1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2012 Chelsio Communications, Inc. 5 * All rights reserved. 6 * Written by: Navdeep Parhar <np@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include "opt_inet.h" 34 35 #include <sys/param.h> 36 #include <sys/aio.h> 37 #include <sys/file.h> 38 #include <sys/systm.h> 39 #include <sys/kernel.h> 40 #include <sys/ktr.h> 41 #include <sys/module.h> 42 #include <sys/protosw.h> 43 #include <sys/proc.h> 44 #include <sys/domain.h> 45 #include <sys/socket.h> 46 #include <sys/socketvar.h> 47 #include <sys/taskqueue.h> 48 #include <sys/uio.h> 49 #include <netinet/in.h> 50 #include <netinet/in_pcb.h> 51 #include <netinet/ip.h> 52 #include <netinet/tcp_var.h> 53 #define TCPSTATES 54 #include <netinet/tcp_fsm.h> 55 #include <netinet/toecore.h> 56 57 #include <vm/vm.h> 58 #include <vm/vm_extern.h> 59 #include <vm/vm_param.h> 60 #include <vm/pmap.h> 61 #include <vm/vm_map.h> 62 #include <vm/vm_page.h> 63 #include <vm/vm_object.h> 64 65 #ifdef TCP_OFFLOAD 66 #include "common/common.h" 67 #include "common/t4_msg.h" 68 #include "common/t4_regs.h" 69 #include "common/t4_tcb.h" 70 #include "tom/t4_tom.h" 71 72 /* 73 * Use the 'backend3' field in AIO jobs to store the amount of data 74 * received by the AIO job so far. 75 */ 76 #define aio_received backend3 77 78 static void aio_ddp_requeue_task(void *context, int pending); 79 static void ddp_complete_all(struct toepcb *toep, int error); 80 static void t4_aio_cancel_active(struct kaiocb *job); 81 static void t4_aio_cancel_queued(struct kaiocb *job); 82 83 static TAILQ_HEAD(, pageset) ddp_orphan_pagesets; 84 static struct mtx ddp_orphan_pagesets_lock; 85 static struct task ddp_orphan_task; 86 87 #define MAX_DDP_BUFFER_SIZE (M_TCB_RX_DDP_BUF0_LEN) 88 89 /* 90 * A page set holds information about a buffer used for DDP. The page 91 * set holds resources such as the VM pages backing the buffer (either 92 * held or wired) and the page pods associated with the buffer. 93 * Recently used page sets are cached to allow for efficient reuse of 94 * buffers (avoiding the need to re-fault in pages, hold them, etc.). 95 * Note that cached page sets keep the backing pages wired. The 96 * number of wired pages is capped by only allowing for two wired 97 * pagesets per connection. This is not a perfect cap, but is a 98 * trade-off for performance. 99 * 100 * If an application ping-pongs two buffers for a connection via 101 * aio_read(2) then those buffers should remain wired and expensive VM 102 * fault lookups should be avoided after each buffer has been used 103 * once. If an application uses more than two buffers then this will 104 * fall back to doing expensive VM fault lookups for each operation. 105 */ 106 static void 107 free_pageset(struct tom_data *td, struct pageset *ps) 108 { 109 vm_page_t p; 110 int i; 111 112 if (ps->prsv.prsv_nppods > 0) 113 t4_free_page_pods(&ps->prsv); 114 115 if (ps->flags & PS_WIRED) { 116 for (i = 0; i < ps->npages; i++) { 117 p = ps->pages[i]; 118 vm_page_lock(p); 119 vm_page_unwire(p, PQ_INACTIVE); 120 vm_page_unlock(p); 121 } 122 } else 123 vm_page_unhold_pages(ps->pages, ps->npages); 124 mtx_lock(&ddp_orphan_pagesets_lock); 125 TAILQ_INSERT_TAIL(&ddp_orphan_pagesets, ps, link); 126 taskqueue_enqueue(taskqueue_thread, &ddp_orphan_task); 127 mtx_unlock(&ddp_orphan_pagesets_lock); 128 } 129 130 static void 131 ddp_free_orphan_pagesets(void *context, int pending) 132 { 133 struct pageset *ps; 134 135 mtx_lock(&ddp_orphan_pagesets_lock); 136 while (!TAILQ_EMPTY(&ddp_orphan_pagesets)) { 137 ps = TAILQ_FIRST(&ddp_orphan_pagesets); 138 TAILQ_REMOVE(&ddp_orphan_pagesets, ps, link); 139 mtx_unlock(&ddp_orphan_pagesets_lock); 140 if (ps->vm) 141 vmspace_free(ps->vm); 142 free(ps, M_CXGBE); 143 mtx_lock(&ddp_orphan_pagesets_lock); 144 } 145 mtx_unlock(&ddp_orphan_pagesets_lock); 146 } 147 148 static void 149 recycle_pageset(struct toepcb *toep, struct pageset *ps) 150 { 151 152 DDP_ASSERT_LOCKED(toep); 153 if (!(toep->ddp.flags & DDP_DEAD) && ps->flags & PS_WIRED) { 154 KASSERT(toep->ddp.cached_count + toep->ddp.active_count < 155 nitems(toep->ddp.db), ("too many wired pagesets")); 156 TAILQ_INSERT_HEAD(&toep->ddp.cached_pagesets, ps, link); 157 toep->ddp.cached_count++; 158 } else 159 free_pageset(toep->td, ps); 160 } 161 162 static void 163 ddp_complete_one(struct kaiocb *job, int error) 164 { 165 long copied; 166 167 /* 168 * If this job had copied data out of the socket buffer before 169 * it was cancelled, report it as a short read rather than an 170 * error. 171 */ 172 copied = job->aio_received; 173 if (copied != 0 || error == 0) 174 aio_complete(job, copied, 0); 175 else 176 aio_complete(job, -1, error); 177 } 178 179 static void 180 free_ddp_buffer(struct tom_data *td, struct ddp_buffer *db) 181 { 182 183 if (db->job) { 184 /* 185 * XXX: If we are un-offloading the socket then we 186 * should requeue these on the socket somehow. If we 187 * got a FIN from the remote end, then this completes 188 * any remaining requests with an EOF read. 189 */ 190 if (!aio_clear_cancel_function(db->job)) 191 ddp_complete_one(db->job, 0); 192 } 193 194 if (db->ps) 195 free_pageset(td, db->ps); 196 } 197 198 void 199 ddp_init_toep(struct toepcb *toep) 200 { 201 202 TAILQ_INIT(&toep->ddp.aiojobq); 203 TASK_INIT(&toep->ddp.requeue_task, 0, aio_ddp_requeue_task, toep); 204 toep->ddp.flags = DDP_OK; 205 toep->ddp.active_id = -1; 206 mtx_init(&toep->ddp.lock, "t4 ddp", NULL, MTX_DEF); 207 } 208 209 void 210 ddp_uninit_toep(struct toepcb *toep) 211 { 212 213 mtx_destroy(&toep->ddp.lock); 214 } 215 216 void 217 release_ddp_resources(struct toepcb *toep) 218 { 219 struct pageset *ps; 220 int i; 221 222 DDP_LOCK(toep); 223 toep->flags |= DDP_DEAD; 224 for (i = 0; i < nitems(toep->ddp.db); i++) { 225 free_ddp_buffer(toep->td, &toep->ddp.db[i]); 226 } 227 while ((ps = TAILQ_FIRST(&toep->ddp.cached_pagesets)) != NULL) { 228 TAILQ_REMOVE(&toep->ddp.cached_pagesets, ps, link); 229 free_pageset(toep->td, ps); 230 } 231 ddp_complete_all(toep, 0); 232 DDP_UNLOCK(toep); 233 } 234 235 #ifdef INVARIANTS 236 void 237 ddp_assert_empty(struct toepcb *toep) 238 { 239 int i; 240 241 MPASS(!(toep->ddp.flags & DDP_TASK_ACTIVE)); 242 for (i = 0; i < nitems(toep->ddp.db); i++) { 243 MPASS(toep->ddp.db[i].job == NULL); 244 MPASS(toep->ddp.db[i].ps == NULL); 245 } 246 MPASS(TAILQ_EMPTY(&toep->ddp.cached_pagesets)); 247 MPASS(TAILQ_EMPTY(&toep->ddp.aiojobq)); 248 } 249 #endif 250 251 static void 252 complete_ddp_buffer(struct toepcb *toep, struct ddp_buffer *db, 253 unsigned int db_idx) 254 { 255 unsigned int db_flag; 256 257 toep->ddp.active_count--; 258 if (toep->ddp.active_id == db_idx) { 259 if (toep->ddp.active_count == 0) { 260 KASSERT(toep->ddp.db[db_idx ^ 1].job == NULL, 261 ("%s: active_count mismatch", __func__)); 262 toep->ddp.active_id = -1; 263 } else 264 toep->ddp.active_id ^= 1; 265 #ifdef VERBOSE_TRACES 266 CTR2(KTR_CXGBE, "%s: ddp_active_id = %d", __func__, 267 toep->ddp.active_id); 268 #endif 269 } else { 270 KASSERT(toep->ddp.active_count != 0 && 271 toep->ddp.active_id != -1, 272 ("%s: active count mismatch", __func__)); 273 } 274 275 db->cancel_pending = 0; 276 db->job = NULL; 277 recycle_pageset(toep, db->ps); 278 db->ps = NULL; 279 280 