_key_len, hash); 909 } else { 910 switch (tls->params.auth_algorithm) { 911 case CRYPTO_SHA1_HMAC: 912 axf = &auth_hash_hmac_sha1; 913 mac_key_size = SHA1_HASH_LEN; 914 k_ctx->state.auth_mode = SCMD_AUTH_MODE_SHA1; 915 break; 916 case CRYPTO_SHA2_256_HMAC: 917 axf = &auth_hash_hmac_sha2_256; 918 mac_key_size = SHA2_256_HASH_LEN; 919 k_ctx->state.auth_mode = SCMD_AUTH_MODE_SHA256; 920 break; 921 case CRYPTO_SHA2_384_HMAC: 922 axf = &auth_hash_hmac_sha2_384; 923 mac_key_size = SHA2_512_HASH_LEN; 924 k_ctx->state.auth_mode = SCMD_AUTH_MODE_SHA512_384; 925 break; 926 default: 927 panic("bad auth mode"); 928 } 929 k_ctx->state.enc_mode = SCMD_CIPH_MODE_AES_CBC; 930 k_ctx->iv_size = 8; /* for CBC, iv is 16B, unit of 2B */ 931 k_ctx->mac_first = 1; 932 k_ctx->hmac_ctrl = SCMD_HMAC_CTRL_NO_TRUNC; 933 key_info_size += roundup2(mac_key_size, 16) * 2; 934 k_ctx->mac_secret_size = mac_key_size; 935 t4_init_hmac_digest(axf, mac_key_size, tls->params.auth_key, 936 tls->params.auth_key_len, hash); 937 } 938 939 if (direction == KTLS_TX) 940 k_ctx->tx_key_info_size = key_info_size; 941 else 942 k_ctx->rx_key_info_size = key_info_size; 943 k_ctx->frag_size = tls->params.max_frame_len; 944 k_ctx->iv_ctrl = 1; 945 } 946 947 int 948 tls_alloc_ktls(struct toepcb *toep, struct ktls_session *tls, int direction) 949 { 950 struct adapter *sc = td_adapter(toep->td); 951 struct tls_key_context *k_ctx; 952 int error, key_offset; 953 954 if (toep->tls.mode == TLS_MODE_TLSOM) 955 return (EINVAL); 956 if (!can_tls_offload(td_adapter(toep->td))) 957 return (EINVAL); 958 switch (ulp_mode(toep)) { 959 case ULP_MODE_TLS: 960 break; 961 case ULP_MODE_NONE: 962 case ULP_MODE_TCPDDP: 963 if (direction != KTLS_TX) 964 return (EINVAL); 965 break; 966 default: 967 return (EINVAL); 968 } 969 970 switch (tls->params.cipher_algorithm) { 971 case CRYPTO_AES_CBC: 972 /* XXX: Explicitly ignore any provided IV. */ 973 switch (tls->params.cipher_key_len) { 974 case 128 / 8: 975 case 192 / 8: 976 case 256 / 8: 977 break; 978 default: 979 return (EINVAL); 980 } 981 switch (tls->params.auth_algorithm) { 982 case CRYPTO_SHA1_HMAC: 983 case CRYPTO_SHA2_256_HMAC: 984 case CRYPTO_SHA2_384_HMAC: 985 break; 986 default: 987 return (EPROTONOSUPPORT); 988 } 989 break; 990 case CRYPTO_AES_NIST_GCM_16: 991 if (tls->params.iv_len != SALT_SIZE) 992 return (EINVAL); 993 switch (tls->params.cipher_key_len) { 994 case 128 / 8: 995 case 192 / 8: 996 case 256 / 8: 997 break; 998 default: 999 return (EINVAL); 1000 } 1001 break; 1002 default: 1003 return (EPROTONOSUPPORT); 1004 } 1005 1006 /* Only TLS 1.1 and TLS 1.2 are currently supported. */ 1007 if (tls->params.tls_vmajor != TLS_MAJOR_VER_ONE || 1008 tls->params.tls_vminor < TLS_MINOR_VER_ONE || 1009 tls->params.tls_vminor > TLS_MINOR_VER_TWO) 1010 return (EPROTONOSUPPORT); 1011 1012 /* Bail if we already have a key. */ 1013 if (direction == KTLS_TX) { 1014 if (toep->tls.tx_key_addr != -1) 1015 return (EOPNOTSUPP); 1016 } else { 1017 if (toep->tls.rx_key_addr != -1) 1018 return (EOPNOTSUPP); 1019 } 1020 1021 /* 1022 * XXX: This assumes no key renegotation. If KTLS ever supports 1023 * that we will want to allocate TLS sessions dynamically rather 1024 * than as a static member of toep. 1025 */ 1026 k_ctx = &toep->tls.k_ctx; 1027 init_ktls_key_context(tls, k_ctx, direction); 1028 1029 error = tls_program_key_id(toep, k_ctx); 1030 if (error) 1031 return (error); 1032 1033 if (direction == KTLS_TX) { 1034 toep->tls.scmd0.seqno_numivs = 1035 (V_SCMD_SEQ_NO_CTRL(3) | 1036 V_SCMD_PROTO_VERSION(get_proto_ver(k_ctx->proto_ver)) | 1037 V_SCMD_ENC_DEC_CTRL(SCMD_ENCDECCTRL_ENCRYPT) | 1038 V_SCMD_CIPH_AUTH_SEQ_CTRL((k_ctx->mac_first == 0)) | 1039 V_SCMD_CIPH_MODE(k_ctx->state.enc_mode) | 1040 V_SCMD_AUTH_MODE(k_ctx->state.auth_mode) | 1041 V_SCMD_HMAC_CTRL(k_ctx->hmac_ctrl) | 1042 V_SCMD_IV_SIZE(k_ctx->iv_size)); 1043 1044 toep->tls.scmd0.ivgen_hdrlen = 1045 (V_SCMD_IV_GEN_CTRL(k_ctx->iv_ctrl) | 1046 V_SCMD_KEY_CTX_INLINE(0) | 1047 V_SCMD_TLS_FRAG_ENABLE(1)); 1048 1049 if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16) 1050 toep->tls.iv_len = 8; 1051 else 1052 toep->tls.iv_len = AES_BLOCK_LEN; 1053 1054 toep->tls.mac_length = k_ctx->mac_secret_size; 1055 1056 toep->tls.fcplenmax = get_tp_plen_max(&toep->tls); 1057 toep->tls.expn_per_ulp = tls->params.tls_hlen + 1058 tls->params.tls_tlen; 1059 toep->tls.pdus_per_ulp = 1; 1060 toep->tls.adjusted_plen = toep->tls.expn_per_ulp + 1061 toep->tls.k_ctx.frag_size; 1062 } else { 1063 /* Stop timer on handshake completion */ 1064 tls_stop_handshake_timer(toep); 1065 1066 toep->flags &= ~TPF_FORCE_CREDITS; 1067 1068 /* 1069 * RX key tags are an index into the key portion of MA 1070 * memory stored as an offset from the base address in 1071 * units of 64 bytes. 