1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2012 Chelsio Communications, Inc. 5 * All rights reserved. 6 * Written by: Navdeep Parhar <np@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 #include "opt_inet.h" 32 33 #include <sys/param.h> 34 #include <sys/aio.h> 35 #include <sys/bio.h> 36 #include <sys/file.h> 37 #include <sys/systm.h> 38 #include <sys/kernel.h> 39 #include <sys/ktr.h> 40 #include <sys/module.h> 41 #include <sys/protosw.h> 42 #include <sys/proc.h> 43 #include <sys/domain.h> 44 #include <sys/socket.h> 45 #include <sys/socketvar.h> 46 #include <sys/taskqueue.h> 47 #include <sys/uio.h> 48 #include <netinet/in.h> 49 #include <netinet/in_pcb.h> 50 #include <netinet/ip.h> 51 #include <netinet/tcp_var.h> 52 #define TCPSTATES 53 #include <netinet/tcp_fsm.h> 54 #include <netinet/toecore.h> 55 56 #include <vm/vm.h> 57 #include <vm/vm_extern.h> 58 #include <vm/vm_param.h> 59 #include <vm/pmap.h> 60 #include <vm/vm_map.h> 61 #include <vm/vm_page.h> 62 #include <vm/vm_object.h> 63 64 #include <cam/scsi/scsi_all.h> 65 #include <cam/ctl/ctl_io.h> 66 67 #ifdef TCP_OFFLOAD 68 #include "common/common.h" 69 #include "common/t4_msg.h" 70 #include "common/t4_regs.h" 71 #include "common/t4_tcb.h" 72 #include "tom/t4_tom.h" 73 74 /* 75 * Use the 'backend3' field in AIO jobs to store the amount of data 76 * received by the AIO job so far. 77 */ 78 #define aio_received backend3 79 80 static void aio_ddp_requeue_task(void *context, int pending); 81 static void ddp_complete_all(struct toepcb *toep, int error); 82 static void t4_aio_cancel_active(struct kaiocb *job); 83 static void t4_aio_cancel_queued(struct kaiocb *job); 84 85 static TAILQ_HEAD(, pageset) ddp_orphan_pagesets; 86 static struct mtx ddp_orphan_pagesets_lock; 87 static struct task ddp_orphan_task; 88 89 #define MAX_DDP_BUFFER_SIZE (M_TCB_RX_DDP_BUF0_LEN) 90 91 /* 92 * A page set holds information about a buffer used for DDP. The page 93 * set holds resources such as the VM pages backing the buffer (either 94 * held or wired) and the page pods associated with the buffer. 95 * Recently used page sets are cached to allow for efficient reuse of 96 * buffers (avoiding the need to re-fault in pages, hold them, etc.). 97 * Note that cached page sets keep the backing pages wired. The 98 * number of wired pages is capped by only allowing for two wired 99 * pagesets per connection. This is not a perfect cap, but is a 100 * trade-off for performance. 101 * 102 * If an application ping-pongs two buffers for a connection via 103 * aio_read(2) then those buffers should remain wired and expensive VM 104 * fault lookups should be avoided after each buffer has been used 105 * once. If an application uses more than two buffers then this will 106 * fall back to doing expensive VM fault lookups for each operation. 107 */ 108 static void 109 free_pageset(struct tom_data *td, struct pageset *ps) 110 { 111 vm_page_t p; 112 int i; 113 114 if (ps->prsv.prsv_nppods > 0) 115 t4_free_page_pods(&ps->prsv); 116 117 for (i = 0; i < ps->npages; i++) { 118 p = ps->pages[i]; 119 vm_page_unwire(p, PQ_INACTIVE); 120 } 121 mtx_lock(&ddp_orphan_pagesets_lock); 122 TAILQ_INSERT_TAIL(&ddp_orphan_pagesets, ps, link); 123 taskqueue_enqueue(taskqueue_thread, &ddp_orphan_task); 124 mtx_unlock(&ddp_orphan_pagesets_lock); 125 } 126 127 static void 128 ddp_free_orphan_pagesets(void *context, int pending) 129 { 130 struct pageset *ps; 131 132 mtx_lock(&ddp_orphan_pagesets_lock); 133 while (!TAILQ_EMPTY(&ddp_orphan_pagesets)) { 134 ps = TAILQ_FIRST(&ddp_orphan_pagesets); 135 TAILQ_REMOVE(&ddp_orphan_pagesets, ps, link); 136 mtx_unlock(&ddp_orphan_pagesets_lock); 137 if (ps->vm) 138 vmspace_free(ps->vm); 139 free(ps, M_CXGBE); 140 mtx_lock(&ddp_orphan_pagesets_lock); 141 } 142 mtx_unlock(&ddp_orphan_pagesets_lock); 143 } 144 145 static void 146 recycle_pageset(struct toepcb *toep, struct pageset *ps) 147 { 148 149 DDP_ASSERT_LOCKED(toep); 150 if (!(toep->ddp.flags & DDP_DEAD)) { 151 KASSERT(toep->ddp.cached_count + toep->ddp.active_count < 152 nitems(toep->ddp.db), ("too many wired pagesets")); 153 TAILQ_INSERT_HEAD(&toep->ddp.cached_pagesets, ps, link); 154 toep->ddp.cached_count++; 155 } else 156 free_pageset(toep->td, ps); 157 } 158 159 static void 160 ddp_complete_one(struct kaiocb *job, int error) 161 { 162 long copied; 163 164 /* 165 * If this job had copied data out of the socket buffer before 166 * it was cancelled, report it as a short read rather than an 167 * error. 168 */ 169 copied = job->aio_received; 170 if (copied != 0 || error == 0) 171 aio_complete(job, copied, 0); 172 else 173 aio_complete(job, -1, error); 174 } 175 176 static void 177 free_ddp_buffer(struct tom_data *td, struct ddp_buffer *db) 178 { 179 180 if (db->job) { 181 /* 182 * XXX: If we are un-offloading the socket then we 183 * should requeue these on the socket somehow. If we 184 * got a FIN from the remote end, then this completes 185 * any remaining requests with an EOF read. 186 */ 187 if (!aio_clear_cancel_function(db->job)) 188 ddp_complete_one(db->job, 0); 189 } 190 191 if (db->ps) 192 free_pageset(td, db->ps); 193 } 194 195 static void 196 ddp_init_toep(struct toepcb *toep) 197 { 198 199 TAILQ_INIT(&toep->ddp.aiojobq); 200 TASK_INIT(&toep->ddp.requeue_task, 0, aio_ddp_requeue_task, toep); 201 toep->ddp.flags = DDP_OK; 202 toep->ddp.active_id = -1; 203 mtx_init(&toep->ddp.lock, "t4 ddp", NULL, MTX_DEF); 204 } 205 206 void 207 ddp_uninit_toep(struct toepcb *toep) 208 { 209 210 mtx_destroy(&toep->ddp.lock); 211 } 212 213 void 214 release_ddp_resources(struct toepcb *toep) 215 { 216 struct pageset *ps; 217 int i; 218 219 DDP_LOCK(toep); 220 toep->ddp.flags |= DDP_DEAD; 221 for (i = 0; i < nitems(toep->ddp.db); i++) { 222 free_ddp_buffer(toep->td, &toep->ddp.db[i]); 223 } 224 while ((ps = TAILQ_FIRST(&toep->ddp.cached_pagesets)) != NULL) { 225 TAILQ_REMOVE(&toep->ddp.cached_pagesets, ps, link); 226 free_pageset(toep->td, ps); 227 } 228 ddp_complete_all(toep, 0); 229 DDP_UNLOCK(toep); 230 } 231 232 #ifdef INVARIANTS 233 void 234 ddp_assert_empty(struct toepcb *toep) 235 { 236 int i; 237 238 MPASS(!(toep->ddp.flags & DDP_TASK_ACTIVE)); 239 for (i = 0; i < nitems(toep->ddp.db); i++) { 240 MPASS(toep->ddp.db[i].job == NULL); 241 MPASS(toep->ddp.db[i].ps == NULL); 242 } 243 MPASS(TAILQ_EMPTY(&toep->ddp.cached_pagesets)); 244 MPASS(TAILQ_EMPTY(&toep->ddp.aiojobq)); 245 } 246 #endif 247 248 static void 249 complete_ddp_buffer(struct toepcb *toep, struct ddp_buffer *db, 250 unsigned int db_idx) 251 { 252 unsigned int db_flag; 253 254 toep->ddp.active_count--; 255 if (toep->ddp.active_id == db_idx) { 256 if (toep->ddp.active_count == 0) { 257 KASSERT(toep->ddp.db[db_idx ^ 1].job == NULL, 258 ("%s: active_count mismatch", __func__)); 259 toep->ddp.active_id = -1; 260 } else 261 toep->ddp.active_id ^= 1; 262 #ifdef VERBOSE_TRACES 263 CTR3(KTR_CXGBE, "%s: tid %u, ddp_active_id = %d", __func__, 264 toep->tid, toep->ddp.active_id); 265 #endif 266 } else { 267 KASSERT(toep->ddp.active_count != 0 && 268 toep->ddp.active_id != -1, 269 ("%s: active count mismatch", __func__)); 270 } 271 272 db->cancel_pending = 0; 273 db->job = NULL; 274 recycle_pageset(toep, db->ps); 275 db->ps = NULL; 276 277 db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE; 278 KASSERT(toep->ddp.flags & db_flag, 279 ("%s: DDP buffer not active. toep %p, ddp_flags 0x%x", 280 __func__, toep, toep->ddp.flags)); 281 toep->ddp.flags &= ~db_flag; 282 } 283 284 /* XXX: handle_ddp_data code duplication */ 285 void 286 insert_ddp_data(struct toepcb *toep, uint32_t n) 287 { 288 struct inpcb *inp = toep->inp; 289 struct tcpcb *tp = intotcpcb(inp); 290 struct ddp_buffer *db; 291 struct kaiocb *job; 292 size_t placed; 293 long copied; 294 unsigned int db_idx; 295 #ifdef INVARIANTS 296 unsigned int db_flag; 297 #endif 298 299 INP_WLOCK_ASSERT(inp); 300 DDP_ASSERT_LOCKED(toep); 301 302 tp->rcv_nxt += n; 303 #ifndef USE_DDP_RX_FLOW_CONTROL 304 KASSERT(tp->rcv_wnd >= n, ("%s: negative window size", __func__)); 305 tp->rcv_wnd -= n; 306 #endif 307 CTR2(KTR_CXGBE, "%s: placed %u bytes before falling out of DDP", 308 __func__, n); 309 while (toep->ddp.active_count > 0) { 310 MPASS(toep->ddp.active_id != -1); 311 db_idx = toep->ddp.active_id; 312 #ifdef INVARIANTS 313 db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE; 314 #endif 315 MPASS((toep->ddp.flags & db_flag) != 0); 316 db = &toep->ddp.db[db_idx]; 317 job = db->job; 318 copied = job->aio_received; 319 placed = n; 320 if (placed > job->uaiocb.aio_nbytes - copied) 321 placed = job->uaiocb.aio_nbytes - copied; 322 if (placed > 0) { 323 job->msgrcv = 1; 324 toep->ofld_rxq->rx_aio_ddp_jobs++; 325 } 326 toep->ofld_rxq->rx_aio_ddp_octets += placed; 327 if (!aio_clear_cancel_function(job)) { 328 /* 329 * Update the copied length for when 330 * t4_aio_cancel_active() completes this 331 * request. 