db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE; 281 KASSERT(toep->ddp.flags & db_flag, 282 ("%s: DDP buffer not active. toep %p, ddp_flags 0x%x", 283 __func__, toep, toep->ddp.flags)); 284 toep->ddp.flags &= ~db_flag; 285 } 286 287 /* XXX: handle_ddp_data code duplication */ 288 void 289 insert_ddp_data(struct toepcb *toep, uint32_t n) 290 { 291 struct inpcb *inp = toep->inp; 292 struct tcpcb *tp = intotcpcb(inp); 293 struct ddp_buffer *db; 294 struct kaiocb *job; 295 size_t placed; 296 long copied; 297 unsigned int db_flag, db_idx; 298 299 INP_WLOCK_ASSERT(inp); 300 DDP_ASSERT_LOCKED(toep); 301 302 tp->rcv_nxt += n; 303 #ifndef USE_DDP_RX_FLOW_CONTROL 304 KASSERT(tp->rcv_wnd >= n, ("%s: negative window size", __func__)); 305 tp->rcv_wnd -= n; 306 #endif 307 #ifndef USE_DDP_RX_FLOW_CONTROL 308 toep->rx_credits += n; 309 #endif 310 CTR2(KTR_CXGBE, "%s: placed %u bytes before falling out of DDP", 311 __func__, n); 312 while (toep->ddp.active_count > 0) { 313 MPASS(toep->ddp.active_id != -1); 314 db_idx = toep->ddp.active_id; 315 db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE; 316 MPASS((toep->ddp.flags & db_flag) != 0); 317 db = &toep->ddp.db[db_idx]; 318 job = db->job; 319 copied = job->aio_received; 320 placed = n; 321 if (placed > job->uaiocb.aio_nbytes - copied) 322 placed = job->uaiocb.aio_nbytes - copied; 323 if (placed > 0) 324 job->msgrcv = 1; 325 if (!aio_clear_cancel_function(job)) { 326 /* 327 * Update the copied length for when 328 * t4_aio_cancel_active() completes this 329 * request. 330 */ 331 job->aio_received += placed; 332 } else if (copied + placed != 0) { 333 CTR4(KTR_CXGBE, 334 "%s: completing %p (copied %ld, placed %lu)", 335 __func__, job, copied, placed); 336 /* XXX: This always completes if there is some data. */ 337 aio_complete(job, copied + placed, 0); 338 } else if (aio_set_cancel_function(job, t4_aio_cancel_queued)) { 339 TAILQ_INSERT_HEAD(&toep->ddp.aiojobq, job, list); 340 toep->ddp.waiting_count++; 341 } else 342 aio_cancel(job); 343 n -= placed; 344 complete_ddp_buffer(toep, db, db_idx); 345 } 346 347 MPASS(n == 0); 348 } 349 350 /* SET_TCB_FIELD sent as a ULP command looks like this */ 351 #define LEN__SET_TCB_FIELD_ULP (sizeof(struct ulp_txpkt) + \ 352 sizeof(struct ulptx_idata) + sizeof(struct cpl_set_tcb_field_core)) 353 354 /* RX_DATA_ACK sent as a ULP command looks like this */ 355 #define LEN__RX_DATA_ACK_ULP (sizeof(struct ulp_txpkt) + \ 356 sizeof(struct ulptx_idata) + sizeof(struct cpl_rx_data_ack_core)) 357 358 static inline void * 359 mk_set_tcb_field_ulp(struct ulp_txpkt *ulpmc, struct toepcb *toep, 360 uint64_t word, uint64_t mask, uint64_t val) 361 { 362 struct ulptx_idata *ulpsc; 363 struct cpl_set_tcb_field_core *req; 364 365 ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0)); 366 ulpmc->len = htobe32(howmany(LEN__SET_TCB_FIELD_ULP, 16)); 367 368 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 369 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 370 ulpsc->len = htobe32(sizeof(*req)); 371 372 req = (struct cpl_set_tcb_field_core *)(ulpsc + 1); 373 OPCODE_TID(req) = htobe32(MK_OPCODE_TID(CPL_SET_TCB_FIELD, toep->tid)); 374 req->reply_ctrl = htobe16(V_NO_REPLY(1) | 375 V_QUEUENO(toep->ofld_rxq->iq.abs_id)); 376 req->word_cookie = htobe16(V_WORD(word) | V_COOKIE(0)); 377 req->mask = htobe64(mask); 378 req->val = htobe64(val); 379 380 ulpsc = (struct ulptx_idata *)(req + 1); 381 if (LEN__SET_TCB_FIELD_ULP % 16) { 382 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP)); 383 ulpsc->len = htobe32(0); 384 return (ulpsc + 1); 385 } 386 return (ulpsc); 387 } 388 389 static inline void * 390 mk_rx_data_ack_ulp(struct ulp_txpkt *ulpmc, struct toepcb *toep) 391 { 392 struct ulptx_idata *ulpsc; 393 struct cpl_rx_data_ack_core *req; 394 395 ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0)); 396 ulpmc->len = htobe32(howmany(LEN__RX_DATA_ACK_ULP, 16)); 397 398 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 399 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 400 ulpsc->len = htobe32(sizeof(*req)); 401 402 req = (struct cpl_rx_data_ack_core *)(ulpsc + 1); 403 OPCODE_TID(req) = htobe32(MK_OPCODE_TID(CPL_RX_DATA_ACK, toep->tid)); 404 req->credit_dack = htobe32(F_RX_MODULATE_RX); 405 406 ulpsc = (struct ulptx_idata *)(req + 1); 407 if (LEN__RX_DATA_ACK_ULP % 16) { 408 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP)); 409 ulpsc->len = htobe32(0); 410 return (ulpsc + 1); 411 } 412 return (ulpsc); 413 } 414 415 static struct wrqe * 416 mk_update_tcb_for_ddp(struct adapter *sc, struct toepcb *toep, int db_idx, 417 struct pageset *ps, int offset, uint64_t ddp_flags, uint64_t ddp_flags_mask) 418 { 419 struct wrqe *wr; 420 struct work_request_hdr *wrh; 421 struct ulp_txpkt *ulpmc; 422 int len; 423 424 KASSERT(db_idx == 0 || db_idx == 1, 425 ("%s: bad DDP buffer index %d", __func__, db_idx)); 426 427 /* 428 * We'll send a compound work request that has 3 SET_TCB_FIELDs and an 429 * RX_DATA_ACK (with RX_MODULATE to speed up delivery). 430 * 431 * The work request header is 16B and always ends at a 16B boundary. 432 * The ULPTX master commands that follow must all end at 16B boundaries 433 * too so we round up the size to 16. 434 */ 435 len = sizeof(*wrh) + 3 * roundup2(LEN__SET_TCB_FIELD_ULP, 16) + 436 roundup2(LEN__RX_DATA_ACK_ULP, 16); 437 438 wr = alloc_wrqe(len, toep->ctrlq); 439 if (wr == NULL) 440 return (NULL); 441 wrh = wrtod(wr); 442 INIT_ULPTX_WRH(wrh, len, 1, 0); /* atomic */ 443 ulpmc = (struct ulp_txpkt *)(wrh + 1); 444 445 /* Write the buffer's tag */ 446 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, 447 W_TCB_RX_DDP_BUF0_TAG + db_idx, 448 V_TCB_RX_DDP_BUF0_TAG(M_TCB_RX_DDP_BUF0_TAG), 449 V_TCB_RX_DDP_BUF0_TAG(ps->prsv.prsv_tag)); 450 451 /* Update the current offset in the DDP buffer and its total length */ 452 if (db_idx == 0) 453 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, 454 W_TCB_RX_DDP_BUF0_OFFSET, 455 V_TCB_RX_DDP_BUF0_OFFSET(M_TCB_RX_DDP_BUF0_OFFSET) | 456 V_TCB_RX_DDP_BUF0_LEN(M_TCB_RX_DDP_BUF0_LEN), 457 V_TCB_RX_DDP_BUF0_OFFSET(offset) | 458 V_TCB_RX_DDP_BUF0_LEN(ps->len)); 459 else 460 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, 461 W_TCB_RX_DDP_BUF1_OFFSET, 462 V_TCB_RX_DDP_BUF1_OFFSET(M_TCB_RX_DDP_BUF1_OFFSET) | 463 V_TCB_RX_DDP_BUF1_LEN((u64)M_TCB_RX_DDP_BUF1_LEN << 32), 464 V_TCB_RX_DDP_BUF1_OFFSET(offset) | 465 V_TCB_RX_DDP_BUF1_LEN((u64)ps->len << 32)); 466 467 /* Update DDP flags */ 468 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, W_TCB_RX_DDP_FLAGS, 469 ddp_flags_mask, ddp_flags); 470 471 /* Gratuitous RX_DATA_ACK with RX_MODULATE set to speed up delivery. */ 472 ulpmc = mk_rx_data_ack_ulp(ulpmc, toep); 473 474 return (wr); 475 } 476 477 static int 478 handle_ddp_data(struct toepcb *toep, __be32 ddp_report, __be32 rcv_nxt, int len) 479 { 480 uint32_t report = be32toh(ddp_report); 481 unsigned int db_idx; 482 struct inpcb *inp = toep->inp; 483 struct ddp_buffer *db; 484 struct tcpcb *tp; 485 struct socket *so; 486 struct sockbuf *sb; 487 struct kaiocb *job; 488 long copied; 489 490 db_idx = report & F_DDP_BUF_IDX ? 1 : 0; 491 492 if (__predict_false(!