xref: /freebsd/sys/dev/cxgbe/tom/t4_tls.c (revision 36712a94975f5bd0d26c85377283b49a2369c82f)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2017-2018 Chelsio Communications, Inc.
5  * All rights reserved.
6  * Written by: John Baldwin <jhb@FreeBSD.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include "opt_inet.h"
31 #include "opt_kern_tls.h"
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 #include <sys/param.h>
37 #include <sys/ktr.h>
38 #ifdef KERN_TLS
39 #include <sys/ktls.h>
40 #endif
41 #include <sys/sglist.h>
42 #include <sys/socket.h>
43 #include <sys/socketvar.h>
44 #include <sys/systm.h>
45 #include <netinet/in.h>
46 #include <netinet/in_pcb.h>
47 #include <netinet/tcp_var.h>
48 #include <netinet/toecore.h>
49 #ifdef KERN_TLS
50 #include <opencrypto/cryptodev.h>
51 #include <opencrypto/xform.h>
52 #endif
53 
54 #ifdef TCP_OFFLOAD
55 #include "common/common.h"
56 #include "common/t4_tcb.h"
57 #include "crypto/t4_crypto.h"
58 #include "tom/t4_tom_l2t.h"
59 #include "tom/t4_tom.h"
60 
61 /*
62  * The TCP sequence number of a CPL_TLS_DATA mbuf is saved here while
63  * the mbuf is in the ulp_pdu_reclaimq.
64  */
65 #define	tls_tcp_seq	PH_loc.thirtytwo[0]
66 
67 /*
68  * Handshake lock used for the handshake timer.  Having a global lock
69  * is perhaps not ideal, but it avoids having to use callout_drain()
70  * in tls_uninit_toep() which can't block.  Also, the timer shouldn't
71  * actually fire for most connections.
72  */
73 static struct mtx tls_handshake_lock;
74 
75 static void
76 t4_set_tls_tcb_field(struct toepcb *toep, uint16_t word, uint64_t mask,
77     uint64_t val)
78 {
79 	struct adapter *sc = td_adapter(toep->td);
80 
81 	t4_set_tcb_field(sc, toep->ofld_txq, toep, word, mask, val, 0, 0);
82 }
83 
84 /* TLS and DTLS common routines */
85 bool
86 can_tls_offload(struct adapter *sc)
87 {
88 
89 	return (sc->tt.tls && sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS);
90 }
91 
92 int
93 tls_tx_key(struct toepcb *toep)
94 {
95 	struct tls_ofld_info *tls_ofld = &toep->tls;
96 
97 	return (tls_ofld->tx_key_addr >= 0);
98 }
99 
100 int
101 tls_rx_key(struct toepcb *toep)
102 {
103 	struct tls_ofld_info *tls_ofld = &toep->tls;
104 
105 	return (tls_ofld->rx_key_addr >= 0);
106 }
107 
108 static int
109 key_size(struct toepcb *toep)
110 {
111 	struct tls_ofld_info *tls_ofld = &toep->tls;
112 
113 	return ((tls_ofld->key_location == TLS_SFO_WR_CONTEXTLOC_IMMEDIATE) ?
114 		tls_ofld->k_ctx.tx_key_info_size : KEY_IN_DDR_SIZE);
115 }
116 
117 /* Set TLS Key-Id in TCB */
118 static void
119 t4_set_tls_keyid(struct toepcb *toep, unsigned int key_id)
120 {
121 
122 	t4_set_tls_tcb_field(toep, W_TCB_RX_TLS_KEY_TAG,
123 			 V_TCB_RX_TLS_KEY_TAG(M_TCB_RX_TLS_BUF_TAG),
124 			 V_TCB_RX_TLS_KEY_TAG(key_id));
125 }
126 
127 /* Clear TF_RX_QUIESCE to re-enable receive. */
128 static void
129 t4_clear_rx_quiesce(struct toepcb *toep)
130 {
131 
132 	t4_set_tls_tcb_field(toep, W_TCB_T_FLAGS, V_TF_RX_QUIESCE(1), 0);
133 }
134 
135 static void
136 tls_clr_ofld_mode(struct toepcb *toep)
137 {
138 
139 	tls_stop_handshake_timer(toep);
140 
141 	/* Operate in PDU extraction mode only. */
142 	t4_set_tls_tcb_field(toep, W_TCB_ULP_RAW,
143 	    V_TCB_ULP_RAW(M_TCB_ULP_RAW),
144 	    V_TCB_ULP_RAW(V_TF_TLS_ENABLE(1)));
145 	t4_clear_rx_quiesce(toep);
146 }
147 
148 static void
149 tls_clr_quiesce(struct toepcb *toep)
150 {
151 
152 	tls_stop_handshake_timer(toep);
153 	t4_clear_rx_quiesce(toep);
154 }
155 
156 /*
157  * Calculate the TLS data expansion size
158  */
159 static int
160 tls_expansion_size(struct toepcb *toep, int data_len, int full_pdus_only,
161     unsigned short *pdus_per_ulp)
162 {
163 	struct tls_ofld_info *tls_ofld = &toep->tls;
164 	struct tls_scmd *scmd = &tls_ofld->scmd0;
165 	int expn_size = 0, frag_count = 0, pad_per_pdu = 0,
166 	    pad_last_pdu = 0, last_frag_size = 0, max_frag_size = 0;
167 	int exp_per_pdu = 0;
168 	int hdr_len = TLS_HEADER_LENGTH;
169 
170 	do {
171 		max_frag_size = tls_ofld->k_ctx.frag_size;
172 		if (G_SCMD_CIPH_MODE(scmd->seqno_numivs) ==
173 		   SCMD_CIPH_MODE_AES_GCM) {
174 			frag_count = (data_len / max_frag_size);
175 			exp_per_pdu = GCM_TAG_SIZE + AEAD_EXPLICIT_DATA_SIZE +
176 				hdr_len;
177 			expn_size =  frag_count * exp_per_pdu;
178 			if (full_pdus_only) {
179 				*pdus_per_ulp = data_len / (exp_per_pdu +
180 					max_frag_size);
181 				if (*pdus_per_ulp > 32)
182 					*pdus_per_ulp = 32;
183 				else if(!*pdus_per_ulp)
184 					*pdus_per_ulp = 1;
185 				expn_size = (*pdus_per_ulp) * exp_per_pdu;
186 				break;
187 			}
188 			if ((last_frag_size = data_len % max_frag_size) > 0) {
189 				frag_count += 1;
190 				expn_size += exp_per_pdu;
191 			}
192 			break;
193 		} else if (G_SCMD_CIPH_MODE(scmd->seqno_numivs) !=
194 			   SCMD_CIPH_MODE_NOP) {
195 			/* Calculate the number of fragments we can make */
196 			frag_count  = (data_len / max_frag_size);
197 			if (frag_count > 0) {
198 				pad_per_pdu = (((howmany((max_frag_size +
199 						       tls_ofld->mac_length),
200 						      CIPHER_BLOCK_SIZE)) *
201 						CIPHER_BLOCK_SIZE) -
202 					       (max_frag_size +
203 						tls_ofld->mac_length));
204 				if (!pad_per_pdu)
205 					pad_per_pdu = CIPHER_BLOCK_SIZE;
206 				exp_per_pdu = pad_per_pdu +
207 				       	tls_ofld->mac_length +
208 					hdr_len + CIPHER_BLOCK_SIZE;
209 				expn_size = frag_count * exp_per_pdu;
210 			}
211 			if (full_pdus_only) {
212 				*pdus_per_ulp = data_len / (exp_per_pdu +
213 					max_frag_size);
214 				if (*pdus_per_ulp > 32)
215 					*pdus_per_ulp = 32;
216 				else if (!*pdus_per_ulp)
217 					*pdus_per_ulp = 1;
218 				expn_size = (*pdus_per_ulp) * exp_per_pdu;
219 				break;
220 			}
221 			/* Consider the last fragment */
222 			if ((last_frag_size = data_len % max_frag_size) > 0) {
223 				pad_last_pdu = (((howmany((last_frag_size +
224 							tls_ofld->mac_length),
225 						       CIPHER_BLOCK_SIZE)) *
226 						 CIPHER_BLOCK_SIZE) -
227 						(last_frag_size +
228 						 tls_ofld->mac_length));
229 				if (!pad_last_pdu)
230 					pad_last_pdu = CIPHER_BLOCK_SIZE;
231 				expn_size += (pad_last_pdu +
232 					      tls_ofld->mac_length + hdr_len +
233 					      CIPHER_BLOCK_SIZE);
234 			}
235 		}
236 	} while (0);
237 
238 	return (expn_size);
239 }
240 
241 /* Copy Key to WR */
242 static void
243 tls_copy_tx_key(struct toepcb *toep, void *dst)
244 {
245 	struct tls_ofld_info *tls_ofld = &toep->tls;
246 	struct ulptx_sc_memrd *sc_memrd;
247 	struct ulptx_idata *sc;
248 
249 	if (tls_ofld->k_ctx.tx_key_info_size <= 0)
250 		return;
251 
252 	if (tls_ofld->key_location == TLS_SFO_WR_CONTEXTLOC_DDR) {
253 		sc = dst;
254 		sc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP));
255 		sc->len = htobe32(0);
256 		sc_memrd = (struct ulptx_sc_memrd *)(sc + 1);
257 		sc_memrd->cmd_to_len = htobe32(V_ULPTX_CMD(ULP_TX_SC_MEMRD) |
258 		    V_ULP_TX_SC_MORE(1) |
259 		    V_ULPTX_LEN16(tls_ofld->k_ctx.tx_key_info_size >> 4));
260 		sc_memrd->addr = htobe32(tls_ofld->tx_key_addr >> 5);
261 	} else if (tls_ofld->key_location == TLS_SFO_WR_CONTEXTLOC_IMMEDIATE) {
262 		memcpy(dst, &tls_ofld->k_ctx.tx,
263 		    tls_ofld->k_ctx.tx_key_info_size);
264 	}
265 }
266 
267 /* TLS/DTLS content type  for CPL SFO */
268 static inline unsigned char
269 tls_content_type(unsigned char content_type)
270 {
271 	/*
272 	 * XXX: Shouldn't this map CONTENT_TYPE_APP_DATA to DATA and
273 	 * default to "CUSTOM" for all other types including
274 	 * heartbeat?