1072 */ 1073 key_offset = toep->tls.rx_key_addr - sc->vres.key.start; 1074 t4_set_tls_keyid(toep, key_offset / 64); 1075 t4_set_tls_tcb_field(toep, W_TCB_ULP_RAW, 1076 V_TCB_ULP_RAW(M_TCB_ULP_RAW), 1077 V_TCB_ULP_RAW((V_TF_TLS_KEY_SIZE(3) | 1078 V_TF_TLS_CONTROL(1) | 1079 V_TF_TLS_ACTIVE(1) | 1080 V_TF_TLS_ENABLE(1)))); 1081 t4_set_tls_tcb_field(toep, W_TCB_TLS_SEQ, 1082 V_TCB_TLS_SEQ(M_TCB_TLS_SEQ), 1083 V_TCB_TLS_SEQ(0)); 1084 t4_clear_rx_quiesce(toep); 1085 } 1086 1087 toep->tls.mode = TLS_MODE_KTLS; 1088 1089 return (0); 1090 } 1091 #endif 1092 1093 void 1094 tls_init_toep(struct toepcb *toep) 1095 { 1096 struct tls_ofld_info *tls_ofld = &toep->tls; 1097 1098 tls_ofld->mode = TLS_MODE_OFF; 1099 tls_ofld->key_location = TLS_SFO_WR_CONTEXTLOC_DDR; 1100 tls_ofld->rx_key_addr = -1; 1101 tls_ofld->tx_key_addr = -1; 1102 if (ulp_mode(toep) == ULP_MODE_TLS) 1103 callout_init_mtx(&tls_ofld->handshake_timer, 1104 &tls_handshake_lock, 0); 1105 } 1106 1107 void 1108 tls_establish(struct toepcb *toep) 1109 { 1110 1111 /* 1112 * Enable PDU extraction. 1113 * 1114 * XXX: Supposedly this should be done by the firmware when 1115 * the ULP_MODE FLOWC parameter is set in send_flowc_wr(), but 1116 * in practice this seems to be required. 1117 */ 1118 CTR2(KTR_CXGBE, "%s: tid %d setting TLS_ENABLE", __func__, toep->tid); 1119 t4_set_tls_tcb_field(toep, W_TCB_ULP_RAW, V_TCB_ULP_RAW(M_TCB_ULP_RAW), 1120 V_TCB_ULP_RAW(V_TF_TLS_ENABLE(1))); 1121 1122 toep->flags |= TPF_FORCE_CREDITS; 1123 1124 tls_start_handshake_timer(toep); 1125 } 1126 1127 void 1128 tls_uninit_toep(struct toepcb *toep) 1129 { 1130 1131 if (ulp_mode(toep) == ULP_MODE_TLS) 1132 tls_stop_handshake_timer(toep); 1133 clear_tls_keyid(toep); 1134 } 1135 1136 #define MAX_OFLD_TX_CREDITS (SGE_MAX_WR_LEN / 16) 1137 #define MIN_OFLD_TLSTX_CREDITS(toep) \ 1138 (howmany(sizeof(struct fw_tlstx_data_wr) + \ 1139 sizeof(struct cpl_tx_tls_sfo) + key_size((toep)) + \ 1140 CIPHER_BLOCK_SIZE + 1, 16)) 1141 1142 static inline u_int 1143 max_imm_tls_space(int tx_credits) 1144 { 1145 const int n = 2; /* Use only up to 2 desc for imm. data WR */ 1146 int space; 1147 1148 KASSERT(tx_credits >= 0 && 1149 tx_credits <= MAX_OFLD_TX_CREDITS, 1150 ("%s: %d credits", __func__, tx_credits)); 1151 1152 if (tx_credits >= (n * EQ_ESIZE) / 16) 1153 space = (n * EQ_ESIZE); 1154 else 1155 space = tx_credits * 16; 1156 return (space); 1157 } 1158 1159 static int 1160 count_mbuf_segs(struct mbuf *m, int skip, int len, int *max_nsegs_1mbufp) 1161 { 1162 int max_nsegs_1mbuf, n, nsegs; 1163 1164 while (skip >= m->m_len) { 1165 skip -= m->m_len; 1166 m = m->m_next; 1167 } 1168 1169 nsegs = 0; 1170 max_nsegs_1mbuf = 0; 1171 while (len > 0) { 1172 n = sglist_count(mtod(m, char *) + skip, m->m_len - skip); 1173 if (n > max_nsegs_1mbuf) 1174 max_nsegs_1mbuf = n; 1175 nsegs += n; 1176 len -= m->m_len - skip; 1177 skip = 0; 1178 m = m->m_next; 1179 } 1180 *max_nsegs_1mbufp = max_nsegs_1mbuf; 1181 return (nsegs); 1182 } 1183 1184 static void 1185 write_tlstx_wr(struct fw_tlstx_data_wr *txwr, struct toepcb *toep, 1186 unsigned int immdlen, unsigned int plen, unsigned int expn, 1187 unsigned int pdus, uint8_t credits, int shove, int imm_ivs) 1188 { 1189 struct tls_ofld_info *tls_ofld = &toep->tls; 1190 unsigned int len = plen + expn; 1191 1192 txwr->op_to_immdlen = htobe32(V_WR_OP(FW_TLSTX_DATA_WR) | 1193 V_FW_TLSTX_DATA_WR_COMPL(1) | 1194 V_FW_TLSTX_DATA_WR_IMMDLEN(immdlen)); 1195 txwr->flowid_len16 = htobe32(V_FW_TLSTX_DATA_WR_FLOWID(toep->tid) | 1196 V_FW_TLSTX_DATA_WR_LEN16(credits)); 1197 txwr->plen = htobe32(len); 1198 txwr->lsodisable_to_flags = htobe32(V_TX_ULP_MODE(ULP_MODE_TLS) | 1199 V_TX_URG(0) | /* F_T6_TX_FORCE | */ V_TX_SHOVE(shove)); 1200 txwr->ctxloc_to_exp = htobe32(V_FW_TLSTX_DATA_WR_NUMIVS(pdus) | 1201 V_FW_TLSTX_DATA_WR_EXP(expn) | 1202 V_FW_TLSTX_DATA_WR_CTXLOC(tls_ofld->key_location) | 1203 V_FW_TLSTX_DATA_WR_IVDSGL(!imm_ivs) | 1204 V_FW_TLSTX_DATA_WR_KEYSIZE(tls_ofld->k_ctx.tx_key_info_size >> 4)); 1205 txwr->mfs = htobe16(tls_ofld->k_ctx.frag_size); 1206 txwr->adjustedplen_pkd = htobe16( 1207 V_FW_TLSTX_DATA_WR_ADJUSTEDPLEN(tls_ofld->adjusted_plen)); 1208 txwr->expinplenmax_pkd = htobe16( 1209 V_FW_TLSTX_DATA_WR_EXPINPLENMAX(tls_ofld->expn_per_ulp)); 1210 txwr->pdusinplenmax_pkd = 1211 V_FW_TLSTX_DATA_WR_PDUSINPLENMAX(tls_ofld->pdus_per_ulp); 1212 } 1213 1214 static void 1215 write_tlstx_cpl(struct cpl_tx_tls_sfo *cpl, struct toepcb *toep, 1216 struct tls_hdr *tls_hdr, unsigned int plen, unsigned int pdus) 1217 { 1218 struct tls_ofld_info *tls_ofld = &toep->tls; 1219 int data_type, seglen; 1220 1221 if (plen < tls_ofld->k_ctx.frag_size) 1222 seglen = plen; 1223 else 1224 seglen = tls_ofld->k_ctx.frag_size; 1225 data_type = tls_content_type(tls_hdr->type); 1226 cpl->op_to_seg_len = htobe32(V_CPL_TX_TLS_SFO_OPCODE(CPL_TX_TLS_SFO) | 1227 V_CPL_TX_TLS_SFO_DATA_TYPE(data_type) | 1228 V_CPL_TX_TLS_SFO_CPL_LEN(2) | V_CPL_TX_TLS_SFO_SEG_LEN(seglen)); 1229 cpl->pld_len = htobe32(plen); 1230 if (data_type == CPL_TX_TLS_SFO_TYPE_HEARTBEAT) 1231 cpl->type_protover = htobe32( 1232 V_CPL_TX_TLS_SFO_TYPE(tls_hdr->type)); 1233 cpl->seqno_numivs = htobe32(tls_ofld->scmd0.seqno_numivs | 1234 V_SCMD_NUM_IVS(pdus)); 1235 cpl->ivgen_hdrlen = htobe32(tls_ofld->scmd0.ivgen_hdrlen); 1236 cpl->scmd1 = htobe64(tls_ofld->tx_seq_no); 1237 tls_ofld->tx_seq_no += pdus; 1238 } 1239 1240 /* 1241 * Similar to write_tx_sgl() except that it accepts an optional 1242 * trailer buffer for IVs. 1243 */ 1244 static void 1245 write_tlstx_sgl(void *dst, struct mbuf *start, int skip, int plen, 1246 void *iv_buffer, int iv_len, int nsegs, int n) 1247 { 1248 struct mbuf *m; 1249 struct ulptx_sgl *usgl = dst; 1250 int i, j, rc; 1251 struct sglist sg; 1252 struct sglist_seg segs[n]; 1253 1254 KASSERT(nsegs > 0, ("%s: nsegs 0", __func__)); 1255 1256 sglist_init(&sg, n, segs); 1257 usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) | 1258 V_ULPTX_NSGE(nsegs)); 1259 1260 for (m = start; skip >= m->m_len; m = m->m_next) 1261 skip -= m->m_len; 1262 1263 i = -1; 1264 for (m = start; plen > 0; m = m->m_next) { 1265 rc = sglist_append(&sg, mtod(m, char *) + skip, 1266 m->m_len - skip); 1267 if (__predict_false(rc != 0)) 1268 panic("%s: sglist_append %d", __func__, rc); 1269 plen -= m->m_len - skip; 1270 skip = 0; 1271 1272 for (j = 0; j < sg.sg_nseg; i++, j++) { 1273 if (i < 0) { 1274 usgl->len0 = htobe32(segs[j].ss_len); 1275 usgl->addr0 = htobe64(segs[j].ss_paddr); 1276 } else { 1277 usgl->sge[i / 2].len[i & 1] = 1278 htobe32(segs[j].ss_len); 1279 usgl->sge[i / 2].addr[i & 1] = 1280 htobe64(segs[j].ss_paddr); 1281 } 1282 #ifdef INVARIANTS 1283 nsegs--; 1284 #endif 1285 } 1286 sglist_reset(&sg); 1287 } 1288 if (iv_buffer != NULL) { 1289 rc = sglist_append(&sg, iv_buffer, iv_len); 1290 if (__predict_false(rc != 0)) 1291 panic("%s: sglist_append %d", __func__, rc); 1292 1293 for (j = 0; j < sg.sg_nseg; i++, j++) { 1294 if (i < 0) { 1295 usgl->len0 = htobe32(segs[j].ss_len); 1296 usgl->addr0 = htobe64(segs[j].ss_paddr); 1297 } else { 1298 usgl->sge[i / 2].len[i & 1] = 1299 htobe32(segs[j].ss_len); 1300 usgl->sge[i / 2].addr[i & 1] = 1301 htobe64(segs[j].ss_paddr); 1302 } 1303 #ifdef INVARIANTS 1304 nsegs--; 1305 #endif 1306 } 1307 } 1308 if (i & 1) 1309 usgl->sge[i / 2].len[1] = htobe32(0); 1310 KASSERT(nsegs == 0, ("%s: nsegs %d, start %p, iv_buffer %p", 1311 __func__, nsegs, start, iv_buffer)); 1312 } 1313 1314 /* 1315 * Similar to t4_push_frames() but handles TLS sockets when TLS offload 1316 * is enabled. Rather than transmitting bulk data, the socket buffer 1317 * contains TLS records. The work request requires a full TLS record, 1318 * so batch mbufs up until a full TLS record is seen. This requires 1319 * reading the TLS header out of the start of each record to determine 1320 * its length. 1321 */ 1322 void 1323 t4_push_tls_records(struct adapter *sc, struct toepcb *toep, int drop) 1324 { 1325 struct tls_hdr thdr; 1326 struct mbuf *sndptr; 1327 struct fw_tlstx_data_wr *txwr; 1328 struct cpl_tx_tls_sfo *cpl; 1329 struct wrqe *wr; 1330 u_int plen, nsegs, credits, space, max_nsegs_1mbuf, wr_len; 1331 u_int expn_size, iv_len, pdus, sndptroff; 1332 struct tls_ofld_info *tls_ofld = &toep->tls; 1333 struct inpcb *inp = toep->inp; 1334 struct tcpcb *tp = intotcpcb(inp); 1335 struct socket *so = inp->inp_socket; 1336 struct sockbuf *sb = &so->so_snd; 1337 int tls_size, tx_credits, shove, /* compl,*/ sowwakeup; 1338 struct ofld_tx_sdesc *txsd; 1339 bool imm_ivs, imm_payload; 1340 void *iv_buffer, *iv_dst, *buf; 1341 1342 INP_WLOCK_ASSERT(inp); 1343 KASSERT(toep->flags & TPF_FLOWC_WR_SENT, 1344 ("%s: flowc_wr not sent for tid %u.", __func__, toep->tid)); 1345 1346 KASSERT(ulp_mode(toep) == ULP_MODE_NONE || 1347 ulp_mode(toep) == ULP_MODE_TCPDDP || ulp_mode(toep) == ULP_MODE_TLS, 1348 ("%s: ulp_mode %u for toep %p", __func__, ulp_mode(toep), toep)); 1349 KASSERT(tls_tx_key(toep), 1350 ("%s: TX key not set for toep %p", __func__, toep)); 1351 1352 #ifdef VERBOSE_TRACES 1353 CTR4(KTR_CXGBE, "%s: tid %d toep flags %#x tp flags %#x drop %d", 1354 __func__, toep->tid, toep->flags, tp->t_flags); 1355 #endif 1356 if (__predict_false(toep->flags & TPF_ABORT_SHUTDOWN)) 1357 return; 1358 1359 #ifdef RATELIMIT 1360 if (__predict_false(inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) && 1361 (update_tx_rate_limit(sc, toep, so->so_max_pacing_rate) == 0)) { 1362 inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED; 1363 } 1364 #endif 1365 1366 /* 1367 * This function doesn't resume by itself. Someone else must clear the 1368 * flag and call this function. 