332 */ 333 job->aio_received += placed; 334 } else if (copied + placed != 0) { 335 CTR4(KTR_CXGBE, 336 "%s: completing %p (copied %ld, placed %lu)", 337 __func__, job, copied, placed); 338 /* XXX: This always completes if there is some data. */ 339 aio_complete(job, copied + placed, 0); 340 } else if (aio_set_cancel_function(job, t4_aio_cancel_queued)) { 341 TAILQ_INSERT_HEAD(&toep->ddp.aiojobq, job, list); 342 toep->ddp.waiting_count++; 343 } else 344 aio_cancel(job); 345 n -= placed; 346 complete_ddp_buffer(toep, db, db_idx); 347 } 348 349 MPASS(n == 0); 350 } 351 352 /* SET_TCB_FIELD sent as a ULP command looks like this */ 353 #define LEN__SET_TCB_FIELD_ULP (sizeof(struct ulp_txpkt) + \ 354 sizeof(struct ulptx_idata) + sizeof(struct cpl_set_tcb_field_core)) 355 356 /* RX_DATA_ACK sent as a ULP command looks like this */ 357 #define LEN__RX_DATA_ACK_ULP (sizeof(struct ulp_txpkt) + \ 358 sizeof(struct ulptx_idata) + sizeof(struct cpl_rx_data_ack_core)) 359 360 static inline void * 361 mk_set_tcb_field_ulp(struct ulp_txpkt *ulpmc, struct toepcb *toep, 362 uint64_t word, uint64_t mask, uint64_t val) 363 { 364 struct ulptx_idata *ulpsc; 365 struct cpl_set_tcb_field_core *req; 366 367 ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0)); 368 ulpmc->len = htobe32(howmany(LEN__SET_TCB_FIELD_ULP, 16)); 369 370 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 371 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 372 ulpsc->len = htobe32(sizeof(*req)); 373 374 req = (struct cpl_set_tcb_field_core *)(ulpsc + 1); 375 OPCODE_TID(req) = htobe32(MK_OPCODE_TID(CPL_SET_TCB_FIELD, toep->tid)); 376 req->reply_ctrl = htobe16(V_NO_REPLY(1) | 377 V_QUEUENO(toep->ofld_rxq->iq.abs_id)); 378 req->word_cookie = htobe16(V_WORD(word) | V_COOKIE(0)); 379 req->mask = htobe64(mask); 380 req->val = htobe64(val); 381 382 ulpsc = (struct ulptx_idata *)(req + 1); 383 if (LEN__SET_TCB_FIELD_ULP % 16) { 384 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP)); 385 ulpsc->len = htobe32(0); 386 return (ulpsc + 1); 387 } 388 return (ulpsc); 389 } 390 391 static inline void * 392 mk_rx_data_ack_ulp(struct ulp_txpkt *ulpmc, struct toepcb *toep) 393 { 394 struct ulptx_idata *ulpsc; 395 struct cpl_rx_data_ack_core *req; 396 397 ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0)); 398 ulpmc->len = htobe32(howmany(LEN__RX_DATA_ACK_ULP, 16)); 399 400 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 401 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 402 ulpsc->len = htobe32(sizeof(*req)); 403 404 req = (struct cpl_rx_data_ack_core *)(ulpsc + 1); 405 OPCODE_TID(req) = htobe32(MK_OPCODE_TID(CPL_RX_DATA_ACK, toep->tid)); 406 req->credit_dack = htobe32(F_RX_MODULATE_RX); 407 408 ulpsc = (struct ulptx_idata *)(req + 1); 409 if (LEN__RX_DATA_ACK_ULP % 16) { 410 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP)); 411 ulpsc->len = htobe32(0); 412 return (ulpsc + 1); 413 } 414 return (ulpsc); 415 } 416 417 static struct wrqe * 418 mk_update_tcb_for_ddp(struct adapter *sc, struct toepcb *toep, int db_idx, 419 struct pageset *ps, int offset, uint64_t ddp_flags, uint64_t ddp_flags_mask) 420 { 421 struct wrqe *wr; 422 struct work_request_hdr *wrh; 423 struct ulp_txpkt *ulpmc; 424 int len; 425 426 KASSERT(db_idx == 0 || db_idx == 1, 427 ("%s: bad DDP buffer index %d", __func__, db_idx)); 428 429 /* 430 * We'll send a compound work request that has 3 SET_TCB_FIELDs and an 431 * RX_DATA_ACK (with RX_MODULATE to speed up delivery). 432 * 433 * The work request header is 16B and always ends at a 16B boundary. 434 * The ULPTX master commands that follow must all end at 16B boundaries 435 * too so we round up the size to 16. 436 */ 437 len = sizeof(*wrh) + 3 * roundup2(LEN__SET_TCB_FIELD_ULP, 16) + 438 roundup2(LEN__RX_DATA_ACK_ULP, 16); 439 440 wr = alloc_wrqe(len, toep->ctrlq); 441 if (wr == NULL) 442 return (NULL); 443 wrh = wrtod(wr); 444 INIT_ULPTX_WRH(wrh, len, 1, 0); /* atomic */ 445 ulpmc = (struct ulp_txpkt *)(wrh + 1); 446 447 /* Write the buffer's tag */ 448 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, 449 W_TCB_RX_DDP_BUF0_TAG + db_idx, 450 V_TCB_RX_DDP_BUF0_TAG(M_TCB_RX_DDP_BUF0_TAG), 451 V_TCB_RX_DDP_BUF0_TAG(ps->prsv.prsv_tag)); 452 453 /* Update the current offset in the DDP buffer and its total length */ 454 if (db_idx == 0) 455 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, 456 W_TCB_RX_DDP_BUF0_OFFSET, 457 V_TCB_RX_DDP_BUF0_OFFSET(M_TCB_RX_DDP_BUF0_OFFSET) | 458 V_TCB_RX_DDP_BUF0_LEN(M_TCB_RX_DDP_BUF0_LEN), 459 V_TCB_RX_DDP_BUF0_OFFSET(offset) | 460 V_TCB_RX_DDP_BUF0_LEN(ps->len)); 461 else 462 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, 463 W_TCB_RX_DDP_BUF1_OFFSET, 464 V_TCB_RX_DDP_BUF1_OFFSET(M_TCB_RX_DDP_BUF1_OFFSET) | 465 V_TCB_RX_DDP_BUF1_LEN((u64)M_TCB_RX_DDP_BUF1_LEN << 32), 466 V_TCB_RX_DDP_BUF1_OFFSET(offset) | 467 V_TCB_RX_DDP_BUF1_LEN((u64)ps->len << 32)); 468 469 /* Update DDP flags */ 470 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, W_TCB_RX_DDP_FLAGS, 471 ddp_flags_mask, ddp_flags); 472 473 /* Gratuitous RX_DATA_ACK with RX_MODULATE set to speed up delivery. */ 474 ulpmc = mk_rx_data_ack_ulp(ulpmc, toep); 475 476 return (wr); 477 } 478 479 static int 480 handle_ddp_data(struct toepcb *toep, __be32 ddp_report, __be32 rcv_nxt, int len) 481 { 482 uint32_t report = be32toh(ddp_report); 483 unsigned int db_idx; 484 struct inpcb *inp = toep->inp; 485 struct ddp_buffer *db; 486 struct tcpcb *tp; 487 struct socket *so; 488 struct sockbuf *sb; 489 struct kaiocb *job; 490 long copied; 491 492 db_idx = report & F_DDP_BUF_IDX ? 1 : 0; 493 494 if (__predict_false(!(report & F_DDP_INV))) 495 CXGBE_UNIMPLEMENTED("DDP buffer still valid"); 496 497 INP_WLOCK(inp); 498 so = inp_inpcbtosocket(inp); 499 sb = &so->so_rcv; 500 DDP_LOCK(toep); 501 502 KASSERT(toep->ddp.active_id == db_idx, 503 ("completed DDP buffer (%d) != active_id (%d) for tid %d", db_idx, 504 toep->ddp.active_id, toep->tid)); 505 db = &toep->ddp.db[db_idx]; 506 job = db->job; 507 508 if (__predict_false(inp->inp_flags & INP_DROPPED)) { 509 /* 510 * This can happen due to an administrative tcpdrop(8). 511 * Just fail the request with ECONNRESET. 512 */ 513 CTR5(KTR_CXGBE, "%s: tid %u, seq 0x%x, len %d, inp_flags 0x%x", 514 __func__, toep->tid, be32toh(rcv_nxt), len, inp->inp_flags); 515 if (aio_clear_cancel_function(job)) 516 ddp_complete_one(job, ECONNRESET); 517 goto completed; 518 } 519 520 tp = intotcpcb(inp); 521 522 /* 523 * For RX_DDP_COMPLETE, len will be zero and rcv_nxt is the 524 * sequence number of the next byte to receive. The length of 525 * the data received for this message must be computed by 526 * comparing the new and old values of rcv_nxt. 527 * 528 * For RX_DATA_DDP, len might be non-zero, but it is only the 529 * length of the most recent DMA. It does not include the 530 * total length of the data received since the previous update 531 * for this DDP buffer. rcv_nxt is the sequence number of the 532 * first received byte from the most recent DMA. 533 */ 534 len += be32toh(rcv_nxt) - tp->rcv_nxt; 535 tp->rcv_nxt += len; 536 tp->t_rcvtime = ticks; 537 #ifndef USE_DDP_RX_FLOW_CONTROL 538 KASSERT(tp->rcv_wnd >= len, ("%s: negative window size", __func__)); 539 tp->rcv_wnd -= len; 540 #endif 541 #ifdef VERBOSE_TRACES 542 CTR5(KTR_CXGBE, "%s: tid %u, DDP[%d] placed %d bytes (%#x)", __func__, 543 toep->tid, db_idx, len, report); 544 #endif 545 546 /* receive buffer autosize */ 547 MPASS(toep->vnet == so->so_vnet); 548 CURVNET_SET(toep->vnet); 549 SOCKBUF_LOCK(sb); 550 if (sb->sb_flags & SB_AUTOSIZE && 551 V_tcp_do_autorcvbuf && 552 sb->sb_hiwat < V_tcp_autorcvbuf_max && 553 len > (sbspace(sb) / 8 * 7)) { 554 struct adapter *sc = td_adapter(toep->td); 555 unsigned int hiwat = sb->sb_hiwat; 556 unsigned int newsize = min(hiwat + sc->tt.autorcvbuf_inc, 557 V_tcp_autorcvbuf_max); 558 559 if (!sbreserve_locked(so, SO_RCV, newsize, NULL)) 560 sb->sb_flags &= ~SB_AUTOSIZE; 561 } 562 SOCKBUF_UNLOCK(sb); 563 CURVNET_RESTORE(); 564 565 job->msgrcv = 1; 566 toep->ofld_rxq->rx_aio_ddp_jobs++; 567 toep->ofld_rxq->rx_aio_ddp_octets += len; 568 if (db->cancel_pending) { 569 /* 570 * Update the job's length but defer completion to the 571 * TCB_RPL callback. 572 */ 573 job->aio_received += len; 574 goto out; 575 } else if (!aio_clear_cancel_function(job)) { 576 /* 577 * Update the copied length for when 578 * t4_aio_cancel_active() completes this request. 