1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2012 Chelsio Communications, Inc. 5 * All rights reserved. 6 * Written by: Navdeep Parhar <np@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include "opt_inet.h" 34 35 #include <sys/param.h> 36 #include <sys/aio.h> 37 #include <sys/file.h> 38 #include <sys/systm.h> 39 #include <sys/kernel.h> 40 #include <sys/ktr.h> 41 #include <sys/module.h> 42 #include <sys/protosw.h> 43 #include <sys/proc.h> 44 #include <sys/domain.h> 45 #include <sys/socket.h> 46 #include <sys/socketvar.h> 47 #include <sys/taskqueue.h> 48 #include <sys/uio.h> 49 #include <netinet/in.h> 50 #include <netinet/in_pcb.h> 51 #include <netinet/ip.h> 52 #include <netinet/tcp_var.h> 53 #define TCPSTATES 54 #include <netinet/tcp_fsm.h> 55 #include <netinet/toecore.h> 56 57 #include <vm/vm.h> 58 #include <vm/vm_extern.h> 59 #include <vm/vm_param.h> 60 #include <vm/pmap.h> 61 #include <vm/vm_map.h> 62 #include <vm/vm_page.h> 63 #include <vm/vm_object.h> 64 65 #include <cam/scsi/scsi_all.h> 66 #include <cam/ctl/ctl_io.h> 67 68 #ifdef TCP_OFFLOAD 69 #include "common/common.h" 70 #include "common/t4_msg.h" 71 #include "common/t4_regs.h" 72 #include "common/t4_tcb.h" 73 #include "tom/t4_tom.h" 74 75 /* 76 * Use the 'backend3' field in AIO jobs to store the amount of data 77 * received by the AIO job so far. 78 */ 79 #define aio_received backend3 80 81 static void aio_ddp_requeue_task(void *context, int pending); 82 static void ddp_complete_all(struct toepcb *toep, int error); 83 static void t4_aio_cancel_active(struct kaiocb *job); 84 static void t4_aio_cancel_queued(struct kaiocb *job); 85 86 static TAILQ_HEAD(, pageset) ddp_orphan_pagesets; 87 static struct mtx ddp_orphan_pagesets_lock; 88 static struct task ddp_orphan_task; 89 90 #define MAX_DDP_BUFFER_SIZE (M_TCB_RX_DDP_BUF0_LEN) 91 92 /* 93 * A page set holds information about a buffer used for DDP. The page 94 * set holds resources such as the VM pages backing the buffer (either 95 * held or wired) and the page pods associated with the buffer. 96 * Recently used page sets are cached to allow for efficient reuse of 97 * buffers (avoiding the need to re-fault in pages, hold them, etc.). 98 * Note that cached page sets keep the backing pages wired. The 99 * number of wired pages is capped by only allowing for two wired 100 * pagesets per connection. This is not a perfect cap, but is a 101 * trade-off for performance. 102 * 103 * If an application ping-pongs two buffers for a connection via 104 * aio_read(2) then those buffers should remain wired and expensive VM 105 * fault lookups should be avoided after each buffer has been used 106 * once. If an application uses more than two buffers then this will 107 * fall back to doing expensive VM fault lookups for each operation. 108 */ 109 static void 110 free_pageset(struct tom_data *td, struct pageset *ps) 111 { 112 vm_page_t p; 113 int i; 114 115 if (ps->prsv.prsv_nppods > 0) 116 t4_free_page_pods(&ps->prsv); 117 118 for (i = 0; i < ps->npages; i++) { 119 p = ps->pages[i]; 120 vm_page_unwire(p, PQ_INACTIVE); 121 } 122 mtx_lock(&ddp_orphan_pagesets_lock); 123 TAILQ_INSERT_TAIL(&ddp_orphan_pagesets, ps, link); 124 taskqueue_enqueue(taskqueue_thread, &ddp_orphan_task); 125 mtx_unlock(&ddp_orphan_pagesets_lock); 126 } 127 128 static void 129 ddp_free_orphan_pagesets(void *context, int pending) 130 { 131 struct pageset *ps; 132 133 mtx_lock(&ddp_orphan_pagesets_lock); 134 while (!TAILQ_EMPTY(&ddp_orphan_pagesets)) { 135 ps = TAILQ_FIRST(&ddp_orphan_pagesets); 136 TAILQ_REMOVE(&ddp_orphan_pagesets, ps, link); 137 mtx_unlock(&ddp_orphan_pagesets_lock); 138 if (ps->vm) 139 vmspace_free(ps->vm); 140 free(ps, M_CXGBE); 141 mtx_lock(&ddp_orphan_pagesets_lock); 142 } 143 mtx_unlock(&ddp_orphan_pagesets_lock); 144 } 145 146 static void 147 recycle_pageset(struct toepcb *toep, struct pageset *ps) 148 { 149 150 DDP_ASSERT_LOCKED(toep); 151 if (!(toep->ddp.flags & DDP_DEAD)) { 152 KASSERT(toep->ddp.cached_count + toep->ddp.active_count < 153 nitems(toep->ddp.db), ("too many wired pagesets")); 154 TAILQ_INSERT_HEAD(&toep->ddp.cached_pagesets, ps, link); 155 toep->ddp.cached_count++; 156 } else 157 free_pageset(toep->td, ps); 158 } 159 160 static void 161 ddp_complete_one(struct kaiocb *job, int error) 162 { 163 long copied; 164 165 /* 166 * If this job had copied data out of the socket buffer before 167 * it was cancelled, report it as a short read rather than an 168 * error. 169 */ 170 copied = job->aio_received; 171 if (copied != 0 || error == 0) 172 aio_complete(job, copied, 0); 173 else 174 aio_complete(job, -1, error); 175 } 176 177 static void 178 free_ddp_buffer(struct tom_data *td, struct ddp_buffer *db) 179 { 180 181 if (db->job) { 182 /* 183 * XXX: If we are un-offloading the socket then we 184 * should requeue these on the socket somehow. If we 185 * got a FIN from the remote end, then this completes 186 * any remaining requests with an EOF read. 187 */ 188 if (!aio_clear_cancel_function(db->job)) 189 ddp_complete_one(db->job, 0); 190 } 191 192 if (db->ps) 193 free_pageset(td, db->ps); 194 } 195 196 void 197 ddp_init_toep(struct toepcb *toep) 198 { 199 200 TAILQ_INIT(&toep->ddp.aiojobq); 201 TASK_INIT(&toep->ddp.requeue_task, 0, aio_ddp_requeue_task, toep); 202 toep->ddp.flags = DDP_OK; 203 toep->ddp.active_id = -1; 204 mtx_init(&toep->ddp.lock, "t4 ddp", NULL, MTX_DEF); 205 } 206 207 void 208 ddp_uninit_toep(struct toepcb *toep) 209 { 210 211 mtx_destroy(&toep->ddp.lock); 212 } 213 214 void 215 release_ddp_resources(struct toepcb *toep) 216 { 217 struct pageset *ps; 218 int i; 219 220 DDP_LOCK(toep); 221 toep->ddp.flags |= DDP_DEAD; 222 for (i = 0; i < nitems(toep->ddp.db); i++) { 223 free_ddp_buffer(toep->td, &toep->ddp.db[i]); 224 } 225 while ((ps = TAILQ_FIRST(&toep->ddp.cached_pagesets)) != NULL) { 226 TAILQ_REMOVE(&toep->ddp.cached_pagesets, ps, link); 227 free_pageset(toep->td, ps); 228 } 229 ddp_complete_all(toep, 0); 230 DDP_UNLOCK(toep); 231 } 232 233 #ifdef INVARIANTS 234 void 235 ddp_assert_empty(struct toepcb *toep) 236 { 237 int i; 238 239 MPASS(!(toep->ddp.flags & DDP_TASK_ACTIVE)); 240 for (i = 0; i < nitems(toep->ddp.db); i++) { 241 MPASS(toep->ddp.db[i].job == NULL); 242 MPASS(toep->ddp.db[i].ps == NULL); 243 } 244 MPASS(TAILQ_EMPTY(&toep->ddp.cached_pagesets)); 245 MPASS(TAILQ_EMPTY(&toep->ddp.aiojobq)); 246 } 247 #endif 248 249 static void 250 complete_ddp_buffer(struct toepcb *toep, struct ddp_buffer *db, 251 unsigned int db_idx) 252 { 253 unsigned int db_flag; 254 255 toep->ddp.active_count--; 256 if (toep->ddp.active_id == db_idx) { 257 if (toep->ddp.active_count == 0) { 258 KASSERT(toep->ddp.db[db_idx ^ 1].job == NULL, 259 ("%s: active_count mismatch", __func__)); 260 toep->ddp.active_id = -1; 261 } else 262 toep->ddp.active_id ^= 1; 263 #ifdef VERBOSE_TRACES 264 CTR3(KTR_CXGBE, "%s: tid %u, ddp_active_id = %d", __func__, 265 toep->tid, toep->ddp.active_id); 266 #endif 267 } else { 268 KASSERT(toep->ddp.active_count != 0 && 269 toep->ddp.active_id != -1, 270 ("%s: active count mismatch", __func__)); 271 } 272 273 db->cancel_pending = 0; 274 db->job = NULL; 275 recycle_pageset(toep, db->ps); 276 db->ps = NULL; 277 278 db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE; 279 KASSERT(toep->ddp.flags & db_flag, 280 ("%s: DDP buffer not active. toep %p, ddp_flags 0x%x", 281 __func__, toep, toep->ddp.flags)); 282 toep->ddp.flags &= ~db_flag; 283 } 284 285 /* XXX: handle_ddp_data code duplication */ 286 void 287 insert_ddp_data(struct toepcb *toep, uint32_t n) 288 { 289 struct inpcb *inp = toep->inp; 290 struct tcpcb *tp = intotcpcb(inp); 291 struct ddp_buffer *db; 292 struct kaiocb *job; 293 size_t placed; 294 long copied; 295 unsigned int db_flag, db_idx; 296 297 INP_WLOCK_ASSERT(inp); 298 DDP_ASSERT_LOCKED(toep); 299 300 tp->rcv_nxt += n; 301 #ifndef USE_DDP_RX_FLOW_CONTROL 302 KASSERT(tp->rcv_wnd >= n, ("%s: negative window size", __func__)); 303 tp->rcv_wnd -= n; 304 #endif 305 CTR2(KTR_CXGBE, "%s: placed %u bytes before falling out of DDP", 306 __func__, n); 307 while (toep->ddp.active_count > 0) { 308 MPASS(toep->ddp.active_id != -1); 309 db_idx = toep->ddp.active_id; 310 db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE; 311 MPASS((toep->ddp.flags & db_flag) != 0); 312 db = &toep->ddp.db[db_idx]; 313 job = db->job; 314 copied = job->aio_received; 315 placed = n; 316 if (placed > job->uaiocb.aio_nbytes - copied) 317 placed = job->uaiocb.aio_nbytes - copied; 318 if (placed > 0) 319 job->msgrcv = 1; 320 if (!aio_clear_cancel_function(job)) { 321 /* 322 * Update the copied length for when 323 * t4_aio_cancel_active() completes this 324 * request. 