1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2017-2018 Chelsio Communications, Inc. 5 * All rights reserved. 6 * Written by: John Baldwin <jhb@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include "opt_inet.h" 31 #include "opt_kern_tls.h" 32 33 #include <sys/cdefs.h> 34 __FBSDID("$FreeBSD$"); 35 36 #include <sys/param.h> 37 #include <sys/ktr.h> 38 #ifdef KERN_TLS 39 #include <sys/ktls.h> 40 #endif 41 #include <sys/sglist.h> 42 #include <sys/socket.h> 43 #include <sys/socketvar.h> 44 #include <sys/systm.h> 45 #include <netinet/in.h> 46 #include <netinet/in_pcb.h> 47 #include <netinet/tcp_var.h> 48 #include <netinet/toecore.h> 49 #ifdef KERN_TLS 50 #include <opencrypto/cryptodev.h> 51 #include <opencrypto/xform.h> 52 #endif 53 54 #ifdef TCP_OFFLOAD 55 #include "common/common.h" 56 #include "common/t4_tcb.h" 57 #include "crypto/t4_crypto.h" 58 #include "tom/t4_tom_l2t.h" 59 #include "tom/t4_tom.h" 60 61 /* 62 * The TCP sequence number of a CPL_TLS_DATA mbuf is saved here while 63 * the mbuf is in the ulp_pdu_reclaimq. 64 */ 65 #define tls_tcp_seq PH_loc.thirtytwo[0] 66 67 /* 68 * Handshake lock used for the handshake timer. Having a global lock 69 * is perhaps not ideal, but it avoids having to use callout_drain() 70 * in tls_uninit_toep() which can't block. Also, the timer shouldn't 71 * actually fire for most connections. 72 */ 73 static struct mtx tls_handshake_lock; 74 75 static void 76 t4_set_tls_tcb_field(struct toepcb *toep, uint16_t word, uint64_t mask, 77 uint64_t val) 78 { 79 struct adapter *sc = td_adapter(toep->td); 80 81 t4_set_tcb_field(sc, toep->ofld_txq, toep, word, mask, val, 0, 0); 82 } 83 84 /* TLS and DTLS common routines */ 85 bool 86 can_tls_offload(struct adapter *sc) 87 { 88 89 return (sc->tt.tls && sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS); 90 } 91 92 int 93 tls_tx_key(struct toepcb *toep) 94 { 95 struct tls_ofld_info *tls_ofld = &toep->tls; 96 97 return (tls_ofld->tx_key_addr >= 0); 98 } 99 100 int 101 tls_rx_key(struct toepcb *toep) 102 { 103 struct tls_ofld_info *tls_ofld = &toep->tls; 104 105 return (tls_ofld->rx_key_addr >= 0); 106 } 107 108 static int 109 key_size(struct toepcb *toep) 110 { 111 struct tls_ofld_info *tls_ofld = &toep->tls; 112 113 return ((tls_ofld->key_location == TLS_SFO_WR_CONTEXTLOC_IMMEDIATE) ? 114 tls_ofld->k_ctx.tx_key_info_size : KEY_IN_DDR_SIZE); 115 } 116 117 /* Set TLS Key-Id in TCB */ 118 static void 119 t4_set_tls_keyid(struct toepcb *toep, unsigned int key_id) 120 { 121 122 t4_set_tls_tcb_field(toep, W_TCB_RX_TLS_KEY_TAG, 123 V_TCB_RX_TLS_KEY_TAG(M_TCB_RX_TLS_BUF_TAG), 124 V_TCB_RX_TLS_KEY_TAG(key_id)); 125 } 126 127 /* Clear TF_RX_QUIESCE to re-enable receive. */ 128 static void 129 t4_clear_rx_quiesce(struct toepcb *toep) 130 { 131 132 t4_set_tls_tcb_field(toep, W_TCB_T_FLAGS, V_TF_RX_QUIESCE(1), 0); 133 } 134 135 static void 136 tls_clr_ofld_mode(struct toepcb *toep) 137 { 138 139 tls_stop_handshake_timer(toep); 140 141 /* Operate in PDU extraction mode only. */ 142 t4_set_tls_tcb_field(toep, W_TCB_ULP_RAW, 143 V_TCB_ULP_RAW(M_TCB_ULP_RAW), 144 V_TCB_ULP_RAW(V_TF_TLS_ENABLE(1))); 145 t4_clear_rx_quiesce(toep); 146 } 147 148 static void 149 tls_clr_quiesce(struct toepcb *toep) 150 { 151 152 tls_stop_handshake_timer(toep); 153 t4_clear_rx_quiesce(toep); 154 } 155 156 /* 157 * Calculate the TLS data expansion size 158 */ 159 static int 160 tls_expansion_size(struct toepcb *toep, int data_len, int full_pdus_only, 161 unsigned short *pdus_per_ulp) 162 { 163 struct tls_ofld_info *tls_ofld = &toep->tls; 164 struct tls_scmd *scmd = &tls_ofld->scmd0; 165 int expn_size = 0, frag_count = 0, pad_per_pdu = 0, 166 pad_last_pdu = 0, last_frag_size = 0, max_frag_size = 0; 167 int exp_per_pdu = 0; 168 int hdr_len = TLS_HEADER_LENGTH; 169 170 do { 171 max_frag_size = tls_ofld->k_ctx.frag_size; 172 if (G_SCMD_CIPH_MODE(scmd->seqno_numivs) == 173 SCMD_CIPH_MODE_AES_GCM) { 174 frag_count = (data_len / max_frag_size); 175 exp_per_pdu = GCM_TAG_SIZE + AEAD_EXPLICIT_DATA_SIZE + 176 hdr_len; 177 expn_size = frag_count * exp_per_pdu; 178 if (full_pdus_only) { 179 *pdus_per_ulp = data_len / (exp_per_pdu + 180 max_frag_size); 181 if (*pdus_per_ulp > 32) 182 *pdus_per_ulp = 32; 183 else if(!*pdus_per_ulp) 184 *pdus_per_ulp = 1; 185 expn_size = (*pdus_per_ulp) * exp_per_pdu; 186 break; 187 } 188 if ((last_frag_size = data_len % max_frag_size) > 0) { 189 frag_count += 1; 190 expn_size += exp_per_pdu; 191 } 192 break; 193 } else if (G_SCMD_CIPH_MODE(scmd->seqno_numivs) != 194 SCMD_CIPH_MODE_NOP) { 195 /* Calculate the number of fragments we can make */ 196 frag_count = (data_len / max_frag_size); 197 if (frag_count > 0) { 198 pad_per_pdu = (((howmany((max_frag_size + 199 tls_ofld->mac_length), 200 CIPHER_BLOCK_SIZE)) * 201 CIPHER_BLOCK_SIZE) - 202 (max_frag_size + 203 tls_ofld->mac_length)); 204 if (!pad_per_pdu) 205 pad_per_pdu = CIPHER_BLOCK_SIZE; 206 exp_per_pdu = pad_per_pdu + 207 tls_ofld->mac_length + 208 hdr_len + CIPHER_BLOCK_SIZE; 209 expn_size = frag_count * exp_per_pdu; 210 } 211 if (full_pdus_only) { 212 *pdus_per_ulp = data_len / (exp_per_pdu + 213 max_frag_size); 214 if (*pdus_per_ulp > 32) 215 *pdus_per_ulp = 32; 216 else if (!*pdus_per_ulp) 217 *pdus_per_ulp = 1; 218 expn_size = (*pdus_per_ulp) * exp_per_pdu; 219 break; 220 } 221 /* Consider the last fragment */ 222 if ((last_frag_size = data_len % max_frag_size) > 0) { 223 pad_last_pdu = (((howmany((last_frag_size + 224 tls_ofld->mac_length), 225 CIPHER_BLOCK_SIZE)) * 226 CIPHER_BLOCK_SIZE) - 227 (last_frag_size + 228 tls_ofld->mac_length)); 229 if (!pad_last_pdu) 230 pad_last_pdu = CIPHER_BLOCK_SIZE; 231 expn_size += (pad_last_pdu + 232 tls_ofld->mac_length + hdr_len + 233 CIPHER_BLOCK_SIZE); 234 } 235 } 236 } while (0); 237 238 return (expn_size); 239 } 240 241 /* Copy Key to WR */ 242 static void 243 tls_copy_tx_key(struct toepcb *toep, void *dst) 244 { 245 struct tls_ofld_info *tls_ofld = &toep->tls; 246 struct ulptx_sc_memrd *sc_memrd; 247 struct ulptx_idata *sc; 248 249 if (tls_ofld->k_ctx.tx_key_info_size <= 0) 250 return; 251 252 if (tls_ofld->key_location == TLS_SFO_WR_CONTEXTLOC_DDR) { 253 sc = dst; 254 sc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP)); 255 sc->len = htobe32(0); 256 sc_memrd = (struct ulptx_sc_memrd *)(sc + 1); 257 sc_memrd->cmd_to_len = htobe32(V_ULPTX_CMD(ULP_TX_SC_MEMRD) | 258 V_ULP_TX_SC_MORE(1) | 259 V_ULPTX_LEN16(tls_ofld->k_ctx.tx_key_info_size >> 4)); 260 sc_memrd->addr = htobe32(tls_ofld->tx_key_addr >> 5); 261 } else if (tls_ofld->key_location == TLS_SFO_WR_CONTEXTLOC_IMMEDIATE) { 262 memcpy(dst, &tls_ofld->k_ctx.tx, 263 tls_ofld->k_ctx.tx_key_info_size); 264 } 265 } 266 267 /* TLS/DTLS content type for CPL SFO */ 268 static inline unsigned char 269 tls_content_type(unsigned char content_type) 270 { 271 /* 272 * XXX: Shouldn't this map CONTENT_TYPE_APP_DATA to DATA and 273 * default to "CUSTOM" for all other types including 274 * heartbeat? 