(report & F_DDP_INV))) 493 CXGBE_UNIMPLEMENTED("DDP buffer still valid"); 494 495 INP_WLOCK(inp); 496 so = inp_inpcbtosocket(inp); 497 sb = &so->so_rcv; 498 DDP_LOCK(toep); 499 500 KASSERT(toep->ddp.active_id == db_idx, 501 ("completed DDP buffer (%d) != active_id (%d) for tid %d", db_idx, 502 toep->ddp.active_id, toep->tid)); 503 db = &toep->ddp.db[db_idx]; 504 job = db->job; 505 506 if (__predict_false(inp->inp_flags & (INP_DROPPED | INP_TIMEWAIT))) { 507 /* 508 * This can happen due to an administrative tcpdrop(8). 509 * Just fail the request with ECONNRESET. 510 */ 511 CTR5(KTR_CXGBE, "%s: tid %u, seq 0x%x, len %d, inp_flags 0x%x", 512 __func__, toep->tid, be32toh(rcv_nxt), len, inp->inp_flags); 513 if (aio_clear_cancel_function(job)) 514 ddp_complete_one(job, ECONNRESET); 515 goto completed; 516 } 517 518 tp = intotcpcb(inp); 519 520 /* 521 * For RX_DDP_COMPLETE, len will be zero and rcv_nxt is the 522 * sequence number of the next byte to receive. The length of 523 * the data received for this message must be computed by 524 * comparing the new and old values of rcv_nxt. 525 * 526 * For RX_DATA_DDP, len might be non-zero, but it is only the 527 * length of the most recent DMA. It does not include the 528 * total length of the data received since the previous update 529 * for this DDP buffer. rcv_nxt is the sequence number of the 530 * first received byte from the most recent DMA. 531 */ 532 len += be32toh(rcv_nxt) - tp->rcv_nxt; 533 tp->rcv_nxt += len; 534 tp->t_rcvtime = ticks; 535 #ifndef USE_DDP_RX_FLOW_CONTROL 536 KASSERT(tp->rcv_wnd >= len, ("%s: negative window size", __func__)); 537 tp->rcv_wnd -= len; 538 #endif 539 #ifdef VERBOSE_TRACES 540 CTR4(KTR_CXGBE, "%s: DDP[%d] placed %d bytes (%#x)", __func__, db_idx, 541 len, report); 542 #endif 543 544 /* receive buffer autosize */ 545 MPASS(toep->vnet == so->so_vnet); 546 CURVNET_SET(toep->vnet); 547 SOCKBUF_LOCK(sb); 548 if (sb->sb_flags & SB_AUTOSIZE && 549 V_tcp_do_autorcvbuf && 550 sb->sb_hiwat < V_tcp_autorcvbuf_max && 551 len > (sbspace(sb) / 8 * 7)) { 552 struct adapter *sc = td_adapter(toep->td); 553 unsigned int hiwat = sb->sb_hiwat; 554 unsigned int newsize = min(hiwat + sc->tt.autorcvbuf_inc, 555 V_tcp_autorcvbuf_max); 556 557 if (!sbreserve_locked(sb, newsize, so, NULL)) 558 sb->sb_flags &= ~SB_AUTOSIZE; 559 else 560 toep->rx_credits += newsize - hiwat; 561 } 562 SOCKBUF_UNLOCK(sb); 563 CURVNET_RESTORE(); 564 565 #ifndef USE_DDP_RX_FLOW_CONTROL 566 toep->rx_credits += len; 567 #endif 568 569 job->msgrcv = 1; 570 if (db->cancel_pending) { 571 /* 572 * Update the job's length but defer completion to the 573 * TCB_RPL callback. 574 */ 575 job->aio_received += len; 576 goto out; 577 } else if (!aio_clear_cancel_function(job)) { 578 /* 579 * Update the copied length for when 580 * t4_aio_cancel_active() completes this request. 581 */ 582 job->aio_received += len; 583 } else { 584 copied = job->aio_received; 585 #ifdef VERBOSE_TRACES 586 CTR4(KTR_CXGBE, "%s: completing %p (copied %ld, placed %d)", 587 __func__, job, copied, len); 588 #endif 589 aio_complete(job, copied + len, 0); 590 t4_rcvd(&toep->td->tod, tp); 591 } 592 593 completed: 594 complete_ddp_buffer(toep, db, db_idx); 595 if (toep->ddp.waiting_count > 0) 596 ddp_queue_toep(toep); 597 out: 598 DDP_UNLOCK(toep); 599 INP_WUNLOCK(inp); 600 601 return (0); 602 } 603 604 void 605 handle_ddp_indicate(struct toepcb *toep) 606 { 607 608 DDP_ASSERT_LOCKED(toep); 609 MPASS(toep->ddp.active_count == 0); 610 MPASS((toep->ddp.flags & (DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE)) == 0); 611 if (toep->ddp.waiting_count == 0) { 612 /* 613 * The pending requests that triggered the request for an 614 * an indicate were cancelled. Those cancels should have 615 * already disabled DDP. Just ignore this as the data is 616 * going into the socket buffer anyway. 617 */ 618 return; 619 } 620 CTR3(KTR_CXGBE, "%s: tid %d indicated (%d waiting)", __func__, 621 toep->tid, toep->ddp.waiting_count); 622 ddp_queue_toep(toep); 623 } 624 625 enum { 626 DDP_BUF0_INVALIDATED = 0x2, 627 DDP_BUF1_INVALIDATED 628 }; 629 630 CTASSERT(DDP_BUF0_INVALIDATED == CPL_COOKIE_DDP0); 631 632 static int 633 do_ddp_tcb_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 634 { 635 struct adapter *sc = iq->adapter; 636 const struct cpl_set_tcb_rpl *cpl = (const void *)(rss + 1); 637 unsigned int tid = GET_TID(cpl); 638 unsigned int db_idx; 639 struct toepcb *toep; 640 struct inpcb *inp; 641 struct ddp_buffer *db; 642 struct kaiocb *job; 643 long copied; 644 645 if (cpl->status != CPL_ERR_NONE) 646 panic("XXX: tcp_rpl failed: %d", cpl->status); 647 648 toep = lookup_tid(sc, tid); 649 inp = toep->inp; 650 switch (cpl->cookie) { 651 case V_WORD(W_TCB_RX_DDP_FLAGS) | V_COOKIE(DDP_BUF0_INVALIDATED): 652 case V_WORD(W_TCB_RX_DDP_FLAGS) | V_COOKIE(DDP_BUF1_INVALIDATED): 653 /* 654 * XXX: This duplicates a lot of code with handle_ddp_data(). 655 */ 656 db_idx = G_COOKIE(cpl->cookie) - DDP_BUF0_INVALIDATED; 657 MPASS(db_idx < nitems(toep->ddp.db)); 658 INP_WLOCK(inp); 659 DDP_LOCK(toep); 660 db = &toep->ddp.db[db_idx]; 661 662 /* 663 * handle_ddp_data() should leave the job around until 664 * this callback runs once a cancel is pending. 665 */ 666 MPASS(db != NULL); 667 MPASS(db->job != NULL); 668 MPASS(db->cancel_pending); 669 670 /* 671 * XXX: It's not clear what happens if there is data 672 * placed when the buffer is invalidated. I suspect we 673 * need to read the TCB to see how much data was placed. 674 * 675 * For now this just pretends like nothing was placed. 676 * 677 * XXX: Note that if we did check the PCB we would need to 678 * also take care of updating the tp, etc. 679 */ 680 job = db->job; 681 copied = job->aio_received; 682 if (copied == 0) { 683 CTR2(KTR_CXGBE, "%s: cancelling %p", __func__, job); 684 aio_cancel(job); 685 } else { 686 CTR3(KTR_CXGBE, "%s: completing %p (copied %ld)", 687 __func__, job, copied); 688 aio_complete(job, copied, 0); 689 t4_rcvd(&toep->td->tod, intotcpcb(inp)); 690 } 691 692 complete_ddp_buffer(toep, db, db_idx); 693 if (toep->ddp.waiting_count > 0) 694 ddp_queue_toep(toep); 695 DDP_UNLOCK(toep); 696 INP_WUNLOCK(inp); 697 break; 698 default: 699 panic("XXX: unknown tcb_rpl offset %#x, cookie %#x", 700 G_WORD(cpl->cookie), G_COOKIE(cpl->cookie)); 701 } 702 703 return (0); 704 } 705 706 void 707 handle_ddp_close(struct toepcb *toep, struct tcpcb *tp, __be32 rcv_nxt) 708 { 709 struct ddp_buffer *db; 710 struct kaiocb *job; 711 long copied; 712 unsigned int db_flag, db_idx; 713 int len, placed; 714 715 INP_WLOCK_ASSERT(toep->inp); 716 DDP_ASSERT_LOCKED(toep); 717 len = be32toh(rcv_nxt) - tp->rcv_nxt; 718 719 tp->rcv_nxt += len; 720 #ifndef USE_DDP_RX_FLOW_CONTROL 721 toep->rx_credits += len; 722 #endif 723 724 while (toep->ddp.active_count > 0) { 725 MPASS(toep->ddp.active_id != -1); 726 db_idx = toep->ddp.active_id; 727 db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE; 728 MPASS((toep->ddp.flags & db_flag) != 0); 729 db = &toep->ddp.db[db_idx]; 730 job = db->job; 731 copied = job->aio_received; 732 placed = len; 733 if (placed > job->uaiocb.aio_nbytes - copied) 734 placed = job->uaiocb.aio_nbytes - copied; 735 if (placed > 0) 736 job->msgrcv = 1; 737 if (!aio_clear_cancel_function(job)) { 738 /* 739 * Update the copied length for when 740 * t4_aio_cancel_active() completes this 741 * request. 