325 */ 326 job->aio_received += placed; 327 } else if (copied + placed != 0) { 328 CTR4(KTR_CXGBE, 329 "%s: completing %p (copied %ld, placed %lu)", 330 __func__, job, copied, placed); 331 /* XXX: This always completes if there is some data. */ 332 aio_complete(job, copied + placed, 0); 333 } else if (aio_set_cancel_function(job, t4_aio_cancel_queued)) { 334 TAILQ_INSERT_HEAD(&toep->ddp.aiojobq, job, list); 335 toep->ddp.waiting_count++; 336 } else 337 aio_cancel(job); 338 n -= placed; 339 complete_ddp_buffer(toep, db, db_idx); 340 } 341 342 MPASS(n == 0); 343 } 344 345 /* SET_TCB_FIELD sent as a ULP command looks like this */ 346 #define LEN__SET_TCB_FIELD_ULP (sizeof(struct ulp_txpkt) + \ 347 sizeof(struct ulptx_idata) + sizeof(struct cpl_set_tcb_field_core)) 348 349 /* RX_DATA_ACK sent as a ULP command looks like this */ 350 #define LEN__RX_DATA_ACK_ULP (sizeof(struct ulp_txpkt) + \ 351 sizeof(struct ulptx_idata) + sizeof(struct cpl_rx_data_ack_core)) 352 353 static inline void * 354 mk_set_tcb_field_ulp(struct ulp_txpkt *ulpmc, struct toepcb *toep, 355 uint64_t word, uint64_t mask, uint64_t val) 356 { 357 struct ulptx_idata *ulpsc; 358 struct cpl_set_tcb_field_core *req; 359 360 ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0)); 361 ulpmc->len = htobe32(howmany(LEN__SET_TCB_FIELD_ULP, 16)); 362 363 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 364 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 365 ulpsc->len = htobe32(sizeof(*req)); 366 367 req = (struct cpl_set_tcb_field_core *)(ulpsc + 1); 368 OPCODE_TID(req) = htobe32(MK_OPCODE_TID(CPL_SET_TCB_FIELD, toep->tid)); 369 req->reply_ctrl = htobe16(V_NO_REPLY(1) | 370 V_QUEUENO(toep->ofld_rxq->iq.abs_id)); 371 req->word_cookie = htobe16(V_WORD(word) | V_COOKIE(0)); 372 req->mask = htobe64(mask); 373 req->val = htobe64(val); 374 375 ulpsc = (struct ulptx_idata *)(req + 1); 376 if (LEN__SET_TCB_FIELD_ULP % 16) { 377 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP)); 378 ulpsc->len = htobe32(0); 379 return (ulpsc + 1); 380 } 381 return (ulpsc); 382 } 383 384 static inline void * 385 mk_rx_data_ack_ulp(struct ulp_txpkt *ulpmc, struct toepcb *toep) 386 { 387 struct ulptx_idata *ulpsc; 388 struct cpl_rx_data_ack_core *req; 389 390 ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0)); 391 ulpmc->len = htobe32(howmany(LEN__RX_DATA_ACK_ULP, 16)); 392 393 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 394 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 395 ulpsc->len = htobe32(sizeof(*req)); 396 397 req = (struct cpl_rx_data_ack_core *)(ulpsc + 1); 398 OPCODE_TID(req) = htobe32(MK_OPCODE_TID(CPL_RX_DATA_ACK, toep->tid)); 399 req->credit_dack = htobe32(F_RX_MODULATE_RX); 400 401 ulpsc = (struct ulptx_idata *)(req + 1); 402 if (LEN__RX_DATA_ACK_ULP % 16) { 403 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP)); 404 ulpsc->len = htobe32(0); 405 return (ulpsc + 1); 406 } 407 return (ulpsc); 408 } 409 410 static struct wrqe * 411 mk_update_tcb_for_ddp(struct adapter *sc, struct toepcb *toep, int db_idx, 412 struct pageset *ps, int offset, uint64_t ddp_flags, uint64_t ddp_flags_mask) 413 { 414 struct wrqe *wr; 415 struct work_request_hdr *wrh; 416 struct ulp_txpkt *ulpmc; 417 int len; 418 419 KASSERT(db_idx == 0 || db_idx == 1, 420 ("%s: bad DDP buffer index %d", __func__, db_idx)); 421 422 /* 423 * We'll send a compound work request that has 3 SET_TCB_FIELDs and an 424 * RX_DATA_ACK (with RX_MODULATE to speed up delivery). 425 * 426 * The work request header is 16B and always ends at a 16B boundary. 427 * The ULPTX master commands that follow must all end at 16B boundaries 428 * too so we round up the size to 16. 429 */ 430 len = sizeof(*wrh) + 3 * roundup2(LEN__SET_TCB_FIELD_ULP, 16) + 431 roundup2(LEN__RX_DATA_ACK_ULP, 16); 432 433 wr = alloc_wrqe(len, toep->ctrlq); 434 if (wr == NULL) 435 return (NULL); 436 wrh = wrtod(wr); 437 INIT_ULPTX_WRH(wrh, len, 1, 0); /* atomic */ 438 ulpmc = (struct ulp_txpkt *)(wrh + 1); 439 440 /* Write the buffer's tag */ 441 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, 442 W_TCB_RX_DDP_BUF0_TAG + db_idx, 443 V_TCB_RX_DDP_BUF0_TAG(M_TCB_RX_DDP_BUF0_TAG), 444 V_TCB_RX_DDP_BUF0_TAG(ps->prsv.prsv_tag)); 445 446 /* Update the current offset in the DDP buffer and its total length */ 447 if (db_idx == 0) 448 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, 449 W_TCB_RX_DDP_BUF0_OFFSET, 450 V_TCB_RX_DDP_BUF0_OFFSET(M_TCB_RX_DDP_BUF0_OFFSET) | 451 V_TCB_RX_DDP_BUF0_LEN(M_TCB_RX_DDP_BUF0_LEN), 452 V_TCB_RX_DDP_BUF0_OFFSET(offset) | 453 V_TCB_RX_DDP_BUF0_LEN(ps->len)); 454 else 455 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, 456 W_TCB_RX_DDP_BUF1_OFFSET, 457 V_TCB_RX_DDP_BUF1_OFFSET(M_TCB_RX_DDP_BUF1_OFFSET) | 458 V_TCB_RX_DDP_BUF1_LEN((u64)M_TCB_RX_DDP_BUF1_LEN << 32), 459 V_TCB_RX_DDP_BUF1_OFFSET(offset) | 460 V_TCB_RX_DDP_BUF1_LEN((u64)ps->len << 32)); 461 462 /* Update DDP flags */ 463 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, W_TCB_RX_DDP_FLAGS, 464 ddp_flags_mask, ddp_flags); 465 466 /* Gratuitous RX_DATA_ACK with RX_MODULATE set to speed up delivery. */ 467 ulpmc = mk_rx_data_ack_ulp(ulpmc, toep); 468 469 return (wr); 470 } 471 472 static int 473 handle_ddp_data(struct toepcb *toep, __be32 ddp_report, __be32 rcv_nxt, int len) 474 { 475 uint32_t report = be32toh(ddp_report); 476 unsigned int db_idx; 477 struct inpcb *inp = toep->inp; 478 struct ddp_buffer *db; 479 struct tcpcb *tp; 480 struct socket *so; 481 struct sockbuf *sb; 482 struct kaiocb *job; 483 long copied; 484 485 db_idx = report & F_DDP_BUF_IDX ? 1 : 0; 486 487 if (__predict_false(!(report & F_DDP_INV))) 488 CXGBE_UNIMPLEMENTED("DDP buffer still valid"); 489 490 INP_WLOCK(inp); 491 so = inp_inpcbtosocket(inp); 492 sb = &so->so_rcv; 493 DDP_LOCK(toep); 494 495 KASSERT(toep->ddp.active_id == db_idx, 496 ("completed DDP buffer (%d) != active_id (%d) for tid %d", db_idx, 497 toep->ddp.active_id, toep->tid)); 498 db = &toep->ddp.db[db_idx]; 499 job = db->job; 500 501 if (__predict_false(inp->inp_flags & (INP_DROPPED | INP_TIMEWAIT))) { 502 /* 503 * This can happen due to an administrative tcpdrop(8). 504 * Just fail the request with ECONNRESET. 