275 	 */
276 	switch (content_type) {
277 	case CONTENT_TYPE_CCS:
278 		return CPL_TX_TLS_SFO_TYPE_CCS;
279 	case CONTENT_TYPE_ALERT:
280 		return CPL_TX_TLS_SFO_TYPE_ALERT;
281 	case CONTENT_TYPE_HANDSHAKE:
282 		return CPL_TX_TLS_SFO_TYPE_HANDSHAKE;
283 	case CONTENT_TYPE_HEARTBEAT:
284 		return CPL_TX_TLS_SFO_TYPE_HEARTBEAT;
285 	}
286 	return CPL_TX_TLS_SFO_TYPE_DATA;
287 }
288 
289 static unsigned char
290 get_cipher_key_size(unsigned int ck_size)
291 {
292 	switch (ck_size) {
293 	case AES_NOP: /* NOP */
294 		return 15;
295 	case AES_128: /* AES128 */
296 		return CH_CK_SIZE_128;
297 	case AES_192: /* AES192 */
298 		return CH_CK_SIZE_192;
299 	case AES_256: /* AES256 */
300 		return CH_CK_SIZE_256;
301 	default:
302 		return CH_CK_SIZE_256;
303 	}
304 }
305 
306 static unsigned char
307 get_mac_key_size(unsigned int mk_size)
308 {
309 	switch (mk_size) {
310 	case SHA_NOP: /* NOP */
311 		return CH_MK_SIZE_128;
312 	case SHA_GHASH: /* GHASH */
313 	case SHA_512: /* SHA512 */
314 		return CH_MK_SIZE_512;
315 	case SHA_224: /* SHA2-224 */
316 		return CH_MK_SIZE_192;
317 	case SHA_256: /* SHA2-256*/
318 		return CH_MK_SIZE_256;
319 	case SHA_384: /* SHA384 */
320 		return CH_MK_SIZE_512;
321 	case SHA1: /* SHA1 */
322 	default:
323 		return CH_MK_SIZE_160;
324 	}
325 }
326 
327 static unsigned int
328 get_proto_ver(int proto_ver)
329 {
330 	switch (proto_ver) {
331 	case TLS1_2_VERSION:
332 		return TLS_1_2_VERSION;
333 	case TLS1_1_VERSION:
334 		return TLS_1_1_VERSION;
335 	case DTLS1_2_VERSION:
336 		return DTLS_1_2_VERSION;
337 	default:
338 		return TLS_VERSION_MAX;
339 	}
340 }
341 
342 static void
343 tls_rxkey_flit1(struct tls_keyctx *kwr, struct tls_key_context *kctx)
344 {
345 
346 	if (kctx->state.enc_mode == CH_EVP_CIPH_GCM_MODE) {
347 		kwr->u.rxhdr.ivinsert_to_authinsrt =
348 		    htobe64(V_TLS_KEYCTX_TX_WR_IVINSERT(6ULL) |
349 			V_TLS_KEYCTX_TX_WR_AADSTRTOFST(1ULL) |
350 			V_TLS_KEYCTX_TX_WR_AADSTOPOFST(5ULL) |
351 			V_TLS_KEYCTX_TX_WR_AUTHSRTOFST(14ULL) |
352 			V_TLS_KEYCTX_TX_WR_AUTHSTOPOFST(16ULL) |
353 			V_TLS_KEYCTX_TX_WR_CIPHERSRTOFST(14ULL) |
354 			V_TLS_KEYCTX_TX_WR_CIPHERSTOPOFST(0ULL) |
355 			V_TLS_KEYCTX_TX_WR_AUTHINSRT(16ULL));
356 		kwr->u.rxhdr.ivpresent_to_rxmk_size &=
357 			~(V_TLS_KEYCTX_TX_WR_RXOPAD_PRESENT(1));
358 		kwr->u.rxhdr.authmode_to_rxvalid &=
359 			~(V_TLS_KEYCTX_TX_WR_CIPHAUTHSEQCTRL(1));
360 	} else {
361 		kwr->u.rxhdr.ivinsert_to_authinsrt =
362 		    htobe64(V_TLS_KEYCTX_TX_WR_IVINSERT(6ULL) |
363 			V_TLS_KEYCTX_TX_WR_AADSTRTOFST(1ULL) |
364 			V_TLS_KEYCTX_TX_WR_AADSTOPOFST(5ULL) |
365 			V_TLS_KEYCTX_TX_WR_AUTHSRTOFST(22ULL) |
366 			V_TLS_KEYCTX_TX_WR_AUTHSTOPOFST(0ULL) |
367 			V_TLS_KEYCTX_TX_WR_CIPHERSRTOFST(22ULL) |
368 			V_TLS_KEYCTX_TX_WR_CIPHERSTOPOFST(0ULL) |
369 			V_TLS_KEYCTX_TX_WR_AUTHINSRT(0ULL));
370 	}
371 }
372 
373 /* Rx key */
374 static void
375 prepare_rxkey_wr(struct tls_keyctx *kwr, struct tls_key_context *kctx)
376 {
377 	unsigned int ck_size = kctx->cipher_secret_size;
378 	unsigned int mk_size = kctx->mac_secret_size;
379 	int proto_ver = kctx->proto_ver;
380 
381 	kwr->u.rxhdr.flitcnt_hmacctrl =
382 		((kctx->tx_key_info_size >> 4) << 3) | kctx->hmac_ctrl;
383 
384 	kwr->u.rxhdr.protover_ciphmode =
385 		V_TLS_KEYCTX_TX_WR_PROTOVER(get_proto_ver(proto_ver)) |
386 		V_TLS_KEYCTX_TX_WR_CIPHMODE(kctx->state.enc_mode);
387 
388 	kwr->u.rxhdr.authmode_to_rxvalid =
389 		V_TLS_KEYCTX_TX_WR_AUTHMODE(kctx->state.auth_mode) |
390 		V_TLS_KEYCTX_TX_WR_CIPHAUTHSEQCTRL(1) |
391 		V_TLS_KEYCTX_TX_WR_SEQNUMCTRL(3) |
392 		V_TLS_KEYCTX_TX_WR_RXVALID(1);
393 
394 	kwr->u.rxhdr.ivpresent_to_rxmk_size =
395 		V_TLS_KEYCTX_TX_WR_IVPRESENT(0) |
396 		V_TLS_KEYCTX_TX_WR_RXOPAD_PRESENT(1) |
397 		V_TLS_KEYCTX_TX_WR_RXCK_SIZE(get_cipher_key_size(ck_size)) |
398 		V_TLS_KEYCTX_TX_WR_RXMK_SIZE(get_mac_key_size(mk_size));
399 
400 	tls_rxkey_flit1(kwr, kctx);
401 
402 	/* No key reversal for GCM */
403 	if (kctx->state.enc_mode != CH_EVP_CIPH_GCM_MODE) {
404 		t4_aes_getdeckey(kwr->keys.edkey, kctx->rx.key,
405 				 (kctx->cipher_secret_size << 3));
406 		memcpy(kwr->keys.edkey + kctx->cipher_secret_size,
407 		       kctx->rx.key + kctx->cipher_secret_size,
408 		       (IPAD_SIZE + OPAD_SIZE));
409 	} else {
410 		memcpy(kwr->keys.edkey, kctx->rx.key,
411 		       (kctx->tx_key_info_size - SALT_SIZE));
412 		memcpy(kwr->u.rxhdr.rxsalt, kctx->rx.salt, SALT_SIZE);
413 	}
414 }
415 
416 /* Tx key */
417 static void
418 prepare_txkey_wr(struct tls_keyctx *kwr, struct tls_key_context *kctx)
419 {
420 	unsigned int ck_size = kctx->cipher_secret_size;
421 	unsigned int mk_size = kctx->mac_secret_size;
422 
423 	kwr->u.txhdr.ctxlen =
424 		(kctx->tx_key_info_size >> 4);
425 	kwr->u.txhdr.dualck_to_txvalid =
426 		V_TLS_KEYCTX_TX_WR_TXOPAD_PRESENT(1) |
427 		V_TLS_KEYCTX_TX_WR_SALT_PRESENT(1) |
428 		V_TLS_KEYCTX_TX_WR_TXCK_SIZE(get_cipher_key_size(ck_size)) |
429 		V_TLS_KEYCTX_TX_WR_TXMK_SIZE(get_mac_key_size(mk_size)) |
430 		V_TLS_KEYCTX_TX_WR_TXVALID(1);
431 
432 	memcpy(kwr->keys.edkey, kctx->tx.key, HDR_KCTX_SIZE);
433 	if (kctx->state.enc_mode == CH_EVP_CIPH_GCM_MODE) {
434 		memcpy(kwr->u.txhdr.txsalt, kctx->tx.salt, SALT_SIZE);
435 		kwr->u.txhdr.dualck_to_txvalid &=
436 			~(V_TLS_KEYCTX_TX_WR_TXOPAD_PRESENT(1));
437 	}
438 	kwr->u.txhdr.dualck_to_txvalid = htons(kwr->u.txhdr.dualck_to_txvalid);
439 }
440 
441 /* TLS Key memory management */
442 static int
443 get_new_keyid(struct toepcb *toep)
444 {
445 	struct adapter *sc = td_adapter(toep->td);
446 	vmem_addr_t addr;
447 
448 	if (vmem_alloc(sc->key_map, TLS_KEY_CONTEXT_SZ, M_NOWAIT | M_FIRSTFIT,
449 	    &addr) != 0)
450 		return (-1);
451 
452 	return (addr);
453 }
454 
455 static void
456 free_keyid(struct toepcb *toep, int keyid)
457 {
458 	struct adapter *sc = td_adapter(toep->td);
459 
460 	vmem_free(sc->key_map, keyid, TLS_KEY_CONTEXT_SZ);
461 }
462 
463 static void
464 clear_tls_keyid(struct toepcb *toep)
465 {
466 	struct tls_ofld_info *tls_ofld = &toep->tls;
467 
468 	if (tls_ofld->rx_key_addr >= 0) {
469 		free_keyid(toep, tls_ofld->rx_key_addr);
470 		tls_ofld->rx_key_addr = -1;
471 	}
472 	if (tls_ofld->tx_key_addr >= 0) {
473 		free_keyid(toep, tls_ofld->tx_key_addr);
474 		tls_ofld->tx_key_addr = -1;
475 	}
476 }
477 
478 static int
479 get_keyid(struct tls_ofld_info *tls_ofld, unsigned int ops)
480 {
481 	return (ops & KEY_WRITE_RX ? tls_ofld->rx_key_addr :
482 		((ops & KEY_WRITE_TX) ? tls_ofld->tx_key_addr : -1));
483 }
484 
485 static int
486 get_tp_plen_max(struct tls_ofld_info *tls_ofld)
487 {
488 	int plen = ((min(3*4096, TP_TX_PG_SZ))/1448) * 1448;
489 
490 	return (tls_ofld->k_ctx.frag_size <= 8192 ? plen : FC_TP_PLEN_MAX);
491 }
492 
493 /* Send request to get the key-id */
494 static int
495 tls_program_key_id(struct toepcb *toep, struct tls_key_context *k_ctx)
496 {
497 	struct tls_ofld_info *tls_ofld = &toep->tls;
498 	struct adapter *sc = td_adapter(toep->td);
499 	struct ofld_tx_sdesc *txsd;
500 	int kwrlen, kctxlen, keyid, len;
501 	struct wrqe *wr;
502 	struct tls_key_req *kwr;
503 	struct tls_keyctx *kctx;
504 
505 	kwrlen = sizeof(*kwr);
506 	kctxlen = roundup2(sizeof(*kctx), 32);
507 	len = roundup2(kwrlen + kctxlen, 16);
508 
509 	if (toep->txsd_avail == 0)
510 		return (EAGAIN);
511 
512 	/* Dont initialize key for re-neg */
513 	if (!G_KEY_CLR_LOC(k_ctx->l_p_key)) {
514 		if ((keyid = get_new_keyid(toep)) < 0) {
515 			return (ENOSPC);
516 		}
517 	} else {
518 		keyid = get_keyid(tls_ofld, k_ctx->l_p_key);
519 	}
520 
521 	wr = alloc_wrqe(len, toep->ofld_txq);
522 	if (wr == NULL) {
523 		free_keyid(toep, keyid);
524 		return (ENOMEM);
525 	}
526 	kwr = wrtod(wr);
527 	memset(kwr, 0, kwrlen);
528 
529 	kwr->wr_hi = htobe32(V_FW_WR_OP(FW_ULPTX_WR) | F_FW_WR_COMPL |
530 	    F_FW_WR_ATOMIC);
531 	kwr->wr_mid = htobe32(V_FW_WR_LEN16(DIV_ROUND_UP(len, 16)) |
532 	    V_FW_WR_FLOWID(toep->tid));
533 	kwr->protocol = get_proto_ver(k_ctx->proto_ver);
534 	kwr->mfs = htons(k_ctx->frag_size);
535 	kwr->reneg_to_write_rx = k_ctx->l_p_key;
536 
537 	/* master command */
538 	kwr->cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE) |
539 	    V_T5_ULP_MEMIO_ORDER(1) | V_T5_ULP_MEMIO_IMM(1));
540 	kwr->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(kctxlen >> 5));
541 	kwr->len16 = htobe32((toep->tid << 8) |
542 	    DIV_ROUND_UP(len - sizeof(struct work_request_hdr), 16));
543 	kwr->kaddr = htobe32(V_ULP_MEMIO_ADDR(keyid >> 5));
544 
545 	/* sub command */
546 	kwr->sc_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM));
547 	kwr->sc_len = htobe32(kctxlen);
548 
549 	kctx = (struct tls_keyctx *)(kwr + 1);
550 	memset(kctx, 0, kctxlen);
551 
552 	if (G_KEY_GET_LOC(k_ctx->l_p_key) == KEY_WRITE_TX) {
553 		tls_ofld->tx_key_addr = keyid;
554 		prepare_txkey_wr(kctx, k_ctx);
555 	} else if (G_KEY_GET_LOC(k_ctx->l_p_key) == KEY_WRITE_RX) {
556 		tls_ofld->rx_key_addr = keyid;
557 		prepare_rxkey_wr(kctx, k_ctx);
558 	}
559 
560 	txsd = &toep->txsd[toep->txsd_pidx];
561 	txsd->tx_credits = DIV_ROUND_UP(len, 16);
562 	txsd->plen = 0;
563 	toep->tx_credits -= txsd->tx_credits;
564 	if (__predict_false(++toep->txsd_pidx == toep->txsd_total))
565 		toep->txsd_pidx = 0;
566 	toep->txsd_avail--;
567 
568 	t4_wrq_tx(sc, wr);
569 
570 	return (0);
571 }
572 
573 /* Store a key received from SSL in DDR. */
574 static int
575 program_key_context(struct tcpcb *tp, struct toepcb *toep,
576     struct tls_key_context *uk_ctx)
577 {
578 	struct adapter *sc = td_adapter(toep->td);
579 	struct tls_ofld_info *tls_ofld = &toep->tls;
580 	struct tls_key_context *k_ctx;
581 	int error, key_offset;
582 
583 	if (tp->t_state != TCPS_ESTABLISHED) {
584 		/*
585 		 * XXX: Matches Linux driver, but not sure this is a
586 		 * very appropriate error.
