1 /*- 2 * Copyright (c) 2012 Chelsio Communications, Inc. 3 * All rights reserved. 4 * Written by: Navdeep Parhar <np@FreeBSD.org> 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include "opt_inet.h" 32 33 #include <sys/param.h> 34 #include <sys/aio.h> 35 #include <sys/file.h> 36 #include <sys/systm.h> 37 #include <sys/kernel.h> 38 #include <sys/ktr.h> 39 #include <sys/module.h> 40 #include <sys/protosw.h> 41 #include <sys/proc.h> 42 #include <sys/domain.h> 43 #include <sys/socket.h> 44 #include <sys/socketvar.h> 45 #include <sys/taskqueue.h> 46 #include <sys/uio.h> 47 #include <netinet/in.h> 48 #include <netinet/in_pcb.h> 49 #include <netinet/ip.h> 50 #include <netinet/tcp_var.h> 51 #define TCPSTATES 52 #include <netinet/tcp_fsm.h> 53 #include <netinet/toecore.h> 54 55 #include <vm/vm.h> 56 #include <vm/vm_extern.h> 57 #include <vm/vm_param.h> 58 #include <vm/pmap.h> 59 #include <vm/vm_map.h> 60 #include <vm/vm_page.h> 61 #include <vm/vm_object.h> 62 63 #ifdef TCP_OFFLOAD 64 #include "common/common.h" 65 #include "common/t4_msg.h" 66 #include "common/t4_regs.h" 67 #include "common/t4_tcb.h" 68 #include "tom/t4_tom.h" 69 70 /* 71 * Use the 'backend3' field in AIO jobs to store the amount of data 72 * received by the AIO job so far. 73 */ 74 #define aio_received backend3 75 76 static void aio_ddp_requeue_task(void *context, int pending); 77 static void ddp_complete_all(struct toepcb *toep, int error); 78 static void t4_aio_cancel_active(struct kaiocb *job); 79 static void t4_aio_cancel_queued(struct kaiocb *job); 80 81 static TAILQ_HEAD(, pageset) ddp_orphan_pagesets; 82 static struct mtx ddp_orphan_pagesets_lock; 83 static struct task ddp_orphan_task; 84 85 #define MAX_DDP_BUFFER_SIZE (M_TCB_RX_DDP_BUF0_LEN) 86 87 /* 88 * A page set holds information about a buffer used for DDP. The page 89 * set holds resources such as the VM pages backing the buffer (either 90 * held or wired) and the page pods associated with the buffer. 91 * Recently used page sets are cached to allow for efficient reuse of 92 * buffers (avoiding the need to re-fault in pages, hold them, etc.). 93 * Note that cached page sets keep the backing pages wired. The 94 * number of wired pages is capped by only allowing for two wired 95 * pagesets per connection. This is not a perfect cap, but is a 96 * trade-off for performance. 97 * 98 * If an application ping-pongs two buffers for a connection via 99 * aio_read(2) then those buffers should remain wired and expensive VM 100 * fault lookups should be avoided after each buffer has been used 101 * once. If an application uses more than two buffers then this will 102 * fall back to doing expensive VM fault lookups for each operation. 103 */ 104 static void 105 free_pageset(struct tom_data *td, struct pageset *ps) 106 { 107 vm_page_t p; 108 int i; 109 110 if (ps->prsv.prsv_nppods > 0) 111 t4_free_page_pods(&ps->prsv); 112 113 if (ps->flags & PS_WIRED) { 114 for (i = 0; i < ps->npages; i++) { 115 p = ps->pages[i]; 116 vm_page_lock(p); 117 vm_page_unwire(p, PQ_INACTIVE); 118 vm_page_unlock(p); 119 } 120 } else 121 vm_page_unhold_pages(ps->pages, ps->npages); 122 mtx_lock(&ddp_orphan_pagesets_lock); 123 TAILQ_INSERT_TAIL(&ddp_orphan_pagesets, ps, link); 124 taskqueue_enqueue(taskqueue_thread, &ddp_orphan_task); 125 mtx_unlock(&ddp_orphan_pagesets_lock); 126 } 127 128 static void 129 ddp_free_orphan_pagesets(void *context, int pending) 130 { 131 struct pageset *ps; 132 133 mtx_lock(&ddp_orphan_pagesets_lock); 134 while (!TAILQ_EMPTY(&ddp_orphan_pagesets)) { 135 ps = TAILQ_FIRST(&ddp_orphan_pagesets); 136 TAILQ_REMOVE(&ddp_orphan_pagesets, ps, link); 137 mtx_unlock(&ddp_orphan_pagesets_lock); 138 if (ps->vm) 139 vmspace_free(ps->vm); 140 free(ps, M_CXGBE); 141 mtx_lock(&ddp_orphan_pagesets_lock); 142 } 143 mtx_unlock(&ddp_orphan_pagesets_lock); 144 } 145 146 static void 147 recycle_pageset(struct toepcb *toep, struct pageset *ps) 148 { 149 150 DDP_ASSERT_LOCKED(toep); 151 if (!(toep->ddp_flags & DDP_DEAD) && ps->flags & PS_WIRED) { 152 KASSERT(toep->ddp_cached_count + toep->ddp_active_count < 153 nitems(toep->db), ("too many wired pagesets")); 154 TAILQ_INSERT_HEAD(&toep->ddp_cached_pagesets, ps, link); 155 toep->ddp_cached_count++; 156 } else 157 free_pageset(toep->td, ps); 158 } 159 160 static void 161 ddp_complete_one(struct kaiocb *job, int error) 162 { 163 long copied; 164 165 /* 166 * If this job had copied data out of the socket buffer before 167 * it was cancelled, report it as a short read rather than an 168 * error. 169 */ 170 copied = job->aio_received; 171 if (copied != 0 || error == 0) 172 aio_complete(job, copied, 0); 173 else 174 aio_complete(job, -1, error); 175 } 176 177 static void 178 free_ddp_buffer(struct tom_data *td, struct ddp_buffer *db) 179 { 180 181 if (db->job) { 182 /* 183 * XXX: If we are un-offloading the socket then we 184 * should requeue these on the socket somehow. If we 185 * got a FIN from the remote end, then this completes 186 * any remaining requests with an EOF read. 187 */ 188 if (!aio_clear_cancel_function(db->job)) 189 ddp_complete_one(db->job, 0); 190 } 191 192 if (db->ps) 193 free_pageset(td, db->ps); 194 } 195 196 void 197 ddp_init_toep(struct toepcb *toep) 198 { 199 200 TAILQ_INIT(&toep->ddp_aiojobq); 201 TASK_INIT(&toep->ddp_requeue_task, 0, aio_ddp_requeue_task, toep); 202 toep->ddp_active_id = -1; 203 mtx_init(&toep->ddp_lock, "t4 ddp", NULL, MTX_DEF); 204 } 205 206 void 207 ddp_uninit_toep(struct toepcb *toep) 208 { 209 210 mtx_destroy(&toep->ddp_lock); 211 } 212 213 void 214 release_ddp_resources(struct toepcb *toep) 215 { 216 struct pageset *ps; 217 int i; 218 219 DDP_LOCK(toep); 220 toep->flags |= DDP_DEAD; 221 for (i = 0; i < nitems(toep->db); i++) { 222 free_ddp_buffer(toep->td, &toep->db[i]); 223 } 224 while ((ps = TAILQ_FIRST(&toep->ddp_cached_pagesets)) != NULL) { 225 TAILQ_REMOVE(&toep->ddp_cached_pagesets, ps, link); 226 free_pageset(toep->td, ps); 227 } 228 ddp_complete_all(toep, 0); 229 DDP_UNLOCK(toep); 230 } 231 232 #ifdef INVARIANTS 233 void 234 ddp_assert_empty(struct toepcb *toep) 235 { 236 int i; 237 238 MPASS(!