742 */ 743 job->aio_received += placed; 744 } else { 745 CTR4(KTR_CXGBE, "%s: tid %d completed buf %d len %d", 746 __func__, toep->tid, db_idx, placed); 747 aio_complete(job, copied + placed, 0); 748 } 749 len -= placed; 750 complete_ddp_buffer(toep, db, db_idx); 751 } 752 753 MPASS(len == 0); 754 ddp_complete_all(toep, 0); 755 } 756 757 #define DDP_ERR (F_DDP_PPOD_MISMATCH | F_DDP_LLIMIT_ERR | F_DDP_ULIMIT_ERR |\ 758 F_DDP_PPOD_PARITY_ERR | F_DDP_PADDING_ERR | F_DDP_OFFSET_ERR |\ 759 F_DDP_INVALID_TAG | F_DDP_COLOR_ERR | F_DDP_TID_MISMATCH |\ 760 F_DDP_INVALID_PPOD | F_DDP_HDRCRC_ERR | F_DDP_DATACRC_ERR) 761 762 extern cpl_handler_t t4_cpl_handler[]; 763 764 static int 765 do_rx_data_ddp(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 766 { 767 struct adapter *sc = iq->adapter; 768 const struct cpl_rx_data_ddp *cpl = (const void *)(rss + 1); 769 unsigned int tid = GET_TID(cpl); 770 uint32_t vld; 771 struct toepcb *toep = lookup_tid(sc, tid); 772 773 KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__)); 774 KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__)); 775 KASSERT(!(toep->flags & TPF_SYNQE), 776 ("%s: toep %p claims to be a synq entry", __func__, toep)); 777 778 vld = be32toh(cpl->ddpvld); 779 if (__predict_false(vld & DDP_ERR)) { 780 panic("%s: DDP error 0x%x (tid %d, toep %p)", 781 __func__, vld, tid, toep); 782 } 783 784 if (toep->ulp_mode == ULP_MODE_ISCSI) { 785 t4_cpl_handler[CPL_RX_ISCSI_DDP](iq, rss, m); 786 return (0); 787 } 788 789 handle_ddp_data(toep, cpl->u.ddp_report, cpl->seq, be16toh(cpl->len)); 790 791 return (0); 792 } 793 794 static int 795 do_rx_ddp_complete(struct sge_iq *iq, const struct rss_header *rss, 796 struct mbuf *m) 797 { 798 struct adapter *sc = iq->adapter; 799 const struct cpl_rx_ddp_complete *cpl = (const void *)(rss + 1); 800 unsigned int tid = GET_TID(cpl); 801 struct toepcb *toep = lookup_tid(sc, tid); 802 803 KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__)); 804 KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__)); 805 KASSERT(!(toep->flags & TPF_SYNQE), 806 ("%s: toep %p claims to be a synq entry", __func__, toep)); 807 808 handle_ddp_data(toep, cpl->ddp_report, cpl->rcv_nxt, 0); 809 810 return (0); 811 } 812 813 static void 814 enable_ddp(struct adapter *sc, struct toepcb *toep) 815 { 816 817 KASSERT((toep->ddp.flags & (DDP_ON | DDP_OK | DDP_SC_REQ)) == DDP_OK, 818 ("%s: toep %p has bad ddp_flags 0x%x", 819 __func__, toep, toep->ddp.flags)); 820 821 CTR3(KTR_CXGBE, "%s: tid %u (time %u)", 822 __func__, toep->tid, time_uptime); 823 824 DDP_ASSERT_LOCKED(toep); 825 toep->ddp.flags |= DDP_SC_REQ; 826 t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_RX_DDP_FLAGS, 827 V_TF_DDP_OFF(1) | V_TF_DDP_INDICATE_OUT(1) | 828 V_TF_DDP_BUF0_INDICATE(1) | V_TF_DDP_BUF1_INDICATE(1) | 829 V_TF_DDP_BUF0_VALID(1) | V_TF_DDP_BUF1_VALID(1), 830 V_TF_DDP_BUF0_INDICATE(1) | V_TF_DDP_BUF1_INDICATE(1), 0, 0); 831 t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_T_FLAGS, 832 V_TF_RCV_COALESCE_ENABLE(1), 0, 0, 0); 833 } 834 835 static int 836 calculate_hcf(int n1, int n2) 837 { 838 int a, b, t; 839 840 if (n1 <= n2) { 841 a = n1; 842 b = n2; 843 } else { 844 a = n2; 845 b = n1; 846 } 847 848 while (a != 0) { 849 t = a; 850 a = b % a; 851 b = t; 852 } 853 854 return (b); 855 } 856 857 static inline int 858 pages_to_nppods(int npages, int ddp_page_shift) 859 { 860 861 MPASS(ddp_page_shift >= PAGE_SHIFT); 862 863 return (howmany(npages >> (ddp_page_shift - PAGE_SHIFT), PPOD_PAGES)); 864 } 865 866 static int 867 alloc_page_pods(struct ppod_region *pr, u_int nppods, u_int pgsz_idx, 868 struct ppod_reservation *prsv) 869 { 870 vmem_addr_t addr; /* relative to start of region */ 871 872 if (vmem_alloc(pr->pr_arena, PPOD_SZ(nppods), M_NOWAIT | M_FIRSTFIT, 873 &addr) != 0) 874 return (ENOMEM); 875 876 CTR5(KTR_CXGBE, "%-17s arena %p, addr 0x%08x, nppods %d, pgsz %d", 877 __func__, pr->pr_arena, (uint32_t)addr & pr->pr_tag_mask, 878 nppods, 1 << pr->pr_page_shift[pgsz_idx]); 879 880 /* 881 * The hardware tagmask includes an extra invalid bit but the arena was 882 * seeded with valid values only. An allocation out of this arena will 883 * fit inside the tagmask but won't have the invalid bit set. 884 */ 885 MPASS((addr & pr->pr_tag_mask) == addr); 886 MPASS((addr & pr->pr_invalid_bit) == 0); 887 888 prsv->prsv_pr = pr; 889 prsv->prsv_tag = V_PPOD_PGSZ(pgsz_idx) | addr; 890 prsv->prsv_nppods = nppods; 891 892 return (0); 893 } 894 895 int 896 t4_alloc_page_pods_for_ps(struct ppod_region *pr, struct pageset *ps) 897 { 898 int i, hcf, seglen, idx, nppods; 899 struct ppod_reservation *prsv = &ps->prsv; 900 901 KASSERT(prsv->prsv_nppods == 0, 902 ("%s: page pods already allocated", __func__)); 903 904 /* 905 * The DDP page size is unrelated to the VM page size. We combine 906 * contiguous physical pages into larger segments to get the best DDP 907 * page size possible. This is the largest of the four sizes in 908 * A_ULP_RX_TDDP_PSZ that evenly divides the HCF of the segment sizes in 909 * the page list. 910 */ 911 hcf = 0; 912 for (i = 0; i < ps->npages; i++) { 913 seglen = PAGE_SIZE; 914 while (i < ps->npages - 1 && 915 ps->pages[i]->phys_addr + PAGE_SIZE == 916 ps->pages[i + 1]->phys_addr) { 917 seglen += PAGE_SIZE; 918 i++; 919 } 920 921 hcf = calculate_hcf(hcf, seglen); 922 if (hcf < (1 << pr->pr_page_shift[1])) { 923 idx = 0; 924 goto have_pgsz; /* give up, short circuit */ 925 } 926 } 927 928 #define PR_PAGE_MASK(x) ((1 << pr->pr_page_shift[(x)]) - 1) 929 MPASS((hcf & PR_PAGE_MASK(0)) == 0); /* PAGE_SIZE is >= 4K everywhere */ 930 for (idx = nitems(pr->pr_page_shift) - 1; idx > 0; idx--) { 931 if ((hcf & PR_PAGE_MASK(idx)) == 0) 932 break; 933 } 934 #undef PR_PAGE_MASK 935 936 have_pgsz: 937 MPASS(idx <= M_PPOD_PGSZ); 938 939 nppods = pages_to_nppods(ps->npages, pr->pr_page_shift[idx]); 940 if (alloc_page_pods(pr, nppods, idx, prsv) != 0) 941 return (0); 942 MPASS(prsv->prsv_nppods > 0); 943 944 return (1); 945 } 946 947 int 948 t4_alloc_page_pods_for_buf(struct ppod_region *pr, vm_offset_t buf, int len, 949 struct ppod_reservation *prsv) 950 { 951 int hcf, seglen, idx, npages, nppods; 952 uintptr_t start_pva, end_pva, pva, p1; 953 954 MPASS(buf > 0); 955 MPASS(len > 0); 956 957 /* 958 * The DDP page size is unrelated to the VM page size. We combine 959 * contiguous physical pages into larger segments to get the best DDP 960 * page size possible. This is the largest of the four sizes in 961 * A_ULP_RX_ISCSI_PSZ that evenly divides the HCF of the segment sizes 962 * in the page list. 963 */ 964 hcf = 0; 965 start_pva = trunc_page(buf); 966 end_pva = trunc_page(buf + len - 1); 967 pva = start_pva; 968 while (pva <= end_pva) { 969 seglen = PAGE_SIZE; 970 p1 = pmap_kextract(pva); 971 pva += PAGE_SIZE; 972 while (pva <= end_pva && p1 + seglen == pmap_kextract(pva)) { 973 seglen += PAGE_SIZE; 974 pva += PAGE_SIZE; 975 } 976 977 hcf = calculate_hcf(hcf, seglen); 978 if (hcf < (1 << pr->pr_page_shift[1])) { 979 idx = 0; 980 goto have_pgsz; /* give up, short circuit */ 981 } 982 } 983 984 #define PR_PAGE_MASK(x) ((1 << pr->pr_page_shift[(x)]) - 1) 985 MPASS((hcf & PR_PAGE_MASK(0)) == 0); /* PAGE_SIZE is >= 4K everywhere */ 986 for (idx = nitems(pr->pr_page_shift) - 1; idx > 0; idx--) { 987 if ((hcf & PR_PAGE_MASK(idx)) == 0) 988 break; 989 } 990 #undef PR_PAGE_MASK 991 