505 */ 506 CTR5(KTR_CXGBE, "%s: tid %u, seq 0x%x, len %d, inp_flags 0x%x", 507 __func__, toep->tid, be32toh(rcv_nxt), len, inp->inp_flags); 508 if (aio_clear_cancel_function(job)) 509 ddp_complete_one(job, ECONNRESET); 510 goto completed; 511 } 512 513 tp = intotcpcb(inp); 514 515 /* 516 * For RX_DDP_COMPLETE, len will be zero and rcv_nxt is the 517 * sequence number of the next byte to receive. The length of 518 * the data received for this message must be computed by 519 * comparing the new and old values of rcv_nxt. 520 * 521 * For RX_DATA_DDP, len might be non-zero, but it is only the 522 * length of the most recent DMA. It does not include the 523 * total length of the data received since the previous update 524 * for this DDP buffer. rcv_nxt is the sequence number of the 525 * first received byte from the most recent DMA. 526 */ 527 len += be32toh(rcv_nxt) - tp->rcv_nxt; 528 tp->rcv_nxt += len; 529 tp->t_rcvtime = ticks; 530 #ifndef USE_DDP_RX_FLOW_CONTROL 531 KASSERT(tp->rcv_wnd >= len, ("%s: negative window size", __func__)); 532 tp->rcv_wnd -= len; 533 #endif 534 #ifdef VERBOSE_TRACES 535 CTR5(KTR_CXGBE, "%s: tid %u, DDP[%d] placed %d bytes (%#x)", __func__, 536 toep->tid, db_idx, len, report); 537 #endif 538 539 /* receive buffer autosize */ 540 MPASS(toep->vnet == so->so_vnet); 541 CURVNET_SET(toep->vnet); 542 SOCKBUF_LOCK(sb); 543 if (sb->sb_flags & SB_AUTOSIZE && 544 V_tcp_do_autorcvbuf && 545 sb->sb_hiwat < V_tcp_autorcvbuf_max && 546 len > (sbspace(sb) / 8 * 7)) { 547 struct adapter *sc = td_adapter(toep->td); 548 unsigned int hiwat = sb->sb_hiwat; 549 unsigned int newsize = min(hiwat + sc->tt.autorcvbuf_inc, 550 V_tcp_autorcvbuf_max); 551 552 if (!sbreserve_locked(sb, newsize, so, NULL)) 553 sb->sb_flags &= ~SB_AUTOSIZE; 554 } 555 SOCKBUF_UNLOCK(sb); 556 CURVNET_RESTORE(); 557 558 job->msgrcv = 1; 559 if (db->cancel_pending) { 560 /* 561 * Update the job's length but defer completion to the 562 * TCB_RPL callback. 563 */ 564 job->aio_received += len; 565 goto out; 566 } else if (!aio_clear_cancel_function(job)) { 567 /* 568 * Update the copied length for when 569 * t4_aio_cancel_active() completes this request. 570 */ 571 job->aio_received += len; 572 } else { 573 copied = job->aio_received; 574 #ifdef VERBOSE_TRACES 575 CTR5(KTR_CXGBE, 576 "%s: tid %u, completing %p (copied %ld, placed %d)", 577 __func__, toep->tid, job, copied, len); 578 #endif 579 aio_complete(job, copied + len, 0); 580 t4_rcvd(&toep->td->tod, tp); 581 } 582 583 completed: 584 complete_ddp_buffer(toep, db, db_idx); 585 if (toep->ddp.waiting_count > 0) 586 ddp_queue_toep(toep); 587 out: 588 DDP_UNLOCK(toep); 589 INP_WUNLOCK(inp); 590 591 return (0); 592 } 593 594 void 595 handle_ddp_indicate(struct toepcb *toep) 596 { 597 598 DDP_ASSERT_LOCKED(toep); 599 MPASS(toep->ddp.active_count == 0); 600 MPASS((toep->ddp.flags & (DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE)) == 0); 601 if (toep->ddp.waiting_count == 0) { 602 /* 603 * The pending requests that triggered the request for an 604 * an indicate were cancelled. Those cancels should have 605 * already disabled DDP. Just ignore this as the data is 606 * going into the socket buffer anyway. 607 */ 608 return; 609 } 610 CTR3(KTR_CXGBE, "%s: tid %d indicated (%d waiting)", __func__, 611 toep->tid, toep->ddp.waiting_count); 612 ddp_queue_toep(toep); 613 } 614 615 CTASSERT(CPL_COOKIE_DDP0 + 1 == CPL_COOKIE_DDP1); 616 617 static int 618 do_ddp_tcb_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 619 { 620 struct adapter *sc = iq->adapter; 621 const struct cpl_set_tcb_rpl *cpl = (const void *)(rss + 1); 622 unsigned int tid = GET_TID(cpl); 623 unsigned int db_idx; 624 struct toepcb *toep; 625 struct inpcb *inp; 626 struct ddp_buffer *db; 627 struct kaiocb *job; 628 long copied; 629 630 if (cpl->status != CPL_ERR_NONE) 631 panic("XXX: tcp_rpl failed: %d", cpl->status); 632 633 toep = lookup_tid(sc, tid); 634 inp = toep->inp; 635 switch (cpl->cookie) { 636 case V_WORD(W_TCB_RX_DDP_FLAGS) | V_COOKIE(CPL_COOKIE_DDP0): 637 case V_WORD(W_TCB_RX_DDP_FLAGS) | V_COOKIE(CPL_COOKIE_DDP1): 638 /* 639 * XXX: This duplicates a lot of code with handle_ddp_data(). 640 */ 641 db_idx = G_COOKIE(cpl->cookie) - CPL_COOKIE_DDP0; 642 MPASS(db_idx < nitems(toep->ddp.db)); 643 INP_WLOCK(inp); 644 DDP_LOCK(toep); 645 db = &toep->ddp.db[db_idx]; 646 647 /* 648 * handle_ddp_data() should leave the job around until 649 * this callback runs once a cancel is pending. 650 */ 651 MPASS(db != NULL); 652 MPASS(db->job != NULL); 653 MPASS(db->cancel_pending); 654 655 /* 656 * XXX: It's not clear what happens if there is data 657 * placed when the buffer is invalidated. I suspect we 658 * need to read the TCB to see how much data was placed. 659 * 660 * For now this just pretends like nothing was placed. 661 * 662 * XXX: Note that if we did check the PCB we would need to 663 * also take care of updating the tp, etc. 664 */ 665 job = db->job; 666 copied = job->aio_received; 667 if (copied == 0) { 668 CTR2(KTR_CXGBE, "%s: cancelling %p", __func__, job); 669 aio_cancel(job); 670 } else { 671 CTR3(KTR_CXGBE, "%s: completing %p (copied %ld)", 672 __func__, job, copied); 673 aio_complete(job, copied, 0); 674 t4_rcvd(&toep->td->tod, intotcpcb(inp)); 675 } 676 677 complete_ddp_buffer(toep, db, db_idx); 678 if (toep->ddp.waiting_count > 0) 679 ddp_queue_toep(toep); 680 DDP_UNLOCK(toep); 681 INP_WUNLOCK(inp); 682 break; 683 default: 684 panic("XXX: unknown tcb_rpl offset %#x, cookie %#x", 685 G_WORD(cpl->cookie), G_COOKIE(cpl->cookie)); 686 } 687 688 return (0); 689 } 690 691 void 692 handle_ddp_close(struct toepcb *toep, struct tcpcb *tp, __be32 rcv_nxt) 693 { 694 struct ddp_buffer *db; 695 struct kaiocb *job; 696 long copied; 697 unsigned int db_flag, db_idx; 698 int len, placed; 699 700 INP_WLOCK_ASSERT(toep->inp); 701 DDP_ASSERT_LOCKED(toep); 702 703 /* - 1 is to ignore the byte for FIN */ 704 len = be32toh(rcv_nxt) - tp->rcv_nxt - 1; 705 tp->rcv_nxt += len; 706 707 while (toep->ddp.active_count > 0) { 708 MPASS(toep->ddp.active_id != -1); 709 db_idx = toep->ddp.active_id; 710 db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE; 711 MPASS((toep->ddp.flags & db_flag) != 0); 712 db = &toep->ddp.db[db_idx]; 713 job = db->job; 714 copied = job->aio_received; 715 placed = len; 716 if (placed > job->uaiocb.aio_nbytes - copied) 717 placed = job->uaiocb.aio_nbytes - copied; 718 if (placed > 0) 719 job->msgrcv = 1; 720 if (!aio_clear_cancel_function(job)) { 721 /* 722 * Update the copied length for when 723 * t4_aio_cancel_active() completes this 724 * request. 725 */ 726 job->aio_received += placed; 727 } else { 728 CTR4(KTR_CXGBE, "%s: tid %d completed buf %d len %d", 729 __func__, toep->tid, db_idx, placed); 730 aio_complete(job, copied + placed, 0); 731 } 732 len -= placed; 733 complete_ddp_buffer(toep, db, db_idx); 734 } 735 736 MPASS(len == 0); 737 ddp_complete_all(toep, 0); 738 } 739 740 #define DDP_ERR (F_DDP_PPOD_MISMATCH | F_DDP_LLIMIT_ERR | F_DDP_ULIMIT_ERR |\ 741 F_DDP_PPOD_PARITY_ERR | F_DDP_PADDING_ERR | F_DDP_OFFSET_ERR |\ 742 F_DDP_INVALID_TAG | F_DDP_COLOR_ERR | F_DDP_TID_MISMATCH |\ 743 F_DDP_INVALID_PPOD | F_DDP_HDRCRC_ERR | F_DDP_DATACRC_ERR) 744 745 extern cpl_handler_t t4_cpl_handler[]; 746 747 static int 748 do_rx_data_ddp(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 749 { 750 struct adapter *sc = iq->adapter; 751 const struct cpl_rx_data_ddp *cpl = (const void *)(rss + 1); 752 unsigned int tid = GET_TID(cpl); 753 uint32_t vld; 754 struct toepcb *toep = lookup_tid(sc, tid); 755 756 KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__)); 757 KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__)); 758 KASSERT(!(toep->flags & TPF_SYNQE), 759 ("%s: toep %p claims to be a synq entry", __func__, toep)); 760 761 vld = be32toh(cpl->ddpvld); 762 if (__predict_false(vld & DDP_ERR)) { 763 panic("%s: DDP error 0x%x (tid %d, toep %p)", 764 __func__, vld, tid, toep); 765 } 766 767 if (ulp_mode(toep) == ULP_MODE_ISCSI) { 768 t4_cpl_handler[CPL_RX_ISCSI_DDP](iq, rss, m); 769 return (0); 770 } 771 772 handle_ddp_data(toep, cpl->u.ddp_report, cpl->seq, be16toh(cpl->len)); 773 774 return (0); 775 } 776 777 static int 778 do_rx_ddp_complete(struct sge_iq *iq, const struct rss_header *rss, 779 struct mbuf *m) 780 { 781 struct adapter *sc = iq->adapter; 782 const struct cpl_rx_ddp_complete *cpl = (const void *)(rss + 1); 783 unsigned int tid = GET_TID(cpl); 784 struct toepcb *toep = lookup_tid(sc, tid); 785 786 KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__)); 787 KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__)); 788 KASSERT(!