(toep->ddp_flags & DDP_TASK_ACTIVE)); 239 for (i = 0; i < nitems(toep->db); i++) { 240 MPASS(toep->db[i].job == NULL); 241 MPASS(toep->db[i].ps == NULL); 242 } 243 MPASS(TAILQ_EMPTY(&toep->ddp_cached_pagesets)); 244 MPASS(TAILQ_EMPTY(&toep->ddp_aiojobq)); 245 } 246 #endif 247 248 static void 249 complete_ddp_buffer(struct toepcb *toep, struct ddp_buffer *db, 250 unsigned int db_idx) 251 { 252 unsigned int db_flag; 253 254 toep->ddp_active_count--; 255 if (toep->ddp_active_id == db_idx) { 256 if (toep->ddp_active_count == 0) { 257 KASSERT(toep->db[db_idx ^ 1].job == NULL, 258 ("%s: active_count mismatch", __func__)); 259 toep->ddp_active_id = -1; 260 } else 261 toep->ddp_active_id ^= 1; 262 #ifdef VERBOSE_TRACES 263 CTR2(KTR_CXGBE, "%s: ddp_active_id = %d", __func__, 264 toep->ddp_active_id); 265 #endif 266 } else { 267 KASSERT(toep->ddp_active_count != 0 && 268 toep->ddp_active_id != -1, 269 ("%s: active count mismatch", __func__)); 270 } 271 272 db->cancel_pending = 0; 273 db->job = NULL; 274 recycle_pageset(toep, db->ps); 275 db->ps = NULL; 276 277 db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE; 278 KASSERT(toep->ddp_flags & db_flag, 279 ("%s: DDP buffer not active. toep %p, ddp_flags 0x%x", 280 __func__, toep, toep->ddp_flags)); 281 toep->ddp_flags &= ~db_flag; 282 } 283 284 /* XXX: handle_ddp_data code duplication */ 285 void 286 insert_ddp_data(struct toepcb *toep, uint32_t n) 287 { 288 struct inpcb *inp = toep->inp; 289 struct tcpcb *tp = intotcpcb(inp); 290 struct ddp_buffer *db; 291 struct kaiocb *job; 292 size_t placed; 293 long copied; 294 unsigned int db_flag, db_idx; 295 296 INP_WLOCK_ASSERT(inp); 297 DDP_ASSERT_LOCKED(toep); 298 299 tp->rcv_nxt += n; 300 #ifndef USE_DDP_RX_FLOW_CONTROL 301 KASSERT(tp->rcv_wnd >= n, ("%s: negative window size", __func__)); 302 tp->rcv_wnd -= n; 303 #endif 304 #ifndef USE_DDP_RX_FLOW_CONTROL 305 toep->rx_credits += n; 306 #endif 307 CTR2(KTR_CXGBE, "%s: placed %u bytes before falling out of DDP", 308 __func__, n); 309 while (toep->ddp_active_count > 0) { 310 MPASS(toep->ddp_active_id != -1); 311 db_idx = toep->ddp_active_id; 312 db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE; 313 MPASS((toep->ddp_flags & db_flag) != 0); 314 db = &toep->db[db_idx]; 315 job = db->job; 316 copied = job->aio_received; 317 placed = n; 318 if (placed > job->uaiocb.aio_nbytes - copied) 319 placed = job->uaiocb.aio_nbytes - copied; 320 if (placed > 0) 321 job->msgrcv = 1; 322 if (!aio_clear_cancel_function(job)) { 323 /* 324 * Update the copied length for when 325 * t4_aio_cancel_active() completes this 326 * request. 327 */ 328 job->aio_received += placed; 329 } else if (copied + placed != 0) { 330 CTR4(KTR_CXGBE, 331 "%s: completing %p (copied %ld, placed %lu)", 332 __func__, job, copied, placed); 333 /* XXX: This always completes if there is some data. */ 334 aio_complete(job, copied + placed, 0); 335 } else if (aio_set_cancel_function(job, t4_aio_cancel_queued)) { 336 TAILQ_INSERT_HEAD(&toep->ddp_aiojobq, job, list); 337 toep->ddp_waiting_count++; 338 } else 339 aio_cancel(job); 340 n -= placed; 341 complete_ddp_buffer(toep, db, db_idx); 342 } 343 344 MPASS(n == 0); 345 } 346 347 /* SET_TCB_FIELD sent as a ULP command looks like this */ 348 #define LEN__SET_TCB_FIELD_ULP (sizeof(struct ulp_txpkt) + \ 349 sizeof(struct ulptx_idata) + sizeof(struct cpl_set_tcb_field_core)) 350 351 /* RX_DATA_ACK sent as a ULP command looks like this */ 352 #define LEN__RX_DATA_ACK_ULP (sizeof(struct ulp_txpkt) + \ 353 sizeof(struct ulptx_idata) + sizeof(struct cpl_rx_data_ack_core)) 354 355 static inline void * 356 mk_set_tcb_field_ulp(struct ulp_txpkt *ulpmc, struct toepcb *toep, 357 uint64_t word, uint64_t mask, uint64_t val) 358 { 359 struct ulptx_idata *ulpsc; 360 struct cpl_set_tcb_field_core *req; 361 362 ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0)); 363 ulpmc->len = htobe32(howmany(LEN__SET_TCB_FIELD_ULP, 16)); 364 365 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 366 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 367 ulpsc->len = htobe32(sizeof(*req)); 368 369 req = (struct cpl_set_tcb_field_core *)(ulpsc + 1); 370 OPCODE_TID(req) = htobe32(MK_OPCODE_TID(CPL_SET_TCB_FIELD, toep->tid)); 371 req->reply_ctrl = htobe16(V_NO_REPLY(1) | 372 V_QUEUENO(toep->ofld_rxq->iq.abs_id)); 373 req->word_cookie = htobe16(V_WORD(word) | V_COOKIE(0)); 374 req->mask = htobe64(mask); 375 req->val = htobe64(val); 376 377 ulpsc = (struct ulptx_idata *)(req + 1); 378 if (LEN__SET_TCB_FIELD_ULP % 16) { 379 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP)); 380 ulpsc->len = htobe32(0); 381 return (ulpsc + 1); 382 } 383 return (ulpsc); 384 } 385 386 static inline void * 387 mk_rx_data_ack_ulp(struct ulp_txpkt *ulpmc, struct toepcb *toep) 388 { 389 struct ulptx_idata *ulpsc; 390 struct cpl_rx_data_ack_core *req; 391 392 ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0)); 393 ulpmc->len = htobe32(howmany(LEN__RX_DATA_ACK_ULP, 16)); 394 395 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 396 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 397 ulpsc->len = htobe32(sizeof(*req)); 398 399 req = (struct cpl_rx_data_ack_core *)(ulpsc + 1); 400 OPCODE_TID(req) = htobe32(MK_OPCODE_TID(CPL_RX_DATA_ACK, toep->tid)); 401 req->credit_dack = htobe32(F_RX_MODULATE_RX); 402 403 ulpsc = (struct ulptx_idata *)(req + 1); 404 if (LEN__RX_DATA_ACK_ULP % 16) { 405 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP)); 406 ulpsc->len = htobe32(0); 407 return (ulpsc + 1); 408 } 409 return (ulpsc); 410 } 411 412 static struct wrqe * 413 mk_update_tcb_for_ddp(struct adapter *sc, struct toepcb *toep, int db_idx, 414 struct pageset *ps, int offset, uint64_t ddp_flags, uint64_t ddp_flags_mask) 415 { 416 struct wrqe *wr; 417 struct work_request_hdr *wrh; 418 struct ulp_txpkt *ulpmc; 419 int len; 420 421 KASSERT(db_idx == 0 || db_idx == 1, 422 ("%s: bad DDP buffer index %d", __func__, db_idx)); 423 424 /* 425 * We'll send a compound work request that has 3 SET_TCB_FIELDs and an 426 * RX_DATA_ACK (with RX_MODULATE to speed up delivery). 427 * 428 * The work request header is 16B and always ends at a 16B boundary. 429 * The ULPTX master commands that follow must all end at 16B boundaries 430 * too so we round up the size to 16. 431 */ 432 len = sizeof(*wrh) + 3 * roundup2(LEN__SET_TCB_FIELD_ULP, 16) + 433 roundup2(LEN__RX_DATA_ACK_ULP, 16); 434 435 wr = alloc_wrqe(len, toep->ctrlq); 436 if (wr == NULL) 437 return (NULL); 438 wrh = wrtod(wr); 439 INIT_ULPTX_WRH(wrh, len, 1, 0); /* atomic */ 440 ulpmc = (struct ulp_txpkt *)(wrh + 1); 441 442 /* Write the buffer's tag */ 443 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, 444 W_TCB_RX_DDP_BUF0_TAG + db_idx, 445 V_TCB_RX_DDP_BUF0_TAG(M_TCB_RX_DDP_BUF0_TAG), 446 V_TCB_RX_DDP_BUF0_TAG(ps->prsv.prsv_tag)); 447 448 /* Update the current offset in the DDP buffer and its total length */ 449 if (db_idx == 0) 450 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, 451 W_TCB_RX_DDP_BUF0_OFFSET, 452 V_TCB_RX_DDP_BUF0_OFFSET(M_TCB_RX_DDP_BUF0_OFFSET) | 453 V_TCB_RX_DDP_BUF0_LEN(M_TCB_RX_DDP_BUF0_LEN), 454 V_TCB_RX_DDP_BUF0_OFFSET(offset) | 455 V_TCB_RX_DDP_BUF0_LEN(ps->len)); 456 else 457 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, 458 W_TCB_RX_DDP_BUF1_OFFSET, 459 V_TCB_RX_DDP_BUF1_OFFSET(M_TCB_RX_DDP_BUF1_OFFSET) | 460 V_TCB_RX_DDP_BUF1_LEN((u64)M_TCB_RX_DDP_BUF1_LEN << 32), 461 V_TCB_RX_DDP_BUF1_OFFSET(offset) | 462 V_TCB_RX_DDP_BUF1_LEN((u64)ps->len << 32)); 463 464 /* Update DDP flags */ 465 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, W_TCB_RX_DDP_FLAGS, 466 ddp_flags_mask, ddp_flags); 467 468 /* Gratuitous RX_DATA_ACK with RX_MODULATE set to speed up delivery. */ 469 ulpmc = mk_rx_data_ack_ulp(ulpmc, toep); 470 471 return (wr); 472 } 473 474 static int 475 handle_ddp_data(struct toepcb *toep, __be32 ddp_report, __be32 rcv_nxt, int len) 476 { 477 uint32_t report = be32toh(ddp_report); 478 unsigned int db_idx; 479 struct inpcb *inp = toep->inp; 480 struct ddp_buffer *db; 481 struct tcpcb *tp; 482 struct socket *so; 483 struct sockbuf *sb; 484 struct kaiocb *job; 485 long copied; 486 487 db_idx = report & F_DDP_BUF_IDX ? 1 : 0; 488 489 if (__predict_false(!