587 		 */
588 		return (ENOENT);
589 	}
590 
591 	/* Stop timer on handshake completion */
592 	tls_stop_handshake_timer(toep);
593 
594 	toep->flags &= ~TPF_FORCE_CREDITS;
595 
596 	CTR4(KTR_CXGBE, "%s: tid %d %s proto_ver %#x", __func__, toep->tid,
597 	    G_KEY_GET_LOC(uk_ctx->l_p_key) == KEY_WRITE_RX ? "KEY_WRITE_RX" :
598 	    "KEY_WRITE_TX", uk_ctx->proto_ver);
599 
600 	if (G_KEY_GET_LOC(uk_ctx->l_p_key) == KEY_WRITE_RX &&
601 	    ulp_mode(toep) != ULP_MODE_TLS)
602 		return (EOPNOTSUPP);
603 
604 	/* Don't copy the 'tx' and 'rx' fields. */
605 	k_ctx = &tls_ofld->k_ctx;
606 	memcpy(&k_ctx->l_p_key, &uk_ctx->l_p_key,
607 	    sizeof(*k_ctx) - offsetof(struct tls_key_context, l_p_key));
608 
609 	/* TLS version != 1.1 and !1.2 OR DTLS != 1.2 */
610 	if (get_proto_ver(k_ctx->proto_ver) > DTLS_1_2_VERSION) {
611 		if (G_KEY_GET_LOC(k_ctx->l_p_key) == KEY_WRITE_RX) {
612 			tls_ofld->rx_key_addr = -1;
613 			t4_clear_rx_quiesce(toep);
614 		} else {
615 			tls_ofld->tx_key_addr = -1;
616 		}
617 		return (0);
618 	}
619 
620 	if (k_ctx->state.enc_mode == CH_EVP_CIPH_GCM_MODE) {
621 		k_ctx->iv_size = 4;
622 		k_ctx->mac_first = 0;
623 		k_ctx->hmac_ctrl = 0;
624 	} else {
625 		k_ctx->iv_size = 8; /* for CBC, iv is 16B, unit of 2B */
626 		k_ctx->mac_first = 1;
627 	}
628 
629 	tls_ofld->scmd0.seqno_numivs =
630 		(V_SCMD_SEQ_NO_CTRL(3) |
631 		 V_SCMD_PROTO_VERSION(get_proto_ver(k_ctx->proto_ver)) |
632 		 V_SCMD_ENC_DEC_CTRL(SCMD_ENCDECCTRL_ENCRYPT) |
633 		 V_SCMD_CIPH_AUTH_SEQ_CTRL((k_ctx->mac_first == 0)) |
634 		 V_SCMD_CIPH_MODE(k_ctx->state.enc_mode) |
635 		 V_SCMD_AUTH_MODE(k_ctx->state.auth_mode) |
636 		 V_SCMD_HMAC_CTRL(k_ctx->hmac_ctrl) |
637 		 V_SCMD_IV_SIZE(k_ctx->iv_size));
638 
639 	tls_ofld->scmd0.ivgen_hdrlen =
640 		(V_SCMD_IV_GEN_CTRL(k_ctx->iv_ctrl) |
641 		 V_SCMD_KEY_CTX_INLINE(0) |
642 		 V_SCMD_TLS_FRAG_ENABLE(1));
643 
644 	tls_ofld->mac_length = k_ctx->mac_secret_size;
645 
646 	if (G_KEY_GET_LOC(k_ctx->l_p_key) == KEY_WRITE_RX) {
647 		k_ctx->rx = uk_ctx->rx;
648 		/* Dont initialize key for re-neg */
649 		if (!G_KEY_CLR_LOC(k_ctx->l_p_key))
650 			tls_ofld->rx_key_addr = -1;
651 	} else {
652 		k_ctx->tx = uk_ctx->tx;
653 		/* Dont initialize key for re-neg */
654 		if (!G_KEY_CLR_LOC(k_ctx->l_p_key))
655 			tls_ofld->tx_key_addr = -1;
656 	}
657 
658 	/* Flush pending data before new Tx key becomes active */
659 	if (G_KEY_GET_LOC(k_ctx->l_p_key) == KEY_WRITE_TX) {
660 		struct sockbuf *sb;
661 
662 		/* XXX: This might not drain everything. */
663 		t4_push_frames(sc, toep, 0);
664 		sb = &toep->inp->inp_socket->so_snd;
665 		SOCKBUF_LOCK(sb);
666 
667 		/* XXX: This asserts that everything has been pushed. */
668 		MPASS(sb->sb_sndptr == NULL || sb->sb_sndptr->m_next == NULL);
669 		sb->sb_sndptr = NULL;
670 		tls_ofld->sb_off = sbavail(sb);
671 		SOCKBUF_UNLOCK(sb);
672 		tls_ofld->tx_seq_no = 0;
673 	}
674 
675 	if ((G_KEY_GET_LOC(k_ctx->l_p_key) == KEY_WRITE_RX) ||
676 	    (tls_ofld->key_location == TLS_SFO_WR_CONTEXTLOC_DDR)) {
677 		error = tls_program_key_id(toep, k_ctx);
678 		if (error) {
679 			/* XXX: Only clear quiesce for KEY_WRITE_RX? */
680 			t4_clear_rx_quiesce(toep);
681 			return (error);
682 		}
683 	}
684 
685 	if (G_KEY_GET_LOC(k_ctx->l_p_key) == KEY_WRITE_RX) {
686 		/*
687 		 * RX key tags are an index into the key portion of MA
688 		 * memory stored as an offset from the base address in
689 		 * units of 64 bytes.
690 		 */
691 		key_offset = tls_ofld->rx_key_addr - sc->vres.key.start;
692 		t4_set_tls_keyid(toep, key_offset / 64);
693 		t4_set_tls_tcb_field(toep, W_TCB_ULP_RAW,
694 				 V_TCB_ULP_RAW(M_TCB_ULP_RAW),
695 				 V_TCB_ULP_RAW((V_TF_TLS_KEY_SIZE(3) |
696 						V_TF_TLS_CONTROL(1) |
697 						V_TF_TLS_ACTIVE(1) |
698 						V_TF_TLS_ENABLE(1))));
699 		t4_set_tls_tcb_field(toep, W_TCB_TLS_SEQ,
700 				 V_TCB_TLS_SEQ(M_TCB_TLS_SEQ),
701 				 V_TCB_TLS_SEQ(0));
702 		t4_clear_rx_quiesce(toep);
703 	} else {
704 		unsigned short pdus_per_ulp;
705 
706 		if (tls_ofld->key_location == TLS_SFO_WR_CONTEXTLOC_IMMEDIATE)
707 			tls_ofld->tx_key_addr = 1;
708 
709 		tls_ofld->fcplenmax = get_tp_plen_max(tls_ofld);
710 		tls_ofld->expn_per_ulp = tls_expansion_size(toep,
711 				tls_ofld->fcplenmax, 1, &pdus_per_ulp);
712 		tls_ofld->pdus_per_ulp = pdus_per_ulp;
713 		tls_ofld->adjusted_plen = tls_ofld->pdus_per_ulp *
714 			((tls_ofld->expn_per_ulp/tls_ofld->pdus_per_ulp) +
715 			 tls_ofld->k_ctx.frag_size);
716 	}
717 
718 	return (0);
719 }
720 
721 /*
722  * In some cases a client connection can hang without sending the
723  * ServerHelloDone message from the NIC to the host.  Send a dummy
724  * RX_DATA_ACK with RX_MODULATE to unstick the connection.
725  */
726 static void
727 tls_send_handshake_ack(void *arg)
728 {
729 	struct toepcb *toep = arg;
730 	struct tls_ofld_info *tls_ofld = &toep->tls;
731 	struct adapter *sc = td_adapter(toep->td);
732 
733 	/*
734 	 * XXX: Does not have the t4_get_tcb() checks to refine the
735 	 * workaround.
736 	 */
737 	callout_schedule(&tls_ofld->handshake_timer, TLS_SRV_HELLO_RD_TM * hz);
738 
739 	CTR2(KTR_CXGBE, "%s: tid %d sending RX_DATA_ACK", __func__, toep->tid);
740 	send_rx_modulate(sc, toep);
741 }
742 
743 static void
744 tls_start_handshake_timer(struct toepcb *toep)
745 {
746 	struct tls_ofld_info *tls_ofld = &toep->tls;
747 
748 	mtx_lock(&tls_handshake_lock);
749 	callout_reset(&tls_ofld->handshake_timer, TLS_SRV_HELLO_BKOFF_TM * hz,
750 	    tls_send_handshake_ack, toep);
751 	mtx_unlock(&tls_handshake_lock);
752 }
753 
754 void
755 tls_stop_handshake_timer(struct toepcb *toep)
756 {
757 	struct tls_ofld_info *tls_ofld = &toep->tls;
758 
759 	mtx_lock(&tls_handshake_lock);
760 	callout_stop(&tls_ofld->handshake_timer);
761 	mtx_unlock(&tls_handshake_lock);
762 }
763 
764 int
765 t4_ctloutput_tls(struct socket *so, struct sockopt *sopt)
766 {
767 	struct tls_key_context uk_ctx;
768 	struct inpcb *inp;
769 	struct tcpcb *tp;
770 	struct toepcb *toep;
771 	int error, optval;
772 
773 	error = 0;
774 	if (sopt->sopt_dir == SOPT_SET &&
775 	    sopt->sopt_name == TCP_TLSOM_SET_TLS_CONTEXT) {
776 		error = sooptcopyin(sopt, &uk_ctx, sizeof(uk_ctx),
777 		    sizeof(uk_ctx));
778 		if (error)
779 			return (error);
780 	}
781 
782 	inp = sotoinpcb(so);
783 	KASSERT(inp != NULL, ("tcp_ctloutput: inp == NULL"));
784 	INP_WLOCK(inp);
785 	if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) {
786 		INP_WUNLOCK(inp);
787 		return (ECONNRESET);
788 	}
789 	tp = intotcpcb(inp);
790 	toep = tp->t_toe;
791 	switch (sopt->sopt_dir) {
792 	case SOPT_SET:
793 		switch (sopt->sopt_name) {
794 		case TCP_TLSOM_SET_TLS_CONTEXT:
795 			if (toep->tls.mode == TLS_MODE_KTLS)
796 				error = EINVAL;
797 			else {
798 				error = program_key_context(tp, toep, &uk_ctx);
799 				if (error == 0)
800 					toep->tls.mode = TLS_MODE_TLSOM;
801 			}
802 			INP_WUNLOCK(inp);
803 			break;
804 		case TCP_TLSOM_CLR_TLS_TOM:
805 			if (toep->tls.mode == TLS_MODE_KTLS)
806 				error = EINVAL;
807 			else if (ulp_mode(toep) == ULP_MODE_TLS) {
808 				CTR2(KTR_CXGBE, "%s: tid %d CLR_TLS_TOM",
809 				    __func__, toep->tid);
810 				tls_clr_ofld_mode(toep);
811 			} else
812 				error = EOPNOTSUPP;
813 			INP_WUNLOCK(inp);
814 			break;
815 		case TCP_TLSOM_CLR_QUIES:
816 			if (toep->tls.mode == TLS_MODE_KTLS)
817 				error = EINVAL;
818 			else if (ulp_mode(toep) == ULP_MODE_TLS) {
819 				CTR2(KTR_CXGBE, "%s: tid %d CLR_QUIES",
820 				    __func__, toep->tid);
821 				tls_clr_quiesce(toep);
822 			} else
823 				error = EOPNOTSUPP;
824 			INP_WUNLOCK(inp);
825 			break;
826 		default:
827 			INP_WUNLOCK(inp);
828 			error = EOPNOTSUPP;
829 			break;
830 		}
831 		break;
832 	case SOPT_GET:
833 		switch (sopt->sopt_name) {
834 		case TCP_TLSOM_GET_TLS_TOM:
835 			/*
836 			 * TLS TX is permitted on any TOE socket, but
837 			 * TLS RX requires a TLS ULP mode.