579 */ 580 job->aio_received += len; 581 } else { 582 copied = job->aio_received; 583 #ifdef VERBOSE_TRACES 584 CTR5(KTR_CXGBE, 585 "%s: tid %u, completing %p (copied %ld, placed %d)", 586 __func__, toep->tid, job, copied, len); 587 #endif 588 aio_complete(job, copied + len, 0); 589 t4_rcvd(&toep->td->tod, tp); 590 } 591 592 completed: 593 complete_ddp_buffer(toep, db, db_idx); 594 if (toep->ddp.waiting_count > 0) 595 ddp_queue_toep(toep); 596 out: 597 DDP_UNLOCK(toep); 598 INP_WUNLOCK(inp); 599 600 return (0); 601 } 602 603 void 604 handle_ddp_indicate(struct toepcb *toep) 605 { 606 607 DDP_ASSERT_LOCKED(toep); 608 MPASS(toep->ddp.active_count == 0); 609 MPASS((toep->ddp.flags & (DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE)) == 0); 610 if (toep->ddp.waiting_count == 0) { 611 /* 612 * The pending requests that triggered the request for an 613 * an indicate were cancelled. Those cancels should have 614 * already disabled DDP. Just ignore this as the data is 615 * going into the socket buffer anyway. 616 */ 617 return; 618 } 619 CTR3(KTR_CXGBE, "%s: tid %d indicated (%d waiting)", __func__, 620 toep->tid, toep->ddp.waiting_count); 621 ddp_queue_toep(toep); 622 } 623 624 CTASSERT(CPL_COOKIE_DDP0 + 1 == CPL_COOKIE_DDP1); 625 626 static int 627 do_ddp_tcb_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 628 { 629 struct adapter *sc = iq->adapter; 630 const struct cpl_set_tcb_rpl *cpl = (const void *)(rss + 1); 631 unsigned int tid = GET_TID(cpl); 632 unsigned int db_idx; 633 struct toepcb *toep; 634 struct inpcb *inp; 635 struct ddp_buffer *db; 636 struct kaiocb *job; 637 long copied; 638 639 if (cpl->status != CPL_ERR_NONE) 640 panic("XXX: tcp_rpl failed: %d", cpl->status); 641 642 toep = lookup_tid(sc, tid); 643 inp = toep->inp; 644 switch (cpl->cookie) { 645 case V_WORD(W_TCB_RX_DDP_FLAGS) | V_COOKIE(CPL_COOKIE_DDP0): 646 case V_WORD(W_TCB_RX_DDP_FLAGS) | V_COOKIE(CPL_COOKIE_DDP1): 647 /* 648 * XXX: This duplicates a lot of code with handle_ddp_data(). 649 */ 650 db_idx = G_COOKIE(cpl->cookie) - CPL_COOKIE_DDP0; 651 MPASS(db_idx < nitems(toep->ddp.db)); 652 INP_WLOCK(inp); 653 DDP_LOCK(toep); 654 db = &toep->ddp.db[db_idx]; 655 656 /* 657 * handle_ddp_data() should leave the job around until 658 * this callback runs once a cancel is pending. 659 */ 660 MPASS(db != NULL); 661 MPASS(db->job != NULL); 662 MPASS(db->cancel_pending); 663 664 /* 665 * XXX: It's not clear what happens if there is data 666 * placed when the buffer is invalidated. I suspect we 667 * need to read the TCB to see how much data was placed. 668 * 669 * For now this just pretends like nothing was placed. 670 * 671 * XXX: Note that if we did check the PCB we would need to 672 * also take care of updating the tp, etc. 673 */ 674 job = db->job; 675 copied = job->aio_received; 676 if (copied == 0) { 677 CTR2(KTR_CXGBE, "%s: cancelling %p", __func__, job); 678 aio_cancel(job); 679 } else { 680 CTR3(KTR_CXGBE, "%s: completing %p (copied %ld)", 681 __func__, job, copied); 682 aio_complete(job, copied, 0); 683 t4_rcvd(&toep->td->tod, intotcpcb(inp)); 684 } 685 686 complete_ddp_buffer(toep, db, db_idx); 687 if (toep->ddp.waiting_count > 0) 688 ddp_queue_toep(toep); 689 DDP_UNLOCK(toep); 690 INP_WUNLOCK(inp); 691 break; 692 default: 693 panic("XXX: unknown tcb_rpl offset %#x, cookie %#x", 694 G_WORD(cpl->cookie), G_COOKIE(cpl->cookie)); 695 } 696 697 return (0); 698 } 699 700 void 701 handle_ddp_close(struct toepcb *toep, struct tcpcb *tp, __be32 rcv_nxt) 702 { 703 struct ddp_buffer *db; 704 struct kaiocb *job; 705 long copied; 706 unsigned int db_idx; 707 #ifdef INVARIANTS 708 unsigned int db_flag; 709 #endif 710 int len, placed; 711 712 INP_WLOCK_ASSERT(toep->inp); 713 DDP_ASSERT_LOCKED(toep); 714 715 /* - 1 is to ignore the byte for FIN */ 716 len = be32toh(rcv_nxt) - tp->rcv_nxt - 1; 717 tp->rcv_nxt += len; 718 719 while (toep->ddp.active_count > 0) { 720 MPASS(toep->ddp.active_id != -1); 721 db_idx = toep->ddp.active_id; 722 #ifdef INVARIANTS 723 db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE; 724 #endif 725 MPASS((toep->ddp.flags & db_flag) != 0); 726 db = &toep->ddp.db[db_idx]; 727 job = db->job; 728 copied = job->aio_received; 729 placed = len; 730 if (placed > job->uaiocb.aio_nbytes - copied) 731 placed = job->uaiocb.aio_nbytes - copied; 732 if (placed > 0) { 733 job->msgrcv = 1; 734 toep->ofld_rxq->rx_aio_ddp_jobs++; 735 } 736 toep->ofld_rxq->rx_aio_ddp_octets += placed; 737 if (!aio_clear_cancel_function(job)) { 738 /* 739 * Update the copied length for when 740 * t4_aio_cancel_active() completes this 741 * request. 742 */ 743 job->aio_received += placed; 744 } else { 745 CTR4(KTR_CXGBE, "%s: tid %d completed buf %d len %d", 746 __func__, toep->tid, db_idx, placed); 747 aio_complete(job, copied + placed, 0); 748 } 749 len -= placed; 750 complete_ddp_buffer(toep, db, db_idx); 751 } 752 753 MPASS(len == 0); 754 ddp_complete_all(toep, 0); 755 } 756 757 #define DDP_ERR (F_DDP_PPOD_MISMATCH | F_DDP_LLIMIT_ERR | F_DDP_ULIMIT_ERR |\ 758 F_DDP_PPOD_PARITY_ERR | F_DDP_PADDING_ERR | F_DDP_OFFSET_ERR |\ 759 F_DDP_INVALID_TAG | F_DDP_COLOR_ERR | F_DDP_TID_MISMATCH |\ 760 F_DDP_INVALID_PPOD | F_DDP_HDRCRC_ERR | F_DDP_DATACRC_ERR) 761 762 extern cpl_handler_t t4_cpl_handler[]; 763 764 static int 765 do_rx_data_ddp(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 766 { 767 struct adapter *sc = iq->adapter; 768 const struct cpl_rx_data_ddp *cpl = (const void *)(rss + 1); 769 unsigned int tid = GET_TID(cpl); 770 uint32_t vld; 771 struct toepcb *toep = lookup_tid(sc, tid); 772 773 KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__)); 774 KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__)); 775 KASSERT(!(toep->flags & TPF_SYNQE), 776 ("%s: toep %p claims to be a synq entry", __func__, toep)); 777 778 vld = be32toh(cpl->ddpvld); 779 if (__predict_false(vld & DDP_ERR)) { 780 panic("%s: DDP error 0x%x (tid %d, toep %p)", 781 __func__, vld, tid, toep); 782 } 783 784 if (ulp_mode(toep) == ULP_MODE_ISCSI) { 785 t4_cpl_handler[CPL_RX_ISCSI_DDP](iq, rss, m); 786 return (0); 787 } 788 789 handle_ddp_data(toep, cpl->u.ddp_report, cpl->seq, be16toh(cpl->len)); 790 791 return (0); 792 } 793 794 static int 795 do_rx_ddp_complete(struct sge_iq *iq, const struct rss_header *rss, 796 struct mbuf *m) 797 { 798 struct adapter *sc = iq->adapter; 799 const struct cpl_rx_ddp_complete *cpl = (const void *)(rss + 1); 800 unsigned int tid = GET_TID(cpl); 801 struct toepcb *toep = lookup_tid(sc, tid); 802 803 KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__)); 804 KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__)); 805 KASSERT(!(toep->flags & TPF_SYNQE), 806 ("%s: toep %p claims to be a synq entry", __func__, toep)); 807 808 handle_ddp_data(toep, cpl->ddp_report, cpl->rcv_nxt, 0); 809 810 return (0); 811 } 812 813 static bool 814 set_ddp_ulp_mode(struct toepcb *toep) 815 { 816 struct adapter *sc = toep->vi->adapter; 817 struct wrqe *wr; 818 struct work_request_hdr *wrh; 819 struct ulp_txpkt *ulpmc; 820 int fields, len; 821 822 if (!sc->tt.ddp) 823 return (false); 824 825 fields = 0; 826 827 /* Overlay region including W_TCB_RX_DDP_FLAGS */ 828 fields += 3; 829 830 /* W_TCB_ULP_TYPE */ 831 fields++; 832 833 #ifdef USE_DDP_RX_FLOW_CONTROL 834 /* W_TCB_T_FLAGS */ 835 fields++; 836 #endif 837 838 len = sizeof(*wrh) + fields * roundup2(LEN__SET_TCB_FIELD_ULP, 16); 839 KASSERT(len <= SGE_MAX_WR_LEN, 840 ("%s: WR with %d TCB field updates too large", __func__, fields)); 841 842 wr = alloc_wrqe(len, toep->ctrlq); 843 if (wr == NULL) 844 return (false); 845 846 CTR(KTR_CXGBE, "%s: tid %u", __func__, toep->tid); 847 848 wrh = wrtod(wr); 849 INIT_ULPTX_WRH(wrh, len, 1, 0); /* atomic */ 850 ulpmc = (struct ulp_txpkt *)(wrh + 1); 851 852 /* 853 * Words 26/27 are zero except for the DDP_OFF flag in 854 * W_TCB_RX_DDP_FLAGS (27). 