(report & F_DDP_INV))) 490 CXGBE_UNIMPLEMENTED("DDP buffer still valid"); 491 492 INP_WLOCK(inp); 493 so = inp_inpcbtosocket(inp); 494 sb = &so->so_rcv; 495 DDP_LOCK(toep); 496 497 KASSERT(toep->ddp_active_id == db_idx, 498 ("completed DDP buffer (%d) != active_id (%d) for tid %d", db_idx, 499 toep->ddp_active_id, toep->tid)); 500 db = &toep->db[db_idx]; 501 job = db->job; 502 503 if (__predict_false(inp->inp_flags & (INP_DROPPED | INP_TIMEWAIT))) { 504 /* 505 * This can happen due to an administrative tcpdrop(8). 506 * Just fail the request with ECONNRESET. 507 */ 508 CTR5(KTR_CXGBE, "%s: tid %u, seq 0x%x, len %d, inp_flags 0x%x", 509 __func__, toep->tid, be32toh(rcv_nxt), len, inp->inp_flags); 510 if (aio_clear_cancel_function(job)) 511 ddp_complete_one(job, ECONNRESET); 512 goto completed; 513 } 514 515 tp = intotcpcb(inp); 516 517 /* 518 * For RX_DDP_COMPLETE, len will be zero and rcv_nxt is the 519 * sequence number of the next byte to receive. The length of 520 * the data received for this message must be computed by 521 * comparing the new and old values of rcv_nxt. 522 * 523 * For RX_DATA_DDP, len might be non-zero, but it is only the 524 * length of the most recent DMA. It does not include the 525 * total length of the data received since the previous update 526 * for this DDP buffer. rcv_nxt is the sequence number of the 527 * first received byte from the most recent DMA. 528 */ 529 len += be32toh(rcv_nxt) - tp->rcv_nxt; 530 tp->rcv_nxt += len; 531 tp->t_rcvtime = ticks; 532 #ifndef USE_DDP_RX_FLOW_CONTROL 533 KASSERT(tp->rcv_wnd >= len, ("%s: negative window size", __func__)); 534 tp->rcv_wnd -= len; 535 #endif 536 #ifdef VERBOSE_TRACES 537 CTR4(KTR_CXGBE, "%s: DDP[%d] placed %d bytes (%#x)", __func__, db_idx, 538 len, report); 539 #endif 540 541 /* receive buffer autosize */ 542 MPASS(toep->vnet == so->so_vnet); 543 CURVNET_SET(toep->vnet); 544 SOCKBUF_LOCK(sb); 545 if (sb->sb_flags & SB_AUTOSIZE && 546 V_tcp_do_autorcvbuf && 547 sb->sb_hiwat < V_tcp_autorcvbuf_max && 548 len > (sbspace(sb) / 8 * 7)) { 549 unsigned int hiwat = sb->sb_hiwat; 550 unsigned int newsize = min(hiwat + V_tcp_autorcvbuf_inc, 551 V_tcp_autorcvbuf_max); 552 553 if (!sbreserve_locked(sb, newsize, so, NULL)) 554 sb->sb_flags &= ~SB_AUTOSIZE; 555 else 556 toep->rx_credits += newsize - hiwat; 557 } 558 SOCKBUF_UNLOCK(sb); 559 CURVNET_RESTORE(); 560 561 #ifndef USE_DDP_RX_FLOW_CONTROL 562 toep->rx_credits += len; 563 #endif 564 565 job->msgrcv = 1; 566 if (db->cancel_pending) { 567 /* 568 * Update the job's length but defer completion to the 569 * TCB_RPL callback. 570 */ 571 job->aio_received += len; 572 goto out; 573 } else if (!aio_clear_cancel_function(job)) { 574 /* 575 * Update the copied length for when 576 * t4_aio_cancel_active() completes this request. 577 */ 578 job->aio_received += len; 579 } else { 580 copied = job->aio_received; 581 #ifdef VERBOSE_TRACES 582 CTR4(KTR_CXGBE, "%s: completing %p (copied %ld, placed %d)", 583 __func__, job, copied, len); 584 #endif 585 aio_complete(job, copied + len, 0); 586 t4_rcvd(&toep->td->tod, tp); 587 } 588 589 completed: 590 complete_ddp_buffer(toep, db, db_idx); 591 if (toep->ddp_waiting_count > 0) 592 ddp_queue_toep(toep); 593 out: 594 DDP_UNLOCK(toep); 595 INP_WUNLOCK(inp); 596 597 return (0); 598 } 599 600 void 601 handle_ddp_indicate(struct toepcb *toep) 602 { 603 604 DDP_ASSERT_LOCKED(toep); 605 MPASS(toep->ddp_active_count == 0); 606 MPASS((toep->ddp_flags & (DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE)) == 0); 607 if (toep->ddp_waiting_count == 0) { 608 /* 609 * The pending requests that triggered the request for an 610 * an indicate were cancelled. Those cancels should have 611 * already disabled DDP. Just ignore this as the data is 612 * going into the socket buffer anyway. 613 */ 614 return; 615 } 616 CTR3(KTR_CXGBE, "%s: tid %d indicated (%d waiting)", __func__, 617 toep->tid, toep->ddp_waiting_count); 618 ddp_queue_toep(toep); 619 } 620 621 enum { 622 DDP_BUF0_INVALIDATED = 0x2, 623 DDP_BUF1_INVALIDATED 624 }; 625 626 void 627 handle_ddp_tcb_rpl(struct toepcb *toep, const struct cpl_set_tcb_rpl *cpl) 628 { 629 unsigned int db_idx; 630 struct inpcb *inp = toep->inp; 631 struct ddp_buffer *db; 632 struct kaiocb *job; 633 long copied; 634 635 if (cpl->status != CPL_ERR_NONE) 636 panic("XXX: tcp_rpl failed: %d", cpl->status); 637 638 switch (cpl->cookie) { 639 case V_WORD(W_TCB_RX_DDP_FLAGS) | V_COOKIE(DDP_BUF0_INVALIDATED): 640 case V_WORD(W_TCB_RX_DDP_FLAGS) | V_COOKIE(DDP_BUF1_INVALIDATED): 641 /* 642 * XXX: This duplicates a lot of code with handle_ddp_data(). 643 */ 644 db_idx = G_COOKIE(cpl->cookie) - DDP_BUF0_INVALIDATED; 645 INP_WLOCK(inp); 646 DDP_LOCK(toep); 647 db = &toep->db[db_idx]; 648 649 /* 650 * handle_ddp_data() should leave the job around until 651 * this callback runs once a cancel is pending. 652 */ 653 MPASS(db != NULL); 654 MPASS(db->job != NULL); 655 MPASS(db->cancel_pending); 656 657 /* 658 * XXX: It's not clear what happens if there is data 659 * placed when the buffer is invalidated. I suspect we 660 * need to read the TCB to see how much data was placed. 661 * 662 * For now this just pretends like nothing was placed. 663 * 664 * XXX: Note that if we did check the PCB we would need to 665 * also take care of updating the tp, etc. 666 */ 667 job = db->job; 668 copied = job->aio_received; 669 if (copied == 0) { 670 CTR2(KTR_CXGBE, "%s: cancelling %p", __func__, job); 671 aio_cancel(job); 672 } else { 673 CTR3(KTR_CXGBE, "%s: completing %p (copied %ld)", 674 __func__, job, copied); 675 aio_complete(job, copied, 0); 676 t4_rcvd(&toep->td->tod, intotcpcb(inp)); 677 } 678 679 complete_ddp_buffer(toep, db, db_idx); 680 if (toep->ddp_waiting_count > 0) 681 ddp_queue_toep(toep); 682 DDP_UNLOCK(toep); 683 INP_WUNLOCK(inp); 684 break; 685 default: 686 panic("XXX: unknown tcb_rpl offset %#x, cookie %#x", 687 G_WORD(cpl->cookie), G_COOKIE(cpl->cookie)); 688 } 689 } 690 691 void 692 handle_ddp_close(struct toepcb *toep, struct tcpcb *tp, __be32 rcv_nxt) 693 { 694 struct ddp_buffer *db; 695 struct kaiocb *job; 696 long copied; 697 unsigned int db_flag, db_idx; 698 int len, placed; 699 700 INP_WLOCK_ASSERT(toep->inp); 701 DDP_ASSERT_LOCKED(toep); 702 len = be32toh(rcv_nxt) - tp->rcv_nxt; 703 704 tp->rcv_nxt += len; 705 #ifndef USE_DDP_RX_FLOW_CONTROL 706 toep->rx_credits += len; 707 #endif 708 709 while (toep->ddp_active_count > 0) { 710 MPASS(toep->ddp_active_id != -1); 711 db_idx = toep->ddp_active_id; 712 db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE; 713 MPASS((toep->ddp_flags & db_flag) != 0); 714 db = &toep->db[db_idx]; 715 job = db->job; 716 copied = job->aio_received; 717 placed = len; 718 if (placed > job->uaiocb.aio_nbytes - copied) 719 placed = job->uaiocb.aio_nbytes - copied; 720 if (placed > 0) 721 job->msgrcv = 1; 722 if (!aio_clear_cancel_function(job)) { 723 /* 724 * Update the copied length for when 725 * t4_aio_cancel_active() completes this 726 * request. 