1369 */ 1370 if (__predict_false(toep->flags & TPF_TX_SUSPENDED)) { 1371 KASSERT(drop == 0, 1372 ("%s: drop (%d) != 0 but tx is suspended", __func__, drop)); 1373 return; 1374 } 1375 1376 txsd = &toep->txsd[toep->txsd_pidx]; 1377 for (;;) { 1378 tx_credits = min(toep->tx_credits, MAX_OFLD_TX_CREDITS); 1379 space = max_imm_tls_space(tx_credits); 1380 wr_len = sizeof(struct fw_tlstx_data_wr) + 1381 sizeof(struct cpl_tx_tls_sfo) + key_size(toep); 1382 if (wr_len + CIPHER_BLOCK_SIZE + 1 > space) { 1383 #ifdef VERBOSE_TRACES 1384 CTR5(KTR_CXGBE, 1385 "%s: tid %d tx_credits %d min_wr %d space %d", 1386 __func__, toep->tid, tx_credits, wr_len + 1387 CIPHER_BLOCK_SIZE + 1, space); 1388 #endif 1389 return; 1390 } 1391 1392 SOCKBUF_LOCK(sb); 1393 sowwakeup = drop; 1394 if (drop) { 1395 sbdrop_locked(sb, drop); 1396 MPASS(tls_ofld->sb_off >= drop); 1397 tls_ofld->sb_off -= drop; 1398 drop = 0; 1399 } 1400 1401 /* 1402 * Send a FIN if requested, but only if there's no 1403 * more data to send. 1404 */ 1405 if (sbavail(sb) == tls_ofld->sb_off && 1406 toep->flags & TPF_SEND_FIN) { 1407 if (sowwakeup) 1408 sowwakeup_locked(so); 1409 else 1410 SOCKBUF_UNLOCK(sb); 1411 SOCKBUF_UNLOCK_ASSERT(sb); 1412 t4_close_conn(sc, toep); 1413 return; 1414 } 1415 1416 if (sbavail(sb) < tls_ofld->sb_off + TLS_HEADER_LENGTH) { 1417 /* 1418 * A full TLS header is not yet queued, stop 1419 * for now until more data is added to the 1420 * socket buffer. However, if the connection 1421 * has been closed, we will never get the rest 1422 * of the header so just discard the partial 1423 * header and close the connection. 1424 */ 1425 #ifdef VERBOSE_TRACES 1426 CTR5(KTR_CXGBE, "%s: tid %d sbavail %d sb_off %d%s", 1427 __func__, toep->tid, sbavail(sb), tls_ofld->sb_off, 1428 toep->flags & TPF_SEND_FIN ? "" : " SEND_FIN"); 1429 #endif 1430 if (sowwakeup) 1431 sowwakeup_locked(so); 1432 else 1433 SOCKBUF_UNLOCK(sb); 1434 SOCKBUF_UNLOCK_ASSERT(sb); 1435 if (toep->flags & TPF_SEND_FIN) 1436 t4_close_conn(sc, toep); 1437 return; 1438 } 1439 1440 /* Read the header of the next TLS record. */ 1441 sndptr = sbsndmbuf(sb, tls_ofld->sb_off, &sndptroff); 1442 m_copydata(sndptr, sndptroff, sizeof(thdr), (caddr_t)&thdr); 1443 tls_size = htons(thdr.length); 1444 plen = TLS_HEADER_LENGTH + tls_size; 1445 pdus = howmany(tls_size, tls_ofld->k_ctx.frag_size); 1446 iv_len = pdus * CIPHER_BLOCK_SIZE; 1447 1448 if (sbavail(sb) < tls_ofld->sb_off + plen) { 1449 /* 1450 * The full TLS record is not yet queued, stop 1451 * for now until more data is added to the 1452 * socket buffer. However, if the connection 1453 * has been closed, we will never get the rest 1454 * of the record so just discard the partial 1455 * record and close the connection. 1456 */ 1457 #ifdef VERBOSE_TRACES 1458 CTR6(KTR_CXGBE, 1459 "%s: tid %d sbavail %d sb_off %d plen %d%s", 1460 __func__, toep->tid, sbavail(sb), tls_ofld->sb_off, 1461 plen, toep->flags & TPF_SEND_FIN ? "" : 1462 " SEND_FIN"); 1463 #endif 1464 if (sowwakeup) 1465 sowwakeup_locked(so); 1466 else 1467 SOCKBUF_UNLOCK(sb); 1468 SOCKBUF_UNLOCK_ASSERT(sb); 1469 if (toep->flags & TPF_SEND_FIN) 1470 t4_close_conn(sc, toep); 1471 return; 1472 } 1473 1474 /* Shove if there is no additional data pending. */ 1475 shove = (sbavail(sb) == tls_ofld->sb_off + plen) && 1476 !(tp->t_flags & TF_MORETOCOME); 1477 1478 if (sb->sb_flags & SB_AUTOSIZE && 1479 V_tcp_do_autosndbuf && 1480 sb->sb_hiwat < V_tcp_autosndbuf_max && 1481 sbused(sb) >= sb->sb_hiwat * 7 / 8) { 1482 int newsize = min(sb->sb_hiwat + V_tcp_autosndbuf_inc, 1483 V_tcp_autosndbuf_max); 1484 1485 if (!sbreserve_locked(sb, newsize, so, NULL)) 1486 sb->sb_flags &= ~SB_AUTOSIZE; 1487 else 1488 sowwakeup = 1; /* room available */ 1489 } 1490 if (sowwakeup) 1491 sowwakeup_locked(so); 1492 else 1493 SOCKBUF_UNLOCK(sb); 1494 SOCKBUF_UNLOCK_ASSERT(sb); 1495 1496 if (__predict_false(toep->flags & TPF_FIN_SENT)) 1497 panic("%s: excess tx.", __func__); 1498 1499 /* Determine whether to use immediate vs SGL. */ 1500 imm_payload = false; 1501 imm_ivs = false; 1502 if (wr_len + iv_len <= space) { 1503 imm_ivs = true; 1504 wr_len += iv_len; 1505 if (wr_len + tls_size <= space) { 1506 wr_len += tls_size; 1507 imm_payload = true; 1508 } 1509 } 1510 1511 /* Allocate space for IVs if needed. */ 1512 if (!imm_ivs) { 1513 iv_buffer = malloc(iv_len, M_CXGBE, M_NOWAIT); 1514 if (iv_buffer == NULL) { 1515 /* 1516 * XXX: How to restart this? 1517 */ 1518 if (sowwakeup) 1519 sowwakeup_locked(so); 1520 else 1521 SOCKBUF_UNLOCK(sb); 1522 SOCKBUF_UNLOCK_ASSERT(sb); 1523 CTR3(KTR_CXGBE, 1524 "%s: tid %d failed to alloc IV space len %d", 1525 __func__, toep->tid, iv_len); 1526 return; 1527 } 1528 } else 1529 iv_buffer = NULL; 1530 1531 /* Determine size of SGL. */ 1532 nsegs = 0; 1533 max_nsegs_1mbuf = 0; /* max # of SGL segments in any one mbuf */ 1534 if (!imm_payload) { 1535 nsegs = count_mbuf_segs(sndptr, sndptroff + 1536 TLS_HEADER_LENGTH, tls_size, &max_nsegs_1mbuf); 1537 if (!imm_ivs) { 1538 int n = sglist_count(iv_buffer, iv_len); 1539 nsegs += n; 1540 if (n > max_nsegs_1mbuf) 1541 max_nsegs_1mbuf = n; 1542 } 1543 1544 /* Account for SGL in work request length. */ 1545 wr_len += sizeof(struct ulptx_sgl) + 1546 ((3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1)) * 8; 1547 } 1548 1549 wr = alloc_wrqe(roundup2(wr_len, 16), toep->ofld_txq); 1550 if (wr == NULL) { 1551 /* XXX: how will we recover from this? */ 1552 toep->flags |= TPF_TX_SUSPENDED; 1553 return; 1554 } 1555 1556 #ifdef VERBOSE_TRACES 1557 CTR5(KTR_CXGBE, "%s: tid %d TLS record %d len %#x pdus %d", 1558 __func__, toep->tid, thdr.type, tls_size, pdus); 1559 #endif 1560 txwr = wrtod(wr); 1561 cpl = (struct cpl_tx_tls_sfo *)(txwr + 1); 1562 memset(txwr, 0, roundup2(wr_len, 16)); 1563 credits = howmany(wr_len, 16); 1564 expn_size = tls_expansion_size(toep, tls_size, 0, NULL); 1565 write_tlstx_wr(txwr, toep, imm_payload ? tls_size : 0, 1566 tls_size, expn_size, pdus, credits, shove, imm_ivs ? 