855 */ 856 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, 26, 857 0xffffffffffffffff, (uint64_t)V_TF_DDP_OFF(1) << 32); 858 859 /* Words 28/29 are zero. */ 860 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, 28, 861 0xffffffffffffffff, 0); 862 863 /* Words 30/31 are zero. */ 864 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, 30, 865 0xffffffffffffffff, 0); 866 867 /* Set the ULP mode to ULP_MODE_TCPDDP. */ 868 toep->params.ulp_mode = ULP_MODE_TCPDDP; 869 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, W_TCB_ULP_TYPE, 870 V_TCB_ULP_TYPE(M_TCB_ULP_TYPE), 871 V_TCB_ULP_TYPE(ULP_MODE_TCPDDP)); 872 873 #ifdef USE_DDP_RX_FLOW_CONTROL 874 /* Set TF_RX_FLOW_CONTROL_DDP. */ 875 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, W_TCB_T_FLAGS, 876 V_TF_RX_FLOW_CONTROL_DDP(1), V_TF_RX_FLOW_CONTROL_DDP(1)); 877 #endif 878 879 ddp_init_toep(toep); 880 881 t4_wrq_tx(sc, wr); 882 return (true); 883 } 884 885 static void 886 enable_ddp(struct adapter *sc, struct toepcb *toep) 887 { 888 889 KASSERT((toep->ddp.flags & (DDP_ON | DDP_OK | DDP_SC_REQ)) == DDP_OK, 890 ("%s: toep %p has bad ddp_flags 0x%x", 891 __func__, toep, toep->ddp.flags)); 892 893 CTR3(KTR_CXGBE, "%s: tid %u (time %u)", 894 __func__, toep->tid, time_uptime); 895 896 DDP_ASSERT_LOCKED(toep); 897 toep->ddp.flags |= DDP_SC_REQ; 898 t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_RX_DDP_FLAGS, 899 V_TF_DDP_OFF(1) | V_TF_DDP_INDICATE_OUT(1) | 900 V_TF_DDP_BUF0_INDICATE(1) | V_TF_DDP_BUF1_INDICATE(1) | 901 V_TF_DDP_BUF0_VALID(1) | V_TF_DDP_BUF1_VALID(1), 902 V_TF_DDP_BUF0_INDICATE(1) | V_TF_DDP_BUF1_INDICATE(1), 0, 0); 903 t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_T_FLAGS, 904 V_TF_RCV_COALESCE_ENABLE(1), 0, 0, 0); 905 } 906 907 static int 908 calculate_hcf(int n1, int n2) 909 { 910 int a, b, t; 911 912 if (n1 <= n2) { 913 a = n1; 914 b = n2; 915 } else { 916 a = n2; 917 b = n1; 918 } 919 920 while (a != 0) { 921 t = a; 922 a = b % a; 923 b = t; 924 } 925 926 return (b); 927 } 928 929 static inline int 930 pages_to_nppods(int npages, int ddp_page_shift) 931 { 932 933 MPASS(ddp_page_shift >= PAGE_SHIFT); 934 935 return (howmany(npages >> (ddp_page_shift - PAGE_SHIFT), PPOD_PAGES)); 936 } 937 938 static int 939 alloc_page_pods(struct ppod_region *pr, u_int nppods, u_int pgsz_idx, 940 struct ppod_reservation *prsv) 941 { 942 vmem_addr_t addr; /* relative to start of region */ 943 944 if (vmem_alloc(pr->pr_arena, PPOD_SZ(nppods), M_NOWAIT | M_FIRSTFIT, 945 &addr) != 0) 946 return (ENOMEM); 947 948 #ifdef VERBOSE_TRACES 949 CTR5(KTR_CXGBE, "%-17s arena %p, addr 0x%08x, nppods %d, pgsz %d", 950 __func__, pr->pr_arena, (uint32_t)addr & pr->pr_tag_mask, 951 nppods, 1 << pr->pr_page_shift[pgsz_idx]); 952 #endif 953 954 /* 955 * The hardware tagmask includes an extra invalid bit but the arena was 956 * seeded with valid values only. An allocation out of this arena will 957 * fit inside the tagmask but won't have the invalid bit set. 958 */ 959 MPASS((addr & pr->pr_tag_mask) == addr); 960 MPASS((addr & pr->pr_invalid_bit) == 0); 961 962 prsv->prsv_pr = pr; 963 prsv->prsv_tag = V_PPOD_PGSZ(pgsz_idx) | addr; 964 prsv->prsv_nppods = nppods; 965 966 return (0); 967 } 968 969 static int 970 t4_alloc_page_pods_for_vmpages(struct ppod_region *pr, vm_page_t *pages, 971 int npages, struct ppod_reservation *prsv) 972 { 973 int i, hcf, seglen, idx, nppods; 974 975 /* 976 * The DDP page size is unrelated to the VM page size. We combine 977 * contiguous physical pages into larger segments to get the best DDP 978 * page size possible. This is the largest of the four sizes in 979 * A_ULP_RX_TDDP_PSZ that evenly divides the HCF of the segment sizes in 980 * the page list. 981 */ 982 hcf = 0; 983 for (i = 0; i < npages; i++) { 984 seglen = PAGE_SIZE; 985 while (i < npages - 1 && 986 VM_PAGE_TO_PHYS(pages[i]) + PAGE_SIZE == 987 VM_PAGE_TO_PHYS(pages[i + 1])) { 988 seglen += PAGE_SIZE; 989 i++; 990 } 991 992 hcf = calculate_hcf(hcf, seglen); 993 if (hcf < (1 << pr->pr_page_shift[1])) { 994 idx = 0; 995 goto have_pgsz; /* give up, short circuit */ 996 } 997 } 998 999 #define PR_PAGE_MASK(x) ((1 << pr->pr_page_shift[(x)]) - 1) 1000 MPASS((hcf & PR_PAGE_MASK(0)) == 0); /* PAGE_SIZE is >= 4K everywhere */ 1001 for (idx = nitems(pr->pr_page_shift) - 1; idx > 0; idx--) { 1002 if ((hcf & PR_PAGE_MASK(idx)) == 0) 1003 break; 1004 } 1005 #undef PR_PAGE_MASK 1006 1007 have_pgsz: 1008 MPASS(idx <= M_PPOD_PGSZ); 1009 1010 nppods = pages_to_nppods(npages, pr->pr_page_shift[idx]); 1011 if (alloc_page_pods(pr, nppods, idx, prsv) != 0) 1012 return (ENOMEM); 1013 MPASS(prsv->prsv_nppods > 0); 1014 1015 return (0); 1016 } 1017 1018 int 1019 t4_alloc_page_pods_for_ps(struct ppod_region *pr, struct pageset *ps) 1020 { 1021 struct ppod_reservation *prsv = &ps->prsv; 1022 1023 KASSERT(prsv->prsv_nppods == 0, 1024 ("%s: page pods already allocated", __func__)); 1025 1026 return (t4_alloc_page_pods_for_vmpages(pr, ps->pages, ps->npages, 1027 prsv)); 1028 } 1029 1030 int 1031 t4_alloc_page_pods_for_bio(struct ppod_region *pr, struct bio *bp, 1032 struct ppod_reservation *prsv) 1033 { 1034 1035 MPASS(bp->bio_flags & BIO_UNMAPPED); 1036 1037 return (t4_alloc_page_pods_for_vmpages(pr, bp->bio_ma, bp->bio_ma_n, 1038 prsv)); 1039 } 1040 1041 int 1042 t4_alloc_page_pods_for_buf(struct ppod_region *pr, vm_offset_t buf, int len, 1043 struct ppod_reservation *prsv) 1044 { 1045 int hcf, seglen, idx, npages, nppods; 1046 uintptr_t start_pva, end_pva, pva, p1; 1047 1048 MPASS(buf > 0); 1049 MPASS(len > 0); 1050 1051 /* 1052 * The DDP page size is unrelated to the VM page size. We combine 1053 * contiguous physical pages into larger segments to get the best DDP 1054 * page size possible. This is the largest of the four sizes in 1055 * A_ULP_RX_ISCSI_PSZ that evenly divides the HCF of the segment sizes 1056 * in the page list. 1057 */ 1058 hcf = 0; 1059 start_pva = trunc_page(buf); 1060 end_pva = trunc_page(buf + len - 1); 1061 pva = start_pva; 1062 while (pva <= end_pva) { 1063 seglen = PAGE_SIZE; 1064 p1 = pmap_kextract(pva); 1065 pva += PAGE_SIZE; 1066 while (pva <= end_pva && p1 + seglen == pmap_kextract(pva)) { 1067 seglen += PAGE_SIZE; 1068 pva += PAGE_SIZE; 1069 } 1070 1071 hcf = calculate_hcf(hcf, seglen); 1072 if (hcf < (1 << pr->pr_page_shift[1])) { 1073 idx = 0; 1074 goto have_pgsz; /* give up, short circuit */ 1075 } 1076 } 1077 1078 #define PR_PAGE_MASK(x) ((1 << pr->pr_page_shift[(x)]) - 1) 1079 MPASS((hcf & PR_PAGE_MASK(0)) == 0); /* PAGE_SIZE is >= 4K everywhere */ 1080 for (idx = nitems(pr->pr_page_shift) - 1; idx > 0; idx--) { 1081 if ((hcf & PR_PAGE_MASK(idx)) == 0) 1082 break; 1083 } 1084 #undef PR_PAGE_MASK 1085 1086 have_pgsz: 1087 MPASS(idx <= M_PPOD_PGSZ); 1088 1089 npages = 1; 1090 npages += (end_pva - start_pva) >> pr->pr_page_shift[idx]; 1091 nppods = howmany(npages, PPOD_PAGES); 1092 if (alloc_page_pods(pr, nppods, idx, prsv) != 0) 1093 return (ENOMEM); 1094 MPASS(prsv->prsv_nppods > 0); 1095 1096 return (0); 1097 } 1098 1099 int 1100 t4_alloc_page_pods_for_sgl(struct ppod_region *pr, struct ctl_sg_entry *sgl, 1101 int entries, struct ppod_reservation *prsv) 1102 { 1103 int hcf, seglen, idx = 0, npages, nppods, i, len; 1104 uintptr_t start_pva, end_pva, pva, p1 ; 1105 vm_offset_t buf; 1106 struct ctl_sg_entry *sge; 1107 1108 MPASS(entries > 0); 1109 MPASS(sgl); 1110 1111 /* 1112 * The DDP page size is unrelated to the VM page size. We combine 1113 * contiguous physical pages into larger segments to get the best DDP 1114 * page size possible. This is the largest of the four sizes in 1115 * A_ULP_RX_ISCSI_PSZ that evenly divides the HCF of the segment sizes 1116 * in the page list. 1117 */ 1118 hcf = 0; 1119 for (i = entries - 1; i >= 0; i--) { 1120 sge = sgl + i; 1121 buf = (vm_offset_t)sge->addr; 1122 len = sge->len; 1123 start_pva = trunc_page(buf); 1124 end_pva = trunc_page(buf + len - 1); 1125 pva = start_pva; 1126 while (pva <= end_pva) { 1127 seglen = PAGE_SIZE; 1128 p1 = pmap_kextract(pva); 1129 pva += PAGE_SIZE; 1130 while (pva <= end_pva && p1 + seglen == 1131 pmap_kextract(pva)) { 1132 seglen += PAGE_SIZE; 1133 pva += PAGE_SIZE; 1134 } 1135 1136 hcf = calculate_hcf(hcf, seglen); 1137 if (hcf < (1 << pr->pr_page_shift[1])) { 1138 idx = 0; 1139 goto have_pgsz; /* give up, short circuit */ 1140 } 1141 } 1142 } 1143 #define PR_PAGE_MASK(x) ((1 << pr->pr_page_shift[(x)]) - 1) 1144 MPASS((hcf & PR_PAGE_MASK(0)) == 0); /* PAGE_SIZE is >= 4K everywhere */ 1145 for (idx = nitems(pr->pr_page_shift) - 1; idx > 0; idx--) { 1146 if ((hcf & PR_PAGE_MASK(idx)) == 0) 1147 break; 1148 } 1149 #undef PR_PAGE_MASK 1150 1151 have_pgsz: 1152 MPASS(idx <= M_PPOD_PGSZ); 1153 1154 npages = 0; 1155 while (entries--) { 1156 npages++; 1157 start_pva = trunc_page((vm_offset_t)sgl->addr); 1158 end_pva = trunc_page((vm_offset_t)sgl->addr + sgl->len - 1); 1159 npages += (end_pva - start_pva) >> pr->pr_page_shift[idx]; 1160 sgl = sgl + 1; 1161 } 1162 nppods = howmany(npages, PPOD_PAGES); 1163 if (alloc_page_pods(pr, nppods, idx, prsv) != 0) 1164 return (ENOMEM); 1165 MPASS(prsv->prsv_nppods > 0); 1166 return (0); 1167 } 1168 1169 void 1170 t4_free_page_pods(struct ppod_reservation *prsv) 1171 { 1172 struct ppod_region *pr = prsv->prsv_pr; 1173 vmem_addr_t addr; 1174 1175 MPASS(prsv != NULL); 1176 MPASS(prsv->prsv_nppods != 0); 1177 1178 addr = prsv->prsv_tag & pr->pr_tag_mask; 1179 MPASS((addr & pr->pr_invalid_bit) == 0); 1180 1181 #ifdef VERBOSE_TRACES 1182 CTR4(KTR_CXGBE, "%-17s arena %p, addr 0x%08x, nppods %d", __func__, 1183 pr->pr_arena, addr, prsv->prsv_nppods); 1184 #endif 1185 1186 vmem_free(pr->pr_arena, addr, PPOD_SZ(prsv->prsv_nppods)); 1187 prsv->prsv_nppods = 0; 1188 } 1189 1190 #define NUM_ULP_TX_SC_IMM_PPODS (256 / PPOD_SIZE) 1191 1192 int 1193 t4_write_page_pods_for_ps(struct adapter *sc, struct sge_wrq *wrq, int tid, 1194 struct pageset *ps) 1195 { 1196 struct wrqe *wr; 1197 struct ulp_mem_io *ulpmc; 1198 struct ulptx_idata *ulpsc; 1199 struct pagepod *ppod; 1200 int i, j, k, n, chunk, len, ddp_pgsz, idx; 1201 u_int ppod_addr; 1202 uint32_t cmd; 1203 struct ppod_reservation *prsv = &ps->prsv; 1204 struct ppod_region *pr = prsv->prsv_pr; 1205 vm_paddr_t pa; 1206 1207 KASSERT(!