727 */ 728 job->aio_received += placed; 729 } else { 730 CTR4(KTR_CXGBE, "%s: tid %d completed buf %d len %d", 731 __func__, toep->tid, db_idx, placed); 732 aio_complete(job, copied + placed, 0); 733 } 734 len -= placed; 735 complete_ddp_buffer(toep, db, db_idx); 736 } 737 738 MPASS(len == 0); 739 ddp_complete_all(toep, 0); 740 } 741 742 #define DDP_ERR (F_DDP_PPOD_MISMATCH | F_DDP_LLIMIT_ERR | F_DDP_ULIMIT_ERR |\ 743 F_DDP_PPOD_PARITY_ERR | F_DDP_PADDING_ERR | F_DDP_OFFSET_ERR |\ 744 F_DDP_INVALID_TAG | F_DDP_COLOR_ERR | F_DDP_TID_MISMATCH |\ 745 F_DDP_INVALID_PPOD | F_DDP_HDRCRC_ERR | F_DDP_DATACRC_ERR) 746 747 extern cpl_handler_t t4_cpl_handler[]; 748 749 static int 750 do_rx_data_ddp(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 751 { 752 struct adapter *sc = iq->adapter; 753 const struct cpl_rx_data_ddp *cpl = (const void *)(rss + 1); 754 unsigned int tid = GET_TID(cpl); 755 uint32_t vld; 756 struct toepcb *toep = lookup_tid(sc, tid); 757 758 KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__)); 759 KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__)); 760 KASSERT(!(toep->flags & TPF_SYNQE), 761 ("%s: toep %p claims to be a synq entry", __func__, toep)); 762 763 vld = be32toh(cpl->ddpvld); 764 if (__predict_false(vld & DDP_ERR)) { 765 panic("%s: DDP error 0x%x (tid %d, toep %p)", 766 __func__, vld, tid, toep); 767 } 768 769 if (toep->ulp_mode == ULP_MODE_ISCSI) { 770 t4_cpl_handler[CPL_RX_ISCSI_DDP](iq, rss, m); 771 return (0); 772 } 773 774 handle_ddp_data(toep, cpl->u.ddp_report, cpl->seq, be16toh(cpl->len)); 775 776 return (0); 777 } 778 779 static int 780 do_rx_ddp_complete(struct sge_iq *iq, const struct rss_header *rss, 781 struct mbuf *m) 782 { 783 struct adapter *sc = iq->adapter; 784 const struct cpl_rx_ddp_complete *cpl = (const void *)(rss + 1); 785 unsigned int tid = GET_TID(cpl); 786 struct toepcb *toep = lookup_tid(sc, tid); 787 788 KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__)); 789 KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__)); 790 KASSERT(!(toep->flags & TPF_SYNQE), 791 ("%s: toep %p claims to be a synq entry", __func__, toep)); 792 793 handle_ddp_data(toep, cpl->ddp_report, cpl->rcv_nxt, 0); 794 795 return (0); 796 } 797 798 static void 799 enable_ddp(struct adapter *sc, struct toepcb *toep) 800 { 801 802 KASSERT((toep->ddp_flags & (DDP_ON | DDP_OK | DDP_SC_REQ)) == DDP_OK, 803 ("%s: toep %p has bad ddp_flags 0x%x", 804 __func__, toep, toep->ddp_flags)); 805 806 CTR3(KTR_CXGBE, "%s: tid %u (time %u)", 807 __func__, toep->tid, time_uptime); 808 809 DDP_ASSERT_LOCKED(toep); 810 toep->ddp_flags |= DDP_SC_REQ; 811 t4_set_tcb_field(sc, toep->ctrlq, toep->tid, W_TCB_RX_DDP_FLAGS, 812 V_TF_DDP_OFF(1) | V_TF_DDP_INDICATE_OUT(1) | 813 V_TF_DDP_BUF0_INDICATE(1) | V_TF_DDP_BUF1_INDICATE(1) | 814 V_TF_DDP_BUF0_VALID(1) | V_TF_DDP_BUF1_VALID(1), 815 V_TF_DDP_BUF0_INDICATE(1) | V_TF_DDP_BUF1_INDICATE(1), 0, 0, 816 toep->ofld_rxq->iq.abs_id); 817 t4_set_tcb_field(sc, toep->ctrlq, toep->tid, W_TCB_T_FLAGS, 818 V_TF_RCV_COALESCE_ENABLE(1), 0, 0, 0, toep->ofld_rxq->iq.abs_id); 819 } 820 821 static int 822 calculate_hcf(int n1, int n2) 823 { 824 int a, b, t; 825 826 if (n1 <= n2) { 827 a = n1; 828 b = n2; 829 } else { 830 a = n2; 831 b = n1; 832 } 833 834 while (a != 0) { 835 t = a; 836 a = b % a; 837 b = t; 838 } 839 840 return (b); 841 } 842 843 static inline int 844 pages_to_nppods(int npages, int ddp_page_shift) 845 { 846 847 MPASS(ddp_page_shift >= PAGE_SHIFT); 848 849 return (howmany(npages >> (ddp_page_shift - PAGE_SHIFT), PPOD_PAGES)); 850 } 851 852 static int 853 alloc_page_pods(struct ppod_region *pr, u_int nppods, u_int pgsz_idx, 854 struct ppod_reservation *prsv) 855 { 856 vmem_addr_t addr; /* relative to start of region */ 857 858 if (vmem_alloc(pr->pr_arena, PPOD_SZ(nppods), M_NOWAIT | M_FIRSTFIT, 859 &addr) != 0) 860 return (ENOMEM); 861 862 CTR5(KTR_CXGBE, "%-17s arena %p, addr 0x%08x, nppods %d, pgsz %d", 863 __func__, pr->pr_arena, (uint32_t)addr & pr->pr_tag_mask, 864 nppods, 1 << pr->pr_page_shift[pgsz_idx]); 865 866 /* 867 * The hardware tagmask includes an extra invalid bit but the arena was 868 * seeded with valid values only. An allocation out of this arena will 869 * fit inside the tagmask but won't have the invalid bit set. 870 */ 871 MPASS((addr & pr->pr_tag_mask) == addr); 872 MPASS((addr & pr->pr_invalid_bit) == 0); 873 874 prsv->prsv_pr = pr; 875 prsv->prsv_tag = V_PPOD_PGSZ(pgsz_idx) | addr; 876 prsv->prsv_nppods = nppods; 877 878 return (0); 879 } 880 881 int 882 t4_alloc_page_pods_for_ps(struct ppod_region *pr, struct pageset *ps) 883 { 884 int i, hcf, seglen, idx, nppods; 885 struct ppod_reservation *prsv = &ps->prsv; 886 887 KASSERT(prsv->prsv_nppods == 0, 888 ("%s: page pods already allocated", __func__)); 889 890 /* 891 * The DDP page size is unrelated to the VM page size. We combine 892 * contiguous physical pages into larger segments to get the best DDP 893 * page size possible. This is the largest of the four sizes in 894 * A_ULP_RX_TDDP_PSZ that evenly divides the HCF of the segment sizes in 895 * the page list. 896 */ 897 hcf = 0; 898 for (i = 0; i < ps->npages; i++) { 899 seglen = PAGE_SIZE; 900 while (i < ps->npages - 1 && 901 ps->pages[i]->phys_addr + PAGE_SIZE == 902 ps->pages[i + 1]->phys_addr) { 903 seglen += PAGE_SIZE; 904 i++; 905 } 906 907 hcf = calculate_hcf(hcf, seglen); 908 if (hcf < (1 << pr->pr_page_shift[1])) { 909 idx = 0; 910 goto have_pgsz; /* give up, short circuit */ 911 } 912 } 913 914 #define PR_PAGE_MASK(x) ((1 << pr->pr_page_shift[(x)]) - 1) 915 MPASS((hcf & PR_PAGE_MASK(0)) == 0); /* PAGE_SIZE is >= 4K everywhere */ 916 for (idx = nitems(pr->pr_page_shift) - 1; idx > 0; idx--) { 917 if ((hcf & PR_PAGE_MASK(idx)) == 0) 918 break; 919 } 920 #undef PR_PAGE_MASK 921 922 have_pgsz: 923 MPASS(idx <= M_PPOD_PGSZ); 924 925 nppods = pages_to_nppods(ps->npages, pr->pr_page_shift[idx]); 926 if (alloc_page_pods(pr, nppods, idx, prsv) != 0) 927 return (0); 928 MPASS(prsv->prsv_nppods > 0); 929 930 return (1); 931 } 932 933 int 934 t4_alloc_page_pods_for_buf(struct ppod_region *pr, vm_offset_t buf, int len, 935 struct ppod_reservation *prsv) 936 { 937 int hcf, seglen, idx, npages, nppods; 938 uintptr_t start_pva, end_pva, pva, p1; 939 940 MPASS(buf > 0); 941 MPASS(len > 0); 942 943 /* 944 * The DDP page size is unrelated to the VM page size. We combine 945 * contiguous physical pages into larger segments to get the best DDP 946 * page size possible. This is the largest of the four sizes in 947 * A_ULP_RX_ISCSI_PSZ that evenly divides the HCF of the segment sizes 948 * in the page list. 949 */ 950 hcf = 0; 951 start_pva = trunc_page(buf); 952 end_pva = trunc_page(buf + len - 1); 953 pva = start_pva; 954 while (pva <= end_pva) { 955 seglen = PAGE_SIZE; 956 p1 = pmap_kextract(pva); 957 pva += PAGE_SIZE; 958 while (pva <= end_pva && p1 + seglen == pmap_kextract(pva)) { 959 seglen += PAGE_SIZE; 960 pva += PAGE_SIZE; 961 } 962 963 hcf = calculate_hcf(hcf, seglen); 964 if (hcf < (1 << pr->pr_page_shift[1])) { 965 idx = 0; 966 goto have_pgsz; /* give up, short circuit */ 967 } 968 } 969 970 #define PR_PAGE_MASK(x) ((1 << pr->pr_page_shift[(x)]) - 1) 971 MPASS((hcf & PR_PAGE_MASK(0)) == 0); /* PAGE_SIZE is >= 4K everywhere */ 972 for (idx = nitems(pr->pr_page_shift) - 1; idx > 0; idx--) { 973 if ((hcf & PR_PAGE_MASK(idx)) == 0) 974 break; 975 } 976 #undef PR_PAGE_MASK 977 978 have_pgsz: 979 