838 			 */
839 			optval = TLS_TOM_NONE;
840 			if (can_tls_offload(td_adapter(toep->td)) &&
841 			    toep->tls.mode != TLS_MODE_KTLS) {
842 				switch (ulp_mode(toep)) {
843 				case ULP_MODE_NONE:
844 				case ULP_MODE_TCPDDP:
845 					optval = TLS_TOM_TXONLY;
846 					break;
847 				case ULP_MODE_TLS:
848 					optval = TLS_TOM_BOTH;
849 					break;
850 				}
851 			}
852 			CTR3(KTR_CXGBE, "%s: tid %d GET_TLS_TOM = %d",
853 			    __func__, toep->tid, optval);
854 			INP_WUNLOCK(inp);
855 			error = sooptcopyout(sopt, &optval, sizeof(optval));
856 			break;
857 		default:
858 			INP_WUNLOCK(inp);
859 			error = EOPNOTSUPP;
860 			break;
861 		}
862 		break;
863 	}
864 	return (error);
865 }
866 
867 #ifdef KERN_TLS
868 /* XXX: Should share this with ccr(4) eventually. */
869 static void
870 init_ktls_gmac_hash(const char *key, int klen, char *ghash)
871 {
872 	static char zeroes[GMAC_BLOCK_LEN];
873 	uint32_t keysched[4 * (RIJNDAEL_MAXNR + 1)];
874 	int rounds;
875 
876 	rounds = rijndaelKeySetupEnc(keysched, key, klen);
877 	rijndaelEncrypt(keysched, rounds, zeroes, ghash);
878 }
879 
880 /* XXX: Should share this with ccr(4) eventually. */
881 static void
882 ktls_copy_partial_hash(void *dst, int cri_alg, union authctx *auth_ctx)
883 {
884 	uint32_t *u32;
885 	uint64_t *u64;
886 	u_int i;
887 
888 	u32 = (uint32_t *)dst;
889 	u64 = (uint64_t *)dst;
890 	switch (cri_alg) {
891 	case CRYPTO_SHA1_HMAC:
892 		for (i = 0; i < SHA1_HASH_LEN / 4; i++)
893 			u32[i] = htobe32(auth_ctx->sha1ctx.h.b32[i]);
894 		break;
895 	case CRYPTO_SHA2_256_HMAC:
896 		for (i = 0; i < SHA2_256_HASH_LEN / 4; i++)
897 			u32[i] = htobe32(auth_ctx->sha256ctx.state[i]);
898 		break;
899 	case CRYPTO_SHA2_384_HMAC:
900 		for (i = 0; i < SHA2_512_HASH_LEN / 8; i++)
901 			u64[i] = htobe64(auth_ctx->sha384ctx.state[i]);
902 		break;
903 	}
904 }
905 
906 static void
907 init_ktls_hmac_digest(struct auth_hash *axf, u_int partial_digest_len,
908     char *key, int klen, char *dst)
909 {
910 	union authctx auth_ctx;
911 	char ipad[SHA2_512_BLOCK_LEN], opad[SHA2_512_BLOCK_LEN];
912 	u_int i;
913 
914 	/*
915 	 * If the key is larger than the block size, use the digest of
916 	 * the key as the key instead.
917 	 */
918 	klen /= 8;
919 	if (klen > axf->blocksize) {
920 		axf->Init(&auth_ctx);
921 		axf->Update(&auth_ctx, key, klen);
922 		axf->Final(ipad, &auth_ctx);
923 		klen = axf->hashsize;
924 	} else
925 		memcpy(ipad, key, klen);
926 
927 	memset(ipad + klen, 0, axf->blocksize - klen);
928 	memcpy(opad, ipad, axf->blocksize);
929 
930 	for (i = 0; i < axf->blocksize; i++) {
931 		ipad[i] ^= HMAC_IPAD_VAL;
932 		opad[i] ^= HMAC_OPAD_VAL;
933 	}
934 
935 	/*
936 	 * Hash the raw ipad and opad and store the partial results in
937 	 * the key context.
938 	 */
939 	axf->Init(&auth_ctx);
940 	axf->Update(&auth_ctx, ipad, axf->blocksize);
941 	ktls_copy_partial_hash(dst, axf->type, &auth_ctx);
942 
943 	dst += roundup2(partial_digest_len, 16);
944 	axf->Init(&auth_ctx);
945 	axf->Update(&auth_ctx, opad, axf->blocksize);
946 	ktls_copy_partial_hash(dst, axf->type, &auth_ctx);
947 }
948 
949 static void
950 init_ktls_key_context(struct ktls_session *tls, struct tls_key_context *k_ctx)
951 {
952 	struct auth_hash *axf;
953 	u_int mac_key_size;
954 	char *hash;
955 
956 	k_ctx->l_p_key = V_KEY_GET_LOC(KEY_WRITE_TX);
957 	if (tls->params.tls_vminor == TLS_MINOR_VER_ONE)
958 		k_ctx->proto_ver = SCMD_PROTO_VERSION_TLS_1_1;
959 	else
960 		k_ctx->proto_ver = SCMD_PROTO_VERSION_TLS_1_2;
961 	k_ctx->cipher_secret_size = tls->params.cipher_key_len;
962 	k_ctx->tx_key_info_size = sizeof(struct tx_keyctx_hdr) +
963 	    k_ctx->cipher_secret_size;
964 	memcpy(k_ctx->tx.key, tls->params.cipher_key,
965 	    tls->params.cipher_key_len);
966 	hash = k_ctx->tx.key + tls->params.cipher_key_len;
967 	if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16) {
968 		k_ctx->state.auth_mode = SCMD_AUTH_MODE_GHASH;
969 		k_ctx->state.enc_mode = SCMD_CIPH_MODE_AES_GCM;
970 		k_ctx->iv_size = 4;
971 		k_ctx->mac_first = 0;
972 		k_ctx->hmac_ctrl = SCMD_HMAC_CTRL_NOP;
973 		k_ctx->tx_key_info_size += GMAC_BLOCK_LEN;
974 		memcpy(k_ctx->tx.salt, tls->params.iv, SALT_SIZE);
975 		init_ktls_gmac_hash(tls->params.cipher_key,
976 		    tls->params.cipher_key_len * 8, hash);
977 	} else {
978 		switch (tls->params.auth_algorithm) {
979 		case CRYPTO_SHA1_HMAC:
980 			axf = &auth_hash_hmac_sha1;
981 			mac_key_size = SHA1_HASH_LEN;
982 			k_ctx->state.auth_mode = SCMD_AUTH_MODE_SHA1;
983 			break;
984 		case CRYPTO_SHA2_256_HMAC:
985 			axf = &auth_hash_hmac_sha2_256;
986 			mac_key_size = SHA2_256_HASH_LEN;
987 			k_ctx->state.auth_mode = SCMD_AUTH_MODE_SHA256;
988 			break;
989 		case CRYPTO_SHA2_384_HMAC:
990 			axf = &auth_hash_hmac_sha2_384;
991 			mac_key_size = SHA2_512_HASH_LEN;
992 			k_ctx->state.auth_mode = SCMD_AUTH_MODE_SHA512_384;
993 			break;
994 		default:
995 			panic("bad auth mode");
996 		}
997 		k_ctx->state.enc_mode = SCMD_CIPH_MODE_AES_CBC;
998 		k_ctx->iv_size = 8; /* for CBC, iv is 16B, unit of 2B */
999 		k_ctx->mac_first = 1;
1000 		k_ctx->hmac_ctrl = SCMD_HMAC_CTRL_NO_TRUNC;
1001 		k_ctx->tx_key_info_size += roundup2(mac_key_size, 16) * 2;
1002 		k_ctx->mac_secret_size = mac_key_size;
1003 		init_ktls_hmac_digest(axf, mac_key_size, tls->params.auth_key,
1004 		    tls->params.auth_key_len * 8, hash);
1005 	}
1006 
1007 	k_ctx->frag_size = tls->params.max_frame_len;
1008 	k_ctx->iv_ctrl = 1;
1009 }
1010 
1011 int
1012 tls_alloc_ktls(struct toepcb *toep, struct ktls_session *tls)
1013 {
1014 	struct tls_key_context *k_ctx;
1015 	int error;
1016 
1017 	if (toep->tls.mode == TLS_MODE_TLSOM)
1018 		return (EINVAL);
1019 	if (!can_tls_offload(td_adapter(toep->td)))
1020 		return (EINVAL);
1021 	switch (ulp_mode(toep)) {
1022 	case ULP_MODE_NONE:
1023 	case ULP_MODE_TCPDDP:
1024 		break;
1025 	default:
1026 		return (EINVAL);
1027 	}
1028 
1029 	switch (tls->params.cipher_algorithm) {
1030 	case CRYPTO_AES_CBC:
1031 		/* XXX: Explicitly ignore any provided IV. */
1032 		switch (tls->params.cipher_key_len) {
1033 		case 128 / 8:
1034 		case 192 / 8:
1035 		case 256 / 8:
1036 			break;
1037 		default:
1038 			return (EINVAL);
1039 		}
1040 		switch (tls->params.auth_algorithm) {
1041 		case CRYPTO_SHA1_HMAC:
1042 		case CRYPTO_SHA2_256_HMAC:
1043 		case CRYPTO_SHA2_384_HMAC:
1044 			break;
1045 		default:
1046 			return (EPROTONOSUPPORT);
1047 		}
1048 		break;
1049 	case CRYPTO_AES_NIST_GCM_16:
1050 		if (tls->params.iv_len != SALT_SIZE)
1051 			return (EINVAL);
1052 		switch (tls->params.cipher_key_len) {
1053 		case 128 / 8:
1054 		case 192 / 8:
1055 		case 256 / 8:
1056 			break;
1057 		default:
1058 			return (EINVAL);
1059 		}
1060 		break;
1061 	default:
1062 		return (EPROTONOSUPPORT);
1063 	}
1064 
1065 	/* Only TLS 1.1 and TLS 1.2 are currently supported. */
1066 	if (tls->params.tls_vmajor != TLS_MAJOR_VER_ONE ||
1067 	    tls->params.tls_vminor < TLS_MINOR_VER_ONE ||
1068 	    tls->params.tls_vminor > TLS_MINOR_VER_TWO)
1069 		return (EPROTONOSUPPORT);
1070 
1071 	/*
1072 	 * XXX: This assumes no key renegotation.  If KTLS ever supports
1073 	 * that we will want to allocate TLS sessions dynamically rather
1074 	 * than as a static member of toep.
1075 	 */
1076 	k_ctx = &toep->tls.k_ctx;
1077 	init_ktls_key_context(tls, k_ctx);
1078 
1079 	toep->tls.scmd0.seqno_numivs =
1080 		(V_SCMD_SEQ_NO_CTRL(3) |
1081 		 V_SCMD_PROTO_VERSION(k_ctx->proto_ver) |
1082 		 V_SCMD_ENC_DEC_CTRL(SCMD_ENCDECCTRL_ENCRYPT) |
1083 		 V_SCMD_CIPH_AUTH_SEQ_CTRL((k_ctx->mac_first == 0)) |
1084 		 V_SCMD_CIPH_MODE(k_ctx->state.enc_mode) |
1085 		 V_SCMD_AUTH_MODE(k_ctx->state.auth_mode) |
1086 		 V_SCMD_HMAC_CTRL(k_ctx->hmac_ctrl) |
1087 		 V_SCMD_IV_SIZE(k_ctx->iv_size));
1088 
1089 	toep->tls.scmd0.ivgen_hdrlen =
1090 		(V_SCMD_IV_GEN_CTRL(k_ctx->iv_ctrl) |
1091 		 V_SCMD_KEY_CTX_INLINE(0) |
1092 		 V_SCMD_TLS_FRAG_ENABLE(1));
1093 
1094 	if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16)
1095 		toep->tls.iv_len = 8;
1096 	else
1097 		toep->tls.iv_len = AES_BLOCK_LEN;
1098 
1099 	toep->tls.mac_length = k_ctx->mac_secret_size;
1100 
1101 	toep->tls.tx_key_addr = -1;
1102 
1103 	error = tls_program_key_id(toep, k_ctx);
1104 	if (error)
1105 		return (error);
1106 
1107 	toep->tls.fcplenmax = get_tp_plen_max(&toep->tls);
1108 	toep->tls.expn_per_ulp = tls->params.tls_hlen + tls->params.tls_tlen;
1109 	toep->tls.pdus_per_ulp = 1;
1110 	toep->tls.adjusted_plen = toep->tls.expn_per_ulp +
1111 	    toep->tls.k_ctx.frag_size;
1112 
1113 	toep->tls.mode = TLS_MODE_KTLS;
1114 
1115 	return (0);
1116 }
1117 #endif
1118 
1119 void
1120 tls_init_toep(struct toepcb *toep)
1121 {
1122 	struct tls_ofld_info *tls_ofld = &toep->tls;
1123 
1124 	tls_ofld->mode = TLS_MODE_OFF;
1125 	tls_ofld->key_location = TLS_SFO_WR_CONTEXTLOC_DDR;
1126 	tls_ofld->rx_key_addr = -1;
1127 	tls_ofld->tx_key_addr = -1;
1128 	if (ulp_mode(toep) == ULP_MODE_TLS)
1129 		callout_init_mtx(&tls_ofld->handshake_timer,
1130 		    &tls_handshake_lock, 0);
1131 }
1132 
1133 void
1134 tls_establish(struct toepcb *toep)
1135 {
1136 
1137 	/*
1138 	 * Enable PDU extraction.