(ps->flags & PS_PPODS_WRITTEN), 1208 ("%s: page pods already written", __func__)); 1209 MPASS(prsv->prsv_nppods > 0); 1210 1211 cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE)); 1212 if (is_t4(sc)) 1213 cmd |= htobe32(F_ULP_MEMIO_ORDER); 1214 else 1215 cmd |= htobe32(F_T5_ULP_MEMIO_IMM); 1216 ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)]; 1217 ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask); 1218 for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) { 1219 1220 /* How many page pods are we writing in this cycle */ 1221 n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS); 1222 chunk = PPOD_SZ(n); 1223 len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16); 1224 1225 wr = alloc_wrqe(len, wrq); 1226 if (wr == NULL) 1227 return (ENOMEM); /* ok to just bail out */ 1228 ulpmc = wrtod(wr); 1229 1230 INIT_ULPTX_WR(ulpmc, len, 0, 0); 1231 ulpmc->cmd = cmd; 1232 ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32)); 1233 ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16)); 1234 ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5)); 1235 1236 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 1237 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 1238 ulpsc->len = htobe32(chunk); 1239 1240 ppod = (struct pagepod *)(ulpsc + 1); 1241 for (j = 0; j < n; i++, j++, ppod++) { 1242 ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID | 1243 V_PPOD_TID(tid) | prsv->prsv_tag); 1244 ppod->len_offset = htobe64(V_PPOD_LEN(ps->len) | 1245 V_PPOD_OFST(ps->offset)); 1246 ppod->rsvd = 0; 1247 idx = i * PPOD_PAGES * (ddp_pgsz / PAGE_SIZE); 1248 for (k = 0; k < nitems(ppod->addr); k++) { 1249 if (idx < ps->npages) { 1250 pa = VM_PAGE_TO_PHYS(ps->pages[idx]); 1251 ppod->addr[k] = htobe64(pa); 1252 idx += ddp_pgsz / PAGE_SIZE; 1253 } else 1254 ppod->addr[k] = 0; 1255 #if 0 1256 CTR5(KTR_CXGBE, 1257 "%s: tid %d ppod[%d]->addr[%d] = %p", 1258 __func__, tid, i, k, 1259 be64toh(ppod->addr[k])); 1260 #endif 1261 } 1262 1263 } 1264 1265 t4_wrq_tx(sc, wr); 1266 } 1267 ps->flags |= PS_PPODS_WRITTEN; 1268 1269 return (0); 1270 } 1271 1272 static struct mbuf * 1273 alloc_raw_wr_mbuf(int len) 1274 { 1275 struct mbuf *m; 1276 1277 if (len <= MHLEN) 1278 m = m_gethdr(M_NOWAIT, MT_DATA); 1279 else if (len <= MCLBYTES) 1280 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1281 else 1282 m = NULL; 1283 if (m == NULL) 1284 return (NULL); 1285 m->m_pkthdr.len = len; 1286 m->m_len = len; 1287 set_mbuf_raw_wr(m, true); 1288 return (m); 1289 } 1290 1291 int 1292 t4_write_page_pods_for_bio(struct adapter *sc, struct toepcb *toep, 1293 struct ppod_reservation *prsv, struct bio *bp, struct mbufq *wrq) 1294 { 1295 struct ulp_mem_io *ulpmc; 1296 struct ulptx_idata *ulpsc; 1297 struct pagepod *ppod; 1298 int i, j, k, n, chunk, len, ddp_pgsz, idx; 1299 u_int ppod_addr; 1300 uint32_t cmd; 1301 struct ppod_region *pr = prsv->prsv_pr; 1302 vm_paddr_t pa; 1303 struct mbuf *m; 1304 1305 MPASS(bp->bio_flags & BIO_UNMAPPED); 1306 1307 cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE)); 1308 if (is_t4(sc)) 1309 cmd |= htobe32(F_ULP_MEMIO_ORDER); 1310 else 1311 cmd |= htobe32(F_T5_ULP_MEMIO_IMM); 1312 ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)]; 1313 ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask); 1314 for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) { 1315 1316 /* How many page pods are we writing in this cycle */ 1317 n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS); 1318 MPASS(n > 0); 1319 chunk = PPOD_SZ(n); 1320 len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16); 1321 1322 m = alloc_raw_wr_mbuf(len); 1323 if (m == NULL) 1324 return (ENOMEM); 1325 1326 ulpmc = mtod(m, struct ulp_mem_io *); 1327 INIT_ULPTX_WR(ulpmc, len, 0, toep->tid); 1328 ulpmc->cmd = cmd; 1329 ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32)); 1330 ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16)); 1331 ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5)); 1332 1333 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 1334 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 1335 ulpsc->len = htobe32(chunk); 1336 1337 ppod = (struct pagepod *)(ulpsc + 1); 1338 for (j = 0; j < n; i++, j++, ppod++) { 1339 ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID | 1340 V_PPOD_TID(toep->tid) | 1341 (prsv->prsv_tag & ~V_PPOD_PGSZ(M_PPOD_PGSZ))); 1342 ppod->len_offset = htobe64(V_PPOD_LEN(bp->bio_bcount) | 1343 V_PPOD_OFST(bp->bio_ma_offset)); 1344 ppod->rsvd = 0; 1345 idx = i * PPOD_PAGES * (ddp_pgsz / PAGE_SIZE); 1346 for (k = 0; k < nitems(ppod->addr); k++) { 1347 if (idx < bp->bio_ma_n) { 1348 pa = VM_PAGE_TO_PHYS(bp->bio_ma[idx]); 1349 ppod->addr[k] = htobe64(pa); 1350 idx += ddp_pgsz / PAGE_SIZE; 1351 } else 1352 ppod->addr[k] = 0; 1353 #if 0 1354 CTR5(KTR_CXGBE, 1355 "%s: tid %d ppod[%d]->addr[%d] = %p", 1356 __func__, toep->tid, i, k, 1357 be64toh(ppod->addr[k])); 1358 #endif 1359 } 1360 } 1361 1362 mbufq_enqueue(wrq, m); 1363 } 1364 1365 return (0); 1366 } 1367 1368 int 1369 t4_write_page_pods_for_buf(struct adapter *sc, struct toepcb *toep, 1370 struct ppod_reservation *prsv, vm_offset_t buf, int buflen, 1371 struct mbufq *wrq) 1372 { 1373 struct ulp_mem_io *ulpmc; 1374 struct ulptx_idata *ulpsc; 1375 struct pagepod *ppod; 1376 int i, j, k, n, chunk, len, ddp_pgsz; 1377 u_int ppod_addr, offset; 1378 uint32_t cmd; 1379 struct ppod_region *pr = prsv->prsv_pr; 1380 uintptr_t end_pva, pva; 1381 vm_paddr_t pa; 1382 struct mbuf *m; 1383 1384 cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE)); 1385 if (is_t4(sc)) 1386 cmd |= htobe32(F_ULP_MEMIO_ORDER); 1387 else 1388 cmd |= htobe32(F_T5_ULP_MEMIO_IMM); 1389 ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)]; 1390 offset = buf & PAGE_MASK; 1391 ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask); 1392 pva = trunc_page(buf); 1393 end_pva = trunc_page(buf + buflen - 1); 1394 for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) { 1395 1396 /* How many page pods are we writing in this cycle */ 1397 n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS); 1398 MPASS(n > 0); 1399 chunk = PPOD_SZ(n); 1400 len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16); 1401 1402 m = alloc_raw_wr_mbuf(len); 1403 if (m == NULL) 1404 return (ENOMEM); 1405 ulpmc = mtod(m, struct ulp_mem_io *); 1406 1407 INIT_ULPTX_WR(ulpmc, len, 0, toep->tid); 1408 ulpmc->cmd = cmd; 1409 ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32)); 1410 ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16)); 1411 ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5)); 1412 1413 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 1414 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 1415 ulpsc->len = htobe32(chunk); 1416 1417 ppod = (struct pagepod *)(ulpsc + 1); 1418 for (j = 0; j < n; i++, j++, ppod++) { 1419 ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID | 1420 V_PPOD_TID(toep->tid) | 1421 (prsv->prsv_tag & ~V_PPOD_PGSZ(M_PPOD_PGSZ))); 1422 ppod->len_offset = htobe64(V_PPOD_LEN(buflen) | 1423 V_PPOD_OFST(offset)); 1424 ppod->rsvd = 0; 1425 1426 for (k = 0; k < nitems(ppod->addr); k++) { 1427 if (pva > end_pva) 1428 ppod->addr[k] = 0; 1429 else { 1430 pa = pmap_kextract(pva); 1431 ppod->addr[k] = htobe64(pa); 1432 pva += ddp_pgsz; 1433 } 1434 #if 0 1435 CTR5(KTR_CXGBE, 1436 "%s: tid %d ppod[%d]->addr[%d] = %p", 1437 __func__, toep->tid, i, k, 1438 be64toh(ppod->addr[k])); 1439 #endif 1440 } 1441 1442 /* 1443 * Walk back 1 segment so that the first address in the 1444 * next pod is the same as the last one in the current 1445 * pod. 1446 */ 1447 pva -= ddp_pgsz; 1448 } 1449 1450 mbufq_enqueue(wrq, m); 1451 } 1452 1453 MPASS(pva <= end_pva); 1454 1455 return (0); 1456 } 1457 1458 int 1459 t4_write_page_pods_for_sgl(struct adapter *sc, struct toepcb *toep, 1460 struct ppod_reservation *prsv, struct ctl_sg_entry *sgl, int entries, 1461 int xferlen, struct mbufq *wrq) 