275 */ 276 switch (content_type) { 277 case CONTENT_TYPE_CCS: 278 return CPL_TX_TLS_SFO_TYPE_CCS; 279 case CONTENT_TYPE_ALERT: 280 return CPL_TX_TLS_SFO_TYPE_ALERT; 281 case CONTENT_TYPE_HANDSHAKE: 282 return CPL_TX_TLS_SFO_TYPE_HANDSHAKE; 283 case CONTENT_TYPE_HEARTBEAT: 284 return CPL_TX_TLS_SFO_TYPE_HEARTBEAT; 285 } 286 return CPL_TX_TLS_SFO_TYPE_DATA; 287 } 288 289 static unsigned char 290 get_cipher_key_size(unsigned int ck_size) 291 { 292 switch (ck_size) { 293 case AES_NOP: /* NOP */ 294 return 15; 295 case AES_128: /* AES128 */ 296 return CH_CK_SIZE_128; 297 case AES_192: /* AES192 */ 298 return CH_CK_SIZE_192; 299 case AES_256: /* AES256 */ 300 return CH_CK_SIZE_256; 301 default: 302 return CH_CK_SIZE_256; 303 } 304 } 305 306 static unsigned char 307 get_mac_key_size(unsigned int mk_size) 308 { 309 switch (mk_size) { 310 case SHA_NOP: /* NOP */ 311 return CH_MK_SIZE_128; 312 case SHA_GHASH: /* GHASH */ 313 case SHA_512: /* SHA512 */ 314 return CH_MK_SIZE_512; 315 case SHA_224: /* SHA2-224 */ 316 return CH_MK_SIZE_192; 317 case SHA_256: /* SHA2-256*/ 318 return CH_MK_SIZE_256; 319 case SHA_384: /* SHA384 */ 320 return CH_MK_SIZE_512; 321 case SHA1: /* SHA1 */ 322 default: 323 return CH_MK_SIZE_160; 324 } 325 } 326 327 static unsigned int 328 get_proto_ver(int proto_ver) 329 { 330 switch (proto_ver) { 331 case TLS1_2_VERSION: 332 return TLS_1_2_VERSION; 333 case TLS1_1_VERSION: 334 return TLS_1_1_VERSION; 335 case DTLS1_2_VERSION: 336 return DTLS_1_2_VERSION; 337 default: 338 return TLS_VERSION_MAX; 339 } 340 } 341 342 static void 343 tls_rxkey_flit1(struct tls_keyctx *kwr, struct tls_key_context *kctx) 344 { 345 346 if (kctx->state.enc_mode == CH_EVP_CIPH_GCM_MODE) { 347 kwr->u.rxhdr.ivinsert_to_authinsrt = 348 htobe64(V_TLS_KEYCTX_TX_WR_IVINSERT(6ULL) | 349 V_TLS_KEYCTX_TX_WR_AADSTRTOFST(1ULL) | 350 V_TLS_KEYCTX_TX_WR_AADSTOPOFST(5ULL) | 351 V_TLS_KEYCTX_TX_WR_AUTHSRTOFST(14ULL) | 352 V_TLS_KEYCTX_TX_WR_AUTHSTOPOFST(16ULL) | 353 V_TLS_KEYCTX_TX_WR_CIPHERSRTOFST(14ULL) | 354 V_TLS_KEYCTX_TX_WR_CIPHERSTOPOFST(0ULL) | 355 V_TLS_KEYCTX_TX_WR_AUTHINSRT(16ULL)); 356 kwr->u.rxhdr.ivpresent_to_rxmk_size &= 357 ~(V_TLS_KEYCTX_TX_WR_RXOPAD_PRESENT(1)); 358 kwr->u.rxhdr.authmode_to_rxvalid &= 359 ~(V_TLS_KEYCTX_TX_WR_CIPHAUTHSEQCTRL(1)); 360 } else { 361 kwr->u.rxhdr.ivinsert_to_authinsrt = 362 htobe64(V_TLS_KEYCTX_TX_WR_IVINSERT(6ULL) | 363 V_TLS_KEYCTX_TX_WR_AADSTRTOFST(1ULL) | 364 V_TLS_KEYCTX_TX_WR_AADSTOPOFST(5ULL) | 365 V_TLS_KEYCTX_TX_WR_AUTHSRTOFST(22ULL) | 366 V_TLS_KEYCTX_TX_WR_AUTHSTOPOFST(0ULL) | 367 V_TLS_KEYCTX_TX_WR_CIPHERSRTOFST(22ULL) | 368 V_TLS_KEYCTX_TX_WR_CIPHERSTOPOFST(0ULL) | 369 V_TLS_KEYCTX_TX_WR_AUTHINSRT(0ULL)); 370 } 371 } 372 373 /* Rx key */ 374 static void 375 prepare_rxkey_wr(struct tls_keyctx *kwr, struct tls_key_context *kctx) 376 { 377 unsigned int ck_size = kctx->cipher_secret_size; 378 unsigned int mk_size = kctx->mac_secret_size; 379 int proto_ver = kctx->proto_ver; 380 381 kwr->u.rxhdr.flitcnt_hmacctrl = 382 ((kctx->tx_key_info_size >> 4) << 3) | kctx->hmac_ctrl; 383 384 kwr->u.rxhdr.protover_ciphmode = 385 V_TLS_KEYCTX_TX_WR_PROTOVER(get_proto_ver(proto_ver)) | 386 V_TLS_KEYCTX_TX_WR_CIPHMODE(kctx->state.enc_mode); 387 388 kwr->u.rxhdr.authmode_to_rxvalid = 389 V_TLS_KEYCTX_TX_WR_AUTHMODE(kctx->state.auth_mode) | 390 V_TLS_KEYCTX_TX_WR_CIPHAUTHSEQCTRL(1) | 391 V_TLS_KEYCTX_TX_WR_SEQNUMCTRL(3) | 392 V_TLS_KEYCTX_TX_WR_RXVALID(1); 393 394 kwr->u.rxhdr.ivpresent_to_rxmk_size = 395 V_TLS_KEYCTX_TX_WR_IVPRESENT(0) | 396 V_TLS_KEYCTX_TX_WR_RXOPAD_PRESENT(1) | 397 V_TLS_KEYCTX_TX_WR_RXCK_SIZE(get_cipher_key_size(ck_size)) | 398 V_TLS_KEYCTX_TX_WR_RXMK_SIZE(get_mac_key_size(mk_size)); 399 400 tls_rxkey_flit1(kwr, kctx); 401 402 /* No key reversal for GCM */ 403 if (kctx->state.enc_mode != CH_EVP_CIPH_GCM_MODE) { 404 t4_aes_getdeckey(kwr->keys.edkey, kctx->rx.key, 405 (kctx->cipher_secret_size << 3)); 406 memcpy(kwr->keys.edkey + kctx->cipher_secret_size, 407 kctx->rx.key + kctx->cipher_secret_size, 408 (IPAD_SIZE + OPAD_SIZE)); 409 } else { 410 memcpy(kwr->keys.edkey, kctx->rx.key, 411 (kctx->tx_key_info_size - SALT_SIZE)); 412 memcpy(kwr->u.rxhdr.rxsalt, kctx->rx.salt, SALT_SIZE); 413 } 414 } 415 416 /* Tx key */ 417 static void 418 prepare_txkey_wr(struct tls_keyctx *kwr, struct tls_key_context *kctx) 419 { 420 unsigned int ck_size = kctx->cipher_secret_size; 421 unsigned int mk_size = kctx->mac_secret_size; 422 423 kwr->u.txhdr.ctxlen = 424 (kctx->tx_key_info_size >> 4); 425 kwr->u.txhdr.dualck_to_txvalid = 426 V_TLS_KEYCTX_TX_WR_TXOPAD_PRESENT(1) | 427 V_TLS_KEYCTX_TX_WR_SALT_PRESENT(1) | 428 V_TLS_KEYCTX_TX_WR_TXCK_SIZE(get_cipher_key_size(ck_size)) | 429 V_TLS_KEYCTX_TX_WR_TXMK_SIZE(get_mac_key_size(mk_size)) | 430 V_TLS_KEYCTX_TX_WR_TXVALID(1); 431 432 memcpy(kwr->keys.edkey, kctx->tx.key, HDR_KCTX_SIZE); 433 if (kctx->state.enc_mode == CH_EVP_CIPH_GCM_MODE) { 434 memcpy(kwr->u.txhdr.txsalt, kctx->tx.salt, SALT_SIZE); 435 kwr->u.txhdr.dualck_to_txvalid &= 436 ~(V_TLS_KEYCTX_TX_WR_TXOPAD_PRESENT(1)); 437 } 438 kwr->u.txhdr.dualck_to_txvalid = htons(kwr->u.txhdr.dualck_to_txvalid); 439 } 440 441 /* TLS Key memory management */ 442 static int 443 get_new_keyid(struct toepcb *toep) 444 { 445 struct adapter *sc = td_adapter(toep->td); 446 vmem_addr_t addr; 447 448 if (vmem_alloc(sc->key_map, TLS_KEY_CONTEXT_SZ, M_NOWAIT | M_FIRSTFIT, 449 &addr) != 0) 450 return (-1); 451 452 return (addr); 453 } 454 455 static void 456 free_keyid(struct toepcb *toep, int keyid) 457 { 458 struct adapter *sc = td_adapter(toep->td); 459 460 vmem_free(sc->key_map, keyid, TLS_KEY_CONTEXT_SZ); 461 } 462 463 static void 464 clear_tls_keyid(struct toepcb *toep) 465 { 466 struct tls_ofld_info *tls_ofld = &toep->tls; 467 468 if (tls_ofld->rx_key_addr >= 0) { 469 free_keyid(toep, tls_ofld->rx_key_addr); 470 tls_ofld->rx_key_addr = -1; 471 } 472 if (tls_ofld->tx_key_addr >= 0) { 473 free_keyid(toep, tls_ofld->tx_key_addr); 474 tls_ofld->tx_key_addr = -1; 475 } 476 } 477 478 static int 479 get_keyid(struct tls_ofld_info *tls_ofld, unsigned int ops) 480 { 481 return (ops & KEY_WRITE_RX ? tls_ofld->rx_key_addr : 482 ((ops & KEY_WRITE_TX) ? tls_ofld->tx_key_addr : -1)); 483 } 484 485 static int 486 get_tp_plen_max(struct tls_ofld_info *tls_ofld) 487 { 488 int plen = ((min(3*4096, TP_TX_PG_SZ))/1448) * 1448; 489 490 return (tls_ofld->k_ctx.frag_size <= 8192 ? plen : FC_TP_PLEN_MAX); 491 } 492 493 /* Send request to get the key-id */ 494 static int 495 tls_program_key_id(struct toepcb *toep, struct tls_key_context *k_ctx) 496 { 497 struct tls_ofld_info *tls_ofld = &toep->tls; 498 struct adapter *sc = td_adapter(toep->td); 499 struct ofld_tx_sdesc *txsd; 500 int kwrlen, kctxlen, keyid, len; 501 struct wrqe *wr; 502 struct tls_key_req *kwr; 503 struct tls_keyctx *kctx; 504 505 kwrlen = sizeof(*kwr); 506 kctxlen = roundup2(sizeof(*kctx), 32); 507 len = roundup2(kwrlen + kctxlen, 16); 508 509 if (toep->txsd_avail == 0) 510 return (EAGAIN); 511 512 /* Dont initialize key for re-neg */ 513 if (!G_KEY_CLR_LOC(k_ctx->l_p_key)) { 514 if ((keyid = get_new_keyid(toep)) < 0) { 515 return (ENOSPC); 516 } 517 } else { 518 keyid = get_keyid(tls_ofld, k_ctx->l_p_key); 519 } 520 521 wr = alloc_wrqe(len, toep->ofld_txq); 522 if (wr == NULL) { 523 free_keyid(toep, keyid); 524 return (ENOMEM); 525 } 526 kwr = wrtod(wr); 527 memset(kwr, 0, kwrlen); 528 529 kwr->wr_hi = htobe32(V_FW_WR_OP(FW_ULPTX_WR) | F_FW_WR_COMPL | 530 F_FW_WR_ATOMIC); 531 kwr->wr_mid = htobe32(V_FW_WR_LEN16(DIV_ROUND_UP(len, 16)) | 532 V_FW_WR_FLOWID(toep->tid)); 533 kwr->protocol = get_proto_ver(k_ctx->proto_ver); 534 kwr->mfs = htons(k_ctx->frag_size); 535 kwr->reneg_to_write_rx = k_ctx->l_p_key; 536 537 /* master command */ 538 kwr->cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE) | 539 V_T5_ULP_MEMIO_ORDER(1) | V_T5_ULP_MEMIO_IMM(1)); 540 kwr->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(kctxlen >> 5)); 541 kwr->len16 = htobe32((toep->tid << 8) | 542 DIV_ROUND_UP(len - sizeof(struct work_request_hdr), 16)); 543 kwr->kaddr = htobe32(V_ULP_MEMIO_ADDR(keyid >> 5)); 544 545 /* sub command */ 546 kwr->sc_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 547 kwr->sc_len = htobe32(kctxlen); 548 549 kctx = (struct tls_keyctx *)(kwr + 1); 550 memset(kctx, 0, kctxlen); 551 552 if (G_KEY_GET_LOC(k_ctx->l_p_key) == KEY_WRITE_TX) { 553 tls_ofld->tx_key_addr = keyid; 554 prepare_txkey_wr(kctx, k_ctx); 555 } else if (G_KEY_GET_LOC(k_ctx->l_p_key) == KEY_WRITE_RX) { 556 tls_ofld->rx_key_addr = keyid; 557 prepare_rxkey_wr(kctx, k_ctx); 558 } 559 560 txsd = &toep->txsd[toep->txsd_pidx]; 561 txsd->tx_credits = DIV_ROUND_UP(len, 16); 562 txsd->plen = 0; 563 toep->tx_credits -= txsd->tx_credits; 564 if (__predict_false(++toep->txsd_pidx == toep->txsd_total)) 565 toep->txsd_pidx = 0; 566 toep->txsd_avail--; 567 568 t4_wrq_tx(sc, wr); 569 570 return (0); 571 } 572 573 /* Store a key received from SSL in DDR. */ 574 static int 575 program_key_context(struct tcpcb *tp, struct toepcb *toep, 576 struct tls_key_context *uk_ctx) 577 { 578 struct adapter *sc = td_adapter(toep->td); 579 struct tls_ofld_info *tls_ofld = &toep->tls; 580 struct tls_key_context *k_ctx; 581 int error, key_offset; 582 583 if (tp->t_state != TCPS_ESTABLISHED) { 584 /* 585 * XXX: Matches Linux driver, but not sure this is a 586 * very appropriate error. 