(toep->flags & TPF_SYNQE), 789 ("%s: toep %p claims to be a synq entry", __func__, toep)); 790 791 handle_ddp_data(toep, cpl->ddp_report, cpl->rcv_nxt, 0); 792 793 return (0); 794 } 795 796 static void 797 enable_ddp(struct adapter *sc, struct toepcb *toep) 798 { 799 800 KASSERT((toep->ddp.flags & (DDP_ON | DDP_OK | DDP_SC_REQ)) == DDP_OK, 801 ("%s: toep %p has bad ddp_flags 0x%x", 802 __func__, toep, toep->ddp.flags)); 803 804 CTR3(KTR_CXGBE, "%s: tid %u (time %u)", 805 __func__, toep->tid, time_uptime); 806 807 DDP_ASSERT_LOCKED(toep); 808 toep->ddp.flags |= DDP_SC_REQ; 809 t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_RX_DDP_FLAGS, 810 V_TF_DDP_OFF(1) | V_TF_DDP_INDICATE_OUT(1) | 811 V_TF_DDP_BUF0_INDICATE(1) | V_TF_DDP_BUF1_INDICATE(1) | 812 V_TF_DDP_BUF0_VALID(1) | V_TF_DDP_BUF1_VALID(1), 813 V_TF_DDP_BUF0_INDICATE(1) | V_TF_DDP_BUF1_INDICATE(1), 0, 0); 814 t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_T_FLAGS, 815 V_TF_RCV_COALESCE_ENABLE(1), 0, 0, 0); 816 } 817 818 static int 819 calculate_hcf(int n1, int n2) 820 { 821 int a, b, t; 822 823 if (n1 <= n2) { 824 a = n1; 825 b = n2; 826 } else { 827 a = n2; 828 b = n1; 829 } 830 831 while (a != 0) { 832 t = a; 833 a = b % a; 834 b = t; 835 } 836 837 return (b); 838 } 839 840 static inline int 841 pages_to_nppods(int npages, int ddp_page_shift) 842 { 843 844 MPASS(ddp_page_shift >= PAGE_SHIFT); 845 846 return (howmany(npages >> (ddp_page_shift - PAGE_SHIFT), PPOD_PAGES)); 847 } 848 849 static int 850 alloc_page_pods(struct ppod_region *pr, u_int nppods, u_int pgsz_idx, 851 struct ppod_reservation *prsv) 852 { 853 vmem_addr_t addr; /* relative to start of region */ 854 855 if (vmem_alloc(pr->pr_arena, PPOD_SZ(nppods), M_NOWAIT | M_FIRSTFIT, 856 &addr) != 0) 857 return (ENOMEM); 858 859 CTR5(KTR_CXGBE, "%-17s arena %p, addr 0x%08x, nppods %d, pgsz %d", 860 __func__, pr->pr_arena, (uint32_t)addr & pr->pr_tag_mask, 861 nppods, 1 << pr->pr_page_shift[pgsz_idx]); 862 863 /* 864 * The hardware tagmask includes an extra invalid bit but the arena was 865 * seeded with valid values only. An allocation out of this arena will 866 * fit inside the tagmask but won't have the invalid bit set. 867 */ 868 MPASS((addr & pr->pr_tag_mask) == addr); 869 MPASS((addr & pr->pr_invalid_bit) == 0); 870 871 prsv->prsv_pr = pr; 872 prsv->prsv_tag = V_PPOD_PGSZ(pgsz_idx) | addr; 873 prsv->prsv_nppods = nppods; 874 875 return (0); 876 } 877 878 int 879 t4_alloc_page_pods_for_ps(struct ppod_region *pr, struct pageset *ps) 880 { 881 int i, hcf, seglen, idx, nppods; 882 struct ppod_reservation *prsv = &ps->prsv; 883 884 KASSERT(prsv->prsv_nppods == 0, 885 ("%s: page pods already allocated", __func__)); 886 887 /* 888 * The DDP page size is unrelated to the VM page size. We combine 889 * contiguous physical pages into larger segments to get the best DDP 890 * page size possible. This is the largest of the four sizes in 891 * A_ULP_RX_TDDP_PSZ that evenly divides the HCF of the segment sizes in 892 * the page list. 893 */ 894 hcf = 0; 895 for (i = 0; i < ps->npages; i++) { 896 seglen = PAGE_SIZE; 897 while (i < ps->npages - 1 && 898 ps->pages[i]->phys_addr + PAGE_SIZE == 899 ps->pages[i + 1]->phys_addr) { 900 seglen += PAGE_SIZE; 901 i++; 902 } 903 904 hcf = calculate_hcf(hcf, seglen); 905 if (hcf < (1 << pr->pr_page_shift[1])) { 906 idx = 0; 907 goto have_pgsz; /* give up, short circuit */ 908 } 909 } 910 911 #define PR_PAGE_MASK(x) ((1 << pr->pr_page_shift[(x)]) - 1) 912 MPASS((hcf & PR_PAGE_MASK(0)) == 0); /* PAGE_SIZE is >= 4K everywhere */ 913 for (idx = nitems(pr->pr_page_shift) - 1; idx > 0; idx--) { 914 if ((hcf & PR_PAGE_MASK(idx)) == 0) 915 break; 916 } 917 #undef PR_PAGE_MASK 918 919 have_pgsz: 920 MPASS(idx <= M_PPOD_PGSZ); 921 922 nppods = pages_to_nppods(ps->npages, pr->pr_page_shift[idx]); 923 if (alloc_page_pods(pr, nppods, idx, prsv) != 0) 924 return (0); 925 MPASS(prsv->prsv_nppods > 0); 926 927 return (1); 928 } 929 930 int 931 t4_alloc_page_pods_for_buf(struct ppod_region *pr, vm_offset_t buf, int len, 932 struct ppod_reservation *prsv) 933 { 934 int hcf, seglen, idx, npages, nppods; 935 uintptr_t start_pva, end_pva, pva, p1; 936 937 MPASS(buf > 0); 938 MPASS(len > 0); 939 940 /* 941 * The DDP page size is unrelated to the VM page size. We combine 942 * contiguous physical pages into larger segments to get the best DDP 943 * page size possible. This is the largest of the four sizes in 944 * A_ULP_RX_ISCSI_PSZ that evenly divides the HCF of the segment sizes 945 * in the page list. 946 */ 947 hcf = 0; 948 start_pva = trunc_page(buf); 949 end_pva = trunc_page(buf + len - 1); 950 pva = start_pva; 951 while (pva <= end_pva) { 952 seglen = PAGE_SIZE; 953 p1 = pmap_kextract(pva); 954 pva += PAGE_SIZE; 955 while (pva <= end_pva && p1 + seglen == pmap_kextract(pva)) { 956 seglen += PAGE_SIZE; 957 pva += PAGE_SIZE; 958 } 959 960 hcf = calculate_hcf(hcf, seglen); 961 if (hcf < (1 << pr->pr_page_shift[1])) { 962 idx = 0; 963 goto have_pgsz; /* give up, short circuit */ 964 } 965 } 966 967 #define PR_PAGE_MASK(x) ((1 << pr->pr_page_shift[(x)]) - 1) 968 MPASS((hcf & PR_PAGE_MASK(0)) == 0); /* PAGE_SIZE is >= 4K everywhere */ 969 for (idx = nitems(pr->pr_page_shift) - 1; idx > 0; idx--) { 970 if ((hcf & PR_PAGE_MASK(idx)) == 0) 971 break; 972 } 973 #undef PR_PAGE_MASK 974 975 have_pgsz: 976 MPASS(idx <= M_PPOD_PGSZ); 977 978 npages = 1; 979 npages += (end_pva - start_pva) >> pr->pr_page_shift[idx]; 980 nppods = howmany(npages, PPOD_PAGES); 981 if (alloc_page_pods(pr, nppods, idx, prsv) != 0) 982 return (ENOMEM); 983 MPASS(prsv->prsv_nppods > 0); 984 985 return (0); 986 } 987 988 int 989 t4_alloc_page_pods_for_sgl(struct ppod_region *pr, struct ctl_sg_entry *sgl, 990 int entries, struct ppod_reservation *prsv) 991 { 992 int hcf, seglen, idx = 0, npages, nppods, i, len; 993 uintptr_t start_pva, end_pva, pva, p1 ; 994 vm_offset_t buf; 995 struct ctl_sg_entry *sge; 996 997 MPASS(entries > 0); 998 MPASS(sgl); 999 1000 /* 1001 * The DDP page size is unrelated to the VM page size. We combine 1002 * contiguous physical pages into larger segments to get the best DDP 1003 * page size possible. This is the largest of the four sizes in 1004 * A_ULP_RX_ISCSI_PSZ that evenly divides the HCF of the segment sizes 1005 * in the page list. 1006 */ 1007 hcf = 0; 1008 for (i = entries - 1; i >= 0; i--) { 1009 sge = sgl + i; 1010 buf = (vm_offset_t)sge->addr; 1011 len = sge->len; 1012 start_pva = trunc_page(buf); 1013 end_pva = trunc_page(buf + len - 1); 1014 pva = start_pva; 1015 while (pva <= end_pva) { 1016 seglen = PAGE_SIZE; 1017 p1 = pmap_kextract(pva); 1018 pva += PAGE_SIZE; 1019 while (pva <= end_pva && p1 + seglen == 1020 pmap_kextract(pva)) { 1021 seglen += PAGE_SIZE; 1022 pva += PAGE_SIZE; 1023 } 1024 1025 hcf = calculate_hcf(hcf, seglen); 1026 if (hcf < (1 << pr->pr_page_shift[1])) { 1027 idx = 0; 1028 goto have_pgsz; /* give up, short circuit */ 1029 } 1030 } 1031 } 1032 #define PR_PAGE_MASK(x) ((1 << pr->pr_page_shift[(x)]) - 1) 1033 MPASS((hcf & PR_PAGE_MASK(0)) == 0); /* PAGE_SIZE is >= 4K everywhere */ 1034 for (idx = nitems(pr->pr_page_shift) - 1; idx > 0; idx--) { 1035 if ((hcf & PR_PAGE_MASK(idx)) == 0) 1036 break; 1037 } 1038 #undef PR_PAGE_MASK 1039 1040 have_pgsz: 1041 MPASS(idx <= M_PPOD_PGSZ); 1042 1043 npages = 0; 1044 while (entries--) { 1045 npages++; 1046 start_pva = trunc_page((vm_offset_t)sgl->addr); 1047 end_pva = trunc_page((vm_offset_t)sgl->addr + sgl->len - 1); 1048 npages += (end_pva - start_pva) >> pr->pr_page_shift[idx]; 1049 sgl = sgl + 1; 1050 } 1051 nppods = howmany(npages, PPOD_PAGES); 1052 if (alloc_page_pods(pr, nppods, idx, prsv) != 0) 1053 return (ENOMEM); 1054 MPASS(prsv->prsv_nppods > 0); 1055 return (0); 1056 } 1057 1058 void 1059 t4_free_page_pods(struct ppod_reservation *prsv) 1060 { 1061 struct ppod_region *pr = prsv->prsv_pr; 1062 vmem_addr_t addr; 1063 1064 MPASS(prsv != NULL); 1065 MPASS(prsv->prsv_nppods != 0); 1066 1067 addr = prsv->prsv_tag & pr->pr_tag_mask; 1068 MPASS((addr & pr->pr_invalid_bit) == 0); 1069 1070 CTR4(KTR_CXGBE, "%-17s arena %p, addr 0x%08x, nppods %d", __func__, 1071 pr->pr_arena, addr, prsv->prsv_nppods); 1072 1073 vmem_free(pr->pr_arena, addr, PPOD_SZ(prsv->prsv_nppods)); 1074 prsv->prsv_nppods = 0; 1075 } 1076 1077 #define NUM_ULP_TX_SC_IMM_PPODS (256 / PPOD_SIZE) 1078 1079 int 1080 t4_write_page_pods_for_ps(struct adapter *sc, struct sge_wrq *wrq, int tid, 1081 struct pageset *ps) 1082 { 1083 struct wrqe *wr; 1084 struct ulp_mem_io *ulpmc; 1085 struct ulptx_idata *ulpsc; 1086 struct pagepod *ppod; 1087 int i, j, k, n, chunk, len, ddp_pgsz, idx; 1088 u_int ppod_addr; 1089 uint32_t cmd; 1090 struct ppod_reservation *prsv = &ps->prsv; 1091 struct ppod_region *pr = prsv->prsv_pr; 1092 1093 KASSERT(!