992 have_pgsz: 993 MPASS(idx <= M_PPOD_PGSZ); 994 995 npages = 1; 996 npages += (end_pva - start_pva) >> pr->pr_page_shift[idx]; 997 nppods = howmany(npages, PPOD_PAGES); 998 if (alloc_page_pods(pr, nppods, idx, prsv) != 0) 999 return (ENOMEM); 1000 MPASS(prsv->prsv_nppods > 0); 1001 1002 return (0); 1003 } 1004 1005 void 1006 t4_free_page_pods(struct ppod_reservation *prsv) 1007 { 1008 struct ppod_region *pr = prsv->prsv_pr; 1009 vmem_addr_t addr; 1010 1011 MPASS(prsv != NULL); 1012 MPASS(prsv->prsv_nppods != 0); 1013 1014 addr = prsv->prsv_tag & pr->pr_tag_mask; 1015 MPASS((addr & pr->pr_invalid_bit) == 0); 1016 1017 CTR4(KTR_CXGBE, "%-17s arena %p, addr 0x%08x, nppods %d", __func__, 1018 pr->pr_arena, addr, prsv->prsv_nppods); 1019 1020 vmem_free(pr->pr_arena, addr, PPOD_SZ(prsv->prsv_nppods)); 1021 prsv->prsv_nppods = 0; 1022 } 1023 1024 #define NUM_ULP_TX_SC_IMM_PPODS (256 / PPOD_SIZE) 1025 1026 int 1027 t4_write_page_pods_for_ps(struct adapter *sc, struct sge_wrq *wrq, int tid, 1028 struct pageset *ps) 1029 { 1030 struct wrqe *wr; 1031 struct ulp_mem_io *ulpmc; 1032 struct ulptx_idata *ulpsc; 1033 struct pagepod *ppod; 1034 int i, j, k, n, chunk, len, ddp_pgsz, idx; 1035 u_int ppod_addr; 1036 uint32_t cmd; 1037 struct ppod_reservation *prsv = &ps->prsv; 1038 struct ppod_region *pr = prsv->prsv_pr; 1039 1040 KASSERT(!(ps->flags & PS_PPODS_WRITTEN), 1041 ("%s: page pods already written", __func__)); 1042 MPASS(prsv->prsv_nppods > 0); 1043 1044 cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE)); 1045 if (is_t4(sc)) 1046 cmd |= htobe32(F_ULP_MEMIO_ORDER); 1047 else 1048 cmd |= htobe32(F_T5_ULP_MEMIO_IMM); 1049 ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)]; 1050 ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask); 1051 for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) { 1052 1053 /* How many page pods are we writing in this cycle */ 1054 n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS); 1055 chunk = PPOD_SZ(n); 1056 len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16); 1057 1058 wr = alloc_wrqe(len, wrq); 1059 if (wr == NULL) 1060 return (ENOMEM); /* ok to just bail out */ 1061 ulpmc = wrtod(wr); 1062 1063 INIT_ULPTX_WR(ulpmc, len, 0, 0); 1064 ulpmc->cmd = cmd; 1065 ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32)); 1066 ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16)); 1067 ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5)); 1068 1069 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 1070 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 1071 ulpsc->len = htobe32(chunk); 1072 1073 ppod = (struct pagepod *)(ulpsc + 1); 1074 for (j = 0; j < n; i++, j++, ppod++) { 1075 ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID | 1076 V_PPOD_TID(tid) | prsv->prsv_tag); 1077 ppod->len_offset = htobe64(V_PPOD_LEN(ps->len) | 1078 V_PPOD_OFST(ps->offset)); 1079 ppod->rsvd = 0; 1080 idx = i * PPOD_PAGES * (ddp_pgsz / PAGE_SIZE); 1081 for (k = 0; k < nitems(ppod->addr); k++) { 1082 if (idx < ps->npages) { 1083 ppod->addr[k] = 1084 htobe64(ps->pages[idx]->phys_addr); 1085 idx += ddp_pgsz / PAGE_SIZE; 1086 } else 1087 ppod->addr[k] = 0; 1088 #if 0 1089 CTR5(KTR_CXGBE, 1090 "%s: tid %d ppod[%d]->addr[%d] = %p", 1091 __func__, toep->tid, i, k, 1092 htobe64(ppod->addr[k])); 1093 #endif 1094 } 1095 1096 } 1097 1098 t4_wrq_tx(sc, wr); 1099 } 1100 ps->flags |= PS_PPODS_WRITTEN; 1101 1102 return (0); 1103 } 1104 1105 int 1106 t4_write_page_pods_for_buf(struct adapter *sc, struct sge_wrq *wrq, int tid, 1107 struct ppod_reservation *prsv, vm_offset_t buf, int buflen) 1108 { 1109 struct wrqe *wr; 1110 struct ulp_mem_io *ulpmc; 1111 struct ulptx_idata *ulpsc; 1112 struct pagepod *ppod; 1113 int i, j, k, n, chunk, len, ddp_pgsz; 1114 u_int ppod_addr, offset; 1115 uint32_t cmd; 1116 struct ppod_region *pr = prsv->prsv_pr; 1117 uintptr_t end_pva, pva, pa; 1118 1119 cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE)); 1120 if (is_t4(sc)) 1121 cmd |= htobe32(F_ULP_MEMIO_ORDER); 1122 else 1123 cmd |= htobe32(F_T5_ULP_MEMIO_IMM); 1124 ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)]; 1125 offset = buf & PAGE_MASK; 1126 ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask); 1127 pva = trunc_page(buf); 1128 end_pva = trunc_page(buf + buflen - 1); 1129 for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) { 1130 1131 /* How many page pods are we writing in this cycle */ 1132 n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS); 1133 MPASS(n > 0); 1134 chunk = PPOD_SZ(n); 1135 len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16); 1136 1137 wr = alloc_wrqe(len, wrq); 1138 if (wr == NULL) 1139 return (ENOMEM); /* ok to just bail out */ 1140 ulpmc = wrtod(wr); 1141 1142 INIT_ULPTX_WR(ulpmc, len, 0, 0); 1143 ulpmc->cmd = cmd; 1144 ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32)); 1145 ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16)); 1146 ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5)); 1147 1148 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 1149 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 1150 ulpsc->len = htobe32(chunk); 1151 1152 ppod = (struct pagepod *)(ulpsc + 1); 1153 for (j = 0; j < n; i++, j++, ppod++) { 1154 ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID | 1155 V_PPOD_TID(tid) | 1156 (prsv->prsv_tag & ~V_PPOD_PGSZ(M_PPOD_PGSZ))); 1157 ppod->len_offset = htobe64(V_PPOD_LEN(buflen) | 1158 V_PPOD_OFST(offset)); 1159 ppod->rsvd = 0; 1160 1161 for (k = 0; k < nitems(ppod->addr); k++) { 1162 if (pva > end_pva) 1163 ppod->addr[k] = 0; 1164 else { 1165 pa = pmap_kextract(pva); 1166 ppod->addr[k] = htobe64(pa); 1167 pva += ddp_pgsz; 1168 } 1169 #if 0 1170 CTR5(KTR_CXGBE, 1171 "%s: tid %d ppod[%d]->addr[%d] = %p", 1172 __func__, tid, i, k, 1173 htobe64(ppod->addr[k])); 1174 #endif 1175 } 1176 1177 /* 1178 * Walk back 1 segment so that the first address in the 1179 * next pod is the same as the last one in the current 1180 * pod. 1181 */ 1182 pva -= ddp_pgsz; 1183 } 1184 1185 t4_wrq_tx(sc, wr); 1186 } 1187 1188 MPASS(pva <= end_pva); 1189 1190 return (0); 1191 } 1192 1193 static void 1194 wire_pageset(struct pageset *ps) 1195 { 1196 vm_page_t p; 1197 int i; 1198 1199 KASSERT(!(ps->flags & PS_WIRED), ("pageset already wired")); 1200 1201 for (i = 0; i < ps->npages; i++) { 1202 p = ps->pages[i]; 1203 vm_page_lock(p); 1204 vm_page_wire(p); 1205 vm_page_unhold(p); 1206 vm_page_unlock(p); 1207 } 1208 ps->flags |= PS_WIRED; 1209 } 1210 1211 /* 1212 * Prepare a pageset for DDP. This wires the pageset and sets up page 1213 * pods. 1214 */ 1215 static int 1216 prep_pageset(struct adapter *sc, struct toepcb *toep, struct pageset *ps) 1217 { 1218 struct tom_data *td = sc->tom_softc; 1219 1220 if (!(ps->flags & PS_WIRED)) 1221 wire_pageset(ps); 1222 if (ps->prsv.prsv_nppods == 0 && 1223 !t4_alloc_page_pods_for_ps(&td->pr, ps)) { 1224 return (0); 1225 } 1226 if (!