587 */ 588 return (ENOENT); 589 } 590 591 /* Stop timer on handshake completion */ 592 tls_stop_handshake_timer(toep); 593 594 toep->flags &= ~TPF_FORCE_CREDITS; 595 596 CTR4(KTR_CXGBE, "%s: tid %d %s proto_ver %#x", __func__, toep->tid, 597 G_KEY_GET_LOC(uk_ctx->l_p_key) == KEY_WRITE_RX ? "KEY_WRITE_RX" : 598 "KEY_WRITE_TX", uk_ctx->proto_ver); 599 600 if (G_KEY_GET_LOC(uk_ctx->l_p_key) == KEY_WRITE_RX && 601 ulp_mode(toep) != ULP_MODE_TLS) 602 return (EOPNOTSUPP); 603 604 /* Don't copy the 'tx' and 'rx' fields. */ 605 k_ctx = &tls_ofld->k_ctx; 606 memcpy(&k_ctx->l_p_key, &uk_ctx->l_p_key, 607 sizeof(*k_ctx) - offsetof(struct tls_key_context, l_p_key)); 608 609 /* TLS version != 1.1 and !1.2 OR DTLS != 1.2 */ 610 if (get_proto_ver(k_ctx->proto_ver) > DTLS_1_2_VERSION) { 611 if (G_KEY_GET_LOC(k_ctx->l_p_key) == KEY_WRITE_RX) { 612 tls_ofld->rx_key_addr = -1; 613 t4_clear_rx_quiesce(toep); 614 } else { 615 tls_ofld->tx_key_addr = -1; 616 } 617 return (0); 618 } 619 620 if (k_ctx->state.enc_mode == CH_EVP_CIPH_GCM_MODE) { 621 k_ctx->iv_size = 4; 622 k_ctx->mac_first = 0; 623 k_ctx->hmac_ctrl = 0; 624 } else { 625 k_ctx->iv_size = 8; /* for CBC, iv is 16B, unit of 2B */ 626 k_ctx->mac_first = 1; 627 } 628 629 tls_ofld->scmd0.seqno_numivs = 630 (V_SCMD_SEQ_NO_CTRL(3) | 631 V_SCMD_PROTO_VERSION(get_proto_ver(k_ctx->proto_ver)) | 632 V_SCMD_ENC_DEC_CTRL(SCMD_ENCDECCTRL_ENCRYPT) | 633 V_SCMD_CIPH_AUTH_SEQ_CTRL((k_ctx->mac_first == 0)) | 634 V_SCMD_CIPH_MODE(k_ctx->state.enc_mode) | 635 V_SCMD_AUTH_MODE(k_ctx->state.auth_mode) | 636 V_SCMD_HMAC_CTRL(k_ctx->hmac_ctrl) | 637 V_SCMD_IV_SIZE(k_ctx->iv_size)); 638 639 tls_ofld->scmd0.ivgen_hdrlen = 640 (V_SCMD_IV_GEN_CTRL(k_ctx->iv_ctrl) | 641 V_SCMD_KEY_CTX_INLINE(0) | 642 V_SCMD_TLS_FRAG_ENABLE(1)); 643 644 tls_ofld->mac_length = k_ctx->mac_secret_size; 645 646 if (G_KEY_GET_LOC(k_ctx->l_p_key) == KEY_WRITE_RX) { 647 k_ctx->rx = uk_ctx->rx; 648 /* Dont initialize key for re-neg */ 649 if (!G_KEY_CLR_LOC(k_ctx->l_p_key)) 650 tls_ofld->rx_key_addr = -1; 651 } else { 652 k_ctx->tx = uk_ctx->tx; 653 /* Dont initialize key for re-neg */ 654 if (!G_KEY_CLR_LOC(k_ctx->l_p_key)) 655 tls_ofld->tx_key_addr = -1; 656 } 657 658 /* Flush pending data before new Tx key becomes active */ 659 if (G_KEY_GET_LOC(k_ctx->l_p_key) == KEY_WRITE_TX) { 660 struct sockbuf *sb; 661 662 /* XXX: This might not drain everything. */ 663 t4_push_frames(sc, toep, 0); 664 sb = &toep->inp->inp_socket->so_snd; 665 SOCKBUF_LOCK(sb); 666 667 /* XXX: This asserts that everything has been pushed. */ 668 MPASS(sb->sb_sndptr == NULL || sb->sb_sndptr->m_next == NULL); 669 sb->sb_sndptr = NULL; 670 tls_ofld->sb_off = sbavail(sb); 671 SOCKBUF_UNLOCK(sb); 672 tls_ofld->tx_seq_no = 0; 673 } 674 675 if ((G_KEY_GET_LOC(k_ctx->l_p_key) == KEY_WRITE_RX) || 676 (tls_ofld->key_location == TLS_SFO_WR_CONTEXTLOC_DDR)) { 677 error = tls_program_key_id(toep, k_ctx); 678 if (error) { 679 /* XXX: Only clear quiesce for KEY_WRITE_RX? */ 680 t4_clear_rx_quiesce(toep); 681 return (error); 682 } 683 } 684 685 if (G_KEY_GET_LOC(k_ctx->l_p_key) == KEY_WRITE_RX) { 686 /* 687 * RX key tags are an index into the key portion of MA 688 * memory stored as an offset from the base address in 689 * units of 64 bytes. 690 */ 691 key_offset = tls_ofld->rx_key_addr - sc->vres.key.start; 692 t4_set_tls_keyid(toep, key_offset / 64); 693 t4_set_tls_tcb_field(toep, W_TCB_ULP_RAW, 694 V_TCB_ULP_RAW(M_TCB_ULP_RAW), 695 V_TCB_ULP_RAW((V_TF_TLS_KEY_SIZE(3) | 696 V_TF_TLS_CONTROL(1) | 697 V_TF_TLS_ACTIVE(1) | 698 V_TF_TLS_ENABLE(1)))); 699 t4_set_tls_tcb_field(toep, W_TCB_TLS_SEQ, 700 V_TCB_TLS_SEQ(M_TCB_TLS_SEQ), 701 V_TCB_TLS_SEQ(0)); 702 t4_clear_rx_quiesce(toep); 703 } else { 704 unsigned short pdus_per_ulp; 705 706 if (tls_ofld->key_location == TLS_SFO_WR_CONTEXTLOC_IMMEDIATE) 707 tls_ofld->tx_key_addr = 1; 708 709 tls_ofld->fcplenmax = get_tp_plen_max(tls_ofld); 710 tls_ofld->expn_per_ulp = tls_expansion_size(toep, 711 tls_ofld->fcplenmax, 1, &pdus_per_ulp); 712 tls_ofld->pdus_per_ulp = pdus_per_ulp; 713 tls_ofld->adjusted_plen = tls_ofld->pdus_per_ulp * 714 ((tls_ofld->expn_per_ulp/tls_ofld->pdus_per_ulp) + 715 tls_ofld->k_ctx.frag_size); 716 } 717 718 return (0); 719 } 720 721 /* 722 * In some cases a client connection can hang without sending the 723 * ServerHelloDone message from the NIC to the host. Send a dummy 724 * RX_DATA_ACK with RX_MODULATE to unstick the connection. 725 */ 726 static void 727 tls_send_handshake_ack(void *arg) 728 { 729 struct toepcb *toep = arg; 730 struct tls_ofld_info *tls_ofld = &toep->tls; 731 struct adapter *sc = td_adapter(toep->td); 732 733 /* 734 * XXX: Does not have the t4_get_tcb() checks to refine the 735 * workaround. 736 */ 737 callout_schedule(&tls_ofld->handshake_timer, TLS_SRV_HELLO_RD_TM * hz); 738 739 CTR2(KTR_CXGBE, "%s: tid %d sending RX_DATA_ACK", __func__, toep->tid); 740 send_rx_modulate(sc, toep); 741 } 742 743 static void 744 tls_start_handshake_timer(struct toepcb *toep) 745 { 746 struct tls_ofld_info *tls_ofld = &toep->tls; 747 748 mtx_lock(&tls_handshake_lock); 749 callout_reset(&tls_ofld->handshake_timer, TLS_SRV_HELLO_BKOFF_TM * hz, 750 tls_send_handshake_ack, toep); 751 mtx_unlock(&tls_handshake_lock); 752 } 753 754 void 755 tls_stop_handshake_timer(struct toepcb *toep) 756 { 757 struct tls_ofld_info *tls_ofld = &toep->tls; 758 759 mtx_lock(&tls_handshake_lock); 760 callout_stop(&tls_ofld->handshake_timer); 761 mtx_unlock(&tls_handshake_lock); 762 } 763 764 int 765 t4_ctloutput_tls(struct socket *so, struct sockopt *sopt) 766 { 767 struct tls_key_context uk_ctx; 768 struct inpcb *inp; 769 struct tcpcb *tp; 770 struct toepcb *toep; 771 int error, optval; 772 773 error = 0; 774 if (sopt->sopt_dir == SOPT_SET && 775 sopt->sopt_name == TCP_TLSOM_SET_TLS_CONTEXT) { 776 error = sooptcopyin(sopt, &uk_ctx, sizeof(uk_ctx), 777 sizeof(uk_ctx)); 778 if (error) 779 return (error); 780 } 781 782 inp = sotoinpcb(so); 783 KASSERT(inp != NULL, ("tcp_ctloutput: inp == NULL")); 784 INP_WLOCK(inp); 785 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 786 INP_WUNLOCK(inp); 787 return (ECONNRESET); 788 } 789 tp = intotcpcb(inp); 790 toep = tp->t_toe; 791 switch (sopt->sopt_dir) { 792 case SOPT_SET: 793 switch (sopt->sopt_name) { 794 case TCP_TLSOM_SET_TLS_CONTEXT: 795 if (toep->tls.mode == TLS_MODE_KTLS) 796 error = EINVAL; 797 else { 798 error = program_key_context(tp, toep, &uk_ctx); 799 if (error == 0) 800 toep->tls.mode = TLS_MODE_TLSOM; 801 } 802 INP_WUNLOCK(inp); 803 break; 804 case TCP_TLSOM_CLR_TLS_TOM: 805 if (toep->tls.mode == TLS_MODE_KTLS) 806 error = EINVAL; 807 else if (ulp_mode(toep) == ULP_MODE_TLS) { 808 CTR2(KTR_CXGBE, "%s: tid %d CLR_TLS_TOM", 809 __func__, toep->tid); 810 tls_clr_ofld_mode(toep); 811 } else 812 error = EOPNOTSUPP; 813 INP_WUNLOCK(inp); 814 break; 815 case TCP_TLSOM_CLR_QUIES: 816 if (toep->tls.mode == TLS_MODE_KTLS) 817 error = EINVAL; 818 else if (ulp_mode(toep) == ULP_MODE_TLS) { 819 CTR2(KTR_CXGBE, "%s: tid %d CLR_QUIES", 820 __func__, toep->tid); 821 tls_clr_quiesce(toep); 822 } else 823 error = EOPNOTSUPP; 824 INP_WUNLOCK(inp); 825 break; 826 default: 827 INP_WUNLOCK(inp); 828 error = EOPNOTSUPP; 829 break; 830 } 831 break; 832 case SOPT_GET: 833 switch (sopt->sopt_name) { 834 case TCP_TLSOM_GET_TLS_TOM: 835 /* 836 * TLS TX is permitted on any TOE socket, but 837 * TLS RX requires a TLS ULP mode. 838 */ 839 optval = TLS_TOM_NONE; 840 if (can_tls_offload(td_adapter(toep->td)) && 841 toep->tls.mode != TLS_MODE_KTLS) { 842 switch (ulp_mode(toep)) { 843 case ULP_MODE_NONE: 844 case ULP_MODE_TCPDDP: 845 optval = TLS_TOM_TXONLY; 846 break; 847 case ULP_MODE_TLS: 848 optval = TLS_TOM_BOTH; 849 break; 850 } 851 } 852 CTR3(KTR_CXGBE, "%s: tid %d GET_TLS_TOM = %d", 853 __func__, toep->tid, optval); 854 INP_WUNLOCK(inp); 855 error = sooptcopyout(sopt, &optval, sizeof(optval)); 856 break; 857 default: 858 INP_WUNLOCK(inp); 859 error = EOPNOTSUPP; 860 break; 861 } 862 break; 863 } 864 