1 : 0); 1567 write_tlstx_cpl(cpl, toep, &thdr, tls_size, pdus); 1568 tls_copy_tx_key(toep, cpl + 1); 1569 1570 /* Generate random IVs */ 1571 buf = (char *)(cpl + 1) + key_size(toep); 1572 if (imm_ivs) { 1573 MPASS(iv_buffer == NULL); 1574 iv_dst = buf; 1575 buf = (char *)iv_dst + iv_len; 1576 } else 1577 iv_dst = iv_buffer; 1578 arc4rand(iv_dst, iv_len, 0); 1579 1580 if (imm_payload) { 1581 m_copydata(sndptr, sndptroff + TLS_HEADER_LENGTH, 1582 tls_size, buf); 1583 } else { 1584 write_tlstx_sgl(buf, sndptr, 1585 sndptroff + TLS_HEADER_LENGTH, tls_size, iv_buffer, 1586 iv_len, nsegs, max_nsegs_1mbuf); 1587 } 1588 1589 KASSERT(toep->tx_credits >= credits, 1590 ("%s: not enough credits", __func__)); 1591 1592 toep->tx_credits -= credits; 1593 1594 tp->snd_nxt += plen; 1595 tp->snd_max += plen; 1596 1597 SOCKBUF_LOCK(sb); 1598 sbsndptr_adv(sb, sb->sb_sndptr, plen); 1599 tls_ofld->sb_off += plen; 1600 SOCKBUF_UNLOCK(sb); 1601 1602 toep->flags |= TPF_TX_DATA_SENT; 1603 if (toep->tx_credits < MIN_OFLD_TLSTX_CREDITS(toep)) 1604 toep->flags |= TPF_TX_SUSPENDED; 1605 1606 KASSERT(toep->txsd_avail > 0, ("%s: no txsd", __func__)); 1607 txsd->plen = plen; 1608 txsd->tx_credits = credits; 1609 txsd->iv_buffer = iv_buffer; 1610 txsd++; 1611 if (__predict_false(++toep->txsd_pidx == toep->txsd_total)) { 1612 toep->txsd_pidx = 0; 1613 txsd = &toep->txsd[0]; 1614 } 1615 toep->txsd_avail--; 1616 1617 atomic_add_long(&toep->vi->pi->tx_toe_tls_records, 1); 1618 atomic_add_long(&toep->vi->pi->tx_toe_tls_octets, plen); 1619 1620 t4_l2t_send(sc, wr, toep->l2te); 1621 } 1622 } 1623 1624 #ifdef KERN_TLS 1625 static int 1626 count_ext_pgs_segs(struct mbuf *m) 1627 { 1628 vm_paddr_t nextpa; 1629 u_int i, nsegs; 1630 1631 MPASS(m->m_epg_npgs > 0); 1632 nsegs = 1; 1633 nextpa = m->m_epg_pa[0] + PAGE_SIZE; 1634 for (i = 1; i < m->m_epg_npgs; i++) { 1635 if (nextpa != m->m_epg_pa[i]) 1636 nsegs++; 1637 nextpa = m->m_epg_pa[i] + PAGE_SIZE; 1638 } 1639 return (nsegs); 1640 } 1641 1642 static void 1643 write_ktlstx_sgl(void *dst, struct mbuf *m, int nsegs) 1644 { 1645 struct ulptx_sgl *usgl = dst; 1646 vm_paddr_t pa; 1647 uint32_t len; 1648 int i, j; 1649 1650 KASSERT(nsegs > 0, ("%s: nsegs 0", __func__)); 1651 1652 usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) | 1653 V_ULPTX_NSGE(nsegs)); 1654 1655 /* Figure out the first S/G length. */ 1656 pa = m->m_epg_pa[0] + m->m_epg_1st_off; 1657 usgl->addr0 = htobe64(pa); 1658 len = m_epg_pagelen(m, 0, m->m_epg_1st_off); 1659 pa += len; 1660 for (i = 1; i < m->m_epg_npgs; i++) { 1661 if (m->m_epg_pa[i] != pa) 1662 break; 1663 len += m_epg_pagelen(m, i, 0); 1664 pa += m_epg_pagelen(m, i, 0); 1665 } 1666 usgl->len0 = htobe32(len); 1667 #ifdef INVARIANTS 1668 nsegs--; 1669 #endif 1670 1671 j = -1; 1672 for (; i < m->m_epg_npgs; i++) { 1673 if (j == -1 || m->m_epg_pa[i] != pa) { 1674 if (j >= 0) 1675 usgl->sge[j / 2].len[j & 1] = htobe32(len); 1676 j++; 1677 #ifdef INVARIANTS 1678 nsegs--; 1679 #endif 1680 pa = m->m_epg_pa[i]; 1681 usgl->sge[j / 2].addr[j & 1] = htobe64(pa); 1682 len = m_epg_pagelen(m, i, 0); 1683 pa += len; 1684 } else { 1685 len += m_epg_pagelen(m, i, 0); 1686 pa += m_epg_pagelen(m, i, 0); 1687 } 1688 } 1689 if (j >= 0) { 1690 usgl->sge[j / 2].len[j & 1] = htobe32(len); 1691 1692 if ((j & 1) == 0) 1693 usgl->sge[j / 2].len[1] = htobe32(0); 1694 } 1695 KASSERT(nsegs == 0, ("%s: nsegs %d, m %p", __func__, nsegs, m)); 1696 } 1697 1698 /* 1699 * Similar to t4_push_frames() but handles sockets that contain TLS 1700 * record mbufs. Unlike TLSOM, each mbuf is a complete TLS record and 1701 * corresponds to a single work request. 1702 */ 1703 void 1704 t4_push_ktls(struct adapter *sc, struct toepcb *toep, int drop) 1705 { 1706 struct tls_hdr *thdr; 1707 struct fw_tlstx_data_wr *txwr; 1708 struct cpl_tx_tls_sfo *cpl; 1709 struct wrqe *wr; 1710 struct mbuf *m; 1711 u_int nsegs, credits, wr_len; 1712 u_int expn_size; 1713 struct inpcb *inp = toep->inp; 1714 struct tcpcb *tp = intotcpcb(inp); 1715 struct socket *so = inp->inp_socket; 1716 struct sockbuf *sb = &so->so_snd; 1717 int tls_size, tx_credits, shove, sowwakeup; 1718 struct ofld_tx_sdesc *txsd; 1719 char *buf; 1720 1721 INP_WLOCK_ASSERT(inp); 1722 KASSERT(toep->flags & TPF_FLOWC_WR_SENT, 1723 ("%s: flowc_wr not sent for tid %u.", __func__, toep->tid)); 1724 1725 KASSERT(ulp_mode(toep) == ULP_MODE_NONE || 1726 ulp_mode(toep) == ULP_MODE_TCPDDP || ulp_mode(toep) == ULP_MODE_TLS, 1727 ("%s: ulp_mode %u for toep %p", __func__, ulp_mode(toep), toep)); 1728 KASSERT(tls_tx_key(toep), 1729 ("%s: TX key not set for toep %p", __func__, toep)); 1730 1731 #ifdef VERBOSE_TRACES 1732 CTR4(KTR_CXGBE, "%s: tid %d toep flags %#x tp flags %#x drop %d", 1733 __func__, toep->tid, toep->flags, tp->t_flags); 1734 #endif 1735 if (__predict_false(toep->flags & TPF_ABORT_SHUTDOWN)) 1736 return; 1737 1738 #ifdef RATELIMIT 1739 if (__predict_false(inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) && 1740 (update_tx_rate_limit(sc, toep, so->so_max_pacing_rate) == 0)) { 1741 inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED; 1742 } 1743 #endif 1744 1745 /* 1746 * This function doesn't resume by itself. Someone else must clear the 1747 * flag and call this function. 1748 */ 1749 if (__predict_false(toep->flags & TPF_TX_SUSPENDED)) { 1750 KASSERT(drop == 0, 1751 ("%s: drop (%d) != 0 but tx is suspended", __func__, drop)); 1752 return; 1753 } 1754 1755 txsd = &toep->txsd[toep->txsd_pidx]; 1756 for (;;) { 1757 tx_credits = min(toep->tx_credits, MAX_OFLD_TX_CREDITS); 1758 1759 SOCKBUF_LOCK(sb); 1760 sowwakeup = drop; 1761 if (drop) { 1762 sbdrop_locked(sb, drop); 1763 drop = 0; 1764 } 1765 1766 m = sb->sb_sndptr != NULL ? sb->sb_sndptr->m_next : sb->sb_mb; 1767 1768 /* 1769 * Send a FIN if requested, but only if there's no 1770 * more data to send. 1771 */ 1772 if (m == NULL && toep->flags & TPF_SEND_FIN) { 1773 if (sowwakeup) 1774 sowwakeup_locked(so); 1775 else 1776 SOCKBUF_UNLOCK(sb); 1777 SOCKBUF_UNLOCK_ASSERT(sb); 1778 t4_close_conn(sc, toep); 1779 return; 1780 } 1781 1782 /* 1783 * If there is no ready data to send, wait until more 1784 * data arrives. 1785 */ 1786 if (m == NULL || (m->m_flags & M_NOTAVAIL) != 0) { 1787 if (sowwakeup) 1788 sowwakeup_locked(so); 1789 else 1790 SOCKBUF_UNLOCK(sb); 1791 SOCKBUF_UNLOCK_ASSERT(sb); 1792 #ifdef VERBOSE_TRACES 1793 CTR2(KTR_CXGBE, "%s: tid %d no ready data to send", 1794 __func__, toep->tid); 1795 #endif 1796 return; 1797 } 1798 1799 KASSERT(m->m_flags & M_EXTPG, ("%s: mbuf %p is not NOMAP", 1800 __func__, m)); 1801 KASSERT(m->m_epg_tls != NULL, 1802 ("%s: mbuf %p doesn't have TLS session", __func__, m)); 1803 1804 /* Calculate WR length. */ 1805 wr_len = sizeof(struct fw_tlstx_data_wr) + 1806 sizeof(struct cpl_tx_tls_sfo) + key_size(toep); 1807 1808 /* Explicit IVs for AES-CBC and AES-GCM are <= 16. */ 1809 MPASS(toep->tls.iv_len <= AES_BLOCK_LEN); 1810 wr_len += AES_BLOCK_LEN; 1811 1812 /* Account for SGL in work request length. */ 1813 nsegs = count_ext_pgs_segs(m); 1814 wr_len += sizeof(struct ulptx_sgl) + 1815 ((3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1)) * 8; 1816 1817 /* Not enough credits for this work request. */ 1818 if (howmany(wr_len, 16) > tx_credits) { 1819 if (sowwakeup) 1820 sowwakeup_locked(so); 1821 else 1822 SOCKBUF_UNLOCK(sb); 1823 SOCKBUF_UNLOCK_ASSERT(sb); 1824 #ifdef VERBOSE_TRACES 1825 CTR5(KTR_CXGBE, 1826 "%s: tid %d mbuf %p requires %d credits, but only %d available", 1827 __func__, toep->tid, m, howmany(wr_len, 16), 1828 tx_credits); 1829 #endif 1830 toep->flags |= TPF_TX_SUSPENDED; 1831 return; 1832 } 1833 1834 /* Shove if there is no additional data pending. */ 1835 shove = ((m->m_next == NULL || 1836 (m->m_next->m_flags & M_NOTAVAIL) != 0)) && 1837 (tp->t_flags & TF_MORETOCOME) == 0; 1838 1839 if (sb->sb_flags & SB_AUTOSIZE && 1840 V_tcp_do_autosndbuf && 1841 sb->sb_hiwat < V_tcp_autosndbuf_max && 1842 sbused(sb) >= sb->sb_hiwat * 7 / 8) { 1843 int newsize = min(sb->sb_hiwat + V_tcp_autosndbuf_inc, 1844 V_tcp_autosndbuf_max); 1845 1846 if (!sbreserve_locked(sb, newsize, so, NULL)) 1847 sb->sb_flags &= ~SB_AUTOSIZE; 1848 else 1849 sowwakeup = 1; /* room available */ 1850 } 1851 if (sowwakeup) 1852 sowwakeup_locked(so); 1853 else 1854 SOCKBUF_UNLOCK(sb); 1855 SOCKBUF_UNLOCK_ASSERT(sb); 1856 1857 if (__predict_false(toep->flags & TPF_FIN_SENT)) 1858 panic("%s: excess tx.", __func__); 1859 1860 wr = alloc_wrqe(roundup2(wr_len, 16), toep->ofld_txq); 1861 if (wr == NULL) { 1862 /* XXX: how will we recover from this? */ 1863 toep->flags |= TPF_TX_SUSPENDED; 1864 return; 1865 } 1866 1867 thdr = (struct tls_hdr *)&m->m_epg_hdr; 1868 #ifdef VERBOSE_TRACES 1869 CTR5(KTR_CXGBE, "%s: tid %d TLS record %ju type %d len %#x", 1870 __func__, toep->tid, m->m_epg_seqno, thdr->type, 1871 m->m_len); 1872 #endif 1873 txwr = wrtod(wr); 1874 cpl = (struct cpl_tx_tls_sfo *)(txwr + 1); 1875 memset(txwr, 0, roundup2(wr_len, 16)); 1876 credits = howmany(wr_len, 16); 1877 expn_size = m->m_epg_hdrlen + 1878 m->m_epg_trllen; 1879 tls_size = m->m_len - expn_size; 1880 write_tlstx_wr(txwr, toep, 0, 1881 tls_size, expn_size, 1, credits, shove, 1); 1882 toep->tls.tx_seq_no = m->m_epg_seqno; 1883 write_tlstx_cpl(cpl, toep, thdr, tls_size, 1); 1884 tls_copy_tx_key(toep, cpl + 1); 1885 1886 /* Copy IV. */ 1887 buf = (char *)(cpl + 1) + key_size(toep); 1888 memcpy(buf, thdr + 1, toep->tls.iv_len); 1889 buf += AES_BLOCK_LEN; 