(ps->flags & PS_PPODS_WRITTEN) && 1227 t4_write_page_pods_for_ps(sc, toep->ctrlq, toep->tid, ps) != 0) { 1228 return (0); 1229 } 1230 1231 return (1); 1232 } 1233 1234 int 1235 t4_init_ppod_region(struct ppod_region *pr, struct t4_range *r, u_int psz, 1236 const char *name) 1237 { 1238 int i; 1239 1240 MPASS(pr != NULL); 1241 MPASS(r->size > 0); 1242 1243 pr->pr_start = r->start; 1244 pr->pr_len = r->size; 1245 pr->pr_page_shift[0] = 12 + G_HPZ0(psz); 1246 pr->pr_page_shift[1] = 12 + G_HPZ1(psz); 1247 pr->pr_page_shift[2] = 12 + G_HPZ2(psz); 1248 pr->pr_page_shift[3] = 12 + G_HPZ3(psz); 1249 1250 /* The SGL -> page pod algorithm requires the sizes to be in order. */ 1251 for (i = 1; i < nitems(pr->pr_page_shift); i++) { 1252 if (pr->pr_page_shift[i] <= pr->pr_page_shift[i - 1]) 1253 return (ENXIO); 1254 } 1255 1256 pr->pr_tag_mask = ((1 << fls(r->size)) - 1) & V_PPOD_TAG(M_PPOD_TAG); 1257 pr->pr_alias_mask = V_PPOD_TAG(M_PPOD_TAG) & ~pr->pr_tag_mask; 1258 if (pr->pr_tag_mask == 0 || pr->pr_alias_mask == 0) 1259 return (ENXIO); 1260 pr->pr_alias_shift = fls(pr->pr_tag_mask); 1261 pr->pr_invalid_bit = 1 << (pr->pr_alias_shift - 1); 1262 1263 pr->pr_arena = vmem_create(name, 0, pr->pr_len, PPOD_SIZE, 0, 1264 M_FIRSTFIT | M_NOWAIT); 1265 if (pr->pr_arena == NULL) 1266 return (ENOMEM); 1267 1268 return (0); 1269 } 1270 1271 void 1272 t4_free_ppod_region(struct ppod_region *pr) 1273 { 1274 1275 MPASS(pr != NULL); 1276 1277 if (pr->pr_arena) 1278 vmem_destroy(pr->pr_arena); 1279 bzero(pr, sizeof(*pr)); 1280 } 1281 1282 static int 1283 pscmp(struct pageset *ps, struct vmspace *vm, vm_offset_t start, int npages, 1284 int pgoff, int len) 1285 { 1286 1287 if (ps->start != start || ps->npages != npages || 1288 ps->offset != pgoff || ps->len != len) 1289 return (1); 1290 1291 return (ps->vm != vm || ps->vm_timestamp != vm->vm_map.timestamp); 1292 } 1293 1294 static int 1295 hold_aio(struct toepcb *toep, struct kaiocb *job, struct pageset **pps) 1296 { 1297 struct vmspace *vm; 1298 vm_map_t map; 1299 vm_offset_t start, end, pgoff; 1300 struct pageset *ps; 1301 int n; 1302 1303 DDP_ASSERT_LOCKED(toep); 1304 1305 /* 1306 * The AIO subsystem will cancel and drain all requests before 1307 * permitting a process to exit or exec, so p_vmspace should 1308 * be stable here. 1309 */ 1310 vm = job->userproc->p_vmspace; 1311 map = &vm->vm_map; 1312 start = (uintptr_t)job->uaiocb.aio_buf; 1313 pgoff = start & PAGE_MASK; 1314 end = round_page(start + job->uaiocb.aio_nbytes); 1315 start = trunc_page(start); 1316 1317 if (end - start > MAX_DDP_BUFFER_SIZE) { 1318 /* 1319 * Truncate the request to a short read. 1320 * Alternatively, we could DDP in chunks to the larger 1321 * buffer, but that would be quite a bit more work. 1322 * 1323 * When truncating, round the request down to avoid 1324 * crossing a cache line on the final transaction. 1325 */ 1326 end = rounddown2(start + MAX_DDP_BUFFER_SIZE, CACHE_LINE_SIZE); 1327 #ifdef VERBOSE_TRACES 1328 CTR4(KTR_CXGBE, "%s: tid %d, truncating size from %lu to %lu", 1329 __func__, toep->tid, (unsigned long)job->uaiocb.aio_nbytes, 1330 (unsigned long)(end - (start + pgoff))); 1331 job->uaiocb.aio_nbytes = end - (start + pgoff); 1332 #endif 1333 end = round_page(end); 1334 } 1335 1336 n = atop(end - start); 1337 1338 /* 1339 * Try to reuse a cached pageset. 1340 */ 1341 TAILQ_FOREACH(ps, &toep->ddp.cached_pagesets, link) { 1342 if (pscmp(ps, vm, start, n, pgoff, 1343 job->uaiocb.aio_nbytes) == 0) { 1344 TAILQ_REMOVE(&toep->ddp.cached_pagesets, ps, link); 1345 toep->ddp.cached_count--; 1346 *pps = ps; 1347 return (0); 1348 } 1349 } 1350 1351 /* 1352 * If there are too many cached pagesets to create a new one, 1353 * free a pageset before creating a new one. 1354 */ 1355 KASSERT(toep->ddp.active_count + toep->ddp.cached_count <= 1356 nitems(toep->ddp.db), ("%s: too many wired pagesets", __func__)); 1357 if (toep->ddp.active_count + toep->ddp.cached_count == 1358 nitems(toep->ddp.db)) { 1359 KASSERT(toep->ddp.cached_count > 0, 1360 ("no cached pageset to free")); 1361 ps = TAILQ_LAST(&toep->ddp.cached_pagesets, pagesetq); 1362 TAILQ_REMOVE(&toep->ddp.cached_pagesets, ps, link); 1363 toep->ddp.cached_count--; 1364 free_pageset(toep->td, ps); 1365 } 1366 DDP_UNLOCK(toep); 1367 1368 /* Create a new pageset. */ 1369 ps = malloc(sizeof(*ps) + n * sizeof(vm_page_t), M_CXGBE, M_WAITOK | 1370 M_ZERO); 1371 ps->pages = (vm_page_t *)(ps + 1); 1372 ps->vm_timestamp = map->timestamp; 1373 ps->npages = vm_fault_quick_hold_pages(map, start, end - start, 1374 VM_PROT_WRITE, ps->pages, n); 1375 1376 DDP_LOCK(toep); 1377 if (ps->npages < 0) { 1378 free(ps, M_CXGBE); 1379 return (EFAULT); 1380 } 1381 1382 KASSERT(ps->npages == n, ("hold_aio: page count mismatch: %d vs %d", 1383 ps->npages, n)); 1384 1385 ps->offset = pgoff; 1386 ps->len = job->uaiocb.aio_nbytes; 1387 atomic_add_int(&vm->vm_refcnt, 1); 1388 ps->vm = vm; 1389 ps->start = start; 1390 1391 CTR5(KTR_CXGBE, "%s: tid %d, new pageset %p for job %p, npages %d", 1392 __func__, toep->tid, ps, job, ps->npages); 1393 *pps = ps; 1394 return (0); 1395 } 1396 1397 static void 1398 ddp_complete_all(struct toepcb *toep, int error) 1399 { 1400 struct kaiocb *job; 1401 1402 DDP_ASSERT_LOCKED(toep); 1403 while (!TAILQ_EMPTY(&toep->ddp.aiojobq)) { 1404 job = TAILQ_FIRST(&toep->ddp.aiojobq); 1405 TAILQ_REMOVE(&toep->ddp.aiojobq, job, list); 1406 toep->ddp.waiting_count--; 1407 if (aio_clear_cancel_function(job)) 1408 ddp_complete_one(job, error); 1409 } 1410 } 1411 1412 static void 1413 aio_ddp_cancel_one(struct kaiocb *job) 1414 { 1415 long copied; 1416 1417 /* 1418 * If this job had copied data out of the socket buffer before 1419 * it was cancelled, report it as a short read rather than an 1420 * error. 1421 */ 1422 copied = job->aio_received; 1423 if (copied != 0) 1424 aio_complete(job, copied, 0); 1425 else 1426 aio_cancel(job); 1427 } 1428 1429 /* 1430 * Called when the main loop wants to requeue a job to retry it later. 1431 * Deals with the race of the job being cancelled while it was being 1432 * examined. 1433 */ 1434 static void 1435 aio_ddp_requeue_one(struct toepcb *toep, struct kaiocb *job) 1436 { 1437 1438 DDP_ASSERT_LOCKED(toep); 1439 if (!(toep->ddp.flags & DDP_DEAD) && 1440 aio_set_cancel_function(job, t4_aio_cancel_queued)) { 1441 TAILQ_INSERT_HEAD(&toep->ddp.aiojobq, job, list); 1442 toep->ddp.waiting_count++; 1443 } else 1444 aio_ddp_cancel_one(job); 1445 } 1446 1447 static void 1448 aio_ddp_requeue(struct toepcb *toep) 1449 { 1450 struct adapter *sc = td_adapter(toep->td); 1451 struct socket *so; 1452 struct sockbuf *sb; 1453 struct inpcb *inp; 1454 struct kaiocb *job; 1455 struct ddp_buffer *db; 1456 size_t copied, offset, resid; 1457 struct pageset *ps; 1458 struct mbuf *m; 1459 uint64_t ddp_flags, ddp_flags_mask; 1460 struct wrqe *wr; 1461 int buf_flag, db_idx, error; 1462 1463 DDP_ASSERT_LOCKED(toep); 1464 1465 restart: 1466 if (toep->ddp.flags & DDP_DEAD) { 1467 MPASS(toep->ddp.waiting_count == 0); 1468 MPASS(toep->ddp.active_count == 0); 1469 return; 1470 } 1471 1472 if (toep->ddp.waiting_count == 0 || 1473 toep->ddp.active_count == nitems(toep->ddp.db)) { 1474 return; 1475 } 1476 1477 job = TAILQ_FIRST(&toep->ddp.aiojobq); 1478 so = job->fd_file->f_data; 1479 sb = &so->so_rcv; 1480 SOCKBUF_LOCK(sb); 1481 1482 /* We will never get anything unless we are or were connected. */ 1483 if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) { 1484 SOCKBUF_UNLOCK(sb); 1485 ddp_complete_all(toep, ENOTCONN); 1486 return; 1487 } 1488 1489 KASSERT(toep->ddp.active_count == 0 || sbavail(sb) == 0, 1490 ("%s: pending sockbuf data and DDP is active", __func__)); 1491 1492 /* Abort if socket has reported problems. */ 1493 /* XXX: Wait for any queued DDP's to finish and/or flush them? */ 1494 if (so->so_error && sbavail(sb) == 0) { 1495 toep->ddp.waiting_count--; 1496 TAILQ_REMOVE(&toep->ddp.aiojobq, job, list); 1497 if (!aio_clear_cancel_function(job)) { 1498 SOCKBUF_UNLOCK(sb); 1499 goto restart; 1500 } 1501 1502 /* 1503 * If this job has previously copied some data, report 1504 * a short read and leave the error to be reported by 1505 * a future request. 