(ps->flags & PS_PPODS_WRITTEN), 1094 ("%s: page pods already written", __func__)); 1095 MPASS(prsv->prsv_nppods > 0); 1096 1097 cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE)); 1098 if (is_t4(sc)) 1099 cmd |= htobe32(F_ULP_MEMIO_ORDER); 1100 else 1101 cmd |= htobe32(F_T5_ULP_MEMIO_IMM); 1102 ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)]; 1103 ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask); 1104 for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) { 1105 1106 /* How many page pods are we writing in this cycle */ 1107 n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS); 1108 chunk = PPOD_SZ(n); 1109 len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16); 1110 1111 wr = alloc_wrqe(len, wrq); 1112 if (wr == NULL) 1113 return (ENOMEM); /* ok to just bail out */ 1114 ulpmc = wrtod(wr); 1115 1116 INIT_ULPTX_WR(ulpmc, len, 0, 0); 1117 ulpmc->cmd = cmd; 1118 ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32)); 1119 ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16)); 1120 ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5)); 1121 1122 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 1123 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 1124 ulpsc->len = htobe32(chunk); 1125 1126 ppod = (struct pagepod *)(ulpsc + 1); 1127 for (j = 0; j < n; i++, j++, ppod++) { 1128 ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID | 1129 V_PPOD_TID(tid) | prsv->prsv_tag); 1130 ppod->len_offset = htobe64(V_PPOD_LEN(ps->len) | 1131 V_PPOD_OFST(ps->offset)); 1132 ppod->rsvd = 0; 1133 idx = i * PPOD_PAGES * (ddp_pgsz / PAGE_SIZE); 1134 for (k = 0; k < nitems(ppod->addr); k++) { 1135 if (idx < ps->npages) { 1136 ppod->addr[k] = 1137 htobe64(ps->pages[idx]->phys_addr); 1138 idx += ddp_pgsz / PAGE_SIZE; 1139 } else 1140 ppod->addr[k] = 0; 1141 #if 0 1142 CTR5(KTR_CXGBE, 1143 "%s: tid %d ppod[%d]->addr[%d] = %p", 1144 __func__, toep->tid, i, k, 1145 htobe64(ppod->addr[k])); 1146 #endif 1147 } 1148 1149 } 1150 1151 t4_wrq_tx(sc, wr); 1152 } 1153 ps->flags |= PS_PPODS_WRITTEN; 1154 1155 return (0); 1156 } 1157 1158 static struct mbuf * 1159 alloc_raw_wr_mbuf(int len) 1160 { 1161 struct mbuf *m; 1162 1163 if (len <= MHLEN) 1164 m = m_gethdr(M_NOWAIT, MT_DATA); 1165 else if (len <= MCLBYTES) 1166 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1167 else 1168 m = NULL; 1169 if (m == NULL) 1170 return (NULL); 1171 m->m_pkthdr.len = len; 1172 m->m_len = len; 1173 set_mbuf_raw_wr(m, true); 1174 return (m); 1175 } 1176 1177 int 1178 t4_write_page_pods_for_buf(struct adapter *sc, struct toepcb *toep, 1179 struct ppod_reservation *prsv, vm_offset_t buf, int buflen, 1180 struct mbufq *wrq) 1181 { 1182 struct ulp_mem_io *ulpmc; 1183 struct ulptx_idata *ulpsc; 1184 struct pagepod *ppod; 1185 int i, j, k, n, chunk, len, ddp_pgsz; 1186 u_int ppod_addr, offset; 1187 uint32_t cmd; 1188 struct ppod_region *pr = prsv->prsv_pr; 1189 uintptr_t end_pva, pva, pa; 1190 struct mbuf *m; 1191 1192 cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE)); 1193 if (is_t4(sc)) 1194 cmd |= htobe32(F_ULP_MEMIO_ORDER); 1195 else 1196 cmd |= htobe32(F_T5_ULP_MEMIO_IMM); 1197 ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)]; 1198 offset = buf & PAGE_MASK; 1199 ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask); 1200 pva = trunc_page(buf); 1201 end_pva = trunc_page(buf + buflen - 1); 1202 for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) { 1203 1204 /* How many page pods are we writing in this cycle */ 1205 n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS); 1206 MPASS(n > 0); 1207 chunk = PPOD_SZ(n); 1208 len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16); 1209 1210 m = alloc_raw_wr_mbuf(len); 1211 if (m == NULL) 1212 return (ENOMEM); 1213 ulpmc = mtod(m, struct ulp_mem_io *); 1214 1215 INIT_ULPTX_WR(ulpmc, len, 0, toep->tid); 1216 ulpmc->cmd = cmd; 1217 ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32)); 1218 ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16)); 1219 ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5)); 1220 1221 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 1222 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 1223 ulpsc->len = htobe32(chunk); 1224 1225 ppod = (struct pagepod *)(ulpsc + 1); 1226 for (j = 0; j < n; i++, j++, ppod++) { 1227 ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID | 1228 V_PPOD_TID(toep->tid) | 1229 (prsv->prsv_tag & ~V_PPOD_PGSZ(M_PPOD_PGSZ))); 1230 ppod->len_offset = htobe64(V_PPOD_LEN(buflen) | 1231 V_PPOD_OFST(offset)); 1232 ppod->rsvd = 0; 1233 1234 for (k = 0; k < nitems(ppod->addr); k++) { 1235 if (pva > end_pva) 1236 ppod->addr[k] = 0; 1237 else { 1238 pa = pmap_kextract(pva); 1239 ppod->addr[k] = htobe64(pa); 1240 pva += ddp_pgsz; 1241 } 1242 #if 0 1243 CTR5(KTR_CXGBE, 1244 "%s: tid %d ppod[%d]->addr[%d] = %p", 1245 __func__, toep->tid, i, k, 1246 htobe64(ppod->addr[k])); 1247 #endif 1248 } 1249 1250 /* 1251 * Walk back 1 segment so that the first address in the 1252 * next pod is the same as the last one in the current 1253 * pod. 1254 */ 1255 pva -= ddp_pgsz; 1256 } 1257 1258 mbufq_enqueue(wrq, m); 1259 } 1260 1261 MPASS(pva <= end_pva); 1262 1263 return (0); 1264 } 1265 1266 int 1267 t4_write_page_pods_for_sgl(struct adapter *sc, struct toepcb *toep, 1268 struct ppod_reservation *prsv, struct ctl_sg_entry *sgl, int entries, 1269 int xferlen, struct mbufq *wrq) 1270 { 1271 struct ulp_mem_io *ulpmc; 1272 struct ulptx_idata *ulpsc; 1273 struct pagepod *ppod; 1274 int i, j, k, n, chunk, len, ddp_pgsz; 1275 u_int ppod_addr, offset, sg_offset = 0; 1276 uint32_t cmd; 1277 struct ppod_region *pr = prsv->prsv_pr; 1278 uintptr_t pva, pa; 1279 struct mbuf *m; 1280 1281 MPASS(sgl != NULL); 1282 MPASS(entries > 0); 1283 cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE)); 1284 if (is_t4(sc)) 1285 cmd |= htobe32(F_ULP_MEMIO_ORDER); 1286 else 1287 cmd |= htobe32(F_T5_ULP_MEMIO_IMM); 1288 ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)]; 1289 offset = (vm_offset_t)sgl->addr & PAGE_MASK; 1290 ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask); 1291 pva = trunc_page((vm_offset_t)sgl->addr); 1292 for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) { 1293 1294 /* How many page pods are we writing in this cycle */ 1295 n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS); 1296 MPASS(n > 0); 1297 chunk = PPOD_SZ(n); 1298 len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16); 1299 1300 m = alloc_raw_wr_mbuf(len); 1301 if (m == NULL) 1302 return (ENOMEM); 1303 ulpmc = mtod(m, struct ulp_mem_io *); 1304 1305 INIT_ULPTX_WR(ulpmc, len, 0, toep->tid); 1306 ulpmc->cmd = cmd; 1307 ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32)); 1308 ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16)); 1309 ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5)); 1310 1311 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 1312 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 1313 ulpsc->len = htobe32(chunk); 1314 1315 ppod = (struct pagepod *)(ulpsc + 1); 1316 for (j = 0; j < n; i++, j++, ppod++) { 1317 ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID | 1318 V_PPOD_TID(toep->tid) | 1319 (prsv->prsv_tag & ~V_PPOD_PGSZ(M_PPOD_PGSZ))); 1320 ppod->len_offset = htobe64(V_PPOD_LEN(xferlen) | 1321 V_PPOD_OFST(offset)); 1322 ppod->rsvd = 0; 1323 1324 for (k = 0; k < nitems(ppod->addr); k++) { 1325 if (entries != 0) { 1326 pa = pmap_kextract(pva + sg_offset); 1327 ppod->addr[k] = htobe64(pa); 1328 } else 1329 ppod->addr[k] = 0; 1330 1331 #if 0 1332 CTR5(KTR_CXGBE, 1333 "%s: tid %d ppod[%d]->addr[%d] = %p", 1334 __func__, toep->tid, i, k, 1335 htobe64(ppod->addr[k])); 1336 #endif 1337 1338 /* 1339 * If this is the last entry in a pod, 1340 * reuse the same entry for first address 1341 * in the next pod. 1342 */ 1343 if (k + 1 == nitems(ppod->addr)) 1344 break; 1345 1346 /* 1347 * Don't move to the next DDP page if the 1348 * sgl is already finished. 