1462 { 1463 struct ulp_mem_io *ulpmc; 1464 struct ulptx_idata *ulpsc; 1465 struct pagepod *ppod; 1466 int i, j, k, n, chunk, len, ddp_pgsz; 1467 u_int ppod_addr, offset, sg_offset = 0; 1468 uint32_t cmd; 1469 struct ppod_region *pr = prsv->prsv_pr; 1470 uintptr_t pva; 1471 vm_paddr_t pa; 1472 struct mbuf *m; 1473 1474 MPASS(sgl != NULL); 1475 MPASS(entries > 0); 1476 cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE)); 1477 if (is_t4(sc)) 1478 cmd |= htobe32(F_ULP_MEMIO_ORDER); 1479 else 1480 cmd |= htobe32(F_T5_ULP_MEMIO_IMM); 1481 ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)]; 1482 offset = (vm_offset_t)sgl->addr & PAGE_MASK; 1483 ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask); 1484 pva = trunc_page((vm_offset_t)sgl->addr); 1485 for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) { 1486 1487 /* How many page pods are we writing in this cycle */ 1488 n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS); 1489 MPASS(n > 0); 1490 chunk = PPOD_SZ(n); 1491 len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16); 1492 1493 m = alloc_raw_wr_mbuf(len); 1494 if (m == NULL) 1495 return (ENOMEM); 1496 ulpmc = mtod(m, struct ulp_mem_io *); 1497 1498 INIT_ULPTX_WR(ulpmc, len, 0, toep->tid); 1499 ulpmc->cmd = cmd; 1500 ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32)); 1501 ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16)); 1502 ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5)); 1503 1504 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 1505 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 1506 ulpsc->len = htobe32(chunk); 1507 1508 ppod = (struct pagepod *)(ulpsc + 1); 1509 for (j = 0; j < n; i++, j++, ppod++) { 1510 ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID | 1511 V_PPOD_TID(toep->tid) | 1512 (prsv->prsv_tag & ~V_PPOD_PGSZ(M_PPOD_PGSZ))); 1513 ppod->len_offset = htobe64(V_PPOD_LEN(xferlen) | 1514 V_PPOD_OFST(offset)); 1515 ppod->rsvd = 0; 1516 1517 for (k = 0; k < nitems(ppod->addr); k++) { 1518 if (entries != 0) { 1519 pa = pmap_kextract(pva + sg_offset); 1520 ppod->addr[k] = htobe64(pa); 1521 } else 1522 ppod->addr[k] = 0; 1523 1524 #if 0 1525 CTR5(KTR_CXGBE, 1526 "%s: tid %d ppod[%d]->addr[%d] = %p", 1527 __func__, toep->tid, i, k, 1528 be64toh(ppod->addr[k])); 1529 #endif 1530 1531 /* 1532 * If this is the last entry in a pod, 1533 * reuse the same entry for first address 1534 * in the next pod. 1535 */ 1536 if (k + 1 == nitems(ppod->addr)) 1537 break; 1538 1539 /* 1540 * Don't move to the next DDP page if the 1541 * sgl is already finished. 1542 */ 1543 if (entries == 0) 1544 continue; 1545 1546 sg_offset += ddp_pgsz; 1547 if (sg_offset == sgl->len) { 1548 /* 1549 * This sgl entry is done. Go 1550 * to the next. 1551 */ 1552 entries--; 1553 sgl++; 1554 sg_offset = 0; 1555 if (entries != 0) 1556 pva = trunc_page( 1557 (vm_offset_t)sgl->addr); 1558 } 1559 } 1560 } 1561 1562 mbufq_enqueue(wrq, m); 1563 } 1564 1565 return (0); 1566 } 1567 1568 /* 1569 * Prepare a pageset for DDP. This sets up page pods. 1570 */ 1571 static int 1572 prep_pageset(struct adapter *sc, struct toepcb *toep, struct pageset *ps) 1573 { 1574 struct tom_data *td = sc->tom_softc; 1575 1576 if (ps->prsv.prsv_nppods == 0 && 1577 t4_alloc_page_pods_for_ps(&td->pr, ps) != 0) { 1578 return (0); 1579 } 1580 if (!(ps->flags & PS_PPODS_WRITTEN) && 1581 t4_write_page_pods_for_ps(sc, toep->ctrlq, toep->tid, ps) != 0) { 1582 return (0); 1583 } 1584 1585 return (1); 1586 } 1587 1588 int 1589 t4_init_ppod_region(struct ppod_region *pr, struct t4_range *r, u_int psz, 1590 const char *name) 1591 { 1592 int i; 1593 1594 MPASS(pr != NULL); 1595 MPASS(r->size > 0); 1596 1597 pr->pr_start = r->start; 1598 pr->pr_len = r->size; 1599 pr->pr_page_shift[0] = 12 + G_HPZ0(psz); 1600 pr->pr_page_shift[1] = 12 + G_HPZ1(psz); 1601 pr->pr_page_shift[2] = 12 + G_HPZ2(psz); 1602 pr->pr_page_shift[3] = 12 + G_HPZ3(psz); 1603 1604 /* The SGL -> page pod algorithm requires the sizes to be in order. */ 1605 for (i = 1; i < nitems(pr->pr_page_shift); i++) { 1606 if (pr->pr_page_shift[i] <= pr->pr_page_shift[i - 1]) 1607 return (ENXIO); 1608 } 1609 1610 pr->pr_tag_mask = ((1 << fls(r->size)) - 1) & V_PPOD_TAG(M_PPOD_TAG); 1611 pr->pr_alias_mask = V_PPOD_TAG(M_PPOD_TAG) & ~pr->pr_tag_mask; 1612 if (pr->pr_tag_mask == 0 || pr->pr_alias_mask == 0) 1613 return (ENXIO); 1614 pr->pr_alias_shift = fls(pr->pr_tag_mask); 1615 pr->pr_invalid_bit = 1 << (pr->pr_alias_shift - 1); 1616 1617 pr->pr_arena = vmem_create(name, 0, pr->pr_len, PPOD_SIZE, 0, 1618 M_FIRSTFIT | M_NOWAIT); 1619 if (pr->pr_arena == NULL) 1620 return (ENOMEM); 1621 1622 return (0); 1623 } 1624 1625 void 1626 t4_free_ppod_region(struct ppod_region *pr) 1627 { 1628 1629 MPASS(pr != NULL); 1630 1631 if (pr->pr_arena) 1632 vmem_destroy(pr->pr_arena); 1633 bzero(pr, sizeof(*pr)); 1634 } 1635 1636 static int 1637 pscmp(struct pageset *ps, struct vmspace *vm, vm_offset_t start, int npages, 1638 int pgoff, int len) 1639 { 1640 1641 if (ps->start != start || ps->npages != npages || 1642 ps->offset != pgoff || ps->len != len) 1643 return (1); 1644 1645 return (ps->vm != vm || ps->vm_timestamp != vm->vm_map.timestamp); 1646 } 1647 1648 static int 1649 hold_aio(struct toepcb *toep, struct kaiocb *job, struct pageset **pps) 1650 { 1651 struct vmspace *vm; 1652 vm_map_t map; 1653 vm_offset_t start, end, pgoff; 1654 struct pageset *ps; 1655 int n; 1656 1657 DDP_ASSERT_LOCKED(toep); 1658 1659 /* 1660 * The AIO subsystem will cancel and drain all requests before 1661 * permitting a process to exit or exec, so p_vmspace should 1662 * be stable here. 1663 */ 1664 vm = job->userproc->p_vmspace; 1665 map = &vm->vm_map; 1666 start = (uintptr_t)job->uaiocb.aio_buf; 1667 pgoff = start & PAGE_MASK; 1668 end = round_page(start + job->uaiocb.aio_nbytes); 1669 start = trunc_page(start); 1670 1671 if (end - start > MAX_DDP_BUFFER_SIZE) { 1672 /* 1673 * Truncate the request to a short read. 1674 * Alternatively, we could DDP in chunks to the larger 1675 * buffer, but that would be quite a bit more work. 1676 * 1677 * When truncating, round the request down to avoid 1678 * crossing a cache line on the final transaction. 1679 */ 1680 end = rounddown2(start + MAX_DDP_BUFFER_SIZE, CACHE_LINE_SIZE); 1681 #ifdef VERBOSE_TRACES 1682 CTR4(KTR_CXGBE, "%s: tid %d, truncating size from %lu to %lu", 1683 __func__, toep->tid, (unsigned long)job->uaiocb.aio_nbytes, 1684 (unsigned long)(end - (start + pgoff))); 1685 job->uaiocb.aio_nbytes = end - (start + pgoff); 1686 #endif 1687 end = round_page(end); 1688 } 1689 1690 n = atop(end - start); 1691 1692 /* 1693 * Try to reuse a cached pageset. 1694 */ 1695 TAILQ_FOREACH(ps, &toep->ddp.cached_pagesets, link) { 1696 if (pscmp(ps, vm, start, n, pgoff, 1697 job->uaiocb.aio_nbytes) == 0) { 1698 TAILQ_REMOVE(&toep->ddp.cached_pagesets, ps, link); 1699 toep->ddp.cached_count--; 1700 *pps = ps; 1701 return (0); 1702 } 1703 } 1704 1705 /* 1706 * If there are too many cached pagesets to create a new one, 1707 * free a pageset before creating a new one. 1708 */ 1709 KASSERT(toep->ddp.active_count + toep->ddp.cached_count <= 1710 nitems(toep->ddp.db), ("%s: too many wired pagesets", __func__)); 1711 if (toep->ddp.active_count + toep->ddp.cached_count == 1712 nitems(toep->ddp.db)) { 1713 KASSERT(toep->ddp.cached_count > 0, 1714 ("no cached pageset to free")); 1715 ps = TAILQ_LAST(&toep->ddp.cached_pagesets, pagesetq); 1716 TAILQ_REMOVE(&toep->ddp.cached_pagesets, ps, link); 1717 toep->ddp.cached_count--; 1718 free_pageset(toep->td, ps); 1719 } 1720 DDP_UNLOCK(toep); 1721 1722 /* Create a new pageset. */ 1723 ps = malloc(sizeof(*ps) + n * sizeof(vm_page_t), M_CXGBE, M_WAITOK | 1724 M_ZERO); 1725 ps->pages = (vm_page_t *)(ps + 1); 1726 ps->vm_timestamp = map->timestamp; 1727 ps->npages = vm_fault_quick_hold_pages(map, start, end - start, 1728 VM_PROT_WRITE, ps->pages, n); 1729 1730 DDP_LOCK(toep); 1731 if (ps->npages < 0) { 1732 free(ps, M_CXGBE); 1733 return (EFAULT); 1734 } 1735 1736 KASSERT(ps->npages == n, ("hold_aio: page count mismatch: %d vs %d", 1737 ps->npages, n)); 1738 1739 ps->offset = pgoff; 1740 ps->len = job->uaiocb.aio_nbytes; 1741 refcount_acquire(&vm->vm_refcnt); 1742 ps->vm = vm; 1743 ps->start = start; 1744 1745 CTR5(KTR_CXGBE, "%s: tid %d, new pageset %p for job %p, npages %d", 1746 __func__, toep->tid, ps, job, ps->npages); 1747 *pps = ps; 1748 return (0); 1749 } 1750 1751 static void 1752 ddp_complete_all(struct toepcb *toep, int error) 1753 { 1754 struct kaiocb *job; 1755 1756 DDP_ASSERT_LOCKED(toep); 1757 while (!TAILQ_EMPTY(&toep->ddp.aiojobq)) { 1758 job = TAILQ_FIRST(&toep->ddp.aiojobq); 1759 TAILQ_REMOVE(&toep->ddp.aiojobq, job, list); 1760 toep->ddp.waiting_count--; 1761 if (aio_clear_cancel_function(job)) 1762 ddp_complete_one(job, error); 1763 } 1764 } 1765 1766 static void 1767 aio_ddp_cancel_one(struct kaiocb *job) 1768 { 1769 long copied; 1770 1771 /* 1772 * If this job had copied data out of the socket buffer before 1773 * it was cancelled, report it as a short read rather than an 1774 * error. 