1506 */ 1507 copied = job->aio_received; 1508 if (copied != 0) { 1509 SOCKBUF_UNLOCK(sb); 1510 aio_complete(job, copied, 0); 1511 goto restart; 1512 } 1513 error = so->so_error; 1514 so->so_error = 0; 1515 SOCKBUF_UNLOCK(sb); 1516 aio_complete(job, -1, error); 1517 goto restart; 1518 } 1519 1520 /* 1521 * Door is closed. If there is pending data in the socket buffer, 1522 * deliver it. If there are pending DDP requests, wait for those 1523 * to complete. Once they have completed, return EOF reads. 1524 */ 1525 if (sb->sb_state & SBS_CANTRCVMORE && sbavail(sb) == 0) { 1526 SOCKBUF_UNLOCK(sb); 1527 if (toep->ddp.active_count != 0) 1528 return; 1529 ddp_complete_all(toep, 0); 1530 return; 1531 } 1532 1533 /* 1534 * If DDP is not enabled and there is no pending socket buffer 1535 * data, try to enable DDP. 1536 */ 1537 if (sbavail(sb) == 0 && (toep->ddp.flags & DDP_ON) == 0) { 1538 SOCKBUF_UNLOCK(sb); 1539 1540 /* 1541 * Wait for the card to ACK that DDP is enabled before 1542 * queueing any buffers. Currently this waits for an 1543 * indicate to arrive. This could use a TCB_SET_FIELD_RPL 1544 * message to know that DDP was enabled instead of waiting 1545 * for the indicate which would avoid copying the indicate 1546 * if no data is pending. 1547 * 1548 * XXX: Might want to limit the indicate size to the size 1549 * of the first queued request. 1550 */ 1551 if ((toep->ddp.flags & DDP_SC_REQ) == 0) 1552 enable_ddp(sc, toep); 1553 return; 1554 } 1555 SOCKBUF_UNLOCK(sb); 1556 1557 /* 1558 * If another thread is queueing a buffer for DDP, let it 1559 * drain any work and return. 1560 */ 1561 if (toep->ddp.queueing != NULL) 1562 return; 1563 1564 /* Take the next job to prep it for DDP. */ 1565 toep->ddp.waiting_count--; 1566 TAILQ_REMOVE(&toep->ddp.aiojobq, job, list); 1567 if (!aio_clear_cancel_function(job)) 1568 goto restart; 1569 toep->ddp.queueing = job; 1570 1571 /* NB: This drops DDP_LOCK while it holds the backing VM pages. */ 1572 error = hold_aio(toep, job, &ps); 1573 if (error != 0) { 1574 ddp_complete_one(job, error); 1575 toep->ddp.queueing = NULL; 1576 goto restart; 1577 } 1578 1579 SOCKBUF_LOCK(sb); 1580 if (so->so_error && sbavail(sb) == 0) { 1581 copied = job->aio_received; 1582 if (copied != 0) { 1583 SOCKBUF_UNLOCK(sb); 1584 recycle_pageset(toep, ps); 1585 aio_complete(job, copied, 0); 1586 toep->ddp.queueing = NULL; 1587 goto restart; 1588 } 1589 1590 error = so->so_error; 1591 so->so_error = 0; 1592 SOCKBUF_UNLOCK(sb); 1593 recycle_pageset(toep, ps); 1594 aio_complete(job, -1, error); 1595 toep->ddp.queueing = NULL; 1596 goto restart; 1597 } 1598 1599 if (sb->sb_state & SBS_CANTRCVMORE && sbavail(sb) == 0) { 1600 SOCKBUF_UNLOCK(sb); 1601 recycle_pageset(toep, ps); 1602 if (toep->ddp.active_count != 0) { 1603 /* 1604 * The door is closed, but there are still pending 1605 * DDP buffers. Requeue. These jobs will all be 1606 * completed once those buffers drain. 1607 */ 1608 aio_ddp_requeue_one(toep, job); 1609 toep->ddp.queueing = NULL; 1610 return; 1611 } 1612 ddp_complete_one(job, 0); 1613 ddp_complete_all(toep, 0); 1614 toep->ddp.queueing = NULL; 1615 return; 1616 } 1617 1618 sbcopy: 1619 /* 1620 * If the toep is dead, there shouldn't be any data in the socket 1621 * buffer, so the above case should have handled this. 1622 */ 1623 MPASS(!(toep->ddp.flags & DDP_DEAD)); 1624 1625 /* 1626 * If there is pending data in the socket buffer (either 1627 * from before the requests were queued or a DDP indicate), 1628 * copy those mbufs out directly. 1629 */ 1630 copied = 0; 1631 offset = ps->offset + job->aio_received; 1632 MPASS(job->aio_received <= job->uaiocb.aio_nbytes); 1633 resid = job->uaiocb.aio_nbytes - job->aio_received; 1634 m = sb->sb_mb; 1635 KASSERT(m == NULL || toep->ddp.active_count == 0, 1636 ("%s: sockbuf data with active DDP", __func__)); 1637 while (m != NULL && resid > 0) { 1638 struct iovec iov[1]; 1639 struct uio uio; 1640 int error; 1641 1642 iov[0].iov_base = mtod(m, void *); 1643 iov[0].iov_len = m->m_len; 1644 if (iov[0].iov_len > resid) 1645 iov[0].iov_len = resid; 1646 uio.uio_iov = iov; 1647 uio.uio_iovcnt = 1; 1648 uio.uio_offset = 0; 1649 uio.uio_resid = iov[0].iov_len; 1650 uio.uio_segflg = UIO_SYSSPACE; 1651 uio.uio_rw = UIO_WRITE; 1652 error = uiomove_fromphys(ps->pages, offset + copied, 1653 uio.uio_resid, &uio); 1654 MPASS(error == 0 && uio.uio_resid == 0); 1655 copied += uio.uio_offset; 1656 resid -= uio.uio_offset; 1657 m = m->m_next; 1658 } 1659 if (copied != 0) { 1660 sbdrop_locked(sb, copied); 1661 job->aio_received += copied; 1662 job->msgrcv = 1; 1663 copied = job->aio_received; 1664 inp = sotoinpcb(so); 1665 if (!INP_TRY_WLOCK(inp)) { 1666 /* 1667 * The reference on the socket file descriptor in 1668 * the AIO job should keep 'sb' and 'inp' stable. 1669 * Our caller has a reference on the 'toep' that 1670 * keeps it stable. 1671 */ 1672 SOCKBUF_UNLOCK(sb); 1673 DDP_UNLOCK(toep); 1674 INP_WLOCK(inp); 1675 DDP_LOCK(toep); 1676 SOCKBUF_LOCK(sb); 1677 1678 /* 1679 * If the socket has been closed, we should detect 1680 * that and complete this request if needed on 1681 * the next trip around the loop. 1682 */ 1683 } 1684 t4_rcvd_locked(&toep->td->tod, intotcpcb(inp)); 1685 INP_WUNLOCK(inp); 1686 if (resid == 0 || toep->ddp.flags & DDP_DEAD) { 1687 /* 1688 * We filled the entire buffer with socket 1689 * data, DDP is not being used, or the socket 1690 * is being shut down, so complete the 1691 * request. 1692 */ 1693 SOCKBUF_UNLOCK(sb); 1694 recycle_pageset(toep, ps); 1695 aio_complete(job, copied, 0); 1696 toep->ddp.queueing = NULL; 1697 goto restart; 1698 } 1699 1700 /* 1701 * If DDP is not enabled, requeue this request and restart. 1702 * This will either enable DDP or wait for more data to 1703 * arrive on the socket buffer. 