return (error); 865 } 866 867 #ifdef KERN_TLS 868 /* XXX: Should share this with ccr(4) eventually. */ 869 static void 870 init_ktls_gmac_hash(const char *key, int klen, char *ghash) 871 { 872 static char zeroes[GMAC_BLOCK_LEN]; 873 uint32_t keysched[4 * (RIJNDAEL_MAXNR + 1)]; 874 int rounds; 875 876 rounds = rijndaelKeySetupEnc(keysched, key, klen); 877 rijndaelEncrypt(keysched, rounds, zeroes, ghash); 878 } 879 880 /* XXX: Should share this with ccr(4) eventually. */ 881 static void 882 ktls_copy_partial_hash(void *dst, int cri_alg, union authctx *auth_ctx) 883 { 884 uint32_t *u32; 885 uint64_t *u64; 886 u_int i; 887 888 u32 = (uint32_t *)dst; 889 u64 = (uint64_t *)dst; 890 switch (cri_alg) { 891 case CRYPTO_SHA1_HMAC: 892 for (i = 0; i < SHA1_HASH_LEN / 4; i++) 893 u32[i] = htobe32(auth_ctx->sha1ctx.h.b32[i]); 894 break; 895 case CRYPTO_SHA2_256_HMAC: 896 for (i = 0; i < SHA2_256_HASH_LEN / 4; i++) 897 u32[i] = htobe32(auth_ctx->sha256ctx.state[i]); 898 break; 899 case CRYPTO_SHA2_384_HMAC: 900 for (i = 0; i < SHA2_512_HASH_LEN / 8; i++) 901 u64[i] = htobe64(auth_ctx->sha384ctx.state[i]); 902 break; 903 } 904 } 905 906 static void 907 init_ktls_hmac_digest(struct auth_hash *axf, u_int partial_digest_len, 908 char *key, int klen, char *dst) 909 { 910 union authctx auth_ctx; 911 char ipad[SHA2_512_BLOCK_LEN], opad[SHA2_512_BLOCK_LEN]; 912 u_int i; 913 914 /* 915 * If the key is larger than the block size, use the digest of 916 * the key as the key instead. 917 */ 918 klen /= 8; 919 if (klen > axf->blocksize) { 920 axf->Init(&auth_ctx); 921 axf->Update(&auth_ctx, key, klen); 922 axf->Final(ipad, &auth_ctx); 923 klen = axf->hashsize; 924 } else 925 memcpy(ipad, key, klen); 926 927 memset(ipad + klen, 0, axf->blocksize - klen); 928 memcpy(opad, ipad, axf->blocksize); 929 930 for (i = 0; i < axf->blocksize; i++) { 931 ipad[i] ^= HMAC_IPAD_VAL; 932 opad[i] ^= HMAC_OPAD_VAL; 933 } 934 935 /* 936 * Hash the raw ipad and opad and store the partial results in 937 * the key context. 938 */ 939 axf->Init(&auth_ctx); 940 axf->Update(&auth_ctx, ipad, axf->blocksize); 941 ktls_copy_partial_hash(dst, axf->type, &auth_ctx); 942 943 dst += roundup2(partial_digest_len, 16); 944 axf->Init(&auth_ctx); 945 axf->Update(&auth_ctx, opad, axf->blocksize); 946 ktls_copy_partial_hash(dst, axf->type, &auth_ctx); 947 } 948 949 static void 950 init_ktls_key_context(struct ktls_session *tls, struct tls_key_context *k_ctx) 951 { 952 struct auth_hash *axf; 953 u_int mac_key_size; 954 char *hash; 955 956 k_ctx->l_p_key = V_KEY_GET_LOC(KEY_WRITE_TX); 957 if (tls->params.tls_vminor == TLS_MINOR_VER_ONE) 958 k_ctx->proto_ver = SCMD_PROTO_VERSION_TLS_1_1; 959 else 960 k_ctx->proto_ver = SCMD_PROTO_VERSION_TLS_1_2; 961 k_ctx->cipher_secret_size = tls->params.cipher_key_len; 962 k_ctx->tx_key_info_size = sizeof(struct tx_keyctx_hdr) + 963 k_ctx->cipher_secret_size; 964 memcpy(k_ctx->tx.key, tls->params.cipher_key, 965 tls->params.cipher_key_len); 966 hash = k_ctx->tx.key + tls->params.cipher_key_len; 967 if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16) { 968 k_ctx->state.auth_mode = SCMD_AUTH_MODE_GHASH; 969 k_ctx->state.enc_mode = SCMD_CIPH_MODE_AES_GCM; 970 k_ctx->iv_size = 4; 971 k_ctx->mac_first = 0; 972 k_ctx->hmac_ctrl = SCMD_HMAC_CTRL_NOP; 973 k_ctx->tx_key_info_size += GMAC_BLOCK_LEN; 974 memcpy(k_ctx->tx.salt, tls->params.iv, SALT_SIZE); 975 init_ktls_gmac_hash(tls->params.cipher_key, 976 tls->params.cipher_key_len * 8, hash); 977 } else { 978 switch (tls->params.auth_algorithm) { 979 case CRYPTO_SHA1_HMAC: 980 axf = &auth_hash_hmac_sha1; 981 mac_key_size = SHA1_HASH_LEN; 982 k_ctx->state.auth_mode = SCMD_AUTH_MODE_SHA1; 983 break; 984 case CRYPTO_SHA2_256_HMAC: 985 axf = &auth_hash_hmac_sha2_256; 986 mac_key_size = SHA2_256_HASH_LEN; 987 k_ctx->state.auth_mode = SCMD_AUTH_MODE_SHA256; 988 break; 989 case CRYPTO_SHA2_384_HMAC: 990 axf = &auth_hash_hmac_sha2_384; 991 mac_key_size = SHA2_512_HASH_LEN; 992 k_ctx->state.auth_mode = SCMD_AUTH_MODE_SHA512_384; 993 break; 994 default: 995 panic("bad auth mode"); 996 } 997 k_ctx->state.enc_mode = SCMD_CIPH_MODE_AES_CBC; 998 k_ctx->iv_size = 8; /* for CBC, iv is 16B, unit of 2B */ 999 k_ctx->mac_first = 1; 1000 k_ctx->hmac_ctrl = SCMD_HMAC_CTRL_NO_TRUNC; 1001 k_ctx->tx_key_info_size += roundup2(mac_key_size, 16) * 2; 1002 k_ctx->mac_secret_size = mac_key_size; 1003 init_ktls_hmac_digest(axf, mac_key_size, tls->params.auth_key, 1004 tls->params.auth_key_len * 8, hash); 1005 } 1006 1007 k_ctx->frag_size = tls->params.max_frame_len; 1008 k_ctx->iv_ctrl = 1; 1009 } 1010 1011 int 1012 tls_alloc_ktls(struct toepcb *toep, struct ktls_session *tls) 1013 { 1014 struct tls_key_context *k_ctx; 1015 int error; 1016 1017 if (toep->tls.mode == TLS_MODE_TLSOM) 1018 return (EINVAL); 1019 if (!can_tls_offload(td_adapter(toep->td))) 1020 return (EINVAL); 1021 switch (ulp_mode(toep)) { 1022 case ULP_MODE_NONE: 1023 case ULP_MODE_TCPDDP: 1024 break; 1025 default: 1026 return (EINVAL); 1027 } 1028 1029 switch (tls->params.cipher_algorithm) { 1030 case CRYPTO_AES_CBC: 1031 /* XXX: Explicitly ignore any provided IV. */ 1032 switch (tls->params.cipher_key_len) { 1033 case 128 / 8: 1034 case 192 / 8: 1035 case 256 / 8: 1036 break; 1037 default: 1038 return (EINVAL); 1039 } 1040 switch (tls->params.auth_algorithm) { 1041 case CRYPTO_SHA1_HMAC: 1042 case CRYPTO_SHA2_256_HMAC: 1043 case CRYPTO_SHA2_384_HMAC: 1044 break; 1045 default: 1046 return (EPROTONOSUPPORT); 1047 } 1048 break; 1049 case CRYPTO_AES_NIST_GCM_16: 1050 if (tls->params.iv_len != SALT_SIZE) 1051 return (EINVAL); 1052 switch (tls->params.cipher_key_len) { 1053 case 128 / 8: 1054 case 192 / 8: 1055 case 256 / 8: 1056 break; 1057 default: 1058 return (EINVAL); 1059 } 1060 break; 1061 default: 1062 return (EPROTONOSUPPORT); 1063 } 1064 1065 /* Only TLS 1.1 and TLS 1.2 are currently supported. */ 1066 if (tls->params.tls_vmajor != TLS_MAJOR_VER_ONE || 1067 tls->params.tls_vminor < TLS_MINOR_VER_ONE || 1068 tls->params.tls_vminor > TLS_MINOR_VER_TWO) 1069 return (EPROTONOSUPPORT); 1070 1071 /* 1072 * XXX: This assumes no key renegotation. If KTLS ever supports 1073 * that we will want to allocate TLS sessions dynamically rather 1074 * than as a static member of toep. 1075 */ 1076 k_ctx = &toep->tls.k_ctx; 1077 init_ktls_key_context(tls, k_ctx); 1078 1079 toep->tls.scmd0.seqno_numivs = 1080 (V_SCMD_SEQ_NO_CTRL(3) | 1081 V_SCMD_PROTO_VERSION(k_ctx->proto_ver) | 1082 V_SCMD_ENC_DEC_CTRL(SCMD_ENCDECCTRL_ENCRYPT) | 1083 V_SCMD_CIPH_AUTH_SEQ_CTRL((k_ctx->mac_first == 0)) | 1084 V_SCMD_CIPH_MODE(k_ctx->state.enc_mode) | 1085 V_SCMD_AUTH_MODE(k_ctx->state.auth_mode) | 1086 V_SCMD_HMAC_CTRL(k_ctx->hmac_ctrl) | 1087 V_SCMD_IV_SIZE(k_ctx->iv_size)); 1088 1089 toep->tls.scmd0.ivgen_hdrlen = 1090 (V_SCMD_IV_GEN_CTRL(k_ctx->iv_ctrl) | 1091 V_SCMD_KEY_CTX_INLINE(0) | 1092 V_SCMD_TLS_FRAG_ENABLE(1)); 1093 1094 if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16) 1095 toep->tls.iv_len = 8; 1096 else 1097 toep->tls.iv_len = AES_BLOCK_LEN; 1098 1099 toep->tls.mac_length = k_ctx->mac_secret_size; 1100 1101 toep->tls.tx_key_addr = -1; 1102 1103 error = tls_program_key_id(toep, k_ctx); 1104 if (error) 1105 return (error); 1106 1107 toep->tls.fcplenmax = get_tp_plen_max(&toep->tls); 1108 toep->tls.expn_per_ulp = tls->params.tls_hlen + tls->params.tls_tlen; 1109 toep->tls.pdus_per_ulp = 1; 1110 toep->tls.adjusted_plen = toep->tls.expn_per_ulp + 1111 toep->tls.k_ctx.frag_size; 1112 1113 toep->tls.mode = TLS_MODE_KTLS; 1114 1115 return (0); 1116 } 1117 #endif 1118 1119 void 1120 tls_init_toep(struct toepcb *toep) 1121 { 1122 struct tls_ofld_info *tls_ofld = &toep->tls; 1123 1124 tls_ofld->mode = TLS_MODE_OFF; 1125 tls_ofld->key_location = TLS_SFO_WR_CONTEXTLOC_DDR; 1126 tls_ofld->rx_key_addr = -1; 1127 tls_ofld->tx_key_addr = -1; 1128 if (ulp_mode(toep) == ULP_MODE_TLS) 1129 callout_init_mtx(&tls_ofld->handshake_timer, 1130 &tls_handshake_lock, 0); 1131 } 1132 1133 void 1134 tls_establish(struct toepcb *toep) 1135 { 1136 1137 /* 1138 * Enable PDU extraction. 