1775 */ 1776 copied = job->aio_received; 1777 if (copied != 0) 1778 aio_complete(job, copied, 0); 1779 else 1780 aio_cancel(job); 1781 } 1782 1783 /* 1784 * Called when the main loop wants to requeue a job to retry it later. 1785 * Deals with the race of the job being cancelled while it was being 1786 * examined. 1787 */ 1788 static void 1789 aio_ddp_requeue_one(struct toepcb *toep, struct kaiocb *job) 1790 { 1791 1792 DDP_ASSERT_LOCKED(toep); 1793 if (!(toep->ddp.flags & DDP_DEAD) && 1794 aio_set_cancel_function(job, t4_aio_cancel_queued)) { 1795 TAILQ_INSERT_HEAD(&toep->ddp.aiojobq, job, list); 1796 toep->ddp.waiting_count++; 1797 } else 1798 aio_ddp_cancel_one(job); 1799 } 1800 1801 static void 1802 aio_ddp_requeue(struct toepcb *toep) 1803 { 1804 struct adapter *sc = td_adapter(toep->td); 1805 struct socket *so; 1806 struct sockbuf *sb; 1807 struct inpcb *inp; 1808 struct kaiocb *job; 1809 struct ddp_buffer *db; 1810 size_t copied, offset, resid; 1811 struct pageset *ps; 1812 struct mbuf *m; 1813 uint64_t ddp_flags, ddp_flags_mask; 1814 struct wrqe *wr; 1815 int buf_flag, db_idx, error; 1816 1817 DDP_ASSERT_LOCKED(toep); 1818 1819 restart: 1820 if (toep->ddp.flags & DDP_DEAD) { 1821 MPASS(toep->ddp.waiting_count == 0); 1822 MPASS(toep->ddp.active_count == 0); 1823 return; 1824 } 1825 1826 if (toep->ddp.waiting_count == 0 || 1827 toep->ddp.active_count == nitems(toep->ddp.db)) { 1828 return; 1829 } 1830 1831 job = TAILQ_FIRST(&toep->ddp.aiojobq); 1832 so = job->fd_file->f_data; 1833 sb = &so->so_rcv; 1834 SOCKBUF_LOCK(sb); 1835 1836 /* We will never get anything unless we are or were connected. */ 1837 if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) { 1838 SOCKBUF_UNLOCK(sb); 1839 ddp_complete_all(toep, ENOTCONN); 1840 return; 1841 } 1842 1843 KASSERT(toep->ddp.active_count == 0 || sbavail(sb) == 0, 1844 ("%s: pending sockbuf data and DDP is active", __func__)); 1845 1846 /* Abort if socket has reported problems. */ 1847 /* XXX: Wait for any queued DDP's to finish and/or flush them? */ 1848 if (so->so_error && sbavail(sb) == 0) { 1849 toep->ddp.waiting_count--; 1850 TAILQ_REMOVE(&toep->ddp.aiojobq, job, list); 1851 if (!aio_clear_cancel_function(job)) { 1852 SOCKBUF_UNLOCK(sb); 1853 goto restart; 1854 } 1855 1856 /* 1857 * If this job has previously copied some data, report 1858 * a short read and leave the error to be reported by 1859 * a future request. 1860 */ 1861 copied = job->aio_received; 1862 if (copied != 0) { 1863 SOCKBUF_UNLOCK(sb); 1864 aio_complete(job, copied, 0); 1865 goto restart; 1866 } 1867 error = so->so_error; 1868 so->so_error = 0; 1869 SOCKBUF_UNLOCK(sb); 1870 aio_complete(job, -1, error); 1871 goto restart; 1872 } 1873 1874 /* 1875 * Door is closed. If there is pending data in the socket buffer, 1876 * deliver it. If there are pending DDP requests, wait for those 1877 * to complete. Once they have completed, return EOF reads. 1878 */ 1879 if (sb->sb_state & SBS_CANTRCVMORE && sbavail(sb) == 0) { 1880 SOCKBUF_UNLOCK(sb); 1881 if (toep->ddp.active_count != 0) 1882 return; 1883 ddp_complete_all(toep, 0); 1884 return; 1885 } 1886 1887 /* 1888 * If DDP is not enabled and there is no pending socket buffer 1889 * data, try to enable DDP. 1890 */ 1891 if (sbavail(sb) == 0 && (toep->ddp.flags & DDP_ON) == 0) { 1892 SOCKBUF_UNLOCK(sb); 1893 1894 /* 1895 * Wait for the card to ACK that DDP is enabled before 1896 * queueing any buffers. Currently this waits for an 1897 * indicate to arrive. This could use a TCB_SET_FIELD_RPL 1898 * message to know that DDP was enabled instead of waiting 1899 * for the indicate which would avoid copying the indicate 1900 * if no data is pending. 1901 * 1902 * XXX: Might want to limit the indicate size to the size 1903 * of the first queued request. 1904 */ 1905 if ((toep->ddp.flags & DDP_SC_REQ) == 0) 1906 enable_ddp(sc, toep); 1907 return; 1908 } 1909 SOCKBUF_UNLOCK(sb); 1910 1911 /* 1912 * If another thread is queueing a buffer for DDP, let it 1913 * drain any work and return. 1914 */ 1915 if (toep->ddp.queueing != NULL) 1916 return; 1917 1918 /* Take the next job to prep it for DDP. */ 1919 toep->ddp.waiting_count--; 1920 TAILQ_REMOVE(&toep->ddp.aiojobq, job, list); 1921 if (!aio_clear_cancel_function(job)) 1922 goto restart; 1923 toep->ddp.queueing = job; 1924 1925 /* NB: This drops DDP_LOCK while it holds the backing VM pages. */ 1926 error = hold_aio(toep, job, &ps); 1927 if (error != 0) { 1928 ddp_complete_one(job, error); 1929 toep->ddp.queueing = NULL; 1930 goto restart; 1931 } 1932 1933 SOCKBUF_LOCK(sb); 1934 if (so->so_error && sbavail(sb) == 0) { 1935 copied = job->aio_received; 1936 if (copied != 0) { 1937 SOCKBUF_UNLOCK(sb); 1938 recycle_pageset(toep, ps); 1939 aio_complete(job, copied, 0); 1940 toep->ddp.queueing = NULL; 1941 goto restart; 1942 } 1943 1944 error = so->so_error; 1945 so->so_error = 0; 1946 SOCKBUF_UNLOCK(sb); 1947 recycle_pageset(toep, ps); 1948 aio_complete(job, -1, error); 1949 toep->ddp.queueing = NULL; 1950 goto restart; 1951 } 1952 1953 if (sb->sb_state & SBS_CANTRCVMORE && sbavail(sb) == 0) { 1954 SOCKBUF_UNLOCK(sb); 1955 recycle_pageset(toep, ps); 1956 if (toep->ddp.active_count != 0) { 1957 /* 1958 * The door is closed, but there are still pending 1959 * DDP buffers. Requeue. These jobs will all be 1960 * completed once those buffers drain. 1961 */ 1962 aio_ddp_requeue_one(toep, job); 1963 toep->ddp.queueing = NULL; 1964 return; 1965 } 1966 ddp_complete_one(job, 0); 1967 ddp_complete_all(toep, 0); 1968 toep->ddp.queueing = NULL; 1969 return; 1970 } 1971 1972 sbcopy: 1973 /* 1974 * If the toep is dead, there shouldn't be any data in the socket 1975 * buffer, so the above case should have handled this. 1976 */ 1977 MPASS(!(toep->ddp.flags & DDP_DEAD)); 1978 1979 /* 1980 * If there is pending data in the socket buffer (either 1981 * from before the requests were queued or a DDP indicate), 1982 * copy those mbufs out directly. 1983 */ 1984 copied = 0; 1985 offset = ps->offset + job->aio_received; 1986 MPASS(job->aio_received <= job->uaiocb.aio_nbytes); 1987 resid = job->uaiocb.aio_nbytes - job->aio_received; 1988 m = sb->sb_mb; 1989 KASSERT(m == NULL || toep->ddp.active_count == 0, 1990 ("%s: sockbuf data with active DDP", __func__)); 1991 while (m != NULL && resid > 0) { 1992 struct iovec iov[1]; 1993 struct uio uio; 1994 #ifdef INVARIANTS 1995 int error; 1996 #endif 1997 1998 iov[0].iov_base = mtod(m, void *); 1999 iov[0].iov_len = m->m_len; 2000 if (iov[0].iov_len > resid) 2001 iov[0].iov_len = resid; 2002 uio.uio_iov = iov; 2003 uio.uio_iovcnt = 1; 2004 uio.uio_offset = 0; 2005 uio.uio_resid = iov[0].iov_len; 2006 uio.uio_segflg = UIO_SYSSPACE; 2007 uio.uio_rw = UIO_WRITE; 2008 #ifdef INVARIANTS 2009 error = uiomove_fromphys(ps->pages, offset + copied, 2010 uio.uio_resid, &uio); 2011 #else 2012 uiomove_fromphys(ps->pages, offset + copied, uio.uio_resid, &uio); 2013 #endif 2014 MPASS(error == 0 && uio.uio_resid == 0); 2015 copied += uio.uio_offset; 2016 resid -= uio.uio_offset; 2017 m = m->m_next; 2018 } 2019 if (copied != 0) { 2020 sbdrop_locked(sb, copied); 2021 job->aio_received += copied; 2022 job->msgrcv = 1; 2023 copied = job->aio_received; 2024 inp = sotoinpcb(so); 2025 if (!INP_TRY_WLOCK(inp)) { 2026 /* 2027 * The reference on the socket file descriptor in 2028 * the AIO job should keep 'sb' and 'inp' stable. 2029 * Our caller has a reference on the 'toep' that 2030 * keeps it stable. 2031 */ 2032 SOCKBUF_UNLOCK(sb); 2033 DDP_UNLOCK(toep); 2034 INP_WLOCK(inp); 2035 DDP_LOCK(toep); 2036 SOCKBUF_LOCK(sb); 2037 2038 /* 2039 * If the socket has been closed, we should detect 2040 * that and complete this request if needed on 2041 * the next trip around the loop. 2042 */ 2043 } 2044 t4_rcvd_locked(&toep->td->tod, intotcpcb(inp)); 2045 INP_WUNLOCK(inp); 2046 if (resid == 0 || toep->ddp.flags & DDP_DEAD) { 2047 /* 2048 * We filled the entire buffer with socket 2049 * data, DDP is not being used, or the socket 2050 * is being shut down, so complete the 2051 * request. 2052 */ 2053 SOCKBUF_UNLOCK(sb); 2054 recycle_pageset(toep, ps); 2055 aio_complete(job, copied, 0); 2056 toep->ddp.queueing = NULL; 2057 goto restart; 2058 } 2059 2060 /* 2061 * If DDP is not enabled, requeue this request and restart. 