1139 	 *
1140 	 * XXX: Supposedly this should be done by the firmware when
1141 	 * the ULP_MODE FLOWC parameter is set in send_flowc_wr(), but
1142 	 * in practice this seems to be required.
1143 	 */
1144 	CTR2(KTR_CXGBE, "%s: tid %d setting TLS_ENABLE", __func__, toep->tid);
1145 	t4_set_tls_tcb_field(toep, W_TCB_ULP_RAW, V_TCB_ULP_RAW(M_TCB_ULP_RAW),
1146 	    V_TCB_ULP_RAW(V_TF_TLS_ENABLE(1)));
1147 
1148 	toep->flags |= TPF_FORCE_CREDITS;
1149 
1150 	tls_start_handshake_timer(toep);
1151 }
1152 
1153 void
1154 tls_uninit_toep(struct toepcb *toep)
1155 {
1156 
1157 	if (ulp_mode(toep) == ULP_MODE_TLS)
1158 		tls_stop_handshake_timer(toep);
1159 	clear_tls_keyid(toep);
1160 }
1161 
1162 #define MAX_OFLD_TX_CREDITS (SGE_MAX_WR_LEN / 16)
1163 #define	MIN_OFLD_TLSTX_CREDITS(toep)					\
1164 	(howmany(sizeof(struct fw_tlstx_data_wr) +			\
1165 	    sizeof(struct cpl_tx_tls_sfo) + key_size((toep)) +		\
1166 	    CIPHER_BLOCK_SIZE + 1, 16))
1167 
1168 static inline u_int
1169 max_imm_tls_space(int tx_credits)
1170 {
1171 	const int n = 2;	/* Use only up to 2 desc for imm. data WR */
1172 	int space;
1173 
1174 	KASSERT(tx_credits >= 0 &&
1175 		tx_credits <= MAX_OFLD_TX_CREDITS,
1176 		("%s: %d credits", __func__, tx_credits));
1177 
1178 	if (tx_credits >= (n * EQ_ESIZE) / 16)
1179 		space = (n * EQ_ESIZE);
1180 	else
1181 		space = tx_credits * 16;
1182 	return (space);
1183 }
1184 
1185 static int
1186 count_mbuf_segs(struct mbuf *m, int skip, int len, int *max_nsegs_1mbufp)
1187 {
1188 	int max_nsegs_1mbuf, n, nsegs;
1189 
1190 	while (skip >= m->m_len) {
1191 		skip -= m->m_len;
1192 		m = m->m_next;
1193 	}
1194 
1195 	nsegs = 0;
1196 	max_nsegs_1mbuf = 0;
1197 	while (len > 0) {
1198 		n = sglist_count(mtod(m, char *) + skip, m->m_len - skip);
1199 		if (n > max_nsegs_1mbuf)
1200 			max_nsegs_1mbuf = n;
1201 		nsegs += n;
1202 		len -= m->m_len - skip;
1203 		skip = 0;
1204 		m = m->m_next;
1205 	}
1206 	*max_nsegs_1mbufp = max_nsegs_1mbuf;
1207 	return (nsegs);
1208 }
1209 
1210 static void
1211 write_tlstx_wr(struct fw_tlstx_data_wr *txwr, struct toepcb *toep,
1212     unsigned int immdlen, unsigned int plen, unsigned int expn,
1213     unsigned int pdus, uint8_t credits, int shove, int imm_ivs)
1214 {
1215 	struct tls_ofld_info *tls_ofld = &toep->tls;
1216 	unsigned int len = plen + expn;
1217 
1218 	txwr->op_to_immdlen = htobe32(V_WR_OP(FW_TLSTX_DATA_WR) |
1219 	    V_FW_TLSTX_DATA_WR_COMPL(1) |
1220 	    V_FW_TLSTX_DATA_WR_IMMDLEN(immdlen));
1221 	txwr->flowid_len16 = htobe32(V_FW_TLSTX_DATA_WR_FLOWID(toep->tid) |
1222 	    V_FW_TLSTX_DATA_WR_LEN16(credits));
1223 	txwr->plen = htobe32(len);
1224 	txwr->lsodisable_to_flags = htobe32(V_TX_ULP_MODE(ULP_MODE_TLS) |
1225 	    V_TX_URG(0) | /* F_T6_TX_FORCE | */ V_TX_SHOVE(shove));
1226 	txwr->ctxloc_to_exp = htobe32(V_FW_TLSTX_DATA_WR_NUMIVS(pdus) |
1227 	    V_FW_TLSTX_DATA_WR_EXP(expn) |
1228 	    V_FW_TLSTX_DATA_WR_CTXLOC(tls_ofld->key_location) |
1229 	    V_FW_TLSTX_DATA_WR_IVDSGL(!imm_ivs) |
1230 	    V_FW_TLSTX_DATA_WR_KEYSIZE(tls_ofld->k_ctx.tx_key_info_size >> 4));
1231 	txwr->mfs = htobe16(tls_ofld->k_ctx.frag_size);
1232 	txwr->adjustedplen_pkd = htobe16(
1233 	    V_FW_TLSTX_DATA_WR_ADJUSTEDPLEN(tls_ofld->adjusted_plen));
1234 	txwr->expinplenmax_pkd = htobe16(
1235 	    V_FW_TLSTX_DATA_WR_EXPINPLENMAX(tls_ofld->expn_per_ulp));
1236 	txwr->pdusinplenmax_pkd =
1237 	    V_FW_TLSTX_DATA_WR_PDUSINPLENMAX(tls_ofld->pdus_per_ulp);
1238 }
1239 
1240 static void
1241 write_tlstx_cpl(struct cpl_tx_tls_sfo *cpl, struct toepcb *toep,
1242     struct tls_hdr *tls_hdr, unsigned int plen, unsigned int pdus)
1243 {
1244 	struct tls_ofld_info *tls_ofld = &toep->tls;
1245 	int data_type, seglen;
1246 
1247 	if (plen < tls_ofld->k_ctx.frag_size)
1248 		seglen = plen;
1249 	else
1250 		seglen = tls_ofld->k_ctx.frag_size;
1251 	data_type = tls_content_type(tls_hdr->type);
1252 	cpl->op_to_seg_len = htobe32(V_CPL_TX_TLS_SFO_OPCODE(CPL_TX_TLS_SFO) |
1253 	    V_CPL_TX_TLS_SFO_DATA_TYPE(data_type) |
1254 	    V_CPL_TX_TLS_SFO_CPL_LEN(2) | V_CPL_TX_TLS_SFO_SEG_LEN(seglen));
1255 	cpl->pld_len = htobe32(plen);
1256 	if (data_type == CPL_TX_TLS_SFO_TYPE_HEARTBEAT)
1257 		cpl->type_protover = htobe32(
1258 		    V_CPL_TX_TLS_SFO_TYPE(tls_hdr->type));
1259 	cpl->seqno_numivs = htobe32(tls_ofld->scmd0.seqno_numivs |
1260 	    V_SCMD_NUM_IVS(pdus));
1261 	cpl->ivgen_hdrlen = htobe32(tls_ofld->scmd0.ivgen_hdrlen);
1262 	cpl->scmd1 = htobe64(tls_ofld->tx_seq_no);
1263 	tls_ofld->tx_seq_no += pdus;
1264 }
1265 
1266 /*
1267  * Similar to write_tx_sgl() except that it accepts an optional
1268  * trailer buffer for IVs.
1269  */
1270 static void
1271 write_tlstx_sgl(void *dst, struct mbuf *start, int skip, int plen,
1272     void *iv_buffer, int iv_len, int nsegs, int n)
1273 {
1274 	struct mbuf *m;
1275 	struct ulptx_sgl *usgl = dst;
1276 	int i, j, rc;
1277 	struct sglist sg;
1278 	struct sglist_seg segs[n];
1279 
1280 	KASSERT(nsegs > 0, ("%s: nsegs 0", __func__));
1281 
1282 	sglist_init(&sg, n, segs);
1283 	usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
1284 	    V_ULPTX_NSGE(nsegs));
1285 
1286 	for (m = start; skip >= m->m_len; m = m->m_next)
1287 		skip -= m->m_len;
1288 
1289 	i = -1;
1290 	for (m = start; plen > 0; m = m->m_next) {
1291 		rc = sglist_append(&sg, mtod(m, char *) + skip,
1292 		    m->m_len - skip);
1293 		if (__predict_false(rc != 0))
1294 			panic("%s: sglist_append %d", __func__, rc);
1295 		plen -= m->m_len - skip;
1296 		skip = 0;
1297 
1298 		for (j = 0; j < sg.sg_nseg; i++, j++) {
1299 			if (i < 0) {
1300 				usgl->len0 = htobe32(segs[j].ss_len);
1301 				usgl->addr0 = htobe64(segs[j].ss_paddr);
1302 			} else {
1303 				usgl->sge[i / 2].len[i & 1] =
1304 				    htobe32(segs[j].ss_len);
1305 				usgl->sge[i / 2].addr[i & 1] =
1306 				    htobe64(segs[j].ss_paddr);
1307 			}
1308 #ifdef INVARIANTS
1309 			nsegs--;
1310 #endif
1311 		}
1312 		sglist_reset(&sg);
1313 	}
1314 	if (iv_buffer != NULL) {
1315 		rc = sglist_append(&sg, iv_buffer, iv_len);
1316 		if (__predict_false(rc != 0))
1317 			panic("%s: sglist_append %d", __func__, rc);
1318 
1319 		for (j = 0; j < sg.sg_nseg; i++, j++) {
1320 			if (i < 0) {
1321 				usgl->len0 = htobe32(segs[j].ss_len);
1322 				usgl->addr0 = htobe64(segs[j].ss_paddr);
1323 			} else {
1324 				usgl->sge[i / 2].len[i & 1] =
1325 				    htobe32(segs[j].ss_len);
1326 				usgl->sge[i / 2].addr[i & 1] =
1327 				    htobe64(segs[j].ss_paddr);
1328 			}
1329 #ifdef INVARIANTS
1330 			nsegs--;
1331 #endif
1332 		}
1333 	}
1334 	if (i & 1)
1335 		usgl->sge[i / 2].len[1] = htobe32(0);
1336 	KASSERT(nsegs == 0, ("%s: nsegs %d, start %p, iv_buffer %p",
1337 	    __func__, nsegs, start, iv_buffer));
1338 }
1339 
1340 /*
1341  * Similar to t4_push_frames() but handles TLS sockets when TLS offload
1342  * is enabled.  Rather than transmitting bulk data, the socket buffer
1343  * contains TLS records.  The work request requires a full TLS record,
1344  * so batch mbufs up until a full TLS record is seen.  This requires
1345  * reading the TLS header out of the start of each record to determine
1346  * its length.
1347  */
1348 void
1349 t4_push_tls_records(struct adapter *sc, struct toepcb *toep, int drop)
1350 {
1351 	struct tls_hdr thdr;
1352 	struct mbuf *sndptr;
1353 	struct fw_tlstx_data_wr *txwr;
1354 	struct cpl_tx_tls_sfo *cpl;
1355 	struct wrqe *wr;
1356 	u_int plen, nsegs, credits, space, max_nsegs_1mbuf, wr_len;
1357 	u_int expn_size, iv_len, pdus, sndptroff;
1358 	struct tls_ofld_info *tls_ofld = &toep->tls;
1359 	struct inpcb *inp = toep->inp;
1360 	struct tcpcb *tp = intotcpcb(inp);
1361 	struct socket *so = inp->inp_socket;
1362 	struct sockbuf *sb = &so->so_snd;
1363 	int tls_size, tx_credits, shove, /* compl,*/ sowwakeup;
1364 	struct ofld_tx_sdesc *txsd;
1365 	bool imm_ivs, imm_payload;
1366 	void *iv_buffer, *iv_dst, *buf;
1367 
1368 	INP_WLOCK_ASSERT(inp);
1369 	KASSERT(toep->flags & TPF_FLOWC_WR_SENT,
1370 	    ("%s: flowc_wr not sent for tid %u.", __func__, toep->tid));
1371 
1372 	KASSERT(ulp_mode(toep) == ULP_MODE_NONE ||
1373 	    ulp_mode(toep) == ULP_MODE_TCPDDP || ulp_mode(toep) == ULP_MODE_TLS,
1374 	    ("%s: ulp_mode %u for toep %p", __func__, ulp_mode(toep), toep));
1375 	KASSERT(tls_tx_key(toep),
1376 	    ("%s: TX key not set for toep %p", __func__, toep));
1377 
1378 #ifdef VERBOSE_TRACES
1379 	CTR4(KTR_CXGBE, "%s: tid %d toep flags %#x tp flags %#x drop %d",
1380 	    __func__, toep->tid, toep->flags, tp->t_flags);
1381 #endif
1382 	if (__predict_false(toep->flags & TPF_ABORT_SHUTDOWN))
1383 		return;
1384 
1385 #ifdef RATELIMIT
1386 	if (__predict_false(inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) &&
1387 	    (update_tx_rate_limit(sc, toep, so->so_max_pacing_rate) == 0)) {
1388 		inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED;
1389 	}
1390 #endif
1391 
1392 	/*
1393 	 * This function doesn't resume by itself.  Someone else must clear the
1394 	 * flag and call this function.