MPASS(idx <= M_PPOD_PGSZ); 980 981 npages = 1; 982 npages += (end_pva - start_pva) >> pr->pr_page_shift[idx]; 983 nppods = howmany(npages, PPOD_PAGES); 984 if (alloc_page_pods(pr, nppods, idx, prsv) != 0) 985 return (ENOMEM); 986 MPASS(prsv->prsv_nppods > 0); 987 988 return (0); 989 } 990 991 void 992 t4_free_page_pods(struct ppod_reservation *prsv) 993 { 994 struct ppod_region *pr = prsv->prsv_pr; 995 vmem_addr_t addr; 996 997 MPASS(prsv != NULL); 998 MPASS(prsv->prsv_nppods != 0); 999 1000 addr = prsv->prsv_tag & pr->pr_tag_mask; 1001 MPASS((addr & pr->pr_invalid_bit) == 0); 1002 1003 CTR4(KTR_CXGBE, "%-17s arena %p, addr 0x%08x, nppods %d", __func__, 1004 pr->pr_arena, addr, prsv->prsv_nppods); 1005 1006 vmem_free(pr->pr_arena, addr, PPOD_SZ(prsv->prsv_nppods)); 1007 prsv->prsv_nppods = 0; 1008 } 1009 1010 #define NUM_ULP_TX_SC_IMM_PPODS (256 / PPOD_SIZE) 1011 1012 int 1013 t4_write_page_pods_for_ps(struct adapter *sc, struct sge_wrq *wrq, int tid, 1014 struct pageset *ps) 1015 { 1016 struct wrqe *wr; 1017 struct ulp_mem_io *ulpmc; 1018 struct ulptx_idata *ulpsc; 1019 struct pagepod *ppod; 1020 int i, j, k, n, chunk, len, ddp_pgsz, idx; 1021 u_int ppod_addr; 1022 uint32_t cmd; 1023 struct ppod_reservation *prsv = &ps->prsv; 1024 struct ppod_region *pr = prsv->prsv_pr; 1025 1026 KASSERT(!(ps->flags & PS_PPODS_WRITTEN), 1027 ("%s: page pods already written", __func__)); 1028 MPASS(prsv->prsv_nppods > 0); 1029 1030 cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE)); 1031 if (is_t4(sc)) 1032 cmd |= htobe32(F_ULP_MEMIO_ORDER); 1033 else 1034 cmd |= htobe32(F_T5_ULP_MEMIO_IMM); 1035 ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)]; 1036 ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask); 1037 for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) { 1038 1039 /* How many page pods are we writing in this cycle */ 1040 n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS); 1041 chunk = PPOD_SZ(n); 1042 len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16); 1043 1044 wr = alloc_wrqe(len, wrq); 1045 if (wr == NULL) 1046 return (ENOMEM); /* ok to just bail out */ 1047 ulpmc = wrtod(wr); 1048 1049 INIT_ULPTX_WR(ulpmc, len, 0, 0); 1050 ulpmc->cmd = cmd; 1051 ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32)); 1052 ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16)); 1053 ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5)); 1054 1055 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 1056 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 1057 ulpsc->len = htobe32(chunk); 1058 1059 ppod = (struct pagepod *)(ulpsc + 1); 1060 for (j = 0; j < n; i++, j++, ppod++) { 1061 ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID | 1062 V_PPOD_TID(tid) | prsv->prsv_tag); 1063 ppod->len_offset = htobe64(V_PPOD_LEN(ps->len) | 1064 V_PPOD_OFST(ps->offset)); 1065 ppod->rsvd = 0; 1066 idx = i * PPOD_PAGES * (ddp_pgsz / PAGE_SIZE); 1067 for (k = 0; k < nitems(ppod->addr); k++) { 1068 if (idx < ps->npages) { 1069 ppod->addr[k] = 1070 htobe64(ps->pages[idx]->phys_addr); 1071 idx += ddp_pgsz / PAGE_SIZE; 1072 } else 1073 ppod->addr[k] = 0; 1074 #if 0 1075 CTR5(KTR_CXGBE, 1076 "%s: tid %d ppod[%d]->addr[%d] = %p", 1077 __func__, toep->tid, i, k, 1078 htobe64(ppod->addr[k])); 1079 #endif 1080 } 1081 1082 } 1083 1084 t4_wrq_tx(sc, wr); 1085 } 1086 ps->flags |= PS_PPODS_WRITTEN; 1087 1088 return (0); 1089 } 1090 1091 int 1092 t4_write_page_pods_for_buf(struct adapter *sc, struct sge_wrq *wrq, int tid, 1093 struct ppod_reservation *prsv, vm_offset_t buf, int buflen) 1094 { 1095 struct wrqe *wr; 1096 struct ulp_mem_io *ulpmc; 1097 struct ulptx_idata *ulpsc; 1098 struct pagepod *ppod; 1099 int i, j, k, n, chunk, len, ddp_pgsz; 1100 u_int ppod_addr, offset; 1101 uint32_t cmd; 1102 struct ppod_region *pr = prsv->prsv_pr; 1103 uintptr_t end_pva, pva, pa; 1104 1105 cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE)); 1106 if (is_t4(sc)) 1107 cmd |= htobe32(F_ULP_MEMIO_ORDER); 1108 else 1109 cmd |= htobe32(F_T5_ULP_MEMIO_IMM); 1110 ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)]; 1111 offset = buf & PAGE_MASK; 1112 ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask); 1113 pva = trunc_page(buf); 1114 end_pva = trunc_page(buf + buflen - 1); 1115 for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) { 1116 1117 /* How many page pods are we writing in this cycle */ 1118 n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS); 1119 MPASS(n > 0); 1120 chunk = PPOD_SZ(n); 1121 len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16); 1122 1123 wr = alloc_wrqe(len, wrq); 1124 if (wr == NULL) 1125 return (ENOMEM); /* ok to just bail out */ 1126 ulpmc = wrtod(wr); 1127 1128 INIT_ULPTX_WR(ulpmc, len, 0, 0); 1129 ulpmc->cmd = cmd; 1130 ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32)); 1131 ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16)); 1132 ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5)); 1133 1134 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 1135 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 1136 ulpsc->len = htobe32(chunk); 1137 1138 ppod = (struct pagepod *)(ulpsc + 1); 1139 for (j = 0; j < n; i++, j++, ppod++) { 1140 ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID | 1141 V_PPOD_TID(tid) | 1142 (prsv->prsv_tag & ~V_PPOD_PGSZ(M_PPOD_PGSZ))); 1143 ppod->len_offset = htobe64(V_PPOD_LEN(buflen) | 1144 V_PPOD_OFST(offset)); 1145 ppod->rsvd = 0; 1146 1147 for (k = 0; k < nitems(ppod->addr); k++) { 1148 if (pva > end_pva) 1149 ppod->addr[k] = 0; 1150 else { 1151 pa = pmap_kextract(pva); 1152 ppod->addr[k] = htobe64(pa); 1153 pva += ddp_pgsz; 1154 } 1155 #if 0 1156 CTR5(KTR_CXGBE, 1157 "%s: tid %d ppod[%d]->addr[%d] = %p", 1158 __func__, tid, i, k, 1159 htobe64(ppod->addr[k])); 1160 #endif 1161 } 1162 1163 /* 1164 * Walk back 1 segment so that the first address in the 1165 * next pod is the same as the last one in the current 1166 * pod. 1167 */ 1168 pva -= ddp_pgsz; 1169 } 1170 1171 t4_wrq_tx(sc, wr); 1172 } 1173 1174 MPASS(pva <= end_pva); 1175 1176 return (0); 1177 } 1178 1179 static void 1180 wire_pageset(struct pageset *ps) 1181 { 1182 vm_page_t p; 1183 int i; 1184 1185 KASSERT(!(ps->flags & PS_WIRED), ("pageset already wired")); 1186 1187 for (i = 0; i < ps->npages; i++) { 1188 p = ps->pages[i]; 1189 vm_page_lock(p); 1190 vm_page_wire(p); 1191 vm_page_unhold(p); 1192 vm_page_unlock(p); 1193 } 1194 ps->flags |= PS_WIRED; 1195 } 1196 1197 /* 1198 * Prepare a pageset for DDP. This wires the pageset and sets up page 1199 * pods. 1200 */ 1201 static int 1202 prep_pageset(struct adapter *sc, struct toepcb *toep, struct pageset *ps) 1203 { 1204 struct tom_data *td = sc->tom_softc; 1205 1206 if (!(ps->flags & PS_WIRED)) 1207 wire_pageset(ps); 1208 if (ps->prsv.prsv_nppods == 0 && 1209 !t4_alloc_page_pods_for_ps(&td->pr, ps)) { 1210 return (0); 1211 } 1212 if (!