1139 * 1140 * XXX: Supposedly this should be done by the firmware when 1141 * the ULP_MODE FLOWC parameter is set in send_flowc_wr(), but 1142 * in practice this seems to be required. 1143 */ 1144 CTR2(KTR_CXGBE, "%s: tid %d setting TLS_ENABLE", __func__, toep->tid); 1145 t4_set_tls_tcb_field(toep, W_TCB_ULP_RAW, V_TCB_ULP_RAW(M_TCB_ULP_RAW), 1146 V_TCB_ULP_RAW(V_TF_TLS_ENABLE(1))); 1147 1148 toep->flags |= TPF_FORCE_CREDITS; 1149 1150 tls_start_handshake_timer(toep); 1151 } 1152 1153 void 1154 tls_uninit_toep(struct toepcb *toep) 1155 { 1156 1157 if (ulp_mode(toep) == ULP_MODE_TLS) 1158 tls_stop_handshake_timer(toep); 1159 clear_tls_keyid(toep); 1160 } 1161 1162 #define MAX_OFLD_TX_CREDITS (SGE_MAX_WR_LEN / 16) 1163 #define MIN_OFLD_TLSTX_CREDITS(toep) \ 1164 (howmany(sizeof(struct fw_tlstx_data_wr) + \ 1165 sizeof(struct cpl_tx_tls_sfo) + key_size((toep)) + \ 1166 CIPHER_BLOCK_SIZE + 1, 16)) 1167 1168 static inline u_int 1169 max_imm_tls_space(int tx_credits) 1170 { 1171 const int n = 2; /* Use only up to 2 desc for imm. data WR */ 1172 int space; 1173 1174 KASSERT(tx_credits >= 0 && 1175 tx_credits <= MAX_OFLD_TX_CREDITS, 1176 ("%s: %d credits", __func__, tx_credits)); 1177 1178 if (tx_credits >= (n * EQ_ESIZE) / 16) 1179 space = (n * EQ_ESIZE); 1180 else 1181 space = tx_credits * 16; 1182 return (space); 1183 } 1184 1185 static int 1186 count_mbuf_segs(struct mbuf *m, int skip, int len, int *max_nsegs_1mbufp) 1187 { 1188 int max_nsegs_1mbuf, n, nsegs; 1189 1190 while (skip >= m->m_len) { 1191 skip -= m->m_len; 1192 m = m->m_next; 1193 } 1194 1195 nsegs = 0; 1196 max_nsegs_1mbuf = 0; 1197 while (len > 0) { 1198 n = sglist_count(mtod(m, char *) + skip, m->m_len - skip); 1199 if (n > max_nsegs_1mbuf) 1200 max_nsegs_1mbuf = n; 1201 nsegs += n; 1202 len -= m->m_len - skip; 1203 skip = 0; 1204 m = m->m_next; 1205 } 1206 *max_nsegs_1mbufp = max_nsegs_1mbuf; 1207 return (nsegs); 1208 } 1209 1210 static void 1211 write_tlstx_wr(struct fw_tlstx_data_wr *txwr, struct toepcb *toep, 1212 unsigned int immdlen, unsigned int plen, unsigned int expn, 1213 unsigned int pdus, uint8_t credits, int shove, int imm_ivs) 1214 { 1215 struct tls_ofld_info *tls_ofld = &toep->tls; 1216 unsigned int len = plen + expn; 1217 1218 txwr->op_to_immdlen = htobe32(V_WR_OP(FW_TLSTX_DATA_WR) | 1219 V_FW_TLSTX_DATA_WR_COMPL(1) | 1220 V_FW_TLSTX_DATA_WR_IMMDLEN(immdlen)); 1221 txwr->flowid_len16 = htobe32(V_FW_TLSTX_DATA_WR_FLOWID(toep->tid) | 1222 V_FW_TLSTX_DATA_WR_LEN16(credits)); 1223 txwr->plen = htobe32(len); 1224 txwr->lsodisable_to_flags = htobe32(V_TX_ULP_MODE(ULP_MODE_TLS) | 1225 V_TX_URG(0) | /* F_T6_TX_FORCE | */ V_TX_SHOVE(shove)); 1226 txwr->ctxloc_to_exp = htobe32(V_FW_TLSTX_DATA_WR_NUMIVS(pdus) | 1227 V_FW_TLSTX_DATA_WR_EXP(expn) | 1228 V_FW_TLSTX_DATA_WR_CTXLOC(tls_ofld->key_location) | 1229 V_FW_TLSTX_DATA_WR_IVDSGL(!imm_ivs) | 1230 V_FW_TLSTX_DATA_WR_KEYSIZE(tls_ofld->k_ctx.tx_key_info_size >> 4)); 1231 txwr->mfs = htobe16(tls_ofld->k_ctx.frag_size); 1232 txwr->adjustedplen_pkd = htobe16( 1233 V_FW_TLSTX_DATA_WR_ADJUSTEDPLEN(tls_ofld->adjusted_plen)); 1234 txwr->expinplenmax_pkd = htobe16( 1235 V_FW_TLSTX_DATA_WR_EXPINPLENMAX(tls_ofld->expn_per_ulp)); 1236 txwr->pdusinplenmax_pkd = 1237 V_FW_TLSTX_DATA_WR_PDUSINPLENMAX(tls_ofld->pdus_per_ulp); 1238 } 1239 1240 static void 1241 write_tlstx_cpl(struct cpl_tx_tls_sfo *cpl, struct toepcb *toep, 1242 struct tls_hdr *tls_hdr, unsigned int plen, unsigned int pdus) 1243 { 1244 struct tls_ofld_info *tls_ofld = &toep->tls; 1245 int data_type, seglen; 1246 1247 if (plen < tls_ofld->k_ctx.frag_size) 1248 seglen = plen; 1249 else 1250 seglen = tls_ofld->k_ctx.frag_size; 1251 data_type = tls_content_type(tls_hdr->type); 1252 cpl->op_to_seg_len = htobe32(V_CPL_TX_TLS_SFO_OPCODE(CPL_TX_TLS_SFO) | 1253 V_CPL_TX_TLS_SFO_DATA_TYPE(data_type) | 1254 V_CPL_TX_TLS_SFO_CPL_LEN(2) | V_CPL_TX_TLS_SFO_SEG_LEN(seglen)); 1255 cpl->pld_len = htobe32(plen); 1256 if (data_type == CPL_TX_TLS_SFO_TYPE_HEARTBEAT) 1257 cpl->type_protover = htobe32( 1258 V_CPL_TX_TLS_SFO_TYPE(tls_hdr->type)); 1259 cpl->seqno_numivs = htobe32(tls_ofld->scmd0.seqno_numivs | 1260 V_SCMD_NUM_IVS(pdus)); 1261 cpl->ivgen_hdrlen = htobe32(tls_ofld->scmd0.ivgen_hdrlen); 1262 cpl->scmd1 = htobe64(tls_ofld->tx_seq_no); 1263 tls_ofld->tx_seq_no += pdus; 1264 } 1265 1266 /* 1267 * Similar to write_tx_sgl() except that it accepts an optional 1268 * trailer buffer for IVs. 1269 */ 1270 static void 1271 write_tlstx_sgl(void *dst, struct mbuf *start, int skip, int plen, 1272 void *iv_buffer, int iv_len, int nsegs, int n) 1273 { 1274 struct mbuf *m; 1275 struct ulptx_sgl *usgl = dst; 1276 int i, j, rc; 1277 struct sglist sg; 1278 struct sglist_seg segs[n]; 1279 1280 KASSERT(nsegs > 0, ("%s: nsegs 0", __func__)); 1281 1282 sglist_init(&sg, n, segs); 1283 usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) | 1284 V_ULPTX_NSGE(nsegs)); 1285 1286 for (m = start; skip >= m->m_len; m = m->m_next) 1287 skip -= m->m_len; 1288 1289 i = -1; 1290 for (m = start; plen > 0; m = m->m_next) { 1291 rc = sglist_append(&sg, mtod(m, char *) + skip, 1292 m->m_len - skip); 1293 if (__predict_false(rc != 0)) 1294 panic("%s: sglist_append %d", __func__, rc); 1295 plen -= m->m_len - skip; 1296 skip = 0; 1297 1298 for (j = 0; j < sg.sg_nseg; i++, j++) { 1299 if (i < 0) { 1300 usgl->len0 = htobe32(segs[j].ss_len); 1301 usgl->addr0 = htobe64(segs[j].ss_paddr); 1302 } else { 1303 usgl->sge[i / 2].len[i & 1] = 1304 htobe32(segs[j].ss_len); 1305 usgl->sge[i / 2].addr[i & 1] = 1306 htobe64(segs[j].ss_paddr); 1307 } 1308 #ifdef INVARIANTS 1309 nsegs--; 1310 #endif 1311 } 1312 sglist_reset(&sg); 1313 } 1314 if (iv_buffer != NULL) { 1315 rc = sglist_append(&sg, iv_buffer, iv_len); 1316 if (__predict_false(rc != 0)) 1317 panic("%s: sglist_append %d", __func__, rc); 1318 1319 for (j = 0; j < sg.sg_nseg; i++, j++) { 1320 if (i < 0) { 1321 usgl->len0 = htobe32(segs[j].ss_len); 1322 usgl->addr0 = htobe64(segs[j].ss_paddr); 1323 } else { 1324 usgl->sge[i / 2].len[i & 1] = 1325 htobe32(segs[j].ss_len); 1326 usgl->sge[i / 2].addr[i & 1] = 1327 htobe64(segs[j].ss_paddr); 1328 } 1329 #ifdef INVARIANTS 1330 nsegs--; 1331 #endif 1332 } 1333 } 1334 if (i & 1) 1335 usgl->sge[i / 2].len[1] = htobe32(0); 1336 KASSERT(nsegs == 0, ("%s: nsegs %d, start %p, iv_buffer %p", 1337 __func__, nsegs, start, iv_buffer)); 1338 } 1339 1340 /* 1341 * Similar to t4_push_frames() but handles TLS sockets when TLS offload 1342 * is enabled. Rather than transmitting bulk data, the socket buffer 1343 * contains TLS records. The work request requires a full TLS record, 1344 * so batch mbufs up until a full TLS record is seen. This requires 1345 * reading the TLS header out of the start of each record to determine 1346 * its length. 1347 */ 1348 void 1349 t4_push_tls_records(struct adapter *sc, struct toepcb *toep, int drop) 1350 { 1351 struct tls_hdr thdr; 1352 struct mbuf *sndptr; 1353 struct fw_tlstx_data_wr *txwr; 1354 struct cpl_tx_tls_sfo *cpl; 1355 struct wrqe *wr; 1356 u_int plen, nsegs, credits, space, max_nsegs_1mbuf, wr_len; 1357 u_int expn_size, iv_len, pdus, sndptroff; 1358 struct tls_ofld_info *tls_ofld = &toep->tls; 1359 struct inpcb *inp = toep->inp; 1360 struct tcpcb *tp = intotcpcb(inp); 1361 struct socket *so = inp->inp_socket; 1362 struct sockbuf *sb = &so->so_snd; 1363 int tls_size, tx_credits, shove, /* compl,*/ sowwakeup; 1364 struct ofld_tx_sdesc *txsd; 1365 bool imm_ivs, imm_payload; 1366 void *iv_buffer, *iv_dst, *buf; 1367 1368 INP_WLOCK_ASSERT(inp); 1369 KASSERT(toep->flags & TPF_FLOWC_WR_SENT, 1370 ("%s: flowc_wr not sent for tid %u.", __func__, toep->tid)); 1371 1372 KASSERT(ulp_mode(toep) == ULP_MODE_NONE || 1373 ulp_mode(toep) == ULP_MODE_TCPDDP || ulp_mode(toep) == ULP_MODE_TLS, 1374 ("%s: ulp_mode %u for toep %p", __func__, ulp_mode(toep), toep)); 1375 KASSERT(tls_tx_key(toep), 1376 ("%s: TX key not set for toep %p", __func__, toep)); 1377 1378 #ifdef VERBOSE_TRACES 1379 CTR4(KTR_CXGBE, "%s: tid %d toep flags %#x tp flags %#x drop %d", 1380 __func__, toep->tid, toep->flags, tp->t_flags); 1381 #endif 1382 if (__predict_false(toep->flags & TPF_ABORT_SHUTDOWN)) 1383 return; 1384 1385 #ifdef RATELIMIT 1386 if (__predict_false(inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) && 1387 (update_tx_rate_limit(sc, toep, so->so_max_pacing_rate) == 0)) { 1388 inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED; 1389 } 1390 #endif 1391 1392 /* 1393 * This function doesn't resume by itself. Someone else must clear the 1394 * flag and call this function. 