1395 	 */
1396 	if (__predict_false(toep->flags & TPF_TX_SUSPENDED)) {
1397 		KASSERT(drop == 0,
1398 		    ("%s: drop (%d) != 0 but tx is suspended", __func__, drop));
1399 		return;
1400 	}
1401 
1402 	txsd = &toep->txsd[toep->txsd_pidx];
1403 	for (;;) {
1404 		tx_credits = min(toep->tx_credits, MAX_OFLD_TX_CREDITS);
1405 		space = max_imm_tls_space(tx_credits);
1406 		wr_len = sizeof(struct fw_tlstx_data_wr) +
1407 		    sizeof(struct cpl_tx_tls_sfo) + key_size(toep);
1408 		if (wr_len + CIPHER_BLOCK_SIZE + 1 > space) {
1409 #ifdef VERBOSE_TRACES
1410 			CTR5(KTR_CXGBE,
1411 			    "%s: tid %d tx_credits %d min_wr %d space %d",
1412 			    __func__, toep->tid, tx_credits, wr_len +
1413 			    CIPHER_BLOCK_SIZE + 1, space);
1414 #endif
1415 			return;
1416 		}
1417 
1418 		SOCKBUF_LOCK(sb);
1419 		sowwakeup = drop;
1420 		if (drop) {
1421 			sbdrop_locked(sb, drop);
1422 			MPASS(tls_ofld->sb_off >= drop);
1423 			tls_ofld->sb_off -= drop;
1424 			drop = 0;
1425 		}
1426 
1427 		/*
1428 		 * Send a FIN if requested, but only if there's no
1429 		 * more data to send.
1430 		 */
1431 		if (sbavail(sb) == tls_ofld->sb_off &&
1432 		    toep->flags & TPF_SEND_FIN) {
1433 			if (sowwakeup)
1434 				sowwakeup_locked(so);
1435 			else
1436 				SOCKBUF_UNLOCK(sb);
1437 			SOCKBUF_UNLOCK_ASSERT(sb);
1438 			t4_close_conn(sc, toep);
1439 			return;
1440 		}
1441 
1442 		if (sbavail(sb) < tls_ofld->sb_off + TLS_HEADER_LENGTH) {
1443 			/*
1444 			 * A full TLS header is not yet queued, stop
1445 			 * for now until more data is added to the
1446 			 * socket buffer.  However, if the connection
1447 			 * has been closed, we will never get the rest
1448 			 * of the header so just discard the partial
1449 			 * header and close the connection.
1450 			 */
1451 #ifdef VERBOSE_TRACES
1452 			CTR5(KTR_CXGBE, "%s: tid %d sbavail %d sb_off %d%s",
1453 			    __func__, toep->tid, sbavail(sb), tls_ofld->sb_off,
1454 			    toep->flags & TPF_SEND_FIN ? "" : " SEND_FIN");
1455 #endif
1456 			if (sowwakeup)
1457 				sowwakeup_locked(so);
1458 			else
1459 				SOCKBUF_UNLOCK(sb);
1460 			SOCKBUF_UNLOCK_ASSERT(sb);
1461 			if (toep->flags & TPF_SEND_FIN)
1462 				t4_close_conn(sc, toep);
1463 			return;
1464 		}
1465 
1466 		/* Read the header of the next TLS record. */
1467 		sndptr = sbsndmbuf(sb, tls_ofld->sb_off, &sndptroff);
1468 		m_copydata(sndptr, sndptroff, sizeof(thdr), (caddr_t)&thdr);
1469 		tls_size = htons(thdr.length);
1470 		plen = TLS_HEADER_LENGTH + tls_size;
1471 		pdus = howmany(tls_size, tls_ofld->k_ctx.frag_size);
1472 		iv_len = pdus * CIPHER_BLOCK_SIZE;
1473 
1474 		if (sbavail(sb) < tls_ofld->sb_off + plen) {
1475 			/*
1476 			 * The full TLS record is not yet queued, stop
1477 			 * for now until more data is added to the
1478 			 * socket buffer.  However, if the connection
1479 			 * has been closed, we will never get the rest
1480 			 * of the record so just discard the partial
1481 			 * record and close the connection.
1482 			 */
1483 #ifdef VERBOSE_TRACES
1484 			CTR6(KTR_CXGBE,
1485 			    "%s: tid %d sbavail %d sb_off %d plen %d%s",
1486 			    __func__, toep->tid, sbavail(sb), tls_ofld->sb_off,
1487 			    plen, toep->flags & TPF_SEND_FIN ? "" :
1488 			    " SEND_FIN");
1489 #endif
1490 			if (sowwakeup)
1491 				sowwakeup_locked(so);
1492 			else
1493 				SOCKBUF_UNLOCK(sb);
1494 			SOCKBUF_UNLOCK_ASSERT(sb);
1495 			if (toep->flags & TPF_SEND_FIN)
1496 				t4_close_conn(sc, toep);
1497 			return;
1498 		}
1499 
1500 		/* Shove if there is no additional data pending. */
1501 		shove = (sbavail(sb) == tls_ofld->sb_off + plen) &&
1502 		    !(tp->t_flags & TF_MORETOCOME);
1503 
1504 		if (sb->sb_flags & SB_AUTOSIZE &&
1505 		    V_tcp_do_autosndbuf &&
1506 		    sb->sb_hiwat < V_tcp_autosndbuf_max &&
1507 		    sbused(sb) >= sb->sb_hiwat * 7 / 8) {
1508 			int newsize = min(sb->sb_hiwat + V_tcp_autosndbuf_inc,
1509 			    V_tcp_autosndbuf_max);
1510 
1511 			if (!sbreserve_locked(sb, newsize, so, NULL))
1512 				sb->sb_flags &= ~SB_AUTOSIZE;
1513 			else
1514 				sowwakeup = 1;	/* room available */
1515 		}
1516 		if (sowwakeup)
1517 			sowwakeup_locked(so);
1518 		else
1519 			SOCKBUF_UNLOCK(sb);
1520 		SOCKBUF_UNLOCK_ASSERT(sb);
1521 
1522 		if (__predict_false(toep->flags & TPF_FIN_SENT))
1523 			panic("%s: excess tx.", __func__);
1524 
1525 		/* Determine whether to use immediate vs SGL. */
1526 		imm_payload = false;
1527 		imm_ivs = false;
1528 		if (wr_len + iv_len <= space) {
1529 			imm_ivs = true;
1530 			wr_len += iv_len;
1531 			if (wr_len + tls_size <= space) {
1532 				wr_len += tls_size;
1533 				imm_payload = true;
1534 			}
1535 		}
1536 
1537 		/* Allocate space for IVs if needed. */
1538 		if (!imm_ivs) {
1539 			iv_buffer = malloc(iv_len, M_CXGBE, M_NOWAIT);
1540 			if (iv_buffer == NULL) {
1541 				/*
1542 				 * XXX: How to restart this?
1543 				 */
1544 				if (sowwakeup)
1545 					sowwakeup_locked(so);
1546 				else
1547 					SOCKBUF_UNLOCK(sb);
1548 				SOCKBUF_UNLOCK_ASSERT(sb);
1549 				CTR3(KTR_CXGBE,
1550 			    "%s: tid %d failed to alloc IV space len %d",
1551 				    __func__, toep->tid, iv_len);
1552 				return;
1553 			}
1554 		} else
1555 			iv_buffer = NULL;
1556 
1557 		/* Determine size of SGL. */
1558 		nsegs = 0;
1559 		max_nsegs_1mbuf = 0; /* max # of SGL segments in any one mbuf */
1560 		if (!imm_payload) {
1561 			nsegs = count_mbuf_segs(sndptr, sndptroff +
1562 			    TLS_HEADER_LENGTH, tls_size, &max_nsegs_1mbuf);
1563 			if (!imm_ivs) {
1564 				int n = sglist_count(iv_buffer, iv_len);
1565 				nsegs += n;
1566 				if (n > max_nsegs_1mbuf)
1567 					max_nsegs_1mbuf = n;
1568 			}
1569 
1570 			/* Account for SGL in work request length. */
1571 			wr_len += sizeof(struct ulptx_sgl) +
1572 			    ((3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1)) * 8;
1573 		}
1574 
1575 		wr = alloc_wrqe(roundup2(wr_len, 16), toep->ofld_txq);
1576 		if (wr == NULL) {
1577 			/* XXX: how will we recover from this? */
1578 			toep->flags |= TPF_TX_SUSPENDED;
1579 			return;
1580 		}
1581 
1582 #ifdef VERBOSE_TRACES
1583 		CTR5(KTR_CXGBE, "%s: tid %d TLS record %d len %#x pdus %d",
1584 		    __func__, toep->tid, thdr.type, tls_size, pdus);
1585 #endif
1586 		txwr = wrtod(wr);
1587 		cpl = (struct cpl_tx_tls_sfo *)(txwr + 1);
1588 		memset(txwr, 0, roundup2(wr_len, 16));
1589 		credits = howmany(wr_len, 16);
1590 		expn_size = tls_expansion_size(toep, tls_size, 0, NULL);
1591 		write_tlstx_wr(txwr, toep, imm_payload ? tls_size : 0,
1592 		    tls_size, expn_size, pdus, credits, shove, imm_ivs ? 1 : 0);
1593 		write_tlstx_cpl(cpl, toep, &thdr, tls_size, pdus);
1594 		tls_copy_tx_key(toep, cpl + 1);
1595 
1596 		/* Generate random IVs */
1597 		buf = (char *)(cpl + 1) + key_size(toep);
1598 		if (imm_ivs) {
1599 			MPASS(iv_buffer == NULL);
1600 			iv_dst = buf;
1601 			buf = (char *)iv_dst + iv_len;
1602 		} else
1603 			iv_dst = iv_buffer;
1604 		arc4rand(iv_dst, iv_len, 0);
1605 
1606 		if (imm_payload) {
1607 			m_copydata(sndptr, sndptroff + TLS_HEADER_LENGTH,
1608 			    tls_size, buf);
1609 		} else {
1610 			write_tlstx_sgl(buf, sndptr,
1611 			    sndptroff + TLS_HEADER_LENGTH, tls_size, iv_buffer,
1612 			    iv_len, nsegs, max_nsegs_1mbuf);
1613 		}
1614 
1615 		KASSERT(toep->tx_credits >= credits,
1616 			("%s: not enough credits", __func__));
1617 
1618 		toep->tx_credits -= credits;
1619 
1620 		tp->snd_nxt += plen;
1621 		tp->snd_max += plen;
1622 
1623 		SOCKBUF_LOCK(sb);
1624 		sbsndptr_adv(sb, sb->sb_sndptr, plen);
1625 		tls_ofld->sb_off += plen;
1626 		SOCKBUF_UNLOCK(sb);
1627 
1628 		toep->flags |= TPF_TX_DATA_SENT;
1629 		if (toep->tx_credits < MIN_OFLD_TLSTX_CREDITS(toep))
1630 			toep->flags |= TPF_TX_SUSPENDED;
1631 
1632 		KASSERT(toep->txsd_avail > 0, ("%s: no txsd", __func__));
1633 		txsd->plen = plen;
1634 		txsd->tx_credits = credits;
1635 		txsd->iv_buffer = iv_buffer;
1636 		txsd++;
1637 		if (__predict_false(++toep->txsd_pidx == toep->txsd_total)) {
1638 			toep->txsd_pidx = 0;
1639 			txsd = &toep->txsd[0];
1640 		}
1641 		toep->txsd_avail--;
1642 
1643 		atomic_add_long(&toep->vi->pi->tx_tls_records, 1);
1644 		atomic_add_long(&toep->vi->pi->tx_tls_octets, plen);
1645 
1646 		t4_l2t_send(sc, wr, toep->l2te);
1647 	}
1648 }
1649 
1650 #ifdef KERN_TLS
1651 static int
1652 count_ext_pgs_segs(struct mbuf_ext_pgs *ext_pgs)
1653 {
1654 	vm_paddr_t nextpa;
1655 	u_int i, nsegs;
1656 
1657 	MPASS(ext_pgs->npgs > 0);
1658 	nsegs = 1;
1659 	nextpa = ext_pgs->pa[0] + PAGE_SIZE;
1660 	for (i = 1; i < ext_pgs->npgs; i++) {
1661 		if (nextpa != ext_pgs->pa[i])
1662 			nsegs++;
1663 		nextpa = ext_pgs->pa[i] + PAGE_SIZE;
1664 	}
1665 	return (nsegs);
1666 }
1667 
1668 static void
1669 write_ktlstx_sgl(void *dst, struct mbuf_ext_pgs *ext_pgs, int nsegs)
1670 {
1671 	struct ulptx_sgl *usgl = dst;
1672 	vm_paddr_t pa;
1673 	uint32_t len;
1674 	int i, j;
1675 
1676 	KASSERT(nsegs > 0, ("%s: nsegs 0", __func__));
1677 
1678 	usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
1679 	    V_ULPTX_NSGE(nsegs));
1680 
1681 	/* Figure out the first S/G length. */
1682 	pa = ext_pgs->pa[0] + ext_pgs->first_pg_off;
1683 	usgl->addr0 = htobe64(pa);
1684 	len = mbuf_ext_pg_len(ext_pgs, 0, ext_pgs->first_pg_off);
1685 	pa += len;
1686 	for (i = 1; i < ext_pgs->npgs; i++) {
1687 		if (ext_pgs->pa[i] != pa)
1688 			break;
1689 		len += mbuf_ext_pg_len(ext_pgs, i, 0);
1690 		pa += mbuf_ext_pg_len(ext_pgs, i, 0);
1691 	}
1692 	usgl->len0 = htobe32(len);
1693 #ifdef INVARIANTS
1694 	nsegs--;
1695 #endif
1696 
1697 	j = -1;
1698 	for (; i < ext_pgs->npgs; i++) {
1699 		if (j == -1 || ext_pgs->pa[i] != pa) {
1700 			if (j >= 0)
1701 				usgl->sge[j / 2].len[j & 1] = htobe32(len);
1702 			j++;
1703 #ifdef INVARIANTS
1704 			nsegs--;
1705 #endif
1706 			pa = ext_pgs->pa[i];
1707 			usgl->sge[j / 2].addr[j & 1] = htobe64(pa);
1708 			len = mbuf_ext_pg_len(ext_pgs, i, 0);
1709 			pa += len;
1710 		} else {
1711 			len += mbuf_ext_pg_len(ext_pgs, i, 0);
1712 			pa += mbuf_ext_pg_len(ext_pgs, i, 0);
1713 		}
1714 	}
1715 	if (j >= 0) {
1716 		usgl->sge[j / 2].len[j & 1] = htobe32(len);
1717 
1718 		if ((j & 1) == 0)
1719 			usgl->sge[j / 2].len[1] = htobe32(0);
1720 	}
1721 	KASSERT(nsegs == 0, ("%s: nsegs %d, ext_pgs %p", __func__, nsegs,
1722 	    ext_pgs));
1723 }
1724 
1725 /*
1726  * Similar to t4_push_frames() but handles sockets that contain TLS
1727  * record mbufs.  Unlike TLSOM, each mbuf is a complete TLS record and
1728  * corresponds to a single work request.