1349 */ 1350 if (entries == 0) 1351 continue; 1352 1353 sg_offset += ddp_pgsz; 1354 if (sg_offset == sgl->len) { 1355 /* 1356 * This sgl entry is done. Go 1357 * to the next. 1358 */ 1359 entries--; 1360 sgl++; 1361 sg_offset = 0; 1362 if (entries != 0) 1363 pva = trunc_page( 1364 (vm_offset_t)sgl->addr); 1365 } 1366 } 1367 } 1368 1369 mbufq_enqueue(wrq, m); 1370 } 1371 1372 return (0); 1373 } 1374 1375 /* 1376 * Prepare a pageset for DDP. This sets up page pods. 1377 */ 1378 static int 1379 prep_pageset(struct adapter *sc, struct toepcb *toep, struct pageset *ps) 1380 { 1381 struct tom_data *td = sc->tom_softc; 1382 1383 if (ps->prsv.prsv_nppods == 0 && 1384 !t4_alloc_page_pods_for_ps(&td->pr, ps)) { 1385 return (0); 1386 } 1387 if (!(ps->flags & PS_PPODS_WRITTEN) && 1388 t4_write_page_pods_for_ps(sc, toep->ctrlq, toep->tid, ps) != 0) { 1389 return (0); 1390 } 1391 1392 return (1); 1393 } 1394 1395 int 1396 t4_init_ppod_region(struct ppod_region *pr, struct t4_range *r, u_int psz, 1397 const char *name) 1398 { 1399 int i; 1400 1401 MPASS(pr != NULL); 1402 MPASS(r->size > 0); 1403 1404 pr->pr_start = r->start; 1405 pr->pr_len = r->size; 1406 pr->pr_page_shift[0] = 12 + G_HPZ0(psz); 1407 pr->pr_page_shift[1] = 12 + G_HPZ1(psz); 1408 pr->pr_page_shift[2] = 12 + G_HPZ2(psz); 1409 pr->pr_page_shift[3] = 12 + G_HPZ3(psz); 1410 1411 /* The SGL -> page pod algorithm requires the sizes to be in order. */ 1412 for (i = 1; i < nitems(pr->pr_page_shift); i++) { 1413 if (pr->pr_page_shift[i] <= pr->pr_page_shift[i - 1]) 1414 return (ENXIO); 1415 } 1416 1417 pr->pr_tag_mask = ((1 << fls(r->size)) - 1) & V_PPOD_TAG(M_PPOD_TAG); 1418 pr->pr_alias_mask = V_PPOD_TAG(M_PPOD_TAG) & ~pr->pr_tag_mask; 1419 if (pr->pr_tag_mask == 0 || pr->pr_alias_mask == 0) 1420 return (ENXIO); 1421 pr->pr_alias_shift = fls(pr->pr_tag_mask); 1422 pr->pr_invalid_bit = 1 << (pr->pr_alias_shift - 1); 1423 1424 pr->pr_arena = vmem_create(name, 0, pr->pr_len, PPOD_SIZE, 0, 1425 M_FIRSTFIT | M_NOWAIT); 1426 if (pr->pr_arena == NULL) 1427 return (ENOMEM); 1428 1429 return (0); 1430 } 1431 1432 void 1433 t4_free_ppod_region(struct ppod_region *pr) 1434 { 1435 1436 MPASS(pr != NULL); 1437 1438 if (pr->pr_arena) 1439 vmem_destroy(pr->pr_arena); 1440 bzero(pr, sizeof(*pr)); 1441 } 1442 1443 static int 1444 pscmp(struct pageset *ps, struct vmspace *vm, vm_offset_t start, int npages, 1445 int pgoff, int len) 1446 { 1447 1448 if (ps->start != start || ps->npages != npages || 1449 ps->offset != pgoff || ps->len != len) 1450 return (1); 1451 1452 return (ps->vm != vm || ps->vm_timestamp != vm->vm_map.timestamp); 1453 } 1454 1455 static int 1456 hold_aio(struct toepcb *toep, struct kaiocb *job, struct pageset **pps) 1457 { 1458 struct vmspace *vm; 1459 vm_map_t map; 1460 vm_offset_t start, end, pgoff; 1461 struct pageset *ps; 1462 int n; 1463 1464 DDP_ASSERT_LOCKED(toep); 1465 1466 /* 1467 * The AIO subsystem will cancel and drain all requests before 1468 * permitting a process to exit or exec, so p_vmspace should 1469 * be stable here. 1470 */ 1471 vm = job->userproc->p_vmspace; 1472 map = &vm->vm_map; 1473 start = (uintptr_t)job->uaiocb.aio_buf; 1474 pgoff = start & PAGE_MASK; 1475 end = round_page(start + job->uaiocb.aio_nbytes); 1476 start = trunc_page(start); 1477 1478 if (end - start > MAX_DDP_BUFFER_SIZE) { 1479 /* 1480 * Truncate the request to a short read. 1481 * Alternatively, we could DDP in chunks to the larger 1482 * buffer, but that would be quite a bit more work. 1483 * 1484 * When truncating, round the request down to avoid 1485 * crossing a cache line on the final transaction. 1486 */ 1487 end = rounddown2(start + MAX_DDP_BUFFER_SIZE, CACHE_LINE_SIZE); 1488 #ifdef VERBOSE_TRACES 1489 CTR4(KTR_CXGBE, "%s: tid %d, truncating size from %lu to %lu", 1490 __func__, toep->tid, (unsigned long)job->uaiocb.aio_nbytes, 1491 (unsigned long)(end - (start + pgoff))); 1492 job->uaiocb.aio_nbytes = end - (start + pgoff); 1493 #endif 1494 end = round_page(end); 1495 } 1496 1497 n = atop(end - start); 1498 1499 /* 1500 * Try to reuse a cached pageset. 1501 */ 1502 TAILQ_FOREACH(ps, &toep->ddp.cached_pagesets, link) { 1503 if (pscmp(ps, vm, start, n, pgoff, 1504 job->uaiocb.aio_nbytes) == 0) { 1505 TAILQ_REMOVE(&toep->ddp.cached_pagesets, ps, link); 1506 toep->ddp.cached_count--; 1507 *pps = ps; 1508 return (0); 1509 } 1510 } 1511 1512 /* 1513 * If there are too many cached pagesets to create a new one, 1514 * free a pageset before creating a new one. 1515 */ 1516 KASSERT(toep->ddp.active_count + toep->ddp.cached_count <= 1517 nitems(toep->ddp.db), ("%s: too many wired pagesets", __func__)); 1518 if (toep->ddp.active_count + toep->ddp.cached_count == 1519 nitems(toep->ddp.db)) { 1520 KASSERT(toep->ddp.cached_count > 0, 1521 ("no cached pageset to free")); 1522 ps = TAILQ_LAST(&toep->ddp.cached_pagesets, pagesetq); 1523 TAILQ_REMOVE(&toep->ddp.cached_pagesets, ps, link); 1524 toep->ddp.cached_count--; 1525 free_pageset(toep->td, ps); 1526 } 1527 DDP_UNLOCK(toep); 1528 1529 /* Create a new pageset. */ 1530 ps = malloc(sizeof(*ps) + n * sizeof(vm_page_t), M_CXGBE, M_WAITOK | 1531 M_ZERO); 1532 ps->pages = (vm_page_t *)(ps + 1); 1533 ps->vm_timestamp = map->timestamp; 1534 ps->npages = vm_fault_quick_hold_pages(map, start, end - start, 1535 VM_PROT_WRITE, ps->pages, n); 1536 1537 DDP_LOCK(toep); 1538 if (ps->npages < 0) { 1539 free(ps, M_CXGBE); 1540 return (EFAULT); 1541 } 1542 1543 KASSERT(ps->npages == n, ("hold_aio: page count mismatch: %d vs %d", 1544 ps->npages, n)); 1545 1546 ps->offset = pgoff; 1547 ps->len = job->uaiocb.aio_nbytes; 1548 refcount_acquire(&vm->vm_refcnt); 1549 ps->vm = vm; 1550 ps->start = start; 1551 1552 CTR5(KTR_CXGBE, "%s: tid %d, new pageset %p for job %p, npages %d", 1553 __func__, toep->tid, ps, job, ps->npages); 1554 *pps = ps; 1555 return (0); 1556 } 1557 1558 static void 1559 ddp_complete_all(struct toepcb *toep, int error) 1560 { 1561 struct kaiocb *job; 1562 1563 DDP_ASSERT_LOCKED(toep); 1564 while (!TAILQ_EMPTY(&toep->ddp.aiojobq)) { 1565 job = TAILQ_FIRST(&toep->ddp.aiojobq); 1566 TAILQ_REMOVE(&toep->ddp.aiojobq, job, list); 1567 toep->ddp.waiting_count--; 1568 if (aio_clear_cancel_function(job)) 1569 ddp_complete_one(job, error); 1570 } 1571 } 1572 1573 static void 1574 aio_ddp_cancel_one(struct kaiocb *job) 1575 { 1576 long copied; 1577 1578 /* 1579 * If this job had copied data out of the socket buffer before 1580 * it was cancelled, report it as a short read rather than an 1581 * error. 1582 */ 1583 copied = job->aio_received; 1584 if (copied != 0) 1585 aio_complete(job, copied, 0); 1586 else 1587 aio_cancel(job); 1588 } 1589 1590 /* 1591 * Called when the main loop wants to requeue a job to retry it later. 1592 * Deals with the race of the job being cancelled while it was being 1593 * examined. 1594 */ 1595 static void 1596 aio_ddp_requeue_one(struct toepcb *toep, struct kaiocb *job) 1597 { 1598 1599 DDP_ASSERT_LOCKED(toep); 1600 if (!