1395 */ 1396 if (__predict_false(toep->flags & TPF_TX_SUSPENDED)) { 1397 KASSERT(drop == 0, 1398 ("%s: drop (%d) != 0 but tx is suspended", __func__, drop)); 1399 return; 1400 } 1401 1402 txsd = &toep->txsd[toep->txsd_pidx]; 1403 for (;;) { 1404 tx_credits = min(toep->tx_credits, MAX_OFLD_TX_CREDITS); 1405 space = max_imm_tls_space(tx_credits); 1406 wr_len = sizeof(struct fw_tlstx_data_wr) + 1407 sizeof(struct cpl_tx_tls_sfo) + key_size(toep); 1408 if (wr_len + CIPHER_BLOCK_SIZE + 1 > space) { 1409 #ifdef VERBOSE_TRACES 1410 CTR5(KTR_CXGBE, 1411 "%s: tid %d tx_credits %d min_wr %d space %d", 1412 __func__, toep->tid, tx_credits, wr_len + 1413 CIPHER_BLOCK_SIZE + 1, space); 1414 #endif 1415 return; 1416 } 1417 1418 SOCKBUF_LOCK(sb); 1419 sowwakeup = drop; 1420 if (drop) { 1421 sbdrop_locked(sb, drop); 1422 MPASS(tls_ofld->sb_off >= drop); 1423 tls_ofld->sb_off -= drop; 1424 drop = 0; 1425 } 1426 1427 /* 1428 * Send a FIN if requested, but only if there's no 1429 * more data to send. 1430 */ 1431 if (sbavail(sb) == tls_ofld->sb_off && 1432 toep->flags & TPF_SEND_FIN) { 1433 if (sowwakeup) 1434 sowwakeup_locked(so); 1435 else 1436 SOCKBUF_UNLOCK(sb); 1437 SOCKBUF_UNLOCK_ASSERT(sb); 1438 t4_close_conn(sc, toep); 1439 return; 1440 } 1441 1442 if (sbavail(sb) < tls_ofld->sb_off + TLS_HEADER_LENGTH) { 1443 /* 1444 * A full TLS header is not yet queued, stop 1445 * for now until more data is added to the 1446 * socket buffer. However, if the connection 1447 * has been closed, we will never get the rest 1448 * of the header so just discard the partial 1449 * header and close the connection. 1450 */ 1451 #ifdef VERBOSE_TRACES 1452 CTR5(KTR_CXGBE, "%s: tid %d sbavail %d sb_off %d%s", 1453 __func__, toep->tid, sbavail(sb), tls_ofld->sb_off, 1454 toep->flags & TPF_SEND_FIN ? "" : " SEND_FIN"); 1455 #endif 1456 if (sowwakeup) 1457 sowwakeup_locked(so); 1458 else 1459 SOCKBUF_UNLOCK(sb); 1460 SOCKBUF_UNLOCK_ASSERT(sb); 1461 if (toep->flags & TPF_SEND_FIN) 1462 t4_close_conn(sc, toep); 1463 return; 1464 } 1465 1466 /* Read the header of the next TLS record. */ 1467 sndptr = sbsndmbuf(sb, tls_ofld->sb_off, &sndptroff); 1468 m_copydata(sndptr, sndptroff, sizeof(thdr), (caddr_t)&thdr); 1469 tls_size = htons(thdr.length); 1470 plen = TLS_HEADER_LENGTH + tls_size; 1471 pdus = howmany(tls_size, tls_ofld->k_ctx.frag_size); 1472 iv_len = pdus * CIPHER_BLOCK_SIZE; 1473 1474 if (sbavail(sb) < tls_ofld->sb_off + plen) { 1475 /* 1476 * The full TLS record is not yet queued, stop 1477 * for now until more data is added to the 1478 * socket buffer. However, if the connection 1479 * has been closed, we will never get the rest 1480 * of the record so just discard the partial 1481 * record and close the connection. 1482 */ 1483 #ifdef VERBOSE_TRACES 1484 CTR6(KTR_CXGBE, 1485 "%s: tid %d sbavail %d sb_off %d plen %d%s", 1486 __func__, toep->tid, sbavail(sb), tls_ofld->sb_off, 1487 plen, toep->flags & TPF_SEND_FIN ? "" : 1488 " SEND_FIN"); 1489 #endif 1490 if (sowwakeup) 1491 sowwakeup_locked(so); 1492 else 1493 SOCKBUF_UNLOCK(sb); 1494 SOCKBUF_UNLOCK_ASSERT(sb); 1495 if (toep->flags & TPF_SEND_FIN) 1496 t4_close_conn(sc, toep); 1497 return; 1498 } 1499 1500 /* Shove if there is no additional data pending. */ 1501 shove = (sbavail(sb) == tls_ofld->sb_off + plen) && 1502 !(tp->t_flags & TF_MORETOCOME); 1503 1504 if (sb->sb_flags & SB_AUTOSIZE && 1505 V_tcp_do_autosndbuf && 1506 sb->sb_hiwat < V_tcp_autosndbuf_max && 1507 sbused(sb) >= sb->sb_hiwat * 7 / 8) { 1508 int newsize = min(sb->sb_hiwat + V_tcp_autosndbuf_inc, 1509 V_tcp_autosndbuf_max); 1510 1511 if (!sbreserve_locked(sb, newsize, so, NULL)) 1512 sb->sb_flags &= ~SB_AUTOSIZE; 1513 else 1514 sowwakeup = 1; /* room available */ 1515 } 1516 if (sowwakeup) 1517 sowwakeup_locked(so); 1518 else 1519 SOCKBUF_UNLOCK(sb); 1520 SOCKBUF_UNLOCK_ASSERT(sb); 1521 1522 if (__predict_false(toep->flags & TPF_FIN_SENT)) 1523 panic("%s: excess tx.", __func__); 1524 1525 /* Determine whether to use immediate vs SGL. */ 1526 imm_payload = false; 1527 imm_ivs = false; 1528 if (wr_len + iv_len <= space) { 1529 imm_ivs = true; 1530 wr_len += iv_len; 1531 if (wr_len + tls_size <= space) { 1532 wr_len += tls_size; 1533 imm_payload = true; 1534 } 1535 } 1536 1537 /* Allocate space for IVs if needed. */ 1538 if (!imm_ivs) { 1539 iv_buffer = malloc(iv_len, M_CXGBE, M_NOWAIT); 1540 if (iv_buffer == NULL) { 1541 /* 1542 * XXX: How to restart this? 1543 */ 1544 if (sowwakeup) 1545 sowwakeup_locked(so); 1546 else 1547 SOCKBUF_UNLOCK(sb); 1548 SOCKBUF_UNLOCK_ASSERT(sb); 1549 CTR3(KTR_CXGBE, 1550 "%s: tid %d failed to alloc IV space len %d", 1551 __func__, toep->tid, iv_len); 1552 return; 1553 } 1554 } else 1555 iv_buffer = NULL; 1556 1557 /* Determine size of SGL. */ 1558 nsegs = 0; 1559 max_nsegs_1mbuf = 0; /* max # of SGL segments in any one mbuf */ 1560 if (!imm_payload) { 1561 nsegs = count_mbuf_segs(sndptr, sndptroff + 1562 TLS_HEADER_LENGTH, tls_size, &max_nsegs_1mbuf); 1563 if (!imm_ivs) { 1564 int n = sglist_count(iv_buffer, iv_len); 1565 nsegs += n; 1566 if (n > max_nsegs_1mbuf) 1567 max_nsegs_1mbuf = n; 1568 } 1569 1570 /* Account for SGL in work request length. */ 1571 wr_len += sizeof(struct ulptx_sgl) + 1572 ((3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1)) * 8; 1573 } 1574 1575 wr = alloc_wrqe(roundup2(wr_len, 16), toep->ofld_txq); 1576 if (wr == NULL) { 1577 /* XXX: how will we recover from this? */ 1578 toep->flags |= TPF_TX_SUSPENDED; 1579 return; 1580 } 1581 1582 #ifdef VERBOSE_TRACES 1583 CTR5(KTR_CXGBE, "%s: tid %d TLS record %d len %#x pdus %d", 1584 __func__, toep->tid, thdr.type, tls_size, pdus); 1585 #endif 1586 txwr = wrtod(wr); 1587 cpl = (struct cpl_tx_tls_sfo *)(txwr + 1); 1588 memset(txwr, 0, roundup2(wr_len, 16)); 1589 credits = howmany(wr_len, 16); 1590 expn_size = tls_expansion_size(toep, tls_size, 0, NULL); 1591 write_tlstx_wr(txwr, toep, imm_payload ? tls_size : 0, 1592 tls_size, expn_size, pdus, credits, shove, imm_ivs ? 1 : 0); 1593 write_tlstx_cpl(cpl, toep, &thdr, tls_size, pdus); 1594 tls_copy_tx_key(toep, cpl + 1); 1595 1596 /* Generate random IVs */ 1597 buf = (char *)(cpl + 1) + key_size(toep); 1598 if (imm_ivs) { 1599 MPASS(iv_buffer == NULL); 1600 iv_dst = buf; 1601 buf = (char *)iv_dst + iv_len; 1602 } else 1603 iv_dst = iv_buffer; 1604 arc4rand(iv_dst, iv_len, 0); 1605 1606 if (imm_payload) { 1607 m_copydata(sndptr, sndptroff + TLS_HEADER_LENGTH, 1608 tls_size, buf); 1609 } else { 1610 write_tlstx_sgl(buf, sndptr, 1611 sndptroff + TLS_HEADER_LENGTH, tls_size, iv_buffer, 1612 iv_len, nsegs, max_nsegs_1mbuf); 1613 } 1614 1615 KASSERT(toep->tx_credits >= credits, 1616 ("%s: not enough credits", __func__)); 1617 1618 toep->tx_credits -= credits; 1619 1620 tp->snd_nxt += plen; 1621 tp->snd_max += plen; 1622 1623 SOCKBUF_LOCK(sb); 1624 sbsndptr_adv(sb, sb->sb_sndptr, plen); 1625 tls_ofld->sb_off += plen; 1626 SOCKBUF_UNLOCK(sb); 1627 1628 toep->flags |= TPF_TX_DATA_SENT; 1629 if (toep->tx_credits < MIN_OFLD_TLSTX_CREDITS(toep)) 1630 toep->flags |= TPF_TX_SUSPENDED; 1631 1632 KASSERT(toep->txsd_avail > 0, ("%s: no txsd", __func__)); 1633 txsd->plen = plen; 1634 txsd->tx_credits = credits; 1635 txsd->iv_buffer = iv_buffer; 1636 txsd++; 1637 if (__predict_false(++toep->txsd_pidx == toep->txsd_total)) { 1638 toep->txsd_pidx = 0; 1639 txsd = &toep->txsd[0]; 1640 } 1641 toep->txsd_avail--; 1642 1643 atomic_add_long(&toep->vi->pi->tx_tls_records, 1); 1644 atomic_add_long(&toep->vi->pi->tx_tls_octets, plen); 1645 1646 t4_l2t_send(sc, wr, toep->l2te); 1647 } 1648 } 1649 1650 #ifdef KERN_TLS 1651 static int 1652 count_ext_pgs_segs(struct mbuf_ext_pgs *ext_pgs) 1653 { 1654 vm_paddr_t nextpa; 1655 