2062 * This will either enable DDP or wait for more data to 2063 * arrive on the socket buffer. 2064 */ 2065 if ((toep->ddp.flags & (DDP_ON | DDP_SC_REQ)) != DDP_ON) { 2066 SOCKBUF_UNLOCK(sb); 2067 recycle_pageset(toep, ps); 2068 aio_ddp_requeue_one(toep, job); 2069 toep->ddp.queueing = NULL; 2070 goto restart; 2071 } 2072 2073 /* 2074 * An indicate might have arrived and been added to 2075 * the socket buffer while it was unlocked after the 2076 * copy to lock the INP. If so, restart the copy. 2077 */ 2078 if (sbavail(sb) != 0) 2079 goto sbcopy; 2080 } 2081 SOCKBUF_UNLOCK(sb); 2082 2083 if (prep_pageset(sc, toep, ps) == 0) { 2084 recycle_pageset(toep, ps); 2085 aio_ddp_requeue_one(toep, job); 2086 toep->ddp.queueing = NULL; 2087 2088 /* 2089 * XXX: Need to retry this later. Mostly need a trigger 2090 * when page pods are freed up. 2091 */ 2092 printf("%s: prep_pageset failed\n", __func__); 2093 return; 2094 } 2095 2096 /* Determine which DDP buffer to use. */ 2097 if (toep->ddp.db[0].job == NULL) { 2098 db_idx = 0; 2099 } else { 2100 MPASS(toep->ddp.db[1].job == NULL); 2101 db_idx = 1; 2102 } 2103 2104 ddp_flags = 0; 2105 ddp_flags_mask = 0; 2106 if (db_idx == 0) { 2107 ddp_flags |= V_TF_DDP_BUF0_VALID(1); 2108 if (so->so_state & SS_NBIO) 2109 ddp_flags |= V_TF_DDP_BUF0_FLUSH(1); 2110 ddp_flags_mask |= V_TF_DDP_PSH_NO_INVALIDATE0(1) | 2111 V_TF_DDP_PUSH_DISABLE_0(1) | V_TF_DDP_PSHF_ENABLE_0(1) | 2112 V_TF_DDP_BUF0_FLUSH(1) | V_TF_DDP_BUF0_VALID(1); 2113 buf_flag = DDP_BUF0_ACTIVE; 2114 } else { 2115 ddp_flags |= V_TF_DDP_BUF1_VALID(1); 2116 if (so->so_state & SS_NBIO) 2117 ddp_flags |= V_TF_DDP_BUF1_FLUSH(1); 2118 ddp_flags_mask |= V_TF_DDP_PSH_NO_INVALIDATE1(1) | 2119 V_TF_DDP_PUSH_DISABLE_1(1) | V_TF_DDP_PSHF_ENABLE_1(1) | 2120 V_TF_DDP_BUF1_FLUSH(1) | V_TF_DDP_BUF1_VALID(1); 2121 buf_flag = DDP_BUF1_ACTIVE; 2122 } 2123 MPASS((toep->ddp.flags & buf_flag) == 0); 2124 if ((toep->ddp.flags & (DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE)) == 0) { 2125 MPASS(db_idx == 0); 2126 MPASS(toep->ddp.active_id == -1); 2127 MPASS(toep->ddp.active_count == 0); 2128 ddp_flags_mask |= V_TF_DDP_ACTIVE_BUF(1); 2129 } 2130 2131 /* 2132 * The TID for this connection should still be valid. If DDP_DEAD 2133 * is set, SBS_CANTRCVMORE should be set, so we shouldn't be 2134 * this far anyway. Even if the socket is closing on the other 2135 * end, the AIO job holds a reference on this end of the socket 2136 * which will keep it open and keep the TCP PCB attached until 2137 * after the job is completed. 2138 */ 2139 wr = mk_update_tcb_for_ddp(sc, toep, db_idx, ps, job->aio_received, 2140 ddp_flags, ddp_flags_mask); 2141 if (wr == NULL) { 2142 recycle_pageset(toep, ps); 2143 aio_ddp_requeue_one(toep, job); 2144 toep->ddp.queueing = NULL; 2145 2146 /* 2147 * XXX: Need a way to kick a retry here. 2148 * 2149 * XXX: We know the fixed size needed and could 2150 * preallocate this using a blocking request at the 2151 * start of the task to avoid having to handle this 2152 * edge case. 2153 */ 2154 printf("%s: mk_update_tcb_for_ddp failed\n", __func__); 2155 return; 2156 } 2157 2158 if (!aio_set_cancel_function(job, t4_aio_cancel_active)) { 2159 free_wrqe(wr); 2160 recycle_pageset(toep, ps); 2161 aio_ddp_cancel_one(job); 2162 toep->ddp.queueing = NULL; 2163 goto restart; 2164 } 2165 2166 #ifdef VERBOSE_TRACES 2167 CTR6(KTR_CXGBE, 2168 "%s: tid %u, scheduling %p for DDP[%d] (flags %#lx/%#lx)", __func__, 2169 toep->tid, job, db_idx, ddp_flags, ddp_flags_mask); 2170 #endif 2171 /* Give the chip the go-ahead. */ 2172 t4_wrq_tx(sc, wr); 2173 db = &toep->ddp.db[db_idx]; 2174 db->cancel_pending = 0; 2175 db->job = job; 2176 db->ps = ps; 2177 toep->ddp.queueing = NULL; 2178 toep->ddp.flags |= buf_flag; 2179 toep->ddp.active_count++; 2180 if (toep->ddp.active_count == 1) { 2181 MPASS(toep->ddp.active_id == -1); 2182 toep->ddp.active_id = db_idx; 2183 CTR2(KTR_CXGBE, "%s: ddp_active_id = %d", __func__, 2184 toep->ddp.active_id); 2185 } 2186 goto restart; 2187 } 2188 2189 void 2190 ddp_queue_toep(struct toepcb *toep) 2191 { 2192 2193 DDP_ASSERT_LOCKED(toep); 2194 if (toep->ddp.flags & DDP_TASK_ACTIVE) 2195 return; 2196 toep->ddp.flags |= DDP_TASK_ACTIVE; 2197 hold_toepcb(toep); 2198 soaio_enqueue(&toep->ddp.requeue_task); 2199 } 2200 2201 static void 2202 aio_ddp_requeue_task(void *context, int pending) 2203 { 2204 struct toepcb *toep = context; 2205 2206 DDP_LOCK(toep); 2207 aio_ddp_requeue(toep); 2208 toep->ddp.flags &= ~DDP_TASK_ACTIVE; 2209 DDP_UNLOCK(toep); 2210 2211 free_toepcb(toep); 2212 } 2213 2214 static void 2215 t4_aio_cancel_active(struct kaiocb *job) 2216 { 2217 struct socket *so = job->fd_file->f_data; 2218 struct tcpcb *tp = sototcpcb(so); 2219 struct toepcb *toep = tp->t_toe; 2220 struct adapter *sc = td_adapter(toep->td); 2221 uint64_t valid_flag; 2222 int i; 2223 2224 DDP_LOCK(toep); 2225 if (aio_cancel_cleared(job)) { 2226 DDP_UNLOCK(toep); 2227 aio_ddp_cancel_one(job); 2228 return; 2229 } 2230 2231 for (i = 0; i < nitems(toep->ddp.db); i++) { 2232 if (toep->ddp.db[i].job == job) { 2233 /* Should only ever get one cancel request for a job. */ 2234 MPASS(toep->ddp.db[i].cancel_pending == 0); 2235 2236 /* 2237 * Invalidate this buffer. It will be 2238 * cancelled or partially completed once the 2239 * card ACKs the invalidate. 2240 */ 2241 valid_flag = i == 0 ? V_TF_DDP_BUF0_VALID(1) : 2242 V_TF_DDP_BUF1_VALID(1); 2243 t4_set_tcb_field(sc, toep->ctrlq, toep, 2244 W_TCB_RX_DDP_FLAGS, valid_flag, 0, 1, 2245 CPL_COOKIE_DDP0 + i); 2246 toep->ddp.db[i].cancel_pending = 1; 2247 CTR2(KTR_CXGBE, "%s: request %p marked pending", 2248 __func__, job); 2249 break; 2250 } 2251 } 2252 DDP_UNLOCK(toep); 2253 } 2254 2255 static void 2256 t4_aio_cancel_queued(struct kaiocb *job) 2257 { 2258 struct socket *so = job->fd_file->f_data; 2259 struct tcpcb *tp = sototcpcb(so); 2260 struct toepcb *toep = tp->t_toe; 2261 2262 DDP_LOCK(toep); 2263 if (!aio_cancel_cleared(job)) { 2264 TAILQ_REMOVE(&toep->ddp.aiojobq, job, list); 2265 toep->ddp.waiting_count--; 2266 if (toep->ddp.waiting_count == 0) 2267 ddp_queue_toep(toep); 2268 } 2269 CTR2(KTR_CXGBE, "%s: request %p cancelled", __func__, job); 2270 DDP_UNLOCK(toep); 2271 2272 aio_ddp_cancel_one(job); 2273 } 2274 2275 int 2276 t4_aio_queue_ddp(struct socket *so, struct kaiocb *job) 2277 { 2278 struct inpcb *inp = sotoinpcb(so); 2279 struct tcpcb *tp = intotcpcb(inp); 2280 struct toepcb *toep = tp->t_toe; 2281 2282 2283 /* Ignore writes. */ 2284 if (job->uaiocb.aio_lio_opcode != LIO_READ) 2285 return (EOPNOTSUPP); 2286 2287 INP_WLOCK(inp); 2288 if (__predict_false(ulp_mode(toep) == ULP_MODE_NONE)) { 2289 if (!set_ddp_ulp_mode(toep)) { 2290 INP_WUNLOCK(inp); 2291 return (EOPNOTSUPP); 2292 } 2293 } 2294 INP_WUNLOCK(inp); 2295 2296 DDP_LOCK(toep); 2297 2298 /* 2299 * XXX: Think about possibly returning errors for ENOTCONN, 2300 * etc. Perhaps the caller would only queue the request 2301 * if it failed with EOPNOTSUPP? 2302 */ 2303 2304 #ifdef VERBOSE_TRACES 2305 CTR3(KTR_CXGBE, "%s: queueing %p for tid %u", __func__, job, toep->tid); 2306 #endif 2307 if (!aio_set_cancel_function(job, t4_aio_cancel_queued)) 2308 panic("new job was cancelled"); 2309 TAILQ_INSERT_TAIL(&toep->ddp.aiojobq, job, list); 2310 toep->ddp.waiting_count++; 2311 toep->ddp.flags |= DDP_OK; 2312 2313 /* 2314 * Try to handle this request synchronously. If this has 2315 * to block because the task is running, it will just bail 2316 * and let the task handle it instead. 2317 */ 2318 aio_ddp_requeue(toep); 2319 DDP_UNLOCK(toep); 2320 return (0); 2321 } 2322 2323 void 2324 t4_ddp_mod_load(void) 2325 { 2326 2327 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, do_ddp_tcb_rpl, 2328 CPL_COOKIE_DDP0); 2329 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, do_ddp_tcb_rpl, 2330 CPL_COOKIE_DDP1); 2331 t4_register_cpl_handler(CPL_RX_DATA_DDP, do_rx_data_ddp); 2332 t4_register_cpl_handler(CPL_RX_DDP_COMPLETE, do_rx_ddp_complete); 2333 TAILQ_INIT(&ddp_orphan_pagesets); 2334 mtx_init(&ddp_orphan_pagesets_lock, "ddp orphans", NULL, MTX_DEF); 2335 TASK_INIT(&ddp_orphan_task, 0, ddp_free_orphan_pagesets, NULL); 2336 } 2337 2338 void 2339 t4_ddp_mod_unload(void) 2340 { 2341 2342 taskqueue_drain(taskqueue_thread, &ddp_orphan_task); 2343 MPASS(TAILQ_EMPTY(&ddp_orphan_pagesets)); 2344 mtx_destroy(&ddp_orphan_pagesets_lock); 2345 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, NULL, CPL_COOKIE_DDP0); 2346 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, NULL, CPL_COOKIE_DDP1); 2347 t4_register_cpl_handler(CPL_RX_DATA_DDP, NULL); 2348 t4_register_cpl_handler(CPL_RX_DDP_COMPLETE, NULL); 2349 } 2350 #endif 2351