(toep->ddp.flags & DDP_DEAD) && 1601 aio_set_cancel_function(job, t4_aio_cancel_queued)) { 1602 TAILQ_INSERT_HEAD(&toep->ddp.aiojobq, job, list); 1603 toep->ddp.waiting_count++; 1604 } else 1605 aio_ddp_cancel_one(job); 1606 } 1607 1608 static void 1609 aio_ddp_requeue(struct toepcb *toep) 1610 { 1611 struct adapter *sc = td_adapter(toep->td); 1612 struct socket *so; 1613 struct sockbuf *sb; 1614 struct inpcb *inp; 1615 struct kaiocb *job; 1616 struct ddp_buffer *db; 1617 size_t copied, offset, resid; 1618 struct pageset *ps; 1619 struct mbuf *m; 1620 uint64_t ddp_flags, ddp_flags_mask; 1621 struct wrqe *wr; 1622 int buf_flag, db_idx, error; 1623 1624 DDP_ASSERT_LOCKED(toep); 1625 1626 restart: 1627 if (toep->ddp.flags & DDP_DEAD) { 1628 MPASS(toep->ddp.waiting_count == 0); 1629 MPASS(toep->ddp.active_count == 0); 1630 return; 1631 } 1632 1633 if (toep->ddp.waiting_count == 0 || 1634 toep->ddp.active_count == nitems(toep->ddp.db)) { 1635 return; 1636 } 1637 1638 job = TAILQ_FIRST(&toep->ddp.aiojobq); 1639 so = job->fd_file->f_data; 1640 sb = &so->so_rcv; 1641 SOCKBUF_LOCK(sb); 1642 1643 /* We will never get anything unless we are or were connected. */ 1644 if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) { 1645 SOCKBUF_UNLOCK(sb); 1646 ddp_complete_all(toep, ENOTCONN); 1647 return; 1648 } 1649 1650 KASSERT(toep->ddp.active_count == 0 || sbavail(sb) == 0, 1651 ("%s: pending sockbuf data and DDP is active", __func__)); 1652 1653 /* Abort if socket has reported problems. */ 1654 /* XXX: Wait for any queued DDP's to finish and/or flush them? */ 1655 if (so->so_error && sbavail(sb) == 0) { 1656 toep->ddp.waiting_count--; 1657 TAILQ_REMOVE(&toep->ddp.aiojobq, job, list); 1658 if (!aio_clear_cancel_function(job)) { 1659 SOCKBUF_UNLOCK(sb); 1660 goto restart; 1661 } 1662 1663 /* 1664 * If this job has previously copied some data, report 1665 * a short read and leave the error to be reported by 1666 * a future request. 1667 */ 1668 copied = job->aio_received; 1669 if (copied != 0) { 1670 SOCKBUF_UNLOCK(sb); 1671 aio_complete(job, copied, 0); 1672 goto restart; 1673 } 1674 error = so->so_error; 1675 so->so_error = 0; 1676 SOCKBUF_UNLOCK(sb); 1677 aio_complete(job, -1, error); 1678 goto restart; 1679 } 1680 1681 /* 1682 * Door is closed. If there is pending data in the socket buffer, 1683 * deliver it. If there are pending DDP requests, wait for those 1684 * to complete. Once they have completed, return EOF reads. 1685 */ 1686 if (sb->sb_state & SBS_CANTRCVMORE && sbavail(sb) == 0) { 1687 SOCKBUF_UNLOCK(sb); 1688 if (toep->ddp.active_count != 0) 1689 return; 1690 ddp_complete_all(toep, 0); 1691 return; 1692 } 1693 1694 /* 1695 * If DDP is not enabled and there is no pending socket buffer 1696 * data, try to enable DDP. 1697 */ 1698 if (sbavail(sb) == 0 && (toep->ddp.flags & DDP_ON) == 0) { 1699 SOCKBUF_UNLOCK(sb); 1700 1701 /* 1702 * Wait for the card to ACK that DDP is enabled before 1703 * queueing any buffers. Currently this waits for an 1704 * indicate to arrive. This could use a TCB_SET_FIELD_RPL 1705 * message to know that DDP was enabled instead of waiting 1706 * for the indicate which would avoid copying the indicate 1707 * if no data is pending. 1708 * 1709 * XXX: Might want to limit the indicate size to the size 1710 * of the first queued request. 1711 */ 1712 if ((toep->ddp.flags & DDP_SC_REQ) == 0) 1713 enable_ddp(sc, toep); 1714 return; 1715 } 1716 SOCKBUF_UNLOCK(sb); 1717 1718 /* 1719 * If another thread is queueing a buffer for DDP, let it 1720 * drain any work and return. 1721 */ 1722 if (toep->ddp.queueing != NULL) 1723 return; 1724 1725 /* Take the next job to prep it for DDP. */ 1726 toep->ddp.waiting_count--; 1727 TAILQ_REMOVE(&toep->ddp.aiojobq, job, list); 1728 if (!aio_clear_cancel_function(job)) 1729 goto restart; 1730 toep->ddp.queueing = job; 1731 1732 /* NB: This drops DDP_LOCK while it holds the backing VM pages. */ 1733 error = hold_aio(toep, job, &ps); 1734 if (error != 0) { 1735 ddp_complete_one(job, error); 1736 toep->ddp.queueing = NULL; 1737 goto restart; 1738 } 1739 1740 SOCKBUF_LOCK(sb); 1741 if (so->so_error && sbavail(sb) == 0) { 1742 copied = job->aio_received; 1743 if (copied != 0) { 1744 SOCKBUF_UNLOCK(sb); 1745 recycle_pageset(toep, ps); 1746 aio_complete(job, copied, 0); 1747 toep->ddp.queueing = NULL; 1748 goto restart; 1749 } 1750 1751 error = so->so_error; 1752 so->so_error = 0; 1753 SOCKBUF_UNLOCK(sb); 1754 recycle_pageset(toep, ps); 1755 aio_complete(job, -1, error); 1756 toep->ddp.queueing = NULL; 1757 goto restart; 1758 } 1759 1760 if (sb->sb_state & SBS_CANTRCVMORE && sbavail(sb) == 0) { 1761 SOCKBUF_UNLOCK(sb); 1762 recycle_pageset(toep, ps); 1763 if (toep->ddp.active_count != 0) { 1764 /* 1765 * The door is closed, but there are still pending 1766 * DDP buffers. Requeue. These jobs will all be 1767 * completed once those buffers drain. 1768 */ 1769 aio_ddp_requeue_one(toep, job); 1770 toep->ddp.queueing = NULL; 1771 return; 1772 } 1773 ddp_complete_one(job, 0); 1774 ddp_complete_all(toep, 0); 1775 toep->ddp.queueing = NULL; 1776 return; 1777 } 1778 1779 sbcopy: 1780 /* 1781 * If the toep is dead, there shouldn't be any data in the socket 1782 * buffer, so the above case should have handled this. 1783 */ 1784 MPASS(!(toep->ddp.flags & DDP_DEAD)); 1785 1786 /* 1787 * If there is pending data in the socket buffer (either 1788 * from before the requests were queued or a DDP indicate), 1789 * copy those mbufs out directly. 1790 */ 1791 copied = 0; 1792 offset = ps->offset + job->aio_received; 1793 MPASS(job->aio_received <= job->uaiocb.aio_nbytes); 1794 resid = job->uaiocb.aio_nbytes - job->aio_received; 1795 m = sb->sb_mb; 1796 KASSERT(m == NULL || toep->ddp.active_count == 0, 1797 ("%s: sockbuf data with active DDP", __func__)); 1798 while (m != NULL && resid > 0) { 1799 struct iovec iov[1]; 1800 struct uio uio; 1801 int error; 1802 1803 iov[0].iov_base = mtod(m, void *); 1804 iov[0].iov_len = m->m_len; 1805 if (iov[0].iov_len > resid) 1806 iov[0].iov_len = resid; 1807 uio.uio_iov = iov; 1808 uio.uio_iovcnt = 1; 1809 uio.uio_offset = 0; 1810 uio.uio_resid = iov[0].iov_len; 1811 uio.uio_segflg = UIO_SYSSPACE; 1812 uio.uio_rw = UIO_WRITE; 1813 error = uiomove_fromphys(ps->pages, offset + copied, 1814 uio.uio_resid, &uio); 1815 MPASS(error == 0 && uio.uio_resid == 0); 1816 copied += uio.uio_offset; 1817 resid -= uio.uio_offset; 1818 m = m->m_next; 1819 } 1820 if (copied != 0) { 1821 sbdrop_locked(sb, copied); 1822 job->aio_received += copied; 1823 job->msgrcv = 1; 1824 copied = job->aio_received; 1825 inp = sotoinpcb(so); 1826 if (!INP_TRY_WLOCK(inp)) { 1827 /* 1828 * The reference on the socket file descriptor in 1829 * the AIO job should keep 'sb' and 'inp' stable. 1830 * Our caller has a reference on the 'toep' that 1831 * keeps it stable. 1832 */ 1833 SOCKBUF_UNLOCK(sb); 1834 DDP_UNLOCK(toep); 1835 INP_WLOCK(inp); 1836 DDP_LOCK(toep); 1837 SOCKBUF_LOCK(sb); 1838 1839 /* 1840 * If the socket has been closed, we should detect 1841 * that and complete this request if needed on 1842 * the next trip around the loop. 1843 */ 1844 } 1845 t4_rcvd_locked(&toep->td->tod, intotcpcb(inp)); 1846 INP_WUNLOCK(inp); 1847 if (resid == 0 || toep->ddp.flags & DDP_DEAD) { 1848 /* 1849 * We filled the entire buffer with socket 1850 * data, DDP is not being used, or the socket 1851 * is being shut down, so complete the 1852 * request. 1853 */ 1854 SOCKBUF_UNLOCK(sb); 1855 recycle_pageset(toep, ps); 1856 aio_complete(job, copied, 0); 1857 toep->ddp.queueing = NULL; 1858 goto restart; 1859 } 1860 1861 /* 1862 * If DDP is not enabled, requeue this request and restart. 1863 * This will either enable DDP or wait for more data to 1864 * arrive on the socket buffer. 