1729  */
1730 void
1731 t4_push_ktls(struct adapter *sc, struct toepcb *toep, int drop)
1732 {
1733 	struct tls_hdr *thdr;
1734 	struct fw_tlstx_data_wr *txwr;
1735 	struct cpl_tx_tls_sfo *cpl;
1736 	struct wrqe *wr;
1737 	struct mbuf *m;
1738 	u_int nsegs, credits, wr_len;
1739 	u_int expn_size;
1740 	struct inpcb *inp = toep->inp;
1741 	struct tcpcb *tp = intotcpcb(inp);
1742 	struct socket *so = inp->inp_socket;
1743 	struct sockbuf *sb = &so->so_snd;
1744 	int tls_size, tx_credits, shove, sowwakeup;
1745 	struct ofld_tx_sdesc *txsd;
1746 	char *buf;
1747 
1748 	INP_WLOCK_ASSERT(inp);
1749 	KASSERT(toep->flags & TPF_FLOWC_WR_SENT,
1750 	    ("%s: flowc_wr not sent for tid %u.", __func__, toep->tid));
1751 
1752 	KASSERT(ulp_mode(toep) == ULP_MODE_NONE ||
1753 	    ulp_mode(toep) == ULP_MODE_TCPDDP,
1754 	    ("%s: ulp_mode %u for toep %p", __func__, ulp_mode(toep), toep));
1755 	KASSERT(tls_tx_key(toep),
1756 	    ("%s: TX key not set for toep %p", __func__, toep));
1757 
1758 #ifdef VERBOSE_TRACES
1759 	CTR4(KTR_CXGBE, "%s: tid %d toep flags %#x tp flags %#x drop %d",
1760 	    __func__, toep->tid, toep->flags, tp->t_flags);
1761 #endif
1762 	if (__predict_false(toep->flags & TPF_ABORT_SHUTDOWN))
1763 		return;
1764 
1765 #ifdef RATELIMIT
1766 	if (__predict_false(inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) &&
1767 	    (update_tx_rate_limit(sc, toep, so->so_max_pacing_rate) == 0)) {
1768 		inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED;
1769 	}
1770 #endif
1771 
1772 	/*
1773 	 * This function doesn't resume by itself.  Someone else must clear the
1774 	 * flag and call this function.
1775 	 */
1776 	if (__predict_false(toep->flags & TPF_TX_SUSPENDED)) {
1777 		KASSERT(drop == 0,
1778 		    ("%s: drop (%d) != 0 but tx is suspended", __func__, drop));
1779 		return;
1780 	}
1781 
1782 	txsd = &toep->txsd[toep->txsd_pidx];
1783 	for (;;) {
1784 		tx_credits = min(toep->tx_credits, MAX_OFLD_TX_CREDITS);
1785 
1786 		SOCKBUF_LOCK(sb);
1787 		sowwakeup = drop;
1788 		if (drop) {
1789 			sbdrop_locked(sb, drop);
1790 			drop = 0;
1791 		}
1792 
1793 		m = sb->sb_sndptr != NULL ? sb->sb_sndptr->m_next : sb->sb_mb;
1794 
1795 		/*
1796 		 * Send a FIN if requested, but only if there's no
1797 		 * more data to send.
1798 		 */
1799 		if (m == NULL && toep->flags & TPF_SEND_FIN) {
1800 			if (sowwakeup)
1801 				sowwakeup_locked(so);
1802 			else
1803 				SOCKBUF_UNLOCK(sb);
1804 			SOCKBUF_UNLOCK_ASSERT(sb);
1805 			t4_close_conn(sc, toep);
1806 			return;
1807 		}
1808 
1809 		/*
1810 		 * If there is no ready data to send, wait until more
1811 		 * data arrives.
1812 		 */
1813 		if (m == NULL || (m->m_flags & M_NOTAVAIL) != 0) {
1814 			if (sowwakeup)
1815 				sowwakeup_locked(so);
1816 			else
1817 				SOCKBUF_UNLOCK(sb);
1818 			SOCKBUF_UNLOCK_ASSERT(sb);
1819 #ifdef VERBOSE_TRACES
1820 			CTR2(KTR_CXGBE, "%s: tid %d no ready data to send",
1821 			    __func__, toep->tid);
1822 #endif
1823 			return;
1824 		}
1825 
1826 		KASSERT(m->m_flags & M_NOMAP, ("%s: mbuf %p is not NOMAP",
1827 		    __func__, m));
1828 		KASSERT(m->m_ext.ext_pgs->tls != NULL,
1829 		    ("%s: mbuf %p doesn't have TLS session", __func__, m));
1830 
1831 		/* Calculate WR length. */
1832 		wr_len = sizeof(struct fw_tlstx_data_wr) +
1833 		    sizeof(struct cpl_tx_tls_sfo) + key_size(toep);
1834 
1835 		/* Explicit IVs for AES-CBC and AES-GCM are <= 16. */
1836 		MPASS(toep->tls.iv_len <= AES_BLOCK_LEN);
1837 		wr_len += AES_BLOCK_LEN;
1838 
1839 		/* Account for SGL in work request length. */
1840 		nsegs = count_ext_pgs_segs(m->m_ext.ext_pgs);
1841 		wr_len += sizeof(struct ulptx_sgl) +
1842 		    ((3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1)) * 8;
1843 
1844 		/* Not enough credits for this work request. */
1845 		if (howmany(wr_len, 16) > tx_credits) {
1846 			if (sowwakeup)
1847 				sowwakeup_locked(so);
1848 			else
1849 				SOCKBUF_UNLOCK(sb);
1850 			SOCKBUF_UNLOCK_ASSERT(sb);
1851 #ifdef VERBOSE_TRACES
1852 			CTR5(KTR_CXGBE,
1853 	    "%s: tid %d mbuf %p requires %d credits, but only %d available",
1854 			    __func__, toep->tid, m, howmany(wr_len, 16),
1855 			    tx_credits);
1856 #endif
1857 			toep->flags |= TPF_TX_SUSPENDED;
1858 			return;
1859 		}
1860 
1861 		/* Shove if there is no additional data pending. */
1862 		shove = ((m->m_next == NULL ||
1863 		    (m->m_next->m_flags & M_NOTAVAIL) != 0)) &&
1864 		    (tp->t_flags & TF_MORETOCOME) == 0;
1865 
1866 		if (sb->sb_flags & SB_AUTOSIZE &&
1867 		    V_tcp_do_autosndbuf &&
1868 		    sb->sb_hiwat < V_tcp_autosndbuf_max &&
1869 		    sbused(sb) >= sb->sb_hiwat * 7 / 8) {
1870 			int newsize = min(sb->sb_hiwat + V_tcp_autosndbuf_inc,
1871 			    V_tcp_autosndbuf_max);
1872 
1873 			if (!sbreserve_locked(sb, newsize, so, NULL))
1874 				sb->sb_flags &= ~SB_AUTOSIZE;
1875 			else
1876 				sowwakeup = 1;	/* room available */
1877 		}
1878 		if (sowwakeup)
1879 			sowwakeup_locked(so);
1880 		else
1881 			SOCKBUF_UNLOCK(sb);
1882 		SOCKBUF_UNLOCK_ASSERT(sb);
1883 
1884 		if (__predict_false(toep->flags & TPF_FIN_SENT))
1885 			panic("%s: excess tx.", __func__);
1886 
1887 		wr = alloc_wrqe(roundup2(wr_len, 16), toep->ofld_txq);
1888 		if (wr == NULL) {
1889 			/* XXX: how will we recover from this? */
1890 			toep->flags |= TPF_TX_SUSPENDED;
1891 			return;
1892 		}
1893 
1894 		thdr = (struct tls_hdr *)m->m_ext.ext_pgs->hdr;
1895 #ifdef VERBOSE_TRACES
1896 		CTR5(KTR_CXGBE, "%s: tid %d TLS record %ju type %d len %#x",
1897 		    __func__, toep->tid, m->m_ext.ext_pgs->seqno, thdr->type,
1898 		    m->m_len);
1899 #endif
1900 		txwr = wrtod(wr);
1901 		cpl = (struct cpl_tx_tls_sfo *)(txwr + 1);
1902 		memset(txwr, 0, roundup2(wr_len, 16));
1903 		credits = howmany(wr_len, 16);
1904 		expn_size = m->m_ext.ext_pgs->hdr_len +
1905 		    m->m_ext.ext_pgs->trail_len;
1906 		tls_size = m->m_len - expn_size;
1907 		write_tlstx_wr(txwr, toep, 0,
1908 		    tls_size, expn_size, 1, credits, shove, 1);
1909 		toep->tls.tx_seq_no = m->m_ext.ext_pgs->seqno;
1910 		write_tlstx_cpl(cpl, toep, thdr, tls_size, 1);
1911 		tls_copy_tx_key(toep, cpl + 1);
1912 
1913 		/* Copy IV. */
1914 		buf = (char *)(cpl + 1) + key_size(toep);
1915 		memcpy(buf, thdr + 1, toep->tls.iv_len);
1916 		buf += AES_BLOCK_LEN;
1917 
1918 		write_ktlstx_sgl(buf, m->m_ext.ext_pgs, nsegs);
1919 
1920 		KASSERT(toep->tx_credits >= credits,
1921 			("%s: not enough credits", __func__));
1922 
1923 		toep->tx_credits -= credits;
1924 
1925 		tp->snd_nxt += m->m_len;
1926 		tp->snd_max += m->m_len;
1927 
1928 		SOCKBUF_LOCK(sb);
1929 		sb->sb_sndptr = m;
1930 		SOCKBUF_UNLOCK(sb);
1931 
1932 		toep->flags |= TPF_TX_DATA_SENT;
1933 		if (toep->tx_credits < MIN_OFLD_TLSTX_CREDITS(toep))
1934 			toep->flags |= TPF_TX_SUSPENDED;
1935 
1936 		KASSERT(toep->txsd_avail > 0, ("%s: no txsd", __func__));
1937 		txsd->plen = m->m_len;
1938 		txsd->tx_credits = credits;
1939 		txsd++;
1940 		if (__predict_false(++toep->txsd_pidx == toep->txsd_total)) {
1941 			toep->txsd_pidx = 0;
1942 			txsd = &toep->txsd[0];
1943 		}
1944 		toep->txsd_avail--;
1945 
1946 		atomic_add_long(&toep->vi->pi->tx_tls_records, 1);
1947 		atomic_add_long(&toep->vi->pi->tx_tls_octets, m->m_len);
1948 
1949 		t4_l2t_send(sc, wr, toep->l2te);
1950 	}
1951 }
1952 #endif
1953 
1954 /*
1955  * For TLS data we place received mbufs received via CPL_TLS_DATA into
1956  * an mbufq in the TLS offload state.  When CPL_RX_TLS_CMP is
1957  * received, the completed PDUs are placed into the socket receive
1958  * buffer.