(ps->flags & PS_PPODS_WRITTEN) && 1213 t4_write_page_pods_for_ps(sc, toep->ctrlq, toep->tid, ps) != 0) { 1214 return (0); 1215 } 1216 1217 return (1); 1218 } 1219 1220 int 1221 t4_init_ppod_region(struct ppod_region *pr, struct t4_range *r, u_int psz, 1222 const char *name) 1223 { 1224 int i; 1225 1226 MPASS(pr != NULL); 1227 MPASS(r->size > 0); 1228 1229 pr->pr_start = r->start; 1230 pr->pr_len = r->size; 1231 pr->pr_page_shift[0] = 12 + G_HPZ0(psz); 1232 pr->pr_page_shift[1] = 12 + G_HPZ1(psz); 1233 pr->pr_page_shift[2] = 12 + G_HPZ2(psz); 1234 pr->pr_page_shift[3] = 12 + G_HPZ3(psz); 1235 1236 /* The SGL -> page pod algorithm requires the sizes to be in order. */ 1237 for (i = 1; i < nitems(pr->pr_page_shift); i++) { 1238 if (pr->pr_page_shift[i] <= pr->pr_page_shift[i - 1]) 1239 return (ENXIO); 1240 } 1241 1242 pr->pr_tag_mask = ((1 << fls(r->size)) - 1) & V_PPOD_TAG(M_PPOD_TAG); 1243 pr->pr_alias_mask = V_PPOD_TAG(M_PPOD_TAG) & ~pr->pr_tag_mask; 1244 if (pr->pr_tag_mask == 0 || pr->pr_alias_mask == 0) 1245 return (ENXIO); 1246 pr->pr_alias_shift = fls(pr->pr_tag_mask); 1247 pr->pr_invalid_bit = 1 << (pr->pr_alias_shift - 1); 1248 1249 pr->pr_arena = vmem_create(name, 0, pr->pr_len, PPOD_SIZE, 0, 1250 M_FIRSTFIT | M_NOWAIT); 1251 if (pr->pr_arena == NULL) 1252 return (ENOMEM); 1253 1254 return (0); 1255 } 1256 1257 void 1258 t4_free_ppod_region(struct ppod_region *pr) 1259 { 1260 1261 MPASS(pr != NULL); 1262 1263 if (pr->pr_arena) 1264 vmem_destroy(pr->pr_arena); 1265 bzero(pr, sizeof(*pr)); 1266 } 1267 1268 static int 1269 pscmp(struct pageset *ps, struct vmspace *vm, vm_offset_t start, int npages, 1270 int pgoff, int len) 1271 { 1272 1273 if (ps->start != start || ps->npages != npages || 1274 ps->offset != pgoff || ps->len != len) 1275 return (1); 1276 1277 return (ps->vm != vm || ps->vm_timestamp != vm->vm_map.timestamp); 1278 } 1279 1280 static int 1281 hold_aio(struct toepcb *toep, struct kaiocb *job, struct pageset **pps) 1282 { 1283 struct vmspace *vm; 1284 vm_map_t map; 1285 vm_offset_t start, end, pgoff; 1286 struct pageset *ps; 1287 int n; 1288 1289 DDP_ASSERT_LOCKED(toep); 1290 1291 /* 1292 * The AIO subsystem will cancel and drain all requests before 1293 * permitting a process to exit or exec, so p_vmspace should 1294 * be stable here. 1295 */ 1296 vm = job->userproc->p_vmspace; 1297 map = &vm->vm_map; 1298 start = (uintptr_t)job->uaiocb.aio_buf; 1299 pgoff = start & PAGE_MASK; 1300 end = round_page(start + job->uaiocb.aio_nbytes); 1301 start = trunc_page(start); 1302 1303 if (end - start > MAX_DDP_BUFFER_SIZE) { 1304 /* 1305 * Truncate the request to a short read. 1306 * Alternatively, we could DDP in chunks to the larger 1307 * buffer, but that would be quite a bit more work. 1308 * 1309 * When truncating, round the request down to avoid 1310 * crossing a cache line on the final transaction. 1311 */ 1312 end = rounddown2(start + MAX_DDP_BUFFER_SIZE, CACHE_LINE_SIZE); 1313 #ifdef VERBOSE_TRACES 1314 CTR4(KTR_CXGBE, "%s: tid %d, truncating size from %lu to %lu", 1315 __func__, toep->tid, (unsigned long)job->uaiocb.aio_nbytes, 1316 (unsigned long)(end - (start + pgoff))); 1317 job->uaiocb.aio_nbytes = end - (start + pgoff); 1318 #endif 1319 end = round_page(end); 1320 } 1321 1322 n = atop(end - start); 1323 1324 /* 1325 * Try to reuse a cached pageset. 1326 */ 1327 TAILQ_FOREACH(ps, &toep->ddp_cached_pagesets, link) { 1328 if (pscmp(ps, vm, start, n, pgoff, 1329 job->uaiocb.aio_nbytes) == 0) { 1330 TAILQ_REMOVE(&toep->ddp_cached_pagesets, ps, link); 1331 toep->ddp_cached_count--; 1332 *pps = ps; 1333 return (0); 1334 } 1335 } 1336 1337 /* 1338 * If there are too many cached pagesets to create a new one, 1339 * free a pageset before creating a new one. 1340 */ 1341 KASSERT(toep->ddp_active_count + toep->ddp_cached_count <= 1342 nitems(toep->db), ("%s: too many wired pagesets", __func__)); 1343 if (toep->ddp_active_count + toep->ddp_cached_count == 1344 nitems(toep->db)) { 1345 KASSERT(toep->ddp_cached_count > 0, 1346 ("no cached pageset to free")); 1347 ps = TAILQ_LAST(&toep->ddp_cached_pagesets, pagesetq); 1348 TAILQ_REMOVE(&toep->ddp_cached_pagesets, ps, link); 1349 toep->ddp_cached_count--; 1350 free_pageset(toep->td, ps); 1351 } 1352 DDP_UNLOCK(toep); 1353 1354 /* Create a new pageset. */ 1355 ps = malloc(sizeof(*ps) + n * sizeof(vm_page_t), M_CXGBE, M_WAITOK | 1356 M_ZERO); 1357 ps->pages = (vm_page_t *)(ps + 1); 1358 ps->vm_timestamp = map->timestamp; 1359 ps->npages = vm_fault_quick_hold_pages(map, start, end - start, 1360 VM_PROT_WRITE, ps->pages, n); 1361 1362 DDP_LOCK(toep); 1363 if (ps->npages < 0) { 1364 free(ps, M_CXGBE); 1365 return (EFAULT); 1366 } 1367 1368 KASSERT(ps->npages == n, ("hold_aio: page count mismatch: %d vs %d", 1369 ps->npages, n)); 1370 1371 ps->offset = pgoff; 1372 ps->len = job->uaiocb.aio_nbytes; 1373 atomic_add_int(&vm->vm_refcnt, 1); 1374 ps->vm = vm; 1375 ps->start = start; 1376 1377 CTR5(KTR_CXGBE, "%s: tid %d, new pageset %p for job %p, npages %d", 1378 __func__, toep->tid, ps, job, ps->npages); 1379 *pps = ps; 1380 return (0); 1381 } 1382 1383 static void 1384 ddp_complete_all(struct toepcb *toep, int error) 1385 { 1386 struct kaiocb *job; 1387 1388 DDP_ASSERT_LOCKED(toep); 1389 while (!TAILQ_EMPTY(&toep->ddp_aiojobq)) { 1390 job = TAILQ_FIRST(&toep->ddp_aiojobq); 1391 TAILQ_REMOVE(&toep->ddp_aiojobq, job, list); 1392 toep->ddp_waiting_count--; 1393 if (aio_clear_cancel_function(job)) 1394 ddp_complete_one(job, error); 1395 } 1396 } 1397 1398 static void 1399 aio_ddp_cancel_one(struct kaiocb *job) 1400 { 1401 long copied; 1402 1403 /* 1404 * If this job had copied data out of the socket buffer before 1405 * it was cancelled, report it as a short read rather than an 1406 * error. 1407 */ 1408 copied = job->aio_received; 1409 if (copied != 0) 1410 aio_complete(job, copied, 0); 1411 else 1412 aio_cancel(job); 1413 } 1414 1415 /* 1416 * Called when the main loop wants to requeue a job to retry it later. 1417 * Deals with the race of the job being cancelled while it was being 1418 * examined. 1419 */ 1420 static void 1421 aio_ddp_requeue_one(struct toepcb *toep, struct kaiocb *job) 1422 { 1423 1424 DDP_ASSERT_LOCKED(toep); 1425 if (!(toep->ddp_flags & DDP_DEAD) && 1426 aio_set_cancel_function(job, t4_aio_cancel_queued)) { 1427 TAILQ_INSERT_HEAD(&toep->ddp_aiojobq, job, list); 1428 toep->ddp_waiting_count++; 1429 } else 1430 aio_ddp_cancel_one(job); 1431 } 1432 1433 static void 1434 aio_ddp_requeue(struct toepcb *toep) 1435 { 1436 struct adapter *sc = td_adapter(toep->td); 1437 struct socket *so; 1438 struct sockbuf *sb; 1439 struct inpcb *inp; 1440 struct kaiocb *job; 1441 struct ddp_buffer *db; 1442 size_t copied, offset, resid; 1443 struct pageset *ps; 1444 struct mbuf *m; 1445 uint64_t ddp_flags, ddp_flags_mask; 1446 struct wrqe *wr; 1447 int buf_flag, db_idx, error; 1448 1449 DDP_ASSERT_LOCKED(toep); 1450 1451 restart: 1452 if (toep->ddp_flags & DDP_DEAD) { 1453 MPASS(toep->ddp_waiting_count == 0); 1454 MPASS(toep->ddp_active_count == 0); 1455 return; 1456 } 1457 1458 if (toep->ddp_waiting_count == 0 || 1459 toep->ddp_active_count == nitems(toep->db)) { 1460 return; 1461 } 1462 1463 job = TAILQ_FIRST(&toep->ddp_aiojobq); 1464 so = job->fd_file->f_data; 1465 sb = &so->so_rcv; 1466 SOCKBUF_LOCK(sb); 1467 1468 /* We will never get anything unless we are or were connected. */ 1469 if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) { 1470 SOCKBUF_UNLOCK(sb); 1471 ddp_complete_all(toep, ENOTCONN); 1472 return; 1473 } 1474 1475 KASSERT(toep->ddp_active_count == 0 || sbavail(sb) == 0, 1476 ("%s: pending sockbuf data and DDP is active", __func__)); 1477 1478 /* Abort if socket has reported problems. */ 1479 /* XXX: Wait for any queued DDP's to finish and/or flush them? */ 1480 if (so->so_error && sbavail(sb) == 0) { 1481 toep->ddp_waiting_count--; 1482 TAILQ_REMOVE(&toep->ddp_aiojobq, job, list); 1483 if (!aio_clear_cancel_function(job)) { 1484 SOCKBUF_UNLOCK(sb); 1485 goto restart; 1486 } 1487 1488 /* 1489 * If this job has previously copied some data, report 1490 * a short read and leave the error to be reported by 1491 * a future request. 