1865 */ 1866 if ((toep->ddp.flags & (DDP_ON | DDP_SC_REQ)) != DDP_ON) { 1867 SOCKBUF_UNLOCK(sb); 1868 recycle_pageset(toep, ps); 1869 aio_ddp_requeue_one(toep, job); 1870 toep->ddp.queueing = NULL; 1871 goto restart; 1872 } 1873 1874 /* 1875 * An indicate might have arrived and been added to 1876 * the socket buffer while it was unlocked after the 1877 * copy to lock the INP. If so, restart the copy. 1878 */ 1879 if (sbavail(sb) != 0) 1880 goto sbcopy; 1881 } 1882 SOCKBUF_UNLOCK(sb); 1883 1884 if (prep_pageset(sc, toep, ps) == 0) { 1885 recycle_pageset(toep, ps); 1886 aio_ddp_requeue_one(toep, job); 1887 toep->ddp.queueing = NULL; 1888 1889 /* 1890 * XXX: Need to retry this later. Mostly need a trigger 1891 * when page pods are freed up. 1892 */ 1893 printf("%s: prep_pageset failed\n", __func__); 1894 return; 1895 } 1896 1897 /* Determine which DDP buffer to use. */ 1898 if (toep->ddp.db[0].job == NULL) { 1899 db_idx = 0; 1900 } else { 1901 MPASS(toep->ddp.db[1].job == NULL); 1902 db_idx = 1; 1903 } 1904 1905 ddp_flags = 0; 1906 ddp_flags_mask = 0; 1907 if (db_idx == 0) { 1908 ddp_flags |= V_TF_DDP_BUF0_VALID(1); 1909 if (so->so_state & SS_NBIO) 1910 ddp_flags |= V_TF_DDP_BUF0_FLUSH(1); 1911 ddp_flags_mask |= V_TF_DDP_PSH_NO_INVALIDATE0(1) | 1912 V_TF_DDP_PUSH_DISABLE_0(1) | V_TF_DDP_PSHF_ENABLE_0(1) | 1913 V_TF_DDP_BUF0_FLUSH(1) | V_TF_DDP_BUF0_VALID(1); 1914 buf_flag = DDP_BUF0_ACTIVE; 1915 } else { 1916 ddp_flags |= V_TF_DDP_BUF1_VALID(1); 1917 if (so->so_state & SS_NBIO) 1918 ddp_flags |= V_TF_DDP_BUF1_FLUSH(1); 1919 ddp_flags_mask |= V_TF_DDP_PSH_NO_INVALIDATE1(1) | 1920 V_TF_DDP_PUSH_DISABLE_1(1) | V_TF_DDP_PSHF_ENABLE_1(1) | 1921 V_TF_DDP_BUF1_FLUSH(1) | V_TF_DDP_BUF1_VALID(1); 1922 buf_flag = DDP_BUF1_ACTIVE; 1923 } 1924 MPASS((toep->ddp.flags & buf_flag) == 0); 1925 if ((toep->ddp.flags & (DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE)) == 0) { 1926 MPASS(db_idx == 0); 1927 MPASS(toep->ddp.active_id == -1); 1928 MPASS(toep->ddp.active_count == 0); 1929 ddp_flags_mask |= V_TF_DDP_ACTIVE_BUF(1); 1930 } 1931 1932 /* 1933 * The TID for this connection should still be valid. If DDP_DEAD 1934 * is set, SBS_CANTRCVMORE should be set, so we shouldn't be 1935 * this far anyway. Even if the socket is closing on the other 1936 * end, the AIO job holds a reference on this end of the socket 1937 * which will keep it open and keep the TCP PCB attached until 1938 * after the job is completed. 1939 */ 1940 wr = mk_update_tcb_for_ddp(sc, toep, db_idx, ps, job->aio_received, 1941 ddp_flags, ddp_flags_mask); 1942 if (wr == NULL) { 1943 recycle_pageset(toep, ps); 1944 aio_ddp_requeue_one(toep, job); 1945 toep->ddp.queueing = NULL; 1946 1947 /* 1948 * XXX: Need a way to kick a retry here. 1949 * 1950 * XXX: We know the fixed size needed and could 1951 * preallocate this using a blocking request at the 1952 * start of the task to avoid having to handle this 1953 * edge case. 1954 */ 1955 printf("%s: mk_update_tcb_for_ddp failed\n", __func__); 1956 return; 1957 } 1958 1959 if (!aio_set_cancel_function(job, t4_aio_cancel_active)) { 1960 free_wrqe(wr); 1961 recycle_pageset(toep, ps); 1962 aio_ddp_cancel_one(job); 1963 toep->ddp.queueing = NULL; 1964 goto restart; 1965 } 1966 1967 #ifdef VERBOSE_TRACES 1968 CTR6(KTR_CXGBE, 1969 "%s: tid %u, scheduling %p for DDP[%d] (flags %#lx/%#lx)", __func__, 1970 toep->tid, job, db_idx, ddp_flags, ddp_flags_mask); 1971 #endif 1972 /* Give the chip the go-ahead. */ 1973 t4_wrq_tx(sc, wr); 1974 db = &toep->ddp.db[db_idx]; 1975 db->cancel_pending = 0; 1976 db->job = job; 1977 db->ps = ps; 1978 toep->ddp.queueing = NULL; 1979 toep->ddp.flags |= buf_flag; 1980 toep->ddp.active_count++; 1981 if (toep->ddp.active_count == 1) { 1982 MPASS(toep->ddp.active_id == -1); 1983 toep->ddp.active_id = db_idx; 1984 CTR2(KTR_CXGBE, "%s: ddp_active_id = %d", __func__, 1985 toep->ddp.active_id); 1986 } 1987 goto restart; 1988 } 1989 1990 void 1991 ddp_queue_toep(struct toepcb *toep) 1992 { 1993 1994 DDP_ASSERT_LOCKED(toep); 1995 if (toep->ddp.flags & DDP_TASK_ACTIVE) 1996 return; 1997 toep->ddp.flags |= DDP_TASK_ACTIVE; 1998 hold_toepcb(toep); 1999 soaio_enqueue(&toep->ddp.requeue_task); 2000 } 2001 2002 static void 2003 aio_ddp_requeue_task(void *context, int pending) 2004 { 2005 struct toepcb *toep = context; 2006 2007 DDP_LOCK(toep); 2008 aio_ddp_requeue(toep); 2009 toep->ddp.flags &= ~DDP_TASK_ACTIVE; 2010 DDP_UNLOCK(toep); 2011 2012 free_toepcb(toep); 2013 } 2014 2015 static void 2016 t4_aio_cancel_active(struct kaiocb *job) 2017 { 2018 struct socket *so = job->fd_file->f_data; 2019 struct tcpcb *tp = so_sototcpcb(so); 2020 struct toepcb *toep = tp->t_toe; 2021 struct adapter *sc = td_adapter(toep->td); 2022 uint64_t valid_flag; 2023 int i; 2024 2025 DDP_LOCK(toep); 2026 if (aio_cancel_cleared(job)) { 2027 DDP_UNLOCK(toep); 2028 aio_ddp_cancel_one(job); 2029 return; 2030 } 2031 2032 for (i = 0; i < nitems(toep->ddp.db); i++) { 2033 if (toep->ddp.db[i].job == job) { 2034 /* Should only ever get one cancel request for a job. */ 2035 MPASS(toep->ddp.db[i].cancel_pending == 0); 2036 2037 /* 2038 * Invalidate this buffer. It will be 2039 * cancelled or partially completed once the 2040 * card ACKs the invalidate. 2041 */ 2042 valid_flag = i == 0 ? V_TF_DDP_BUF0_VALID(1) : 2043 V_TF_DDP_BUF1_VALID(1); 2044 t4_set_tcb_field(sc, toep->ctrlq, toep, 2045 W_TCB_RX_DDP_FLAGS, valid_flag, 0, 1, 2046 CPL_COOKIE_DDP0 + i); 2047 toep->ddp.db[i].cancel_pending = 1; 2048 CTR2(KTR_CXGBE, "%s: request %p marked pending", 2049 __func__, job); 2050 break; 2051 } 2052 } 2053 DDP_UNLOCK(toep); 2054 } 2055 2056 static void 2057 t4_aio_cancel_queued(struct kaiocb *job) 2058 { 2059 struct socket *so = job->fd_file->f_data; 2060 struct tcpcb *tp = so_sototcpcb(so); 2061 struct toepcb *toep = tp->t_toe; 2062 2063 DDP_LOCK(toep); 2064 if (!aio_cancel_cleared(job)) { 2065 TAILQ_REMOVE(&toep->ddp.aiojobq, job, list); 2066 toep->ddp.waiting_count--; 2067 if (toep->ddp.waiting_count == 0) 2068 ddp_queue_toep(toep); 2069 } 2070 CTR2(KTR_CXGBE, "%s: request %p cancelled", __func__, job); 2071 DDP_UNLOCK(toep); 2072 2073 aio_ddp_cancel_one(job); 2074 } 2075 2076 int 2077 t4_aio_queue_ddp(struct socket *so, struct kaiocb *job) 2078 { 2079 struct tcpcb *tp = so_sototcpcb(so); 2080 struct toepcb *toep = tp->t_toe; 2081 2082 2083 /* Ignore writes. */ 2084 if (job->uaiocb.aio_lio_opcode != LIO_READ) 2085 return (EOPNOTSUPP); 2086 2087 DDP_LOCK(toep); 2088 2089 /* 2090 * XXX: Think about possibly returning errors for ENOTCONN, 2091 * etc. Perhaps the caller would only queue the request 2092 * if it failed with EOPNOTSUPP? 2093 */ 2094 2095 #ifdef VERBOSE_TRACES 2096 CTR3(KTR_CXGBE, "%s: queueing %p for tid %u", __func__, job, toep->tid); 2097 #endif 2098 if (!aio_set_cancel_function(job, t4_aio_cancel_queued)) 2099 panic("new job was cancelled"); 2100 TAILQ_INSERT_TAIL(&toep->ddp.aiojobq, job, list); 2101 toep->ddp.waiting_count++; 2102 toep->ddp.flags |= DDP_OK; 2103 2104 /* 2105 * Try to handle this request synchronously. If this has 2106 * to block because the task is running, it will just bail 2107 * and let the task handle it instead. 2108 */ 2109 aio_ddp_requeue(toep); 2110 DDP_UNLOCK(toep); 2111 return (0); 2112 } 2113 2114 void 2115 t4_ddp_mod_load(void) 2116 { 2117 2118 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, do_ddp_tcb_rpl, 2119 CPL_COOKIE_DDP0); 2120 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, do_ddp_tcb_rpl, 2121 CPL_COOKIE_DDP1); 2122 t4_register_cpl_handler(CPL_RX_DATA_DDP, do_rx_data_ddp); 2123 t4_register_cpl_handler(CPL_RX_DDP_COMPLETE, do_rx_ddp_complete); 2124 TAILQ_INIT(&ddp_orphan_pagesets); 2125 mtx_init(&ddp_orphan_pagesets_lock, "ddp orphans", NULL, MTX_DEF); 2126 TASK_INIT(&ddp_orphan_task, 0, ddp_free_orphan_pagesets, NULL); 2127 } 2128 2129 void 2130 t4_ddp_mod_unload(void) 2131 { 2132 2133 taskqueue_drain(taskqueue_thread, &ddp_orphan_task); 2134 MPASS(TAILQ_EMPTY(&ddp_orphan_pagesets)); 2135 mtx_destroy(&ddp_orphan_pagesets_lock); 2136 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, NULL, CPL_COOKIE_DDP0); 2137 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, NULL, CPL_COOKIE_DDP1); 2138 t4_register_cpl_handler(CPL_RX_DATA_DDP, NULL); 2139 t4_register_cpl_handler(CPL_RX_DDP_COMPLETE, NULL); 2140 } 2141 #endif 2142