1959  *
1960  * The TLS code reuses the ulp_pdu_reclaimq to hold the pending mbufs.
1961  */
1962 static int
1963 do_tls_data(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
1964 {
1965 	struct adapter *sc = iq->adapter;
1966 	const struct cpl_tls_data *cpl = mtod(m, const void *);
1967 	unsigned int tid = GET_TID(cpl);
1968 	struct toepcb *toep = lookup_tid(sc, tid);
1969 	struct inpcb *inp = toep->inp;
1970 	struct tcpcb *tp;
1971 	int len;
1972 
1973 	/* XXX: Should this match do_rx_data instead? */
1974 	KASSERT(!(toep->flags & TPF_SYNQE),
1975 	    ("%s: toep %p claims to be a synq entry", __func__, toep));
1976 
1977 	KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__));
1978 
1979 	/* strip off CPL header */
1980 	m_adj(m, sizeof(*cpl));
1981 	len = m->m_pkthdr.len;
1982 
1983 	atomic_add_long(&toep->vi->pi->rx_tls_octets, len);
1984 
1985 	KASSERT(len == G_CPL_TLS_DATA_LENGTH(be32toh(cpl->length_pkd)),
1986 	    ("%s: payload length mismatch", __func__));
1987 
1988 	INP_WLOCK(inp);
1989 	if (inp->inp_flags & (INP_DROPPED | INP_TIMEWAIT)) {
1990 		CTR4(KTR_CXGBE, "%s: tid %u, rx (%d bytes), inp_flags 0x%x",
1991 		    __func__, tid, len, inp->inp_flags);
1992 		INP_WUNLOCK(inp);
1993 		m_freem(m);
1994 		return (0);
1995 	}
1996 
1997 	/* Save TCP sequence number. */
1998 	m->m_pkthdr.tls_tcp_seq = be32toh(cpl->seq);
1999 
2000 	if (mbufq_enqueue(&toep->ulp_pdu_reclaimq, m)) {
2001 #ifdef INVARIANTS
2002 		panic("Failed to queue TLS data packet");
2003 #else
2004 		printf("%s: Failed to queue TLS data packet\n", __func__);
2005 		INP_WUNLOCK(inp);
2006 		m_freem(m);
2007 		return (0);
2008 #endif
2009 	}
2010 
2011 	tp = intotcpcb(inp);
2012 	tp->t_rcvtime = ticks;
2013 
2014 #ifdef VERBOSE_TRACES
2015 	CTR4(KTR_CXGBE, "%s: tid %u len %d seq %u", __func__, tid, len,
2016 	    be32toh(cpl->seq));
2017 #endif
2018 
2019 	INP_WUNLOCK(inp);
2020 	return (0);
2021 }
2022 
2023 static int
2024 do_rx_tls_cmp(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
2025 {
2026 	struct adapter *sc = iq->adapter;
2027 	const struct cpl_rx_tls_cmp *cpl = mtod(m, const void *);
2028 	struct tlsrx_hdr_pkt *tls_hdr_pkt;
2029 	unsigned int tid = GET_TID(cpl);
2030 	struct toepcb *toep = lookup_tid(sc, tid);
2031 	struct inpcb *inp = toep->inp;
2032 	struct tcpcb *tp;
2033 	struct socket *so;
2034 	struct sockbuf *sb;
2035 	struct mbuf *tls_data;
2036 	int len, pdu_length, rx_credits;
2037 
2038 	KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__));
2039 	KASSERT(!(toep->flags & TPF_SYNQE),
2040 	    ("%s: toep %p claims to be a synq entry", __func__, toep));
2041 
2042 	/* strip off CPL header */
2043 	m_adj(m, sizeof(*cpl));
2044 	len = m->m_pkthdr.len;
2045 
2046 	atomic_add_long(&toep->vi->pi->rx_tls_records, 1);
2047 
2048 	KASSERT(len == G_CPL_RX_TLS_CMP_LENGTH(be32toh(cpl->pdulength_length)),
2049 	    ("%s: payload length mismatch", __func__));
2050 
2051 	INP_WLOCK(inp);
2052 	if (inp->inp_flags & (INP_DROPPED | INP_TIMEWAIT)) {
2053 		CTR4(KTR_CXGBE, "%s: tid %u, rx (%d bytes), inp_flags 0x%x",
2054 		    __func__, tid, len, inp->inp_flags);
2055 		INP_WUNLOCK(inp);
2056 		m_freem(m);
2057 		return (0);
2058 	}
2059 
2060 	pdu_length = G_CPL_RX_TLS_CMP_PDULENGTH(be32toh(cpl->pdulength_length));
2061 
2062 	tp = intotcpcb(inp);
2063 
2064 #ifdef VERBOSE_TRACES
2065 	CTR6(KTR_CXGBE, "%s: tid %u PDU len %d len %d seq %u, rcv_nxt %u",
2066 	    __func__, tid, pdu_length, len, be32toh(cpl->seq), tp->rcv_nxt);
2067 #endif
2068 
2069 	tp->rcv_nxt += pdu_length;
2070 	if (tp->rcv_wnd < pdu_length) {
2071 		toep->tls.rcv_over += pdu_length - tp->rcv_wnd;
2072 		tp->rcv_wnd = 0;
2073 	} else
2074 		tp->rcv_wnd -= pdu_length;
2075 
2076 	/* XXX: Not sure what to do about urgent data. */
2077 
2078 	/*
2079 	 * The payload of this CPL is the TLS header followed by
2080 	 * additional fields.
2081 	 */
2082 	KASSERT(m->m_len >= sizeof(*tls_hdr_pkt),
2083 	    ("%s: payload too small", __func__));
2084 	tls_hdr_pkt = mtod(m, void *);
2085 
2086 	/*
2087 	 * Only the TLS header is sent to OpenSSL, so report errors by
2088 	 * altering the record type.
2089 	 */
2090 	if ((tls_hdr_pkt->res_to_mac_error & M_TLSRX_HDR_PKT_ERROR) != 0)
2091 		tls_hdr_pkt->type = CONTENT_TYPE_ERROR;
2092 
2093 	/* Trim this CPL's mbuf to only include the TLS header. */
2094 	KASSERT(m->m_len == len && m->m_next == NULL,
2095 	    ("%s: CPL spans multiple mbufs", __func__));
2096 	m->m_len = TLS_HEADER_LENGTH;
2097 	m->m_pkthdr.len = TLS_HEADER_LENGTH;
2098 
2099 	tls_data = mbufq_dequeue(&toep->ulp_pdu_reclaimq);
2100 	if (tls_data != NULL) {
2101 		KASSERT(be32toh(cpl->seq) == tls_data->m_pkthdr.tls_tcp_seq,
2102 		    ("%s: sequence mismatch", __func__));
2103 
2104 		/*
2105 		 * Update the TLS header length to be the length of
2106 		 * the payload data.
2107 		 */
2108 		tls_hdr_pkt->length = htobe16(tls_data->m_pkthdr.len);
2109 
2110 		m->m_next = tls_data;
2111 		m->m_pkthdr.len += tls_data->m_len;
2112 	}
2113 
2114 	so = inp_inpcbtosocket(inp);
2115 	sb = &so->so_rcv;
2116 	SOCKBUF_LOCK(sb);
2117 
2118 	if (__predict_false(sb->sb_state & SBS_CANTRCVMORE)) {
2119 		struct epoch_tracker et;
2120 
2121 		CTR3(KTR_CXGBE, "%s: tid %u, excess rx (%d bytes)",
2122 		    __func__, tid, pdu_length);
2123 		m_freem(m);
2124 		SOCKBUF_UNLOCK(sb);
2125 		INP_WUNLOCK(inp);
2126 
2127 		CURVNET_SET(toep->vnet);
2128 		NET_EPOCH_ENTER(et);
2129 		INP_WLOCK(inp);
2130 		tp = tcp_drop(tp, ECONNRESET);
2131 		if (tp)
2132 			INP_WUNLOCK(inp);
2133 		NET_EPOCH_EXIT(et);
2134 		CURVNET_RESTORE();
2135 
2136 		return (0);
2137 	}
2138 
2139 	/*
2140 	 * Not all of the bytes on the wire are included in the socket buffer
2141 	 * (e.g. the MAC of the TLS record).  However, those bytes are included
2142 	 * in the TCP sequence space.
2143 	 */
2144 
2145 	/* receive buffer autosize */
2146 	MPASS(toep->vnet == so->so_vnet);
2147 	CURVNET_SET(toep->vnet);
2148 	if (sb->sb_flags & SB_AUTOSIZE &&
2149 	    V_tcp_do_autorcvbuf &&
2150 	    sb->sb_hiwat < V_tcp_autorcvbuf_max &&
2151 	    m->m_pkthdr.len > (sbspace(sb) / 8 * 7)) {
2152 		unsigned int hiwat = sb->sb_hiwat;
2153 		unsigned int newsize = min(hiwat + sc->tt.autorcvbuf_inc,
2154 		    V_tcp_autorcvbuf_max);
2155 
2156 		if (!sbreserve_locked(sb, newsize, so, NULL))
2157 			sb->sb_flags &= ~SB_AUTOSIZE;
2158 	}
2159 
2160 	sbappendstream_locked(sb, m, 0);
2161 	rx_credits = sbspace(sb) > tp->rcv_wnd ? sbspace(sb) - tp->rcv_wnd : 0;
2162 #ifdef VERBOSE_TRACES
2163 	CTR4(KTR_CXGBE, "%s: tid %u rx_credits %u rcv_wnd %u",
2164 	    __func__, tid, rx_credits, tp->rcv_wnd);
2165 #endif
2166 	if (rx_credits > 0 && sbused(sb) + tp->rcv_wnd < sb->sb_lowat) {
2167 		rx_credits = send_rx_credits(sc, toep, rx_credits);
2168 		tp->rcv_wnd += rx_credits;
2169 		tp->rcv_adv += rx_credits;
2170 	}
2171 
2172 	sorwakeup_locked(so);
2173 	SOCKBUF_UNLOCK_ASSERT(sb);
2174 
2175 	INP_WUNLOCK(inp);
2176 	CURVNET_RESTORE();
2177 	return (0);
2178 }
2179 
2180 void
2181 t4_tls_mod_load(void)
2182 {
2183 
2184 	mtx_init(&tls_handshake_lock, "t4tls handshake", NULL, MTX_DEF);
2185 	t4_register_cpl_handler(CPL_TLS_DATA, do_tls_data);
2186 	t4_register_cpl_handler(CPL_RX_TLS_CMP, do_rx_tls_cmp);
2187 }
2188 
2189 void
2190 t4_tls_mod_unload(void)
2191 {
2192 
2193 	t4_register_cpl_handler(CPL_TLS_DATA, NULL);
2194 	t4_register_cpl_handler(CPL_RX_TLS_CMP, NULL);
2195 	mtx_destroy(&tls_handshake_lock);
2196 }
2197 #endif	/* TCP_OFFLOAD */
2198