u_int i, nsegs; 1656 1657 MPASS(ext_pgs->npgs > 0); 1658 nsegs = 1; 1659 nextpa = ext_pgs->pa[0] + PAGE_SIZE; 1660 for (i = 1; i < ext_pgs->npgs; i++) { 1661 if (nextpa != ext_pgs->pa[i]) 1662 nsegs++; 1663 nextpa = ext_pgs->pa[i] + PAGE_SIZE; 1664 } 1665 return (nsegs); 1666 } 1667 1668 static void 1669 write_ktlstx_sgl(void *dst, struct mbuf_ext_pgs *ext_pgs, int nsegs) 1670 { 1671 struct ulptx_sgl *usgl = dst; 1672 vm_paddr_t pa; 1673 uint32_t len; 1674 int i, j; 1675 1676 KASSERT(nsegs > 0, ("%s: nsegs 0", __func__)); 1677 1678 usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) | 1679 V_ULPTX_NSGE(nsegs)); 1680 1681 /* Figure out the first S/G length. */ 1682 pa = ext_pgs->pa[0] + ext_pgs->first_pg_off; 1683 usgl->addr0 = htobe64(pa); 1684 len = mbuf_ext_pg_len(ext_pgs, 0, ext_pgs->first_pg_off); 1685 pa += len; 1686 for (i = 1; i < ext_pgs->npgs; i++) { 1687 if (ext_pgs->pa[i] != pa) 1688 break; 1689 len += mbuf_ext_pg_len(ext_pgs, i, 0); 1690 pa += mbuf_ext_pg_len(ext_pgs, i, 0); 1691 } 1692 usgl->len0 = htobe32(len); 1693 #ifdef INVARIANTS 1694 nsegs--; 1695 #endif 1696 1697 j = -1; 1698 for (; i < ext_pgs->npgs; i++) { 1699 if (j == -1 || ext_pgs->pa[i] != pa) { 1700 if (j >= 0) 1701 usgl->sge[j / 2].len[j & 1] = htobe32(len); 1702 j++; 1703 #ifdef INVARIANTS 1704 nsegs--; 1705 #endif 1706 pa = ext_pgs->pa[i]; 1707 usgl->sge[j / 2].addr[j & 1] = htobe64(pa); 1708 len = mbuf_ext_pg_len(ext_pgs, i, 0); 1709 pa += len; 1710 } else { 1711 len += mbuf_ext_pg_len(ext_pgs, i, 0); 1712 pa += mbuf_ext_pg_len(ext_pgs, i, 0); 1713 } 1714 } 1715 if (j >= 0) { 1716 usgl->sge[j / 2].len[j & 1] = htobe32(len); 1717 1718 if ((j & 1) == 0) 1719 usgl->sge[j / 2].len[1] = htobe32(0); 1720 } 1721 KASSERT(nsegs == 0, ("%s: nsegs %d, ext_pgs %p", __func__, nsegs, 1722 ext_pgs)); 1723 } 1724 1725 /* 1726 * Similar to t4_push_frames() but handles sockets that contain TLS 1727 * record mbufs. Unlike TLSOM, each mbuf is a complete TLS record and 1728 * corresponds to a single work request. 1729 */ 1730 void 1731 t4_push_ktls(struct adapter *sc, struct toepcb *toep, int drop) 1732 { 1733 struct tls_hdr *thdr; 1734 struct fw_tlstx_data_wr *txwr; 1735 struct cpl_tx_tls_sfo *cpl; 1736 struct wrqe *wr; 1737 struct mbuf *m; 1738 u_int nsegs, credits, wr_len; 1739 u_int expn_size; 1740 struct inpcb *inp = toep->inp; 1741 struct tcpcb *tp = intotcpcb(inp); 1742 struct socket *so = inp->inp_socket; 1743 struct sockbuf *sb = &so->so_snd; 1744 int tls_size, tx_credits, shove, sowwakeup; 1745 struct ofld_tx_sdesc *txsd; 1746 char *buf; 1747 1748 INP_WLOCK_ASSERT(inp); 1749 KASSERT(toep->flags & TPF_FLOWC_WR_SENT, 1750 ("%s: flowc_wr not sent for tid %u.", __func__, toep->tid)); 1751 1752 KASSERT(ulp_mode(toep) == ULP_MODE_NONE || 1753 ulp_mode(toep) == ULP_MODE_TCPDDP, 1754 ("%s: ulp_mode %u for toep %p", __func__, ulp_mode(toep), toep)); 1755 KASSERT(tls_tx_key(toep), 1756 ("%s: TX key not set for toep %p", __func__, toep)); 1757 1758 #ifdef VERBOSE_TRACES 1759 CTR4(KTR_CXGBE, "%s: tid %d toep flags %#x tp flags %#x drop %d", 1760 __func__, toep->tid, toep->flags, tp->t_flags); 1761 #endif 1762 if (__predict_false(toep->flags & TPF_ABORT_SHUTDOWN)) 1763 return; 1764 1765 #ifdef RATELIMIT 1766 if (__predict_false(inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) && 1767 (update_tx_rate_limit(sc, toep, so->so_max_pacing_rate) == 0)) { 1768 inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED; 1769 } 1770 #endif 1771 1772 /* 1773 * This function doesn't resume by itself. Someone else must clear the 1774 * flag and call this function. 1775 */ 1776 if (__predict_false(toep->flags & TPF_TX_SUSPENDED)) { 1777 KASSERT(drop == 0, 1778 ("%s: drop (%d) != 0 but tx is suspended", __func__, drop)); 1779 return; 1780 } 1781 1782 txsd = &toep->txsd[toep->txsd_pidx]; 1783 for (;;) { 1784 tx_credits = min(toep->tx_credits, MAX_OFLD_TX_CREDITS); 1785 1786 SOCKBUF_LOCK(sb); 1787 sowwakeup = drop; 1788 if (drop) { 1789 sbdrop_locked(sb, drop); 1790 drop = 0; 1791 } 1792 1793 m = sb->sb_sndptr != NULL ? sb->sb_sndptr->m_next : sb->sb_mb; 1794 1795 /* 1796 * Send a FIN if requested, but only if there's no 1797 * more data to send. 1798 */ 1799 if (m == NULL && toep->flags & TPF_SEND_FIN) { 1800 if (sowwakeup) 1801 sowwakeup_locked(so); 1802 else 1803 SOCKBUF_UNLOCK(sb); 1804 SOCKBUF_UNLOCK_ASSERT(sb); 1805 t4_close_conn(sc, toep); 1806 return; 1807 } 1808 1809 /* 1810 * If there is no ready data to send, wait until more 1811 * data arrives. 1812 */ 1813 if (m == NULL || (m->m_flags & M_NOTAVAIL) != 0) { 1814 if (sowwakeup) 1815 sowwakeup_locked(so); 1816 else 1817 SOCKBUF_UNLOCK(sb); 1818 SOCKBUF_UNLOCK_ASSERT(sb); 1819 #ifdef VERBOSE_TRACES 1820 CTR2(KTR_CXGBE, "%s: tid %d no ready data to send", 1821 __func__, toep->tid); 1822 #endif 1823 return; 1824 } 1825 1826 KASSERT(m->m_flags & M_NOMAP, ("%s: mbuf %p is not NOMAP", 1827 __func__, m)); 1828 KASSERT(m->m_ext.ext_pgs->tls != NULL, 1829 ("%s: mbuf %p doesn't have TLS session", __func__, m)); 1830 1831 /* Calculate WR length. */ 1832 wr_len = sizeof(struct fw_tlstx_data_wr) + 1833 sizeof(struct cpl_tx_tls_sfo) + key_size(toep); 1834 1835 /* Explicit IVs for AES-CBC and AES-GCM are <= 16. */ 1836 MPASS(toep->tls.iv_len <= AES_BLOCK_LEN); 1837 wr_len += AES_BLOCK_LEN; 1838 1839 /* Account for SGL in work request length. */ 1840 nsegs = count_ext_pgs_segs(m->m_ext.ext_pgs); 1841 wr_len += sizeof(struct ulptx_sgl) + 1842 ((3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1)) * 8; 1843 1844 /* Not enough credits for this work request. */ 1845 if (howmany(wr_len, 16) > tx_credits) { 1846 if (sowwakeup) 1847 sowwakeup_locked(so); 1848 else 1849 SOCKBUF_UNLOCK(sb); 1850 SOCKBUF_UNLOCK_ASSERT(sb); 1851 #ifdef VERBOSE_TRACES 1852 CTR5(KTR_CXGBE, 1853 "%s: tid %d mbuf %p requires %d credits, but only %d available", 1854 __func__, toep->tid, m, howmany(wr_len, 16), 1855 tx_credits); 1856 #endif 1857 toep->flags |= TPF_TX_SUSPENDED; 1858 return; 1859 } 1860 1861 /* Shove if there is no additional data pending. */ 1862 shove = ((m->m_next == NULL || 1863 (m->m_next->m_flags & M_NOTAVAIL) != 0)) && 1864 (tp->t_flags & TF_MORETOCOME) == 0; 1865 1866 if (sb->sb_flags & SB_AUTOSIZE && 1867 V_tcp_do_autosndbuf && 1868 sb->sb_hiwat < V_tcp_autosndbuf_max && 1869 sbused(sb) >= sb->sb_hiwat * 7 / 8) { 1870 int newsize = min(sb->sb_hiwat + V_tcp_autosndbuf_inc, 1871 V_tcp_autosndbuf_max); 1872 1873 if (!sbreserve_locked(sb, newsize, so, NULL)) 1874 sb->sb_flags &= ~SB_AUTOSIZE; 1875 else 1876 sowwakeup = 1; /* room available */ 1877 } 1878 if (sowwakeup) 1879 sowwakeup_locked(so); 1880 else 1881 SOCKBUF_UNLOCK(sb); 1882 SOCKBUF_UNLOCK_ASSERT(sb); 1883 1884 if (__predict_false(toep->flags & TPF_FIN_SENT)) 1885 panic("%s: excess tx.", __func__); 1886 1887 wr = alloc_wrqe(roundup2(wr_len, 16), toep->ofld_txq); 1888 if (wr == NULL) { 1889 /* XXX: how will we recover from this? */ 1890 toep->flags |= TPF_TX_SUSPENDED; 1891 return; 1892 } 1893 1894 thdr = (struct tls_hdr *)m->m_ext.ext_pgs->hdr; 1895 #ifdef VERBOSE_TRACES 1896 CTR5(KTR_CXGBE, "%s: tid %d TLS record %ju type %d len %#x", 1897 __func__, toep->tid, m->m_ext.ext_pgs->seqno, thdr->type, 1898 m->m_len); 1899 #endif 1900 txwr = wrtod(wr); 1901 cpl = (struct cpl_tx_tls_sfo *)(txwr + 1); 1902 memset(txwr, 0, roundup2(wr_len, 16)); 1903 credits = howmany(wr_len, 16); 1904 expn_size = m->m_ext.ext_pgs->hdr_len + 1905 m->m_ext.ext_pgs->trail_len; 1906 tls_size = m->m_len - expn_size; 1907 write_tlstx_wr(txwr, toep, 0, 1908 tls_size, expn_size, 1, credits, shove, 1); 1909 toep->tls.tx_seq_no = m->m_ext.ext_pgs->seqno; 1910 write_tlstx_cpl(cpl, toep, thdr, tls_size, 1); 1911 tls_copy_tx_key(toep, cpl + 1); 1912 1913 /* Copy IV. */ 1914 buf = (char *)(cpl + 1) + key_size(toep); 1915 memcpy(buf, thdr + 1, toep->tls.iv_len); 1916 buf += AES_BLOCK_LEN; 1917 1918 write_ktlstx_sgl(buf, m->m_ext.ext_pgs, nsegs); 1919 1920 KASSERT(toep->tx_credits >= credits, 1921 ("%s: not enough credits", __func__)); 1922 1923 toep->tx_credits -= credits; 1924 1925 tp->snd_nxt += m->m_len; 1926 tp->snd_max += m->m_len; 1927 1928 SOCKBUF_LOCK(sb); 1929 sb->sb_sndptr = m; 1930 SOCKBUF_UNLOCK(sb); 1931 1932 toep->flags |= TPF_TX_DATA_SENT; 1933 if (toep->tx_credits < MIN_OFLD_TLSTX_CREDITS(toep)) 1934 toep->flags |= TPF_TX_SUSPENDED; 1935 1936 KASSERT(toep->txsd_avail > 0, ("%s: no txsd", __func__)); 1937 txsd->plen = m->m_len; 1938 txsd->tx_credits = credits; 1939 txsd++; 1940 if (__predict_false(++toep->txsd_pidx == toep->txsd_total)) { 1941 toep->txsd_pidx = 0; 1942 txsd = &toep->txsd[0]; 1943 } 1944 toep->txsd_avail--; 1945 1946 atomic_add_long(&toep->vi->pi->tx_tls_records, 1); 1947 atomic_add_long(&toep->vi->pi->tx_tls_octets, m->m_len); 1948 1949 t4_l2t_send(sc, wr, toep->l2te); 1950 } 1951 } 1952 #endif 1953 1954 /* 1955 * For TLS data we place received mbufs received via CPL_TLS_DATA into 1956 * an mbufq in the TLS offload state. When CPL_RX_TLS_CMP is 1957 * received, the completed PDUs are placed into the socket receive 1958 * buffer. 