1492 */ 1493 copied = job->aio_received; 1494 if (copied != 0) { 1495 SOCKBUF_UNLOCK(sb); 1496 aio_complete(job, copied, 0); 1497 goto restart; 1498 } 1499 error = so->so_error; 1500 so->so_error = 0; 1501 SOCKBUF_UNLOCK(sb); 1502 aio_complete(job, -1, error); 1503 goto restart; 1504 } 1505 1506 /* 1507 * Door is closed. If there is pending data in the socket buffer, 1508 * deliver it. If there are pending DDP requests, wait for those 1509 * to complete. Once they have completed, return EOF reads. 1510 */ 1511 if (sb->sb_state & SBS_CANTRCVMORE && sbavail(sb) == 0) { 1512 SOCKBUF_UNLOCK(sb); 1513 if (toep->ddp_active_count != 0) 1514 return; 1515 ddp_complete_all(toep, 0); 1516 return; 1517 } 1518 1519 /* 1520 * If DDP is not enabled and there is no pending socket buffer 1521 * data, try to enable DDP. 1522 */ 1523 if (sbavail(sb) == 0 && (toep->ddp_flags & DDP_ON) == 0) { 1524 SOCKBUF_UNLOCK(sb); 1525 1526 /* 1527 * Wait for the card to ACK that DDP is enabled before 1528 * queueing any buffers. Currently this waits for an 1529 * indicate to arrive. This could use a TCB_SET_FIELD_RPL 1530 * message to know that DDP was enabled instead of waiting 1531 * for the indicate which would avoid copying the indicate 1532 * if no data is pending. 1533 * 1534 * XXX: Might want to limit the indicate size to the size 1535 * of the first queued request. 1536 */ 1537 if ((toep->ddp_flags & DDP_SC_REQ) == 0) 1538 enable_ddp(sc, toep); 1539 return; 1540 } 1541 SOCKBUF_UNLOCK(sb); 1542 1543 /* 1544 * If another thread is queueing a buffer for DDP, let it 1545 * drain any work and return. 1546 */ 1547 if (toep->ddp_queueing != NULL) 1548 return; 1549 1550 /* Take the next job to prep it for DDP. */ 1551 toep->ddp_waiting_count--; 1552 TAILQ_REMOVE(&toep->ddp_aiojobq, job, list); 1553 if (!aio_clear_cancel_function(job)) 1554 goto restart; 1555 toep->ddp_queueing = job; 1556 1557 /* NB: This drops DDP_LOCK while it holds the backing VM pages. */ 1558 error = hold_aio(toep, job, &ps); 1559 if (error != 0) { 1560 ddp_complete_one(job, error); 1561 toep->ddp_queueing = NULL; 1562 goto restart; 1563 } 1564 1565 SOCKBUF_LOCK(sb); 1566 if (so->so_error && sbavail(sb) == 0) { 1567 copied = job->aio_received; 1568 if (copied != 0) { 1569 SOCKBUF_UNLOCK(sb); 1570 recycle_pageset(toep, ps); 1571 aio_complete(job, copied, 0); 1572 toep->ddp_queueing = NULL; 1573 goto restart; 1574 } 1575 1576 error = so->so_error; 1577 so->so_error = 0; 1578 SOCKBUF_UNLOCK(sb); 1579 recycle_pageset(toep, ps); 1580 aio_complete(job, -1, error); 1581 toep->ddp_queueing = NULL; 1582 goto restart; 1583 } 1584 1585 if (sb->sb_state & SBS_CANTRCVMORE && sbavail(sb) == 0) { 1586 SOCKBUF_UNLOCK(sb); 1587 recycle_pageset(toep, ps); 1588 if (toep->ddp_active_count != 0) { 1589 /* 1590 * The door is closed, but there are still pending 1591 * DDP buffers. Requeue. These jobs will all be 1592 * completed once those buffers drain. 1593 */ 1594 aio_ddp_requeue_one(toep, job); 1595 toep->ddp_queueing = NULL; 1596 return; 1597 } 1598 ddp_complete_one(job, 0); 1599 ddp_complete_all(toep, 0); 1600 toep->ddp_queueing = NULL; 1601 return; 1602 } 1603 1604 sbcopy: 1605 /* 1606 * If the toep is dead, there shouldn't be any data in the socket 1607 * buffer, so the above case should have handled this. 1608 */ 1609 MPASS(!(toep->ddp_flags & DDP_DEAD)); 1610 1611 /* 1612 * If there is pending data in the socket buffer (either 1613 * from before the requests were queued or a DDP indicate), 1614 * copy those mbufs out directly. 1615 */ 1616 copied = 0; 1617 offset = ps->offset + job->aio_received; 1618 MPASS(job->aio_received <= job->uaiocb.aio_nbytes); 1619 resid = job->uaiocb.aio_nbytes - job->aio_received; 1620 m = sb->sb_mb; 1621 KASSERT(m == NULL || toep->ddp_active_count == 0, 1622 ("%s: sockbuf data with active DDP", __func__)); 1623 while (m != NULL && resid > 0) { 1624 struct iovec iov[1]; 1625 struct uio uio; 1626 int error; 1627 1628 iov[0].iov_base = mtod(m, void *); 1629 iov[0].iov_len = m->m_len; 1630 if (iov[0].iov_len > resid) 1631 iov[0].iov_len = resid; 1632 uio.uio_iov = iov; 1633 uio.uio_iovcnt = 1; 1634 uio.uio_offset = 0; 1635 uio.uio_resid = iov[0].iov_len; 1636 uio.uio_segflg = UIO_SYSSPACE; 1637 uio.uio_rw = UIO_WRITE; 1638 error = uiomove_fromphys(ps->pages, offset + copied, 1639 uio.uio_resid, &uio); 1640 MPASS(error == 0 && uio.uio_resid == 0); 1641 copied += uio.uio_offset; 1642 resid -= uio.uio_offset; 1643 m = m->m_next; 1644 } 1645 if (copied != 0) { 1646 sbdrop_locked(sb, copied); 1647 job->aio_received += copied; 1648 job->msgrcv = 1; 1649 copied = job->aio_received; 1650 inp = sotoinpcb(so); 1651 if (!INP_TRY_WLOCK(inp)) { 1652 /* 1653 * The reference on the socket file descriptor in 1654 * the AIO job should keep 'sb' and 'inp' stable. 1655 * Our caller has a reference on the 'toep' that 1656 * keeps it stable. 1657 */ 1658 SOCKBUF_UNLOCK(sb); 1659 DDP_UNLOCK(toep); 1660 INP_WLOCK(inp); 1661 DDP_LOCK(toep); 1662 SOCKBUF_LOCK(sb); 1663 1664 /* 1665 * If the socket has been closed, we should detect 1666 * that and complete this request if needed on 1667 * the next trip around the loop. 1668 */ 1669 } 1670 t4_rcvd_locked(&toep->td->tod, intotcpcb(inp)); 1671 INP_WUNLOCK(inp); 1672 if (resid == 0 || toep->ddp_flags & DDP_DEAD) { 1673 /* 1674 * We filled the entire buffer with socket 1675 * data, DDP is not being used, or the socket 1676 * is being shut down, so complete the 1677 * request. 1678 */ 1679 SOCKBUF_UNLOCK(sb); 1680 recycle_pageset(toep, ps); 1681 aio_complete(job, copied, 0); 1682 toep->ddp_queueing = NULL; 1683 goto restart; 1684 } 1685 1686 /* 1687 * If DDP is not enabled, requeue this request and restart. 1688 * This will either enable DDP or wait for more data to 1689 * arrive on the socket buffer. 