1890 1891 write_ktlstx_sgl(buf, m, nsegs); 1892 1893 KASSERT(toep->tx_credits >= credits, 1894 ("%s: not enough credits", __func__)); 1895 1896 toep->tx_credits -= credits; 1897 1898 tp->snd_nxt += m->m_len; 1899 tp->snd_max += m->m_len; 1900 1901 SOCKBUF_LOCK(sb); 1902 sb->sb_sndptr = m; 1903 SOCKBUF_UNLOCK(sb); 1904 1905 toep->flags |= TPF_TX_DATA_SENT; 1906 if (toep->tx_credits < MIN_OFLD_TLSTX_CREDITS(toep)) 1907 toep->flags |= TPF_TX_SUSPENDED; 1908 1909 KASSERT(toep->txsd_avail > 0, ("%s: no txsd", __func__)); 1910 txsd->plen = m->m_len; 1911 txsd->tx_credits = credits; 1912 txsd++; 1913 if (__predict_false(++toep->txsd_pidx == toep->txsd_total)) { 1914 toep->txsd_pidx = 0; 1915 txsd = &toep->txsd[0]; 1916 } 1917 toep->txsd_avail--; 1918 1919 atomic_add_long(&toep->vi->pi->tx_toe_tls_records, 1); 1920 atomic_add_long(&toep->vi->pi->tx_toe_tls_octets, m->m_len); 1921 1922 t4_l2t_send(sc, wr, toep->l2te); 1923 } 1924 } 1925 #endif 1926 1927 /* 1928 * For TLS data we place received mbufs received via CPL_TLS_DATA into 1929 * an mbufq in the TLS offload state. When CPL_RX_TLS_CMP is 1930 * received, the completed PDUs are placed into the socket receive 1931 * buffer. 1932 * 1933 * The TLS code reuses the ulp_pdu_reclaimq to hold the pending mbufs. 1934 */ 1935 static int 1936 do_tls_data(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 1937 { 1938 struct adapter *sc = iq->adapter; 1939 const struct cpl_tls_data *cpl = mtod(m, const void *); 1940 unsigned int tid = GET_TID(cpl); 1941 struct toepcb *toep = lookup_tid(sc, tid); 1942 struct inpcb *inp = toep->inp; 1943 struct tcpcb *tp; 1944 int len; 1945 1946 /* XXX: Should this match do_rx_data instead? */ 1947 KASSERT(!(toep->flags & TPF_SYNQE), 1948 ("%s: toep %p claims to be a synq entry", __func__, toep)); 1949 1950 KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__)); 1951 1952 /* strip off CPL header */ 1953 m_adj(m, sizeof(*cpl)); 1954 len = m->m_pkthdr.len; 1955 1956 atomic_add_long(&toep->vi->pi->rx_toe_tls_octets, len); 1957 1958 KASSERT(len == G_CPL_TLS_DATA_LENGTH(be32toh(cpl->length_pkd)), 1959 ("%s: payload length mismatch", __func__)); 1960 1961 INP_WLOCK(inp); 1962 if (inp->inp_flags & (INP_DROPPED | INP_TIMEWAIT)) { 1963 CTR4(KTR_CXGBE, "%s: tid %u, rx (%d bytes), inp_flags 0x%x", 1964 __func__, tid, len, inp->inp_flags); 1965 INP_WUNLOCK(inp); 1966 m_freem(m); 1967 return (0); 1968 } 1969 1970 /* Save TCP sequence number. */ 1971 m->m_pkthdr.tls_tcp_seq = be32toh(cpl->seq); 1972 1973 if (mbufq_enqueue(&toep->ulp_pdu_reclaimq, m)) { 1974 #ifdef INVARIANTS 1975 panic("Failed to queue TLS data packet"); 1976 #else 1977 printf("%s: Failed to queue TLS data packet\n", __func__); 1978 INP_WUNLOCK(inp); 1979 m_freem(m); 1980 return (0); 1981 #endif 1982 } 1983 1984 tp = intotcpcb(inp); 1985 tp->t_rcvtime = ticks; 1986 1987 #ifdef VERBOSE_TRACES 1988 CTR4(KTR_CXGBE, "%s: tid %u len %d seq %u", __func__, tid, len, 1989 be32toh(cpl->seq)); 1990 #endif 1991 1992 INP_WUNLOCK(inp); 1993 return (0); 1994 } 1995 1996 static int 1997 do_rx_tls_cmp(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 1998 { 1999 struct adapter *sc = iq->adapter; 2000 const struct cpl_rx_tls_cmp *cpl = mtod(m, const void *); 2001 struct tlsrx_hdr_pkt *tls_hdr_pkt; 2002 unsigned int tid = GET_TID(cpl); 2003 struct toepcb *toep = lookup_tid(sc, tid); 2004 struct inpcb *inp = toep->inp; 2005 struct tcpcb *tp; 2006 struct socket *so; 2007 struct sockbuf *sb; 2008 struct mbuf *tls_data; 2009 #ifdef KERN_TLS 2010 struct tls_get_record *tgr; 2011 struct mbuf *control; 2012 #endif 2013 int len, pdu_length, rx_credits; 2014 2015 KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__)); 2016 KASSERT(!(toep->flags & TPF_SYNQE), 2017 ("%s: toep %p claims to be a synq entry", __func__, toep)); 2018 2019 /* strip off CPL header */ 2020 m_adj(m, sizeof(*cpl)); 2021 len = m->m_pkthdr.len; 2022 2023 atomic_add_long(&toep->vi->pi->rx_toe_tls_records, 1); 2024 2025 KASSERT(len == G_CPL_RX_TLS_CMP_LENGTH(be32toh(cpl->pdulength_length)), 2026 ("%s: payload length mismatch", __func__)); 2027 2028 INP_WLOCK(inp); 2029 if (inp->inp_flags & (INP_DROPPED | INP_TIMEWAIT)) { 2030 CTR4(KTR_CXGBE, "%s: tid %u, rx (%d bytes), inp_flags 0x%x", 2031 __func__, tid, len, inp->inp_flags); 2032 INP_WUNLOCK(inp); 2033 m_freem(m); 2034 return (0); 2035 } 2036 2037 pdu_length = G_CPL_RX_TLS_CMP_PDULENGTH(be32toh(cpl->pdulength_length)); 2038 2039 so = inp_inpcbtosocket(inp); 2040 tp = intotcpcb(inp); 2041 2042 #ifdef VERBOSE_TRACES 2043 CTR6(KTR_CXGBE, "%s: tid %u PDU len %d len %d seq %u, rcv_nxt %u", 2044 __func__, tid, pdu_length, len, be32toh(cpl->seq), tp->rcv_nxt); 2045 #endif 2046 2047 tp->rcv_nxt += pdu_length; 2048 KASSERT(tp->rcv_wnd >= pdu_length, 2049 ("%s: negative window size", __func__)); 2050 tp->rcv_wnd -= pdu_length; 2051 2052 /* XXX: Not sure what to do about urgent data. */ 2053 2054 /* 2055 * The payload of this CPL is the TLS header followed by 2056 * additional fields. 