1704 */ 1705 if ((toep->ddp.flags & (DDP_ON | DDP_SC_REQ)) != DDP_ON) { 1706 SOCKBUF_UNLOCK(sb); 1707 recycle_pageset(toep, ps); 1708 aio_ddp_requeue_one(toep, job); 1709 toep->ddp.queueing = NULL; 1710 goto restart; 1711 } 1712 1713 /* 1714 * An indicate might have arrived and been added to 1715 * the socket buffer while it was unlocked after the 1716 * copy to lock the INP. If so, restart the copy. 1717 */ 1718 if (sbavail(sb) != 0) 1719 goto sbcopy; 1720 } 1721 SOCKBUF_UNLOCK(sb); 1722 1723 if (prep_pageset(sc, toep, ps) == 0) { 1724 recycle_pageset(toep, ps); 1725 aio_ddp_requeue_one(toep, job); 1726 toep->ddp.queueing = NULL; 1727 1728 /* 1729 * XXX: Need to retry this later. Mostly need a trigger 1730 * when page pods are freed up. 1731 */ 1732 printf("%s: prep_pageset failed\n", __func__); 1733 return; 1734 } 1735 1736 /* Determine which DDP buffer to use. */ 1737 if (toep->ddp.db[0].job == NULL) { 1738 db_idx = 0; 1739 } else { 1740 MPASS(toep->ddp.db[1].job == NULL); 1741 db_idx = 1; 1742 } 1743 1744 ddp_flags = 0; 1745 ddp_flags_mask = 0; 1746 if (db_idx == 0) { 1747 ddp_flags |= V_TF_DDP_BUF0_VALID(1); 1748 if (so->so_state & SS_NBIO) 1749 ddp_flags |= V_TF_DDP_BUF0_FLUSH(1); 1750 ddp_flags_mask |= V_TF_DDP_PSH_NO_INVALIDATE0(1) | 1751 V_TF_DDP_PUSH_DISABLE_0(1) | V_TF_DDP_PSHF_ENABLE_0(1) | 1752 V_TF_DDP_BUF0_FLUSH(1) | V_TF_DDP_BUF0_VALID(1); 1753 buf_flag = DDP_BUF0_ACTIVE; 1754 } else { 1755 ddp_flags |= V_TF_DDP_BUF1_VALID(1); 1756 if (so->so_state & SS_NBIO) 1757 ddp_flags |= V_TF_DDP_BUF1_FLUSH(1); 1758 ddp_flags_mask |= V_TF_DDP_PSH_NO_INVALIDATE1(1) | 1759 V_TF_DDP_PUSH_DISABLE_1(1) | V_TF_DDP_PSHF_ENABLE_1(1) | 1760 V_TF_DDP_BUF1_FLUSH(1) | V_TF_DDP_BUF1_VALID(1); 1761 buf_flag = DDP_BUF1_ACTIVE; 1762 } 1763 MPASS((toep->ddp.flags & buf_flag) == 0); 1764 if ((toep->ddp.flags & (DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE)) == 0) { 1765 MPASS(db_idx == 0); 1766 MPASS(toep->ddp.active_id == -1); 1767 MPASS(toep->ddp.active_count == 0); 1768 ddp_flags_mask |= V_TF_DDP_ACTIVE_BUF(1); 1769 } 1770 1771 /* 1772 * The TID for this connection should still be valid. If DDP_DEAD 1773 * is set, SBS_CANTRCVMORE should be set, so we shouldn't be 1774 * this far anyway. Even if the socket is closing on the other 1775 * end, the AIO job holds a reference on this end of the socket 1776 * which will keep it open and keep the TCP PCB attached until 1777 * after the job is completed. 1778 */ 1779 wr = mk_update_tcb_for_ddp(sc, toep, db_idx, ps, job->aio_received, 1780 ddp_flags, ddp_flags_mask); 1781 if (wr == NULL) { 1782 recycle_pageset(toep, ps); 1783 aio_ddp_requeue_one(toep, job); 1784 toep->ddp.queueing = NULL; 1785 1786 /* 1787 * XXX: Need a way to kick a retry here. 1788 * 1789 * XXX: We know the fixed size needed and could 1790 * preallocate this using a blocking request at the 1791 * start of the task to avoid having to handle this 1792 * edge case. 1793 */ 1794 printf("%s: mk_update_tcb_for_ddp failed\n", __func__); 1795 return; 1796 } 1797 1798 if (!aio_set_cancel_function(job, t4_aio_cancel_active)) { 1799 free_wrqe(wr); 1800 recycle_pageset(toep, ps); 1801 aio_ddp_cancel_one(job); 1802 toep->ddp.queueing = NULL; 1803 goto restart; 1804 } 1805 1806 #ifdef VERBOSE_TRACES 1807 CTR5(KTR_CXGBE, "%s: scheduling %p for DDP[%d] (flags %#lx/%#lx)", 1808 __func__, job, db_idx, ddp_flags, ddp_flags_mask); 1809 #endif 1810 /* Give the chip the go-ahead. */ 1811 t4_wrq_tx(sc, wr); 1812 db = &toep->ddp.db[db_idx]; 1813 db->cancel_pending = 0; 1814 db->job = job; 1815 db->ps = ps; 1816 toep->ddp.queueing = NULL; 1817 toep->ddp.flags |= buf_flag; 1818 toep->ddp.active_count++; 1819 if (toep->ddp.active_count == 1) { 1820 MPASS(toep->ddp.active_id == -1); 1821 toep->ddp.active_id = db_idx; 1822 CTR2(KTR_CXGBE, "%s: ddp_active_id = %d", __func__, 1823 toep->ddp.active_id); 1824 } 1825 goto restart; 1826 } 1827 1828 void 1829 ddp_queue_toep(struct toepcb *toep) 1830 { 1831 1832 DDP_ASSERT_LOCKED(toep); 1833 if (toep->ddp.flags & DDP_TASK_ACTIVE) 1834 return; 1835 toep->ddp.flags |= DDP_TASK_ACTIVE; 1836 hold_toepcb(toep); 1837 soaio_enqueue(&toep->ddp.requeue_task); 1838 } 1839 1840 static void 1841 aio_ddp_requeue_task(void *context, int pending) 1842 { 1843 struct toepcb *toep = context; 1844 1845 DDP_LOCK(toep); 1846 aio_ddp_requeue(toep); 1847 toep->ddp.flags &= ~DDP_TASK_ACTIVE; 1848 DDP_UNLOCK(toep); 1849 1850 free_toepcb(toep); 1851 } 1852 1853 static void 1854 t4_aio_cancel_active(struct kaiocb *job) 1855 { 1856 struct socket *so = job->fd_file->f_data; 1857 struct tcpcb *tp = so_sototcpcb(so); 1858 struct toepcb *toep = tp->t_toe; 1859 struct adapter *sc = td_adapter(toep->td); 1860 uint64_t valid_flag; 1861 int i; 1862 1863 DDP_LOCK(toep); 1864 if (aio_cancel_cleared(job)) { 1865 DDP_UNLOCK(toep); 1866 aio_ddp_cancel_one(job); 1867 return; 1868 } 1869 1870 for (i = 0; i < nitems(toep->ddp.db); i++) { 1871 if (toep->ddp.db[i].job == job) { 1872 /* Should only ever get one cancel request for a job. */ 1873 MPASS(toep->ddp.db[i].cancel_pending == 0); 1874 1875 /* 1876 * Invalidate this buffer. It will be 1877 * cancelled or partially completed once the 1878 * card ACKs the invalidate. 1879 */ 1880 valid_flag = i == 0 ? V_TF_DDP_BUF0_VALID(1) : 1881 V_TF_DDP_BUF1_VALID(1); 1882 t4_set_tcb_field(sc, toep->ctrlq, toep, 1883 W_TCB_RX_DDP_FLAGS, valid_flag, 0, 1, 1884 i + DDP_BUF0_INVALIDATED); 1885 toep->ddp.db[i].cancel_pending = 1; 1886 CTR2(KTR_CXGBE, "%s: request %p marked pending", 1887 __func__, job); 1888 break; 1889 } 1890 } 1891 DDP_UNLOCK(toep); 1892 } 1893 1894 static void 1895 t4_aio_cancel_queued(struct kaiocb *job) 1896 { 1897 struct socket *so = job->fd_file->f_data; 1898 struct tcpcb *tp = so_sototcpcb(so); 1899 struct toepcb *toep = tp->t_toe; 1900 1901 DDP_LOCK(toep); 1902 if (!aio_cancel_cleared(job)) { 1903 TAILQ_REMOVE(&toep->ddp.aiojobq, job, list); 1904 toep->ddp.waiting_count--; 1905 if (toep->ddp.waiting_count == 0) 1906 ddp_queue_toep(toep); 1907 } 1908 CTR2(KTR_CXGBE, "%s: request %p cancelled", __func__, job); 1909 DDP_UNLOCK(toep); 1910 1911 aio_ddp_cancel_one(job); 1912 } 1913 1914 int 1915 t4_aio_queue_ddp(struct socket *so, struct kaiocb *job) 1916 { 1917 struct tcpcb *tp = so_sototcpcb(so); 1918 struct toepcb *toep = tp->t_toe; 1919 1920 1921 /* Ignore writes. */ 1922 if (job->uaiocb.aio_lio_opcode != LIO_READ) 1923 return (EOPNOTSUPP); 1924 1925 DDP_LOCK(toep); 1926 1927 /* 1928 * XXX: Think about possibly returning errors for ENOTCONN, 1929 * etc. Perhaps the caller would only queue the request 1930 * if it failed with EOPNOTSUPP? 1931 */ 1932 1933 #ifdef VERBOSE_TRACES 1934 CTR2(KTR_CXGBE, "%s: queueing %p", __func__, job); 1935 #endif 1936 if (!aio_set_cancel_function(job, t4_aio_cancel_queued)) 1937 panic("new job was cancelled"); 1938 TAILQ_INSERT_TAIL(&toep->ddp.aiojobq, job, list); 1939 toep->ddp.waiting_count++; 1940 toep->ddp.flags |= DDP_OK; 1941 1942 /* 1943 * Try to handle this request synchronously. If this has 1944 * to block because the task is running, it will just bail 1945 * and let the task handle it instead. 1946 */ 1947 aio_ddp_requeue(toep); 1948 DDP_UNLOCK(toep); 1949 return (0); 1950 } 1951 1952 void 1953 t4_ddp_mod_load(void) 1954 { 1955 1956 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, do_ddp_tcb_rpl, 1957 CPL_COOKIE_DDP0); 1958 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, do_ddp_tcb_rpl, 1959 CPL_COOKIE_DDP1); 1960 t4_register_cpl_handler(CPL_RX_DATA_DDP, do_rx_data_ddp); 1961 t4_register_cpl_handler(CPL_RX_DDP_COMPLETE, do_rx_ddp_complete); 1962 TAILQ_INIT(&ddp_orphan_pagesets); 1963 mtx_init(&ddp_orphan_pagesets_lock, "ddp orphans", NULL, MTX_DEF); 1964 TASK_INIT(&ddp_orphan_task, 0, ddp_free_orphan_pagesets, NULL); 1965 } 1966 1967 void 1968 t4_ddp_mod_unload(void) 1969 { 1970 1971 taskqueue_drain(taskqueue_thread, &ddp_orphan_task); 1972 MPASS(TAILQ_EMPTY(&ddp_orphan_pagesets)); 1973 mtx_destroy(&ddp_orphan_pagesets_lock); 1974 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, NULL, CPL_COOKIE_DDP0); 1975 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, NULL, CPL_COOKIE_DDP1); 1976 t4_register_cpl_handler(CPL_RX_DATA_DDP, NULL); 1977 t4_register_cpl_handler(CPL_RX_DDP_COMPLETE, NULL); 1978 } 1979 #endif 1980