1690 */ 1691 if ((toep->ddp_flags & (DDP_ON | DDP_SC_REQ)) != DDP_ON) { 1692 SOCKBUF_UNLOCK(sb); 1693 recycle_pageset(toep, ps); 1694 aio_ddp_requeue_one(toep, job); 1695 toep->ddp_queueing = NULL; 1696 goto restart; 1697 } 1698 1699 /* 1700 * An indicate might have arrived and been added to 1701 * the socket buffer while it was unlocked after the 1702 * copy to lock the INP. If so, restart the copy. 1703 */ 1704 if (sbavail(sb) != 0) 1705 goto sbcopy; 1706 } 1707 SOCKBUF_UNLOCK(sb); 1708 1709 if (prep_pageset(sc, toep, ps) == 0) { 1710 recycle_pageset(toep, ps); 1711 aio_ddp_requeue_one(toep, job); 1712 toep->ddp_queueing = NULL; 1713 1714 /* 1715 * XXX: Need to retry this later. Mostly need a trigger 1716 * when page pods are freed up. 1717 */ 1718 printf("%s: prep_pageset failed\n", __func__); 1719 return; 1720 } 1721 1722 /* Determine which DDP buffer to use. */ 1723 if (toep->db[0].job == NULL) { 1724 db_idx = 0; 1725 } else { 1726 MPASS(toep->db[1].job == NULL); 1727 db_idx = 1; 1728 } 1729 1730 ddp_flags = 0; 1731 ddp_flags_mask = 0; 1732 if (db_idx == 0) { 1733 ddp_flags |= V_TF_DDP_BUF0_VALID(1); 1734 if (so->so_state & SS_NBIO) 1735 ddp_flags |= V_TF_DDP_BUF0_FLUSH(1); 1736 ddp_flags_mask |= V_TF_DDP_PSH_NO_INVALIDATE0(1) | 1737 V_TF_DDP_PUSH_DISABLE_0(1) | V_TF_DDP_PSHF_ENABLE_0(1) | 1738 V_TF_DDP_BUF0_FLUSH(1) | V_TF_DDP_BUF0_VALID(1); 1739 buf_flag = DDP_BUF0_ACTIVE; 1740 } else { 1741 ddp_flags |= V_TF_DDP_BUF1_VALID(1); 1742 if (so->so_state & SS_NBIO) 1743 ddp_flags |= V_TF_DDP_BUF1_FLUSH(1); 1744 ddp_flags_mask |= V_TF_DDP_PSH_NO_INVALIDATE1(1) | 1745 V_TF_DDP_PUSH_DISABLE_1(1) | V_TF_DDP_PSHF_ENABLE_1(1) | 1746 V_TF_DDP_BUF1_FLUSH(1) | V_TF_DDP_BUF1_VALID(1); 1747 buf_flag = DDP_BUF1_ACTIVE; 1748 } 1749 MPASS((toep->ddp_flags & buf_flag) == 0); 1750 if ((toep->ddp_flags & (DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE)) == 0) { 1751 MPASS(db_idx == 0); 1752 MPASS(toep->ddp_active_id == -1); 1753 MPASS(toep->ddp_active_count == 0); 1754 ddp_flags_mask |= V_TF_DDP_ACTIVE_BUF(1); 1755 } 1756 1757 /* 1758 * The TID for this connection should still be valid. If DDP_DEAD 1759 * is set, SBS_CANTRCVMORE should be set, so we shouldn't be 1760 * this far anyway. Even if the socket is closing on the other 1761 * end, the AIO job holds a reference on this end of the socket 1762 * which will keep it open and keep the TCP PCB attached until 1763 * after the job is completed. 1764 */ 1765 wr = mk_update_tcb_for_ddp(sc, toep, db_idx, ps, job->aio_received, 1766 ddp_flags, ddp_flags_mask); 1767 if (wr == NULL) { 1768 recycle_pageset(toep, ps); 1769 aio_ddp_requeue_one(toep, job); 1770 toep->ddp_queueing = NULL; 1771 1772 /* 1773 * XXX: Need a way to kick a retry here. 1774 * 1775 * XXX: We know the fixed size needed and could 1776 * preallocate this using a blocking request at the 1777 * start of the task to avoid having to handle this 1778 * edge case. 1779 */ 1780 printf("%s: mk_update_tcb_for_ddp failed\n", __func__); 1781 return; 1782 } 1783 1784 if (!aio_set_cancel_function(job, t4_aio_cancel_active)) { 1785 free_wrqe(wr); 1786 recycle_pageset(toep, ps); 1787 aio_ddp_cancel_one(job); 1788 toep->ddp_queueing = NULL; 1789 goto restart; 1790 } 1791 1792 #ifdef VERBOSE_TRACES 1793 CTR5(KTR_CXGBE, "%s: scheduling %p for DDP[%d] (flags %#lx/%#lx)", 1794 __func__, job, db_idx, ddp_flags, ddp_flags_mask); 1795 #endif 1796 /* Give the chip the go-ahead. */ 1797 t4_wrq_tx(sc, wr); 1798 db = &toep->db[db_idx]; 1799 db->cancel_pending = 0; 1800 db->job = job; 1801 db->ps = ps; 1802 toep->ddp_queueing = NULL; 1803 toep->ddp_flags |= buf_flag; 1804 toep->ddp_active_count++; 1805 if (toep->ddp_active_count == 1) { 1806 MPASS(toep->ddp_active_id == -1); 1807 toep->ddp_active_id = db_idx; 1808 CTR2(KTR_CXGBE, "%s: ddp_active_id = %d", __func__, 1809 toep->ddp_active_id); 1810 } 1811 goto restart; 1812 } 1813 1814 void 1815 ddp_queue_toep(struct toepcb *toep) 1816 { 1817 1818 DDP_ASSERT_LOCKED(toep); 1819 if (toep->ddp_flags & DDP_TASK_ACTIVE) 1820 return; 1821 toep->ddp_flags |= DDP_TASK_ACTIVE; 1822 hold_toepcb(toep); 1823 soaio_enqueue(&toep->ddp_requeue_task); 1824 } 1825 1826 static void 1827 aio_ddp_requeue_task(void *context, int pending) 1828 { 1829 struct toepcb *toep = context; 1830 1831 DDP_LOCK(toep); 1832 aio_ddp_requeue(toep); 1833 toep->ddp_flags &= ~DDP_TASK_ACTIVE; 1834 DDP_UNLOCK(toep); 1835 1836 free_toepcb(toep); 1837 } 1838 1839 static void 1840 t4_aio_cancel_active(struct kaiocb *job) 1841 { 1842 struct socket *so = job->fd_file->f_data; 1843 struct tcpcb *tp = so_sototcpcb(so); 1844 struct toepcb *toep = tp->t_toe; 1845 struct adapter *sc = td_adapter(toep->td); 1846 uint64_t valid_flag; 1847 int i; 1848 1849 DDP_LOCK(toep); 1850 if (aio_cancel_cleared(job)) { 1851 DDP_UNLOCK(toep); 1852 aio_ddp_cancel_one(job); 1853 return; 1854 } 1855 1856 for (i = 0; i < nitems(toep->db); i++) { 1857 if (toep->db[i].job == job) { 1858 /* Should only ever get one cancel request for a job. */ 1859 MPASS(toep->db[i].cancel_pending == 0); 1860 1861 /* 1862 * Invalidate this buffer. It will be 1863 * cancelled or partially completed once the 1864 * card ACKs the invalidate. 1865 */ 1866 valid_flag = i == 0 ? V_TF_DDP_BUF0_VALID(1) : 1867 V_TF_DDP_BUF1_VALID(1); 1868 t4_set_tcb_field(sc, toep->ctrlq, toep->tid, 1869 W_TCB_RX_DDP_FLAGS, valid_flag, 0, 1, 1870 i + DDP_BUF0_INVALIDATED, 1871 toep->ofld_rxq->iq.abs_id); 1872 toep->db[i].cancel_pending = 1; 1873 CTR2(KTR_CXGBE, "%s: request %p marked pending", 1874 __func__, job); 1875 break; 1876 } 1877 } 1878 DDP_UNLOCK(toep); 1879 } 1880 1881 static void 1882 t4_aio_cancel_queued(struct kaiocb *job) 1883 { 1884 struct socket *so = job->fd_file->f_data; 1885 struct tcpcb *tp = so_sototcpcb(so); 1886 struct toepcb *toep = tp->t_toe; 1887 1888 DDP_LOCK(toep); 1889 if (!aio_cancel_cleared(job)) { 1890 TAILQ_REMOVE(&toep->ddp_aiojobq, job, list); 1891 toep->ddp_waiting_count--; 1892 if (toep->ddp_waiting_count == 0) 1893 ddp_queue_toep(toep); 1894 } 1895 CTR2(KTR_CXGBE, "%s: request %p cancelled", __func__, job); 1896 DDP_UNLOCK(toep); 1897 1898 aio_ddp_cancel_one(job); 1899 } 1900 1901 int 1902 t4_aio_queue_ddp(struct socket *so, struct kaiocb *job) 1903 { 1904 struct tcpcb *tp = so_sototcpcb(so); 1905 struct toepcb *toep = tp->t_toe; 1906 1907 1908 /* Ignore writes. */ 1909 if (job->uaiocb.aio_lio_opcode != LIO_READ) 1910 return (EOPNOTSUPP); 1911 1912 DDP_LOCK(toep); 1913 1914 /* 1915 * XXX: Think about possibly returning errors for ENOTCONN, 1916 * etc. Perhaps the caller would only queue the request 1917 * if it failed with EOPNOTSUPP? 1918 */ 1919 1920 #ifdef VERBOSE_TRACES 1921 CTR2(KTR_CXGBE, "%s: queueing %p", __func__, job); 1922 #endif 1923 if (!aio_set_cancel_function(job, t4_aio_cancel_queued)) 1924 panic("new job was cancelled"); 1925 TAILQ_INSERT_TAIL(&toep->ddp_aiojobq, job, list); 1926 toep->ddp_waiting_count++; 1927 toep->ddp_flags |= DDP_OK; 1928 1929 /* 1930 * Try to handle this request synchronously. If this has 1931 * to block because the task is running, it will just bail 1932 * and let the task handle it instead. 1933 */ 1934 aio_ddp_requeue(toep); 1935 DDP_UNLOCK(toep); 1936 return (0); 1937 } 1938 1939 int 1940 t4_ddp_mod_load(void) 1941 { 1942 1943 t4_register_cpl_handler(CPL_RX_DATA_DDP, do_rx_data_ddp); 1944 t4_register_cpl_handler(CPL_RX_DDP_COMPLETE, do_rx_ddp_complete); 1945 TAILQ_INIT(&ddp_orphan_pagesets); 1946 mtx_init(&ddp_orphan_pagesets_lock, "ddp orphans", NULL, MTX_DEF); 1947 TASK_INIT(&ddp_orphan_task, 0, ddp_free_orphan_pagesets, NULL); 1948 return (0); 1949 } 1950 1951 void 1952 t4_ddp_mod_unload(void) 1953 { 1954 1955 taskqueue_drain(taskqueue_thread, &ddp_orphan_task); 1956 MPASS(TAILQ_EMPTY(&ddp_orphan_pagesets)); 1957 mtx_destroy(&ddp_orphan_pagesets_lock); 1958 t4_register_cpl_handler(CPL_RX_DATA_DDP, NULL); 1959 t4_register_cpl_handler(CPL_RX_DDP_COMPLETE, NULL); 1960 } 1961 #endif 1962