2057 */ 2058 KASSERT(m->m_len >= sizeof(*tls_hdr_pkt), 2059 ("%s: payload too small", __func__)); 2060 tls_hdr_pkt = mtod(m, void *); 2061 2062 tls_data = mbufq_dequeue(&toep->ulp_pdu_reclaimq); 2063 if (tls_data != NULL) { 2064 KASSERT(be32toh(cpl->seq) == tls_data->m_pkthdr.tls_tcp_seq, 2065 ("%s: sequence mismatch", __func__)); 2066 } 2067 2068 #ifdef KERN_TLS 2069 if (toep->tls.mode == TLS_MODE_KTLS) { 2070 /* Report decryption errors as EBADMSG. */ 2071 if ((tls_hdr_pkt->res_to_mac_error & M_TLSRX_HDR_PKT_ERROR) != 2072 0) { 2073 m_freem(m); 2074 m_freem(tls_data); 2075 2076 CURVNET_SET(toep->vnet); 2077 so->so_error = EBADMSG; 2078 sorwakeup(so); 2079 2080 INP_WUNLOCK(inp); 2081 CURVNET_RESTORE(); 2082 2083 return (0); 2084 } 2085 2086 /* Allocate the control message mbuf. */ 2087 control = sbcreatecontrol(NULL, sizeof(*tgr), TLS_GET_RECORD, 2088 IPPROTO_TCP); 2089 if (control == NULL) { 2090 m_freem(m); 2091 m_freem(tls_data); 2092 2093 CURVNET_SET(toep->vnet); 2094 so->so_error = ENOBUFS; 2095 sorwakeup(so); 2096 2097 INP_WUNLOCK(inp); 2098 CURVNET_RESTORE(); 2099 2100 return (0); 2101 } 2102 2103 tgr = (struct tls_get_record *) 2104 CMSG_DATA(mtod(control, struct cmsghdr *)); 2105 tgr->tls_type = tls_hdr_pkt->type; 2106 tgr->tls_vmajor = be16toh(tls_hdr_pkt->version) >> 8; 2107 tgr->tls_vminor = be16toh(tls_hdr_pkt->version) & 0xff; 2108 2109 m_freem(m); 2110 2111 if (tls_data != NULL) { 2112 m_last(tls_data)->m_flags |= M_EOR; 2113 tgr->tls_length = htobe16(tls_data->m_pkthdr.len); 2114 } else 2115 tgr->tls_length = 0; 2116 m = tls_data; 2117 } else 2118 #endif 2119 { 2120 /* 2121 * Only the TLS header is sent to OpenSSL, so report 2122 * errors by altering the record type. 2123 */ 2124 if ((tls_hdr_pkt->res_to_mac_error & M_TLSRX_HDR_PKT_ERROR) != 2125 0) 2126 tls_hdr_pkt->type = CONTENT_TYPE_ERROR; 2127 2128 /* Trim this CPL's mbuf to only include the TLS header. */ 2129 KASSERT(m->m_len == len && m->m_next == NULL, 2130 ("%s: CPL spans multiple mbufs", __func__)); 2131 m->m_len = TLS_HEADER_LENGTH; 2132 m->m_pkthdr.len = TLS_HEADER_LENGTH; 2133 2134 if (tls_data != NULL) { 2135 /* 2136 * Update the TLS header length to be the length of 2137 * the payload data. 2138 */ 2139 tls_hdr_pkt->length = htobe16(tls_data->m_pkthdr.len); 2140 2141 m->m_next = tls_data; 2142 m->m_pkthdr.len += tls_data->m_len; 2143 } 2144 2145 #ifdef KERN_TLS 2146 control = NULL; 2147 #endif 2148 } 2149 2150 sb = &so->so_rcv; 2151 SOCKBUF_LOCK(sb); 2152 2153 if (__predict_false(sb->sb_state & SBS_CANTRCVMORE)) { 2154 struct epoch_tracker et; 2155 2156 CTR3(KTR_CXGBE, "%s: tid %u, excess rx (%d bytes)", 2157 __func__, tid, pdu_length); 2158 m_freem(m); 2159 #ifdef KERN_TLS 2160 m_freem(control); 2161 #endif 2162 SOCKBUF_UNLOCK(sb); 2163 INP_WUNLOCK(inp); 2164 2165 CURVNET_SET(toep->vnet); 2166 NET_EPOCH_ENTER(et); 2167 INP_WLOCK(inp); 2168 tp = tcp_drop(tp, ECONNRESET); 2169 if (tp) 2170 INP_WUNLOCK(inp); 2171 NET_EPOCH_EXIT(et); 2172 CURVNET_RESTORE(); 2173 2174 return (0); 2175 } 2176 2177 /* 2178 * Not all of the bytes on the wire are included in the socket buffer 2179 * (e.g. the MAC of the TLS record). However, those bytes are included 2180 * in the TCP sequence space. 2181 */ 2182 2183 /* receive buffer autosize */ 2184 MPASS(toep->vnet == so->so_vnet); 2185 CURVNET_SET(toep->vnet); 2186 if (sb->sb_flags & SB_AUTOSIZE && 2187 V_tcp_do_autorcvbuf && 2188 sb->sb_hiwat < V_tcp_autorcvbuf_max && 2189 m->m_pkthdr.len > (sbspace(sb) / 8 * 7)) { 2190 unsigned int hiwat = sb->sb_hiwat; 2191 unsigned int newsize = min(hiwat + sc->tt.autorcvbuf_inc, 2192 V_tcp_autorcvbuf_max); 2193 2194 if (!sbreserve_locked(sb, newsize, so, NULL)) 2195 sb->sb_flags &= ~SB_AUTOSIZE; 2196 } 2197 2198 #ifdef KERN_TLS 2199 if (control != NULL) 2200 sbappendcontrol_locked(sb, m, control, 0); 2201 else 2202 #endif 2203 sbappendstream_locked(sb, m, 0); 2204 rx_credits = sbspace(sb) > tp->rcv_wnd ? sbspace(sb) - tp->rcv_wnd : 0; 2205 #ifdef VERBOSE_TRACES 2206 CTR4(KTR_CXGBE, "%s: tid %u rx_credits %u rcv_wnd %u", 2207 __func__, tid, rx_credits, tp->rcv_wnd); 2208 #endif 2209 if (rx_credits > 0 && sbused(sb) + tp->rcv_wnd < sb->sb_lowat) { 2210 rx_credits = send_rx_credits(sc, toep, rx_credits); 2211 tp->rcv_wnd += rx_credits; 2212 tp->rcv_adv += rx_credits; 2213 } 2214 2215 sorwakeup_locked(so); 2216 SOCKBUF_UNLOCK_ASSERT(sb); 2217 2218 INP_WUNLOCK(inp); 2219 CURVNET_RESTORE(); 2220 return (0); 2221 } 2222 2223 void 2224 t4_tls_mod_load(void) 2225 { 2226 2227 mtx_init(&tls_handshake_lock, "t4tls handshake", NULL, MTX_DEF); 2228 t4_register_cpl_handler(CPL_TLS_DATA, do_tls_data); 2229 t4_register_cpl_handler(CPL_RX_TLS_CMP, do_rx_tls_cmp); 2230 } 2231 2232 void 2233 t4_tls_mod_unload(void) 2234 { 2235 2236 t4_register_cpl_handler(CPL_TLS_DATA, NULL); 2237 t4_register_cpl_handler(CPL_RX_TLS_CMP, NULL); 2238 mtx_destroy(&tls_handshake_lock); 2239 } 2240 #endif /* TCP_OFFLOAD */ 2241