1959 * 1960 * The TLS code reuses the ulp_pdu_reclaimq to hold the pending mbufs. 1961 */ 1962 static int 1963 do_tls_data(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 1964 { 1965 struct adapter *sc = iq->adapter; 1966 const struct cpl_tls_data *cpl = mtod(m, const void *); 1967 unsigned int tid = GET_TID(cpl); 1968 struct toepcb *toep = lookup_tid(sc, tid); 1969 struct inpcb *inp = toep->inp; 1970 struct tcpcb *tp; 1971 int len; 1972 1973 /* XXX: Should this match do_rx_data instead? */ 1974 KASSERT(!(toep->flags & TPF_SYNQE), 1975 ("%s: toep %p claims to be a synq entry", __func__, toep)); 1976 1977 KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__)); 1978 1979 /* strip off CPL header */ 1980 m_adj(m, sizeof(*cpl)); 1981 len = m->m_pkthdr.len; 1982 1983 atomic_add_long(&toep->vi->pi->rx_tls_octets, len); 1984 1985 KASSERT(len == G_CPL_TLS_DATA_LENGTH(be32toh(cpl->length_pkd)), 1986 ("%s: payload length mismatch", __func__)); 1987 1988 INP_WLOCK(inp); 1989 if (inp->inp_flags & (INP_DROPPED | INP_TIMEWAIT)) { 1990 CTR4(KTR_CXGBE, "%s: tid %u, rx (%d bytes), inp_flags 0x%x", 1991 __func__, tid, len, inp->inp_flags); 1992 INP_WUNLOCK(inp); 1993 m_freem(m); 1994 return (0); 1995 } 1996 1997 /* Save TCP sequence number. */ 1998 m->m_pkthdr.tls_tcp_seq = be32toh(cpl->seq); 1999 2000 if (mbufq_enqueue(&toep->ulp_pdu_reclaimq, m)) { 2001 #ifdef INVARIANTS 2002 panic("Failed to queue TLS data packet"); 2003 #else 2004 printf("%s: Failed to queue TLS data packet\n", __func__); 2005 INP_WUNLOCK(inp); 2006 m_freem(m); 2007 return (0); 2008 #endif 2009 } 2010 2011 tp = intotcpcb(inp); 2012 tp->t_rcvtime = ticks; 2013 2014 #ifdef VERBOSE_TRACES 2015 CTR4(KTR_CXGBE, "%s: tid %u len %d seq %u", __func__, tid, len, 2016 be32toh(cpl->seq)); 2017 #endif 2018 2019 INP_WUNLOCK(inp); 2020 return (0); 2021 } 2022 2023 static int 2024 do_rx_tls_cmp(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 2025 { 2026 struct adapter *sc = iq->adapter; 2027 const struct cpl_rx_tls_cmp *cpl = mtod(m, const void *); 2028 struct tlsrx_hdr_pkt *tls_hdr_pkt; 2029 unsigned int tid = GET_TID(cpl); 2030 struct toepcb *toep = lookup_tid(sc, tid); 2031 struct inpcb *inp = toep->inp; 2032 struct tcpcb *tp; 2033 struct socket *so; 2034 struct sockbuf *sb; 2035 struct mbuf *tls_data; 2036 int len, pdu_length, rx_credits; 2037 2038 KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__)); 2039 KASSERT(!(toep->flags & TPF_SYNQE), 2040 ("%s: toep %p claims to be a synq entry", __func__, toep)); 2041 2042 /* strip off CPL header */ 2043 m_adj(m, sizeof(*cpl)); 2044 len = m->m_pkthdr.len; 2045 2046 atomic_add_long(&toep->vi->pi->rx_tls_records, 1); 2047 2048 KASSERT(len == G_CPL_RX_TLS_CMP_LENGTH(be32toh(cpl->pdulength_length)), 2049 ("%s: payload length mismatch", __func__)); 2050 2051 INP_WLOCK(inp); 2052 if (inp->inp_flags & (INP_DROPPED | INP_TIMEWAIT)) { 2053 CTR4(KTR_CXGBE, "%s: tid %u, rx (%d bytes), inp_flags 0x%x", 2054 __func__, tid, len, inp->inp_flags); 2055 INP_WUNLOCK(inp); 2056 m_freem(m); 2057 return (0); 2058 } 2059 2060 pdu_length = G_CPL_RX_TLS_CMP_PDULENGTH(be32toh(cpl->pdulength_length)); 2061 2062 tp = intotcpcb(inp); 2063 2064 #ifdef VERBOSE_TRACES 2065 CTR6(KTR_CXGBE, "%s: tid %u PDU len %d len %d seq %u, rcv_nxt %u", 2066 __func__, tid, pdu_length, len, be32toh(cpl->seq), tp->rcv_nxt); 2067 #endif 2068 2069 tp->rcv_nxt += pdu_length; 2070 if (tp->rcv_wnd < pdu_length) { 2071 toep->tls.rcv_over += pdu_length - tp->rcv_wnd; 2072 tp->rcv_wnd = 0; 2073 } else 2074 tp->rcv_wnd -= pdu_length; 2075 2076 /* XXX: Not sure what to do about urgent data. */ 2077 2078 /* 2079 * The payload of this CPL is the TLS header followed by 2080 * additional fields. 2081 */ 2082 KASSERT(m->m_len >= sizeof(*tls_hdr_pkt), 2083 ("%s: payload too small", __func__)); 2084 tls_hdr_pkt = mtod(m, void *); 2085 2086 /* 2087 * Only the TLS header is sent to OpenSSL, so report errors by 2088 * altering the record type. 2089 */ 2090 if ((tls_hdr_pkt->res_to_mac_error & M_TLSRX_HDR_PKT_ERROR) != 0) 2091 tls_hdr_pkt->type = CONTENT_TYPE_ERROR; 2092 2093 /* Trim this CPL's mbuf to only include the TLS header. */ 2094 KASSERT(m->m_len == len && m->m_next == NULL, 2095 ("%s: CPL spans multiple mbufs", __func__)); 2096 m->m_len = TLS_HEADER_LENGTH; 2097 m->m_pkthdr.len = TLS_HEADER_LENGTH; 2098 2099 tls_data = mbufq_dequeue(&toep->ulp_pdu_reclaimq); 2100 if (tls_data != NULL) { 2101 KASSERT(be32toh(cpl->seq) == tls_data->m_pkthdr.tls_tcp_seq, 2102 ("%s: sequence mismatch", __func__)); 2103 2104 /* 2105 * Update the TLS header length to be the length of 2106 * the payload data. 2107 */ 2108 tls_hdr_pkt->length = htobe16(tls_data->m_pkthdr.len); 2109 2110 m->m_next = tls_data; 2111 m->m_pkthdr.len += tls_data->m_len; 2112 } 2113 2114 so = inp_inpcbtosocket(inp); 2115 sb = &so->so_rcv; 2116 SOCKBUF_LOCK(sb); 2117 2118 if (__predict_false(sb->sb_state & SBS_CANTRCVMORE)) { 2119 struct epoch_tracker et; 2120 2121 CTR3(KTR_CXGBE, "%s: tid %u, excess rx (%d bytes)", 2122 __func__, tid, pdu_length); 2123 m_freem(m); 2124 SOCKBUF_UNLOCK(sb); 2125 INP_WUNLOCK(inp); 2126 2127 CURVNET_SET(toep->vnet); 2128 NET_EPOCH_ENTER(et); 2129 INP_WLOCK(inp); 2130 tp = tcp_drop(tp, ECONNRESET); 2131 if (tp) 2132 INP_WUNLOCK(inp); 2133 NET_EPOCH_EXIT(et); 2134 CURVNET_RESTORE(); 2135 2136 return (0); 2137 } 2138 2139 /* 2140 * Not all of the bytes on the wire are included in the socket buffer 2141 * (e.g. the MAC of the TLS record). However, those bytes are included 2142 * in the TCP sequence space. 2143 */ 2144 2145 /* receive buffer autosize */ 2146 MPASS(toep->vnet == so->so_vnet); 2147 CURVNET_SET(toep->vnet); 2148 if (sb->sb_flags & SB_AUTOSIZE && 2149 V_tcp_do_autorcvbuf && 2150 sb->sb_hiwat < V_tcp_autorcvbuf_max && 2151 m->m_pkthdr.len > (sbspace(sb) / 8 * 7)) { 2152 unsigned int hiwat = sb->sb_hiwat; 2153 unsigned int newsize = min(hiwat + sc->tt.autorcvbuf_inc, 2154 V_tcp_autorcvbuf_max); 2155 2156 if (!sbreserve_locked(sb, newsize, so, NULL)) 2157 sb->sb_flags &= ~SB_AUTOSIZE; 2158 } 2159 2160 sbappendstream_locked(sb, m, 0); 2161 rx_credits = sbspace(sb) > tp->rcv_wnd ? sbspace(sb) - tp->rcv_wnd : 0; 2162 #ifdef VERBOSE_TRACES 2163 CTR4(KTR_CXGBE, "%s: tid %u rx_credits %u rcv_wnd %u", 2164 __func__, tid, rx_credits, tp->rcv_wnd); 2165 #endif 2166 if (rx_credits > 0 && sbused(sb) + tp->rcv_wnd < sb->sb_lowat) { 2167 rx_credits = send_rx_credits(sc, toep, rx_credits); 2168 tp->rcv_wnd += rx_credits; 2169 tp->rcv_adv += rx_credits; 2170 } 2171 2172 sorwakeup_locked(so); 2173 SOCKBUF_UNLOCK_ASSERT(sb); 2174 2175 INP_WUNLOCK(inp); 2176 CURVNET_RESTORE(); 2177 return (0); 2178 } 2179 2180 void 2181 t4_tls_mod_load(void) 2182 { 2183 2184 mtx_init(&tls_handshake_lock, "t4tls handshake", NULL, MTX_DEF); 2185 t4_register_cpl_handler(CPL_TLS_DATA, do_tls_data); 2186 t4_register_cpl_handler(CPL_RX_TLS_CMP, do_rx_tls_cmp); 2187 } 2188 2189 void 2190 t4_tls_mod_unload(void) 2191 { 2192 2193 t4_register_cpl_handler(CPL_TLS_DATA, NULL); 2194 t4_register_cpl_handler(CPL_RX_TLS_CMP, NULL); 2195 mtx_destroy(&tls_handshake_lock); 2196 } 2197 #endif /* TCP_OFFLOAD */ 2198